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ABSTRACT

We investigate a class of acceleration schemes that resemble the

conventional synthetic method in that they utillze the difiusion operator

in the transport iteration schemes. The acctilerated iteration involves

alternate dif~usion and transport solutj.onswhere coupling between the

equations is achieved using a correction term applied to either (1) the

diffusion coefficient, (2) the removal cross-section; or (3) the source

of the diffusion equation. Tl,emethods involving the modification of

the diffusion coefficient and of the removal term yield nonlinear ac-

celeration schemes and are used in k calculations,
eff

while the source

term modification approach is linear at-least before discretization, and

used fur inhomogr.neous source problems.

there is n preferred diffcrencing method

observed instability of the

preferred difference scheme

at the same time stable and

conventional

A careful analysis shows that

which eliminates the previously

synthetic method. Using this

results in m acceleration method which is

efficient. This preferred difference approach

renders the source correction scheme, which is linear in Its continuous

*
Work performed under the auspices of the U. S. Energy Research and
Development Administration.
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form, nonlinear in its difference form. An additional feature of these

approaches is that they may be used as schemes for obtaining improved

diffusion solutions for approximately twice che cost of 5 diffusion

calculation.

Numerical experimentation oq a wide range of problems in one- snd

two-dimensions indicates that improvement from a factor of two to ten

over rebalance or Chebyshev acceleration is obtained. The improvement

is most pronounced in problems with larse regions of

where the unacc.elerated transport solutions converge

scattering material

very slowly.

I..

used

INTRODUCTION

The most widely used methods for accelerating the iterative schemes

in discrete-ordinates neutron transport computer codes
1-4

are the

1
rebalance method2 and the Chebychev acceleration method. The rebalance

method, often applied to a mesh more coarse than the problem mesh, is

very effective in reducing the number of iterations. However, for that

class of problems where the spatial mesh length is large compared to a

,wan-free path and where the scattering ratio is close to one, the coarse-

5
mesh rebalance method may yield an unstable algorithm. The Chebychev

method, has not prmren to be as effective as

multidimensional transport codes, and hence,

at leaat in acceleration of the within-group

the rebalance approach in

has net gained wide acceptance,

scattering source.

Several authors have investigated another approach to accelerating

transport iterations referred to as the diffusion synthetic method.
5-11

However, previous results have indicated that this scheme also suffers
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from instability problems although when stable the iilgorithm

5 In ~hl~ ~aper,
more effective than the rebalance approach.

a class of diffusion synthetic acceleration schemes chat are

effective when applied to discrete-ordinates iterations. We

is generally

we develop

stable and

shcw that

the key to stability lies in the scheme used to spatially difference the

equation9.

In Sec. II, we develop three variants of the diffusion synthetic

accelerat~,on method a“.ldap~ly them to the iterative process used in

transport codes. We introduce spatial and angular dlscretization and

develop a stable iteration algorithm. We give an explanation as to vhy

earlier approaches to differencing the equations led to unstable

algorithms. In Sec. III, we provide numerical results while Sec. IV

is devoted to conclusions and recommendations.

11. THEORY

In this secticn we develop three diffusion synthetic acceleration

approaches using both analytic and discrctized expressions and assuming

a multlgroup energy formulation throughout. We emphasize spatial dif-

ferencing since convergence of the methods depend upon the selected

differencing scheme. Most of our detailed explanations are given in

slab geometry for ease in understanding. All results apply equally

well to all

on boundary

as they are

other generally used coordinate systems. We do not dwell

conditions used wfth the transport and diffusion equations

the standard vacuum, reflective and periodic conditions.
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A. Diffusfcm Synthetic Acceleration Methods

Discrete-ordinates neutron transport codes use a dual strategy

for solving the transport equation.
12,13

The two nested iterations

are referred to as outer and inner iterations. The outer iteration

represents a sweep through all the energy groups while the inner

iteration is performed within edch energy group. In this section,

we present, in their continuous form, three different forms of the

diffusion synthetic acceleration method as approaches to accelerating

these iteration processes. One of the accelera~ion schemes, the source

correction scheme, is linear in its continuous form and is used for

inhomogeneous source problems. The other two are nonlinear and used

for eigenvalue problems.

1. Source Correction Scheme

To display the diffusion synthetic method used for inhomo-

geneous source problems, we first consider the inner iteration

(1)

In Eq. (l), $: is the &gular flux for group g at the Rth inner

iteration calculated using a scalar flux, ~
9/-1

, assumed to be kncwn
~

at each step of the iteration. The group source, QQg, contairls

scattering and fission contributions to the group as well as the

Inhomogeneous source. This source is computed from the I,mltigroup

flux of the previous outer iteration and is assumed known. We have

assumed isotropic scattering and sources for simplicity. This scheme,

as well as the related approaches discussed below, also apply to the
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more general anisotropic problem. In the diffusion synthetic method

we employ a correcttd diffusion equation using $ , in order to deter-
g

❑ine the scalar flux, @g, needed for the next iteration. For the

source correction scheme, this equation is

where

Dg(~) = l/3u#,

and the correction term is

(r) =
‘Rg –

ag(~) - u
sg+g(~) ‘

R;(@ = @&) +y.Dg(~)@’(@.

InEq. (3),

and

(2)

(3)

(4a)

.
(4b)

Note that we use a tilda to indicate quantities calculated using the

angular flux, $;, while the scalar flux calculated from the corrected

diffusion equation is without the tilda.

The source correction scheme for the inner iteration proceeds

i-l
as follows: using $ known from :he previous iteration, we solve

g’

Eq. (1) for ~~. In present day discrete-ordinates codes, this involves
u

one sweep through the space-angle mesh. The correction term, Rfl,is
g
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then calculated using Eqs. (3) and (4) and, in turn used in Eq. (2)

to calculate $; completing one cycle of the :!:crat” ~. The steps are

repeated until some convergence criterion is satisfied. Note that

for t = O, a logical first guess is obtained by setting R“ to zero
g

and solving the diffusion equation for $O.
2

It is easy to show that if the iteration converges, it converges

to the transport equation solution. Namely, drop all L superscripts

and set the transport scalar flux equal to the corrected diffusion

flux, $g = $ . Then, substituting Eq. (3) into Eq. (2) yields
g

which is the converged transport balance equation, also obtained by

integrating Eq. (1) over all Q. The question of convergence of the

method is discussed in Sec. II.c.3 and Sec. III.

We now discuss an outer iteration procedure which is consistent

with the above outlined inner iteration. The outer iteration consists

of one pass through each of the groups using Eqs. (l), (2), and (3) to

obtain the group converged correction terms R~(~), and then to solve

the multigroup corrected diffusion equation. A new multigroup source

for the inner iterations is then obtained from the corrected tliffus~cm

solution. That is, we solve the following multigroup diffusion equation

+ z ‘sg’+g(E)@~l(r).

g’4g

(5)
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Hence ti;esolution procedure for the multigroup transport equation

is to first solve Eq. (5) with Rg(~) = O for all.groups obtaining the

diffusion equation solution as the initial flux guess. We then eval-

uate QQg for k = 1 and cycle through the inner ite~ation [Eqs. (l),

(2!, and (3)] obtaining an estimate of R:. We use this in the multi-

k+l
group diffusion equatitin to obtairl a new value of $ from which we

g

start the procedure over. We continue this iteration cvcle u,;til

all convergence criteria have been satisfied. We have found that

for all problems requiring outer iterations that we have solved,we

need take only one inner iteration per group until the multigroup

k+l
source is converged, lQQg - QQ~l s E, and th~~~T= cc~verge the

group flux as required by increasing the inner iteration count.. This

usually requires only one additional outer iteration. The procedure

outlined here with one outer per inner can be viewed as using the

diffusion equation to perform the outer iteration of the transport

equation and only invoking the transport equation to obtain the

necessary corrections.

As will be discussed in detail in Sec. 11.C.3 and Sec. III, this

outer and

efficient

if one is

idea of a

result of

Lewis,
7-9

inner iteration process does converge, and in fact, is more

than existing methods in t~ne-and two-dimensional problems

careful in the spatial differencing process. The general

source correction scheme for the inner iteration is a

7-8
simultaneous, and at times, joint work of Alcoaffe,

9
and Miller. The latter two authors have shown that in

the analytic form, at least in slab geometry, this approach is

5-6
equivalent to the traditional synthetic method.
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The above method of inner and olter iteration accclzration

depends upon the problem being one with an extraneous source, i.e.,

subcritical system. In order to be able to extend the method to

handle eigenvalue problems, we have to recast the acceleration

equations as discussed in the following.

2. Diffusion Coefficient Connection Scheme

In order to implement the iteration acceleration procedure

outlined in Sec. 1, zbove, for eigenvalue problems we require that

Eq. (5) be homogeneous. In our definition of Rg(r) of Eq. (3), we see

that if we redefine the diffusion coefficient such that

(6)II ~(@
Dg(~) ~ DF(~) = -L Vpg(~) i=l,2,3,

ii

where i designates one of the orthogonal coordinate directions and

14D designates diagonal tensor of rank 2, then Rg(~) = O for all
g~

~.and g. Therefore, wher,Qg(~) = O, Eq. (5) has the required homo-

geneous foirn. With this expression for the diffusion coefficierit, we

then transform the inner iteration diffusion equation into

-v”Q@)”vJ#)+uRg(z)@ =QQg(s)

and the multigroup diffusion Eq. (5) becomes

-vO:(@”v$ly%_) +uRg(E)o:l(E) = *
t ‘_’”fg(O$l(Q

eff
g =1

(7)

(8)
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where k~ff is the multiplication factor for the system. We then

follow precisely the same iterations procedure outlined for the source

method using Eqs. (l), (6), (7), and (8) instead. The initial solution

II
for the scalar flux is found from Eq. (8) by setting Dg(Y_) = Dg(r)

ii
for i = 1, 2, 3. Equations (1), (6), and (7) then define the inner

iterations with the final resultant diffusion coefficient 1$~) used

in Eq. (8).

Although this is a nonlinear iteration procedure [due to Eq. (6)],

we have observed numerically that it converges as readily as does the

source correction scheme if properly spatially difference. This

scheme is due to Alcouffe
8

extending hi. earlier work on diffusion

14
correction schemes. Painter1° and l&ed’l have also done work, taking

14
a differc,~t approach, in extension of the Alcouffe method.

The diffusion coefficient

that it is possible to compute

fici(:lts [see Eq. (6)] rending

correction scheme has the disadvantage

infinite and negative diffusion coef-

Eq. (7) impossibl~ to solve numerically

using current techniques. In order to overccme this difficulty, ws

introduce another method, used in conjunction with the diffusion

correction scheme, for eigenvalue problems.

3. Removai Correction Scheme-—

An alternative way of making Eq. (5) homogeneous is to move

the correction term into the removal terms defining a new removal term

(9)
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Thus the diffusion synthetic acceleration method is altered and Eq.

(2) becomes

-V”Dg(~)V/(@ +

and Eq. (5) becomes

-V~Dg(@V$~l(~)

F

(10)

(11)

13’+g

This iteration procedure is now entirely analogous to the diffusion

coefficient method using Eqs. (1), (9), (10), and (11) instead, and

again, if it converges, it converges ttithe transport balance equation

solution. Although nonlinear, we have numerically obsened that this

method too is as convergent as the source correction scheme. The

basic idea of the removal scheme is due to Cahalan
15 8

and AJcouffe

working

In

ficient

independently.

practice for eigenvalue problems we uae the diffusion coef-

method in conjunction with the removal term method when

negative i.iffusion cosfficienta are computed.

c. The Dlscretized Transport Equation fo~ One-Dimensional Cases-—— —

1. General.—

Now

forms of the

consider the

that w? have presented, analyzed, and compared the three

diffusion synthetic, method, it is important that we

angularly and spatially discretized equations. This
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is nece~aary in order to show that a convergent diffusion accelerated

iteration depends upon the selected dif~erence method. We will show

ti~atReeds obtained divergent results for some problems using the

source correction scheme because of his selected difference procedure.

We present a d~fference scheme yielding a stable, efficient iteration

algorithm. The procedure can be completely described with the inner

iteration and, hence we restrict ourselves to the one-group problem.

We consider in this section only the one-dimensional. case leaving

considerations of impoxiance in two dimensions to Sec. 11.E. The

angular derivative term appearing in the neutron transport equation

also adds Interesting complications to the procedure presented below.

The steps taken in resol.utior~of these difficulties however, are

somewhat tedious. Accordingly, we refer the reader to Ref. 18 for

a detailed presentation of the implementation of the diffusion

synthetic acceleration met!~od in curvilinear geometry. The important

points can be made in slab geometry with isotropic scattering and

sources and, therefore, we restrict ourselves to this simple case.

We begin by applying the discrete-ordinates approximation to

the directional variables and the diamond-difference approximation

to the spatial variables of the transport equation to obtain from

Eq. (l),
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The m is the directional subscript, i is the spatial subscript, and

we define the angular moments by

M

I$= Wmpn(llm)vd, n=l, 2, . . ..N.
ni

m=1
i =1, 2, ....1.. (13)

with the set {wm} as the weights of a selected quadrature set normalized

2

.
so that. w = 1. To derive Eq. (12), we have imposed a spatial mesh

U

in which the mesh centers are given by the whole number indices (e.g.,

1-1, i, i+l), the mesh boundaries arrlgiven by half integral indices

(1.+%,i+3/z, ...). and

‘i ‘ ‘ii+ - ‘i-%”

(12), we assume the diamond schemc~’

1.
+ Vmi+ ), m u 1, 2, .~~*

i = 1, 2, ....

M,

I. (14)

Other relationships needed in the ensuing ;nal.ysis are obtaine~ by

operating on Eq. (12) with the operators
T

wmPo(llm) and
z

wmP1(~m)

[i.e., taking the zero and first-order di~retemoinents of Eq~~12)]’.to

respectively obtair,

and

(15)

(16)
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2 Difference Equations for the Source Correction Scheme&

To implement the souTce correction method, we must now

select a differencing scheme for the diffusion equation and correction

term [see Eqs. (17) and (18)1. The heretofore used method5 is to

difference R as

R1=.&
i 1i%

~ hiDi + hi+lDi+,l

where D .—
i+l~= 2

‘i+l

i =1,2, ....1, (17;

Equation (17) results from integrating

R(x) over a spatial mesh interval (xi+ ‘ ‘i+
), the same procedure used

to derive Eq. (12). Usinfi this

= QQihi - R:,

scheme to d~fference Eq. (2), w. obtain

i “ 1, 2, .... I. (18)

Equations (17) and (18) are compatible in that assuming convergence,

(T:i = Q~i a[ld$~i = $li), we obtain the discretizecl transport balance

equation

$ -$ iEll,2, I. (19)+ URil~i?oi = QQihiS1i% li+
....

The numerical form of the source correction method that has ccmmonly

been utilizec15 is that expressed by Eq. (1.7)and (18); and ~S shown in

Ref. 5, this form does not yield a stable ~lgorithm for all problems,
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The nonconvergent problems are those

in which, the scattering ratio c = a=

which have optically thick regions

/U, is close to one and the mesh

Hpacing Is greater

however, very well

that the converged

in the limit (of a

homogeneous region

than a mean-free path. These same problems are,

approximated by diffusion theory and we expect

Ri of Eq. (17) would be small in these cases and

very large region) approach zero. However, in a

where D = l/3cri, Ri does not go tu zeroi+~ = ‘i-+

using Eq. (17) unless the mesh spacing h, goes to zero. This is

clear since setting the second moment terms in Eq. (16) to zero (the

diffusion limit) , a relationship for the first moment at the cell

centers results, while Eq. (17) utilizes the first moment at the

cell.boundaries. Thus for diffusion-type roblems, the differencing

scheme does not adequately account for the physical situation and

this is the likely source of the instability of the algorithm as the

spatial mesh width increases.

We now use the fact that Ri should go to zero in the diffusion

limlt to select another difference scheme. In formulating this

scheme we realize that in order for the solution of the accelerated

equation to converge to the diamond-differenced transport solution,

Eqs. (17) nnd (18) must reduce to a diamond-differenced transport

balnnce equation upon convergence. To obtain a more appropriate

balance equation, we add to the standard transport balance equation

[Eq. (J.9)]for the ith cell this same equation for the i+l cell and

use the relationship resulting from taking the first angular moment

of Eq. (14) to obtain



+ aRihiOJ = #QQihi
+ QQi+lhi+l)

i- 1, 2, ● ... I. (20)

It is clear from its derivation that this is another form of the

diamond difference balance equation. Solving the converged form of

Eq. (16) for$li and$li+l and substituting the result in Eq. (20)

yields

+;[uRi+lhi $Oi+l) + u~ihi($oi)l =#QQihi ‘QQi+lhi+l)> (21)

i =1, 2, .... I-1,

where

1

(
D;=3uRi 1+2

Equation (21) has the

o2i* -0 Zi-!

$
oi* ‘)

-$ “Oi-%

form of the diffusion equation with a general

expression for the diffusion coefficients. For the case that $2i = O

(diffusion limit) for all .L,Eq. (21) is in fact, the conventional

diffusion equation difference so that the fluxes are evaluated on

the mesh boundaries. We conclude, then, that if, in lieu oi Eq. (17),

we use the following difference scheme for R,

iia~,z, .,.,1, (22)

We then obtain the desired result that Ri - 0 in the diffusion theo~



limit. In conclusion

diffusion equation as

where

and

From

upon
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we find that we must difference the corrected

-D ‘@:i+3/2 ‘“ti~)
i+l —

h
-+D

1+1
i

= (QQMi%+R; i=l,2 s ..., 1, (23)

(23a)

(QQh)~% = +(QQihi + QQi+lhi+l)” (23b)

Eqs. (22) and (23) we see that the balance Eq. (20) is attained

convergence. Note that to achieve this objective, we are forced

to introduce a nonlinearity into the iteration scheme [Eq. (23a)].

Because Eq. (20) is a valid neutron balance equation for the transport

scalar flux, the solution to the accelerated diamond-differenced equa-

tion will be the solution to the diamond-differenced transport equation

itself. Since we have formulated thi8 differmcing method to be compati-

ble with the diffusion limit, we expect the instability problems of the

synthetic acceleration method to be mitigated and this is shown to be

the case for a wide c’a~s of numerical examples in Sec. III.

3. Demonstration of Uncondf.tional Convergence for the Source——
Correction Scheme

Aa previously mentioned in.his.work on diffusion synthdtic

acceleration, Reed5 used a difference scheme that resulted in all
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iteration algorithm that does not behave properly in the diffusion

limit. Using a model prvblem Reed demonstrates that convergence with

his scheme depends upon the spatial mesh spacing. In the following,

we follow Reed’s development and show that with the difference scheme

developed above, convergence is

In slab geometry with isotropic

and constant cross sections, we

unconditional for that model problem,

scattering, constant mesh spacing h,

express the difference source

correction scheme, [Eqs. (12), (22), and (23)] as

V~i*- Vii
Pm

R.-1
h * + av:i = ccv$oi +QQi, m= 1.,2, .... M (24)

(25)

and

~~ . ?;i+l- if~++(tlfii+3,2- L@’i+,+TJ.i“ h
(26)

h
i =1, 2, ....1

Note that with constant mesh interval~ and cross sections, combining

Eqs. (13), (14), and (23a) yields

(6Rh)i = uRh

and the iteration 1s linear.

Taking the first Legendrc moment of Eq. (24) aridusing the results

in l?q. (26) yirtlds

(27)
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Using Eq. (27) we can write Eq. (25) in matrix form as

[~+ (1 . c) UjJ: = ‘J; (28)

-L
where ~ is the diffusion operator and 32 is the second Legendre flux

moment vector, and we have set

that for an infinite medium

$; . ~$fl
= 0s

the source to zero. We will show

where ~ is a matrix to be determined.

We first combine Eqs. (28) and (29), yielding the iteration

procedure

Thus the diffusion synthetic. iteration matrix is

(29)

(30)

The matrix elements of ~ are four.din a manner completely analogous

5
to that developed by Reed. We quote the result here as

IcP2(Vm)rm(l - rm)

I

E
+ (’$:i-3/2+ 4’o~+5/2)+ ““”t

(1 + rm)3
icll,z, ,.., I

where
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M

2{fm) = Wf
m m’

❑.1

and P is tile
2

of Eq. (29).

determine the

Legendre Polynomial of order 2.

Now in order to find the spectral

eigenvalues of the matrices ~ gnd

This is in the fonu

radius of ~~ we must

g. Reed has showns

that the tippropriate eigenfunctions fcr each operator are

Cos i+%r
f$~= $ ,k=l,2, ...

We find that the eigenvalues for ~ are

II
r~p2(pm)

ak=cr2+T ‘
m k

where

T
1- COS n/k

k ‘l+cosm/k’

and for Q are

~k = + - cosr/k).
h

FromEqs. (31), (32), and (33), we write the eigenvalues of us as

2nk~k
ek =

Ilk+ (l-c)u”

From Eq. (5)

5;
u—

it is clear that

(31)

(32)

(33)
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for Ak # O since it is clear that

r’[1m ‘~, fOr Tk+ m .
r~+~

k

From its definition, the minimum Tk is zero for k = m. Thus

22

II

rmvm
Ak< +

c=—

r:+T
2“

m

It is easily seen from Eq. (32) that

Thus

ek c
c

2

1+(1- C)*

(34)

Since Eq. (34) is a strict inequality, it is seen that the spectral

radius is always less than unity, independelit of the

since O c c < 1. l%us the method is unconditionally

this model problem.

2

value of ~,

convergent for

4. Difference Equations for the Diffusion Coefficient and Removal
Correction Schemes

The diffusion coefficient and removal correction schemes are

both nonl~near schemes even for this model problem and, hence analyses

such as that in Sec. 11.D.3 are much more complicated. Numerical

experimel~tation has verified, however, that with these nonlinear

schemes, spatial differencing analogous to Eqs. (22) and (23) are

required for stability. Namely, the two difference acceleration

eauations for the diffflsion coefficient correction scheme are:



-21-

= (QQh)i+%, i=l, 2, .... I-1.

and

For the rmoval correction scheme, the corresponding equations are

E (QQh)i+!f. i=l, 2, .... I-1,

and

(iffi+3,2- d;i+)

h
i+l

With these selections, both methods behave correctly in the diffusion

limlt and converge to the balance equation, Eq. (20).

5. Implementation in the Production Computer Code, ONETRAN-DA

lhe diffusion synthetic acceleration method has been implemented

in a computer CO?Q derived from ONETMN,l
18

entitled, ONETRAN-DF,. This

latter code uses diamond differencing in the spatial variabl~s and

operates in all three one-dimensional geometries; slab, spherical and
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cylindrical. The source correction scheme is used to accelerate the

inner and outer iterations for inhomogeneous source problems while

the diffusion coefficient correction scheme is used for eigenvalue

programs, again for both inner and outer iterations. The removal

correction scheme is used if either negative or inordinately large

diffusion coefficients are calculated. Thus , the diffusion coefficient

ar removal correction schemes may be alternatively selected on a mesh

cell-by-mesh cell basis. We also use the coupled, inner-outer itera-

tion scheme described in Sec. 11.1.

It should be pointed out that one may use the diffusion synthetic

method as a diffusion improvement scheme in lieu of an approach to

accelerating transport iterations. For example, with the source

correction scheme of Sec. 11.B.1 after one transport sweep and associated

calculation of the correction term, R, a corrected diffusion flux can be

calculated. The solution procedure can stop at that point and the results

used as an improved diffusion solution. The cost of this result is

approximately twice the cost of o~e diffusion calculation and our

experience Indica<es that the results are normally significantly more

accurate than diffusion results. ONETRAN-DA has an improved diffusion

solution option and can also be used simply as a diffusion theory code.

D. Two-Dimensional Diffusion Synthetic Acceleration Method

To develop the two-dimensional diffusion synthetic acceleration

method in a finite difference form, we follow the same procedure as

used in Sec. C. The essential features of the development can be

diBplayed using the x-y geometry case with isotropic scattering and
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sources. For that case, the diamond-diiferenced discrete-ordinates

equations are

~ 0°=‘sij ij oij
+ QQ

mijvij “
m= 1, 2, .... M,

i=l,~, ....1,

-J=1,2, ....J. (35)

with

hi = xi+ ?5- ‘i-l>

‘j
- Y.= ‘j+% ~-~’

v
ij = ‘ih~’

and tilediamond equations

+ = ; ($mi+j +mij
‘2

We now seek the form of

diffusion equation such

$ ) = +(l)mij+15+vmij_~). (36)
lni-Lj i

the diffcrenced two-dimensional source corrected

that, in the diffusion limit, the correction

term R
ij

+ O independent of the mesh opening and at the same time in

compatible with the transport balance equation (see Sec. 11.D.).

We define the flux moments

M

-T@;ij- ~ ‘my~(Pm’~m)Omlj’

m=1

wlLh the spherical harmonics polynomials defined by

(2 - ho)c - q)!
Yq(ll,ll)= Pq(l.1)cog q$,
F (p+q)! P
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p= O,l, ...N

and

n = (1-p2)cos$.

The Pq are associated Legenclre polynomials, related to the Legendre
P

2 q/2 ‘qpp ~,1)
polynomials by P;(p) = (1 -D ) . As a prelude to deriving

duq
a diffusion equation from the S.,equation,we take three discrete

MN - M
moments of Eq. (79), namely

E ‘my~(~mfl,~~ ~>my~(~m~~m)~ and

M m=1 m=1

z

w yl(p ,n ) to respectively obtain:
ml m m

m. 1

and

(37)

(38)

(39)
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Rearranging Eqs. (38) and (39) zesults in the following expressions

for the i direction and j direction currents.

1

‘here ‘ij
= — and F and G are functions of

~ij
whose forms are obtainable from Eqs. (38) and

theory limit (problem for which the difrusion

exact solution in the absence of truncation error), F ii,ldG go to

the second-order moments

(39). In the diffusion

equation provides the

zero.

We now seek a balarlce equation analogous to the one-dimensional

case of Eq. (20), to which the corrected diffusion equation will

converge, This is obtained by adding to 13q. (35) the corresponding

equations for the (i+l,j), (i,j+l), and (i+l,j+l) mesh cells and

using Eq. (36), yielding

~(h 0
2 j$li+lj + ‘j-tl$~i+lj+l) - i(hj$:ij + hj+l’$;ii+l).

+

+ *(uRijvi+):*j + tJRi+ljvi+ljfj:i+lj+ uRij+lvij+.&j+l,.,

+
uRi+lj+lvi+l.J+l$:i+lj+l

)
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= @QijVij + QQi+ljvi+lj + QQij+lvij+l ) (41)+ ‘Qi+l-j+lvi+lj+l

where we have used the diamond difference relationship to combine

some of the terms. We now substitute Eq. (40) into Eq. (41) and

we derive the followlng diffusion equation,

with

D’
ij+~

= (D h +D
ij j tj+lhj+l)thi

%+%j
= (D:Ljhi+ Di+ijhi+l) /hj

(42a)

(fJv)
o

R i++j~ = ~(URijVijOoij + ORiS+ljvi+l&i+lj

o 0
)“$:i~j~,+ %j+l.vi;+l%j+l

+U
Ri+lj+lvi+lj+l$oi+l.j+l (42b)

+ QQi+lj+lvi+lj+l)~(QQ”) i++j+~u +(QQijVij + QQMjyi+lj
+ QQ

ij+lvij+l

(42c)
and
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+ ‘(h @o
2 j li+lj

0“
‘hj+l li+lj+l)

- ;(hj $& + hj+l@:ij+l)

ln deriving Eq. (42) from Eqs. (40) and (41) we have used the fact that

‘jDi+~j ‘:i+dz,j+hj+lDi+l,j+l”:i+3/zj+l = ‘h.lDi+.l,j+ ‘j+lDi+lj+l)

The corresponding equations for the diffusion coefficient and removal

correction schemes can be deduced from the above and the one-dimensional

equations.

Notice that in order to generate the correction term, Che flux

moments must be evaluated on the spatial.mesh cell corr.crs. To implement

the scheme,
2

we have altered the ‘1’h’OTRAN-11code GO that it determines

the corner angular fluxes and calculates the required moments. This

test .;ers~on of TNOTRAN-11 is operable in three two-dimensional geom-

etries (x-y, r-z, and r-e) and follows the same outer/in~ler iteration

procedure and the same scheme for sele.c~ionof source, difft~sion coef-

ficient, or removal methods i~sdescribed in Sec. 11.D.5.

IIT. CALWLA’TIONAL RESULTS

In order to clemonstratc che cffcctivcness of the synthetic diffusion

ncci>lcrat~on method, we present some one- und two-dimensional calculu-

ti[ms of typical systems for which trtnnspor~ calculations are frequently

Ust?cl, Unless stated otherwise, all of the problems arc converged to a
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2. HTGR

5. CTR

6. SPHERE

pointwise criterion on the scalar flux of 0.000 1 and are in cylindrical

geometry. The one-dimensional problcwa zre labeled as follows:

1. LMFBR A configuration typical of current

Liquid Metal Fast Breeder Reactor

(LMFBR) designs with two core regions,

a blanket region, and a structure or

reflector region (28 groups, S4).

A configuration typical of current

HiGh Temperature Gas Cooled Reactor

(HTCR) designs with a homogeneous

235
core or graphite and U fuel and

a graphite ~eflector. This is an

upscatter problcm with 9 groups, S4.

3. and 4. TREAT 1 and 2 A fast, filtered experiment situated

in the TREAr thermal reactor. Number

1 1s a 20-group formulation with no

upscatter groups, and 2 is a 44-group

formulation with 20 upscatter groups

(s4, P-1) ●

A ~hield coupled neutronlcs-gamma

transport problem for n representative

fusion reactor configuration (46 groups,

S-6, P-3).

A coupled neutron-gamma transport

acljoin~ source problem in spherical
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geometry (42 groups) (converged to

0.001 for the point fluxes)(S-8,P-3).

Not all the possible iteration methods were emplcyed with all of these

problems because of the excessive computing time involved. Displayed

in Tables I are the total numbers of iterations required for flux

convergence for each of the acceleration methods tested. The abbrevia-

tions used are:

1. PM fine-mesh rebalance

2. cm coarse-mesh rebalance

3. DSA difiusion synthetic acceleration

40 CY Chebychev acceleration

5. NONE no ncccleration.

Alfiodisplayed is the rntio of the iteration time calculated as the

synthetic diffusion acceleration method time divided by the iteration

time of the best performer of the other methods used. In running thn

problems, the preferred iteration strate8y for the flynthetic diffusion

method was used in that one inner iteration wa~ used until the fission

and upscattcr Bourceg w?re converged and then the point flux was

converged to its convergence criterion by Incrcas.tng the allowed inner

iterating. Decause the snme strategy does not work for the other

methods, the inuer iteration limit was chosen at 5 per outer until

source convergence nnd then jncreased to 10-20 depending on the problem.

The NON-DSA calculutiona were performed using a diamond difference

form of ONETRAN.l

As outlined in Sec. 11.A, the base formul~tion of the synthetic

diffugiol~ method fur cigenvulue problems ia the diffusion coefficient

method with 1 switch to the removnl tl~rmmethod ne~ative diffusion

---ccJmJ-”*m fiwnPnmml]Fmrl .at n menh lntcrval. Very infrequently this
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switch also results in a removal term for that mesh point wt.lchmay be

sufficiently negative to lead to the calculation of negative diffusion

fluxes. When this situation arises (as it does in problem 6), the

synthetic acceleration is abandoned and no acceleration is employed

for that group.

Examining the results in Table I, one sees that the synthetic

diffusion method converges for all of the problma. We see a substantial

reduction in the number of iterations needed for convergence particularly

for the eigenvalue problems (l-4).

We stated in Sec. II that the diffusion synthetic accel~’ration

method can be used as a diffusion improvement scheme. We illustrate

this in Table 11 where we display the keff iteration sequence for the

TREAT 1 problem. The first column labels the outer iteration with

the first entry being the conventional diffusion calculation. In the

third column we post the elapsed iteration timv for this problem and

in the fourth column we give the percent error in the eigcnvnlue. In

outer iterations 1 and 2 only 1 inner iteration per group was used

and in the third the flux was iterated to convergence. It is seen

that the first outer iteration yields a very satisfactory improvement

over diffusion theory and we eee this behavior in many of the eigenvolue

problems we have performed.

We present some numerical results in Tables III und T.Vusingthc

two-dimensional diffusion synthetic acceleration method, Table 111

depicts results for a homogeneous square comprised of a purely

scattering material w.lth a 5 x 5 me~h, reflective boundary conditionti
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on the left and bottom houndarles, and a flat source. By altering the

total cross section, one mesh interval is varied from 1 to 15 mean-free

paths. The results remonstrate the stability of DSA with increasing

mesh size. In Table IV we solve a series of simple eigenvalue problems.

The first two problems are for the homogeneous square problem of Table

IIIwit.h land 2 energy group~. The 9-group problem is a cylindrical

reactor with a plutonium core having radius 7.62 cm and half-height of

1.966 cm surrounded by n -.62 cm depleted uranium reflector. The cross

19
sections are tabulated elsewhere. In these small systems, the inner

iteration acceleration is of very little value and the factors of two

in itcr:ltions over FMR arc due to the outer acceleration. We have not

pos~ed comparative running times for the two-dimensional problems

because the diffusion equntion solver in lWOIXAN is presently very

incfficfcnt.
1.4

However, prcvlous experience has shown that the dif-

fusion calculated time is less than 10% of the total tine; therefore,

we expect tileitcrntion tlmc to be proportional to the reduction in the

numbrr of iterations for large problems.

Iv. CONCLUSIONS AND RECOKNENl)ArIO,~S

In conclusion, we have presented the diffusion synthetic method

nnd dmonstratccl its effectiveness. In two-dimensional geometries,

however, some d(’vel.opment1s still necessary. In ir.)plernentntionof

the diamond cquatlons
2

, neEative fluxes can be calculated, TWOTRAN

us~~ a neCaLive flux flxup scheme that violates the diamond equations

by which neg,at~ve fluxt’sarc ect to zero. For this case, the compatible
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diffusion and transport difference equations that we labored so carefully

to construct are no longer compatible. We are testing various schemes

to efficiently restore this compatibility. Upon correction of this

deficiency, the diffusion synthetic acceleration will no doubt serve

as a new generation in transport acceleration schemes.
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TABLE I

ONE-DIMENSIONAL DIFFUSION 5YNTHETIC ACCELERATION RESULTS

COMPARED WITH OTHER METHODS

Problem NE 0! DSA Time.Ratio— — ——

1 LMFBR 1 114 2 382 3 133 * 154 0.18

2 HTGR --- 12 000 6 400 * 124 0.08

3 TREAT 1 --- 5 047 * * 188 0.06

4 TREAT 2 --- --- --- --- 663 ---

5 CTR --- 1 204 --- --- 329 0.26

6 SPHERE 1 879 --- * --- 456 0.33

* divergence

-- results not available

TABLE II

EIGENVALUE CONVERGENCEAS A FUNCTION OF

THE OUTER ITERATION

OUTER
k

Cff TIME (seconds) error(%)-— . —

diffusion 1.234 6 4.3 -0.83

1 1.24? 1 5.5 0.01

2 1.244 9 8.5 -0.005

3 1.245 0 13.0 0.0



TABLE 111

TOTAL ITERATIONS USING TWO-DIMENSIONAL

DIFFUSION SYNTHETIC ACCELERATION FOR VARYING MESH SIZE

Mesh (mfp)

1

5

15

FMR

12

112

293

DSA

5

6

6

TABLE IV

TOTAL ITERATIONS USING TWO-DIMENSIONAL DIFFUSION SYNTHETIC

ACCELERATION FOR EIGENVALUE PROBLEMS

Problem.—— —

1

2

3

CMR

48 ---

143 ---

149 369

DSA

17

24

80


