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ABSTRACT

A numerical method for treating two-phase flow in pipes is presented
which incorporates the use of a partially implicit scheme in regions of
relatively low flow velocity and a fully implicit treatment in regions of
high velocity. This method takes advantage of the lower cost per iteration of
the partially implicit scheme, without being limited by its conditional sta-
bility. Applications of this approach to water reactor blowdown calculations
produce reductions in computer time by factors of 2 to 4 without a signitficant

loss of accuracy.



INTRODUCTION

The Transient Reactor Analysis Code (TRPAC) is currently beiup developed
for the thermal-hydraulic analysis of watcer reactor accidents. In the carly
versions of TRAC, the drift-flux cquations for one dimcusjonal two phase flow
were suolved with a partially impliclt method described by Liles and Reed.l
This method is stable as long as the time step is limited by the Courant

relation
ot o< | =0 (1)

where AX Is the mesh spacing and V the flow velocity. For many problems this
stability limit is adequate. llowever, we have fcund that accurate reprodac-
tion of flow ncar breuks in blowdowm calenlations requlres retatively fine
spacial resolution. Since the flow velocities can b cxtremely high in these
regions, the Courant condition requlres time steps which are quite saall.
In problems with a Iarge total vumber of mesh cells the cost in computer
time for following the full history of a blowdown with such amall time steps
can be prohlibitively high.

One way of increasing the time step size is to use a fully implicit

2,3,/
method, “*7*"

Results presented later in this paper show that in blowdown
calculations, when a fully implicit numerical method is used to avoid stability
limitat fons. the Courant condition (1) cam be violated by a factor of 10
without altering the results by wmore than 17. Total computational time of
course does not decrcase by an order of magnitude, Factors of two to four,
depending on convergence criteria, are not unusual | however. e reason for
this is that with larger time steps. state variables can change more per time

step and the number of iteratfons required to solve the finite difference

cquations may increase. Another reason is that the fully implicit



method requires nearly twice the computational time per cell per tteratlion

nceded for the partially implicit ucheme,

Therefore, it (s worthwhile to

design an overall method for which the stability condition (1) can be exceeded

in the locations wherc high velocitics eccur, hut where chuaper procedures

arc vtilized otucuwhare,

FLON KQUATIONS AND NUMERICAL METIHODS

The model used tn describe two-phase flow in thix work requires the

finultaneous solution of the following four partial differential .-quntl.m.-n:s'6

1)
T + Vv nm‘n o .
a(uey) » > )
——— — ? . [} .._ r »
e + [uﬂv\-n nf\l’l {
dp_ € N -» » 1 1 »
..—E—m » 0 » -— ’ - - { 4 ) - - - ! 4 O (
3 + Vv [l”ncmvm 4 ’.(\v c l“r | p\ ‘\'m Oy (‘__v "[)\ rl }
>
oo, %3 1o (0p+ v ¥ ¥ ep - k¥ |V | (%)
Ty + VvV v\m - - 'ﬂ; { pt OV VIR - KV
where,
Clm - upv + (1 - «) Py (6)
a(l-a)p p,
L i
m

[

2\

)



aad
ap e + (1-u)p, =
S 2 i Y | (8)

m P
m

Varlables appearing in the above cquations bhave the following meanings:

nn mixture denslty

pv vapor density (mlnrnchplc)

Py liquid density tmicroscepie)

@ vapor volume fraction

Vm mixture velocity

Vr relative velocity between phases
c, vapor gpeciric interna?l! energ?
¢, liguid upecific internal cenerpy
o mixture specific internal cenergy
I vapar production rate due to phase change
r pProssare

r force of gravity

K wiall friction coefficlent

Q heat source

TL liquid temperature

Tv vapor toemperature

In these equations we have assumed pressure equilibrium between the
liquid and vapor phasen. 1In addition, an assumption reparding partition
of c¢nerpy between the phases is needed. For this work it was assumed that the
two phasen werc at the same temperature. Finally, equations of state are

specifled for both liquid and gas, and correlations used to obtain $r. Q.

lt
.



Equations (2) - (5) are solved for one.dlmensional pipes using a staggered
Eulerian mesh, where state variables such as pressure, internal energy, and
void fraction are obtained at the center of cells with length AX, and the mean
and relative velocities are obrained at the cell bcundaries. Because of this
staggered mesh, it is necessary to form spacial averages of varlous quantities
to obtain the finite difference form of the divergence operator. To produce sta-

bility in the partially implicit method a donor-cell average was used of the form,

X, V for
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where an integer subscript indicates that a quantity is evaluated at a mesh

cell center and a half integer denctes that it 1s obtai‘ned at a cell bounda:y.

With this notatlon the finite difference divergence operator 1s

v, W) =(AJH5(XV)J_.A§ - A, <xv)j_;§)/v°1 (10)

A
where A is the pipe’s cross-sectional area, and Volj is the volume of the j'th

celi, Slight variations oi these donor-cell termas appear in the velocity

cquation. Donor cell averages are of the form:
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and the term Vm-VVm is donor-celled as
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Given the preceeding notation, the fipite difference cguations for the

partially implicit method are:
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The superscript n indicates that the quantity s cvaluated at the "current”
time and thus i1s known, while the superscript n+l indicates that the variable
is evaluated at the new time and hence s an unknown for which the egeat fons
must be solved. These equations are cquivalent to those given by Liles and
Reed in the full donor-cell limit, except that the tom ﬁ“ 4t In the velocity
cquation is computed here as a simple spacial interpolation,

When constructing a set of fully Implicit finlte difference equat fons,
the use of donor cell averaging is ne lorger ueevasary tor seohitity, and a
straight interp-:lation is often preferred. Mowever, for reasons which will
be discussed later, we chose to use the sime doner cell averaziar in the
fully implicit method that was used previously. As a result the finite
difference equations for this method are lderntleal 1o vguatfons 13) - 18) when
the superscripts on all terms not divided by At are ntl rather than n.

In a one cell traasition zone between a repinn which 14 nolved parrially
implicitly and another rcpion solved fully implicicly, the finite differonce
cquations must be altered to maintain conservation of mass and cnergy. In such a
zone the fully implicit formulation is used, except that the diverypence terms

are altered to the form
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wheve it has been assumed that the fully implicit region is at the higher values
ot j.
Both sets of finite difference equations are solved with a full Newton-

Raphson method rather than the block implicit technlque (BIT) deseribed by



LLitles and Reed,  This invalves inserting the mixture property definitious into
the iinite difference schemes, The resulting cxpanded algebraic equations are
then linearlzed and the thermal and catorie cquations of state for each plase
arce inserted (see reference 1 for a more detailed description). The basic
practical difference between these solution procedures is that the Newton-Raphser
requires the Inversion of a block trl-diagonal matrix, and the BIT method drops the
off-diagonal blocks of tnhis matrix, solving only a block diagonal sys:.em. For
the fully implicic cquations this is absolutedly essential, since the BIT can
fall to converge if the stability conditlon given by equatinn 1) is violated
by very mush. For the particular one-dimensional eguations used in the par-
tially tmplicit schewe the tridiagonal procedure can be pregrammed =o that it
reiires essentially the same innount of coaputing: time per iteration as the
BIT. HNowever, in many applications the Newton-Raphson will converge to a
piven tolerance fn fewer iterations, veducing the total computational ceost
per time step, and thus naking it the preferred solmion method.
NUMERICAL RESULTS

The carlicst tests of the combined methods consisted of two pipe segments
linked to form a closed loop. One segment was treated fully implicitly and the
other partially implicitly. A constant mumentum source was applied, wall fric-
tion specified, and the system driven to a steady state. The most important re-
sult to come from these tcsts was the observation that for two phase systems vhere
the averages in the fully implicit section were done by spacial interpolation
rather than donor-celling, non-physical standing waves occurred in the loop.
However, when donor-celling was used in the fully implicit section, no such waves
appeared, indicating that the non-ph ,sical results were a direct consequence of
the interfaces between the two different spacial differencing methods.

The bulk of the tests were run on the blowdown of a pipe (unheated RSR
test problem 2, sece Kirchner7 for details). The noding used for the pipe is

9



tiven in Table 1. The system is initfally pure Jigiid with pressures near

9.8 MPa, temperatures of 543 K, and steady state flow conslutent with a

velocity into cell 16 of 1.4 m/sec. All calciiat lons were inftia.cd by setting
a zero velocity boundary condition on the left boundary of cell 1, and atmoa-
pheric boundary conditions to the right of ccll 16, simulating the simultaneous
closing of a valve at ore end of the pipe and the opening oi a break at the
other.

A base calculation was first performed using only the partially Implicit
procedure with the time step controlled by condition 1) except during the first
0.1 sec., when it was limited to 0.5 milliseconds to resolve the initial rapid
depressurization to saturizatlon conditions. Thls resultued in a time step over
the remaining 7.9 seconds of the blowdown which rcmained fairly conscant at ahout
2 milliseconds. The time histories of pressure for zones 1 and 16 of this rim
are plotted as solid lines on Figure 1. Thongh spacial zoning and timestep
size are different, the results of this run are basically the same as those
presented by Kirchner.7

Initial tests of the fully implicit method were performed using a spacial
interpolation (central differencing) approach, rather than donor cell
averaging. This approach was first applied to the whole pipe with the same
zoning and time step size as the base case. DNuring the final 7 seconds of Lhe
blowdown, the pressures obtained from this calenlation varied by 10% to 507 from
those of the base case. To check which calculation was more accurate, calcula-
tions were run for both methods with successively smaller mesh spacing. The
resulls of the donor-celled, partially implicit method did not change sipnifi-
cantly when the zoning was refined, but the results of the central difference
scheme approached those of the base case as the cell lengths were decreased,
This i3 interesting since the spacial error *erms of a centrz® difference scheme
are of the order AXZ, compared to errors of the order AX for the donor celled
method. However, it should not be too surprising because this problem contaiuns

large changes in void fraction, pressure, and the spaclal derivatives of these



quantitics over very short distances. Due to these results and those with the
stecady utate loop problems, donor-cell averaging was adopted for the fully implicit
code.

To demonstrate the dependence of accuracy on time step, the blowdown problem
was rcerun with the tully implicit donor-cell method. Again the time step was
fixed at 0.5 milliseconds for the first 0.1 second, but after that the time step
was set to 0.04 seconds in one csse and 0.2 seconds in another. The results
obtained with timesteps of 0.2 =cconds are plotted in Fig. 1 as dashed lines.

They agree with the base case to within 107 when time steps of 0.04 seconds are
used, the results agreed with the hase case te within 1%, and could not be distin-
guished as separate lines in Fig. 1. Hence, excellent accuracy was achieved at

20 times the Courant number.

Finally the full combined method was tested on this problem. Cells 1-10
werce treated with the partially implicit equations, cell 11 was the transition
zone, and cells 12-16 were computed with the fully implicit equatiorns. The time
step was controlled by the velocity between cells 10 and 11, and averaged about
0.02 seconds. As would be expected from previous results, this run agreed with
the base case to better than 1% at all times. For this particular problem, the

savings in computer time for the final 7.9 seconds was roughly a factor of 3.

In addition to the simple tests which have been described, this technique
has been successfully applied to the numerical aunalysis of the semiscale tests
run by the Idaho National Lnjineering Lahoratory.8 No direct timing comparisons
were made between blended approach and partially implicit method for this problem
due to the large amounts of computer time required. tlowever, scme indirect
comparisons are available. Runs with the blended scheme were done with 307%
more mesh cells than the old methnd. 1In the regions near the break where velo-

citie were highest, a fully implicit treatment allowed mesh lengths which were
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an order of magnitude smaller than those used for the partially implicit method.
For calculations which were comparable in all respects except those just meationed,
the blended approach required 257 to 407 less computer time, depending on the

total elapsed real time at which the calculations were termlnated.

CONCLUSIONS

We have shown that a combination of two finite difference methods with differ-
ent levels of implicitness can be used effectively to avoid stability problems
without sacrificing accuracy. Though a fully implicit set of finite difference
equations can be applied to achieve the same end, we have found that for blowdown

probleme this mixed method is less costly to use.
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TABLE 1

Cell Numbers Length (m) Volume (m3) Flow Area (mz)
1-5 2.02 1.08 x 107> 5.21 x 107
6-10 .80 2.77 x 107° 3.46 x 1077
11-13 1.99 4.52 x 107" 2.26 x 107"
14 1.49 3.39 x 107° 2.26 x 10°°
15-16 .99 2.26 x 107% 2.26 x 107
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Figure Captions

Figure 1. Pressure versus time for pipe blowdown calculations with

At = ,002 and At = ,2 seconds.
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