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PERTURBATION METHODS APPLIEC TO PROBLEMS
IN DETONATION PHYSICS®

J. B. Bdzil
Los Alamos Scientific Laboratopry
Univeraity of California
Los Alamos, New Mexico 87545

nfinement are di:-cuc:sed.

A thenretlical study of an explosive which releases a cmall
fraction, 6%, 0f its total energy via resolved reactlons is
presented. Two separate problems are treated. rirst, a
time-dependent one-=-di:lensional unsupported detonation 1is
conslidered. It 1:s cshown that to O(8) the detonation i3 a
reactive simple wave. The particle velo:zity prefiles are
calculated for a mcdel explosive.
edge effect for a stcady-state semi-infinite unconfineu
detonation 1: considered. It 1: shown that tne near-field
flow 1s dominated by tie Frandtl=iever aincularity, wicrvac
the far-rield flcw 1 controlled Ly the reactivi:; and
streamline dilveryence. 7The shiock locus, suvnlec locus, and

J niting charact-ristic are calculuzed arnd the effact: cf

Secona, tne aetonartrion

T. INTRODUCTION

Detonat lon physles 13 primaril~
¢s..cerned wilth underxtandin; the rataser
ccaplex suiject of reactive nonlirear
hy;drodynarics. As a result of thls, the
n.mber of analyt‘e solutlons deacribing
detonatlon provulens 1s very small, In
part, this has led to a heavy ruvliance
or. mrcrical solution methodr for these
problems. By thelr very nature, Lhese
rethods are only marpinally au’tabkle for
parameter variatlon .tudle:s; thus they
often provide little or no gualdiance as
t, the nature of the governing phyaica.

For n small claza of jpreclemi, ana-
1:tical solutisns can he founa a:lngs
ricdern sinsular portmctatlion tnceory.

1:.e purpo:e of thle paper 1l to descrlbe
the underl: ing scealluy: principles of
these nethods, and Lo how how they fil-
ter the relevant physies from the full
fraverning cquatian.:.  As oxisgplues, we
cornlder two peobloe.: that heve as a
s=all paramcter 8%, the fraction of the
total cnery releasat via resolved
reactinns.

In sectlon 11, we examine o ane-
dimens ferral Slac=dependent detonstion,
we shvw tharv to lawesrt order In the pepr=-
turbat lon (6), th: c¢volutlon of the

detonation pic-~eceds ags ir

simple wave wit.. Independ w1V AL iRS A
and §t. A ﬂcrni..ufc“ﬁ:r- wyiloratiz,
of the method of characierlissics o the
resulting oquaticenc alicws da to Swuir a
wide ciass of simple wave Licblems.

In section TIII, we exa.:lfe - 3te.iy

two-dimensional detonativn. WwWe shiow
that for an unconfined seml-nfinlte
detonation, the physical .sjase Sividers
{tselt 1avo two distinev ¢<lons., Very
near the cdpe (inner protlz:) tue fiows
ip nearlY a llucugnruaccl?+ expansctin
with x/8 and ¥y lheln: tne Laacepen-
dent varlable:, where v 15 tuce distance
Into the charse rom the ca-e,  Away
from the cdir (0ater prat Lom) tae o=
activit:y and streardlne 41"||-.-' o=
ter cqually witlhe x and 3¢ cohia e iu-
dependent varlables, We dorevmtiae Lhe
ahape of the hook mand @ente jozal
nttudy the effeets of couflnoment on the
detonatioa,

I1. A TIME<DEVEADERT DETCLATION

A. tutement of the frolloem

Moal of The wxperteaas . Uit v
'u'un performacd on explostee.s were de-
shrned Lo wensiuere Lhe par . Lottt
L11nrd I the Chapman=D el Ginaaey,

When applicd to llllli(lllll(ll‘l.l'.i ileteiat o,

"~
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this theory makes the followlrg aa-
sumptions: (l1l.) Initially the right
half-space (x2 0) 18 occupled by a qui-
escent fluld at a density p_ which is
in a state of metastable ch8mical equi-
librium; (2.) At time t = 0 a piston,
which 1s originally at x = 0, is impul-
sively brought to a velocity u®* > 0 and
then withdrawn producing a planar shock
wave followed by a rarefaction; (3.) On
passing over the initlally qulescent
fluid the shock inlitlates an lnstanta-
"neous chemical ‘reactlion, of specific
internal energy q(1-6'), which then
supports a classical detonatlion with a
pressure P®* and a velocity D¥%; (4.) In
terms of this model the parameters p_,
D%, and P®* completely characterize tBe
flow. In this sectlion, we will consid-
er the consequences of releasing an ad-
ditional small amount of eaergy q3! to
the flow on a relatively slow time
scale.

We limit our discussion to the fol-
lowing constitutive relations: a
polytroplc equation of state

E = ;31- % + q83(1-2) - q,

(2.1)
where E 18 the specifi: internal energy,
? 1s the pressure, p 13 the density, v
1s “he adlabatic exovoner:, ani a state=-
independent square-root rate law
(0L)281)

r o= k(1-1)¥2, (2.2)
where k 1s a constant rate multiplier.
eglecting all transport proceases, the
field equations for our time-iependent
one-dimensional flow (shock fixed coor-
dinates) are

B2 1n(F*/p°Y) = El g,’_r;; (2.3)

g%.P‘ t yp’c* g%.u‘ - %%l p°83r’

(2.4)

B e, (2.5)
where
D2

Sto " %F' + [D‘-(u‘tc'ﬂ-%EL (2.6a)

g%- L g'E- + (v‘-ul)gTa (2.6b)
g = fD(c)dc - x. (2.7)

In the above equations t° i1s the sacaled
time (kt), £° is the scaled distance co=-
ordinate in the shock frame (y+l)k¢/ydt,
u” 1s the scaled particle velocity 1in
the laboratory frame, ¢” 13 the uscaled
sound speed, p° 1s the scaled denslty
v/{y+1l)p_, and P°(t°) 1s the scaled det-
onation eelocity. To simplify the no-
tation, the primes will be dropped.

Equations (2.3), (2.4), (2.5), the
initial condition of an impulsive pl3-
ton, and the sitiock conditiona serve to
completely describe the probiem we Wiz
to consider. In the 1limit 8§ = 0 the
solution 1s a simple wave Kunown as i
Taylor wave. e will show thas fuw §
sufficlently srall the solutlon {5 a ve-
active simple wave.

B. Heactive Simple lave

Since we are consldeirlayg a dpsteln
for which 8§ 15 small, 1t i3 natura. -
seek a =oluticen to the ztas.2d problex

Tl - e - -t 2
a5 8 rogular soymptctls snponstisa o

us % U e S e W e Ll (2,3)

o w d9 4 g0+ 82SD 4 . etc,

A stralghtforward calculation glve: u.
Do t for t large. Thus, for timc:
greater than § = Eq. (2.8) no longon
gives us an aaynmptoutlc rerresentatlion
of the snlution. Examlnin. tre Jovern-
ing differential equationr, we find

that the sccularity In u? arizes be-
caupe the cquations for the perturin-
tions are lincar. It follouw:i that tor
long times they do not contaln the nan-
linear convective cf'fects that bound
reactive prowth. Fhyaleally, we can
underotand thl. wlti the ald of the
Master Equation (1), It atatea that the
growth of the uhock pre.surce 13 the (Gif-
ference between the rate of eneryy In-
put of the reactlons minus the rate af
enargy losu to the followlnw fluw.

When the flow 1a zonitc, as 1t 1s Ju car
unperturbed flcw, the los. rate la aderw.
Introduclny 6t aa a time scale into tuw
Master Fquaticn leadn to tournded ¢nlu-
tions (1). This supyre:sts that 1n ad-
dition to t, we uhould include &L aa a
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time scale. Using the method of mul%i-
ple time scales, we will zhow that a
bounded solution ¢an be found to our
differential syatem (2).

We begln by formally integrating
EQ. (2.3) and tiien using the results to
rewrite Eqs. (2.4) as

D2 1 8!
pt Re ° !5“ 715-13 ('F'E

_[s'r

3 52J3 —[— dt)# 0(6‘). (2.10)

where Rt are the Riemann variatvles

--Y-§1-c tu (2.11)

and fdt_ denotes an !ntecral taken alons
a partiale patiti. F:;louinr in re apir-
!t of the multiple time acale met:.-d, we
Introduce the time zcaiva

y(i) - Igl Git FIH

(?.12)

and assume that Fqa. (2.7) and (2.:) de-
pend explicitly on all or these ti-es ap
well as {. The cnaracteristic de:‘va-
tives become

Y—fr Ds :w ¢ (1-(ud QJ

A d ] ‘
+ G[Wu (l‘ et )-‘—‘ + {(2.13)
Focuzing out artention sn o ti neg-

ative niemunn vartativ, we find t:2t at
0(1) Eq. (2.10) i3 eaniiy Interra‘ci.

Since al}! the negative zharactericsics
emanate from a rchicn whonpe atate o oat
most specified by the vartalles yW, 9,

RO o JdO0 a0 ..y, (2.14)

At 0(8), we find

HN - _ym(ﬂ.'m), i i,

.'I‘n: R I
(2.15)

To a

vold the secular tetavior in Egq.
{(2.15),

we set
F_."(P. "')- (2.:6)

Proceeding to 0(41), we get
H* e gy, /o, ...)

N T'TVL-TTI["(H' . g—J.-":l, 4:0)]a;"' ,

g0 AN
(2.17)

where
ac . ;%1. [1-W 00 2,16

and we have aken

Y i ..
* - Py
¢ $ - SR

to avoid the eviwaranod S ou J0dul i,

VEZNg tnese reziat., %he :..:iuive
Rlemyrgs varlalles can te rltiern a.
’Q - 2'-]u * |‘.“(,‘-m, 0. (.80
K = 2% . "(-J;')
(2 il
Requirir: Eq. (Z2.21) <o pe-aln Liande.,

I .,

we apre foreed Lo et
whilech given

O RS U T Y 1 N

(2.22)

Therefore, v 0{8) the ©1 w 40 a :implie
wave for tue senlcs <% ans AU,

Turnlm: vur attentiorn to She oquit-
tionu governine Lthe puvilzive h.\ru.“
varfat.lea and arnicrariiy seteine
and ¥ = 1, we fini

y €8
(2.23)

a-3o , os;s:‘

(5?0 - ){u - ?%'! .
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Solving Bq. (2.23) subject to the rele-
vant £y and initial conditions,we
find
o Jeam(f)- freen ().

osgs?
Me o #o ;“l" . w'ln(- Ly

Vo ) RETTIN

Sabstituting £q. (2.28) into Bq. (2.0)
givea us an saymprotic representation of
=he solution which is 7alid aver ke en-
<'re physical region.

C.

The effects 52 a 2e8ll Tractisn
:f resolved energy release CAn RN In 8
setonation can btest be¢ Apfresiateld
*sngidering an exacple. “e a«e

{2.20)

{2.29)
(2.24)

0% = 8.8 zn/us, v ® 2.0
4! = 0.06 s k@2t

Tigures 2.1 and 2.7 z9opare the zar:lcle

{ 1
29 ! ] q 47 ) ]
a{mm)

Fin. 2.1 = A comparican of particle voe-
~ucity va Jdlatanze profile: fov o Zhape-
rnn-iuu?uut detanation (=<) amd Fy.

-..: ) -)-

vianis)

o8 | | 1 :
20+ 220 3% 292 26
wmm)

Fig. 2.2 « See ¥p. i.l.

veLaclty Braflies %, e teferente Jlale
BB msdupats wH cordb o ore o -4 . -
wE Of pun, Tuwe Teatire: .0 Vhe Tire Sue
serve Jpesia; athertion: -2 adilng

orly 48 of tre “-%m. egerc, vlwoy 2l
re’dctlisn reldunt: 6 3 LT Inzrende In
the particle vesezity at Yo AnUcE, ani
{2) after 3}C u3 of ran, %.¢ Finp. =20x!.
2%8%te hai not Leen TFedllel. Cherelire,
cranges of 0743 ip 2he 4a%onatl.fn rfco-
gy (L.0., the Clajmanevss acs itale:
praduce change: of CM4Y in tae annoe
statle. Algo, "he TLtce A% MLleh LR
steady-a2tate {2 appros el li meaaure’

in univs of (8x . Loenae paently, eves
if only a zeal) azourt 37 %he eval-al.c
energy In a detdnatiob 12 clepne) role
atively alowly, the doviatlsnz frym Lie
Chapman=Jougaes rudel w!i. te aree.

II1. EDOE EFFE’TE

A. %&gtcgen: of %he irolles

Conalder a stchdy niotatlion . F
volagity D prur:na:!hé in L0 peatisdve
g=directicrn, Tle cxplosive Zuppurd
tle wave 15 taden ¢ bte seml-infinise
with ezxplueive d:curying “i.c half-apa e
g ;’0 and a vacuum for ¥ > 0 (zec Fig.

If we acsume a Chapian-Jousuet del-
onation, ah chacrver prlding w’th the
shock would ace u fiat al.xck (y-axta),
along wihich the flow would bLe exnctly
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HE Products

Fic. 3.1 = A scheadtic represzentas’ o of
the detenation odge ¢Tfcet. The 4l
(b:<h C=J and resolved) are druble _lnes,
The PrandilelMcyer far 12 vefrecentc:l iy
the daahed lines.

sov.lc. Pehind the s%3ox ne woull see 2

m-ods? Manem Por cunl sluad v, Ffare o
e etimemtirtay ts amet c8 mg Bl mlwm, ve mre =

singularity at y = 2,

Por the cazc 30 3 rezulved renarssicn
gera, the flax gt ilo intergecticn T
the shock »iti: 2le xX=3x!: muat a.a, ¢
lor31ly decerited Ly one Fraps:ii=‘evsr
aingularity. Thi: rejulres tHak e
flzx at Lhe ahotd re zanloe at 7 v 2,
which {n turn, rejualires LhAY She xo -0k
BA/e AN aCUlce angie Wit!: the pezllive
x=-axia. Proceocding into ne explislive
aling the zhock, e offecly a7 <ne
sirgularity diminlan, anld leave ! e
11=4¢ an undizturted onc-dimenniongl
Fliw with & zubzsenle srovk wifen '
parsllel to the y=ax2s3. In the {nier-
ve~ing reglon (- = < 3y ¢ D) Lthe atoor
murt smoothly conne¢t thene Lwa lini.:z
wizh some convex fcim, Vhe purpcse :f
this pectlion I: 1o Jdouerile the ciryz-
turec of tin reglon of reactive flow,
inrluding the determination of tic
sh2eck :hape, aonlc iwveur, and limlcing
craracteriatic. For the pereral cavcs,
the analysls of this preotlem 'a JI0FIo
cuct., Hhowever, we wili araln flnd v:at
ir the 1limit of :mal! &° (the redclved
enerpgy release fractlon) a perturiasion
sc.ution i poacible, In thia 1l-1e,
pr:ogress besvmes posaible Lecauace we
are dealiny with a nearly sonle tiran-
sonic flow,

B. giollainlrz Conzideraticnc

Assuming that a transport prace
egs¢es CAn be neglected, tne fleld equa-~
vions for our steady two-~dimensional

plane flow (shock fixed coordinates) aie

T-(ou) = 0 (3.1)

woy = e €3.2)

277 - clu-9p = é 8'r (3.3)
P

ue?a = r, (3.4}

where o {3 the denslty, u “he particle
veincity relative t: the shock velssity,
P 1s the precsure, c {2 t:ne zound 3peed,
E 13 the apecific !nterna. enersy, 3 1a
the totsl eneryy re.oise ise %o chenmical
reaciion (D? = 2(y'a1})3), » 3 “he rute
of pesctior ani « - the reacclicn ¢rise
retsd variatie (* ® 1 ac re enl1 ;7 pe-
action). Zince we !':

general featores f e

sur dloouaalisn v %
*utlive rco3ticnsd: a g
T atatc

ey Peqercar -y,

Wihe ™ y 18 “Le aj.atat:.” CXFCHhEn. , 4L
8 statc -lndeyenlent :juase=ract rate
law

roe k(l-a)V7, (2.6)

where k (s a conatan. rate nuiviriter

After a stralegttfrrwanry :ransfcr:a::e;
(see Serrin 13)}), E3a. (2.2; and (3.3}
beconme

Mo+ 3 lul? = 307, (3.7)

where H = E ¢ P/p arid we av¢ aseguned
the {low altead of tiie akhooy ts both
homoenergetic and at =zecrc bressure,and

+9(8y)= 0 (3.8a)
a2 o)y .
)30 - Ry o

wiicre T 1s the tempcralure ang i =
(3u_/3x)=(3u_/3v) 1+ the wanticlty whicn
is ydire:ted inte the plane of the parcr.
Using Egn. (3.2), (3.3), and (3.7) we
can rewrlte Eq. (3.1) as

du du du
: X
(c -ui),;— - zux"y5§l + (c'-u;)iyx

= (y=1)qé’r - uguy . (3.9)

1=

[
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Equations (3.6), (3.77, (3.8}, and
(3.9) serve as the working equations for
ou> analysia. They ore partial differ-
en=ial equations of mizxed type. In re-
gi=>ns of supersonic flow, they are of
hyserbolic type; whereas in regions of
suZsonic flow they are of elliptic type,
Pormulating the bcundary value problem
for such a nystem requires some care.
The Tricomi equation

g +xE =0,

X yy (3-10[

whish is the simplest eguaticn of mixed
tyse, serves as a gulde (4). It zan bve
shcwn that if the potential 2 1a specl-
fied along some smooth curve in tre aub-
soric region (x > 0), which orizinates
ans terminates on the s9onlc locus

(x = 0), snd also alon: a craracteristic
ina the supeisonic reglion (x < 2}, wnich
13 Joined to one of the end points 5°
ths boundary for x > 9, then k3. (3.13)
ha: a unique solution. Translated to
tha problem at hand, w= are led ¢ re-
quire that: (1.) rlcng the shozk {free
b¢.ndary) both the normal and tangential
Jump eanditions are satisfled (curve 1);
(2.) at y =+ == ghe streamline flcw 1:
tr.at of the corresponiing cne=dimenclon-
a. predlem (curve 2); and (3.) aliry; the
cr:3s characterlstic enclireling tie

Pa-~ewdet _ Manvpe -t;m...Yamia. rima PYo.. d e
- mritaemTitagve woligmemr -y erte e mwed mo

y I
ttss of an inert asimple wave (zurve 3).

A 1zhenatic representation of the tound-
ar: 1s shown in Fig. 3.2. From a nhyc-

ca. standpoint, applying thesde bdoundu:y

corditions semms guite natural.

Of theae, the zhock conditicuc need
rome speclal conslderation. We Leg!n by
gcfining the equation for the shock

ocus

X = "(Y) » (3-11)

lp terns of which the tangent , t and the

Fiz. 3.2 - A achematlic repreaentation of
the boundary curves forr the edre effect
on a rcactlon zone; (1.) the shock, (2.)
atrearline at infinity, (3.) ecroac char=-
gacteriotic. The dushed line repreacnts
the aonlc locuc.

normal, n to the shock surface are

e (g .I)/(l 'r(;‘j-;‘.)')"‘I (3.12)
n = ((L + gt .L)/(l +(%§-)')'h. (3.13;

The Jump conditions across the shock re-
quire that the following relaticns holi:

P (urn), = p (up), (3.14a)
(ueg), = (ug), (3.14b)
P, + o (uem)} = p (arm)l | (3.1kc)

Since the state ahead of the shcoi 13
qulescent in the latopatory frase, Z-q:.
(3.14) may te rewritten ag

P o . \2
° . - _ivox2 1
52y - AV "“Z“(l?))
ol

- (u'+ ¢+ D)g—-:i (3.

—~

w

LU
)

(9]
\r

-
~e

l-'y‘

o = L) - 7 .
+ 1'_i,[\/l-(l-s’) (+Gf)l)‘l/(’(j—,) )

v3.152)

Using the recult of Hayes (5), *ie vir-
ticlty Jump acros: the ahnck 1In

0 (1-p /p,)? D{dw/dy)(d%v/457)
-
* o /0, [1+(dv/d;)?)? '
(3.1€)

wherc the flow ahecal of the shoezk 1s lr-
retational. Equatlilons (3.1%) nni 3.0
provide all the necescary boundziy con-
ditions along the :thock. Unfertunatel;,
the shape of the :¢hock 19 nut kniwn a
priond, 30 that at thl: polut in the
cr:lculation, they ure of :=nly linited
usefulness. 7he 3laope at the sounlc
print on the shock can te calecuizted Ly
subotituting Fqis. (3.15%b) and (2.15%c)
into Rernoulli’s law [«q. [3.7)], und
setting c? = |yu|?. We abunin

d ) ( I_GI)Ih
<#! = § TJL37T—
y sonie v+ 4

where for later convenlence we lntroduce

(3.17)
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%% = (1-:)(%%) . (3.18)

sonic

Since w#e must reguire that tne shock
shape i3 a smooth convex function, Eq.
(3.17. serves as an upper btound on the
shock slope. Recalling that the energy
releaze fraction is 82, Eg. (3.17) shows
that <ne shock slope is sensitlive to the
amoun: of resolved energy relezse, par-
ticuizrly for small values of 62, From
the vorticity jump condition we find
that &, 1s progorticnal to the prosduc:
(dy/d: $(atysdy Aasu~irg trat the
shock ~urvature, d3y/dy?, 1s also 0(¢)
then 5., 1s 0(8%). Since che product o7
decrez=3es for a partlicle as It recedes
from <he shock, Eq. (3.3a) regquires that
the v:.rticity alsc iecrease, Therefore,
it se==3 likely that fcr & sufficlently
small we willl be able to consider the
flow =3 Iirrotationai.

Zn the analysls cf the Tlow equa-
ticns, we wil) find !t ccnverlent to te
in a :>ordinate system in which the flow
at th: edge (v = ) 1s directed alonys a
sing.: coordinate axls We sclect tie
direcsion of flew at the scnle polint on
the z..2ck as our new x-azls {(x ) witi
the r:w y-axis (, ) telne rewnbndibul

e - Bonaaana SRa fl-e 8e Yana) o
. R e

3

Pran;;;--eJe" exs an.-;n, tre secnlc l--
¢2inclies with y, y = 0. In this
syate ., the "eloﬁitie" are

" = u, sinw (3.193)

co =-u
P Sw y

L., * u, sinw + u (3.19b)

yw x y COoSw »

with the rotation angle given by

sinw = §/y . (3.19¢)

In th:se new coordinates, the shock ve-
locity Jump conditions are

v " TR

R i

+ 6 e T s ) (v s ) (1me)”
(3.20)

- ) (y+62)+(v2-62)(1-e) |~
+ C7-3 5V7[ (+85=87(1-¢) ]‘xwi
§(y+52)e
(vi-61) 2 [(y+6?)-62(1-€)] ¢y 5,

where

O] 2 1+u

xw xw (3.22)

and the velocitles In Egs. (3.20),

(3. 21)! and (3.22) nave been scaled ty
Diy2-§#)M/(y+1), In the following sec-
tions, we wlll usée the method of matched
asymptotic expancicriz to find a soluticn
to the stated proclex In the limle of §
¢rall, To simplify the notatlion, the
subscript w and tildes willl be dropped.

C. The Outer Froblenm

In applying a ;er:urLa:ion methoi
to the solution of a protlem, there are
to essentlally unizue stegs The fipse
1s the determinat lcr of *tie form of the
expansicn of the derendent wvarlacle In
tzrms ¢f the small zarameter. 7Tne 3e:-
cr.d 1z the scaling :
e-er of the Inderen.
trhe protlem we are H
shock Jump condltlzrz
t ac an erpanvl : 2
vies In Intesrzl ;
rred. FRegulrins- :u
w2 generate lncluie
tne effects of reuns
li*n divergenze, oo o
icpendeat va":at-e;
:i:all' we can unis
2 the 12:e'hh4--~ .
Fzy frem the edgne w:
tznce from the cio2.s
lcous tc be near tis
dimensional value ..l
Since the reaction ¢
subsorilc in the .ma;; i
a- the shock change fv:“
eire to only slis? tlg sut
d{stances from the cdge.

|.~

c?

’
ﬂ

L’J

a

a4t sa'e
Therefore, whe
scnic¢c character of %:.ie flow 15 nearly

the same everywhere So that there 15
little to different’ate tie near fron
trie far flelds. The :cale 6v has thls
property.

We proceed with the reorturtatlon
solution by assuming that the dependent
varlables possess tie Tollowing asymp-
totic expansions

u, = Gu“ + 8% e e (3.23)
uy = Gu? + G’u? + e (2.24)
c? =1 4 G(CZ)(I) + 62(02)(&) + eos

~E
o o W o @ (3.:.))
e X_ 5(_i) + 52(-9) + e
oyl e e (5.20)
Ao A 0y 52,9 4 .. (3.27)

€ = c“’ + 650) + 525(2) L TN (3_28)



Bdzil

where ¢? has been scaled by P¥*(y?-8§2)/

é:;l)'. Ehe independent variables are
en to be
20 = Lyt1)k x (3.29)
p(y?-42)\2 )
yo - 5__(1:}.&_ y (3.30)
D(y2-82)2

(The asterisks will bo deleted from sur
notation). Since the reaction zone we
are considering is of finite length,it
is necessary to transform to i, y as
the independent variable set to insure
that the amount of energy added in the
reaction zone 1s compatitle with the
value of P. The differential operators
are thus replaced by

%E . (g.:;‘, c%i-m:' )g'i' (3.31)

? ) am. w3

‘-y-- Gw‘PG(w#‘w#')ﬁ-
(3.32)
Substituting Egqs. {3.27) and (3.6) ir%o
Eq. (3.4) and settinzg ®o zero the %erus
of 0(1) and 0(48), we se¢t =quations f:r

A® and 2

L)
o)) & - -aamw (3.33)
0(é) %m -y g%" + %x'“u-ﬂ")“”
(3.34)

Equation (3.33) can eazily be solved,
yielding

™ e 1o [1-3(xg-x)]2, (3.35)
where x_(y) Is the shock locus. Befcre
we can Integrate Eq. (3.34) u? must te

found.

We begin the anal;sia of our syatem
by first eliminating ¢® by applying
Bernoulli's law [Eq. (3.7)]

0(8) (e = (y-1)uf) (3.36)

0(6?) ()@ = (y-1)[u2 - Hu)?

1 l y+ A
= E(d?)’ t3 %:% (Y’-E’fl.
(3.37)

Using Eqs. (3.28) and (3.32) it follows
that the vorticity Jjump 1s 0(8'). From

the definition of the vorticity it then
follows that

e
o8) =0 (3.38)
17 el 11 aum
FICURE i L g PR

(3.39)

Aaking uze of Eqs. (3.33) through (3.3%9),
we find that Eq. (3.5) becomes

0(s?)
™ 3u": 1 YT ot 1
R e Y AR
(3.40)
056'2
wfa\® “': 2 Ay @ L, a2
GE e E &) - Flawr
1/4-1 . \ .. @ Ju
it s s R

L) ] 2 2
s 2 w0 u, . i ‘:} , e “w)
y*1 y X T I\ PSR
3
3
=3y W N S
+ (Y’-i)ul F—J LI \3- -)
Plus higher order 'erms, :xpaniin: ¢ :a
1

sh.o~K cuadltlon: [s38. (:.20) anz: (3.:
we get

o) ¥, = AT {3.52)
uf, - - 2 (3.43)

2 (1] -
o(8%) uul,
W@, = (B - e, - Lemisins)

The remaining boundary eznditlcn. re=-
quire that the flow apprcach the one-
dimensional limit a:z 7 --w and a franiltl-
Meyer singularity at 7 = 2. x € G,

1 o 1
- v(l-t /-;+ (3-“")

The lowest ojder equations [-3z.
(3.38) and (3.Bc)j can be Intepsrated
without difficulty. 3ince ¥ ts ia-
dependent of A, Eq. (3.4Q0) cdn re
treated as a first order cpdinae; {1
ferential equatlon (G.D.E.) in ». As
such 1t can satiusfy only cne boundary
condition (chock conditicn) and the
Prandtl-lleyer conrition r.ust pe drupped.
This then serves aa the definitlon of
the outer 1limit of the full problem:

uter Problem - the system of 0.D.E.
Q3. (3.007, (3.41), cte.) and the

shock boundary conditlnns whkiah
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together describe the flos far
from the Prandtl-Meyer singularity.

Solving =q. (3.40), we get

au®
]
(UD® = (WP + oy A I-(1-0 )
- ..,: f1-(1-2)), (3.46)

where uﬁz and & ar« unknown functicns

of ¢¥(T.. MNow, if Eq. (3.46) 1z to be
an acce:table soluticn to our reac'lve
flow pr:.btlem, 1t must nave .he following
proper-ies: (l.) u¥ must be reai, and
(2.) u'¥ must be equil =c zerc (scnlc
flow) "zt some point in the reactlon
zone. These can sc consldered as a en-
eraliz:: Chapman-Jouguet c:-ndition. Fe-
quirins thiz of Egq. (3.146) afves us a
differ<c:tial condizlon on ¢

)
g—g = 1-/15(1-€9)7 , (3.47)

where = = «(vy+1)%/2y. Integratine 57,
(3.47) _nd requiring that €¥{5; =
glves .3 an Implicit expression far ihe
shock :z_ope

Y L Y P, 12, 49
- e T w LA -2

where 2:50 = 1-¢®, Transfcrming Eq.
(3.18) Into the edge sonic-iine-fixed
coordir.ztes and integrating, we get a
first =z, proximation to the snock locucs

xg = ;%T[tan(§+%> - (140) - ysiné

- yln(l-sineﬂ. (3.49)

Therefc:e, the first approximation to
the ou~zr velocity fleld is

@ .1 o ipo 1oy V2
uy = 3 stne - S0-0-0¥]  (3.50)

u® . %—(1-(:056) , {3.51)

¥

where ) = 0 at the shock.

We find that the above solution has
the following propertlecs:

(1.) The solution merges into the

onc-dimensional flow as
+ =0,

(z.) The distance (along the Jlab=-

. oratory x-coordinate) from
(0,0) to the lead pcint on
the shock 1s Inflnite (for

the square-root rate law).
(3.) The sonic line enters (Q,0)

with infinite slope instead

of the required zero :ioge.

A nlot of the shock loeus and scnic lo=-
cus 1s shown in Plg. 2. Therefare, we
find that the cuter soslution agree: wish
both, the shock conditicns and these at
Yy = ==, but viclates the conditlionc as
the Prandtl-Meyer singularity. This 'z
a substantial ashortccming.

Going on to the rext order of tne
outer problem, matters becsme evern wor:ze.
Solving Eqs. (3.34), (2.23), and (2,41}
subject to Eq. (3.44), we find

3 L) 1 YL e
u) = @, 4 ol [(v-25iestns) - (v

2y+l . .- .

#(csce=-1)(csc?g = 773“”‘"93[1‘--")V]
13.52)

W . e 1;5[;1-5139}:::9 - E:lﬁiiﬁ]

v uy+ Y Y"_L
LY SCTSETRL L) INS N2
where
u?+ - :?’ cz*9 13.5u]
hl &
lff’ s C(1-5in%) + %%iai-s:néiin(:anf)
2 5Y+3
+ £ ¢ § - (=28
7 cosd §;1—( ;]
+ ) .
+ 32 8 (1-s1n0)ccss ¢ by, 3553
2y Y
and € 1s an artitrary conitans, Iin the
L] L] T T 4 T
1-term outer solution
msr J

nm)

5.1} 4
-2.1 . - i ) W | '
=100 -69.3 -~1.5 -7
8yin.m)
Filg. 3.3 ~ 1l-term cuter soiutiorn. The

shock locus (upper curve) and the sonice
locus (lowcr curve) in edge fixed co-
ordlnates. The parameter values are

D =8 mm/us, vy = 3, and k = 2 us?,
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limit 5 + -= (8 = ¥/2) the soluation 1is
well-benaved. However, near the edge

(0 - 0) Eqs. (3.52), (3.53), (3.54), and
(3.55) all become singular. To resoslve
this di7ficulty, we must examine the vi-
cinity =f the Frandtl-Meyer szingularity
in some detall. 1In the next section,we
formuiz=e the inner limit of our protlen
and shc«4 how the singularitles 1n the
outer g=oblem can be removed.

D. The Inner Problem

The problem encountered at the end
of the _ast section is simliar in prin-
ciple => that treated by Cole (6).
There as here the singularlity arilses
becauaet the 0.D.E. being s:tudied has
singula= coefficlents. However, in ocur
case tn¢ resoluticn of the difficulty
proceeis somewhat differently. The
princisal shortcomiag of k2 suter linit
13 tha: the O0.D.E.'s whizh are obtalined
are ca;able of handling only a very re=-
stpictei class of transonic flows.
Since :..e reactlivity 1s of :econdary
igportzr .ce near the edge (relative =g
the Prz-ndtl-Meyer singulariciy), et us
neglec: !t and the vortlclcy for tihe
moment z=nd obtain the Kernei Transc-lic
partia. differentlal snera.sr zontaired
in Eq. .3.%). The oblec: =7 tnls exw, .
cise 1: =0 obtaln a partla: 4!fferen:!a:l
equati::: (P.D.E.) which is capable 3f
satisf-’nc all of the appilcatie bournd-
ary cor-iitlons near the edye, we gro-
ceed L Introducing a rotentlal and
scaled lndepuendent variables

¢ = - x + §M(x,y) (3.56)

e xs™V, §o=ysv o, (3.57)

Using Z3s. (3.56) and (3.57) to calcu-
late t2 velocities and Bernoulli's law

to eli-Znate c?, the dominant terms in
Eq. (3.3) yleld the equation

3¢ al¢ , ale ,
(rerigh Szt e 50 0 (3.58)
where xe have the conscraint
3(a=v) = 2(m-u) . (3.59)

Equati:n (3.53) 1s the model equation
for trznsonic flow(7). It 15 capable
of des:"ibing the flow 1n t.e nelghbor-
hood ¢® a Prandtl-Meyer slngularity inm-
vedded ‘n a mixed flow. In fact, the
specif’cation of a unigue solutlon of
Eq. (3.58) requires that ¢ he given
along =:1e shock, a curve connecting che
shock <> the sonic locu3, as well as
the Prandtl-Meyer condition. To detcr-
mine t-= parameters m, v, and p, we re-
quire that the orders of miysnitude of

the velocitlies calculated from Eq. (3.58)
match the dominant singularities round 1in
the outer solutleon. Thi:z can be thought
of as satiafylng the bounuary ccndiziona
along a curve connecting the zhock locus
to the sonic locus 1in an order of marn'-
tude sensze. The most singular terms in
2 and d? are

83 - o(sVRev-TH/Y) F%T"' (3.50)

Glu? - o(c“’\'-u/l) _(Wi’_vl . (3.61!

so that we get the conditions

Lvdu = aev

SOlV!hQ‘. Eqs- (3-59). (5-62). and (3-'-3..
we get

6 = NEWVY T o x/sVV, e sV,
(3.6
u, = 5(8Y), a, . 0i42;. (3.63)

In term:; of the varlabtle: »f E5,
the éemainiﬂa Sinealar Terns Moo
er ‘¥ ani uv are

X M

2 . wnln(=' 2.1 18
shiy: Vo v ¥

1
-
-
<
~
al
8
~

3 ] . i - +221
P J?_ 8§*1n(-7) + <¢%:ns
When expressed In terns of Eq. :3.%4),
the dominart terms in ¢ .2 outer u% anij
Jy sre 0(8Y") and Ci38¥*) respecti?ely.

(3.67)

Using this inf.rmation as a jgulde,
we assume that the {low potential can
be expressed as the followlng asyrptoti:z
sequence

¢ = VIV 4 s 1ng P § 31,
+ 821n6 ¢+ 5242 4 §M1ns YUY

+ MY 4 ool (3.68)

which 1s valld for velocitles up to at
least 0(8™") zince Yq. (3.16) glvex

ny d(1-¢)*

a, = o(sv) el (3.69)

For thi: set of dependent and indepen-
dent scales, the reaction progress
variable must be

10
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A = gVLWE , g0, ..., (3.70)

where ™ and \W¥ saiispy

B (3.73)

LT3R UL (3.72)
80 that

LT T (3.73)

LARIEE 115 JLAN (3.74)

Introducing X £ \/8Y! and 5 ac the in-
derendent variables, Fqg:. ‘R.7) and
(3.3) yleld the following cset of egua=
tlors for ¢:

os¥)
%r(%?m)‘ =C (3.75)
0(8°:n8)
%‘r(gf"%%u")' E (3.76)
0(87)
- g (373 §<v+1)(§_§w),
BERE o (3.77)
Q87 (1n8)?)
:_x g_%uvo): =C (3.78)
0(8¥*1né)
-k
+ %(vu)(%%u“:-%m) + %.;‘f"” -
(3.79)
ICKD)
ol 3
- ]
- z(wl)x(:xw)z %%g"'
-3 ;% %;.'%L:’ - (—Ei—)'l.(B.SO)

Sirce the higher order equations are in-
creasingly mcre complex, we will rot
eonsider them here. [oing so will not
affect the first approximation t¢ the
uniformly valld solution.

Let us now obtalin the boundary ccn-
ditions for Eqz. (3.75) - (3.80). iilven

the potential of Fq. (3.€8) and t-e
sihock condition <f Eq. (3.21), we zade

€= SV, 5108 WY 4 g0

+ ‘Ullna CUdl ¢ oo, £3-a:l.)

Subatitucing Eq. {3.81) and the weloci-
tles irto Eqs. (3.22) and (3.21!, we
ge® "he shock boundary conililon:

ousv) fad — 13.32}
at ’
048" (1n8)?) (if’vjl . "3.32;

0!6:’_’_}_ _:rWﬂ)I _2 i(hll)
9 AN +*

o

]
Vel
r

A +

0. §% o) (3V2) . 1 tc
=27), -

eV 9_#‘_') (3_:"’) .- ;(f .y
aA 27 VAT , st

where the terms in the szhsczk siope are

- 32 l,--“
¥ "’(~ y * (3.87)

3y
“coofF), e o)

Far from the edie (1,e,, =¥ large!, tre
flow caiculated for <he inner greilen
must match that cof tthe outer prozlen.
Calculating the outer rctential rrom
E3s. (3.50), (3.51), (3.%2), and .[5.83°
and then taking the inner iimi=s : 9 :hic
outer potentlal glves us the matan
potential for the lnner problem

- aV2 Y1 o> wi_ 1ps 2 oo -
¢ =6 {vy +a}-y(77—)(.., :
+ g A7 - {—}}(-i)m(-y)
2 lpy+l\? oy
- &5 Y v
- wW2
i BRI e S

1 - 1 i, o -
a2 () D ¥ReeD )

s

11
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1 *lf o2
M 1 (-%) L (3.88)
where we have set the arbitrary constant
in Eq. (3.55) equal to

C--*;-}-Ilna;—léﬂ)-ll -1!%_

Lastly we have the Prandtl-Meyer condi-
ticnat § = 0", ¥ = 0°. Thus, the inrer
limit of “he full problem is:

qs. ..9), (3.76), (3.77),

3.78), {3.79), (3.80), etc]], the
shock boundary conditions [Zgs.
(3.82), (3.83), (3.8, (3.35),
(3.86), (3.87), etc.], the match
into the outer problem [Eq. (3.88],
arnd the Prandtl-Meyer singularity
which together describe the flow
near the edge.

Finding the solution of Eqs.(3.75),
(3-76)9 (3.77), (3-78)9 and (3.79) sub-
Jezs Lo the azpropriate boundary condi-

tguer Problsm - the system of P.D.E.

ti:nslia stralghuforward. We obtain
o™ - I (3.89)
#V.o | (3.90)

Using these results to simplify Eq.
(3.30), we get

_ Y s Il a'g_“"’ o . YL s
(USF W Yoy e
(3.91)

Equation (3.91) 1s an inhomogeneous
transonic P.D.E.. Finding an analytic
solution to 1t subject to the shock,
matah, and Prandtl-Meyer boundary condi-
ticns 13 not a simple matter. Since the
reastivity s not a dominant effect rear
the edge, we will first examine the
homogeneous form of Eq. (3.91). Tne
sirplest approach 1s to seek a similar-
ity solution to Eq. (3.91). The draw=-
back with this method iz that one may
no% be able to satisfy all of the bound-
ary; conditions.

The most general similarity solu-
ticn to the homogeneoua form of E&q.
(3.91) is that oolution whioh ls in-
variant under an infiniteaimal one-
parameter Lle group of transformations.
We find

o, = -(-5+b,)""""a(a) + (-§+b,)B, + B,
(3.92)

¢ -
=B = (y+1740 (-F+b,)*"""a"(s) (3.93)

‘o 2 A(y+1)V? 4 b,
(=F+by)"

’ (3.94)

where n, b,, b,, B,, and B, are con-
stants and G(s) satisfies the 0.D.E.

(G°-ns®)G"* + Yn(n-1)sa“
- 3(n-1)(3n-2)a = 0 . (3.95)

(S3ee Bluman and Cole (8).) Setting B,,
Bys by to zero, n = 5/4, and assuning
that b, = 0(6¥"), we find that Fg.(3.93)
ratisties Eq. (3.84) to within a iis-
tance 0(8¥?) of the shock. Analyzing
the singular points of Eq. (3.95) we
find g Prandtl-ileyer singularity at
F=0", §J=0, (1.e., 8 » =o) when

b, = 0 at the edge. Taking b, tc
function of y which behaves 11ke .
(y+1YVY'%, near the edge and never ex-
cseding 8(6"') far from the edge, the
sonic line leaves the singularit: alcnr
the -§ - axis as required. Since

b, = 0(6¥Y") the error made in Eq. (3.31)
18 of higher order and will be rezovcred
as the higher order equatlons are coaa-
sidered. VF¥ortinatelv, for n = 5;°: ths
soiution to Eq. (3.95) can be fcund 1in
clooed form (9,10)

¢, = &g E-HP (—}l)"'(;“é—"u%).
(3.95)

where a is an arbit:ary scaling constant

(3€+1) (-Eg'" - - 208 .

Therefore, we find that an analytic
solution of the homogeneous form of Eq.
(3.91) can be¢ found tnat satisfies both
the shock anda the Prandtl-Meyer toundary
condltions.

be a

(3.97)

Finding a solution to the inhomoge-
neouc form of Eq. (3.91) 13 more diffi-
cult. One possibility is to expreas
¢ a3 an infinite power serica in (-3)

P g+ I(-P)VP (B),  (3.98)
h v v
with the v's being selected seo that the
inhomogeneity in Eq. (3.91) 1s accounted
for. Proceeding in this fashion, we
find that the fv(E)'s patisfy an inhomo-
geneous hypergeometrlc equation houte
homogeneous 1solutions are termlnating
serics in £. Therefore, as a practlical

12
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matter, the £ (£)'s are obtainable. The
sonic locus c8mputed from the inner
soluzion, ¢™¥ = ¢, + (-F)'V*F L (e), 18
shown in Fig. 3.5. Now, 1if éq. ?3-98)

is to be a useful inner solution, 1t
must be valid for § + -«, Clearly, any
finize sum does not have this property.
As a:n alternative, let us consider the
expression

1
Ty

- %5, 1;_1. a (y+1 YV (-3)¥2(3.99)

o“-05¢h+ It

as a possible approximate solution valid
fcr -» < § < 0. The motivation for se-
lecting Eq. (3.99) 1s that it ylelds the
same X - veloclity component as the match
potential of Eq. (;.88) and in addition,
satisfles the shoc” ard Prandtl-Meyer
conditions. Substlituting Eq. (3.99)
intc Eq. (3.91), v: find that y satis-
fles -

113y 32 2
-(y+1);¥ﬁ¥+:—#--{—;}-x-n,

(3.100)

wherz the remalnder 1s

R= gl a? (y+1)VI(-F) V2

. [1+£-(%g)’"(%;+1)] . (3.101)

A-tlhoughr 1t would be difficult to get a
rigcrous error bound on |[¢WV-y!, we can
get some estimates of the degree to
which ¢ satis’ les Eq. (3.91) in a glo-
bal sense. Wrifting Eq. (3.100) in di-
vergence form and then integrating over
some closed region @ in X,¥, we get

fols ey« utle-

= X
whera m

-J‘J‘[{—}}- i+ n]didy, (3.102)
Q
bour.jary of @.

1s the outward nori..al to the
reg.zn

We first consider the
, hear the Prandtl-Meye. sin-
gulerity (see Fig. 3.4). There we
reaclly find that the source due to the
Prar.itl1-Meyer singularity, S

s = of8int®
PR coeY0/*

ia stronger than the ¢ffective reactive
sourcze .

(3.103)

--[f[}:—} - R]dic!& . o(i' %%).
; (3.104)

Fig. 3.4 - Reglons of the flow over
which the glotal accuracy of the flow
¥ 18 examined. @, 1s the nelghbcrhood
of the P-M singulérity. @, 13 the re-
glon of subsonic flow. .

in the reglion of the singularity. Fc=-
cuslng our attentlon cn region@,, we
find that

[fn didy = 0 , (3.105)

when the lower boundary (sonic locus)
1s taken as either the sonlc locus for
the near-fleld homogeneous {low glven
in Eq. (3.96) (£ = - 1/3) or the scnile
locus for the far-=field flow glven in
Eq. (3.88). Fcr any other lower tound-
ary of region@,

[fi drdy = o((-y)7)
]

ffR drd§ = 0((=F)'¥*). (3.107)
Q,

(3.106)

Therefore, ¢ represents a reasonable
approximation to Eq. (3.91) in a giobal
sense. Comparing the inner sonlc locus
calculated vla Eq. (3.98) (one term pas®
the homogeneous solution) to that calcu-
lated via Eq. (3.99), we find little
difference in the range -0.8 < § < 0O
(see Fig. 3.5). Thus we conclude that
Eq. (3.99) provides a reusogab;e approx-
imaﬁion to the wvelno:ity 36¥Y/3%. Since
°¢ ?A contributes to the veloclty at
0(s )ghand whereau 3¢%%/3§ contributes
at 0(8§¥?), 1t follows that the boundary
terms in Eq. (3.88) that have bheen
omitted will not Influence the solutlon
up to and includiny 0(8Y°) In the veloc-
ity. If a solution valid to 0(&¥*) in
the veloclities 1s desired, the equaticn

12
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xlwm)

=118

-1879 1 L A A 1
-0.302 -0347 -Qi93 -0039
dyimm)

Flg. .5 - A comparison of the inner
sonlc locus f£8 calculated with the flow
of Eq. (3.96) (=-=), Eq. (3.98) (—),
and Ez, (3.99) (- --) displayed in edge
fixed zo0oriinates. In all cases

b, = y+1)¥'% . The l-ter: outer =hock
loocus (upper surve) and sonle lccus
(lowe» curve) appear as refsrences.

The psrameter values are D = 8 mm/us,

Y =3, ks 2ps*, 6§ =0,1.

‘governing ¢® must be found (a simple
matter), and Eg. (3.9%L must be dls-
carde: in favor of a that satlasflles
all ¢£ the matech conditions in Eq.
(3.88..

Summarizing, we find that the inner
velocities [l.c., Eqs. (3.89), (3.90),
and (3.99)] have Epen calculated up to
and ircliuding 0(8Y?). To this order,
the s-ock locus _1s glven by the l-tern
outer solutlon [Eq. (3.49)]. However,
probaily the most importanc result is
guali-ative rather than quantitative.
We fird that the features of the inner
flow Zepend on §¥'y and thus can pene.-
trate well into the explousive,

. The Composite Solution

~he outer and inner solutions
found 1in the previous cections are
valid over only restricted regions in
y. T get a uniformly valid asymptot-
lc exzansion of the solutlion, the two
lim!{ting solutions must be matchcd 1n
a reglon of overlzpplng validity.
Follcwing Van Dyke's matching procedure,
we exyress Lhe outer aolution in inner
varia:les, the inner solution in outer
varla:rles, and then match at each order
in § [1l1). The composite expansion 1a
then “ormed aa the lnner expanalon plus

the outer expansion minus the terms
that are common to both 1in the coverlap
region. Retaining terms up to and 1ln-
c¢luding 0(8Y") irn the velocities, the
composite veloclty expansions are

u, =8 %{aine - [1-(1-x)v°]}
- 5w l +1w(_.-,)Va %(£+1) _éz)-“
v(5) 3
Va
-8 22y (5w
[ 5 (-y) (3.108)
- -6 1-
uy 8 Y(1 cos@), (3.109)
where the match requires that
w
a = T;%fygﬂ; . (3.110)

To this order the shock locus 1s given
by Eq. (3.49).

Equation: (3.108), (3.109) and the
required auxiiiary equations constiute
a full soluti-n to C(8“*) of the tound-
ary value prctlem posed in part A, ol
this section. Using it ve will ncw de-
termine scme 2f the sallent feaxures of
the flow. Irn all of the examples, we
will take the function b, appcarins in
the eimilarit: wapiahle *n la

L)
0, » 6 S0 amn (B )

(3.111)

Figures 3.6 and 3.7 show a compari-
son of the outer and composite sclu-
tions in the far and near flelds respec-
tively. To 2/8Y?), the shock loc! for
the two solutions are 1ldentlcal. The
gonic locl, lL:wever, are qulte dissimi-
lar. Unlike the outer solution, the
compoelte solutlion saticfles the condi-
tions at the Prandtl-Mereir alnguiarity
(see Fig. 3.7). Perhaps the most
atriking feature of th composite flow
is the range over which » edpe,
through the imner soluti ., infliences
the flow., izure 3.8 shows that the
influence pruepagates in = 50 reaction
2zone lenpgths. Considering that the
inner scale 2.3 8Y'y and that §VY?
changes by only a factor cof two for
0.01 < 42 ¢ ., %he range of influcnce
of the inner solution (in real spiace)
is nearly th: same for large and small
values of 8. llowrver, cince the outer
Bcale iz 8y, the inner solution becomes
relatively morc lmportant ux 6 1c in-
creased. Fipure 3.9 shows that increan-
ine, § from 0.1 to 0.33 makea the lnner
solution relatively more important.

1y
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j T 0(8%) Composite Solution '
s} 1

-2.1 . v 4 ¢
-io0l  -693 -30.8 7.7

- —

Fig. 1.6 - 0(&8Y?) composite solution.
The 8-0ck locus (upper curve), composite
sonlc locus (middle curve), and outer
sonic locus (lower curve) ln edge fixed
coordinates. The parameter values are
D=¢g am/us, y = 3, k = 2 yg*, and

§d = 0.1,

- ——

'0( l"li Compt;lm le'lullon

0670

."'oo 1 1 i [ A j
-0863 -0891 -0328 +0088
8y(mm)
Fig. 3.7 - 0(&"1) composite solution.
See F!gz. 3.6. '

1 ] T ) | L) L) ]
aoslh 0(3%) Composite Sohtion ]
820} o

I -
.80 -
-2.19 4 4 1 I L
-2004  -1388 .7 -1.84
dy(mm) .

Fig. 3.8 - 0(8"?) composite soluticn.
See Fig. 3.6.

p—

' O(B%Tumn;m Sollu'ion

-2.6 — .

-2048 -14.18 -7.88 -187
B8y(mm)

Fig. 3.9 - 0(8W) composite solutlon.
The parameter values are D = 38 mm/us,
y =3, k=2 us', and § = 0.33.
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Although the sonie 1locus 1is not a
flow nroperty which 1s physically as
apparsnt as :he snock locus, it is of
greatsr importance in determining the
flow. This 1s because only the chemical
energ: released in the subsonic reglon
is effective 1n driving the detonation.
It is for this reason that proper satls-
faotion of the Prandtl-Meyer condition
i1s criolal to any calculation. As an
examr.e, conslider the case of an explo-
sive charge of finite size. Including
the ener released in the shad.d area
of Fis. %?B (unavailable energy) in the
calculation of the detonation veloclity
would lead to a substential errar.

More Zmportant perhaps 1s the effect
that <he form of the inner solution has
on tks problem of confinement. Coasid-
ering the famlily of characteristics
emant:ing from the Prandtl-Meyer singu-
larit;, we find a characteristic (the
limiting characteristic) which 1s Jjust
tangent to the sonic locus (see Fig.
3.10). All the characteristics leaving
the slngularity downstresm of the limit-
ing craracteristic never cuntact the
sonlc locus. Therefore, information
about continement traveling along them
cannc: influence the structure of the
subscsic flow. Put another way, the
limi:ing characteristic defines the
critizal degree of conflnement below
whilch the cenfinement hae nn ipfluence
on tr.e structure of the subsonic flow.

T

k;\\\\\\T(XO’i')Compwlosuumm
0690} b

og83

& (mm)

-0.28

-0.5833
-0.0883 -05% -0328 -0.068
8y(mm)

- —

Fig. 3.10 - 0(8Y') composite asolution.
The shock locus (upper curve), composite
sonic locus (middle curve) and limiting
charzztcriatic {(lower curve) in cdge
fixed coordinates. The paramoter values
are [ = 8 mm/ps, vy = 3, k = 2 ug!, and

§d = (.1,

For the example consi-ered in Fig. 3.10
the critical confinement angle (1i.e.,
the angle that the wall makes with the
the x-axis) for a sut'ficliently smooth
wall 1s 1.94%, For a system with the
parameter values given in Flg. 3.9,
(1.e., increasing & to 0.33) the criti-
cal confinement angle 1s 6.63°. 1In both
caaes, these angles are¢ equal to the
streamline angle at the sonilc polnt c¢n
the shock. Therefore, we find that the
resolved-é? portion of the reaction
zZone for a system with an edge proceeds
as an essentially unconfined detonation
unless the confinement 1s heavy (l.e.,
aluminum or heavier).

F. Summary

ReviewIng the results of this sec-
tion, we find: (l.) Far from the edge
(outer region) the flow 1ls governed by
O0.D.E.'s (with independent variatles
X, 8y) and the shock boundary condi-
tiona. The outer problem determine:
the shock locus to 0(6Y') for == < y < G
and the sonlc locus 1In the very far
field. (2.) Near the edge (inner
reglon) the flow 1s governed by F.u.I.'o
(with the independent variatles =z 3¥9,
§Vly) and the boundary conditicns along
the shock locus, at the Prand:il-ie;er
singularity, and t:e match intc =~ 2
outer solution. The 1nner protler.,
which 1s strongly Inflaenced Ly <ie
singularity, has a long rangse lnf.uence
on the sonlc locus and progertic. uhlch
depend on 1t. (3.) The critical :on-
finement angle 19 equal to the an.1i»
that the streamllines at the gsonlc point
on the shock make with the edge.
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