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A COMPUTATIONAL METHGC FOR FREE SURFACE HYDRODYNAMICS

C. U. Hlrt and B. D. Nichols
Theoretical Division, Group T-3

University of California
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ABSTRACT

There are numerous flw phenomena in pressure vessel and olping sys-

tms that involve the dynamics of free fluid surfaces. For example, fluid

interfaces must be considered during the draining or filling of tanks, in

the fomlation and collapse of vapor bubbles, and in seismically shaken ves-

sels that are partially filled. To aid in the analysis of these types of

flow phenomena, a new technique has been developed for the computation of

complicated free-surface motions. This technique is based on the concept

of d local average volume of fluid (VOF) and is emijodiedin a computer pro-

gram for two-dimensional, transient fluid flow called SOLA-VOF. The basic

approach used in the V(IFtechnique is briefly described, and compared to

other free-surface methods. Specific capabilities of the SCLA-VOF program

are illustrated by generic examples of bubble growth and collapse, flows of

immiscible fluid mixtures, and the confinement of spilled liquids.
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1.

most

INTRODUCTION

Numerical simulations of fluid flows undergoing large deformations are

easily performed using Eulerian representations for the flow vari-

ables. That is, the flow is

volumes that remain fixed in

free boundaries are present,

computed relative to a grid of small control

s ace.P However, where free surfaces or other

special techniques must be devised to track

these surfaces in the Eulerian grid. The need for a special treatment can

be readily understo~d from the following argument. After one time step of

calculation all fluid elements that find themselves in a given cell of the

grid must be averaged together to define cell values needed for the next

time step. This averaging procedure introduces a smootning of all varia-

tions in thu flow variables. In particular, surfaces of dlscontinuit.ysuch

as free surfaces can be smoothed to the point of being unrecognizable.

To overcome the numerical smoothing of Interfaces a special interface

tracking method is needed that satisfies three basic requirements. First,

it must provide a numerical description of the location and shape of the

boundary. Second, there must.be an algorithm for advancing the boundary

description in time. Finally, a scheme must be provided for imposing the

desired boundary conditions on fluid In the surrounding computational grid.

A variety of interface tracking methods satisfying the above require-

ments are available, but most have limitations of one sort or another. For

example, the d~flnition of a surface by Its height above some reference

level (y ❑ h(x,t) In two dimensions) is a simple definition requiring a min-

imum of stcred information, hut It is limited to single-valued surfaces.
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Lagrangian marker particles llnked together by straight line segments can

be use” to define (in two dimensions) arbitrary surfaces. The disadvan-

tage of this nthod is that the intersection of surfaces becomes a diffi-

cult computational problem and such intersections are usually allowed only

with special,

particles can

boundaries of

problem dependent, logic statements. Alternatively, marker

be used to mark all fluid-occupied regions rather than the

the regions. In this way the inters~ction of surfaces is no

problem. Unfortunately, this method needs considerably more storage and

cunputational time than the other methods because it requires several mark-

er particles in each cell occupied by fluid and each particle must be moved

every time step. To determine where a boundary Is located also requires

keeping track of all particles in a cell so that an average surface loca-

tion can be computed.

In this paper anotlermethnd is described that is simple and yet in-

corporates all the desirable features of che other methods. This new nwth-

od, referred to as the volume of fluid (VOFJ method, is based on a function

whose value is unity

The average value of

fractional volume of

at any point occupied by fluid and zero elsewhere.

this function, F, +n u grid cell then represents the

the cell occupfcd by fluid. Thus, a unit value of F

Indicates the cell Is full

cell. Cells with F values

ary. Computer storage for

of fluid, while a zero value indicates an empty

between zero and one must then contafn a bound-

the VOF method Is a minimum at one word per

cell, which Is equivalent to the storage requirement for all other flow

variables. Because It follows flulclregions rather than surfaces It diS(’)

works for a~bitrarlly Interscctlllgsurfaces. In addition, the F dlstribu-
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tion used in the VOF method has all the remaining properties desired of an

interface tracking scheme. Surface locations, slopes, and curvatures are

easily computed fsr the setting of boundary conditions, and the F distribu-

tion can be advanced In time by advection through the Eulerian grid. How-

ever, to avoid the type of numerical smoothing noted earlier it is neces-

sary to use special advection algorithms. In the SOLA-VOF program, de-

scribed in the next section, a type of donor-acceptor fluxing is used to

compute the advection of F. This technique is simple and works quite well

for most applications.

The VOF-based program, SOLA-VOF, that is described in Sec. 11 is a

general purpose solution algorithm for a wide class of fluid dynamics prob-

lems. Originally the program was developed to solve time-dependent prob-

lems involving an incompressible Navier-Stokes fluid containing free sur-

faces. In its present form, however, SOLA-VOF is also applicable to prob-

lems involving two immiscible fluids. Additionally, It has an option for

including surface tension with wall adhesion, an option for limited com-

pressibility effects, and it has an internal obstacle capability. SOLA-VOF

is an easy to use program because of rlumerousautomatic features. For ex-

ample, it has a flexible grid generator, built-in time step controls, and

some self-testing features that automatically detect numerical stability

problems and correct them.

A variety of sample calculations illustrating the power and usefulness

of the SOLA-VOF program are presented in Sec. 111. These examples cover a

wide range of fluid phenomena associated with pressure VCSCPIS and piping

systems.
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JI. THE S!3LA-VOFPROGRAM

The governing differential equations are the Navier-Stokes momentum

equations [1],

Ue+gx+v

[

a%+&+~_.--L~+ u $+ v ~= -- (1 ati
at ay P ax 2X2 ajf2 x ax Xz)]

(1)

Fluid pressure is here denoted by p. Velocity components (u,v) are in the

Cartesian coordinate directions (x,y) or axisymmetric coordinate directions

(r,z). The choice of coordinate system is controlled by the value of L,

where C = O corresponds to Cartesian and E = 1 to axisymmetric geometry.

Body accelerations are denoted by (gx,gy), v is the coefficierlLof kine-

matic viscosity, and P is the fluid density.

If the fluid is to have limited compressibility the appropriate mass

continuity equation is [2]

(2)

where C Is the adiabatic speed of sound in the fluid. For incompressible

fluids l/C2 is set to zero. In the limited compressibility model density

changes are assumed to be small (say less than 10%) and the p appearing in

th~ Fressure

two immlscib’

the constant

gradier~ttoms In Eq. (1) can be treated as constant. [When

e fluids are present this p is an appropriate lccal mixture of

p values fcr each fluid,]
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Equations (1} and (2) are discretized with respect to an Eulerian grid

of fixed rectangular cells. Grid cells may have variable sizes, say 6x,.i

for the ith column and dyi for the jth row, as shown schematically in Fig.

1. Dependent variables are located at the staggered grid locations indi-

cated for a typical cell In Fig. 2.

The basic procedure for advancing a solution through one increment in

tilw, t, consists of three steps:

(1) Explicit finite difference approximations of Eq. (1) are used to

compute first guesses for the new time-level velocities. In this step the

initial dependent variable values, cr the values from the prevfous time-lev-

el, are used to evaluate all advective, pressure, and viscous accelera-

tions.

(2) To satisfy the continuity equation, Eq. (2), pressures are iter-

atively adjusted in each cell. As each pressure value is changed the ve-

locities dependent on this pressure are also changed. This pressure itera-

tion is continued until Eq. (2) is satisfied to a prespeclfied level of ac-

curacy.

(3) Finally, the F function defining fluid regions is updated to give

the new fluid configurtitlon. After all necessary bookkeeping adjustments

are completed, including data output, this three-step process can be re-

started for the n~xt time-level ca!cu?ation. At each step, of course,

suitable boundary conditions must be Imposed at all boundaries.

The actual finite difference approximatlon~ used in SOLA-VOF for Eqs.

(1) and (2) are not a crucial part of the algorithm. That is, various ap-

proximations could bc used without affecting the basic solution procedure.
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The reader Is referred to Refs. [3,4] for the particular approximations

use : in the present program. This flexibility does not apply, however, to

the way in which the F distribution is advanced in time. Because F is a

scalar quantity fixed in the fluid Its evolution Is governed by pure advec-

t~on,

(3)

where r = x when & = 1 and r = 1 when E!= O. This equation Is strictly

valid only for Incompressible flow, but Is also acceptable for the limited

compressibility approximation. Nmerical approximations to Eq, (3) must bc

constructed with special care to avoid numerical smoothing of the F distri-

bution. There are several ways to do this. SOLA-VOF employs a type of do-

nor-acceptor fluxing using the fact that F values should be either one or

zero. The basic idea can be grasped by considering the amount of F to be

fluxed across the right boundary of a cell during one time step. The total

volume of both fluid @ void crossing the boundary, per unit cross-sec-

tional area, Is V = u6t, where u Is the normal velocity at the boundary.

The sign of u determines which cell Is loslng F (the donor) and whlsh is

gaining F (the acceptor). The amount of F crossing the boundary depends on

how F Is distributed in the donor cell. Uhen the flux is primarily In the

direction normal to the F s~rface the fractional area of the flux boundary

across which F Is flowlr,gis determined by the acceptor cell F value. Uhen

the flux is prlmarlly tangent to the surface the donor cell F value Is

used. In both cases the amount of F flcjxedIs computed as the product of

the cross-sectional area of the flux boundary times hF where,
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F= MIN{FADIVI + CF , FD 6XD}

and where

CF= MAX{ (l.O - FAO)IVI - ‘i.O - FD) 3XD , 0.0} . (4)

Subscripts denote acceptor (A) and donor (D) cell values. The double sub-

script (AD) is equal to A when the flux is normal to the free boundary and

equal to D otherwise. The MINfeature lnEq. (4) prevents more F being” ,

fluxed than is available in the donor cell. The MAX feature accounts for

an additional flux of F if more than the amount of void volume available in

the donor cell is f.uxed. Figure 3 illustrates these features for several

typical cases. The fluid is assumed distributed in the donor and

cells as shown depending on the orientation of the surface normal

spect to the flux direction. In Fig. 3a the donor cell, acceptor

acceptor

with re-

tell, and

the flux volume are defined. Then Fig. 3b il!listratesa situation in which

the donor cell value of F is used to define the fractional area of the flux

boundary open for fluxing F. In case c of Fig. 3 the acceptor cell value

of F has been used to define the fractional area. In this case all the F

region in the donor cell is fluxed, but it is less than the total flux pos-

sible, which illustrates the use of theF!IN test in Eq. (4). Finally, in

Fig. 3d, more F than the amount determined by the acceptor cell defined

area must be fluxed. The extra flux contribution to F is the quantity CF

defined inEq. (4).
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The choice of the acceptor or donor cell F value to define a flux

area, which depends on the orientation of the free boundary, is a feature

not used in other schemes of this type. It is essential to do this, how-

ever, otherw~se boundaries advecting more or less parallel to themselves

will develop step ~rregularities.

Additional details of the SOL~,-VOFprogra~ ~elating to boundary condi-

tions, numerical stability requirements, etc., can be found in Refs. [3,4].

The best way tn assess the strengths and weaknesses of the SOLA-VOF

algorithm is to examine the calculations tt can perform. This is done in

the next section, where several applications are used to illustrate its

power for a wide variety of difficult problems.

III. SAMPLE APPLICATICNS

Pressure vessels and piping systems are subject to many kinds of com-

plex flw phenomena. The following examples have been chosen to illustrate

how some of these phenunena can be addressed with the new SOLA-VOF program.

These ex:;,,Plescover problems involving the growth and collapse of vapor

bubbles, problems associated with mixtures of intnisciblefluids. and prob-

lems involving extreme deformations of free surface dominated flows.

J. Bubble Gynamics

in pressurized systems for liquid transport it is sometimes possible

for vapor bubbles to form. Under most circumstances bubbles are undesira-

ble as their growth or collapse can result in significant pressure fluctua-

tions and

namics is

volved. “

local material damage. The theoretical prediction of bubble dy-

complicated by the generally large free surface deformations ln-

his, then, is an excellent area where the capabilities of the
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SOLA-VOF program can be put to use. For purposes of illustration we shall

consider what happens when steam is forced through a pipe submerged in a

poul of water. The pipe is located axisymmetrically in a cylindrical ves-

sel approximately half filled with water (see Fig. 3). Experimental stud-

ies [5 ] indicate that when sufficient steam IS injected into the pipe bub-

bles may repeatedly form and collapse at the end of the pipe causing large

pressurlstransients to be generated in the water pool. Presumably the in-

crease in liquid surface area and stirring associated with the formation of

a bubble increases the condensation of steam to the point where it can no

longer support the bubble. Mhen this happens the bubble collapses and wa-

ter rushes back into the pipe until sufficient steam pressure is again

bui]t up to generate a new bubLle.

To simplify the problem we shall not attempt to model all the process-

es associated with actual steam condensation, but shall use a simple pre-

scribed pressure history for the steam. In particular, the steam pressure

is approximately linearly increased until a bubble has been generated then

it is rapidly reduced to the saturation pr~ssure of the water in the pool.

A one millisecond time interval was arbitrarily chosen for the depress~lri-

zation time. The time at which the depressurization is started determines

the size of the bubble transient. This crude model approximates what would

happen with a more detailed condensation model in which condensation pro-

ceeds more rapidly than the inertial response time for the bubble. 1P any

case, It Is sufficient to illustrate how the SOLA-VOF program can be used

to study the complete history of bubble birth and death.
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Starting from an ?nitial vapor pressure of 1.1 psia in the pipe

(0.146 ft 1.D.) th~ pressure is increased to about 3.16 psia over a period

of 190 ms then is ramped down in 1 ms to 0.38 psia. A sequence of computed

velocity plots and fluid configurations are shown in Fig. 4. The earliest

time shown corresponds to the time at which the vapor pressure is ramped

down to the liquid saturation pressure. Because of Inertia in the liquid

the bubble continues to grow (Fig. 4c). When the bubble begins to collapse

it does so asymmetrically, pulling liquid in from the top of the pool.

This causes a detached bubble to form shortly after Fig. 4d, which then

disappears some time between Figs. 4e and 4f. U~ter is seen to be moving

rapidly up the pipe in the final frame.

Pressures computed at the center of the vessel floor are shown in Fig.

5. The initial rapid increase in floor pressure occurs shortly after the

pipe has been Cledred of water. At 0.19 s the pressure drops because of

the decrease in vapor pressure at that time. A relatively violent pressure

transient develops when water reenters the pipe end and the detached bubble

collapses. This transient, denoted by the dashed line in Fig. 5, is shown

‘inan expanded scale in Fig. 6. To obtain this result the fluid must be

treated as a compressible medium because the pressure transients have char-

acteristic times short compared to the time needed for acoustic waves to

travel across the pool. Except for this short, violent transient the water

can be treated as incompressible, but to correctly estimate the pressure

pulse generated by the final bubble collapse requires compressibility. The

limited compressibility model available in the SOLA-VOF program provides

this capability.
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B. r~is~ible Fluids

‘,mixture of oil and water provides an excellent example of a two-

fluid system often encountered in practical situations. Because of their

slightly differing densities and the action of interracial surface tension

forces the mixture behaves dynamically quite different than either fluid

separately.

Using the two fluid and surface tension options in the SOLA-VOF pro-

gram a variety of interesting mixture problems can be investigated. To il-

lustrate, Fig. 7 presents results from a calculation of the passege of a

liquid drop through a constriction in a tube. The drop has a density equal

to 9/10 oi the density of the surrounding fluid. Surface tension at the

interface between the two fluids is such that the Weber n~mber (pV2r/o) is

equal to 0.192, based on the drop radius and average flow rate through the

tube. This nwans that surface tensio~ forces are more significant than

those of inertia. In this example viscous for~es are also relatively

strong for the Reynolds number (Vr/v) was chosen to be 1.25, and it was as-

sumed that both fluids have the same kinematic viscosity. Flow entering

the flow channel is uniform, implying that the constriction is near the

channel entrance where boundary layers have had little tine to develop. If

this were an oil-water mixture, it wuld correspond to a small oil drop

(r= 3x lC-4 cm) forced rapidly (V ■ 46.1 cm/s) through a hole in 3 thin

plate.

To force the drop through the constriction requirw extra wrk to de-

form the drop against its surface tension forces, Figs. 7a-7c. Much of

this work, however, is recovered as the drop emerges from the constriction,

Figs. 7d-7f.
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C. Larqe Distortion Dynamics

The advantage of formulating SOLA-VOF in terms of an Euleriar repre-

sentation is its ability to treat flows undergoing exireme deformations.

To illustrde this capability consider what happens when a tank containing

fluid collapses. Suppase a dike is to te constructed around tbe tank to

contatn the spilled fluid. The problem is how high to build the dike. A

specific example is illustrated in Fig. 8. The fluid is initially a circu-

lar column having a heig$t equal to its diameter. The dike is a low ax-

isymmetric wail whose radius has been arbitrarily chosen to be 24 column

radii. As the column col?apses fluid rushes radially outward along the

ground. Upon striking the dike the leading edge of the fluid is deflected

upward, but if the dike isn’t

mentum to splash down outside

in Fig. R where a sign’

region. When the dike

height shown in Fig. 8

the fluid is contained

high enough it retains sufficient radial mo-

the dike. This is seen t.obe the situation

ficant amount of fluid has been lost from the dike

h~;qht is increased to approximat~ly 2 times the

additonal calculations indicate that virtually all

within the dike.

Although this is a conceptually simple problem, it is obviously one

that involves highly complicated free surface dynamics. Nevertheless, the

SOLA-VOF program does a remarkable job in representing the flow. Other

variations involving different initial fluid and obstacle configurations

are easily imagined. Of course, SOLA-VOF could also be used for similar

problems involving two immiscible fluids with or without interracial sur-

face tcn5ion. !t is this flexibility, in fact, that makes the SOLA-i’OF

program such a powerful tool. With thoughtful use it provides a means of

investigatingmany previously intractable prublems associated with pressur-

ized fluid systems.
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Fig. 7. Distortion of an Immiscible fluid drop passing thliougha cotl-
strlctlonm
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Fly. 8. Collapse of a cylindrical column of fluid and its Dartfal con-
finement by a low dike. Cylindrical axis is at left edge of fig-
ures.


