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A Lecture on Detonation-Shock Dynamics
D. S. Stewart

University of Illinois,Urban% Illinois,61801
J. B. Bdd

Lm AlamaI National Laboratory, Loe Alamcm, New Mdco 87S4S

Abetract

We mun.rnarizesome recent developments of J. B. Bdzil and D. S. Stewart’s investi-

gation into the theory of multi-dimemional, time+dependent detonation. These advances

have led to the development of a theory for describing the propagation of high-order deb

nation in condensed-ph=e wcploaivea. The central approximation in the theory “b that the

detonation shock ia weakly curved. Specifically, we umme that Lhe radius of curvature of

the deton&tion shock ia large compared to a relevzmt reaction-zone thickness.

Our main Endings are: (1) the flow is mmai-steuly and nearly one dimensional along

the normal to the detonation chock, and (2) the small deviation of the nonnai detonation

velocity from the Chapman-Jouguet (CJ) value in generally ● function of cumture. The

exact functional form of the correction dependa on the equation of state (EOS) and the

form of the energy-release law,

1. Introduction

In thin Iccture we will describe a theory for unsteady,

detonation propagation for the standard explosive model;

unsupported, multi-dimemional

the reactive Euler equatioru for

a prescribed EOS and rate law, For this model, the detonation structure iE ZND, i.e., a

chock followed by a reaction zcne which contaim an embedded, trailing sonic IOCUU.See

Figure 1. In laboratory frame coordinate, the governing equations for this model are

Dp
~+p(v. u)=o (1)
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& = -VP , (2)

where in

preszure,

react ion.

w*+pDIP .~ , (3)

E’T ‘
(4)

the above p, u, P, E, A and r are rezpedively the density, particle velocity,

qecific internal energy, single reution progress variable and the rate of forward

To complete the specification of the problem we need to choose comtitutive rela-

tions for the internal energy function E(P, p, A) and the rate law r(P, p, A). For illustrative

purpoaee we select the polytropic form for l?,

~=P
--(7 -1)-’-qA (5)

where q is the polytropic exponent, and q ia the spe~~ific heat of reaction. The solution of

these e~uaticms muzt satisfy the standard normal shock relationa ●t the leading detonation

shock.

The theoretical developments are carried out in the limit that the radiua of curvature

of the shock front (R) ia much greater than a characteristic reaction-zone length (rt), i.e.

(6)62 = lr~ /l?l c< 1 .

VVith appropriate amumptions, the main meult ia that the velocity of the leading detonation

shock along itz normal d6viatea from the Chapman-Jouguet value by ● small amount that

ia proportional to curvature (in the eimpleat caaea) and more generally u ● function of

curvature, i.e.

D. = f)cJ - ax where a = constamt or a =a(~) . (7)

We were led to the discovery of(t), by our ueeire to formulate s rigoroun theory of the

evolution of the detonation shock in complex, two-dimensional (2D) and three-dimemional
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(3D) g-metries, which retained full reaction-zone efh.s, time dependence, and which

WM a physically correct and simph+tcw.se method for ccmrating detonation velocity. This

study waa aimed ●t gnining a fundamental understanding of multi-dimemional detonation.

Our theory is claely re;ated to Whitham’s theory of Geometrical Shock Dynamh [1].

Similarly, our theory stresses the dynamics of the shock. However, unlike Whitham. we

have a systematic theory of the following flow that supports the shock that is strictly valid

when the radiun of curvature is large compared to the reaction-zone length.

In Section 2, we give a brief history of earlier de~elopments in 2D detonation theory

We sketch the fundamental approximations and our recent rkwetical developments, in

Sec:ion J. Ln Section 4, we give some examples of fundamental de~cmation interactions,

w-bile i.n Section 5. we extend or modeling by examining an energy -ielease rate that in

strongly dependent on state. Finally in Section 6, we comment on Lhe practical implications

of the theory for ●xplaive engineering.

2. History of the development

The line of the development of the reeearch pmaented here can be traced back through

the work of Wood and Kirkwood [2] in 1954. Bdzil [31 in lf#31. and through the recent

collaboration of Bdzil and Stewart ~om 1984 to present. See refertmcea !4] anti [51.

The fact the detonation propagation speed in dramatically ●ffected by c!ivergi~ geom-

try ia Illustrated by a standard ●xperiment in a raLe otlck. LrILhaL experiment. a cylindrical

stick confined by an inert tube in Ignited aL Lhe bottom by means Oia planewave explmive

lens and a pad of high pressure booeter ●xploawe A nominally plane, ov~rdriven detona-

tion is thun Introduced at the bottom of the stick. An time paasm. tbe detonation, shock

in the stick becomes curved. because the high-premure flow expandn ~h{- bu6e walls into
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the relative vacuum sumounding the experiment (i.e., room pressure air). h a result, the

plane character of the wave is destroyed. When a steady detonation develops ‘m the stick

it haa an elliptical-like shape. The final steady 2D-detonation velocity can be measured by

simple means and in found to be a function of the radiun of the stick and the degree of con-

finement, i.e., tube wali material and thickness. The steady detonation velocity ia reduced

horn the 1D Chapman-Jouguet value, DCJ, by an amount that becomes greater aa the

radius of the stick. R,. is reduced (see Figure 2 for a schematic diagram). At some critical

radius, experiments using witness plates show that a steady detonation is not propagated

in the stick Presumably some form of extinction occurs.

The first theoretical calculations that explained them experimentally obsemed eff~ts

were carried out by Wood and Kirkwood 12]. They used the baaic model described “m the

introduction specialized to a steady, radially symmetric flow. By restricting their analysis

to the central streamline. and by further aasuming that the 2D radial flow divergence, T? u,

was known, they reduced the problem to a system of nonlinmr ordinary-differential equa-

tions for the steady detonation structure. In particular, they saaumed that the quantity,

v u was related to a single ad hm parameter Ie.g.. R) that measures the divergence of

the flow In th= equations the detonation velocity. D. is an unknown comtant parameter

and 1? is a specified parameter. Fickett and Davis [61 further showed that this system of

●quatiom could be reduced to .’ single ●quation for U2 s IU - D12. the kinetic ●nergy in the

main flow direction, M a function of the reaction progreaa variable A.

A qualitative analysis of this governing equation can bs curied out quite convememly

In the (~~~.~)-phaae plane A given value of D defines Lhe starting value for ~rz at the

shock. The task is to determine an Integral curve In this plane. that fallows Ll~ aa A

changea from J = O at the shock to A = 1 at complete reactmn. In the Ilrmt that the flow
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divergence is zero. the integral cuwe terminates at a s-ingular point at A = 1. When the

flow divergence is non sero, an additional singular pokt is found in the phase plane that

correaponda to the intersection of the thermicity he and the sonic line. The reaction m

incomplete at this new saddle-type singular point. The integral curve will pass through

this point, for only a single value of D for a giwn R, i.e., D(R). In general, this relationship

must be found by numerical shooting techniques. An excellent account of the details of

LF:s work is found in Fickett and Dal-is’s book (19X!) [6], Section 5g3.

The next contribution to the de-~elopment of the current theory is due to Bdzil [3]. He

analyzed the pl obiem of a steady-state 2D detonation in rate-stick geometry. This analysis

was rigorous and rLOLad hoc as was that of m’ood and Kirkwood. It was not restricted m

the central streamline, but considered the entire 2D problem. This theory IS an asymptotic

theory which is consistent with the assumption that the stick radius, R,. is large compared

to a I D reaction-zone length. Once again a parameter equivalent to

~~spc /R, I<< I ,

can be defined. (Ln Bdzil”s account 4 iE related directly to th~ angle of the strearnhne

deflection,, ar the confinement boundary.) This assumption ia equivalent to a small shock

slope, with an 0(l) change in the shock position Zc (meaoured on the ncale o. reactwn-

zone lengths) taking place over the lateral distance scale rd - 0(1) (many reaction-zone

Iength.d).

Bdzil found thal all the leading featuma of the fiow could be determined, and that

they were parameterizcd by the shock locus function. Z~ In turn, the shock locus waa a

f.lnction of the scaled Transverse coordinate ( = f6 and. for a particular ●xa--nple involving

Lhe choice of E05 And rate law. sati~fied the s~ond-order ordinary -differe ~tial equation

(8)
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where D(2J is identified by the expanaion

and meaaures the deviation of the steady detonation Velociq from DCJ.

The position of the shock. Z,, is meiwured from a plane, Z = constant. which moves

with the steady detonation velocity, l?. The function Z,(~) determi.nea the local detonation

velocity nor~ to the shock along ita extent. Indeed, even though this ia not made explicit

in Bdzil’s paper, equation (8) .is equivalent to the caordinat.eindep endent statement

[9)

where Dn is the velocity along the shock normal. In the above. a is a constant (the

assumptions about the EOS and rate law in [3] give a a specific due).

In 1984 we started work on the simrhat, moat straightfomard extension of this steady

theory that would include time dependence. We noticed chat in order to include time

dependence in a qu~i-steady theory, it waa necessary to introduce a slow-time scale such

that the time dependence entered the lLhmry at the same order aa the shock curvature.

In particular if on the reaction-zone length scale the shock locuE, Z., ia an 0(1) function,

then the relewmt slow-time scale ia

r=62t , (lo)

where t b measured with the reaction-zone time scale. Calculations with these scaling

assumptions show that at leading order, the flow through the re~tioll zone haa the same

form M it doea in the steady-state problem. I.e.. 1: ia quam+eady However, ths shock

locus. which ia what pmame~erlzea the solution. is now a function of both the scaled

Transverse cuord Inate ; and the scaled t irne r
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In contraat to (8), the shock locus, Z., now satisfies the partial-differential equation

(11)

where 2, is meaaured from a constant velocity plane. The above equaticm ia a nonlinear

heat equation. Indeed for u = constant, equation (11) can be reduced to a Burgers’

equation for the shock slope, ~Z. /~~. On thaw length and time scalea f and r, the

evolution of the shock ia not governed by a hyperbolic equation, but by the parabolic

equation (11). A natural question to ask is why do we find a parabolic evolution equation

for a system of hyperbolic equations?

The answer is found in Bdzil and Stewart’s [4] (1986) paper on time-dependent 2D

detonation. In that paper, we studied the transients that carry an initially lD detonation

into a steady-state 2D detonation. Ln the example we comidered, an initially steady

ID detonation encountcm an unconfined corner in the explosive (see Figure (3a)). After

the wave reached the corner, the exploeive producu expanded into the vacuum and the

detonation shock began to CUIWt- Becawe the problem is hyperbolic, a traveling wave

head was defined on the detonation shock to the left ~~fwhich there waa no disturbance of

the lD detonation.

We selected the expmsive EOS and rate law with the goal of achieving a lD detonation

that waa linearly stable ta both tranaverae nnd flow-dir~tion disturbance. With this goal

in mind, we adopted a polytropic EOS model and a rate law for which meet of the chemical

heat releww is given up m.mediately behind the shock. Thu waa followed by a smaller

resolved heat releeme that took place over a Ilnitc distance behind the shock and which

cmtroled the dyna.rmcs of the problem. For this “small resolved heat-releaae model,” the

dynamics of the lD detonation occur on the “faat” time scale 6t. Our reaulta showed that

disturbances on the shock propagate according to a hierarchy of two diotinct flow regions
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which occur on the time scalea 6t and 62t.

In the Erm region the displacement of the shock is small and the dynamics, which occur

on the 6t time scale, is wave-like (hyperbolic). This region contains the hydrodynamic

wave bend, i.e., the leftmost point of the shock disturbance. The magnitude of the shock

displacement, length and time ucalea for this region are given by

The second region is a diffusion-like region (parabolic). In this region the shock db

llacement from phme is the Iargmt and the disturbance extends over both the greateat

length and time scales. The magnitude of the shock displacement. length and time scales

for this region are given by

Z, - 0(1) with 6r,62t.

Figures 3a and 3b shows a schematic diagram of both the initial configuration and the

evolutionary phase of the detonation shock for these two regions.

What we learned from [4] is that the parabolic flow in naturally embedded in the hy-

perbolic system. The hyperbolic region while defining the vwwe head of the disturbance is

associated with a small amplitude shock deflection. In contr~t the parabolic region is W-

ciated with a large scale shock deflection and is the moat irnportam region to characterize

and meaaure. The advantage of this description is the relative simplicity of the parabolic

region. which involves at most the solution of a _ secmd-order partialdifferential

equat]~n (the nonlinear heat e%uation] Additionally, practical experience with the tech-

nologically important case of condensed phaae propellant and exploaiven shows that they

have broad well defined detonation shocks. To check the Validity of the steady theory for

condensed phrtae explosives, Engelke photographed the shock loci and compared them with
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the prediction of the steady theoq See Bdzil [3] and Engeike and Bdzil [7]. The theory

and experiment were shown to be in qualitative and even quantitative agreement. The-

fore, consistency of the unsteady and steady theories then also argues for the parabolic

Scalea.

The results of [4] confirmed the importance of evolution equations of the parabolic

type which were discovered earlier. The earlier work was eventually recorded in a p

per by Stewart and Bdzil [5], where some exanmles of relationships between the normal

detonation-shock velocity and the cumture were derived for the first time.

The simplicity of the parabolic dacription makes it possible LOdo routine calculations

of a class of unsteady detonation problems. The detonation-wave spreading problems

of greatest interest occur in explosives with complicated shapes. If we are to apply the

parabolic description outlined above to such problems. we ned to carry out the analysis

in a system of intrinsic (or problem determined) coordinate. These calculations are the

subject of the next section.

3. Sketch of the analysis

In this section we sketch the analysis and explain the approximations used in deriving

the shock-evolution equation and the flow description. The model equations are the reac-

tive Euler equations. subject ta the shock Hugoniot conditions for a specific EOS and rate

law. The presentation here is an outline of the more Jetailed discussion found in Bdzil and

~t~-wmt [~].

The coordinates we choose are shock-attached coordinates. and the problem is three

dimensional. Here (, represents arc length along the shock in the directions of the principle

Cumaturm [s = 1,2) defied by the instantaneous shock surface. The variable n represenw
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the d~tance normal to die shock. The coordinates f, and n form a locally orthogonal

coordinate system. A picture of the ‘intrinsic-coordinate system for 2D is shown in Fig-

ure 4. kause we have choeen an mtrimic-coordinate system, the shock cumature appeara

explicitly in the governing equations of motion. Th-e equations bec~me

[.

..
M-: P.t – P(D. – ~n )] +Rpuwt. ..=o. (12)

.m

Energy: E., - (Dn - uJF.n - (PM) [P ~- (Dm - +.] * -.. =0, (13)

Momentum

n: u~.,+ (Dn-u. )u..m+(l/P)P.m +... =0, (14]

(, ‘ U(, t-(&U =) Uf,,rt+... =O. t= 1,2 (15)

Rate: ~,-(ll%-u~)~.n=r+... . (16)

Note that D- b the imtmtaneoua shock ~elocity along the shock normal. u. and Uf, are

laboratory-frame particle velocities in the n and {,-directions respecti~ely. The curvature

that appears in the above equations is the ~1~ of the principal curvatures. ~ = ~1 + X2.

Higher ordei terms in the shock cumatme are indicated by ellips-.

To these equations we add the shock relations

p_D~ = P- (Dm – Un. ). P. =p. um. D., A. =0.

[17)

D:=E ~P.:~-
(D

.2

3- - p- 2= ‘-un-) ‘ ‘:’- ‘“”’ =1.2-

The ~nm subscript refers ta the state ahead of the shock, the plus subscript refers to the

state behind the shock. Ln these relations we hal-e adopted the strong shock approximation

ana have set terms proportional to P. to zerG (we have anticipated that E- - ~- P-).

\Ve make the explicit assumption that

~ ~ b=;.

the curvature is

62 <<1 . (18)
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where k is the scaled shock cumature and 62 meaaures the magnitude of curvgture relative

to the 1D react ion-zone length. The length and time scak required are

r = 62t, n, and ~, =6&, for s =1,2 .

We introduce the formal expansions for the dependent variabka

= JiojU- ●

~6z%~2~+...q U;, =62 U::’+....

(19)

Using these expansions in

tne equations that govern

cylindrical geometry

(20)

+62A~2J + . . , Dm =DCJ +62 D:2]~~,, r)+....

equatims (12) – (16) we Grid that through and inciuding 0(62),

the flow reduce exactly to the equations for quasi-steady flow in

(D. -

(Dq-um)u. m+(l@P,.+... =o,

~Dq - :uJu(,,m+- .. =0. 1 =1,2

_(Dn-u&=r<-...,
.

since from equation [24) and the shock conditions it follows that u{, = O.

In Section 2 we mentioned that Wood and Kirk~ood 121treated the central

problem. Equations (21 ) - (25) taken together with the normal shock relations are equi%-

lent to the problem they treated. NOW. Lhe terms due to the flow divergence are rigorously

identified as being proportional to Lhe local shock cumature. K. The above problem .hcn

admits an eigenvaiue detonation as its solution- As WGod and Kirkwood showed. it defin=

a relatlon between the two parameters D~ and ~ as a condiLion nec~~sary for the integral

(21)

(22)

(23)

(24]

(25)

streamline
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cu.ne in the (u~, A)-piane to pass through the 14adale singular point, where the flow is sonic.

Generally speaking, we have the requirement that there exis~ a relation of the form

Dw = D.(K) . (26)

To illustrate

polvtropic EOS

this point we give the equation. Let Un s um - I?=, and consider the

E=; (?-lp+ . (27)

Straightforward manipulation of equations (21) - (25) yields the single ordinary-deferential

equation for l?: in term of ~. namely

[28j

where the sound speed is given by C2 = qP/p = (? - 1) [(D: - ~S) /2 + q~]. The shock

boundary condition requires

Following the nomenclature

de6nes the thermicity locus

that

[29j

of Fickett and Davis. the { }-term in the numerator of (28)

in the (~~~, A)-plane, and (C2 - U:] defines the sonic locus.

These curves, &!ong with r = O, define the seperatricea and their intemectiom define the

smguhr pointn in the phase plane. The objmt in the phase plane h to find the integral

curve that starts from the shock Value given by (29) and terminate at complete reacLion.

Typicall; such curves must pass through a singular point deli.ned by the intersection of the

sonic and therm]ciLy loci. Since ~ is small. the mterstition point is very close to complete

reaction. A@ mentioned before. this point is a saddle To ensure paasage through the

saddle, condition (26) must hold.
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In order to give a sp-ific form to relationship (26) we must give the rate law. In

Stews.rtand BdziI 15] it is shown that for the choice

equ~tion (26)

r=k(l -~)”, for O<v <l,

takes the fcrm

(30)

(31)

For the special case of simple depletion (v = 1) it can be shown that for diverging geometry

(K> o)

D. = D=, + iktn(K) + 2i%[b4ivDc,) -3] + .-., B = * . [32)

4. Detonation in:eractiono

The formulM given in the last part of Section 3 show that the detomuion-shock velocity

is a function of the curwture of the shock. Lnorder to describe the evoluuion of the shock we

must have a second relation between D~ and K. Llsing the surface compatibility ~onditions

of differential geometry, we have derived SUCLa second relation. We call this relation the

k;nernatic-surface condition

where {= is a fixed refereiice pmition on the shock (see Figure 4). In 2D, the natural

representation of the shock locus is in tmrm of the angle @ that the shock normal makes

with respect to a tied reference diwction. Then @ is relnted to the shock curvature by

/

(
6= ~d~ (34)

(“
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Ifwecomider the simple caaE given by equation (31) and use theocalinga given by

equation (19), we il.nd that equatiom (31) and (33) imply the following ●q~tion for O,

(35)

Equation (35) ia BurgerII’ equation for O. The comtant a p!ays the role of viucaity.

Burgers’ equation haa analytical exact solution via the Hopf-Cole transformation and ita

dynamics have been ~tudied extensively. Thus for thin example, fundamental shock inter-

action problems can be studied with these exact solutionn. According to our theory, there

riuw exists a catalogue of solutionn for detonation-shock interactions, that in similar to the

catalogue of solutions to Burgetu’ equation.

Two simple examples from thin catalegue are the ~tepshock aolul.ion and the N-wave

solution to Burgers’ equation. The stepshock solution corresponds to the solution for

two colllding detonations, providing that the detonating material is large enough that the

detcmatim-shock anglea are constant in the far field. If two pkne detonationa are initiated

obliquely so as to run into one smother. the slope of their common intemected shock Iocun

starts from the left with one value and moves tG another value aa we paau to the right.

Solutiom to Burgem* equation show that ultimately a steady-state stepshock soluticn in

attained with a defhite shock-shock [1] thic!meau that depends on a. This interaction

mimi~g a reactive Mach stem. Importantly, it ia diffuse (s- Figure 5a).

The N-wave twlution correaponda to a poeitive shock imperfection. In the right and

left far field, the detonation is flat and hence @ is zero In the center the shock is rained,

giving rise to an /V-shape for d, from left to right. The IV-wave aoiution then ohowo

that thin Imperfection ultimately ‘diffunes” away; the time required for “diffusion” of the

imperfection depends on the value of a (me Figure 5b)

14



5. Stronger rotatedependence of the rate

The remdti given by equatione (31) and (32) show that the exact functional form of

the detonation-shock velocity w curvature relationship depende on the detaila of the rate

law. Bdzil’s [3] reaulte, for steady 2D detonation, shcwmd th~t aa the sensitivity of the rate

to the local mate in increaaed, a steady solution do= not exiet when the cumature becomen

sufficiently large. This theoretical observation ie consistent with experimental observation.

In this section we preeent a simple model that shows the consequence of increased state

sensitivity. Connider the following shock-state dependent rate (shock-state dependence m

typical of solid high expkteives)

r = kJ(A) = k exp[-t?(ll~, - Dm)]f(Aj . (36]

Since Dm in proportion~ to the shock pressure, the rate multiplier k in now a functio~ of

how hard the particlea were hit by the pasaage of the shock. Individual particles rezut

at a rate that is determined by how hard they were shockt d. The fact that the state

dependence is eensiti}e (i.e., large changes in r occur for small changea in Dn). is modeled

by requi. ing that the dimensionless parameter

ODCJ >>1 . (37)

For the purpose uf this illu,atl iLLiOn, we further consider tne following diet inguished limit

relatlng the large parameter 8DCJ and 62

[18DCJ -’=42

U Ing th~ expansion for f)n, the rate law br~omea

(3@j



Now it is eaay to see that for the c- /(A) = (1 - J)b, where 0< u <1, equatio., (31)
.

still holds, with the exception that k IS replaced by k exp [L#J/DcJ]. Using the previous

definition for ecaled cumture. u = t~R, we 6nd the reduced nhock~elocity curvature

relationkomes

-(Di’)/DcJ)mp[DA’) /DcJ] == , (40)

where & in given by equation (31) for a, with k replacing k. We rewrite●quation (40), in

order to comparedi=tly with (31) and (32);

D- = DCJ -aK (SXp [-4(D. - DcJ] . (41)

Frcm equation (41) it in simple to show that for the reducd curvature ~ in the rmge 0<

i c ie~, that there are two valuea for DA2). Hence the detonation velocity is multivalued

for poeitive (divergent) curvature below a critical value of cumature (see Figure 6). For

valuem of cuwature above the critical value, it is not possible to have detonation-chock

evolution described by the raral-olic acahm. A pasaible consequence of thin is extinction of

the detonation wave on portiom of the curve where the critical cumature is exceeded.

6. Practical implication for explodve engkeerlng

The theory diecuased in this lecture pertainn to exploeive materiale in which a bread,

well-defined detonation shock ie observed in the limit that the radius of cu=ature in large

compared to the distance from the leading mhod to the sonic Iocue. Indeed this is the cam

of practical interest for a wide class of explcmivea.

Engineers who design ●xplwive charges typically use the Huygen’mrule of detonation

propagation whereby the detonation shock is advanced along Its normal at the cor.’~mt

Chapman-Jouguet veloclty. Our raults indicate that thin %cipe” should be modified.
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and that the co=tion factor u generally A function of the curvature. In addition our

reaulm show that the detonation structure from shock to sonic locus is ●Mily calculad

and h locally a ID, cylindrical, quaai-steady flow.

The theory then suggenu that the D.(K) relation may describe the shock ●volution for

certain explaivea for a wide range of initial and con Einernent cc nditiom. If this theoretical

statement ia true, then D.(K) cm-I be determined diratly from experiment. For em.rnple,

D.(K) could be determined from photographs of steady detonation-shock loci in rate sticks.

Suppose the ~teady detonation velocity, D, along the axis of the stick haa been meaaurecl.

If @ ia the angle that the shock nomal (taken from the photograph) ma.kea with the axis

of propagation, then the normal velocity is given by

Dq=Dccm@ .

The shock curvature K could be inferred from the photograph M well. Thus for the extent of

the shock locus shown in the photogl aph, a portion of the D. (K) curve can be constructed

Other experiments, steady or unsteady, in total]y different geometries, properly an-

alyzed. should reproduce the sam~ D. (K) in regions of owwlap. Consider the CM of a

lD, unsteady cylindrically or spherically expandir.g detonation. In this exp~riment D. iE

simply R. the rate of change of the radius from the central point, while K = l/R.

Thus the experimentally determined Dn(K) curve, would determine tho detonation

characteristic for many different georrleLrim and ronfiguratiom without our having detailed

knGwlcdge of either th~ equat]on of relate or the energy -releaae law
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F!gu.re captions

F-igure 1. A schematic mpresmtation of the detonation shwk with normal and trailing oonic

locus displayed.

Figure 2. Rate sticks and the diuneter ●ffat. Fig-urea 2a and 2b show schematic diagrams

of a standard rate stick ●xperiment. Figure 2a shows the stick prior to initiation.

Figure 2b shows steady propagation. Figure 2C dmws the steady value of the

detonation velocity D minus DCJ plotted ve.raun the ‘mveraeof the stick radius, R; 1.

TWG different caa= showing Hu:ts for strang md weak conllnement are shown.

The open circles show extinction points which indlc~ce no steady propagation for

small radiun tubes.

Figu~e 3. Figure 3a show the ronfigur~tion prior to the ID detonation reaching the vacuum.

Figure 3b show subsequent detonation evolution at two timeo.

Figure 4. A sketch of the 2D in:rim;c shock-attached coordinate syntem.

Figure 6. TWO exrunplee of det’mation shock interaction.

Flgllre 6. Scaled detonation velocity D4a)/DcJ vei-am ~a.led detonation rhock cumture k.


