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1. INTRODUCTION

The disctization of differential equations 1s often done onmepular gnds i an atiempt to coneentrate
points where the solution is most rapidly changing  Perhaps the reason s to inprine the accuracy of the
approximate selution or to illuminite regions where the selaiicn s mostinteresting  Inany case, many
authors have noted that the order of the truncainod: emor assencaled with fimwe differences defined on
irregular gnds is less than those defined on unifem, ones  Far example. the second -divided difference has

truncation error,

) 2u(x) 2u(x,
Dwus - - - i 2o
- A--":{A.-’e"' A_ .’) A..',._\‘ ~ln A._lQ(A..|a+A, . sl

(1.h
= u”(.‘_ '+ 'l (-3, .'1 - l‘.. l,‘u '"(x| ) + O(Az) .

whichasclewly Oy on aneven moderaiely imegular gnd  Below, we sheteh the standard convergence
prout fora fimie dificrence approamation,
Iav=F . (8 P

W adiffereniia equation (ang asoadted boundan conditions .,

lutir)=f
The truncation cmor. 1.8 defined by applyving the difference operator to the exact solution,

Lyu=F +1 (1
Ancyguati-ai i the enor. e = u - v s foundd by subtracting 1 21 from o] 3,

Lytu-viml,e=x (1
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bounded independent of the mesk: size; that is,
L't s ¢
Thus, if the diffcrence scheme 1s stahle. we get the usual result,
le. <CJ (1.5

Thus result gives rise 10 the rule of thumb tha: the approximate solutien, v . converges te the exact

solution, &, at the same ratc thai the truncaton error Converges 1o zeno

Coupling this rule of thumb with (1.11, it 1s often thought that the accuracy of a finite dif"zrence scheme
employing the second divided difference must be degraded onan ireguiar gnd A number of remedics
hav ¢ been sugpesied to cicumvent this apparent loss of avcu~y - use of gaas:-regular gnds where the
mesh sizes changs by O (A%), Buffman 111 use of smooth mesh traessfarmanons 1o define a new
difference equation on a regular gnd. Whete [2]. soluti i of the differenhal equations rewntten as a first

order system Keller [3]. and use of imphicit dificrence approvarations, Doede! |14

However, in recent work on ordinan differential equations Manteuffel and White 18], Kreiss et al (6.1t
has been shown that, in some cases. this apparent loss of accuracy is an ariifact of the siandard
convergence proof and may not actually occur  The following simple example shows how this might

happen The difference equations,

‘l _‘.a l
v.=A o=+ f(x)=0, i =12, . i
‘ TR WA S SN 4 3

where A, 41, = 1,,) — 2, &I an approxmation to

uthi=A -‘-’5‘+fm=n (1
dr
The truncation crror 1s easily seen e be
Aa"ﬁ-Al -1y ’
1 =- SN N TR Y I RY

Al"'l + Al--'ﬁ

and, thus, the difference approximation (1 6118 inconsistent with the diiferenial equation (1 71

However, before we abandon this scheme, let us take a closer look at the erret Recalling o] 41 and
rewntng the truncation error, (1 ), ignonnug terms which are O (A), we ger the followmig differenae

equations for the error, ¢, cansed by the inconastent termi in (1 Ry,

'l_'ll - R-R

- vt 4O, =10 (10,4,
"")('\l..,4 ‘“u hl) ""('\a vin 4 Al "l)

where

R -—_; A st (2, 414) (19



Solving (1.9a) for ¢, , we get
6 =g =0() .

Thus, the error, €. due 1o the leading order term in (1.8 1s really O(A), not O (1) as we might have

suprosed from the truncation error

In amore gencral seting. which will be the template for what follows in the remainung sections. the error

equation on an irregular gnd mighi be wnuen as
Lie=1+1, . (1.10)
where 1, is that pan of the truncation error exphcitly caused by the irregular grid and
1, =A™, 1= A
1f we can rewnte T in the following way,
usl,é+A" | =047, (I.1h
as in (1.9a), then (1.10) becomes
Lite =6 =1 +0A" 1w 1; (11
At this point. the usual convergence proof can be emploved o get
he - €. <Cltd
and since both ¢ and 1, are O (A7 ). we have
[u -+ =0(A") .

The hey. of counce. is being able to sausfy (1.11). In Section 2, we will examine two "upwind” differency
schemes discussed in Pike [7] for approximaiing the solution of the scalar wave equatinn on an imregular,
but Cantesian product gnd  In Scction 3, we will illustrate the difficalues that anse from a mesh allow o
10 move irregularly in ume, by approamating the solulion of a simple heat equatior on sucha gnd I

Sccuion 4, we will make somce bricf comments on this work

2. HYPERBOLIC EQUATIONS ON PRODUCT GRIDS

In this section, we will examine (using hyperbolic equations as a vehicle) the error analyus of differcice

schemes on predu @ gnds. In parucular, we will look at (x.r) gnds of the form
Galihi=0uh @

that is, the gnd is a p.roduct of two, one dimensional. iregular grids  For 1 differen approach te this
problem, sec, fur example Orszag and Jayne (8] or Chin (9] Pike [7] has noted that although an upwind
differcnee scheme for

. du ' du 0

- ooE 49
A 3 (AR
with first order truncation error is easily found, the scheme is not conserative  He then denves a

rwncervative erchame far (9 7)) namealv



v.l - vll-l v,
+
Yo (B, o1p + B ) AT

Lovec

but notes that the iruncation error ix. O (1) on an irregular gnd. However, computation with these two
schemes Icads to the obscervation that algorithm (2 3) yiclds solutions *similar in quality to the firsi-order
accurate nonconsen-ative solution ** In what follows, we will show that this remark is in fact correct, tha

algonithm (2.3) is first-order accuralc.

Calculating the truncatinn error for (2.3) vields the error equation.

A‘.l‘-A.
bun e =Tun m =0 A . +A

u, (2, tHH+0A . (2.4)

where O (A) here refers 1o terms both in Ax and AT. We notc thal the leading order term in (2 4 is duc
enurcly to the spaual difference in (2.3) In fact. the upwind algonthm (2 3)1s precisely the same as (1.6
considered in the introduction, with a time difference replacing f (x,) Equations (1.9a.b) yield the

idennty,
-k N
[
Tumw =, + (A, (2.5,
l'l.\-\..lr"'A. .71
k
€=~ A gy (1 Lyt (2 Sh,

We also note that, begause we are on a product gnd where cach spatial mesh is the same,

€, =& ] u,n,.,-.r‘“'\-u,(x,.',.r‘)
S A R it Lthk A Y, (20
AT g Aol AT =00

provided the solution is sufficien:ly smooth - Combining (2 Sa) and (2 61, we can rewnie the error

equation (2 4y asn (112 Thane,

("

Lyote -6 =0

where ¢ 18 defined in (2. Sh b s clearly (iA1

Thus, we have shown than if the solution of (2.2) is sufficivatly smooth and if the dificrence seheme (2 3

is stable, then

]
vh=ur, a4 5 Al (1, g )4 O (A

e

That is, in spite of the ¢ order (iInconsisteni truneation crror, the approxinite soluiions, vEoane fima

order accurate.

1ot's bnefly consider the solution of the nonlinear wave cquatian,
df (u) | du
/ + a0,

o dt

via the upwind diffcrenee scheme,



f (v'l') -f (\.I‘- 1) vl“ - vl‘
+ :
V(B g + B, 19) AT

No(v)m =0 . 2.4,

The truncation error is derived as before by replacing + ! with u (x, %),

’bAlo'.‘l - ’AAI -4 au.l af (ul.)
Nl =~ .
v W) IA(_A.‘", + A' ,J,,) 9= du +0@

However, just as in the linear case, the leading order term in the truncation error can be readiiy
incorporaied into the nonlinear operator,

N w)=0(3) . Q9.
where
]
" } '} ] aul"'. L
= + - B - 2L
d =u, 2A, S (

Now, combining (2.8) with the modifizd truncation enur expression (2 9a,by will vieid sharmp error
estimatcs for the nonlincar problem.

3 PARABOLIC EQUATIONS ON NONPRODLUCT GRIDS

In this section, we will be primarily concemed with the solution of the inhomogeneous heat equation 1.
onc-spatial dimension,
ou d°u L
a"—xalz —f(.!.') (.‘l'
The . Jditional complexity will come from allowing the spatial grid points to move in time. We note 15
passing that if the mesh trajectonics are smooth functions of 1, then we can transform to a new coordin.: .
svstem and denive difference schen:es in the new coordinates on a product grid. Thus, we will allow th.

mesh moton o be irregular.

In Mua. icuffel and Whnte {55, 1t was shown that the truncation error for the second-divided difference (soe
(1 1)) can be wntten as

D u, =u,-+Dy:, + 0147 1>

! -
where g, = ! ¥ Al nutay )= 0(AY). With this in hand. let's looh for a moment at a Crak
Tel

Nicholson type scheme defined on a product grid.

v, =V, -
- -x--; IDpts Dt =f (3 %

Leyvm 0

. , 1 .
Fventhing in (3.3)is centered about S (t* 4 t* "), 50 the only termis in the truncanon error which are nes

0 (A%) arc those associated with the iregular x-grd. Recalling (3.2), we have

k

uo-u . b_ b E1_ k) :

S -x -~ |D -/ + D - =f 4+ (A (
AT 5 1P’ - RO+ Datul “- g7 D=1 4 0(A")



Because the x-gnd docs not change in time, the ¢-difference just passes through the gnd information,
yielding

&' - 1 & s beaa (X)) = by (5 gt |
AT 6 ,2,:, Y AT J

and if u(x.r) is sufficiendy smooth then

g: - gl ~
L 2 0(A? (3.5)
NG 0 (A
With (3.5) in hand,
Loy (ut-gh=1 +40% (3.6)

Once again. employving (3.3) and (3.6), the standard convergence proof will yicld a sharp error estimate
for (3.3)defined on a product grid.

Unfortunately, when the x-grid is allowed to move, (3.5) 18 ne longer true unless some restrictions are
placed on the mesh movement. Recalling the definition of ¢, and for simphaity assuming that

U (x 1) =6, we have

1
gh-ett o[ akot- @y
=y | — 3.7
AT ol AT
In order for the argument to work as before. we need to show that this time difference is O(Az). A
sufficient condition is
Ak, - Akl
ST LT 0(AT) (.8

AT

which is roughly equivalent to saving thar 2t lies in the dotted. funnel-shaped region in Figure 3.1,

In Levermore, Manteuffel, and White [10], it is shown that Crank-Nicholson-like schenies can be denved

which retain their second-order accuracy on meshes with the property that
=z 4 0AT) (29,

This condition requires that 1} approach 22 ! in the V'-shaped region in Figure 3.1, is less restrictive than

(3.8), and morc reasonable.

A family of differcnce schemes depending on the point, (X 244", a1 which the funcuion, f(a.1). is
evaluated, is considered in Levermore 1 al. [10]. The stencil of interest for the 0 & )-th equation is
shown in Figure 3.2.

. . o] .
We will compare the computational order of convergence of one of these schemes (X = 3 artaatn

which has first-order trunication error with another scheme whose :runcation ermor happens o be (1 (A?)



tk-l/E

Figure 3.1.

Figure 3.2.

Mesh Motion Constraints. Six-point stencil.

The easiest way to display the differcnce scheme is as a first-order sysicm, employing the definition,

wh, = TN (3.10a)

With (3.10a) in hand, the approximation to (3.1) is given by

& k- N N ] k-1 A=
\v| —\. “.,‘la -“._l.l’ “I'O"A -“l-'/l
_—_ K p—— <+

AT At +aty Al +AlS,

N Ill - Ill-l { (X,‘_l/, -X ) “.lt-b'/ﬁ - (xl‘\"’.‘: - x )“‘ll—’/ﬁ (3]0b)

AT Al +al,
(! - x___)_w,‘;,,', - (k) - xomts)

Auki-"l: + All-'/li

} =f()l .f‘“/'.) .

where X = % r+xtYand 2t = < Ay +xt).

-

to|—

In the following two figures. we display the results of approximating an equation of the form (3.1) on a

sequence of irregular grids. Each point shows the maximum crror versus maximum mesh size on a

different mesh. Each mesh had a uniform r-2.esh (AT = constant = %) and N x-gnd points chosen o

satisfy (3.9). That ix. given a grid point, x*~', at r*", the new grid point. x!, was chosen at random in the
allowable interval (sec V-shaped region in Figure 2.1). Once all grid points at r* were chosen. they were
sorted to prevent gnid lines from crossing.

Figurce 3.3 show: the accuracy of the scheme given by (3.10ab), whose truncation error is O (A). The
lcast-squares fit 1o this scattered data (slope of line. 2.713) indicates that the approximate solutions are

0 (A?). For comparison, in Figure 3.4, we show the accuracy of a difference scheme which has O (A%
truncation error. There is no qualitative difference between these two figures, which lends credence to the
claim that, although the truncation emor of (3.10a,b) is O (A), the approximate solutions retain O (A
accuracy even on an irregular, nonproduct grid.
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4. REMARKS

The truncation error associated with a finite diffcrence scheme is often of lower order on an irregular gnid
than on a uruform (or smoothly varying) onc. This fact gives nise to the feeling that the accuracy of the
discrete solutions are likewise degraded. Fortunately. this is not always true. In fact, many schemcs
retain the same rate of convergence as on a uniform grid. Unfortunately, this is not always truc either. as
secn in Kreiss et al. [6] for the Numerov scheme.

Throughout this work, we have made scveral assu :ptions. First, we relicd on smooth exact solutions, so
the efficacy of these results for problems with shocks or contact discontinuities is in question. Second,
throughout. we assumed that the difference schemes examined were stable in the usual sense. This is
often very difficult o prove for irregular gnd... Third. we have ignored boundary conditions altogether,
assuming that they can be approximated appropriately.

REFERENCES

1.  Hoffman, J. D.. Relationship between the Truncauon Errors of Centered F:nite-Difference Approximations on
Uniform and Nonunmiform Meshes, J. Comput. Phys., 46 (19¥2; 469-474,

[ ]

White, A. B, On Selection of Equidistnbuting Meshes for Two-Point Boundary- Value Problems, SIAM J.
Numer. Anai., 16 (1979) 472-502.

3. Keller, Herbent B, Accurate Difference Mcethods for Linear Ordinary Differential Equations Subject to Lincar
Constraints, SIAM J. Numer. Anal. 15 (1978) 450-465.

4.  Docdel. Eusebius J., The Construction of Finite Difference Approximations to Ordinary Diferential
£quauons. SIAM J. Numer. Anal., 15 (1978) 450-465.

S.  Manteuffel, Thomas A. and White, Andrew B, Jr.,, The Numerical Solution of Second-Order Boundary Value
Problems on Nonuniform Meshes. Math. of Comput., Vol. 47, (1986) 511-535.

6.  Kreiss, H. -O., ManteufTel, Thomas A., Schwartz, B.. Wendroff, B.. and White, Andrew B. Jr., Supra-
convergen! Schemes on Lrregular Grids. Math. of Comput., 47 (1986) 537-554.

7.  Pike,J. Gnid Adaptive Algorithms for the Solution of the Euler Equations on Irregular Gnds, J. Comput.
Phys., Vol. 71, 1987, pp. 194-223.

8.  Orszag. Sticven A and Jayne. Lance W', Local Errors of Difference Appruximatons to Hyperbohe Equations,
J. Comput Phys.. 14 (1974) 93-103.

9.  Chin, Raymond C. Y., Dispersion and Gibbs Phenomenon Associated with Difference Approximations Lo
Initial Boundary-Value Problems for Hypertolic Equations, J. Comput. Phys., 18 (1975) 233.247.

10. Levermore. David C., Manteuffel, T1.omas A,, and While, Andrew B. Jr., Numcrical Solution of One-
Dimensional Parabolic Partial Differantial Equations on Truly Irregular Grids. manuscript (1986).



NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON
IRREGULAR GRIDS*

C. David Levermore

Lawrence Livermore National Laboratory

Thomas A. Manteuffel and Andrew B. White, Jr.

Los Alamos Natinnal Laboratory

1. INTRODUCTION

The discretization of differential equations is often done on irregular grids in an attempt to concentrate
points where the solution is most rapidly changing. Perhaps the reason is to improve the accuracy of the
approximate solution or to illuminate regions where the solution is most interesting. In any case, many
authors have noted that the order of the trunc:tion error associated with finite differences defined on
irregular gnids is less than those defined on uniform ones. For example, the second-divided difference has
truncation error,

2u (x,4) 2u (x;) R 2u(x,_y)
As(Bian+B,_s) BBy AL(B s+ B, )

Dzll 3

(n
= u”(xi)"' % (Al-tj/ﬁ -Al—’/ﬁ)u ’”(xl ) + O(Az) .

which is clearly O (A) on an even moderately irregular gnd. Below, we sketc'1 the standard convergence
proof for a finite difference approximation,
Lv=F ., (1.2)

1o a differential equation (and associated boundary conditions).

Lu(xt)=f .
The truncation error, 1, is defined by applying the difference operator to the exact solution,

Lyu=F+1. (1.3)
An equation for the error, e = u — v, is found by subtracting (1.2) from (1.3),

L,,(u—v)-L,,c =T . (1.4)

*This work was done unde! *he suspices of the U. S. Departmeni of Energy under Contract No W-7405-ENG- 36



Stability of the difference scheme implies that the inverse of the difference operator (matrix), L, . is
bounded independent of the mesh size, that is,

I scC .
Thus, if the difference scheme is siable, we get the usual resuly,

flell <C il . (1.5)

This result gives rise to the rule of thumb that the approximate solution, v, converges to the exact
solution, & , at the same rate that the truncation €rror ZoOnverges to zero.

Coupling this rale of thumb with (1.1). it is ofien thought that the accuracy of a finite difference scheme
employing the second divided difference must be degraded on an iiregular grid. A number of remedies
have been suggested to circumvent this apparent loss of accuracy: use of quasi-regular grids where the
mesh sizes change by O (A%), Hoffman [ 1]; use of smooth mesh transformations 0 define a new
difference equation on a regular gnd, White [2]: solution of the differential equations rewritten as a first-
order system Keller [3); and use of implicit difference epproximations, Doedel {4].

However, in recent work on ordinary differential equations Manteuffel and White [5], Kreiss et al. [6], it
has been shown that, in some cases, this apparent loss of accuracy is an arntifact of the standard
convergence proof and may not actually occur. The following simple example shows how this might
happen. The difference equations,

v, =A "Z?(Al,l,;:.;slj"“x'):o' i=12. .., (1.6)
where A, ., = X,41 — X,, are an approximation 10
u(=A . %+f(x)=0. (N
The truncation error is easily scen 10 be
1,=—%u’(x,)+0m) . (1.8)

and, thus, the difference approximation (1.6) is jnconsistent with the differeniial equation (1.7).

However, before we abandon this scheme, let us take a closer look at the error. Recalling (1.4) and
rewriting the truncaiion eror, (1.8). ignonng terms which are 0 (4), we gei the following difference
equations for the error, €., caused by the inconsistent term in (1.8),

G RTR 00y, =12 "o
’A(Al4'f)+ A. 'A) ’b(A,,}AQ A,-l,,) ' ' =12, ., ‘
where
z.--%A.u»u o) (1.9b)



