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ABSTRACT

Hydrodynamical phenomena can be simulated by discrete lattice gas models obeing
cellular automata rules (U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett.
§9, 1505, (1888); D. d'Bumidres, P. Lallemand, and U. Frisch, Europhys. Lett. 3, 201,
(1986)). It is here shown for a class of D-dimensional lattice gas models how the macro-
dynamical (large-scale) equations for the densities of microacopically conserved quantities
can be systematically derived from the underlying exact “miczodynamical® Boolean equa-
tions. With suitable restrictions on the crystallographic symmetries of the lattice and after
proper limits ere taken, various standard fluid dynamical equations are obtained, including
the incompressible NavienStokes equations in two and three dimensions. The trapSpdst
coefficients appearing in the macrodynamical equations are obtained using variants of
fuctustica-dissipation and Boltzmann formalisms adapted to fully discrete situations.

1 DISTRIBUTION OF THIS DECLMINT IS UNLIMYTED
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1. Introductlon

It ia known that wind or water tunnels can be indifferently used for testing low Mach
pumber flows, provided the Reynolds numbers are identical. Indeed, two fluids with quite
different microscopic structures can have the same macroscopic behaviour. This is because
the form of the macroscopic equations is entirely governed by the microscopic conservation
laws and symmetries. The values of the transport coeflicients, such as the viscosity may
depend on the details of the microphysics. Still, two flows with similar geometries and
identical nondimensionalized values for the relevant transport coeflicients are related by
similarity.

Recently, such observations have led to a new simulation strategy for fluid dynamics:
fictitious microworld models obeying discrete cellular automata rules have been found, such
that two and three-dimensional iluid dynamics are recovered in the macroscopic limit.(1?)
Cellular automata, introduced by von Neumann and Ulam,(*) are constituted of a lattice,
each site of which can have a finite number of states (usually coded by Boolean variables);
the automaton evolves in discret: steps, the sites being simultaneously updated by a de-
terministic or nondeterministic rule. Typically, only a finite number of neighbours are
involved in the updating of any site. A very popular example is Conway's Game of Life.(¥)
In recent years there has been a renewal of interest in this subject (see e.g. Ref. 5-7), in
particular since cellular automata can be implemented in massively parallel hardware.(*?)

The class of cellular automata used for the simulation of fluid dynamics are here called
“lattice gas models”. Historically, they emerged from attempts to construct discrete mod-
els of fluids with varying motivations. The aim of Molecular Dynamics is to simulate the
real microworld in order for example to calculate transport coefficients; one concentrates
mass and momentum in discrete particles with continuous time, positions and velocities
and arbitrary interactions.(!°=1%) Discrete velocity models, intzoduced by Broadwell(}4)
(see also Refs. 15-19), have been used mostly to un.lersitand rarefied gas dynamics; the
velocity set is now finite; space and time are atill continuous and the evolution is proba-
bilistic, being governed by Boltimann scattering rules. The first lattice gas model (now
known as HPP) with discrete time, positions and velocities and fully deterministic evo-
lution was introduced by Hardy, de Pazzis and Pomean,(3931) gee also related work in
Ruf. 22. The HPF model, s presentation of which will be postponed to section 2, was
introduced to analyze, in as simple s framewcrk as possible, fundamerntal questions in
Statistical Mechanics, such as ergodicity and the divergence of transport coefficients in
twc dimensions.(*?) The HPP model leads to sound waves, which have been observed in
simulations on the MIT cellular automaton machine.(Y) The difi:ulties of the HPP model
in coping with fuil faid dynamics were overcome by Frisch, Hasslachsr and Pomeau(}) for
the two-dimensional Navier-Stokes equationse; models adapted to the three-dimensional
case were introduced by d'Humidres, Lallemand and Frisch.(?) TLis has led to rapid devel
opment of the subject.(39=43) These papers are mostly concerned with lattice gas models
leading to the Navier-Stokes equations. A number of other problemns are known to te
amenable to lattice gas models. Dynamical Ising models with sound waves,(1¢) Buoy-
ancy eflects,47) Seismic P-waves,(**) Magnetohydrodynamics,(#°-%") Reaction-Diffusion
models,(37-34) [nterfaces and Combustion phenomens,(**-*®) Burgers' modei.(®?)

The aim of this paper is to present in detail and without unnecessary restrictions



the theory leading from a simple class of D-dimensional “one-speed™ lattice gas models
to the continuum macroscopic eqnations of fluid dynamies in two and three dimensions.
The extension of our approach to multi-speed models, inchding for example zero-velocity
“rest-particles”, is quite staightforward; there will be occasional brief comments on such
models. We now outline the paper in some detail while emphasizing some of the key sieps.
Note that some knowledge of Nonequilibrinm Statistical Mechanics is helpful for reading
this paper, but we have tried to make the paper self-contained.

Section 2 is devoted to various lattice gas models and their symm.:tries. We begin
with the simple fully deterministic HPP model (square lattice), we then go to the FHP
model (trian, alar lattice) which may be formulated with deterministic or nondeterministic
collision rules; finally, we consider a general class of (usualy) rondeterministic one-speed
models containing the pseudo-4-D face-centered-hypercubic (FCHC) model used in three
dimensions.(® In this section, we also introduce various abstract symmetry assumptions,
which hold for all three models (HPP, FHP, and FCHC), and which will be very useful in
reducing the complexity of the subsequent algebra.

In section 8 we introduce the “microdynamical equations™, the Boolean equivalent
of Hamilton's equations in ordinary Ststistical Mechanics. We then proceed with the
probabilistic deseription of an ensemble of realizations of the lattice gas; at this level, the
evolution is governed by a (discrete) Liouville equation for the probabdility distribution
function.

In section 4 we show that there are equilibrium statistical solutions with no equal
time correlations between sites. Under some mildly rostrictive assumptions, at each site,
a Fermi-Dirsc distribution is obiained for the mean populstions, which is universal, i.e.
independent of collision rules. This distribution is parametrized by the mean values of the
collision invariants (usually, mass and momentum).

Locally, mass and momentum are discrete, but their mean values, the density and
mass current, can be tuned continuously, just as in the “real world”. Furthezmore, space
and time can be regarded as continuoas by conside.ing local equilibria, slowly varying in
space and time (sectioa 5). The matching of these equilibria leads to macroscopic PDE's
for the conserved quantities.

The resulting “macrodynamical equations”, for the density and mass current, are not
in general invariant under arbitrary rotations. However, in section 6 we show that the
relevant terms ia the macroscopic equations become lsotropic as soon as the lattice gas
has a suficiently large crystallographic symmetry group (as is the case for the FHP and
pseudo-4-D models, but aot for the HPP model).

When the necesary symmetries hold, fluid dynamical equations are derived in section
7. We consider various limits involving large scales and times and small velocities (com-
pared to particle speed). In one imit we obtain the equativns of scalar sound waves; in
another lmit we obtain the incompressible Navier-Stokes equations in two and three di-
mensjons. It is noteworthy that Galilean invariance, which dous aot bold at the microscopic
level, is restored in these limits.

In section 8 we show how to determine the viscosities of lattice gases. They can be
expressed in terms of equilibrium space-time correlation functions vis an adaptatioc to
lattice gases of fuctuation-dissipation relations. This is here done with a view-pcint of

-



*noisy” hydrodynamics, which also brings out the crossover peculurities of two dimensions,
samely a residual weak scale-dependence of transport coeflicients at large scales. Alter-
antively, luctuation-disipation relations can be obtained from the Liouville equation with
a Green-Kubo formalism.(V) Fully explicit expressions for the viscosities can be derived
via the “Lattice Boltzmann Approximation”, not needed for any earlier steps. This is
a finite-difference variant of the discrete-velocity Boltzmann approximaiion. The latter,
which assumes continuous space and time variables, is valid only at low densities, while
its lattice variant seems to capture most of the finite-density effects (with the exception of
two-dimensional crossover effects). Further studies of the Lattice Boltzmann Appraxima-
tioo may be found in Ref 39. Implications for the question of the Reynolds number are
discussed at the end of the section.

Section 9 is the conclusion. Various questions are left for the appendices: detailed
technical proofs, inclusion of body forces, catalog of results for various FHP models, proof
of an H-theorem for the Laitice Boltzmann Approximation (due to M. Hénon).

3. Deterministic and nondeterministic lattice gas models

2.1 The BPP modsl

Let us begin with a heuristic construciion of the HPP model(**=7) Consider a two-
dimensional square lattice with unit latticc constant as shown in fig. 1. Particles of unit
mass and unit speed are moving alcng the lattice links and are located at the nodes at
integer times. Not more than one particie is to be found at & given thne and node, moving
im a given direction (exclusion principle). When two and exactly two particles arrive at
a node from opposite directions (head-on collisions), they immediately leave the node in
the two other, previously unoccupied, directions {g. 2). These deterministic collision laws
obviously conserve mass (particle number) and momentum and are the only nontrivial
ones with these properties. Furthermore, they have the same discrete invariance group as
the iattice.

The above definition can be formalized as follows. We take aa L by L square lattice,
periodically wrapped around (a nouessential assumption, made for cosvenience). Evento-
ally, we shall let L — oco. At each node, labelled by the d'screte vector r,, there are four
cells labelled by an index i, defined modwo four. The cells are acsoclated to the anit vee-
tors ¢; connecting the node to its four nearest neighbours (i increases counterclockwise).
Each cell (r,, i) has two states coded with a Boolean variable ni(r,) = 1 : “occupied™ and
ni(r.) = 0 : “unoccupied”. A cellular sutomaton updating rule is defined on the Soolean
fleldn, = {ni(r.), s = 1,..,4, r. € Lattice}. It has two steps. Step cme is collision: at each
node the four-bit states (1,0,1,0) and (0,1,0,1) are exchanged; all other statcs are left
unchanged. Step two is propagation: n,(r.) = ni(r. — ¢;). This two-step rule ls applied
at each integer time f,. An example of implementation of the rule, u wich arrows stand
for cell-occnpation, is shown n figs. 1a and 1b.

Collisions in the HPP model conserve mass ang momentum locally, whereas propa-
gation conserves them globally (actually, along each lattice line). If we attribute to each
particle a kinetic energy 1/2, the total kinetic energy is also conserved. Energy conserva-
tion s however indistinguishable from mass conservation and will oot play any dynamical
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role. Models having an energy conservation law independent of mass conservation will not
be considered in this paper (see Refs. 2,27). ‘

The dynamics of the HPP model are invariant under all discrete transformations that
conserve the square lattice: discrete translations, rotations by x /2, mirror symmetries with
respect to a lattice line. Furthermore, the dynamics are invariant under duality, that is
exchange of 1's and 0's (particles and holes).

2.8 e FHP wmodels

The FHP models 1, I, and Il {see below), introduced by Frisch, Hasslacker and Pomean(?)
(see also Refs. 23-30,32,35-42,44) are variants of the HPP model with a larger invariance
group residing on a triangular luttice with unit lattice constant (8g. 3). Each ncde is now
connected to its six neighbours by unit vectors ¢; (with i defined modulo six) and is thas
endowed with a six-bit state (or seven, cf. below). Updating invoives again propagation
(defined as for HPP) and collisious.

In constructing collision rules on the triangular lattice, we must pay attention to the
following
Deterministic vs. soodeterministic rules. For a head-on collision with occupied “imput
channels” (i, i +38), there are two possible pairs of occupied “output channels™ such that
mass and momentum are conservec), namely (i + X, i +4) and (i ~ 1, § - 4) (see fig. 4a).
We can decide always to make the same choice; we them bave s deterministic model,
which is chiral, that is not invariant under mirror-symmetry. Alternatively, we can make
a nondeterministic (random) choice, with equal probabilities to restore mirror-symmetry.
Finally, we can make a psendo-random choice, dependeat, for example, on the parity of &
tim » or space index
Spurious conservation laws. Head-on collisions consezve, tn addition to tota’ particle sum-
ber, the difference of particle numbers in any pair of opposite directions (i, i + 8). Thus,
head-on collisions a a triangular lattice conserve a total of four scalar quantities. This
means that in sddition to mass and momentum conservation there is a spurious conser
vation law. The large-scale dynamics of such a model will differ drastically from ordinary
hydrodynamics, unless the spurious conscrvation law is removed. One way to achieve this
Is to introduce triple collisions (i, § +2, i +4) = (i +1,i 43, i +5) (see 5. 4b).

Several models caa be constructed ca the triangular lattics. The simplkst set of
collision rules with no spurionr conservativn law, which will be called FHY- 1, involves
only (pseudo-random) binary head-on collisicns and triple collisions. FHP-] is aot invariant
under duality (particle-hole exchange), but can be made 30 by inclusion of the duals of
the head-on collisions (see §g. 4c). Finally, the set of collision rules can be aaturated
(exhausted) by inclusion of head-on collisions with & “wpeciator”,(3) that is, & particle
which remains unafected in a collision; fig. 4d bs as «xample of a head-on colision with a
spectator.

The model FHP-II is a seven bit variant of FHP-I including a tero-velocity “rest.
particle”, the additional collision rules of fig. 4¢, and varlants of the head-on and triple
collisions of gy 4s and 4b with a spectstor rest-parilcle. Binary collision. on rest-particles
remove spurious conservations, and do su more efficiently at low densities thac triple eolli-
sions. Finally, model FHP-II is a collision-saturated version of FHP-11.03) For simplicity
we have chosen not to cover the theory of models with rest-particles in detail.

)



The dynamics of the FHP models are invariant under ¢ll discrete transformations that
conserve the triangular lattice: discrete translations, rotations by r/3, mirror-symmetries
with respect to a lastice line (except for the chiral variants).

2.9 e face-centered-hypercudic -0 end the psevdo-{-D wodeale

Three dimensional regular lattices do not have enough symmetry to ensure macroscopic
isotropy.(}3:3%) A suitable four-dimensional model has been introduced by d'Humidres,
Lallemand and Frisch.®) Its basic lattice is the face-centered-hypercubic (FCHC), defined
as the set of signed ictegers (2,, 2y, 75, 3¢) such that 2, + 35 + 25 + 3, is even. Each node
is conpected via links of length ¢ = /2 to 24 nearest neighbours, having two coordinates
differing by 1. Thas the FCHC model has 24-bit states. The 24 possible velocity vectors
are again denoted ¢;; for the index i there is no outstanding ordering and we ahall leave
it unspecified. Propagation on the FCHC lattice gas is as usual. Collision rules should
conserve mass and four-momentum while avoiding spurious conservations. This can be
achieved with just binary collisions, but betier strategies are known. Nondeterministic
rules involving transition probabilities are needed to ensure that the collisiors and the
lattice have the same invariance group (precise definitions are postponed to section 2.4).

The allowed transformations of the FCHC model are discrete translations and those
isometries generated by permutations of coordinates, reversal of one or several coordinates
and symmetry with respect to the hyperplane 2, + 35 + 33 + 3¢ = 0.

The pseudo—4-D model?) may be viewad as the three-dimensional projection of an
FCHC model with cnit periodicity in the z,-direction (see 8g. 8). It resides on an ordi-
nary cubic lattice with unit lattice ccastant. The full four-dimensional discrete velocity
structure is preserved as follows. There b one communication channel to the 12 next-
nearest neighbours (corresponding to the twelve velocity vectors such that v, the fourth
component of the velocity, vanishes) and there are two communication ebannels to the six
acarest-neighbours (corresponding respectively to velocitles with v = +1). During the
propagation phase, particles with vy = +1 move to nesrest neighbour nodes, while parti-
cles with v, = 0 move to next-nearest neighbours. The collision strategy is the same as for
the FCHC model, 10 that four-momentum Is conserved. The fourth compoaent Is not a
spuriously conserved quastity, because, in the incompressible limit, it does not effectively
couple back to the other conserved quantities.(?)

8.4 4 peaevel cless of aondetermintistic models

In most of this paper ve shell vork with a class of models {geaerally aondeterministic)
encompassing all the above cne-speed models. The relevant common aspects of all those
models are now lsted: There is & reguiar lattice, the nodes of which are connected to
pearest aeighbours throagh links of equal leagth; all velocity directions are in some sense
equivalent and the velocity set is invariant under reversal, at each node there is a cell
associated to each possible velocity which can be occupied by one particle at most; particles
are indistinguishable; particles are marched forward by successively applying propagetion
anu collision rules; collisjons are purely local, have the same invariances as the velocity set
and consere only mass and momeatum.

We pow give a more formal definition of these ope-speed models aa cellular antomata
Let us begin with the geometrical aspeci.. We take a D-dimensiona) Bravais lattice [
in R2 of 8nite extension O(Z) in all directions (eventually, L — oo); the pasition vector



r. of any node of such a lattice is a linear combination with integer coeficients of D
independent generating vectors.®®) We furthermore assume that there exists a set of b
“velocity vectors” e; with components ¢;, (a = 1,...,D),} having equal modulus ¢, the
particle speed, such that:

(i) for any r. € L, the set of the r, + ¢;'s is the set of nearest neighbours of r,;

(ii) any two nodes can be connected via a finite chain of nearest neighbours;

(iii) for any pair (¢, ¢5), there exists an element in the “crystallographic” group § of
isometries globally preserving the set of velocity vectors, which maps ¢; into ¢;;

(iv) for any velocity vector ¢;, we denote by §; the subgroup of § which leaves ¢;
inveriant and thus leaves its orthogonal hyperplane II; globally invariant; we assume that
(a) there is no non-vanishing vector in Il; invariant under all the elements of §,, (b) the
only linear transformations within the space Il; commauting with all the elements of §; are
proportional to the identity.

Now, we construct the automaton. To each node r,, we attach a b-bit state n(r,) =
{ni(x.), i = 1,...,b}, where the n;'s are Boolean variables. The updating of the “Boolean
fleld” n(.) involves two successive steps: collision, followed by propagation. We choose this
particular order for technical convenience; after a large number of iterations it will beeome
irrelevant which step was first.? Propagation is defined as

ni(r.) = ni(re - &). (2.1)

The spatial shifting by ¢; is performed on a periodically’ wrapped around lattice with
O(L) sites in any direction; eventually I — 0. CTollision is the simultanecus application
at each node of nondetermiristic transition rules from an in-state s = {s;,i = 1, ...,b} to
an out-state o' = {s}, i =1,...,b}. Each transition is assigned a probability A(s —+ ¢') 2 0,
normalized to one (T,, A(s — #') = 1Va), and depending only on 4 and 4’ and not on the
node. The following assumptions are made. C

(v) Conservation laws: the oaly collections of b real pumbers a; such that

;(aﬁ -o)A(s— o)ay =0, Vo4, (2.2)

are linear combinations of 1 (for all i) and of ¢;,,...,cip, i.e. are associsted to mass and
momentum.

1 1n this paper Greek and Romaax indices refer respectively to components and velocity
labels. Summation over repeated Greek indices, but not Roman ones, is implicit.

3 For deterministic lattice gases, such as HPP, it is possible to bring out the reversibil-
ity of the updating rule by defining the state of the automaton at half-integer times,
with perticles located at the middle of links connecting nearest-neighbour nodes; updat-
{ag then comprises half a propagation, followed by collision, followed by another balf
propazation.(30)

% Other boundary conditions at the lattice edge can also be used, for example “wind-
tunnel” conditions.(3%:34.28)



(vi) Invariance under all isometries preserving the velocity set
A(c(a) - 8(")) =A(s—d), Vgeg, Vo' (2.3)
(vii) Semi-detailed balance

ZA(J —4d)=1, V¥ (2.4)

Various comments are now in order. Semi-detailed halance, also used in discrete veloc-
ity Boltzmann models,(!®) means that if before collision all states have equal probabilities,
they stay so after collision. It is trivially satisfled when the collision rule is determin-
istic and one-to-one. There exists also a stronger assumption, detailed balance (that is
A(s — o) = A(s' - #) ), which will not be needed here. The HPP, FHP, and FCHP lat-
tice gases satisfy the above zssumptions (i) through (iv). The proofs are given in Appendix
A. The other assumptions (v) through (vii) bold by construction with the exception of the
chiral versions of FHP. The latter do not satisfy (vi) because the collision rules are not
invariant under the mirror-symmetries with respect to velocity vectors.

The invrriance assumptions introduced above have important consequences for the
tra~sformation properties of vectors and tensors. The following definitions will be used.
A tensor is said to be §-mvariant if it is invariant under any isometry in §. A set of i-
dependent tensors {T; = §5,04...0,+ § = 1,...,b} is 58id to be §-imvariant if any isometry in
§ changing ¢; into ¢,, changes T; into T;. Note that this is stronger than global invariance
under the group §. The velocity moment of order p is defined as 3, ¢ia, Ciay . --Cia,-

We now list the $zansformation properties following from G-invariance. The proots
are given in Appendix B.

P1 Parity-invariance. The set of velocnty vectors is mvamnt under space-reversal.

P32 Any set of i-dependent vectors v;,, which is G-invariant, is of the form Ae,,.

P38 Any set of i-dependent tensors §;,p, which is §-invariaut, is of the form e +pbqp.
P4 Isotropy of second order tensors. Any §-invariant tensor 4,p i3 of the form udqp.

P8 Any (-invariant third order tensor vanishes.

P8 Velocity moments. Odd order velocity moments vanish. The second order velocity
moment is given by

Eqaqp -—s,, (25)

There is, in general, no closed form expression for even order velocity moments beyond
secoad order, witl the assumption: made up to this point (cf. also section 6).



3. Microdynamlics and probabllistic description

3.1 Nicrodynamical equatione

It is possible to give a compact representation of the “microdynamics”, describing the
application of the updating rules to the Boolean field. This is the cellular automaton
analog of Hamilton's equations of motion in Classical Statististical Mechanics. We begin
with the HPP lattice gas (section 2.1). Let n,(t.,r.), as defined in section 2.1, denote the
HPP Boolean fleld at the discrete time £,. With ¢ labelling the four cells of an HPP node,
the collision rule can be fermulated as follows: If before, i and i + 2 are empty and ¢ + 1
and ¢ +3 are occupied, then after, the opposite holds; if before, i + 1 and i + 3 are empty
and ¢ and ¢ + 2 are occupied, then after, the opposite holds; otherwise, the content of cell
i is left unchanged. Thus, the updating of the Boolean fleld may be written

m(‘* +1,>+ c.-) = (n. A '\(ﬂ.‘ ARipa A-Rigp1 A ‘m.'...a)) " (n.-.H Anigs A—-n; A -\n.'+3) )

(3.1)
where the whole r.h.s. is evaluated at ¢, and r.. The symbols A, Vv, and - stand for
AND, OR, and NOT, respectively. It is known that any Boolean relation can be recoded
in arithmetic form (A becomes multiplication, ~ becomes one minus the veriable, etc.). In
this way we obtain

ni(te + 1,1 +¢;) = ni(Le,ra) + Ai(n). (3.2)
The “collision function” A;(n), which can take the values %1 and 0, desribes the change

in n;(t.,r.) due to collisions. For the HPP model, it depends only on i and on the set of
n,'s at {, and r,, denoted n. It is given by

Ai(n) = nig1nips(1 = ni)(1 = niga) - niniga(l = nig1)(1 = niys). (3.3)

Equation (3.2) (with A;(n) given by (3.3)) will be called the microdynamical HPP equa-
tion. It holds for arbitrary i (modulo four), for arbitrary integer f,, and for zrbitrary
r. € L (£ designates the lattice).

It is easy to extend the microdynamical formalism to other models. For FHP-I (section
2.2), we find that the collision function may be written (i is now defined modulo six)

Ai(n) = &, nipamir (3 = ni) (1= niga)(1 = nigs)(1 = niys)
+(1 = &, )nipanies(1 = m)(1 - miga)(1 = migs)(1 - nigd)
—niniys(l — nip1)(1 - niga)(1 = niga)(1 - nigs) (3.4)
+nipinipsnivs(l = n)(1 = niga) (1 = nigd)
—ninigatipa(1 = nigy )(1 = nigs)(1 = niqs).

Here, §,,,. denotes a time- and site-dependent Boolean variable which takes the value
one when head-on colliding particles are to be rotated couterclockwise and zero otherwise
(remember, that there are two possible outcomes of such collisions). For the theory, the
simplest is to assign the two values equal probabilities and to assume all the §'s to be
independent. In practical iinplementations other choices are often more convenient.



We now give the microdynamical equation for the genera! class of nondeterministic
models deflned in section 2.4. Propagation is as before. For the collision phase at a given
node, it is convenient to sum over all 2° in-states s = {s;, = Oorl, i = 1,...,b} and 2
out-states #'. The nondeterministic transitions are taken care of by the introduction at
each time and node and for any pair of states (s, &') of a Boolean variable £,,/ (time and
space labels omitted for couciseness). We assume that

(bw) =A(0 = 4'), Vo 0, (3.5)

where A(s — ¢') is the transition probability iutroduced in section 2.4; the angular brackets
denote averaging. We also assume that

Y &e=1, Ve (3.9)
[ 4

Since the £'s are Boolean, eq. (3.6) means that, for a given in-state s and a given realizafion
of &,., one and only one cut-state o' is obtained. It is now clear that the microdvuamical
equation can be written as

ni(te + 1, +e¢) = O ahéow [[ 07 (2 - nj)0=09). (3.7)
s b

The factor s; ensures the presence of a particie in the cell i after the collision;.the various
factors in the product over the index j ensure that before the collision the pattern of n,'s
matches that of #;'s. Using {3.7) and the identity

Y a]lny =)0t = n, - (38)

we can rewrite the microdynamical equation in a form that brings out the collision function

ni(te + 1,74 + ¢;) = n; + Ai(n)
Ai(n) = 3 (# = ))& [ 7 (1 = )00, (3.9)
' 5

In the sequei it will often be useful to have a compact notation. We define the collision
operator

C: ni(r.) — ni(r.) + Ai(n(r.)), (3.10)

the streaming cpevator
$: n‘-(r‘,) land n\'(rt = ci)| (311)

and the evolution operator, the composition of the latter

E=§oC. (3.12)



The entire updaiing can now be written as

n(ta+1,.) = En(ta,.) (3.13)

where the point in the second argument of the n's stands for all the space variables.

An interesting property of the microdynamical =quation, not shared by the Hamilton
equations of ordinary Statistical Mechanics, is that it remains meaningful for an infinite
lattice, since the updaiing of any given node involves only a fivite number of neighbours.

3.8 Conservation relations

Conservation of mass and momentum at each node in the collision process can be expressed
by the following relations for the collision function:

Y Ai(n)=0, vne {0,1)", (3.14)
i
Y eiAi(n) =0, V¥ne {0 1)\ (3.15)
‘
This implies important conservation relations for the Boolean field

Zn¢(3.+l.r.+q) = Zn.-(t,.r.), (3.16)

i ‘
et +1,r+ e = ) eini(ta, 1), (3.17)

i ‘

3.8 Ihe Liovville egquation

We now make the transition, traditional in Statistical Mechanics, from a deterministic to
a probabilistic point of view. This can be obscured by the fact that some of our modeis
are already probabilistic. So, let us assume for a while that the evolution operator is
deterministic and invertible (as is the case for HPP).

Assuming that we have a finite latice, we define the phase space T' as the set of all
possible assignments o(.) = {si(r.),i = 1,...,b, #. € L} of the Boolean field n;(r.). A
particular assignment of the Boolean fleld will be called a configuration. We now consider
at time ¢, = 0 an ensemble of initial conditions, each endowed with a probability

P(O. o(.)) > 0, such that
Y (o)) =1. (3.18)

o.)€T

We let each configuration in the ensemble evolve according to the automaton upduting
rule, i.e. with the evolution operator £ of eq. (3.13). The latter being, here, invertible,
conservation of probability is expressed as

P(t.+1.0()) = P(t.£714()). (3.19)



This equsation is clearly the analog of the Liouville equation of Statistical Mechanics, and
will be given the same name. Alternatively, the Liouville equation can be written

Pt +1, s.(.)) = P(t, c-‘a(.)). (3.20))

To derive this we have used (3.12) and put the streaming operator in the Lh.s., a form
that will be more convenient subsequently.

In the nondeterministic case, we must enlarge the probability space to include, not
only the phase space of initial conditions, but the space of all possible choices of the
Boolean variables £(ss'), which at each time and each node select the unique transition
from a given in-state ¢ (cf. section 3.1). Since the ¢'s are independently chosen at each
time, the entire Boolean field n(t,,.) is a8 Markov process (with deterministic rules, this
process is degenerate). What we shall continue to call the Liouville equation, is actually
the Chapman-Kolmogorov equation for this Markov process, namely

Pl+1,50() = XTI A(s(r) = #() P(t100))- (3.21)

o(.)ET r.€L

This equation just expresses that the probability at ¢, + 1 of a given (propagated) con-
figuration #'(.) is the sum of the probabilities at ¢, of all possible original configurations
o(.) times the transition probability. The latter is a product, because we assumed that the
§'s are chosen independently at each node. In the deterministic case A4 (s(r.) — o'(r.))
selecss the unique configuration C~'4'(.), s0 that eq. (3.20) is recovered.

3.4 Neon gquantitics

Having introduced a probablistic description, we now turn to mean quantities. For an
“observable” g(n(t.,.)), which depends on the Boolean field at a single time, the mean is
given by averaging over P (1., 4(.))

(q(n(t.,.))> x .(.Z)Erq('('))P(“'.('))' (3.22)

An important role will be played in the sequel by the following tnean quantities: the
mean population

Ni(tora) = (mi(ta,e)), (3:23)
the density, and the mass current (mean momentum)
Pt r) =) Ni(to,r), J(ta,r) = ) eNi(ta,r.). (3.24)
{ {

Note that these are mean quantities per node, not per unit area or volume. The deasity
per cell is defined as d = p/b. Finally, the mean veiocity u is defined by

J(ta,r) = p(t., ro)u(t., rl). (3.25)



Note that under duality (exchange of particles and holes) p changes into b - p, d into
1 -d, } into -}, and u into the “mean hole-velocity” ug = —ud/(1 - d).

Averaging of the microdynamical conservation relations (3.18) and (3.17) leads to
conservation relations for the mean populations

Z Nt. +1,p. 4+ ¢i) = z: Ni(t.,r.), (3.26)
(] '

Y eaM(t+ e +e) =) eNifta,r.). (3.27)
(] (]

4. Equillbrium solutions

It has been shown by Hardy, Pomeau, and de Pazzis?) that the HPP model has very
simple statistical equilibrium solutions (which they call invariant states ) in which the
Boolean veriables at all the cells are independent. Such equilibrium solutions are the
lattice gas equivalent of Maxwell states in Classical Statistical Mechanics and therefore
are crucial for deriving hydrodynamics. There are simiiar results for tke general class of
nondeterministic models introduced in section 2.4, wich are now discussed.

4.1 Steady solutions of the Liouville equation

We are interested in equilibrium solutions, that is steady-state solutions of the Liouville
equation (3.21) for a finite, periodically wrapped around lattice. Collisions on the lattice
are purely local (their impact parameter is zero). This suggests the existence of equilibrium
solutions with no single-time spatial correlations. The lattice properties being translation-
invariant, the distribution should be the same at each node. Thus we are looking for
equilibrium solutions of the farm

P(s()) = Up(c(r.))., o (4)

where p(s), the probability of a given state, is node-independent. Maximization of the
entropy (cf. Appendix F) suggests tkat p(s) should be competely factorized over all cells,
that is, of the form

p(o) = [T V(1 - Ny)=20), (4.2)
{

Note that N’/(1 = N;)(*=*) is the probability of a Boolean va iable with mean N,.
Now, we must check that there are indeed solutions of vii- form that we have been

guessing. Substitution of P(s(.)) given by (4.1) with p(s) given by (4.2) into the Liouville
equation (3.21) leads to

[V (a- M) = T A= ) INP =N, v (43)
J ’ J

where N, is the mean population of cell 4, independent of the node and of the time.

Eq. (4.3) is a set 2° (the number of different states) equations for b unknowns. The
fact that it actually possesses solutions is nontrivial Furthermore, these solutions can be
completely described. Such results follow from the
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Lernma. The following statements are equivalent:
(a) The N,'s are a solution of (4.3).
(b) The N;'s are a solution of the set of b equations

Z(a; - 0)A(s —4') H NY(1-N,))(=%) =0, i (4.4)
oy i)

(¢) The N;'s are given by the Fermi-Dirac distribution

1
T l+explh+q-e)’

; (¢.5)
where h is an arbitrary real pomber and q is an arbitrary D-dimensional vector.

The proof of the equivalence is given in Appendix C; it makes use of semi-detailed
balance and the absence of spurious invariants. The most important consequence of the
lemmas is the
Unlversallty theorem. Nondeterministic lattice gas models satisfying semi-detailed bal-
ance and having no spurious invariants admit universal equilibrium solutions, completely
factorited over all nodes and all cells, with mean populations given by the Fermi-Dirac
distribution (4.5), depending only on the density p and the mass current J = pu, and
independent of the transition probabilities A(s — o').

The proof follows from the observation that the Lagrange mu!tipliers h and q of the
Fermi-Dirac distribution can be calculated in terms of the density and the mass current
through the relations

1
"I;M=;1+exp(h+q-e¢)' (48)
1
P“:;Nut.'-‘qu*_ h+aa) (4.7)

For the HPP model, this set of equations is reducible to a cubic polynomial equation,
20 that explicit solutions are known.(?*) For the FHP model, explicit solutions are known
only for special cases.(*0)

It is not pariicularly surprising, for models that have a bullt-in exclusion principle (ot
more than one particle per cell), to obtain a Fermi-Dirac distribution at equilibrium. Note
that the factorized equilibrium soutions remain meaningful on an infinite latice. Therc Is
no proof at the moment that the only equilibrium solutions which are relevant in the limit
of infinite laitices are of the above form, namtely completely factorized (which ther implies
the Fermi-Dirac distribution). There is strong numerical evidence, for those models that
have been simulated, that the Fermi-Dirac is the only relevant one.(8:32:2%)

4.8 Lov-speed equilidria

In the “real world" equilibriurn distributions with different meau velocities are simply
related by a Galilean transformation. Galilean invariance does not hold at the microscopic
level on a iactice gas; therefore there is no simple relation between the equilibria with
vanishing and nonvanishing mean velocity. For subsequent derivations of 8uid dynamical
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equations, we shall only need equilibria with jow speeds, that is with u = |u| € ¢, the
particle speed. Such equilibria can be calculated perturbatively in powers of u.
We write the equilibrium distribution as

Ni=1y5(h(ou) +alpu) ;) (4.8)
where we have used the Fermi-Dirac function
1
In(2)= o (4.9)
We observe that
u=o=>1v.-=-§=d. (4.10)

Indeed, by assumption (iii) of section 2.4, there exist an isometry of the luttice exchanging

any two velocity vectors ¢; and ¢;; the vector u = 0 being also trivially invariant, the

mean population N; is independent of i. Thus [, (h(p,0)) = d and q(p,0) = 0.
Furthermore, it follows from parity-invarisace (u = —u, ¢; — —¢;) that

h(p, —u) = h(p,u), q(p,—u) = —q(p, u). (411)
We now expand h and q in powers of u
hp,u) = ho + hgu® + O(u')
fa(p)0) = ¢ 144 + O(u?),

where ho, ha, and ¢, depend on p. The fact that Ay and ¢, are scalars rather than second
order tensors is a consequence of the isotropy of second order tensors (property P4 of
section 2.4). We substitute (412) into (4.8) and expand the mean populations in powers
ofu

(4.12)

Ni= [y +@1fjpu-cithafy vt + %q{l;'b (u-e)? +0(a?). (4.18)

Here, /5, [, a0d /7, are the values at Ay of the Fermi-Dirac function and its first and
second derivatives. From (4.13) wa calculate the density p = 3, N; and the mass current
pu = Y, ¢;N;, using the velocity moment relations (P8 of section 2.4). Identification gives
Ao, hy, and ¢; in terms of p. This is th+n used to calculate the equilibrium mean population
up to second order in u; we obtain

Nr(pu) =8+ :,—qu,u'. + 0G(0)Qiaptiats + O(s), (4.14)
where
D! b-2 o
Glo) = 555 -b-;—:' and  Qiop = eiatip = F5bap- (4.15)

In (4.14) the superscript “eq" stresses that the mean populstion are evaluated at equilib-
rium.

Note that the coeflicient G(p) of the quadratic term vanishes for p = b/2, that is, when
the density of particles and holes are the same. This result, which holds more generally for
tke coeficients of any even power of u, follows by duality: N;* goes into 1 - N/* and u into
—u at p = b/2. It does not matter whether or not the collision rules are duality-invariant,
as long as they satisfy semi-detailed balance, since the equilibrium is then univiesal.

16



8. Macrodynamical equations

In the “reai world”, fluid dynamics may be viewed as the glueing of Jocal thermody-
pamic equilibria with slowly varying parameters.(¢1:49) Lattice gases also admit equilib-
rium solutions.! These have continuously adjustable parameters, the mean values of the
conserved quantities, namely mass and momentum. On a very large lattice, we can set up
local equilibria with density and mass currant slowly changing in space and time. From
the conservation reiations we shall derive by a multi-scale technique macrodynamical equa-
tions, that is PDE's for the large scale and long time behaviour of density and mass current

We consider a lattice gas satisfying all the assumptions of section 2.4. We denote by
p(r.) and u(r,) the density and (mean) velocity? at lattice node r.. We assume that these
quantities are changing on a spatial scale ¢=! (in units of lattice constant). This requires
that the lattice size L be itself at least O(¢~!). Eventually, we let ¢ — 0. The spatial chaage
is assumed to be sufficiently regular to allow interpolations for the purpose of calculating
derivatives.® When time and space are treated as continuous, they are denoted ¢ and r.
We further assume that the density is O(1) and that the velocity is small compared to the
particle speed c.” We expect the following phezomena;

1) relaxation to local equilibrium on time scale ¢,

2) density perturbatious propagating as sound waves on time scale ¢~

8) diffusive (and pomsibly advective) effects on time scale ¢~?.

We thus use a three time formalism: ¢, (discrete), t; = el,, and {3 = €L, the latter
two being treated as continuous variables. We use two space variables: r, (discrete) and
r, = ¢r, (contincous).

Let us denote by N‘-(o)(r.) the mean equilibrium populations based on the local value

of p and u. They are given by (4.14). The actual mean populations N,(¢, r) will be close
to the equilibrium values and may be expanded in powers of ¢:

N = N ) + NV (t,r) + O(). (5.1)
The corrections should not contribute to the local values of density and mean momentum;
thus
Y NV(tr)m0 and Y eN(tr)m=o. (5.2)
‘ ‘

We now start from the exact conservation relations (3.26) and (3.27) and expand both
the N;'s and the finite differences in powers of ¢. Note that all finite differences must be
expanded to second order, otherwise, the viscous terms are not correctly captured. Time
and space derivatives will be denoted 9, and 3, = {d,, a m 1,...,D}. For the multi-scale
formalism, we make the substitutions

by = ¢dy, + 19, and 9, — ¢d,,. (5.3)

¢ The qualification “thermodynamic” is not so appropriate since there is no relevant
energy variable

' Henceforth we shall just write “velocity”, since this mean velocity changes in space.

¢ The interpolations can be done via the Fourier representation if the lattice is periodic.

T Eventually, we shall assume the velocity to be O(¢), but at this point it is more
convenient to keep ¢ and u as independent expansion parameters.
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The components of 8., will be denoted 8,,.
To leading order, O(¢), we obtain

O, zN.-(o) +0d, Ec.—,N‘m =0, (5.4)
¢ 4

and
0, Y ¢iaN +815 Y ciacia N =0. (5.5)
i '

We now substitute the equilibrium values (4.14) for the N,-(o) 's and use the velocity moment
relations P6 of section 2.4. We obtain the “macrodynamical Euler equations”

O¢,p+ 81p(pup) = 0, (.6)
and
| O, (pa) + 81pPap = 0. (6.7}
P, is the momentum-flux tensor,®
Pap = EcmeuN‘“
c; | (5.8)
= 'b'PGoﬂ + 0G(p)Taps uyus + O(ut),
with '

Tapys = EWGWDQHM (5.9)
i

and G(p) and Q¢ given by (4.15) of section 4. Note that the correction term in the r.h.s.
of (5.8) is O(u') rather than O{u®); indeed, it follows from the parity-invariance of the
lattice gas that first order spatial derivative terms do not contain odd powers of u.

We now proceed to the next order, O(¢*). We expand (3.26) and (3.27) to second
order, collecting all O(¢?) terms, we obtain

1 1
a, ;N,“’) +3000, }; NO 4+8,,0,5 ;e‘,N,‘” + 20101406, N O 4

2
o ! (6.10)
8, YNV 40,5 Y e(sNM =0,
] ¢

and

1 1
OPBLTLA 3000 3N +00,015 3 ciacis N +
‘ ‘ -

20,,0]-,6«,64,6.‘:,”‘(0)'#

O, chaMm + 01 Ee¢,q,Nf') = 0.
¢ q
(6.11)

¢ Actually, this is only the leading order approximation to the momentum-Bux.
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By (6.2) ¥, N‘-m =0and ¥, ciaN,.(') = 0. For the N‘-(o"s. we substitute their low-speed
equilibrium form (4.14), leaving out O(u®) terms. Reexpressing derivatives of p and pu
with respect to ¢, in terms of space derivatives, using (5.6)-(5.7), we obtain

ot,P = 0| (5.12)

and
81, (pua) + O1s (2 ciacipN") + %Tamau(oua)) =0(w!).  (513)
]

Eq. (5.12) tells us that there is no mass diffusion (there is a single species of particles).
Eq. (5.13) describes the momentum diffusion over long ( O(¢~?)) time-scales. It has two
contributions. The term involving T,p,5 comes from particle propagation and we shall
comment on it later.

The otLer term in (5.18) involves the deviations Nim from the equilibrium mean

populations. N‘m vanishes when the equilibrium is uniform. It must therefore be a lincar
combination of gradients (with respect to r;) of p and pu. Linear response theory is neéded
to calculate the coefficients. At this point, we skall coly make use of symmetry arguments
to reduce the number of coeficients. ‘We assume that u is small, so that, to leading order
equilibria are invariant under the isometry group § of the lattice (see section 2.4). Since
the gradient of p is a vector and the gradient of pu is a second order tensor, properties P2
and P3 of section 2.4 allow us to write

NY = geiad1ap+ (¥eiatip + XBap) O10(pus). (5.14)

By eq. (5.2), we have o = 0 and ¢y + Dx = 0. Note that y should depend on p, but not

on u, since it is evaluated at u = 0. Substitating the expression for N,m into (5.13), we
obtain

Ou(pu) + 015 | (¥00) + 335 ) ToamOralous)| = 0W2).  (55)

In the sequel, it will be more convenient to collapse the set of four equations, governing
the evolution of p and pu on O(¢=") and O(c™?) time-scales, into a pair of equations,
weitten in terms of the original variables ! and r (in their continuous version). We thus
obtain the macrodynamical equations

8ip+ 5(pus) = 0, (5.16)

di(pua) + 9 (I-G(P)Taﬁwl uqty + %ﬂ’aﬂ) +0, [(W(p) + 56,2-6) Tapvlov(lm‘)]

= O(ew?) + O(e*u?) + O(cu). |
(8.17)
The equivalence of (5.16) aad (5.17) to (5.8}, (5.7), (5.12), and (5.15) follows by (5.3). Note
that (5.18) is the standard density equation of fluid mechanics and that (5.17) already has
a strong resemblance to the Navier-Stokes equations.



6. Recovering lsotropy

The macrodynamical equations (5.16)-(5.17) are not fully isotropic. The presence of a
lattice with discrete rotational symmaetries is still felt through the tepsor

C’
Topys = ECiaciﬂQi'!J = EC.‘acip (chw - —5674), (e.1)
4 '

appearing ia both the ponlinear and diffusive terms of {5.17). Furthermore, the higher
order terms in ther.h.s. of (6.17) have no reason to be isotropic. This should not worry us
since they will eventually turn out to be irrelevant. Contrary to translational discreteness,
rotational discreteness cannot go away under the macroscopic limit; the latter involves
large scales bnt not in any way “iarge angles” since the group of rotations is compact.

We bave seen in section 2.4 that tensors up to third order, having the same invariance
group § as th discrete velocity set are isotropic. Not so for tensors of fourth order such as
Top+s- Indeea for the HPP model ( section 2.1) explicit calculation of the momentum-flux
tensor, given by (5.8), is quite straightforward. The reault is

Pii = pGlo)(u] - u3) + g +0(u!), Py =pG(p)(u] - u}) + g +0(u!),  (62)

P" L P" = 0, (63)
with
Glo)= 1=2. (6.4

The only second order tensors quadratic in the velocity being uqup and u- ué,y, the
tensor Pgp is not isotropic.

In order to eventually obtain the Navier-Stokes equations, the tensor Ty544 given by
(6.1) must be isotropic that is, invariant under the full orthogonsal group. This tensor is
pairwise symmetrical in (a, A) and (v, §); from (6.1), it follov-s that it satisfies

1
Y Tapry =0, Y Tapop = be (1 - 3) : (6.5)
v ap .

When the tensor T, s is isotropic, these properties uniquely constraln it to be of the
following form:

bt 2
Tapre = DD +7) (5075M +6a4bpqy - 35aaava> : (6.6)

For general group-theoretical material concernlng the isotropy of tensors with discrete
symmetries in the context of laitice gases, we refer the reader to Ref. 36. Crucial ob-
servations for obtaicing the two and three-dimensional Navier-Stokes equations are the
isotropy of pairwise symmetrical teusors for the triangular FHP lattice in two dimensions
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and the face-centered-hypercubic (FCHC) lattice in four dimensions, and thus also for the
pseudo-4-D three-dimensional modci We give now elementary proofs of these results.

In two dimensions, it is convenien$ to ccnsider Ty 445 a3 a linear map from the space
E of two-by-two real symmetrical matrices into itself:

T: Agp~ TappAqs. (6.7)
A basis of the space E is formed by ihe matrices Py, P;, and Py, associated to the

orthogonal projections onto the z,-axis and onio two ccher directions at 2x/3 and 4x/3.
In this representation, an arbitrary E-mstrix may be written as

A= + xaPa + x3.%, (6'8)
and T becomes a three-by-three matrix Ty, (a,b = 1,2,3). The key observation is that
the kexagonal group (rotations by multiples o x/3) beromes the permutation group of P,

Py, and Ps. Thus T, is invariant under arbitrary permutations of the coordinates, i.e. is
of the form )

Ty = pdiagll, 1,1) + x1es, (6.9)

where diag(1,1,1) is the diagonal matrix with ectries one and L, is the matrix with ali
cutries equal to one, and ¢ and x are artitrary c«alarr. From (6.8) we have

tr(A) = x1 + X2 + X, (6.10)
where tr denotes the trace. We also note that
P, 4+ Py + Py = (2/3)I, (6.11)

where I is the identity (check it for the unit vectors of the z, and z; axis). Using (8.10)
and (6.11), we can rewrite (8.9) as

T: AmgAd+ gx t2(A)]. (6.12)

Reverting to tensor notations, this becomes

3
Topn = g (6avbas + Sosbay) + %60367" (6.13)

which is obviously lsotropic.

We turn to the four-dimensional case, using the FCHC mode! of section 2.3. Invariance
under permutations of coordinates and reversal of any coordinate implies that the most
general possible form for T, g4 is

Tapss = 88apbp1b4s + X (Savbne + Sasbpy) + ¥basbons. (6.14)
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The x and ¢ terms are already isotropic. The vanishing of ¢ is a consequence of the
invariance of the velocity set under the symmetry T with respect to the hyperplane z, +
23+ 23+ 2, =0, that is
2, = 2,0, 0= ;—Zza. (6.15)
[« ]

Indeed, consider the vecior v, = (2,0,0,0). Contracting the ¢ term four times with v,
we obtain 16¢; the image of v, under £ is w, = (1,-1, -1, -1), which contracted four
times with the ¢ term gives 4¢. Thus invariance requires ¢ = 0, which proves isotropy.

We return to the general D-dimensional czae, assuming isotropy. Substituting (6.6)
into the macrodynamical momentum equation (5.17), we obtain

3¢ (pua) + 83 (Dn!p)uqu,) + 04 (dp <1 - a(P)Ecai))

- 05 [(w; (Belous) + Oalpus) - & 0501(pua))] + Ofew) + 0(Au?) + O(e'u),
(6.16)
with
D b-2 , & bt @
)= 5535, @=p “W=-pprg*l w= Zb1z &

Note that g(p) appearing in (6.17) is not the same as G(p) introduced in (4.15). Note also
that y(p), which was introduced in section 5, is still to be determined (cf. section 8).

We have now recovered macroscopic isotropy; equation (6.18) is very closely related
to the fluid dynamical momentum (Navier-Stokes) equations. We postpone all further
remarks to the next section.

7. Fluld dynamical régimes

Let us rewrite the macrodynamical equations for mass and momentum, dertved in the
previous sections in & compact form which brings out their similarities with the equations
cf fluid dynamies:

81p+ 8p (pup) = 0, (1.2)
0¢ (pua) + 09 Pop = 09 Sqap + Ofeu’) + O(*u?) + O( ). (7.2)

The momentum-flux tensor P,s and the viscous stress tensor S, are given by

Pap = cip (1 - o(p)g;> Sap + pg(p)uaus, (13)
and .
San = v(p) (% pus) + 3apuc) = F8asd:(run))
v(p) = ve(p) + Yy
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where g(p), ¢3, v, and v, are defined in (6.17). Their values for the FHP and FCHC
models are given below

s- 1 3 1
o) = 5=2, =3, wlo)=-7¥() w=-3 forFEP
~-p 2 4 8
412-p . 1 {1.5)
ﬂ(ﬂ) = 5-22___;' ¢, =1, Vc(p) == ¢'(P). Vp = ‘8. for FCHC.

Various remarks are now in order. When the velocity u is very small, the momentum-
flux tensor reduces (o0 a diagonal pressure term pd, s with the pressure given by the “isother-
mal” relation

p=2lp. (7.6)

From this, we infer that the speed of sound should be ¢,, namely 1 /\/f for FHP and 1 for
FCHC.

The momentum-flux tensor in the “real world™ is P, = pi,p <+ pusus. This form is
a consequence of Galilean invariance, which allows one to relate thermodynamic equilibria
with vanishing and nonvanishing mean velocities. The lattice gas momentum-flux tensor
(7.3) with nonvanishing velocity differs by an additive term ia the pressure and a multi-
plicative density-dependent factor g(p) in the advection term. We shall see later in this
section how Galilean invariance can nevertheless be recovered.

Eq. (7.4) is the stress-strain relation for a Newtonian fluid having kinematic viscosity
Ve + v, and vanishing bulk viscosity.(®®) The traceless character of S.s (which implies
this vanishing of the bulk viscosity) comes from the traceless character of Q.yp, defined
by (4.15); this result would be upset by the presence of rest-particles such as exist in the
models FHP-TI and IIT (¢f. Appendix E). The kinematic viscosity has two contributions.
One is the “collision viscosity™ v,, not yet determined, which depends on she details of
the collisions and is positive (cf. section 8). The other one is the “propagation viscosity”
vy, which is negative and does not involve the collisions. The presence of snch a negative
propagation viscosity is an effect of the lattice discreteness (cf. Ref. 39)

The general strategy for obtaining from (7.1)-(7.2) various standard fluid dynamical
equations is to rescale the space, time and velocity variables in such a way as to make
undesirable terms irrelevant as ¢ — 0. Three different régimes will be considered in the
following subsections. They correspond respectively to sound propagation, to sound prop-
agation with slow damping, and to incompressible (Navier-Stokes) fiuid dynamics.

7.1 Souad propagation

Consider a weak perturbation of the equilibrium solation with deasity po and velocity zero.
We write

p=po+/. (1.7)
In s suitable limit we expect that the only relevant terms in (7.1)-(7.2) will be®
00 +poV - u=0

7.8
pdiu+c1V) =0. (7.8)

% From bere on we use vector notation whenever possible.
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Formally, this régime is obtained by setting
r=c"'r, t=¢1ty, P =€, u=e¢U, a>0. (1.9)

It is then straightforward to check that the leading order terms take the form of eqs. (7.8)
(in the rescaled variables). Eliminating u in (7.8), we obtain the scalar wave =quation

0’ ! B
26° -avi) =o. (7.10)

Jo other words, density and velocity perturbations with amplitudes o(1) on temporal and
spatial scales O(c) propagate as sound waves with speed ¢,.!° Since the present régime of
undamped scund waves involves only tensors of second order, it also applies to the HPP
model

7.8 Damped sound
Another régime includes the viscous damping term, so that instead of (7.8) we should have

3p'+pV-u=0

podiu + 3V = pou(po) (V’u + D-2

D

(1.11)

v9-u).

To obtain this régime we proceed as in section 7.1 and include an additional time ¢ = ¢3¢,
Furthermore , im the scaling relation (7.9) we now require a > 1, that is, u and o’ should
be o(c); otherwise the nonlinear term becomes also relevant. Note that the damping is
now on a time scale O(c"). Since propagation and damping are on t{ime-scales involving
different powers of ¢, it is not possible to describe them in a single equation without mixing
orders.

7.8 Incompressible fluid dynamics. the Navier-5tokes squations

It is known that many features of low Mach number!! flows in an ordinary gas can be
described by the mcompressible Navier-Stokes equation

du+u-Vu=-Vp+ vVl (112)
V.a=0.

In the “real world”, the incompressible Navier-Stokes equatior can be derived from the
full comprassible equations, using a Mach number expansion. There are some fine points
in this expansion for which we refer the interested reader to Ref. 64. Ignoring these,
the easential observation is that, to leading order, density variations become irrelevant
everywhere, except in the pressure term; the latter becomes slaved to the nonlinear term
by the incompressibility constraint.

10 We have used here the Landau O() and o) notation.
11 The Mach number is the ratio of a characteristic flow velocity to the speed of sound
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Just the same kind of expansion (with the same difficulties) can be applied io lattice
gas dynamics. We start from (7.1)-(7.2) and freeze thc density by setting it equal to the
constant and uniform value po everywhere except in the pressure term where we keep the
density Buctuaticas. We also ignore all higher order terms O(¢%u), ete. This produces the
following set of equations

Po8eu + poglpo)u - Vu = =3V + pov(py)V?u
(1.13)
V.u=0.
The resulting equations (7.13) differ from (7.12) only by the presence of the factor g(po)
in front of the advection term u- Vu. As it stands (7.13) is not Galilean invariant. This of
course reflects the lack of Galilean invariance at the lattice level Similarly, the vanishing
of g(po) when the density per cell d = po /b is equal to 1/2, i.e. for equal mean numbers of
particles and holer, reflects a duality-invariance of the lattice gas without counterpart in
the “real world” (cf. end of section 4.2). However, as soon as d # 1/2, it is straightforward
to reduce (7.13) to the true Navier-Stokes equations (7.12); it suffices to rescale time and
viscosity: -
v gl (1.14)
a(pD)‘ g\po V. .
Now we show that there is actually a rescalirg of variables which reduces the macro-
dynamical equations to the incompressible Navier-Stokes equations. We set

{ —

r=¢lp, t= g(':o)c"T, u=¢eU, 4= Mﬂ)-c’?'. v=g(p).  (7.15)

)

Thus, all the relevant terms are O(¢?) in (7.1) and O(¢®) in (7.2). Tke higher order terms
in the r.h.s. of (7.2) are O(e') or smaller. In this way we obtain, to leading order (V,
denotes the gradient with respect to r,)

9rU+U.V,U=-V,P +/VIU

v, U=0, (7.16)
which are exactly the incompressible Navier-Stokes equations.

Various comments are now made. The expansion leading to (7.16) is a large-scale and
low Mach number expansion (the former is here inversely proportional to the latter). It
also follows from the scaling relations (7.15) that the Reynolds number is kept fixed. It
is not possible within our framework to have an asymptotic régime leading to nonlinear
compressible equations at finite Mach number. Indeed, the speed of sound is here a finite
fraction of the particle speed and it is essential that the macroscopic velocity be small
compared to particle speed, so as not to be contaminated by higher order nonlinearities.
It is noteworthy that models can be constructed having mauy rest-particles (zero-velocity)
with arbitrarily iow speed of sound.

In a pure Navier-Stokes context, the non-Galilean luvariance at the microscopic level
is not a serious difficulty; as we have seen, Galilean invariance is recovered macroscopically,
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just by rescaling the time variable. However. when the models discussed here are general-
ired to include for example multi-phase low or buoyancy effects, a more serious problem
may arise because the advection term of scalar quantities su:h as che.nical concentrations
or temperature involves usually a factor g(p) different from that of the nonlinear advec-
tion term in the Navier-Stokes equations. Various solutions to this problem have been
proposed.(47:¢%)

There is a variant of our formalism, leading also to the incompressible Navier-Stokes
equations, but in terms of the mass current J = pu rather than the velocity u. The analog
of (7.13) (without rescaling) is then

2eo)y oy = —a2y, 2
0J + p J: V)= -e;Vp' +v(po)V?) (1.17)
v-J=0.

Since ) and g(py)/po change sign under duality, (7.17) brings out duality-invariance.!? A
more decisive advantage of the J-representation is that it gives a better appraximation to
the steady Navier-Stokes equations when the Mach number is only moderately small. This
is because in the steady state the continuity equation implies exactly V-J =0.

In three dimensions, when we use the pseudo-4-D FCHC model, there are three inde-
pendent space variables r = (z), 23, z3) but four velocity components

UI = (U|U0) = (UhU"US'Ul)- (718)

The four-velocity U, satisfles the four-dimensional Navier-Stokes equations with no z,-
dependence. Thus, the three-velocity U satisfles the three-dimensional Navier-Stokes equa-
tions (7.16), while U, satisfies (note that the pressure term drops out)

01‘04 +U'V|U‘ =V‘\7304. (719)

This is the equation for a passive scalar with unit Schmidt number (ratio of viscosity to
diffusivity).

Finally, we refer the reader to Appendix D for the inclusion of body forces in the
Navier-Stokes equations.

12 In the u-representation duality-invariance is broken because we have decided to work
with the velocity of particles rather than with that of holes.
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8. The viscoslty

All the macroscopic equations derived in section 7 have a universal form, which does
not depend on the details of collisions. The kinematic shear viscosity v, which we shall
henceforth call the viscosity, does not possess this universality. Transport coefficients
such as the viscosity characterize the linear response of equilibrium solutions to small
externally imposed perturbations. It is known in Statistical Mechanics that the relaxation
(or dissipation) of external perturbations is connected to the fluctuations at equilibrium
via fuctuatioa-dissipation relations. Such relations have a coanterpart for lattice gases.
Two quite different approaches are known. In section 8.1, following a suggestion already
made in Ref. 21, we present the “noisy” hydrodynamics view-point, in the spirit of Landau
and Lifschitz.(4¢*7) Another approach, in the spirit of Kubo(®*® and Green,(®®) using a
Liouville equation formalism, may be found in Ref. 41. In section 8.2 we introduce the
lattice analog of the Boltzmann appraximation, which allows an explicit calculation of
the viscosity. In section 8.3 we discuss some implications for the Reynolds nambers of
incompressible flows simulated on lattice gases.

8.1 Fluctuation-dissipation relation and ‘‘noisy’’ Aydrodymamicse

We first explain the basic ideas in words. Spontaneous fluctuations at equilibrium involve
modes of all possible scales. The fluctuations of very large scales should have their dy-
namics governed by the macroscopic equations derived in sections 5-7. Such fluctuations
are also expected to be very weak, so that linear hydrodynamics should apply. Large-
scale spontaneous fluctuations are constantly regenerated, and in a random manner; this
regeneration is provided by a random force (noise) term which can be identified and ex-
pressed in terms of the fluctuating microscopic variables. Lr this random force has a short
correlation-time (i.e. small compared to the lde-time of the large-scale Suctuations ua-
der investigation), then each large-scale mode v has its dynamics governed by a Langevin
equation'’ It follows that the variance (v?) can be expressed in terms of the damping
coeficient v [related to the viscosity) and of the time- correlation function of the random
force. Alternatively, the variance (v*) can be calculated from the known one-time equilib-
rium properties. Identification gives the viscosity in terms of equilibrium time-correlation
functions. This is the general programme that we now carry out for the special case of
lattice gases. We restrict ourselves to equilibrium solution with zero mean velocity.

We shall use in this section the following notation. The density p and the mass current
J are no longer given by their expressions (3.24) in terms of the mean populations; instead,
they are defined in terms of the fluctuating Boolean field

pltaz:) = Yom(tar),  Jtair) = ) einy(te,r). (8.1)
! !

We denote by i, the fluctuating part of the Boolean fleld, defined by
n(t.,r) =d +A,(t.,r.), (8.2)

where d is the density per cell

13 For the case of lattice gases, we shall actually obtain a finite difference equation.
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We introduce meso-averaged fields by taking spatial averages over a a distance ¢~!.1¢
These will be denoted by angular brackets with the subscript ma. The meso-averages of
ni, p, and ) are denoted A, p, and J respectively. Locally, the equilibrium relation (4.14)
should hold approximately for the meso-averaged populations. We thus write

_ 2 D A
n ==+ c'bJ ¢ +5,+n (., r). (8.3)

8 represents the (still unknown) input {rom non-hydrodynamic fluctuations; nf” is the
contribation analogous to eNf” in (5.1), arising from the gradients of meso-averages. Note
that in (8.3) we dropped contributions nonlinear in the mass current; indeed, we should
be able to determine the viscosity from just linear hydrodynamics.!?

We now derive the equations for noisy hydrodynamics. As usual, we start from the

microscopic conservation relations (3.16) and (3.17) and we take their meso-averages:

Y IMi(te + 1,70 + €) = Ai(ta,7)] = 0, (8.4)

Y edfilta + 1,00+ ¢0) — Ryt r)] = 0. (8.5)

Substituting (8.3) into {8.5), we obtain

% Zq[ﬂ(t. +1,r.+¢) - Pt 1)) + o—’D'b Ec.- e -0t + 1,r0 +¢) = (L, 1))

(8.8)
+ Zc,-[nfl)(t. +Lr.+¢)- n‘“)(t.,r.)] = (e, Pu),

whe
N f(t,,r.) = —-Eq[&(t.+l,r.+c¢)—6¢(t..r.)] (8.7)
‘

is the random force. Using (8.1}, (8.2), (8.8), (8.4), and (8.5) , we can also write (to leading
orer in gradients)

f(t.,r,) = <;,13 Z (c*ei + De,-eye) [ (te + 1,00 + &) = Ai-(tu + 1,00 + c,)])
9 me

(8.8)

The Lh.s. of (8.6) is expanded in powers of gradients (i.e. of ¢), as we have done

in section 5. However, we keep finite differences rather than derivatives in time because

of the presence of the rapidly varying random force. Since we only want to identify the

shear viscosity (the bulk viscosity is zerv), it suffices to extract the solencidal part of the

14 More precisely, by dropping spatial Fourier components with wavenumber k > ¢.
'3 This is not exactly true in two dimensions as we shall see below.
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hydrodynamical equation For this and other reasons it is better to work in Fourier space.
We define the (spatial) Fourier transform of the fluctuating Boolean fleld by

A(le,r) =) e it k), (89)

where the compouents of k are multiples of 2r over the lattice periodic..ies in the various
directions. We sumilarly define J and f, the Founer transforms of the mass current and
the random force. Their solenoidal parts, prcjection on the hyperplane perpendicular to
k, are denoted J, and f,.

To leading order in k, we obtain from (8.8), using (2.5)

tiltok) == ik-c, (c, - %#) A (1. + 1,k). (8.10)

J

The meso-averaging Is just the restriction that k < ¢. Fourier transforming (8.6) and
taking the solenoidal part, we obtain for small & .

Jo(te +1,%) = Jo(te k) + vk (1. k) = £, (0., K). (8.11)

This is our discrete Langevin equaticn. Note that v is the (total) viscosity v = v, +v;. In
principle we must expand to second order in k to obtain the viscous terms, but we could as
well have written the Lh.s of (8.11) & priori, since we want to use (8.11) to determine the
viscosity. It is straightforward to solve the linear finite-difference equation (8.11;. From
the solution, we calcnlate the variance of J, and obtain, when the viscous damping time
1/{vk?) is large compared to the correlation time of the random force

t,x=+00

(lj*(‘--‘)l') DN ACR R AR (8.12),
t.

R ~00

where the asterisk denotes complex conjugasion. The variance o(L, can also be calculated
directly using (8.1) and
(By(ta, pa)ity (8., 0)) = (;‘1’)5-169.

8.13
(A1) = (nd) = (n)* =d =, (613
where §,_ denotes a Kronecker delta in the spatial separaticn o,. We obtain
< ’ l F D - 1
(b-‘“"k)l > = Vbc d(1 - d)—B_' (8.14)

where 1’ denotes the total number of lattice points in the periodicity volume. Thus. the
lLhs of (812) is k-independent We evaluate the ths of (812) in the limit k — 0,
using (8 10) We skip some intermediate steps in which we (i) use the statiorarity of the
fuctuations at equilibrium. (ii) use the isotropy of second and fourth nrder symmetrical
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tensors, (iii) interchange the k — 0 limit and the infinite summation over 1,.!® Identifying
the two expressions (8.12) and (8.14), we obtain for the viscosity

D 1 1 1 “& N X}
V= DD T N A=V 2 L PerQies (Ai,0)45(0.0)
e==00 O
= (8.15)
D 1T 1 R . )
= DB A=, 2, L 2 YerQias (hiler 050,00,
with
Qiaﬂ =Ciatip — %Jaﬂ- (8.15)

This completes the fuctuation-dissipation calculation of the viscosity. A consequence
of the Fouricr-space representation (the upper half of (8.15)) is the positivity of the vis-
cosity; indeed, the viscosity is, within a positive factor, the time-summation of the auto-
correlation of 3, Qiapafi(ts,0).

Several comments are now in order. It is easily checked that the ¢, = O contribution
to the viscosity (lower part of (8.15)) is ¢?/(2(D + 2)), that is, just the opposite of the
“propsgation viscosity” v, introduced in section 7. The viscosity is the sum of the collision
viscosity v, and of v,. Using the identity

to=+400 . =400

Yo z(n)=2 ). 2Z(t) - 2(0), (8.17)

toxz~00 t.=0

(for an even function Z(4.)), we find that v, has a representation similar to (8.15) (lower
part), with an additional factor of 2 and the summstion over ¢, extending only from 0 to
co. We thereby recover an expression derived in Ref. 41, using a discrete variant of the
Green-Kubo formalism. It is reassuring to have two completely different derivations of the
viscosity, since we consider our fluctuation-dissipation derivation somewhat delicate.

It is of interest that the fluctuation-dissipation derivation gives directly the (total)
viscosity. This suggest that the splitting into collision and propagation viscosities is an
artefact of our multi-scale formalism.

There is no closed form representation of the correlation fanetion (fi(t., p.)#,(0,0)),
except for short times. However, (8.15) is a good starting point for a Monte-Carlo calcu-
lation of the viscosity (cf. Ref. 41).

In our dertvation we have dropped all contributions from nonlinear terms in the mass
current J. Is this justified? If we reinstate the nonlinear terms, we obtain, for the solenoidal
part of the wneso-averaged mass current, the Navier-Stokes equations (7.17) of section 8
with the additional random force, the Fourler representation of which is given by (8.10).
On macroscopic scales this force may be considered as §-correlated in time. Its spectrum
follows, for small k a kP+! powerlaw.!” The Navier-Stokes equations with this kind of

18 This is equivalent to assuming that the viscosity is finite, cf. below.
17 A factor k? comes from the average squared Fourier amplitude and another factor
k2= from the D-dimensional volume element.
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power-law forcing is one of the few problems in nonlinear Statistical Fluid Mechanics which
can be systematically analyzed by renormalization group methods.("%"™) For D > 2, the
ponlinear term is irrelevant for small k so that our calculation of the viscosity is 1agitimate.
At the “crossover” dimension D = 2, the nonlinear term becomes “marginal™; it produces
a renormalization of the viscosity which is then logarithmically scaie-dependent. Thas,
in the limit of infinite scale-separation, the viscosity becomes inflnite in two-dimensions.
This is ap instance of the known divergence of transport coefficients in two~dimensional
Statistical Mechanics.(67:73) Alternatively, the divergence of the viscosity in two-dimensions
can be viewed as due to the presence of a “long-time-tall", proportional to (707 in
the correlation function appearing in (8.15). Attempts bave been made to observe long-
time-tails and scale-dependence of the viscosity in Monte-Carlo simulations of lattice gas
models.(¢31.41:43) This is not easy because (i) the effecis show up only at very long times
or large scales) and may then be hidden by Monte-Carlo noise ( insufficient averaging)
ii) the effects should get weaker as the number b of cells per node increases (cf end of
sectlon 8.2).

Finally, the noisy bydrodynamics formalism can be ased to estimate to what extent
the microscopic noise contaminates the hydrodynamic macroscopic signal. Estimates, as-
suming the signal to be meso-averaged in space and time, have been made in the context
of fully developed incompressible two- and three-dimensional turbulence.!® It bas been
found that in two dimensions noise is relevant only at scales less than the dissipation scale,
while in three dimensions this happens only far out in the dissipation range.(T®)

8.3 The lattice Soltamaan approzimation

Explicit calculation of transport coefficients can be done for lattics gases, using the Bolt:-
maon appraxdmation. In this approximation one assumes that particles entering a collsion
process bave no prior correlstions. The microdynamical formalism of section 3.1 is pertic-
ularly well suited for d “riving what we shall call the lsttice Boltanann equatiom. We take
the ensemble average of q. (3.9). The Boolean variables n; become the mean populations
N,. The sverage of the collision function A can be completely factorized, thanks to the
Boltzmann appraximation. We obtain

N((‘a +1l,r, + (.'() ] N‘(thr') + A‘Iolu
AN w Z(O: - 01).4(0 - ")HN;J(I - N,')“"’). (8.18)
"¢ {

Here, all the N,'s are evaluated at t. and r,. The A(s — o')'s, the transition probabilities
iptrodoced in section 2.4, are the avecages of the Boolean transition variables §,,,. Note
that the (Boltzmann) collision function A" vanishes at equllibrium.

The Boltzmann approximation in ordinary gases is sssociated with low density situr
tions, when the mean-free path is so large that particles entering a collision come mo.ly
from distant uncorrelated regions. The Boltzmann approximation for a lattice gas appears

13 Note that in the incompreasible case, only solenoidal noise is relevant.
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to have a very broad validity, not particularly restricted to low densities.!® We shall come
back to the mstter at the end of this section.

Our lattice Boltzmann equation (8.18) is a flnite difference equation. There is a
differential version of it, obtained by Taylor-expanding the finite differences to first order,
namely

N, +¢, - VN, = A,-‘m", (8.19)

where AP is defineds as in (8.18). Boltzmann equations of the form (8.19) have
been extensively studled as discrete velocity approximations to the ordinary Boltzmann
equation.(14=19.12) The (differential) Boltzmann formalism has been applied to various
lattice gas models.(33:3¢) This formalism correctly captures all hydrodynamic phenomena
involving only first order derivatives. Indeed, for these, we have seen that only the equi-
librium sclutions matter, and the latter are completely factorized. Diffusive phenomena
involve second order derivatives. Hence, the propagation viscosities (cf. section 7), which
are an effect of lattice-discreteness, are not captured by the (differential) Boltzmann equa-
tion. At low densities, where collision viscosities dc minate over propagation viscosities,
the discrepancy is irrelevant. .

We do not intend to engage into extended discussions of the consequences of the lattice
Boltzmann equation, because most of the derivation of the hydrodynamical equations is
independent of this approxdimation. There are however two important results which follow
from the lattice Boltumann equation. The first one concerns the irreversible approach to
equilibrium. 1t is derived by adapting an H-theorem formalis.n to the tully discrete context
(see Appendix F by Hénon).

The second result is an explicit derivation of the viscosity. From the Boltzmann
equation this is usually done by a Chapman-Enskog formalism™*7®) (see also Gatig-
nol's monography Ref. 18). This formalism is easily adapted to the lattice Boltimann
equation.(7®) With the general multi-scale formalism of sections 5-7, we have already cov-
ered a substantial fraction of the ground. Furthermore an alternative derivation, which
stays completely at the microscopic level is presented in this volume by Hénon who also
discusses consequences of his explicit viscosity-formula.(?®) We shall therefore be brief.

TLe problem of the viscosity amounts to inding the coefficient y relating the gradieat
of the mass current pu to the first arder perturbation Nf') of the mean population, through
(L. eq. (5.14) of section B)

N = $Qiapd1a(pup) 020
o 8.20
Qiaﬂ ™ Ciglip — 'Eaaﬁ'

We start from (5.1) with N‘(o) given by (4.14). We substitute into the lattice Boltzmann
equation (8.18) and identify the tertns O(e¢). For this we Taylor-expand finite differences

19 Even at low densities, the Boltzmann appraximation may not be valid. Indeed, with.
out effectively changing the dynamics, we can reduce the density by arbitrary large factors
by having the particles initially located on a sub-lattice with some large periodicity; these
Ate however pathologically unstable configurations.
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to first order, use (5.6) and (5.7) to express time-derivatives in terms of space-derivatives,
and ignore all terms beyond the linear ones in the velocity. We obtain

D
gQioﬁala(P“ﬁ) = Z‘iJ‘N,('l)- (8.21)
F
Here, [0 -
A s
Ai; = —-1——] . 8.22
i l aN, Nis=ofb ( )

is the linearized collision matrix, evaluated at the zero-velucity equilibrium, which can be
expressed in compact form as(3%)

Aij = "% Y (0= )A(e— )P 1 -d) P (0= 0)), p=) (8.23)
o ‘

We eliminate N{!) between (8.20) and (8.21), to obtain

D Qias = ¥ X AisQsas| Dralpus) = 0. (8.24)
]

This should hold for arbitrary gradients of the mass current. Thus, the quantity between
square brackeis vanishes. This means that, for any (a, 8), Qiap, considered as a vector
with components labelled by i, is an eigenvector of the linearized collision matrix with
eigenvalue D/(bc'y); a direct proof of this may be lerived from the G-invariance. From
(8.24) we can easily caculate y; the simplest is to multiply the vanishing square bracket
by Qiop and sum over i, a, and 4. If, in addition, we assume the isotropy of fourth order
tensors, we can use (6.17) to obtain a closed-form expression for the collision viscosity

__cd Lias Aap .
D+3%,,,QiasAi;Qjas

In Appendix E we give explicit formulae calculated from (8.25) for the viscosities of
the FHP models (including thoye with rest-particles which require minor amendements of
cur formalism).

We finally address the question of the validity of the lattice Boltzmann equation. Com-
parisons of the viscosities obtained from simulations(?*:373) or Monte-Carlo calculations!"®
with the predictions of the lattice Boltzmann approximation suggest that the validity of
the latter is not limited to low densities. We know that equilibrium solutions are factorized
and that sransport coefficients can be calculated with arbitrarily weak macroscopic gradi-
ents. However, this cannot be the basis for the validity of the Boltzmnann approximaticn:
a weak macroscopic gradient implies that the probability of changing the state of a given
node from its equilibrium Vvalue is small; but wben such a change takes place, it produces a
strong microscopic perturbation in its environment. Otherwise there would be no (weak)

Ve =

(8.25)



divergence of the viscosity in two dimensions; indeed, the Boltzmann appraximation does
not capture noise-induced remormalization effects (cf. end of section 8.1). A more likely
explanation of the success of the lattice Boltzmann approdmation may be that it is the
leading order in scme kind of 1/b expansion, where b is the number of velocity cells at
each node. At the moment, we can only support this by the following heuristic argument.
Deviations from Boltzmann require correlations betwacn particles eptering a collision. The
latter arise from previous collisions ' when b is large the weight pertaining to such events
ought to be small.

8.3 The Reynolds niusber

Knowing the kinematic shear viscosity in terms of the density and the collision rules, we
can calculate the Reynolds number associated to a largs-scale flow.

A pataral unit of length is the lattice constant (distance of adjacent nodes), which
has been taken equal to one for the two-dimensional HPP and FHP models. The four-
dimensional FCHC model has a lattize constant of /2, but its three-dimensional projected
versicn, the pseudo-4-D FCHC model, resides on a culic latticc wich has also unit lattice
constant. The time necessary for microscopic information to propagate from one node to
its connecting neighbours defines a natural unit of time. We then have & natural cnit
of velocity: the speed necessary to travel the lattice constant (or the projected lattice
corstant for the pseudo-4-D model) in a upit time. In these anits, the characteristic scale
and velocity of the low will be denoted by ¢, and wu,.

The stendard definition of the Reynolds number is

characteristic scale x characteristic velocity
kipematic shear viscosity '

I deriving the Navier-Stokes equations in section 7.3. we rescaled space, time, velocity,
pressure and viscosity (cL. eq. (7.15)). The rescaling of space (by ¢) and of velocisy (by
¢~!) cancel in the namerator of (8.28). The rescaled viscosity is +/(po) = v(m)/g(r0).
Heace, the Reynolds number is

A=

(8.26)

R= ﬂ-’g-)- 8.27

bov ¥ (o) (8:27)

In order to operate i an incompressible régime, the velocity wo should be sznall compared

to the speed of sound ¢,. The laster is model-dependent: ¢, = 1/\/5 for FHP-l, ¢, = \/377

for FHP-O aad FHP-III, and ¢, = 1 for FCHC (cf section 7 and Appendix E). Let us
therefore reexpress the Reynolds number in terms of the Mach number

uo
M= ;.-. (8.28)
We obtain
where
EQQ!POI
R.(p) Py (8.30)

20 Collisions pmduce correlations whenever the particles are not exactly at equilibnum.
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contains all the Jocal information.

In flow simulations using lattice gases, it is of interest to operate at the density which
maximizes R,. Let us work this out for the simplest -ase of FHP-I. For the viscosity, we
use the lattice Boltzmann value given in Appendix E. We have

11 -2 1

oleo) = 3 T3 V(po)--m-%. d=%. (8.31)

Here, d is the mean denaity per cell. Substituting ia (8.30), we find that
R} =mixR, =0387, for d=d,, =0.187. (3.32)

Results for FHP-II and FHP-II are giver in Appendix E. Note that a gain of about a
factor 8 is achieved in going from FHP-I to FHP-III, becanse the latter includes many more
collisions. For the pseudo-4-D FCHC model there is work in progress on the optimimhon
of collisions. It is already known that R®*" is at least £.(77)

High Reynolds number incompressible i~rbuleat flows have & whole range of aca.les.
The sruallest effectively excited scale is called .he dissiration scale and denoted ¢,. It
is then of interest to fnd how many lattice consiunts ars contained in ¢, since this will
determine how effective lattice gases are iv simulariuy high Reynolds aumber fiows.(1:3%)
For this, let {; denote the integral scale of the flow. Between {,, {. and the Reynolds
pumber R, there ls the following relation

L _y-m

=R (8.33)
where m = 1/2 In two dimensions and m = 3/4 in three dimensions. In two diwen-
sions, (8.33) is a consequence of the Batchelor-Kraichnan!™"®) phenomenological theory
of the enstrophy cascade, which is well supported by numarical simulations.(*) In three
dimensions, (8.33) follows from the Kolmogozov!?!) phenomenological theory of the energy
cascade, which is well supported®! by aperimental data (*?) Using (8.29) and (8.38) and
assuming that R, has Ity maximam value R>*, ve cbtaln

tow (MR2*)V e} = (MR RE 13D, (8.34)

and
= (M=) d = (NR2)'RY in 3D (8.35)

In all cases, we see that {4 — o0 a8 R — 00, hut manch more slowly in three than in two
dimensions. We are thus assured thast at high Reynolds nombers the separation of scale
between the lattice constant and ¢, necesssry for hydrodynamic bebaviour is satisfled.
Having it too well satisfled may however be & mixed blessing, as stressed in Ref. 33
Indeed, in hydrodynamic simulations asing lsttice gases it is not desirable to have too

"1 Small intermitteucy corrections which would siightly increase the exponent m cannot
be ruied out.



much irrelevant microscopic information. Fortunately, in three dimensions there is no
serious problem. To illustrate this point, we take Af = 0.3, a Mach number at which
compremibility effects can be safely ignored, we take the maximum known value R*= =
9 for the FCHC, and we take 4 = 10°, a fairly large value which implies a memory
requirement of at least 24 gigabits; from (8.35) we find that ¢, is about three lattice
constants. In two dimenslons, similar calculations with the FHP models give £4's of several
tens of lattice constants. It is therefore of interest in two dimensions to try to decrease
the viscosity, thereby increasing R2**. One way is to use the four-dimensional FCHC
model projected down to two rather than three dimensione. Note that it is not correct to
infer from dimensional analysis that necessarily R®** must be O(1). R**~ is very much
a function of the complexity of collisions. For example, by going trom FHP-I to FCHC,
R=* increases more than twenty times.

9. Conclusion

In Statistical Mechanics there are many instances where two models, microscopically quite
different, have the same large-scale properties. For example, the Ising model and & real
Ferromagnet have presumably the same large-scale critical behaviour. Similarly, the lattice
gases studied in this paper, such as FHP and FCHC, are macroscopically indistiguishable
from real fluids. This provides ns with an attractive alternative to the traditional simuls
tions of Fluid Mechanics. In lattice gas simulations, we just manipulate bits representing
occupation of microscopic cells. The physical interpretation need not be in terms of par
ticles moving and colliding. The idea can clearly be extended to include processes such
w3 ctamical reactions or multi-phase flow.(33-38) Ap open question is wether there are
cellular automata implementations of processes which in the real world do not have a dis-
crete microscopic origin, such as propagation of e.xn. waves. More generally, what are
the P.D.E.'s which can be eficiently implemented on cellular aatomata? We emphasize
efliciently, because there are always brute force implementations: replace derivatives by
finite differences on a regular grid and use finite foating point truncations of the contin-
gous flelds. The result may be viewed as a collular aatomaton, but one in which there is
ac “bit democracy”, insolar as there is a rigid hierarchical order between the bits.

Our dertvation of hydrodynamics from the microdysamies lesves room for improve
ment. A key sssumption made in section 4.1 may be formulated as follows. Among the
invariant measures of the microdynamical equations, only the completely factorized ones
(which play the role, here, of the microcanonical ensemble) is relevant in the limit of large
lattices. On a finite lattice with deterministic and invertible updating rules, we expect that
there are many other iavariant measures. Indeed, phase space is a finite set and npdating
is & permutation of this set; it is thus unlikely thas there should be a closed orbit going
through all points. So, we do aot expect the discrete equivalent of an ergodic theorem.
Anyway, ergodic results shonld be irrelevant. On the one hand, oo an L x L lattice with
b bits per node its takes L’ updates to visit all configurations (if they are accessible).
On the other band, we know (from sitnulations) that local equilibrium s achieved in a
few updates and global equilibrium is achieved on a diffusive time scale (approximately
L?). We believe that, ou large lattices, the factorived equilibrium ditributions constitute
some kind of “fxed point" to which there is rapid convergence of the iterated Boolean map



defined by the microdynamical equations of section 3.1. Understanding this process should
clarify the mechanism of irreversibility in lattice gases and, eventually, in real gases.
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Appendix A. Basle syminetries of HPP, FHP, and FCHC models

We show that the models HPP, FHP, and FCHC, introduced in section 2, satisfy the
symmetry assumptions (i) through (iv) of section 2.4. Assumptions (i) and (ii) are obvious
for all three models. Let us consider (iii) and (iv) successively for the three models.

.10 4

Let us take the z; axis in the direction of the vector ¢;,. The isometry group § of the
velocity set is generated by permutations of the z, and z3 coordinates and reversals of any
of them. Cleariy, any two vectors ¢, and ¢, can be exchanged by some isometry, sc that
assumptlons (iii) holds. Consider a paricular vector, say, ¢;. The subgroup §,, leaving
¢, invariant reduces to the identity and reversal of z;; this implies parts (a) and (b) of
assumption {iv).

Fer

Let us take the 2z, axs in the direction of ¢;,. The isometry group § is nowv generated
by rotations of x/3 and reversal of the z3 coordinate. Assumption (iii) is obvious. The
subgroup §; reduces again to the identity and the reversal of z,, so that (iv) follows.
raue .
The FCHC lattice was defined in setion 2.3 with explicit reference to coordinates z,, z,,
7y, and z,. In this coordinate system, the velocity set is formed of

(+1,#£1,0,0), (%1,0,%1,0), (21,0,0,=1)

Al
(0,21,£1,0), (0,%1,0,21), (0,0, 1, x1). (4.1)
By the orthonormal change of variables
n 1 1 0 0 3
B _L1(-11 0 0][szn
w|"Alo o1 1lag (43)
¥4 0 0 -1 1 &4

the velocity set becomes

(£v2,0,0,9), (0,%£v30,0), (0,0,%£v2,0), (0,0,0,++72),
(i%,ﬂ:—};,:ﬁ%,i:};). (A.3)

The isometry group § s generated by permutations and reversals of the 2, coordinates

and by the symmetry with respect to the hyperplane 3, + 33 + 23 + 3, = 0, which is
conveniently written in terms of y, coordinates as

L: (yuovn i)~ (=vs 3 =V b)) (A4)

Assumption (ili) is obvious in any of the coordinate systems. As for assumption (iv),
let us consider the subgroup §, leaving lovariant, say, the vector with y, coordiuates
(0,0,0, 1/\/2). The restriction of §, to the hyperplane y, = 0 is generated by the identity,
permutations, and reversals of ), y3, and yy. Assurmptions {a) and (b) follow readily.
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Appendix B. Symmetry-related propertles

Using assumptions (i) through (iv) of section 2.4, we prove properties P1-P6
P1 Parity-invariance. The set of velocity vectors is invariant under space-reversal.
Indeed, on a Bravais lattice, vectors connecting neighbouring nodes come in opposite
pairs.
P2 Any set of i-dependent vectors v,,, which is G-invariant, is of the form A¢,,.
We write v, as the sum of its pro,ection on ¢, and of a vector perpendicular to c;,.
This decomposition being §-imvariant, tke iatter vector vanishes by (iv - a).
P3 Any set of i~dependent tensors ¢,,,, which 15 £-invariant, is of the form Ae,q¢,p +pdsp.
To the tensors I35, we associate the linear operators T, : z, = ;,525. §-iuvariance
means that the 7;'s commute with any lattice isometry leaving ¢, Invariant. We now write
the G-invariant decomposition

T. = FTiP: + (1- P¢)T¢.P.' + P.'T{(I—.Pi) + (I - P‘)T.(I - P{), (B.l)

where I is the identity n RP and P, is the orthogonal projection on ¢;. The second
operctor in (B.1), applied to an arbitrary vector w, gives

(- P)T,Pow = ‘-'-'o',—"(z - P)Tc. (B.2)

The vectors (I ~ P,)Tie; are G-invariant and orthogonal to ¢;, and thus vanish by (iv-
a). The third operator in (B.1) vanishes for similar reasons (use the J-invariance of the
transposed of the Ti's). The fourth operator in (B.1) is, by (iv-b) proportional to I,, the
identity in the subspace orthogonal to ¢,. Since I = I; + Py, the proof is completed.
We meation that we obtainud P3 by trying to formalize & resalt used by Hénon®® in
deriving a closed-form viscosity formula
P4 Liotropy of secand order tensors. Any §-invariant tensor {,p s of the form ud,p.
This is a special case of P3, when there Is no i-dependence.
PS§ Any §-invariant third order tensor vanishes.
This follows from P1 (parity invariance).
PO Velocity moments. Odd order velocity moments vanish. The second order velocity
moment is given by

be?
E“Oeﬂ - ‘D_JOﬁ- (B.3)
i
The vunishing of 0dd order moments is a consequence of P1. (B.3) follows trom P4

and the identity
Eqaqa = k’ (B‘)
!



Appendix C. Equllibrium solutions

We prove the
Lemma. The following statements are equivalent:
(a) The N;'s are a solution of

[N - N9 = A=) [N a- N0, v (o)
¥ 0 J

(b) The N,'s are a solution of the set of b equations
AN} =) (o —0)A(e = ) JIN (1 - Nj)0-29) =0, i, (C.2)
s’ J
{c) The N,'s are given by the Fermi-Dirac distribution
1
T Itephtq o)

where h is an arbitrary real number and q is an arbitrary D-dimensional vector.
Proof that (a) implies (b).
We multiply (C.1) by ¢! and sum over all states o’ to obtain

Y4 H”f’(l - N0 = Y alA(e = NIN -8 (c4)
v J o y

Ni

(C.3)

In the Lh.s. of (C.4) we change the dummy variable o’ into » and decorate it with a factor
Ao — ¢'), summed over #, which is one by normalization of probability. Transferring
everything into the r.h.s., we obtain (C.2). Note that the Lh.s of (C.2) resembles the
“collision function” A, of section 3.1 (eq. (3.9)), but is evaluated with the mean populations
instead of the Boolean populations n,. The relation A; = 0 expresses that there b no
change in the mean populations under collisions.

Proof that (b) Implies (¢).

We define
N a rf—‘N; (C.5)
na [[a-n). (C.6)

Eq. (C.2) may be written '
AfM= );(o: - 3,)A(s = o) I} R =0 (c.7)

We now make use of & trick employed in proving H-Theorems in diserete velocity models
(vee Ref. 16, p.29). We multiply (C.7) by log Ny, sum over i, and use

R
(6~ ) log N, = log %j?v‘r c8)

»



to obtain

M.N%
e et 17 - 9

Semi-detailed balance (3_, A(s — #’) = 3, A(s — o') = 1) implies that

Y A(e— ) (]’] N =T 1\7;5) =0. (C.10)
oy ) J

Combining (C.9) and (C.10), we obtain
I,N | ,
EA(‘ — &) [log | =i—4- HN;’ + HJV;’ -TI /| =o. (c.11)
o’ HJ' NJ' 5 k] J

We make use of the relation (2> 0, y > 0)
3 y ot
ylg=+y-z=~ | log=dt <0, (C.12)
y s s .

equality being achieved only when z = y. The L.h.s. of (C.11) is & linear combination of
expressions of the form {C.12) with nonnegative weights A(s — #’). For it tu vanish, we
rurt have

[N = ]]IV;;. whenever A(s — +') # 0. (C.13)
‘ ) j
This is equivalent to
Eb((ﬁ;)(t‘ ~s)A(e =0 )m0 Vo (C.14)
¢
(C.13) means that log N; i a collision invariant. We now use assumption (v) of section
2.4, concerning the absence of spurious invariants, to conclude that
logNimh+q-¢, (C.18)
which is the most general collision invariant (a linear combination of the mass invariant
and of the D momentum invariants). Reverting to the mean populations N, = N;/(1+N,),
we obtain (C.3).

Proof that (¢) implies (a).
(C.3) implies

Y log(N,)(s, = ¢)) =0, wheneverA(s — ¢') ¥ 0. (C.10)
J



This implies .
Y A=) (]] N9 _ 1) = 0. (C.17)
) ]

Using semi-detailed balance, this may be written as

1= ZA(: — o')-g-%%. (C.18)
’ LR

Reverting to the N,'s, we obtain (C.1). This completes the proof of the equivalence lemma.
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Appendix D. Incluston of body-forces

Usiag the same notation as in section 7.3, we wish to obtain a Navier-Stokes equation with
a body-foree f, that is

drU+U-V\U=-V, P +/VIU+T
The force f may depend on space and time and can be velocity-independent (case I; e.g.
gravity) or linear in the velocity U (case II; e.g. Coriolis force). The idea is to introduce
a bias in the transition rules so as to give a net momentum input. Since all the terms in
the Navier-Stokes momentum equation are O(¢*) and the hydrodynamic velocity is Ofe)
(before rescaling), the bias should be O(e?) for case I and O(e?) for case 1.

We give now the modified form of the microdynamical equation (3.9) appropriate for
body-forces. We introduce, in addition to the Boolean (transition) variables £,,: of section
3.1, the B\ olean variables £, such that

(&r) =B(s—4). (D-2)
The B(s — 4')'s are a set of transition probabilities associated to the body- forre; they

satisfy normalization
Y Bla—d) =1, (D.3)

and mass conservation

E(ai ~0)B(s— d)=m0, Vi (D-4)

They do not satisfy momentam conservation, semi-detailed balance and §-invariance. The
€..'s are chosen independently at each discrete time aad node anc the B(s — o')'s may
depead on space and time; further constraints will be givea below. We also need a Boolean
variable ¢ which acts as a switch: when ¢ = \) the farce Is off and the usual transition rule

apply. The mean of ¢ is given by
(¢) = pogi{m)®

n=d casel, nm3 casell (D3)

This will take care of the scalisg factors arising trom the change of variables (7.15). The
modified microdynamical equation b now
(e + 1re + ¢) = + 4(n)
Ai(n) = 3 (0 - 0) (1= 1w +¢€60) [] 0}/ (2 = nj)00 00, (D.6)
J

'N 4

Let us evaluate the body-force resulting from the additional &' term. For this we
multiply by ¢, and average over the equllibrium distribution; deviations from equilibHum



arising from bydrodynamic gradients are irrelevant. We ignore the ¢-factor since it just
provides the scaling factor.

We begin with case I. The average is then evaluated over the zero-velocity equilibrium
distribution with density per cell d; we obtain

f= 2 ci(o; — 0;)B(a = 4') (-i-;‘—d>' (1-4d)% p= Z 8, (D.1)
J

N

where b is the number of cells per node. Equatioa (D.7) is the additional coastraint on
the B(s — #')'s for case 1. If f is space and/or time-dependent, 3o are the B(s — #')'s. It
is essy to check that for any given vector f there exist Boolean transition variables £,
of mean B(s — o') satistying (D.7). When f is in the direction of a particular velocity
vector, say ¢;,, we can flip particles with velocity —e¢,, into particles with velocity ¢,
whenever this is possible, while leaving all other particles unchanged. This is done with
a probability dependent on the amplitude of the force. Other directions of the force are
handled by superposition.
We turn to case I1. We wish to obtain a force of the form

lﬂ = CapUh (D.B)

where C,p is 8 D-dimensional matrix When the velocity U vanishes, the body-force
should also vanish; this requires

Y eloi = 0)B(o— o) (1{'7)' (1-d)*=0, pm) 4, (D.9)
)

N &

With nonvanishing velocity we must use the corresponding equilibrium populations given
to relevant order by (cf (4.14))

Nimd+ %%I.. (D.10)
Here we hava used the unscaled velocity u. Below, we shall however use U since the sea'ing
factor is taken care of by the Boolean switch ¢. Using (D.10) in (D.6), we find that the
average momentum lmparted by {;,, transitions is to leading order linear in U. Identitying
with (D.8), we find that the B(s = o')'s must satisty the following constraints

D - , nf d\
Cop = (1~ d)° .'{':"q.(.,-.‘)a(.-..)(m) );.,c,-,, p-%:.,-. (D.11)

Equations (D.9)and (D.11) are the additlonal constraints on the B(s -+ o')'s for case 1.

As an Ulustration, consider the case of the pseudo-4-D FCHC model with a Corlolis
force 2(3 A U, where 0} ls in the sy-direction. A possible implementation for the [
transitions is through rotation by /2 around the z,-axis of those particles having their
veloeity perpendicular to this axis (with & probability dependent on 01).

o



Appendix E. Catalog of results for FHP models

The purpose of this appendix is to summarize all known analytic results for the FHP
models, including the models I and III which bave rest-particles. Adapting the theory to
cases with at most one rest-particle is quite straightforward if one includes the rest-particle
velocity, namely vector rero. Our derivations made extensive use of properties P1 to P6 of
section 2.4. With rest-particles, P1, P2, P4, and P5 are unchanged. In P3, A and 4 have
usually different values for moving and rest-particles. P8 becomes

b-1) '
;eiacdﬁ =7 bap, (E.1)
where b is still the number of bits, so that b — 1 is the number of particles moving with
speed c.

In Table 1 below, we give resnlts in terms of the mean density per cell d for the fol-
lowing quantities: the mean density po, the coeficient g(p) rescaling the nonlinear term
in the Navier-Stokes equation (cf for example (7.13)), the kinematic shear viscosity v,
the kinematic bulk viscosity ¢, the maximum value RJ** of the coeficdent R, appearing
in the Reynolds number (cf. (8.29)), and d,,,, the density at which the Reynolds vumber
ls maximum. The visconities v and £ are calculated within the lattice Boltzmann approx-
imation (cf. section 8.2). po¢ Is the dynamic bulk viscosity; when it does not vanish, as is
the case with rest-particles, eq. (7.11) becomes

00 +poV -um0

podiu+ 6, Vp' = pv ("\‘u +=—=VV. u) + VY -, (E.3)
FEP-] FEP-I FHP-I
po 6d 1d 1d
o X \/; \/;
’ Ve e KAy

v sar-ar -4 iy = - fims o -
f 0 SR L o R e R

Ry 0.387 1.08 2.2

dua 0.187 0.179 0.285
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Appendix PF. An H Theorem for lattice gases
by M. Hénon, Obeervatoire de Nice.
d. UFNotation ead bdasic equations

We number from 1 to b the cells at a given node (b is the number of different velocity
vectors). It is not necessary that the velocity moduli are equal. Also it will not be
necessary to specify any symmetry for the lattice or for the collision rules. Finally, we will
not make use of the conservation of the number of particles or of the momentum, so that
the prool is applicable to lattices where these conservation laws are violated.

We write o; = 1 if particle i is present in the input state, 0 i it is absent. An input
state is thus defined by ¢ = (s;,...,4). Th+ number of distinct input states is 2°.

We call P(s) the probability of an input state ». We have

) P(s)=1. (F.1)
We call N; the probability that particle i 15 present. We have
Ni=Y 6P(), 1-N, =Y (1-4)F(s). (F.2)
[ [} '

We define in the same way o), o' = (o},...,0}), P'(#), N/ for the output state.
We call A(s — ') the probability that an input state s s changed into an output
state o' by the collision. We have

P'(a') =) P(s)A(s = ') (F.3)

We have of course

Y Als = d)m1, (F.4)
-

where the sum is over all output states. We will assume that the collision rules obey
semi-detailed balancing, i.e. that we have also

E Ao = o) =1 (F.8)

3. Locsl theorem
Lemma 1. I f(3) is a comvex function (d*f/ds® > 0), thea

)3V JGIEDIN O (F.6)
v 0
Proof: from general properties of convex functions we have

i Bl

where the g(s) are arbitrary positive or zero coeficlents. Taking ¢(s) = A(» — o'), with
o' given, and using (F.3) and (F.5), we obtain

JIP'()] € D Afe, ) IP0)]: (F.8)
Summing over ' and using (F.4), we obtain (F.6).
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Lemma 3. The following inequality holds:

Y P )mP'(¢') €Y P(s)ln P(s). (F.9)
v )

Proot we apply Lemuma 1 with f(z) = zlnz.
Lemma 3. The following inequality halds:

b
Y- P(a)la P() 2 Y [Nilo N, + (1 - N)In(1 - V). (F.10)
The equality holds if and only if
b
P(l],...,ﬂb)rzHN:‘(I-N.')l-". (Fll)
=]

Proof (inspired by Ref. 83): The right-hand side of (F.10) can be written, using (F.2):

b
Yo Y [0P(9)ln Ny + (1 - )P (s) ln1 ~ N,)], (F.12)
=] ¢
or .
Y P(s)n [‘H N'(1- M)“"] : (F.13)
] =] :
Therefore (F.10) can also be written
}:P(.) la [HHLN"%:‘; N"'_"] <o, (F.14)
We have, for any 2
ha<a-1, (F.18)

where the equality holds only if 3 = 1. Therefore

N (1= N NI'(1= N
[M P0) ] [LL 0] -1 (F.16)

Multiplying this by P(s) and summing over s, we obtain the desired result.
The relation (F.11) correspoads to the Boltzmanu approximation (independence of
input particles).

AR



Local H theorem. If'the collision rules satisfy semi-detailed balancing, and in the Boltz-
maan approximatioe, the following inequality bolds:

] (]
D INN+(1-N)a(1-N)] <Y [NN+(1-N)b1-N). (F17)

=] =]

Proof: from Lemma 3 we have
[
Y P(e)P(s) =Y [Niln i + (1 - N,)In(1 - N)). (F.18)
? =1

Combining with Lemma 2:

EP'(. )ln P'(s') < E[N‘ lo N; + (& = N;) (1 - Ny)]. (F.19)

Finally, applying Lemma 3 to the N/'s and the P''s, we obtain (F.17).

We remark that both conditions of the theorem are necessary; one can easily 8nd
counterexamples if one or the other is not satisfled. Consider for instance a node of the
HPP lattice with probabilities before collision: P(1,0,1,0) = 1/2, P(0,1,0,0) = 1/2 We
have: N, = 1/2, Ny = 1/2, Ny = 1/2, Ny = 0; The Boltrmaan appraximation is not
satisfled. We take the usual HPP collision rules. The probabilities after collision are then
P’{(0,1,0,1) = 1/2, P'(0,1,0,0) = 1/2. From this we deduce N} = 0, Nj = 1, Nj = 0,
N¢{ = 1/2, and it can be inmediately verified that the 12ft-hand member of (F.17) is larger
than the right-band member.

Similarly, let ns modify the collision rules and keep only one kind of ¢ollision: (1,0,1,0)
gives (0,1,0,1), but not coaveisely. Semi-detailed balanciag is not satisfied. Take for
inatance Ny = Ny n N; = Ny = 1/2. We assume that the Boltrmann appraximation
holds, therefore P(s) = 1/16 for all o. We deduce: P'(1,0,1,0) = 0; P/(0,1,0,1) = 3/18;
P'(¢) = 1/16 for the other o'; N| = N = 7/16, Ny = N{ = 9/16; and here again the
{nequality (F.17) is violated.

3. Qlodel theores

First we sum (F.17) over all lattice nodes. We obtaln a sum over all cells at all lattice
nodes; their total number will be denoted by r:

r 14
Z[N'(J') ln N 4 (1= N'D) (1 - N'U))] < E[NU) la N+ (1-ND) (1 - N(:‘))].
Jmi ) ‘ Jml
(F.20)
Next we remark tbet this sum ls invariant under propagatioc. We can therefore
extend the theorem to an arbitrary number of time steps, and we obtain (with the same
hypotheses as for the local theorem):
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Global H theorem. TEe function

Z':[N(” o NO) + (1 - ND)in(1 - NO)] (F.21)
r=1

is non-increasing as the lattice gas evolves.

4. Interpretation in terms of information theory

Consider a probability distribution over v possible cases: p,, ..., p,. The associated
information is

v
logy v + ) pilogs 5. (F.22)
=)

This information has a minimal value O if all cases have the same probability: p; = -+ =
pv = 1/v. It has s maximal value log, v if one of the p; is 1 while the others are 0, i.e. for
a detcrministic choice between the  cases. '
We come back to lattices. P(s) represents a probability distribution on 2° cases, and

therefore an information
b+ P(s)logy Ps). (F.23)

[

Thus, Lemma 2 expresses the following property: if semi-detailed baluncing is satisfled,
then the information contrined in the P ~an only remain constant oz decrease in a collision.

From the P's, we can con'pute the N;'s by the formuias (F.2), but the converse is not
generally true; in other words, the P's contain more information than the N;'s. Lemma 3
expresses this fact.

In the particular case of the Boltimanu spproximation, the particles are considered as
independent, and therefore the P's coniain no more information than the N;'s. We have
then the equality in (F.10).

The proof of the local H theorem can therefore be interpreted as follows: (i) initially
the N;'s are given; this represents a give * information; (i) we compute the corresponding
P's in the Boltzmaan appraximation; ¢°.~ formation does not change; (ii) we compute
the collision and obtain the P’'s; the .z’ rination decreases or stays constant; (iv) we
compute the N''s from the P’s: here agois *he information decreases or stays constant.



FIGURE CAPTIONS

Fig. 1 The HPP model. The black arrows are for «:ll-occupation. In (a) and (b) the Lattice
is shown at two successive times.

Fig. 2 Collision rules for the HPP model.

Fig. 3 The FHP model with binary head-on and triple collisions at two successive times.
Fig. 4 Collision rules for the FHP models. (a) Hcad-on collision with two output channels
given equal weights; (b) triple collision; {¢) dual of head-on collision under particie-hole
exchange; (d) head-on collision with spectator; (e¢) binary collisions involving one rest-
particle (represented by a circle).

Fig. 5 The pseudo-4D FCHC model. Only the neighbourhood of one node is shown.
Along the dotted links, connectiug to next-nearest neighbours, at most one particle can
propagate, with component v, = 0; along the thick black links, connecting to nearest
neighbours, up to two particles can propagate, with componeats v, = 1.
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