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ABSTBACT

liydwdynamkal phenomena a be simulated by discrete lattice gas models obeing
cellular automata rules (U. FMmch,B. Haskhert and Y. Pomean, Phys. Rev, Lett.
M, 1505, [1980); D. d’FfumiArea,Pt LalJemand,and U. Frbch, Europhys, Lett. 2, 291,
(198$)), It is here shown ior a claas of D-dimensional lattice P models how the macro
clynamkxd(bugwcale) equations for the densities of microacopicdly conserved quantities
u be systematically dmhed horn the underlying exact “nkmdyuamicalw Boolean equ~
tiocm With suitable restrictions on the cry~tallographicsymmetriesof the lattice and after
proper limits are taken, variousstandard fluid dynamical equations are obtained, Mud +q,~l

&the iucornpremibk Navie*Stokes equations in two and three dimensions, The trm I
codlkknts appearing in tbe rnamodynamical equations are obtained using wiants of
ductu~tica-dissipation and Bcdtzmannformalisms adapted to fully discnte situations
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1. Introduction

It ia known that wind or water tunnek CMI be indifferently usd for testing low Mach
number 9UWS,pfided the Reynolds numben Me identical. Indeed, two fluids with quite
different microscopic structures can have the -e mcrmcopic behaviour. This is because
the form of the mmroscopic equations is entirely govemd by the microscopic consemation
laws and symmetrim. The values of the trmspoti codl!tients, such M the viscosity may
depend on the detai.b of the microphysics. Still, two flows with similar geometries and
idential nond-hnensional.ized values for the relemt transport coeffkients are related by
similarity.

Recently, such obser=tions haw led to a new simulation strategy for fluid dynamics:
fictitious microworld models obeying discrete cellularautomata ruka have b~n found, such
that two and threedi.mensional fluid dynamim ue recovered in the macrwcopic limit.tl’YJ
Cellular automata, introduced by von Neumann and Ulam,(sl Me constituted of a lattice,
●uh site of which can have a dnite number of states (usually coded by Boolean tiables);
the automaton evolves in dkcretc steps, the sits being simultaneously updated by a de-
terministic or nondeterministic rule. ~icdly, only a !lnite numberof neighboum are
involved in the updating of any site. A very popular cxarnple is Conw~’s Game of Life.(’)
In recent yearnthere haJ been a renewal of interd In this subject (we e.g. Ref. $7), in
particular since cellular ●utomata can be impkrnented in mdvely parallel hardware.(a’gl

The claas of cellular automata UU4 for the simulation of ftuid dynsm.ics are here called
“lattice w models”, Historically, they emerged from atternptu to eondmct discrete mod-
els of fluids with wying motivations. The aim of Mofecular Dyrtamdcmis to simulate the
real microworld in order for mwnple to calculate transport coeftlcknts; one concentrate
mass and momentum in discrete PM4ieles with continuous time, podtione and velocities
ud mbitrary interactions. (]o‘]n) Discrete velocity modelm, introduced by BrcmdweU[~41
(see abo Refh. W19), have been wd mody to uq Ierstand rarefied gu dynamics; the
\’elocity set is now finite; space aad time are Ml contbuous and the evolution io proba-
b~htic, being governed by Bcdtzmann sattering da. The tint lattice gaa model (now
known u HPP) with discrete the, positions and velocities and fully determinhtk w-
Iution ww introduced by Hardy, de Pucks and Pomeau,@O’s*lsee abo related work in
Rd 22. The HPP model, s pmentation of which will be postponed to section 2, was
i.ntroducA to analyze, in M simple s &unework M podble, fnndunental qu~tions in
Sta4istieal Meehdcs, such M eqpdicity d the divergenu of traaopofi coefficients in
twc dlmen.aiom(m]!The HPP model leads to mnd waves, which have bean observedin
simulations cmthe MIT cellular automaton machine.(s) The diftkultka of the HPP model
in coping with Ml ddd d~amics were overcome by FMsch, Hwlacbr d Pomeau(l) for
the twcxllme~~lonal Nwier-Stokes equations; modeb ads ted to #he three-dimensional

rcue were introduced by dTlumitrm, Lallemwd and IWnch. ‘) This hu M to rapid deveL
opment of the subject. (s$“a] These papem are mostly concerned with latt~cegoa models
Ieadtng to the Nwier-Stokes equations. A namber of other problem are known to be
menable to lattice gaa models D~amicaI !mingmode!a with sound Wave, (’”) Buoy-
ancy ~ffects,(”) Seismic P-wavea,(”) M~etohydrA~mics,(4e-51) Reaction-Dif?usion
modeb,(~a-~’) Interfacm and Combusthm phenornenq($glsOl Burgers’ model.[s’)

The b of tbia paper is to pre~ent in detdl md without unnaewuy restrictions



the theory Idin[ from s Shple * Of ~-dimensional “one-speed” Iattiw gas modek
to the continuum macmscopic qnations of fluid dynmica in two and thre dimensions.
The atedon of m appmacb to mtiksd modeb, balding for emnple u~veloei~

%uG@WiJ”, b quite stightfo~ard; the~ will be OCmional brief comments on such
models. We now outline the paper in some detail while emph=izing some of the key steps.
Note that some k.nowldge of Nonquilibrium Statistical Mechanicsis helpful for reading
this paper, but we have tried to make the paper self< ont.ained.

Section 2 is dmoted to Mom lattice gM models and their symrrctries. We be~
with the simple folly determinbtic HPP model (square lattti), we then go to the FHP
model (tria.uaalar lattice) which may b~ formulatedwith deterministicor nondeterdnistic
collision rules; anally, we consider a gmeral elms of (usIIaEy)nondeterzninisticone+peed
models containing the paeudd-D face-centered-hypercubic(FCHC) model uoed in three
dimensions.(s) In this section, we abo introduce various ●bstmct symmetry wumptions,
which hdd for dl three models (HPP, HIP, and FCHC), and whichwiIl be very useful in
reducing the compkxity of the subsequentalgebr~

In section 3 we introduce the %n.imdynamkal qutions”, the Boolean quivdent
of Hamilton’s qwatkma iu ordinary Stutistid Mechanics. We then proceed with the
probabilistic dedption of u ememble d Ahtions of the lattke gas; at this l-e], the
wolution b gemmed by a (dkrete) Lkmville equation for the pmbabilky distribution
function.

In uecthm 4 we show that there are qWbriu.m ststbtkd solutions with no equal-
time comlaticms between situ. Under sane mildly ratrk~ assumptkms, at each site,
a Fermi-Dbu dbMbution is obkined for the ma popalathm~ whkk h udvemal, i.e.
independent & c-ollbim n.la. Thb distrihtbn b parametrizedby the mean tiua of the
colllaion in~ (usually, mass and momantum).

Loally, - and momentum are dbaete, but their mean tia, the density and
m~s cunnt, can be twnd con?inao~, jud - In the %al worldn. hthemaore, space
and time C-Mbe regardedas ccmttmm by COn.dddngM equilibri+ slowly wyin~ in
space and timo (wcthm U). The mtig of these equilibti leads to macrouopk PDE’s
f= the consenod quastiti.

The redthg %urodwamkal VAtkmw, for the densi~ ad m- eamnt, are not
in gened is-t wndu arbitr~ rotations. HOWUVOT,iw=tim 6 we ohow that the
relmmt tams b the maerouopk equstkm beame bottopk m won u the lattice pa
h- ● s~ciently large crystdlogr@c ~metry group (U b the - for the FHP wd
pseudcA-D modek, but mt far the ~P model).

When the w- ~etria hold, fluid dynamkd quatkms are derived in -Ion

7. We consider mrious limlts tnvolving large sales and tire- and small velocities (CO*
pared to ptikk speed). In one Emit we obtain the qnatluns of scalar sound wava; b
aaother limit we obtain the Incomprmible Navler4toka qnatkns in two ~d thm d.k
mensionsi It is notemwtby tbst GaJIIw tnmtice, whkh dwwnot bold at the mlcrowpic
level, is ratored tn tbae Ikrdts.

In section 8 we show how to determine tbe viscosities of lattice gases, They CUI be
expressed tn temm of equilibrium spacetkne conflation functions via an adaptation to
lattice gases of Ouctuationdissipation relations, This b here done with ● view-pcint of

.



%oisy”hyd.mdynamia, which & brin~ out the crmsaver p~ulwitia of two dimensions,

●-ly ● r=idual ~A ~ep~dence of traspoti CNt3dents ●t hrge waib. Alte-r-
mntive!y, Suctaati-d-biptkn mkti~~ m be Obtdned from the Liouville q~tion with
● Green-KubO fonzmlim-(”) mlJy @icit CWRAOm for the ti~itie M be derived
via the %attice Boltunun Appmdtnation”, not needed for any mlier st~~. This k
~ tlniditlemnce timt of the dkrete-vekity Boltzmann app roxi.nmtion. The latter,
which assume continuous Spxe aud time tia-bles, m d-id only at low densities, while
its lattice vuria.nt ueem to Mpture m~t of the fiit~ensity ~at.s (with the exception of
tio-dimensional cronnuver edectm). Further studies of the Ltitice Bcdtrxmma Apprdm*
t$ou mq be found ~ R& W. ~Ph@bns for the quatia of the Reyno4da number m
discussed at the end of the section.

Section 9 in the conclusion. various quations aze left for the appendices detailed
technkd pmoh, incbh of body fonm =tdog Or muh for wkmrn FHP models, proof
of m H-theorem for the LaJtice Boltz.nmn Apprmhn.ation (due to M. H/non).

2. Iht-rnl.nlatlc and nmdetehbtlc lattlco g~ modob

8.1 W EPP W&l

M M begin ~itb ● hetitk co~truckn of the HPP model-(-n) Cotik ● tw-
dimensional quam lattice with unit Iattw= constant M shcmn h Sg. 1. Pm& of unit
mm and unit sped are -g along the lattice links and am located at the node at
inteter tirnen. Not morethau one p~icie is to be found St s glvea ttme and de, moving
h s @ve.n direction (axe.lucion prim.iple). Wha *O ud cmsctly two putic!ea tie ●t
a node born opptite d.1.rac$fm.s(head+n cWU), ihey immdkt4y leave the node in
the two other, ptiti unoccupied, directions {dc. 2). Three ddmlhlbtic c13Wion lawa

obicmdy coneme man ~tikk number) ad momentum and m the only ●ontnvid
ona with th~ propertk Wtherm% thq lwe the same dbcrete inwhau group M
the lsttice.

The abuve de9dti - b fo~ ~ fdl~t We ti _ L ~ L sqm httke,

periddy map~ arcmd (a ncmwtial awunptlon, made h ccavanbnce). Eventn-
ally, we O.haIlbtL-m. At each node, la.blld by the dbc.retee F*, thue are four
celb label.ledby m index i, ddned moddo hr. The celb me -ted to the an.it vec-
tom e+ connedng the node to tts four nasmt aeighbou.n (i ~ ccmntdockwise).
Euh ceil (r,, i) km *O swa CC4A dth ● Bmh variable m(r.) = 1: “occQpid” md
+)=0: %noccnpkl”. A cefhhr automata updating rub b ddned on the 9oof-
#eJd n. = {m(r*), i = 1,..., 4, r. E Lattice}. It h- two steps. Step cae is coU&ia: d ewh
node the fou.r-bii atsta (1,G,1,O) aad (O,1,0, 1) are ach.ngd; d other statcn are Icft
●nc.hnged. step *O L pmpa@h: ~(r~) + n~(rw - Q). w *o+*P ~ b ~pp~ed
St d integer time ii. An emrnpb d t.mplementdion of the de, In wkh amws stud
for cell-occnpdion, is Bhom In 9gm.h d lb.

Collisions in the HPP model conserve w uia momentam bcdy, whew prop~
gation con~ewm them globdy (actually,along e- latt~ce lbe). If we mttribute to each
particle ~ Mnctlcencrn 1/2, the total kinetic ener~ b d.moconsemed Enern consew
tion 1~hmwr Indistkguhhable from mu consenatlon md will not plsy my dynm~cal
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role. Modeb havingan ewgy COB**i~ ~W Wepeadmt of mu consemtiai will mot

be considered in W paper (see Reik. 227).
The dynamics d the ~p mfd = ~bt unda a discrete trudtmationa that

conserve the squme Iattic@dhete @Mskti~~, ~miom by x/2, minor ~etriea with
r-pect to a lattice line. Furthermore, the dynamicr ue hmriant under daali~, that is
exchange of 1’s and 0’s (putickr and holes].

The FHP modelsI, II, and Ill (= Mow), intmdacd by MA, Hasdacher and Pomeaa(l)
(meeabo Refk. 2$20,S2,S42,44) are varbmts of the HPP model with a larger tice
group residing on a triangular lattice with unit lattice constant (Sg. 3). Each node ia now
connected to its * neighbowmby udt vectors q (tith i 4e9ned modalo six) and iu thw
-dOwed with a six-bit state (OIsewi, cf. below). Updating iwohwa again propagation
(deilned as for EPP) and cdlisioua.

In constructhg collision nl~l on the -guhw lattice, we must pay attention to the
Mowing
Wtermids$ic vs. nomftihfjc ruk. Fot ● had-m collision with occupied >put
channels” (i, i +3), there m *O ,paaible pain of occuPied aoatpmtchannels” such that
mass and momentum are commd, namely (J+& i + 4) and (i -- 1, i -4) (- 9g. 4a).
We an decide alw~ to mahe tho same choiw, we thea have a deterministic mod4
which h ch~ that is nOt invariant under mkoqmm@ Ntematively, we can mahe
● nomdeterministic(mdorn) choice with eqd probabilitiesto restore mirror-symmetry.
Finally, we can mahe a p-d-rtmdmn Aoke, depaden& Snrexample, a the pdty of a
tizm or space Index
*UAW comerdoa k- Head-on dIiskms conserve,b addition to total p8rtick Rum
her, the dihrmce of particle awmbersb w pair d oppodte directions (i, i + S). Thus,
hemtbn collidon8 a ● triangdu lattice eonfave’8 total d tow walar quantitkm. ‘his

mew that in dditb to - ad =lmentum amaervdba there i8s qmrbaa coaae
vatioa 18w. The largwde dynamics ad9A ● mdl @’i W- dm8t~ fromordtwy
4drodYnambl ** ~c $xd- c--b b b mmuve’aone ~ to $ehiavQ)this
kWbtdam Mp&~(f, f+zl+4) -(1+1, J+~f+S)(-9g.4bJ

several moolah CsBha Conotractodas the trkgakr Iattk. The dmpkat Wt d
colliaioa rdm with so qmrbu cooaenmtki law, whid wi!l be called ~- 1, tavolv~
-V (Paeadtxandom) binary hed-oa COhiOD8 and triplewllidou F=*X h ad hvarisnt

amder daality (paA&hole eachan~), ba8 tan be made so by hciusion of the duab of
the head=m COIWU (oa 9c. de). Firdy, th w d cdlbion da can be saturated
(exhausted) by indwkm of head-on coliidm with ● %pectator’}a$) that k, ● particle
whkb remaiw anakted la a eol!ktm; @g.dd h aa sample of a heahn edhbo with a
spectator.

‘X’hemodel F’HP-#l& s seven bit variaat of FHP4 iddiag s aeswebdty %st-
puticle’, the additional collisioa mks of 9g. 4e, and varlaats of the head-on and tdple
COIMODSof 6gr h ud 4b with a sped~or restipartkb. Binq eollbion~on rut-parklee
remove sparioas conservatkm, and do w more eil!ldentty●t low denaitia th&’ triple colli=
sions. Finally, ❑odel FKP-IU is ● coUision-saturatedvemionof FKP41.(”) For simplicity
we have chosen not to coverthe theory of modeb with rest-partkles in detail,



The dynunh of the F~ mdeb m b-t under d dbate traasfonn.ati~s that
conserw the triaagulu ~tk~ dk~k tmlmions, rotatim by Y/$ mirmrmetria
with -t to ● lattice be (exupt ku the * mrkta).

8.4 A gaaerd at- ●j aod8t8wM’8t48 W4ezla
h mat of thb paper w. ohall WA with 8 clam of modeb (gaaeraIly mmdetermtnistie)
em.ompualag dl the abme --speed dab. The rekvant comrmmMES cdU thow
modeb are n- Mod Th4m b ● reguhr Iatticq tho nodes of whkh w connected to
aeuest aeighboum thnmgh iinhz of equal kngth; d wbcity dirationz are b some sense
qnhabnt and the vehxMYw h kwafiant andar Nversal, at QA ncxlc the is ● cdl
-dated to each pocsible ~aity whkh caa be -sW by w partkk at moat;padck
&mMMngubhabk; partkh m m=hd bard by mmaddy Sppmg p~~@tiOil
aai cotlidon ndss; colhhm an parely bmL hwe the same immrbces M the velocity set
~d ccmser-s only mass aad momentum.

We now give s ❑ ore formal dehhbn of these oue+peed modeb M cellubr automat~
Let us begin with the ~metricd asp&K. We take ● Dimensional Brntis lattice t

in RD of Snite extension O(L) h d divdoas (eventually, L - m); the paition vector



t. of any node of such a kttke is a linear combination with integer coedicients of D
independent geumating vectors.@el We furthermore assume that there exists a set of b
%locity vectors” ci with components cti (a = 1,..., D),l having qual modwlms c, the
ptiicle speed, such that:

(i) for any r, G t, the set of the r. + c~’s is the set of neared neighbors of r.;
(ii) any two nodes can be connected via a finite chain of neswestneighbors;
(iii) for MY pti (Cij cj), there exists ~ element hi the “crystallographic” group ~ of

isometrics globally preserving the set of wWW vectors, which maps ci into Cj;
(iv) for any velocity vector G, we denote by ~i the subgronp of ~ which leaves q

invariant and th l*ves its orthogonal hyperplane11~globally invariant;we assume that
(a) there ia no non-mnishing vector in IJ imariaat underall the elements of &, [b) the
only limmrtransformations within the space IIi commutingwith all the elementsof gi are
proportional to the identity.

Now, we construct the automaton. To each node r,, we attach a &bit state n(r.) =

{*(?*), i= 1,..., b), where the ~i’s are Boolean variabka. The apdating of the “Boolean
Selds n(.) involwa Wo successive steps: colltiion, followedby propagation. We choose this
particdar order for technical convenience; after a large numberof iterations it will beeome
irrelevant which step w= lint.’ Propagation is deihd as

m(h) + m(ra - *). (2.1)

The spatial shifting by q is performd on a periodically wrapped around lattice with
O(L] *in my direction; eventually L + 00. MUsion is the shndtamous application
&teach node of nondeterministk transition r’ukafkoman in-state 4 = (tdt i = ~ . ..$ b) to

{an out-state 4’= 8:, i = 1, ..., b}. Each transition is assigneda probabilityA(8 + d) ~ O,
nomalized to one (~d A(4 + d) = 1 V8), and dependingonly on 8 and # and not on the
node. The following assumptixis are made.

. .

(v) Conservation lawx the only collections of b real numbersq such that

1 la this paper Greek and Romu kdlcea refer ~pectiveiy to eompommtsand velocity
labels. Summation over ~peated Greek indices, but not Roman ones, la implicit.

‘ For deterministic lattice gaaes, suck u HP??,it is possible to bring out the reveraibiL
ity of the updating rule by defining the state of the ●utomaton ●t haif-bteger times,
with particles located at the middle of MS connecting aearest-neighbournodes; npdat-
!ng then comprises half A propagation, followed by collioion, folkmwdby another half
propamtion.(’”)

‘ Other boundary conditions at the lattice edge can also be used, for example %ind-
tunnel” conditious,t~s~~d$ae)

7



(vi) Invarianceunderall krnetries preservingthe nlocity set

(2.3)

(vii) Semi-detailedbalance

~A(, -d)= 1, V,’. (2.4)
8

Various commenti arenow in order. Semi-detailedbalance,also used in discrete veloc-
ity Boltzmarm models,f~elmeans that if b~om collision all states have qual probabilities,
they stay so after collision. It is triviiiy satkfled when the coIMon rule is determin-
istic and omt~one. There exhts *O a ~tmnger ammption, detaihxl balance (that k
A(4 -+ d) = A(/ ~s) ), which will not be IW4ed here. The HPP, FHP, and FCHP lat-
tice gases satis@the aboveassumptions (i) through (iv). The proofsare given inAppendix
A. The other assumptions (v) through (vii) hold by constructionwith the exception&the
chid versions of FHP. The latter do not s~isfy (vi) because the collision rules are not
invariant under the mirr~ymmetrks with respect to velocd~ vectors.

The inwimce assumptions introduced above have impodant consequencesfor the
trwsformation propertiesof vectors and tensors. The following 4eflnitions will be used.
A tensor is said to be &rnmrbnt if it is in-t under any isometry in g. A set of i-
independenttensors {Td= ~,aa.,.~, ~~= L ...~b} M~d to be $ -hmariantif any isometry in
~ -~g Q Mo Cjt dmgw !0 hto q. Note thd thb b s-ngw th~ globalinvariance
renderthe gromp~. The -~ moment d orderP h deba 88 ~i ~u,~a,...qa,.

We now M the transformationproperties foIlowing horn @nvariance. The proc&
are given in Appendix B. .
PI Pm”@Jvar&ctz The set of velocity vectm is invariantanderspacerevd.
Pa Any set of independentvectors uti, which b @nvaAan&iaof the form &.
Pa Any *t d i4ependent teasom ti*O,Whkhis #-h*t, b of the form ~q&q8 +@*d.
P4 lsotrop~ of second order knma. AnY $4nvarimt tenaa tee is of the formP&p.
P6 Any &mriant third order tewor vanishes.
P6 Vekcity manestm Odd order nloclty moments vanish. The secondorder nlocity
moment b given b

(25)“b

There is, in general,no dad form expression for even ordervelocity momentsbeyond
uxoad order, witL the amrnptio= made up to thk poimt(cL also section 6).



. .

S. Microdynarnlcs and probablllstie description

8.1 lfticvod~amieaa ●qlla%doae

It is possible to give a compact representation of the “microdynamics”, describing the
application of the updating rules to the Boolean !leld. This is the cellular automaton
analog of Hamilton’s equations of motion in Clwical Statististical Mechanics. We begin
with the HPP lattice gas (section 2.1). Let ni (t., rs), as deOned in section 2.1, denote the
HPP Boolean field at the discrete time L. With i labelling the four cells of an HPP node,
the collision rule can be fcwmulated as follows If before, i and i + 2 are empty and i + I
and i + 3 are occupied, then after, the opposite holds; if before, i + 1 and i + 3 are empty
and i and i + 2 nr? occupied, then after, the opposite holds; otherwis~ the content of cell
i is left unchangtxi. Thus, the updating of the Boolean field may be written

~(fa+l,~.+ci) = (X A~(ni An S+ZA ~ni+l A W+s)) v (ni+~ A ni+s A ~ni A lni+z),
(3.1)

where the whole r.h.s. is evaluated at t* and r*. The symbols A, V, and = stand for
AND, OR and NOT, respectively. It is known that anyBoolean relation can be recoded
in arithmetic fcmn (A becomes multiplication,= becomes one minus the mriable, etc.). In
this way we obtain

??~(t*+ l,ra + Ci) = ni(:*, r*) + Ai(n). (3.2)

The “coUision functioa” A$(n), which can take the values *1 and O, desribes the change
in ~ (f,, r.) due to collisioiis. For the HPP model, it depends oniy on i and on the set of
mj’s at L and r,, denoted n. It is given by

Ai(n) = ni+l??i+s(l - *)(1 - *+,) - tloni+a(l - ni+l)(l - nl+s)o (3.3)

Equation (3.2) (with Ai(~) given by (3.3)) will be called the microdynu”cd EPP equ-
tion. It holds for arbitrary i (modulo fonr), for arbitrary integer 1,, and for =bitrary
r* E 4 (~ daigaatee the lattice).

It ia ~ to extend the mictiynamical formalism to other models. For FHP-I (section
2.2), we find that the collision function msy be written (i is now defined modulo six)

Ai(n) = tt.r,~i+l~+q(l - ~i)(l - w+a](l - ni+~)(l - m+~)

+(1 - &~)n4+ani+8(l - %)(1 - ni+i)(l - %3)(1 - f34+4)

-ni*+s(l - ni+i)(l - ni+a)(l - ni+4)(l - *+8) (3.4)

+ni+inl+snl+s(l - nl)(l - nl+~)(l - *+4)

‘~i~+~?ti+4(l - ~i+l)(l - ni+~)(l - nl+s),

Here, &r4 denotes a time and sitedependent Boolean variable which tak the mlue

one when head-on colliding particles are to be rotated counterclockwise and wro otherwise
(remember, that there are two possible outcomes of such collisions). For the theo~, the
simplest is to assign the two valua qual probabilities and to assume all the f’s to be
independent. In practical implementations other choices are often more convenient.



,

,

We now give the xnicrodynamical equation for the general cks of nondeterrninistic
models defined in section 2.4. Propagation is x before. For the collision ph=e at a given
node, it is convenhmtto mm over all ? in-states s = {s, = Oorl, i = 1,..., b} and #
out-states 4’, The nondeterministictransitions are taken care of by the introduction at
each time and node and for any pair of states (u, u’) of a Boolean variable Q (time and
space labels omitted for co~dseness). We assume that

(&~) = A(s ~ s’), Vt, /, (3.5)

where 4.(s ~ /) is the transition probability introduced in section 2.4; the angular brackets
denote avenging. We a&o assume that

Et ●@= 1, V8. (3.$)
d

Since the ~’s are Boolean, eq. (3.6) means that, for a given in-state u and a given realization
of f,d, one and only one cmt-state s’ is obtained. It is now clear that the rnicrodvuamical
equation can be written aa

The factor 8; ensures the presence of a particie in the cell
factors in the product over the index j ensure that befxe
matches that of #j’g. Using (3.7) and the identity

i after the collision; the various
the collision the pattern of nj’s

?li, (3.8)

we can rewrite the microdynamicalquation in a form that brings out the collision function

w(L+l,P.+%) = m +Ai(n)

In the squei it will often be useful to have a compact notation. We deBne the collision
operator

C : ni(r.) I+ ni(rw) + A~(n(r*)), (3.10)

the streaming opeiator

$: ni(r.) ~ m(r. - Ci), (3411)

and the evolution operator, the composition of the latter

t=soc. (3,12)



The entire updating can ROW be written M

n(l* + 1, .) = h(t*,.], (3.1s)

where the po”mt in the second argument of the n’s stands for all the space variables.
An interesting property of the microdynamical equation, not shared ~ the Hamilton

qu.ations of ordinary Statistical Mechanics, is that it remains meaniagfd for an infinite
lattice, since the updaking of any given node involves only a fbite number of neighboum.

$.8 Cwevvat<on Te tat<ons

Conservation of mass and momentum at each node in the collision process can be expressed
by the following relations for the collision function:

~Ai(n) = 0, V’n G {0, 1}’, (3.14)
4

~ciAi(n) = 0, Vn G {0, I}’. (3.15)
i

This implies important conservation Aations for the Boolean !leld

8.S Ihe Liouu622e eguat<on

We now make the transition, traditional in Statistical Mechanics, horn a deterministic to
● probabilisticpoint of view. This can be obscured by the W that some of our models
am already probabilistic. So, let as assume for a while that the evolution operator is
deterrninietkand invertible (ash the case for h~p).

Assuming that we have ● &dte latice, we define the phase space 1’ aa the wt of all
possfble adgnrnents $(.) = {sd(?.), i = 1,..., b, F* c &} of the Boolean 9eld ni(rm). A
particularassignment of the Boolean 9eld will be called a codfgmatiom We now consider
●t time L = Oan emembfe of initial conditions, each endowed with a probability

P (O, $(.)) ~ O, SUChthat

We let each configuration in the ensemble evolve according to the automaton updtiing
rule, i.e. with the evolution operator & of eq. (S,13), The latter being, here, invertible,
conaetvatiou of probability h expressed as

P(I*+1, s(.)) = P(l., t%(,)). (s!19)

11



This quation is clearly the analog of the Lioutille equation of Statistical Mechanics, and
will be given the same name, Alternatively, the Liouvi.lle equation a be written

P(I* + 1,$4(.)) =P(I*, C%(.)). (3.2Q))

To derive this we have UWN(3.12) and put the streaming operator in the l.h.s., a form
that will be more convenient mbsequently.

In the nondetemdriistic we, we must enhrge the probability space to include, not
only the ph~e space of initial conditions, but the space of all possible choice of the
Boolean variables f(~t’), which at each time and each node select the unique transition
from a given in-state # (d s~tion 3.1). Since the ~’s are rndependentty chosen at each
time, the entire Boolean field n(tw, .) ia a Mmkov procew (with deterministic rules, this
process is degenerate). What we shall continue to cdl the Liouvffle equation, is actually
the Chapman-Kolmogorov quation for th.ia Markov proces, namely

l+. +1, SJ(.)) = ~ ~ /4(8(?.)+ 4’(?,)) P(t*,8(.)). (3.21)
C(.)a ret

This equation just express~ that the probability at I* + 1 of a given (propagated) con-
figuration J(.) is the sum of the probabilities at k of all pomible ori@ml confl~ratious
s(. ) times the transition probability. The latter is a product, because we aasumed that the
~’a are chcmen independently at each node. In the deterministic we A (~(rw) ~ J(r.))
selects the unique conflgumtion ~‘-l#’(. ), so that q. (3.20) b recovered.

8.4 Nean quantit(ea

Having introduced a probabilistic deacriptkm, we now turn to mean quantities. For an
‘obeem.ble” q(n(f., .)), which depends on the Bmlean field at a ~ingle time, the mean Is
given by averaging over P (I*, ~(.))

(322)

An important role will be played in the squel by the followbg mean quantltiea: the
mean population

“(’-r+’ (n’(-))
(m)

the cknsliy, and the mxa current (mem momentum)

p(L,r.) = ~~i(~.,~.),J(L,r.) = ~CiNt(t.,r.). (3.24)
i (

Note that these are mean quantities per node, not per unit area or volume, The density
per ceJf is detlned u d = p/b, Finally, the meau velocity u b defined by

J(t*, r.) = p(t.,ro)u(l-,r.), (325)



Note that under duality (exchange of ptiicles and holes) p changa into b - p, d into
1- cf, J into -J, and u into the %ne~ ho]eve!ocity” UM= -u(f/(l - d),

Averaging of the rnicr~ycamicd conservation relations (3.16) and (3.17) leads to

consemtion relations for the mean populations

x(N~ t*+l, r*+ Cl)= ~~i(L7r.), (3,26)

E’ (GN, t.+l, rm+ c,)= ~e~N~(t*,r.). (3.27)
i {

4. Equlllbrlum solutlona

“0) that the HPP model ha~ veryIt has ban ghown by Hardy, Pomeau, and de Pa~zi.s’
simple statistical quilibrium solutions (which they cdl i.n-mriantstates ) in which the
Boolean variablea at all the ceils we independent. Such equilibrium uolutions are the
lattice gaa equivalent of bell states in Ciamical Statiaticd Mechanics and therefore
are crucial for deritig hydrcdynamicg. There me similar results for the geneml claw of
nondetermtitic models introduced in section 2.4, with are now discussed.

We w interested hI equilibrium solutions, that is steady-state solutions of the Liouville
quation (3.21) for a finite, periodically wrapped around lattice. Collisions on the lattice
are purety loal (their jmpact ptmrneter is zero). This suggests the titence of equilibrium
molutions with no dngl~time spatial cormMions. The latticepropetiim being translation-
iamriant, the diti~bution should be the same at WA node. Thus we are looking for
equilibrium solutions of the form

+(6)) =~+(d)l (4.1)
r.

where p(s), the pmbabi.lity of a given state, h noddndependent. Mdm.imtion of the
entropy (cft Appendix F) suggests tkat p(~) should be competely factorized over all ceils,
that 1s, of the form

p(s) = ~N:’(1 - Nd)(l-”? (4.2)
i

Note that N:’(I - Ni)~’-~’J Is the probab~ty of a Boolean va iable with ❑ e.u N,.
Now, we must check that there are indeed solutions of Ii: form thst we !Iwe been

~dng. Substitution of P(~(. )) given by (4,1) with p(t) given by (4,2) into the Ljouvi.1.le
equation (321) leads to

whm N, is the meu population of cell i, Independent of the node and of the time.
Eqi (4,3) is s set # (the number of dKferent states) quations for b unknowns, The

fact that {t actually possmsm solutions is nontrivial ~rth~nnorc, these solutions can b?
completely dmcrlbed, Such resuh~ follow from the



Lemma. The following statements Me equimlent:
(a) The N,’s area solution of (43).
(b) The Ni’~ area solution of the set oi b equations

(4.4)

(c) The N,’s are given by the Fermi-Dirac dbtribution

Ni =
1

(4.5)
l+exp(h+cw)’

where h b an arbitr~ real number and q is an arbitrary Dimensional vector.
The proof of the equidence is ~ven in APpendbc C; it makes use of wmi-detailed

balaace and the absence of sptious irmriants. The meat important eonsquence of the
lemma is the
Unlvomallty tkmm. Nondete~b~tic lattice gM models satisfying scmidetied.bal-
uce and having no spurious imarhnts adrnlt universal quilibrium solutions, wmpletely
factorized wer dl nod~ and all celb, with mean populaticma given by the Fermi-Dim
distribution (4.5), depending only on the density p and the mam current j = P, and
independent of the trmsition probabilities A(s + /).

The proof follows horn the obeerwtion that the Lagruge mu!tiplJers h and q of the
Fermi-Dirac distribution CM be calculated in tenm of the density and the mm cment
through the dations

(4.6)

(4.7)

For the HPP model, this set of quatiou ia rducible to a cabic polynornhl equation,
mothat explicit solutions Me known. @J For the FHP mode~ upllcit solutions are known
only for ~pecial caaes.~a)

It la not particuldy surprisin~, for models that have a builkin exclusion principle (not
more than one p~tlcle per cell), to obtain a IkrnLDhwc dbtribntlon at equilibrium. Note
that the hctork.d equilibrium soutions remain meaningful on an Mnite Mice. Thert is
no proof d the moment that the only quiIibdum solutlons which are relemt l.n the Umit
of infinite Mticea are of the above form, naxmly c~mpletely factorized(whkb thee hnplim
the Fermi-Dlrac distribution). There is strong numericalrvidence, for those modeb that
have been aknulated, that the Fermi-Dirac is the only relewt one,~a’ae~s)

4,8 Low-speed ~qutt(br$a

In th~ “real world” equilibrium dbtributions with different ❑ w velocities are shnply
related by a Galilean trunfonnationi GalJlcau invuLMce d~s not hold ●t the microscopic
level on a lmtic~ gas; therefore therr h no simple rel.don between the equil.lbria with

vanhbing and nonvan!shl.ng meau v~locity, For subsequent dmivations of fluid dynamical
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quations, we shaii only need quiiibria with low speeds, that is with u = ~ul < c, the
particle speed. Such equilibriacan be calculated perturbktivelyin powers of u.

We write the quiiibriam distribution M

where we have used the Ferm.i-Diracfuuction

L)(4 = ** (4.9)

We obsewe that
p d.u=odv~=6= (4.10)

Indeed, by amumption (iii) of section 2.4, there exist an isometry of the lattice exchanging
any two velocity Vectom CJ and Cj; the vector u = O being do trivially invariant, the
mean population Ni is independent uf i. Thus /r~ (h[p, O)) = d and q(p, O) =0.

Furthermore, it foiiowefrompari&-innriance [u - -u, q - -q) that

h[p, -u)= Il(fl,u), q(p, -u)= -q(p, u)* (4.11)
.

Wtinow expand h and q in powemof u

)8(/7,u)= ho+ IJgua+ O(uf)

fo(A 4 = #lua + 0(U8),
(U2)

where ho, ha, and gl depend on p. The tit that hl and gl are scalars rather than second
order tensom b a consequence of the isotropy of =ond order tensors (property P4 of
section 2.4). We substitute (412) into (4.~) and qmnd the m~ populations in puwera
of u

Hen, !FO, !j~, ud & ~ the tiua ●t hO of the hrni-Dirac function and ita first and
mcond derhmtivee. Fkom (4.13) wa calculate the density p = ~i JViand the maea current
PU= ~i ci~i, udng the velocity moment relathm (P6 of section 2.4). Identification gives
hO,ha, and ql in tenxu d p. This is thm used to calculate the equilibriummean popuiatioQ
up to ~econd order in u; we obtain

where

(4415)

In (4.14) the superscript “eq” strees~ that the meanpopulation are evaluated at equiiib
FiIlm*

Note that the coefficientO(p) of the quadratic tam vanloh~ for p = b/2, that is, when
the deusity of particles and holes are the same. Thb reoult, which holds more generally for
the coefllcieuts of any even powerof u, foUowsby duallty: N/Qgoes ht~ 1- JV’r~d u ~t~
-u at p = b/2, It doee not matter whether or not the coliiehmrules are dualky-invmkmt,
as long ae they satis~ eeml-detaiiedbalance, since the equilibriumis then unl~’emit



6. Macrcdynamlca.1 equations

In the %mi world”, fluid dynamim may be viewed m the glueing of fod thermody-
namic equilibria with slowly mrying parametem.fel’egl Lattice gum also admit eqtdlb
rium .solutionso4 These have continuously @justable parameters, the mem valu~ of the
conserved quantities, nanely mass and momentum. On a very large lattice, we can set up
local qud.ibria with density and mms cumnt slowly changing in space and time. Mm
the conservation reiations we shall derive by a multi-scale tedmique macrodynamicd qu-
tions, that ia PDE’s for the lqe scale and long time behatiour of density and mm current

We consider a lattice gaa satisfying all the assumptions of section 2.4. We denote by
p(rw) aud u(rw) the density and (mean) velocit# at lattice node ra. We assume that these
quantities are changing on a spatial scale c-1 (in units of lattice constant). Thb ~quires
that the lattice size L be itself at least O(c-’ ). Eventually, we let c -0. The spatial change
is assumed to be sulliciently re@r to allcm interpolations for the purpoee of calculating
derivattvm.s When time and space are treated aa continuous, they are denoted I and r,
We furtherwume that the density is 0(1) and that the velocity is small comparti to the
particle speed c.7 We expect the following phe~omen~

1) rekation to local equilibrium on time scale co,
2) density perturbatiou~ propagating M sound wavea on time scale C-*,
8) d~usive (and podbly advect~e) ehcts on time wle c-a.
We thus use ● three time formalism: k (dieCrete), tl = d., and #a = Cik, the latter

two bein~ tr~ted ~ continuous variabke. We use two space variables: r. (discrete) and
rl = cr. (continuous).

LA & denote by N}o)(r. ) the meu equilibrium populatioxw baaed on the local due
of p and u. Thuy ~e givan by (4.14). The actual mean populations Ni(l, r) will be close
to the equilibrium valua aad may be expanded in powen of c:

Ni = N}O)(J,r) + dV/’)(t,r) + O(em). (5.1)

The corrections should not contribute to the local dues of density and meu momentum;
thus

(&2)

We now stut from the umct conemation rehtions (S,~) and (3.27) and expand both
the N~’s and the bite dlf?erencaa in powers of t. Note th~t all 9nite dI&erencesmust be
ax~dai to Mend order, otherwise, the ficous tema are not conectly captured. Time
and SPUQ dddvea will be denoted Ot and ~r = {Od, a = 1, .... D}. For the multl-scde
fonndbm, we make the bubstltutions

bt -+ edf, + e’dt, aad Or4 Cdp,. (&3)

4 Tbe qudMcation “thermodynam.k” h not so appropriate nlnce there is no relewt
energy mriable

‘ Henceforth we shall just write %elocity”, since thla mess velocity changea Lnspace,
6 The Interpolations cm be done via the FouAer representation If the Iattlct LIp?riodic
‘ Eventually, we shall assume the veloclty to be O(c), but at this point It is morn

convenient to keep ~ wd u aa lndependerit exp~slon parameters,
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The components of t?p,will be denoted O1O.
TCIleading order,O(t), we obtaim

and
(5.5)

i i

We now substitute the quilibrium values (4.14) for the N}o) ‘a and use the veloci~ moment
relations P6 of section 2.4. We obtain the “macrodynamicalEuler equations”

/

P~8 is the momentnm-flux tennor,e
.

Pafl s ~ ciaci@~

ud G(o) and Qi7~ given by (4.15) of section 4. Note that the correctionterm h the r,h,s,
of (6.8) ie O(ud) ‘hther than O(us); indeed, N follows horn the parity-invariance of the
lattice gaa that !lrst orderspatial derivative terms do not contain odd powers of u.

We now proceed to the next order, O(ca), We expand (S,26) and (3,27) to second
order, cokcting all 0(c3 ) terms, we obtah

and

t {
(6.11)

‘ Actually, this is only the leading order approximationto the momentum-flux,
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(11= O, For the NT) ‘s, we substitute their low-speed(1) = O ~d xi cia~iBy (5.2) ~i Ni
qu~ibriunr form (4.14), leaving out O(u’) terms. Reexpressing derivativesof p and pu
with mpect to /1 in terms of space derhtives, using (S.6)-(5.7), we obtain

at,p = o, (5*12)

Eiq. (5.12) tells us that there is no maw dtiusion (there is a single species of particles).
Eq. (5.13) describes the momentum dii?bsion owr long ( O(&)) time-scales. It has two
contributions. The term invoMng 7’~$7A comes horn particle propagation and we shall
comment on it later.

The other term in (5. 1S) involves the deviations N}l) horn the eqntibrium rnau
populations. N\l) vanishes when the equilibrium is uniform. It must therefore be a linear
combination of gradients (with respectto ri ) of p and PU. Linear response theory is ne6ded
to calculate the coefficients. At this point, we shall cmlymake use of symmetryarguments
to reduce the nnmber of coefficients. ‘Weaasumethat u is gmall, so that, to leading order
equilibria are invariant under the isometry group $ of the lattice (see section 2.4). Since
the gradient ot p is a vector and the gradient of pu is a second ordertensor, propertiesP2
and P3 of section 2.4 allow us to write

By eq. (S.2), we have c = Oand ~t + DX = 0. Note that ~ should depend on p, but Dot

‘i) into (S.13), weon u, since it i~ evaluated at u = O. Substitdng the expression for N4
obtain

[01h(m)+b $(P)+&ZXSA7(4W)=W’). (5.1s)
In the sequel, it will be more convenientto collape the set of four equatiom, governing

the evolution of p and ~ on 0(~- *) and 0(# ] tirne.acak, into ● pdr of equations,
written & term of the original VUMee t and r (in their continuous version). We thus
obtab the rnmcrodynamkalequations

= o(d) + o(w) + O(AJ
(5*17)

The equivalence of (5.16) aud (5,17) to (5,6), (5,7), (S,12), and (S,15) foUowsby (5,3). Note
that (5.16) is the standard dmity equation of fluid mechanics and that (5,17) already has
a strong resemblance to the Nwiw=Stokes quatlons.



0. Recovering Isotropy

The maarodynamicd equations (5.16)-(5.17) are not ful!y isotropic. The presence of a
lattice with d.iacreterotathxd symmetrim isstillfeltthrough the tensor

l-!ap~b = x Ci~C!,pQi7b
= ;-’C”(“’C”-w-4

(6.1)

●ppearing in both the nonlinear and difbtve term of {5.17). IWthennore, the higher
order terns in the r.h.s. of (5.17) have no reaon to be isotropic. This should not worry w
since they will eventually tum out to be irmlewt. Contrary b translational discretenmq
rotational discreteness cannot go away under the macroscopic limit; the latter involw
large scales bnt not in uy way “large anglean since the gToup of rotations u compact.

Wehave seen in section 2.4 that tensorsup to third order, having the same &variance
group # aa th discrete velocity set are isotropic. Not so for temcm of fourth order such u
TdB74. I.ndeeo far the IWP model ( section 2.1) cxpiicit calculn.tion cd the momentum-flux
tensor, given by (S.8), is quite Straightforward. The result is

P,, = pG(p)(u~ - u:)+ ; i-o(u’), P,, = /G(p)(q - u;)+ : + o(d), (6.2)

with

(6.4)

The only second order tensors quadratic in the velocity being UOU8and u . u6aP, the
tensor Pa~ is not isotropic

In order to cwentually obtain the Nader-Stokes equations, the terucw T0B74 given by
(6.1) must be isotropic that is, favadaat uder the Ml orthopml group. Thb tensor b
pairvise symmetrical in (a, ~) and (q, 6); born (6.1), it follor-s that it satidea

xTap,, = O, x ()Tepe8=bc4 1-$ .
7 ap .

(6.5)

When the tensor
following form:

Ta576 ia isotropic, these properties uniqutly constrain It to be of the

~4
—— (“’p” = D(D + 2) ‘oiBd + *“46P’ )

‘- ;6apf5,d , (6.6)

For Pneral ~ouptheoretlcd material concerning the Isotropy of tensmw with discrete
symmetrie~ in the context of lattlce g-, we refer the reader to Ref. 36. Cmcid ob
sematione for obtdning the two ~d threedimensional Navler-Stoke~ equations are the
isotropy of pairwix symmetrical tensors for the tri~gular WIP lattice in two dimcnsiou

19



and the faceuentered-hypercubic (F~C) lattice in four dixmmions, and thtn dso for the
pseudd-D thredimen.sional rnodci We give now elementary Proob of these results.

In two dimensions, it is convefiient to ecnsider Tap76 m a linear map from the space
E of twckby-two real symmetrical makim into itsel~

T: A@ - Ta$7’dA76. (6.7)

A bds of the space E b fcmned by ihc matricti PI, F’2, and F’s, umociated to the
otihogonal projections onto the Z1-axis ad onto two ~hx directions at 2t/3 and 4x/3.
In this representation, an mbitmy E-witrix EINIybe written M

and T becomes a th.reby-th= matrix T’bl (u, b = 1,2,3). The key obsemtion is that
the kcxagoual group (rotations by multipkn of z/3) b~.oma the permutation group of P,,
Pa, and P~. Thus T’b is invariant under arbitrary permutations of the coordinates, Le. is
of the form

.

l’~ = #dia@, 1,1) -t~a.b, (6.9)

where diag(l, 1, 1) is the diagonal matr% with eatxks one ad Lb is the matrht with all
entries equal to on~, d # and x are arl+trary mahm. From (6,8) we have

tr(A)=xI+xa+xs, (6.10)

whe~ tr denotes the trace, Weubo note that

P,+. P’, + P, = (s/2)1, (6.11)

where I is the identity (check it for the unit v~tom of the Z1 and Za h). Using (6.10)
and (6.11), we w rewrite (6.9) u

T : A -#A+ :x t~(A)I. (6.12)

,
Rmwrtingto tensor notations, thb becomes

(6.13)

Which is obtioudy isotropic.
We turn to the four-dimenuion.d ewe, using the FCHC model of section 2.3, Lnvtice

under permutatioae of coordinates and rmmd of any coordinate hnp~~esthat the most
general possible form for Tao,t b

m



The x aud # terms are already isotropic. The vanishing of @ b a consequence of the

in-cc of the velm-ity Mt under the ~mmet~ Z with rmpect to the hyperplane ZL+
zg+z3+z4=0, thatis

(6.15)

indeed, consider the vecior Va = (2, O,J, 0). Contracting the # term four times with LJQ,
we obtain 16@; the image of WJunder E is W. = (1, -1,-1, -l), which contracted four
times with the # term gives 4+. Thus invariuce requires # = O, which proves isotropy.

We return to the general D-dimensional c~e, Msuming isotropy. Substituting (6.6)
into the macrodyna.m.ic.d momentum equation (5.17), we obtain

Note that g(p) appearing im(617) L not the same M G(p) introduced in (4.15). Note also
that #(p), which WM introduced in uection 5, ia Ml to be detemd.ne-d (cf. section 8).

We have now recovered macrmopic luotrop~ quatkm (616) b very closely related
to the fluid dynamicd momentum (Navier-Stokes) equations. We postpone all further
rem~ks to the next section

7. Fluld dyrmm.ld tigl.rrm

Let us rewrite the macrodynamical quation.a for m~e and momentum derived in the
previous oectioos in a comp~t form whkh brings out their dmilaritka with the quations
d flu-iddynamicx

u~p+ Op(pup) = o,

L?t(p.)+ O#Pop=dpsa~-to(d) +

The momentum-flux tensor Pap and the tincous Btras

(7,1)

0( A4’)+0(AA). (7.2)

tensor S08 Me given by

(74)
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where g(p), ~, UC,and VPare defined in (6.17). Their va!ues for the FHP and FCHC
models are given below

s-p #
v(P) = ~’ ‘ = ;, Uc(p) = -:*(P), up = -:, for FHP

412-p
U(P)= ~ ~! c: = 1, v,(p)= -416{p), f+ = -;, for FCHC.

[7.5)

Variousremarksare now in order. When the velocity u is very small, the mor.nentum-
9UXt?mor reduces to a diagonal pressure term P&p with the pressure @veinby the “isother-
mal” relation

p = ~p. (7.6)

EYomthis, we infer that the speed of sound should be c,, nunely l/fi for FHP and 1 for
FCHC.

The momentum-flux tensor in the “real world” is .Dap = @aP + puaup. This form is
a consequence of Galilean invariance, which allows one to relate thermodynamic equilibria
with vanishing and nonvanishing mean vebcitia. The lattice g= momentum-flux tensor
(7.3) with nonvanishingvelocity differsby an additive term b the pressure and a multi-
plicative density-dependent factor 9(P) in the advection term. We shall we later in this
section how Galilean inmriance can neverthelessbe recovered.

Eq. (7.4) is the stress-strain relationfor a Newtonian duid having kinematic viscosity
Ve+ UPand vanishing bulk Viscosity.[es) The traceless character of SUP (which implia
this vanishing of the balk viscosity) corn- from the tracehas character of Q-s, defined
by (4.15); this result would be upset by the presenceof rest-particles SUA as exist in the
models FHP-11and III (cf. Appeadix E). The kinematic viscosity has two contributions.
One is the ‘collision viscosity” vC,not yet detemined, whkh depends on ~he details of
the collisions and is positive (cf. section 8). The othes one is the “propagationviscosity”
w?,which is negative and does not involve the colMons. The presence of sncb a negative
propagation viscosity is an effect of the lattice discreteness (cf. Ref. S9)

The generalstrategy for obtaining from (7.1)-(7.2) various standard fluid dynamical
quations is to resale the space time and veloci~ variables in such a way u to mde
undedrable term irrelevant = c ~ O. Three difkrent r4gimes will be considered in the
following subsections. They correspondrespectivelyto sound propagation, to sound prop
agation with S1OWdampiag, and to incompressibk (Navier-Stokes) fluid dynamics.

7.1 Soua$prqqat48a

Considera weakperturbation of the quilibrium sdntion with density ~ and velocity zero.
We write

P= Po+bf* (7.7)

In a suitable limit we expect that the only re!evantterms in (7.1)-(7.2) will be9

i$p’+p(pvu=o
(7.8)

A#tu + C:vp’ = o*

‘ ~om here on we use vector notation wheneverpossible.
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Formally, this r@ne isobtained by setting

r c-’rl,= (=t-li~, p’= dpj, U=du, (1>0. (7.9)

It k then straightforward to check that the leading order terms take the form of eqs, (7.8)
(in the resealed variables). Eliminating u in (7.8), we obtain the scalar wave tquation

N ,—. @7=p’= o.#’ (7.10)

In other words, density and velocity perturbations with amplitud~ o(l) on temporal and
spatial scale 0(~) propagate as sound waves with speed c, .10 Since the present r&i.me of
undamped sound waves involves only tensom of second order, it also applies to the HPP
model

7.8 Damped sound

Another r&i.me includes the Viscous damping term, so that instead of (7.8) we should have

a(p’+~v”u=o

( D-2

)
pO&u +4 VP’ = w(h) V2U+ ~vv “u .

(7.11)

To obtain this ri$gim we proceed as in section 7.1 and include an adchtionaltime t2 = cat.

lbrthermore , m the scaling rebtion (7.9) we now reqnire a >1, that is, u and # should
be o(c); oth~ise the nonlinear term becomeu also relevant. Note that the damping ia
now on a time scale O(c-a). Since propagation and damping are on timesdes involving
different powers of c, it is not pomible to describe them in a single equation without mixing
Ordmo

It is known that many feaxurea of low M numbe#l flows in an ordinary gaa can be
deucribed by the incompressible Navier-Stokes equation

afu+u” vu= -Vp+vv=u

V“a=o.
(7.12)

In the “real world”, the incompressible Navicr-Stokm equatio~ can be derived from the
full compressible quations, using a Mach number expwsion, There are some 5ne points
in this expansion for which we refer the interested read- to Ref. CM. Ignoring thew,

the essential obsemtion is that, to leading order, demity wdations become i.rrelewt
eve~here, except in the pressure term; the Mter become slawcl to the nonlinear term
by the incompressibility constraint.

‘0 We have used here th; Laadau 00 and o() notation.
“ The Mach number h the ratio of a characteristic flow velocity to the speed of sound
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Just the same tind of expmsion (with the mne di.iliculties) a be applied w lattice
gas dynamia. We start from (7.1)-(7.2) and ihxze the density by setting it equal to the
constant and uniform due ~ eve~here except in the pressure term where we keep the
density fluctuatic~s. We JAWignore all higher order term O(tau), etc. This produces the
following set of equations

~atu + pog(po)u “vu = -C:v$ + ~u(/lJv’u

V.u=o.
(7.13)

The multing equations (7.13) dfier from (7.12) only by the presence of the factor g(pO)
b front of the advection term u cVu. AS it stands (7.13) is not Gal.ihn invariant.Thti of
course reflects the lack of Gdikn invarian ce at the lattice level Sirnihrly, the vanishing
of g(~) when the density per cell d = ~/b is equal to 1/2, ie. for equal me.m numbers of
particlti and hohw, reilects a duality-invariance of the lattice gm without counterpart in
the heal world” (cf. end of wtion 4.2). However, as soon M d # 1/2, it b straightforw~d
to reduce (7.13) to the trne Navier-Stok~ quations (7.12); it wMlcu to rex-ale time and
viscosity: 4

(7.14)

Now we show that there is actually a resca.ling of tibles which reduce the macro
dynamical equations to the incompres~ible Natier-Stoka equations. We set

Thus, all the relemt terms w O(ca) in (7.1) and O(cs) in (7.2). The higher order terms
in the r.h.s. of (7.2) are 0(c4) or smaller. In this way we obtain, to leading order (Vl
denota the gradient with respect to rl)

dru+u”v~u= -v#+V’qu
v~”u=o, (7.16)

which are exactly the “mcornprewibleNavie~Stokea quations.
Various comments m now made. The expansion leading to (7,16) is a larg~scale and

low Mwh IIumber expansion (the former m hem Wendy proportional to the latter). It
elm follows from the scaling rdations (7.15) that the Reynolds number is kept 0.xed.It
la not possible within our Cramework to have an asymptotic r@me ledng to nonline~
compressible equations at finite Mach number. Indeed, the speed of sound is here a Hnite
fraction of the particle speed and it is es.wntial that the macroscopic velocity be mall
compared to particle speed, so u not to be contaminated by higher order nonlinarities.
It ianoteworthy that models can be constricted having mmy rest-particles (u-velocity)
with ubltrarily low speed of sound.

In a pure Navicr-Stokes context, the
is not a serious difllculty; as we have wn,

non- Galilean Lvarkmce at the microscopic level
Gali.lean i.rmriance is recovered microscopically,
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just by rem-ding the time variable. However- when the models discussed here aze ~neral-
iti to inclnde for example multi-phase flOWor hoyancy effmts, a more serious problem
may arise because the advection temn of sdaz quantitie swh as chemical concentrations
or temperature involves usually a factor g(p) different hm that of the nonlineu advec-
tion term in the Navier-Stokes equations. Various solutions to this problem have been
proposed.(t?’e~)

There is a tiant of our formalism, Iuding & to the incompressible Navier-Stokes
equations, but in terns of the w current j = pu rather than the velocity u. The ualog
of (7.13) (without rescdng) is then

(7.17)

V.J=O.

Since J and g(h )/po change sign under duality, (7.17) brings out duality -intiance.” A
more d~kive adwtage of the J-repruentation is that it gives a better approximation to
the steady Navie~Stokes quations when the Mach number is only moderately srmll This
in because in the steady state the umtinuity equation impli~ exactly V .j = O.

In time dimensions, when we use the pseudo+D FCHC mode~ there are three i.ud~
pendent space wziables r = (zl, Za, ZS) but four velocity components

Uj= (U,Z7,)= (q,u,,q u,). (7.18)

The four-velocity Ut satrnfl= the four-dimensional Navier-Stokes qaations with no z4-
depend cnce. Thu.a, the threevelocity U satiafla the th~ensiond Navier-Stokes equ-
tions (7.16), while Ui satiafie (note that the pressure term drops out)

8TV4+U .Vlu, = UJV;U4. (7,19)

This m the quation for a pwive WA with unit Schmidt number (ratio of viscosity to
d~usivity).

Finally, we refer the Nader to Appendbc D for the inclusion of body forces in the
Navie*Stokea quations.

“ In thr u-reprewntation duality-intimce u broken because we have decid~d to work
with the velocity of particfes rather than with that of holes.



8. The Vbcoalty

All the macroscopic quations derived in section 7 have a univmal fore, which doa
not depend on the details of collisions. The kinematic shear viscosity v, which we droll
henceforth call the visccmity, d~ not possess this univemlity. Transport coefl!icients
such as the viscosity c.hmactetie the linear rmponse of qdibrium solutions to mall
externally impmed perturbations. It u known in Statistical Mecha.uics that the relaxation
(or dissipation) of ectemal petiurbations is connected to the 9uctuatio~s at equilibrium
via ductuatioa-dhipation relations. Such relations have a coanterpti for lattice gases.
Two quite dtierent approach= are known. In section 8.1, following a suggestion already
made in Ref. 21, we present the “nohy” hydrodynam.h view-point, in the spirit of Landau
and Li&hitz. [ee)671Another ●pproach, in the spirit of Kubofeel and Green, (egl using a
Liouville quation fcmmlis~ may be found in Ref. 41. In section 8.2 we introduce the
lattice analog of the Bottzm.ann apprcncimation, which allows an explicit m.lcuhtion of
the visccmity. In section 8.3 we discuss some implications for the Reynolds numbers of
incompressible flows simnlated on lattice gases.

8.1 Fluctuation-dtad$ath mlatioa ad ‘‘~0~ ‘‘ hydrodyauwica

We flint ~plain the basic ideaa in wotdx Spontaneous fluctuations at quilibrium in%lve
modes of all powible scalu. The fluctuations of very lmge scales should have their dy-
namics governed by the macroscopic qustions derived in sections &7. SUCIIUuctuation
are also expectd to be vety wak, so that lineu hydrodynamic shou!d apply. Large-
sade spontaneous fluctuation me constantly regeneratti, and & ● rudom m~neq this
regeneration is provid~ by s random fora (noiue) term which can be identi.6ed and ex-
pmsecl in term of the 9uctuAng m.icroucopicnriabk. h this random force hu a shott
comlation-ti.me (i.e. small ampared to the U&time of the Iargeucale fluctuations un-
der investigation), then ~ &e-scale mode u haa its d~amics governed by a Langmdn
quation]s It follows that the variaace (us) can be expressed in terns of the damping
coefficient ~ [related to the viscosity) and of the time comelation function of the random
force. Alternatively, the mriance (~) can be calculated from the known onetime quilib
rhm properties. Identik.tion gtm the vbcosity in terns of quilibnum timecorrelation
functions. This u the gmeml programme that we now camy out for the spechl me of
IaMce gwm We mtrict oareelm to eqdibrium solution with zero man velocity.

We shall w & thb ~tion the following notatjon. The density p ad the us cu.mnt
j w no bn~r given by their exjmdona (3,24) in terms of the mem populations; instead,
they m dekd in tetma of the flnctmting Boolean field

We denote by ii, the ductuating part of the Boolean held, deUned by

nl(kr.) =d+ iit(f*,r.), (8,2)

where d b the density per cell

‘s For the cue of lattice gwY, we shall actually obtain a finite difference ~quutiou
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We introduce me~averagd fields by taking spatial svuages over a a distancec-1,14
That will be denoted by aagular brackets with the subscript mu. The mes~avaagm of
n,, p, and J are denoted n,, A and J mpectively. Locally, the equilibrium relation (4.14)
should hold approximately for the me-averaged populations. We thug write

(8.3)

ill reprsents tlie (stillunknown) input km non-hydrodynamic fluctuations; n:’) is the

contribution analogous to dl~’) in (5.1), tiing horn the grwiients of mem-averages. Note
that in (8.3) we dropped contribt,tion.s nonlinear in the maM curmmt; imdeed, we should
be able b determine the Viscmity from just Iinem hydrodynami~.’8

We now derive the quations for noisy hydrodynamics. As usual, we stwt from the
microscopic consemation relations (3.16) and (3.17) and we take their meso-avem~:

~[ni(L + l,r. + Ci) - ni(fw,r.)] = 0,

L ~ fli L+ l,r. +Cd) - fil(L,r*)]= 0S
i

Substituting (8,3) into [8.5), we obtain

+ ~q[n{~)(f. + l,ra +C, ) - n~l)(L,r*)l = f(~,,rw),

(8.4)

(8.5)

(8.6)

(8.7)

is the mndom force. Ue&g (8.1], (8.2), (8,3), (8.4), and (8.5) , we can& write (to leading
orhl in gmd.lents)

(f(i,,rw) = -@
)

C’q+Dqf C)G)[ii, (l.+ I,r, +%)- fi:[ld+l, r.+ej)] .
t]

‘(i8)
The I.h,s. of (8,6) 1s expaadtd in powers of gradlentn (i.e. of ~), aa wc have done

in section 5. However, we keep flnitc diiferencm rather thaa derivatives in tbne because
of the presence of the rapidly nrytng random force. Since we only want to identify the
sheu visccndty (the bulk ‘vt.scoai~”h zeru), it suElces to extract the solenoidal pti of the
——— —

‘d Morepmci.wly, by dropping ~patlal Fourier components with wav~numher k > (.
‘I’ This is not enctly true in two dimensions m we shall iee below,
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hydrodynarn.ical equation For this and ocher reasons it i~ better to work & Fourier space.
We define the (spatial) Fouriertramfonn of the fluctuating Boolean field by

where the components of k me multipla of 2fl over the lattice periodid.les in the mrious
directions. We wnilarly define ~ and ~, the Fourier tr~sfo~ of the mm current and
the random force. Their solenoidd parts, projection On the hyperplane perpendicu~ to
k, w denoted JA and ?4.

To leading order in k, we obtain horn (8.8), using (2.5)

‘J-kk n,(t. +1, k).f4(t., k) = -
Z(

ik”cj Cj - ka )
(8.10)

The meso-a~eraging la jum the reatnction that k < c. Fourier transforming (8.6) and
taking the soknoidal part, we obtain for small k

id~~+ lsk) -Jd.. k) + uk’j~(t.,k) = ?L(L, k). (8.11)

This is our diacret~ Langdn equaticm. Note that v & the (total) viscoahy v = v, + Up. In

principle -e must expand to second order in k to obtain the viscous terns, but we could as
well have written the l.h.~ of (8.11) a priori, since we want to me (8.11) to detmrnfnethe
vbccdty. It is maightfoward to SOIVC the IJnearfln_itediEemce quation (8.11). Mm

the solution, w calculate the mriance 01 jA and obtdn, when the viscous duping time
l/(vka) is luge compared to the correlation time of the random force

(8.12),

where the asterisk denotes complex conjugation. The vuiance C4]Acan also be akuiated
directly using (8.1) and

(ML P-)% (~., 0)) = ML,L
(8.13)

(fi!) = (d) - (m)s -d-#,

where 6P. denot~ a Kroneckcrdelta & the spatial !eparaticn A. We obtti

(8.14)

where 1’ denotes the total number of lattice pd.nt~ in the perlodicity volume. Thus, the

l.h o of (8 12) i~ k-independent We evaluate tht r h ~ of (8 12) in the Iimlt k - 0,

ud.ng (8 10) Wp ?kip ~ome i.nt~rm~diate Ytep? Iu Whid we (i) u~e the ~tatior~i~ of ch~
nuctualion~ ~1 ~uflib~um, (u) use the i~otropy of wcond and fourth ~rder ~ymmctr]cal
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tenson, (iii) interchange the k -0 limitand the Mhite summation overL. 10 Identifying
the two expressions (8.12) and (8.14), we obtaia for the viscoeity

This completes the fluctuation-dissipation calctition of the viscosity. A consequence
of the Fourier-spacerepreemtation (the upper half of (8J5)) is the positivity of the vb-
cosity; indeed, the viscouity is, within a poeittie f~tor, the timmunmntion of the anto-
correlatim of xi QJ~Pfi(k O).

!hmrd comments are now in order. It Meaeily checkedthat the L = Ocontribution
to the viscodty (lower part of (8.15)) is crn/(2(D + 2)), that is, just the opposite 6f the
~rop~ation viscosity” v? introducedin section 7. The vbcosity isthe sum of the collision
vbcoaity u, =d of v,. Using the identjty

(for m even function Z(k)), we lind that U, hae a mpreeentationsimilar to [8.1S) (lower
part), with M additional fkctorof 2 and the tmmmdionoverf. extending only from Oto
m. We thereby recover an expression derived in Ref. 41, using a dbcrete wimt of the
Green-Xubo formalism. Itiumuwring to have two completely dii?erentderivationsof the
viscosity, since we considerour fluctuation-dissipation derivation somewhatdelicate.

It is of interd that the Suctuatkm-ddpation derhdon givee directly the (total)

vbcodty. This ouggd that the splitting into collidon and propagationviscosities b an
artefact of oar multhcab fbnnalismo

There imno clod f- reprwnt-tion of the comhtion hndion (fii(t,, ~.) fij(O,O)),
except for rnhortthem However,(8.15) h a good atartin$ point for a MonteCdo caku-
lation of the vfscosity (cf. ReL 41).

In our ddwtlon we havedropped all contributions f50mnonlinearte- in the mass
currentj. Is this jugtihd? If we reinstate the nordhar term, we obtain, forthe solenokhd
part of the uiem-averaged mas, current, the Navier43tokes equations (7,17) of section 8
with the additional randomforce, the Fouriw repreeentatiom of which k given by (8,10).
On macroscopicscalee this force mv be considered M $-correlated in time. Its spectrum
folkm, ?orsmall h a kD+l powdawti’ The Navier-Stokes equations with thh kind of

10 This b equivalent to asmming that the viscoelty b !lnite, cf. below,
1’ A factor &a comes from the average squared Fourier amplitude ~nd nnother factor

k~-] from the D-dimensional volume element,
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power-law forcing is one of the few problems h aonlineu Statistical Fluid Mechuic-s which
m be sy-atematicd.ly ua.lyzed by renormdntion gTOUpmethd,(70’flJ For D > 2, the
noulbw term L3i.rrelemt ?or small k M that ourAcuhim of the dscosity is l@imatel
At the “crowover” dimension D = 2, the nonline~ term becomes “marginal”; it produce
a renormalbation of the vbcoaity which is then logmithmicdy scai~dependent. Thus,
in the limit of infinite w-abwpmtion, the ViSCOOitybecorcm inllnite in ~Ai.mensions.
Thk is an hstuce of the known divergence of transpoti coefhcients in twdknensional
Statistid MechuiCs.(67’7’)Alternatively, the tiergence of the YbcMity in Ndi.mensions

w be viewed as due to the pmenw of a ‘long-time-tall”, proportional to IJD’3, in
the correlation function appearing “m(8.15). Attimpts have been made to observe long-
time-tailsand sca.kdependence of the visccsity in Monte-Carlo simulations of lattice gaa
models.(c’11’41’42J Tb.ia i.s not Wy bmuse (i) the dhc~a show up only at vew bng timee

1

or luge male) and may then be hidden by lMcmte-Carlo nobe ( insufficient avenging)
ii) the effects should get weaker as the number b of cells per node i.ucrewa (cL end of

smtlon 8.2).

Finally, the noisy hydrodyn~ics fommllsrn - be used to edhnate to what extent
the mlcroacopic noise contand.rmtes the hydrodymmnic mac~opic sinai. Estimates; w
sumhg the signal to be m-averaged in space aad time, hwe been made in the context
of fully developed incomprmslble two and thmdlrnenskmal turbulence.lc It bu been
found thmt in two dimensions noiee i-nrelevant only at ealea ha than the dissipation scale,
while in three dimensions this happena only fu out in the dkipation range.(m)

Explicit calculation of trwspoti ccdficientt w be donefor lattk~ pea, using the Boltv
mann apprcdnation. In U approximationone um.mee that particJM?ntefig a collbion
prou~ hsve no prior cormktform Tbe microd~amicd formtim of section 3.1 iapartic-
uldy well eulted for d ‘tic what we shall cdl the Iattka Bo/tzm.uI equatim. We take
the ensemble ●veqe of q. (3.9). Tbe 13001eu variablea w become the meu popu.laiious
N, i Tbe ●Ymge of the coiliaion function A~ cm be completely factorkadl throb to the

Boltmnn.n apprmdmstion. We obtain

Herw, AUtbe h’,’~ are enhted st t. ~d r“, The A(# - ~’)’s, the trwuition probabiUtiea
Mmicicti in section 2.4 w the sver~ca of the Boole~ transition tiblee f,f, Note
that tbe (Boltma.nn) collfmion fUJICflOII A{bi” VUI~hM ●t wu~b~~m.

The Boltz.rmnn hpi)rcnd.mation in ordinuy - is amxhted with low deneity situp
tiona, when the mem-fkee pdh is so lup thst puticlea mtering a collision come mo~~ly
from dintaut uncorreiated re~onu Th~ Boltr,ma.nn approximation for a lattice P app~m

—.

‘l; F/ote thnt in the incompressible c~t, only ~olenoldd nob u rclemnt,
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to have ● very broad validity, not particularly re~tricted to low densitim. *9 We dm.il come
back to the matter at the end of this section.

Our lattice Boltuwm ~a~ion (8.18) is a finite Mmnce quation. There is a
dMerential vemion of it,obtaind by Taylor-expanding the tlnite di.llerences to tht order,
namely

8tN, + C, “VN, = A~O’”, (8.19)

where A~”’” is deflneh as in (8.18). Doltzmann equations ~ti the form (8.19) have
been extensively studied as discrete velocity approximations to the ordinary Boltzmann
equationot14 - 16118JThe (dWerential] Boltzmann formalism has been applied to various
lattice gaa models.($2+861This formalism correctly capture~ all hydrodynamic phenomena
involving only fht order derhtivm. Indeed, for these, we have seen that only the equi-
librium solutions matter, and the latter Me c~mpletely factorized Diffusive phenomena
hvolve second order derivatfies. Hence, the p~pagation vkositk (cf. section 7), which
are an effect of httic~discreteness, =e not captured by the (differential) Boltzmann equ-
tion. At low deneities, where collision viscosities df minate over propagation viscosities,
the discrepancy is imlewmt.

We do not intend to engage into extended discussions of the consequencesof the ia~tice
Boltzmann quation, because most of the derhtiort of the hydrodynamical quations is
&dependent of this apprmdmtion. The!e are howevertwo importantredto which follow
from th~ lattice Boknann quation. The 9mt one concerns the irrevemible approach to
equilibrium. It is derived by adapting u H-theorem formalism to the fully discrete context
[see Appendix F by H4non).

The second rdt is an @icit derivation of the viscosity. h the Boltrmwm
equation this iE usually done by a Chapman-Enskog fomsilsm[’’”s) (me also Gatig-
nol’s monogr~phy Ref. 16). Thla formalism is eaaily adapted to the lattice Boltuna.nn
equation. (~e) With the genemi multi-scale fonzmlismof sections 6-7, we hwe ahndy cov-
ered a substantial traction of the ground. Futihermore u aitemattve derivation, which
stays completely at the udcracopic level is presented in this volume by H4non who also
diwusea consequencesof M exptkit Visemity-formula.(’”) We shall thereforebe brief.

TLu problem of the viscosity amounts to 9nding the coefficient # relating the gradieat

‘1) of the meanpopulation, throughof the mass currantP to the kt ardorperturbation Nf
@ eqo (5.14) of Mctbn 5)

We sw from (5,1) with N/o) gtven by (4.14). We wbstitute imto the lattlce Boltzma.nn
equation (8.18) and identify the term O(c). For this we TayloNxpand bite differenc~

19 Even ●t low densities, the Boltzmann approxl.mation may not be valid. Indeed, with-
out effectively ch~ging the dynamka, we caa reduce the denulty by tubitr~ l~ge factom
by having the particles initlaliy located on a sublattlce with som~ largF periodiclty; three
he however pathologically unstabie configurations.



to firstorder, use (5.6) and [5.7) to expwss time-derivatives in terms of spac~derivatives,

Here,

is the iinemhi coMsion mdriz evaluated at the zero-velocity equilibrium, which
expressed in compact form as(so~

We eliminate Njl)

d

between (8.20) and (8.21), to obtain

[8.21)

(8.22)

can be

[8.23)

.

($.24)

This should hold for arbitrary gradients of the mnas current. Thus, the quantity be~een
square brackets vaniahea. T~- means that, for any (u, /9), Qiu$, cond&red as a vector
with components Ia&lled by i, is an eigenvector of the lhmrized collision matrix with
eigenvalue D/(b@ @); a direct proof of this may bt 3erived from the $invarianee. from
(8.24) we can edy caculate 16; the drnpleat is to multiply the vanishing square bracket
by Qiafl and sum over i, a, and & If, h addition, we aasume the isotropy of fourth order
tensors’,wc can uue(M?) to obtain a clod-form expression for the COIliaion viswsity

(8.25)

Ia AppandbcE we give explicit forrmk calculated fkorn(8.26) fot the viscoaiti- of
the FHP modelm(including tho~ with rest-particleawhich requireminoramendments of
aur formlim).

Wefinallyaddrem $he questionof the valldity of the lattice Boltzmann equation. Corn=
parisonaof the viscoeitieaobtained km shnnlations@’27’sol or MonteCarlo calculation$’e)
with the prediction of the lattice Boltzmann approximation sugged that the validity of
the latter is not limited to low densitiee. Weknow that equilibriumsolutions are factori~d
and that transport coefficients can be calculated with arbitrarily weak macroscopicgradi-
ents. Wwver, tbb cannot be the basis for the validity of the Boltzmann approximation:
a weak mcmcopk gradient implies that the probability of changing the state of a given
node from its qulilbrium ~lue is small; but when such a change takes place, it produces A
~trong mkroscopic perturbation in its environment+ Otherwise there would b~ no (wink)

● n



divergence of the Wcmiv h *O d~~~ionw bd~, the Boltutmn.n ●pprcdmation do=
not capture nois&nduc~ r~o~mtion ~tite (d ad of section 8.1). A more tikely
qdanation of the success of the lsttke Bdtrman.n appdmstkm may be that h u the
leading order in come khd of I/b q=~ion. -here b ie the nm.ber of velocity cells ●t

each node. At the moment, we cm only SUPPOrt this by the followingheuristic qprnent.
Deviatiom fromBokmann requirecomlatiom be~ecn particlesentetiing● collision. The
latter tie frompwious collisions,to when b is large the weightpertaining to such ewnts
ought to be SMAIL

Knowing th? kinematic shear tiscoeity in terrcs of the density and the collbion rul~, we
- miculate the Reynolds number associated to a large-scale SOW.

A natmd unit of length is the lattice constant (distance of adjacent node), which
haa ben taken qud to one for the tw-dimensional HPP and FHP models. The fout-
dimensional FCHC model has ● iamice coastant of W, but its three-dimensional proj~ted
vemion, the pseud~#D FCHC mode!, resides on a cubk lattice with has also unit httice
constant. The ~imenecessary for microwopic informationto propagate from one node to
it- connwting neighboum defl.nm ● natural uit of tium We then have s natural- nnit
of velocity: the speed nemaa.ry to trwd the httice cxmtaat (or the projected Mice

cocstaut for the pwdcAD model) b ● unit time. In theme unit.q the characteristic wale
and velocity of the dm W be denoted by ~ and UO.

The m.ndanl de9niticm of the Reynolds number h

~ = Aracteristk scsle x cbaruterktk ~ekdty

kinematic ahau d8cdty “
(a2u)

Ln deritig the Nmier+toka eqtmtioris b auction 7.S- we rmAIed space, time, Ve!odty,
preamre =d viocoaity (cL q. (7.15)). The reacalhg cdepu (by C)d of vekity (by
e-’) csacel in the numerator of (8.26). The mcded ticdty is ti(~) = v(h)~g(%).
Hence, the IbY@& nnmber is

(&H)

h order to operate in an imcomp=ibb rdgirnu,the m- M doukl be small compared
to the SPA of -d u,. The Mar la ❑odel-dupemhnt: c, ~ l~fi for FHP-1, c, = @
fcw FHP=~ ~d HIP-III, aad c, 01 for FCHC (d section 7 and Appendk E). Let m
therefore reexpmm the Reynolds number h to- of the Maeb mzber

A/=:, (8.2$)

We obtdn

when

.-

90 Colhlonrn produce corrciatlom

(8.30)

whenever the pu=tlclm arE not @Uctly at equdibnum

.l~



contdns sII the Iocd information
h dow simulation rJSiDg httke P, it b Of btemst to operate ●t the density which

timi.wa %, Let us work thk oat for the sknplent‘x of FHP~I.For the &wit-y, we
age the lattice Bolturmn value mea in A~.pendix E. We h~e

11-2d.—U(h)=ql -d’

Here, d is the ❑ m density per cd

1 1
+) = d=:.

12d(l - d)s - i’

Substituting h (8.30), we tid that

(8,31)

K=
man mu& = 0387, for d = dmu = 0.187, (8.32)

Results for FHP-~ and HIP-III ue @en k Appenclh E. Note that a gain of bout a
tutor 6 is achimed in gcd.nlfrom~-I to ~~-~, bmaw the latter include mmy more
ccdlisionrn.For the pseudo-4D FCHCmodel ttere is work in progwa on the opthnb.tion
of collisions. It la alrubdy kn- that ~“” is at lead Q.(n)

Hlgb Reynofds number incompressibh i:ibuleut f!ow hsve a whole mn~ of ecales,
The srnd.lest effectively excited w-de b ulhd be dhip~tkm tie ud denoted 4. It
is then of interest to find how muy Iattke cme(~mts us coDtahIed h ~, since this will
determine how eEective Mke w are in ti”imukh~ high R~olds number 90WS.(lISSJ
For tlIiJ, let to denote the inte~ M& d the flow. Be~een to, ~~ ad the Reynolds
number R, there is the follwing relation

~=~--,
fo

(8.33)

where m = 1/2 b two dimenaicms ~d m = dj’4 & thrwa d&munsionti. In two d.lmen-
sbns, (8,33) i-es consquance of W BStielO~KmkhnS.n(7sI”) phenomenologhl thm~
of the en.strophy -e, which k d iupporki by numkwhl .hmulslhs.~m) h three
dimensions, (8,33) follows born the KObgCmYV@l~ phunomenowml theory of the ene~
c.w.ade, whkh iJ well suppoti” ~ uxpari.rnatd datatti) Udng (8.29) aad (8.33) ud
uoumhg thd & has k mdxnam duo ~“, W obtain

~ = (M~U)-* ~ = &A&w)-i R* in %D, (&M)

Ucl
Q = (M~=)-~ ~ = (M~”m)-’ R~ in $D. (834)

in AUcsme, we see that fd - m u R + m, hut Iunch mm dcmty In three than in two
dl.mensions, We ue thw mud thst at MO Rqmoldmnumbers the aepuation of scale
between the lattice conetant and Q, naes.s&q/ for hydrodynunk behdmr is o~bflecl
Hsvi.nc it tm well oathlled my however be E cnkwd bledng, M etras.ed h Ref 33

Indeed, in hydrodynunlc simulations uain~ lst~ic~ w it h not ded.rsble to hrve too

‘1 Small i.ntermitteucy corrections which woIIJd Yiight& hcreue the exponent m umnot
be n]ed out,



much irrelevant microscopic information, Fortu.natdy, In three dimensions there ia no

serious problem. ‘Ib Ultutnte th~ po~t, we t~ M = 0.3, ● Mach number St which
compmndbility e#ects c- k ~ely mor~, we tie the maximum kncmn due & =
9 for the FCHC, and we take ~ = lC$, a fairiy luge tiue which i.mpltes ● memo~
requirement of at leaat 24 gigabits; km (8.S) we Ilnd that td k about three lattice
constants. In two dimensions, 9* ~cu~tions with the FHP models give t~’s of reveml
tens of lattice constants. It is thereforeof inte~t in two dimensions to try to d~-
the viacmity, thereby increasing ~“’x. One way ia to use the foatimensional FCHC
model p~~td d-n to *O mther tbu th= Nmensicm. Note that it b not correctto
infer from dimensional eadpb that ne- ~“” must be 0(1). ~“- b very much
s function of the eomph.dty of collisions. h ecample, by going horn FHP-I to FCHC,
~“” imream morethan ~enty times.

90 CcMlchJ910n

IrIStdstid Mecbanics them uc mmy hstmca dm two models, mkKKopkaIly qwite
dil%rent, have the same larcwcak pmpefik. Fm exunple, the Ising model and &real
Ferromagnethaw presumably the came krsde aithd behsviour. Sidlarly, the lattice
g~es studied in this paper, such M FHP and ~C, am IMMOS@dy indiatigubhabk
f!romMI fluiti. This pfim nowith m ~ttii~ altmative to the traditional aim~
tions of Fluid Mechank In Mke t- dmuIMMs, we Just man.lpulatebits repremting
occupation of mhmoscopiccells. The physic~ interpretdon u~ not be in tams of p-
tides movht and colliding. The id~ - ~eu be -tended to include prom such

Ym &ernid reactioas m muM-phaM SOW.fst-W h open qu40.n b wether thm m
cellulu •utom~ imp)ementatkmeof p~~ whkA in the MI world do not have ● db-
crete micrmcopic origin, WJ@M pmpagatba of ea. waw. More genmlly, what am
the PD.E.’s wh~ w be *&at& implemented on ceIlular ●utomata? We emp~
ud!dent~, bMUM there m alwm brnte force impbmentaticm: replace deWivm by
dn.ite dMerencason ● mguk grid and UMbite doatiag point truxatkms of the ecdn-
uous Mdn. ‘l’heresult muy be Wmd u ● cdhlM automaton, but one in which there h
sa “’bit damocra@, Inschs M there k ● rigid hlemrchical ordu be-w tho bits.

our ddvatbm d hyd~ti hm tha ~yn- k room for bpm
ment. A ~ ma.mptkm mde in such 4.1 ~ be formubtd M follow hOOu the
tnvarhnt mmra d the microd~am.kd aq-tbns, Ox the c.ompbtely facti am
(whkh play the rob, hen, of tho mkroanoakd enwnble) b rebmnt in the limit of large
bttic~. Ons finite lattke with determlnimtkmd iavertIbb updating mla, we expect that
there are many other Invubt me~ures Indd, phe space & s finite wt and updating
is ● permeation of this M; it is thus uniikeiy thti there should be a clod orbit ping
through all points. So, we do motexpect the dbemte quitient of u ergodic theoren
Anww, e~odk rmulis shouid be imlematt On the one hand, cm an L x L lattIM with

b bits per node Its tdea ?L’ updates to vidt dl Conagmtbru (if they Me accem$b!e).
On the other haad, we know (horn tknulatlons) that lcd equiUbrhxn b adwed h ●

few updat~ and global equUlbrin.m b scbleved on ● dL8udve thne Kale (approximately
L’), We bciieve th~t, ou large I.attlcm,the factorizedqull.lbrium dltrlbutions constitut~
some kind of ‘tied point” to which there is rapid convergence of the iteratd Boolem map



dedned by the microdynamicd qaation~ of section 3.1. Understandingthisprocess should
clarify the mechanism of i.mvenibihy in lattice gm -d, ewntnally, in real gws.
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J.-L. Oneto, S. Omag, H. Rae, J. Searby, Z. She, Y- Sinai, T. To#oh, G. Vichniac, S. Wol-
fram, V. Yakhot, and S. Zaleski- This work was supported by Enropean Communitygrant
ST-2J-029-l-F, CNRS-LoaAlamoo grantPICS “OelhdarAutomah Hydrodynamic”, and
DOE groutm.

-.



.4ppondlx A. Bade sy~~t~ of HPP, FHP, and FCHC models

We sh~ that the models HPP, FHP, Md FCHC, introducd in wction 2, sat~ the
syuunet~ ~umptions (i) th~gh (iv) of =tion 2.4- tiumption~ (i) and (ii) are obvious
for all three models. Let us consider (iii) and (iv) succe@vely for the three models.

Let us take the Z1 b in the direction of the vector Cl. The isometV gr~up $ of the
velocity wt is generatd by permutations of the Z1 and 22 ccmrdinate ud revemals of any
of them. Clearly, any ~o vectcm c, and e, can be exchanged by some bometryl so that
ssmmptions (iii) holds. Condder a particular vector, say, c1. The subgzonp $1, leatig
Cl i.nwiant reduce to the identiW and r~emal of z2; this implies parts (a) and (b) of
amumption (iv).

Let ns take the xl d in the dtiection of cl. The isomet~ group J b n~ generated
by rotations of Y/3 ud rend of the zz cmrdi.nate. h.sumption (i-ii) is obvious. The
subgroup JI rduce again to the identity and the reve~d of Za, so that (h) foIlows.

?ac

The FCHC lattlce WM defined in W-tion 2.3 with explicit rderence to comd.i.ndm ZI, z2,

J8, and 24. In thin coord.hte system, the wlodty aet kaformed of

(M,*l,O,O), (*1,0,*1,0), (+1,0,0,+1)

(0,+1,+1,0), (0,+1,0,+1), (O,O,M,*l).
(Al)

BY the orthonorznalclange of wbb~

the vebcity eat becomm

(*/5,0,0,0), (0, +/5 0,0), (q(l, ●J5,0), (o, 0,0,+,

(A.2)

(A.3)

The hometry group 9 b pnerated by parmutationaud revmals of the X. coordirmta
and by the s-try with ~pect to the hyperpbme Xl + q + Z$ + ai = O, which b
conveniently written b tarm.eof ya ccmd.imate9m

~: (akwbwi)- (-b%lm-Lh)ti4). (A.4)

Assumption (iii) is obviow in my of the coordinate rygtem.s. As for asrnumptlon (k),
let us consider the subgroup 91 kA.ng i,nvdsnt, say, the vector with ~. coordi~at=
(O, 0,0, l/@). The restriction of $1 to the hype~iuc ~, = OIs gtnerated by the identity,
permmtation~, and rewm.h of yl, M, and ~, ksurnptiona (A) md (b) follow readily.
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Appwl.lx B. sytnubet~-m]at~ ~ropcfi]m

Using ~sumptions (i) through (iv) of section 2.4, Weprove proputie pl-p6
P1 Paritpinvaria.nce. Tbe set of velocity vectom b intit under spaterevem.al.

Inded, on a Brati lattice, vecton connecting neighboring nods come in oppmite
pb.
Pa Any set of idependent Vatom v,., Whi& h $-bVM’iAUt, i~Of the fO~ ACi~.

We write vi M the sum of its projection on G ~d of a v~tor perpendicular to Ci.
This decomposition being ~ -imariant, the Ltiter vector vanishes by (iv - a).
P3 Any ~t of independent knSOH Iidp, whkh k ~-h- t, iSO! tbe fo~ Aciaeip +@aP.

l% the tens.om liae) we ~wiate the line~ operatom 7’i : z. M fiaBzP. ~-i,ma.rimce

mean~ that the l’1’~commute with aay lattice kometry leaving Ci inwuiant. We now write
the $-invuinnt decompodtion

Ti = PiT~Pi+ (1 - l’,)~Pi +Pifi (I-Pi)+ (1 ‘1’, )Ti(I - F’,), (B.1)

where I ia the identity m Rv and P{ is the orthogonal projection on ~, The wcond
operctor in (B.1), applied to M ubitruy vector w, gives

(B.2)

‘Thevectcm (1 - P,)7’iC, are $i.nva,riantand orthogonal to c,, and thu~ VMIA)Iby (iv-
●). The third operator in (B.1) mhha for si.m.ikr rwonn (W the $irrvartice of the
t-ranspoaed of the TI’0). The fourth operstor in (B-1) iB, by (iv-b) proportional to 1,, the
identity tn the enbspxe ortlqoual to G. Since 1 = 1~ + Pi, the prcmfb completd.

We mention thti we obt.ahcd P3 by trying to formalh.e a remrdt us~ by Hhon(sPJ in
dertving a clwed-form vbcaity forrnul-
P4 ~ohop~ of secmd order tensors. by $-in-t tensor lap b of the form Pdop.

Th.iais a special m of P% whenthem b no independence.
P5 ARYg-invvknt thhd order tunsor tihes.

This follows km P1 (puity tnnrknca).
PO VcJcd@mcnzwmts.Odd mler vebcity momants nn!sh. The second cmdmvelocity
moment b kti= by

(m)

The vdshinc of wld order moments is ● conwquence C4P1. (B.3) follows f!rom P4
and the idcntlty

(B.4)

s



Appeadlx C. Equlllbrium scdutloas
We prove the
&rmraA The fellowing statements - equivalent:
(s) The N,’s are ● scdutionof

j # j

(b) The N,’s area solution of the set of b quations

[c) The N,’s =e given by the Fermi-Dirac distribution

Ni =
1

l+exp(h+q, q)’

where h ia an arbitrary real number and q h an arbitrary Ddimemional vector.
Prod t.ht (a) impl.b (b).

We multIp& (CJ) by ~j aad sum over U states J to obtain

(C.q

(C.2)

(m)

(C.4)

In the Lh.s. of (C.4) we cha~ the dummyvariabk J into ~ and dacwate it with ● factor
A(8 ~ /), sumrnd cwer d, which b one by nomahtio n of probabtity. Th8ferring
wer@hing into the r.h.s., we obtain (C.2]. Note that the Lh.s of (C.2) wmbks the
%d.lbion functioo” Ai of section S.1 (~. (3.9)), bat b +ated with the maan populations
M of the Boolean population.an.i. The relation “Ai= O qma= that there b no
change in the maan populaticm under collbbons.
Prod that (b) Implia (c).

We dedne

JV,a~
l-N4’

(C.6)

n m ~(1 - N,). (C.6)
1

Eq. (C.2) maybe titen

We now make use of s trick employed in pwving H-ThwwnM in discrete velodty modeb
(W Ref.. 16, p.29), We multiply (C.7) by bg~,, sum over i, aad we

(C.8)

so



●

✎

toobtain

(C09)

Semidetailed balance (~, A(t 4 /) = ~,, A(s + /) = 1) implies that

(C.lo)

Combining (C.9) and (C.10), we obtain

Wemakeu8eof thetelation (z>O, ~>O)

(C.12)

equality being achieved only when 2 = V. The Lh.s. of (C.11) ima linear combination of
expresshmrnd the form (C.13) with nonnegative weights A(4 * 4’). Fbr it to mdsh, we
mnst ham

~N/%~JV:, dmmverA(O - d) #O. (C.13)

This it aqaimlent to

(CoM) mew tbt 4 Pi h s coIMon inmrianto We now ase amumption(v) of section
2A, coacardng the abwec d opukm inmrimto, to conclude that

IO@vph+q”cd, (CM)

whkh is the moot $eneral collision invariant [a linear combhiatioa of the mu invariant

aad of the D momentuminwiantrn). Revertin$ to the mwa populationsN, = #,/(l +I?, ),
we obtaia (C.S),
Proof that (c) fmpik (a).

(C,s)implh

(ctlt))

.*



TM implk

($ -’)=o*
~@ ~ d) ~ &c;) (C.17)

#

Using semi-detailed balance, this mW be written s

(C.18)

&everting to the JVj’~lwe obtain (Cl). ThiIJcompletes the proof of the equivalencelemma
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Appondtx Do kkk

Utig the same notstion M
s bcdy-fome f, that b

of ttody”fomu

b section7,S,we wbh to obtains Navier-Stoka quation with

a~u+u. v,u= -V, p’+dqu+f [n. h
V,. u=om

The fom f may depend on spue md time and can be vdocity-independent (we I; e.g.
gmdty) or linear in the velocity U (W II; e.g, C-orblb force). The id- b to introduce
s bk in the trmsition ml= to u b gin a net momentum input. Since AUthe tmns in
the NaXStokea momentum equation w 0({3) and the hydrodynamic veluity b O(c)
(&be rewdng), the biaa should be O(d) for w I and O(C1) for C= U.

We give now the mod.ihed form of the m.icrodymmid qaation (3.9) approprhte for
body-forcti. We rntroduce, in addition to the Boo]- (transition) tibles f,,~ of section
31, the B, dean vuides rti such tht

(%) -w + t’) . (D.2)

The B(8 + /)’s are a set of traasitbn probabilities aswxmted to the body- forre; they
satisfy normali.rstian

~B( 4+s’) =1, (D.3)

aad M cm.semtlcai
(D.d)

Thk will t.de am of tho tic ktcm a.rbln~from the changeof varhbla (7.15), The
mod.ikl microdynti eqa~bn b now

m(L+l, r.+q)=ni+ Ai(n)

Let U9 emluate the body-forre rwultl,ng from the ddhlond ~’ term, For thla we
multlply by c, and average over the qnilibrium dlstrlbutkin;devhtlons from equ UJbrium



arising horn hydmdynamk @ients Me hekwt. We ignore the f=factor since it just
providee the scaling factor.

We begin with me 1. The averageISthen eduatd over the zero-velocityequilibrium
dbtributioa with density per eeIld; we obtain

(D.7)

where b b the number of cells per ncde. Equation (D.7) is the additiod constraint on
the lil(~~ /)’s for we 1. If f b space and/or time-dependent, so ue the B(4 - 8’)’s. It
is My to check that for any given vator f there exist Boolean trmsition variable f~~
of mm B(4 ~ 8’) sdi@ng (D.7).When f is in the direction of ● particular velocity
vector, ~ Qc, we a tip particles with velocity -c~o into partich with velocity Cic

whenever this is pcnoibl~ while leaving all other pu%lcles unchged. This is done with
a probability dependent on the amplltude of the f-e. Other directions of the force aM
handled by superposition,

We tn.rn to we II. We wish to obtain ● fortx of the form .

L - Gfpu#! (D,8)

whare Cap ia a D-dimensional mstrk When the velocity U mhhes, the body-force
should dso mnish; this requirw

z 4$: -8*)B(4+ 4’)(-)+ ‘(l-d)*=O, pm~8j.

8,9f,{ j

(D.9)

With nonvwnishing veloclty we mw$ w tha comapondb~ equilibriumpopulsticms given

to dmnt order by (cL (L14))

(D.1o)

EmI we hsva used ho nnecakd veidty u. hknr, WQthdl howcw w U dnce the scdng
factor b tah = d by the Molaaa twitch f. Usin~ (D.1O) h (D.6), we hd that the
wcragQmomontumbnpartd by fjti tcandthms b to leadin~ orderUneU in U, Identifying
with (D.8), wc find that tho B(c - ~’)’smwt sat~ tho following mnttrdnti

Equations (D.9)md (D.11) are the additional comtrdnh on the B(# + d)’t for case Il.
h an U]ustrmtlon,condder tho - of the poeudc4D FCHC model with a Ccmlol,b

torte 20 h U, where ~ b in th. ~Ddrection, A posdble Implementation for th@&
transltkmrnb through rotation by r/2 around the s~=ti of those partidea hsvln~ thdr
velodty perpendlcub to thh d (with a probsblMy dependent on fl],
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Appondlx E. Catslog of rwmlta for FHP modols

The purpme of this sppendlx b tO mmmbriu all k.nwn analytic results for the FHP
models, including the models II md ~ whkh hwe mt-paAcla. Adapt&g the theory to
M wltb at moat one rest-ptiic!e is quite straightfcmwwd if one include the rest-p ~ticle
~elocity, namely vector -. our derivations made mtcnsive use of properties P1 to P6 of
section 24. With mt-puticla, PI, P2, P4, and P5 are unch~ged. In P3, A and p have
USUAI.IYdiRerent values for moving md rest-pwticles. P6 becomu

(El)

where b lo atil.1 the number of bits, w that b -1 is the number of pu4icla movfng with
speed c.

In TsbIe 1 below, we give mmlts in temm of the mun density pa cell d for the fol-
lowh~ qu~titka: the mean densib PO, the coefficient g(~) mcaling the ncmli.neu term
h the Nsvier-Stok- quatkm (et for exmnple (7.13)), the khematic shear viscaity v,
the Mnermtic bulk vkodty ~, the mxcirnum due ~“’” cd the coefichnt & spp~g
h the Reynolds numbar (cf, (8.29)), and dmU, the denshy at which the Reynolds unmber
h mximum. The viscosities v and ~ Me mlcu~ed within the lattice Boltmann ~prox-
i.mtion (cf. section 8,2). fi( !s the dwmn.ic bmlk tiscosity; when it doee not mbh, w h
the we with mt-pwtkles, q. (7J1) becoma

PO

d~p’+@V”tl=O

(

D-2

)
Jol#:u+@p’= ~v I’ll+ -&7v “u +~fvv’ u.

FEP-I m-u F’HP-In

w 7d 7d

Ib&y-i

(EL2)

0.187 0!1?9 0.286
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Appondlx ?. h H Thmrmn for Iattleo 8QSU
by hL Htnon, O&rmtoiw de Nke.
f. ht8ttom cd bsdc CqUattou
We number horn I to b the cells ●t ● given node (b b the number of dil?erent velocity
vectom), It & not necessary that the velocity moduli m qual. Abo it will not be
newmary to specify any Wmmetry for the lattice or for the collisionrules. Finally, we will

not make use of the consemation of the number of particles a cd the momentum so that
the proof b applkable to lattices where these coneervatlonlaws M violated.

We write ti = 1 if partick i h present in the input st- Oif it is absent. ~ input
state is thus debed by t = [q, ..., n). Th* number

We cdl P(s) the probability cdan input state ~.
ofdistinct input Statea is P. -
We hmw

(F.1)

We cdl Ni the pdabiMy that particle i b pmnnt. We ham

(F.2)
9 0

We define in the same way sj, t’ = (s\,.. . ,s;), P’(d), N: for the output state
We call A(s - t’) the probability that an knput rt~te s h changed into an output

state ~’ by the collision. We have

P’(,’) = ~P(,)A[, - ,’).
8

We hgve of course

(F.3)

(F!4)

whe~ the sum b over dl output st~es. We will assume that the collision rules obq
send-detafled balaacing, i.e. that we hwe abo

# #

Prod km Ceneral propertk ~ convax functbns we hsve

when the g(~) are arbttruy podtive or zero coefBdents, lkkln~

8’ men, and using (F.S) ud (Ft5), we obtti

(F.b)

(F.6)

Summing over d ud wing (F,4], we obt~ (Fi6),
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Lunma 3. TbeMowing ineqdky holds:

Prod we apply Lemma 1 with f(z) = z Inz.

Imnma S. Tbe MIotig inquality bcdds:

The equafity hoJd~ifsnd onfy if

or

P(ti, o.. @b) = fiNi’’(l-N~)’-”.

(F.9)

(no)

(FM)
i=l

Proof (inspired by Ref. 83): The right-hand side of (F.1O) w be wdtten, u.sln~ (F.2):

Dw p:’(w)’-”].
9 =1

Therefcm (F.1O)w ako be wcitte~

(F.N)

(F.14)

wehe, formy $:

Ina$ s-1, (EM)

where the oqaulity holds omly ifs M1. Therefme

(F.16)

~ultiplybg thb by P(J) and 9Utif over ~, we obtti the dedred mm.lt.
The ~ldon (F.11) eomespon~ to the BoltzrnMn spproxhmtlon (independence of

Input ptiicle+

An



Local H thoorwrn. E’the co.hion m.fesmti@ seddetded balancing,and in the Boh
manri appmzimation, tie foflowha~iaeqadity hoid~

f[N;ln N: + (1 - N;)].(1 ‘N:)] < ~[N, bN, +(1 ‘N,)h(l-Nl)]. (F.17))
d=I i=l

Prod fromLer.nma3 we have

Combining with Lemma 2:

Fbally, applying bmma 3 to the N/’s and the P’*s, we obtain (F.17).

We remark that both conditkm of the theorem m necuaary; one am eaaity find
eounteraamplea if one or the other b not mtbbd. Considerfor instmce a node d the
HPP latt~ce with probabilities before collMon: P(ll 0,1, 0) = l/~ P(O, 1,0, O)= 1/2 We
han N1 = l/~ N~ = 1/2, N8 = 1/2, N4 = ~ The J301tmnn.napprmd.mationb not
s4s9ed. We take the usual HPP mllision *. ‘X’heprohabilith after collhion ue then
P(O,l, O,1) = 1/2, P“((),1,0,0) = 1/2. Fhxn this we dednce N: = O, N; = 1, N: = O,
Nj = 1/2, and it CMbe kn.med.iateiyverMedthat the ldt4mnd memberof (F.17) b lsrger
than the right-hand member.

SImSlarly,letma mod~ the dlisioa mlea and kp only ate kindof collision: (1,0,1, O)
gives (O,1,0, 1), but not eonvemly. Semkhtded ticing b not astiukl. Take for
imatuce IVl = Na = lit = N4 = 1/2. We MUM thd the Bohmaan spprdmatbn
holds, tharedorQP(t) = 1/16 hr all ~. We ddaco: F(l, O,i,O) = ~ P’(O,1,0, 1) = 2/1~
~(~) g 1/16 for the other ~’; N: = Nj = 7/16, N; = N: _ 9/16; wd here again the
fneqlmlity (F.17) la tiolato’do

8. Ulobat thw?89

First we sum (F.17) aver all lattice nodes. We obtain a mm over all cells at all lattice
acxies; their total numtw will be denoted by r:

~[wfllnw + (1 -N’(fl)ln(l -N’~))] ~ ~[N~) lnN(’J+(l-N(fi) in(l -N(’))].

Next we remark tb~t this sum h immrimt under propagatloc. We CM therefore
extend the theorem to an wbitr~ number of t!me step, and we obtain (with the a.ame
hypothesa u for the local theorem):

4?



.

.

(F.21)
*1

b non-increming aa the M tice gw evolves.

Consider a probabilky distribution over v pomible -: pl, . . . . pv. The associated
Informationis b

This infomnationhm a minimal value Oif all mm have the same pmbabilhy: pl = oQ”=
Pw = I/v. It h= a mdmal due logs u Mone of the p, b 1 while the othem are O, i.e. for
a detmninistk chokebetweenthe v cases.

We come back to lattkem P(s) represents a probability dhtnbution on ~ cases, ‘and
therefore an infmmatkm

b+ ~ P(t) log, P(4). (F.23)
●

Thus, Lemma 2 exp~ the fol!owirig property: if semi-detailed balmcing ia satisfied,
then the information umtpird In the P can only remdn constant or decrwve In ● colliuion.

Ihrn the l%, wew compute the Nd’sby the formuk (F.2), but *heconverse is not
generally true; in other word~,the F’s contain mom informationthm the ~~’s. Lamma 3
exp~ tlda M.

In the particu.lu au Iti the Boltuusm ~ppradmatim, the PA&Y are considered M
independent, and therefn the P’s cond.n no more informationthan the Nd’s. We have
then the equallty in (F.1O).

The proof of the bed H theorem cw therefore be int~mted as fokws: (i) initially
the N4’sm given;th.h~mta a giw ● Inkmmtion; (U) we computi the cocmponding
P’s in the Boltz.nMu apprdmatkm; $’L-Ihfomatkm d~ uot chm~ (iii) we ccnnpute
the co41Monaad obtaia t.h ~’q the M wmatbn dmm- or rt~ constd; (iv) we
compute the N“s f!rm the P%: here ~r~ ~h~tnformatbu decmsa or S* Cowtmt.



FIGURE CAPTIONS

Fig. 1 The HPP model. The bu a.nwa are for ~~bccupation. h (a) and (b) the lattice
k shown at two succedve timm
Ftg. 2 Colliuion ruleY for the HPP modeL
Fig. 3 The HIP model with bi.nv head-on and triple collisions at two succemive times,

Fig. 4 Collision 11.IIufor the FHP models. (a) Head-on collision with two output channels
given equal weights; (b) triple collision; (c) duaJ of head-on collision under particieliole
exchange; (d) head-n col.ltiicm with spectator; (e) binary collisions involving one mt-
particle (represented by a circle).
Fig. 5 The pwd*4D FCHC modeL Only the neighborhood of one node is shown.
Along the dottd Iinb, connecting to next”n~t neighboum, at meat one particle ~m
propagate, with component U4 = ~ slong the thick black links, connecting to nueat
neighbom, up to two particl~ c-anpropagate, with componeate V4= ●1.
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