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MODELING SHOCKw.VE DEFORMATIO:! via MOLECULAR DYNAMICS

Brad Lee HOLIAN
Theoretical Division, Los Alamos Mational Laboratory, Los Alamos, NM 87545, USA

Molecular dynamics (MD), where tne equations of motion of up to thousands of interacting
atoms are solved on the computer, has proven to be a powerful tool for investigating a wide
variety of nonequilibrium processes from the atomistic viewpoint. Simulations of shock waves
in three-dimensional (3D) solids and fluids have shown conclusively that shear-stress
relaxation is achieved through atomic rearrangement., In the case of fluids, the transverse
motion {s viscous, and the constitutive model of Navier-Stokes hydrodynamics has been shown
to be accurate - even on the time and distance scales of MD experiments. For strong shocks
in solids, the plastic flow that leads to shear-stress relaxation {n MD {s highly localized
near the shock front, involving slippage along close-packed planes. For shocks of
intermediate strength, MD calculations exhibit an elustic precursor rurning out {n front of
the steady plastic wave, where slippage similar in character to that in the very strong
shocks leads to shear-stress relaxation. An interesting correlation between the maximum
shear stress and the Hugoniot pressure jump {s observed for both 3D solid and fluid shockwave

calculations, which may have soma utility in modeling applications. At low shock strengths,
the MD simulations show only elastic compression, with no permanent transverse atomic
strains. This result for perfect 3D crystals is also seen in calculations for 1D chains. We
speculate that, {f it were practical, a very large MD system containing dislocations could be
expected to exhibit more realistic plastic flow for weak shock waves, too.

L. INTRODUCTION

The most successful cool yet developed for
studying the collective motion of large numbers
of atoms engaged ir, norequilibrium flows i{s the
method known &s molecular dynamics (MD).
large, fast computers have made it possible to
study shock waves In three-dimensional (3D)
crystaly compoved of up to 10,000 atoms
{nteracting with cerntral, palrwise-additive,
short ' cange forces.! The principal limitacion
to these calculacions {s practical
computationsl size in comparison to the
thickness of the shock wave, the approach to a
stenmdv.wave profile, and sufficient cruss:
sectinnal area., Faster computers with larger
memories wiil axpand the microscopic
(atomistic) horizons that at present praclude
the treatment of extended defecta in any
serious nambar fu the {nftial crvatal

In the case of flulds, MD calculations of
shock wave:r sitowing viscous rearrangement of
atoms in the {mmodiate vicinity ol cthe shock
front, compared with Navier-Stokes (NS)
hydrodynamic aolutton) have baen surprisingly

luccout'ul,2 The input for the NS calculations
was in fact obtained by atomistic calculations
of the equation of state (EOS), with
nonequilibrium molecular dynamics (NEMD)
calculations nf the linear hydrodynamic
transport coefficients. In Section 2, we will
review the results of the work on fluild shock
waves.

In the case of solids, MD shockwave
calculations have been carried out, "7 but
progress beyond i{dentifying the microscepic

process of plastic flow®

has been very slow.
In Section 3, we will discuss the three
uifferent shock-strength regimes we have
observed in MD calculations.! Two of the three
cases are characterized by shear stress
relaxation accompanying atomic rearrangement
On the other hand, the third (weak-shock)
regime, where the sheal stress provides
inaufficient impetus to generate a plastic
wave, appears to be an artifact of the perfect
crystal, at least undev the limitations of the
M) calculactions. We point cut some potentially

useful correlations for modeling and discurs



some future directions for research on weak

shock waves {n solids.

2. SHOCK WAVES IN FLUIDS

The techniques for generating shock waves In
either solids or fluids via MD, as well as
analyzing the results, are well documented in
Ref., 2; we briefly recap!tuls.e them here.
First of all, a filamental rectangular
parallelepiped of atoms {s equilibrated ar an
iricial relatively-low density ¢, and
temperature T,. The length of the
paralleiepiped in the direction of shock
propagation is typically 50-100 face-centered
cubic (fcc) unit cells long. or 100-200 planes
of atoms in the x-, or <l00>-direction. The
transverse (y and z) dimensions are usually 13-4
unit cells, or 18-32 atoms per plane. For the
fluid shocks, of course the equilibraction
process includes time for the {nitial fcc
crystal to me.t. Feedback methods have been
developed to achieve a desired temperature for

the equilibraced initial sctate 6

A planar shock
wave {s i{nitiated at time zero bv shrinking the

x-direction periodic length l, according to

t
L, (t) = L,(0) - Iupt ., while keeping the cross-
sectional lengths Ly and L, fixed: up is the
plston, nr particle velocity. The periodic
boundary then behaves very much like the
interface of a plansr symmetric-impact
shockwave experiment. A palr of oppositely-
running shock waves move out with shock-front
«peed u, from the boundaries toward the middle
of the computational cell, leaving bhelind
shocked material at a higher density oy and
temperature T), moxing along with the
futerfacial "piatons” at spead up
The shockwave prafites for density,
velocity, pressiurs tensor, temperaturs,
{titeraal energy, atvd heat fiux vector, are
obtained by lumping particles and their
individual kinetic and potential contrlbutinus
ftto blus, tn ordear nf thalr x coordivares, iu

multiplea of the initial number of atoms {n a

yz cross-sectional plane. These planar
Layranglian mass elements, particularly in the
case of solids, lead to smoother prufiles than
fixed Eulerian boxes. For steady shock waves,
time averages of profiles can be gathered for
both waves simultaneously by riding along with
the shock fronts  Since a steady, planar shock
wave has constant mass flux pu throughout the
profile, we can show that the t. al volumetric
strain in the shock (s ¢ = po/Py l = '“p/us ,
so tha” the total strain rate at the shock
front (x = 0) {s ¢ = ¢u!/x - -up/x , where A 1is
the shockwave thickness.

In the Navier-Stokes, or linear
hydrodvnamics view of fluid flow, a steady
shock wave is formed when the process of
longitudinal compression (leading to steepeniug
of the wave) competes with the dissipatcive
process of viscous flow (spreading of the
wave;. The NS transport coefficients, the
thermal conductivity « and the longitudinal
viscosity, np = ny +(4/3)n, where ny 1is the
volume (bulk) viscosity snd n ts the shear
viscogity, as well as tha EOS [pressure P(o.E)
as a function of deniity o and internal energy
E] can Le obtained from independent MD
calculations. The EOS and the Green-Kubo
transport coeffi{cients, which ran he related to
equilibrium fluctuations of the pressure censor
and heat flu. vector for ny and X,
respectively, can be obtained from equilibrium
MD; the norlinear traneport coefficifents for
finite srrain rates and temperature grsdients
via noneguilibrium MD (NEMDY can he

extrapolated to zero rates to aohtain the NS
transport comfficients. The fud'rect Green

¥ubo calculations are time-consuming hecause ot

the statistical errors {nherent in

fluctuationa, Jliile the dlrect NEMD

calculations require extrapilation of wevera!

computer cxperlmontl" Mont «f the results to

date for transport coefticients are from NEMD
'n Fig. 1 are shown stiockwave profiles

goterated by NEMD, with N& comparisons sketched
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FIGURE 1  Density, pressure, internal energy,
and temperature profiles for a strong steady
shock [u./(m/¢) = 22.4] in & Lennard Jones
fluid caYSulated by nonequilibrium molecular
dvramics. ¢ Corresponding Navier-Stokes
results are shown as dashed lines. (The
units for a l.ennard-Jones system are: the
atonic mass m, the crossing point of the pair
potential ¢, and the depth of the potential
minimum ¢.)

in as dashed curves.? The atoms in this
simulation interacted via a Lennard-Jones pair
potential (repulsive inverse-12th power of the
separation plus attractive {nverse-6th power).
Using ettergy and distance parametars in this
potential appropriate for argon, the shock
strength was such that the final temperature
achieved was about 12,000 K, or near the point
of {onization. FEven so, NS provides a good
approximation to the MD results,
underestimating the MD viacosity (ahock
thickness) by only 30-408. This i{s the wvorat
case;, much batter agreement is obtained for
weaker shockvaves, where NS and NEMD profiles

agres within 4w,

Subsequent to this work, 1 noticed that even
better agreement can ba ohtained betwenn NS and
MD {f the temperature component in the
direction of propagation of the shock wave,
?xx' {s used to compute nL(p,T), rather than
the mean temperature at the shock front,

T = (’I‘xx + Tyy + Tzz)/l. wiich can be as much
4s a factor of two lower than T, . This
nonlinear (non-NS) correction serves to narrow
the NS shock thickness at low shock streagths;
that is, at lower temperatures, using T,
reduces the apparent viscosity towards the M?
value. At the other extreme (strong shock),
using T,, rather than T at the shock front
enhances the viscosity, as in the dilute gas
limit, increasing the thickness to within 108
of the MD result. Attempts to relate frequency
and wavelength corrections to the viscosity, in
the framework of generalized hydrodynamics, are
not so successful. Even less successful is the
attempt to include the nonlinear effect on the
shear viscosity due to shear-thinning with
incieased strain-rate. No satisfactory
explanation of these observatiors has yet Deen
proposed,

1 have recently reexamined these fluid
shockwave results and noted an interesting and
potentially useful correlation, The peak shear
pressure, (F,, - Pyy)/z' which occurs near the
shock front, appeair: to be a constant fraction
(~0.1) of the Hugoniot jump in pressure,

Py - P,. Hence, for a viscous fluid (the shear
pressure for the constant-volume process of
compression in the x-direction and sxpansion in
the y- ard z-directions {s -nl), the ratio

2(P) - Po)/(Pyy = Pyy) = -pgugup/nl = pouad/n
i{s a Reynolds number of ~10, essentially
independeny of shock strength. I have also
found that approximately the same ratio holds
for plastic shockwave Jdeformition in ML solids,
ttiough of courmse {t cannot be ansocilated with a
viscous fluld concept like Reynolds number.

Thus, for mtrong fluid or solid shock waves,



narrow enough to be calculated by MD, it
appiars that there exists a roughly constant
ratio for the balance between compressional
staepening of a shock wave and dissipative

spreading due to atomic rearrangement,

3. SHOCK WAVES IN SOLIDS

Shock waves in sulids display a richer
variaty of phenomena than steady shocks Iin
fluids. The viscous flow in fluids, which
occurs continuously whether or not stress is
applied, {s relatively simple to model via
Navier-Stokes (linear) hydrodynamics, requiring
only the total strain rate in the NS
constitutive relation, as we have seen {n the
previous section. Plastic flow in solids. on
the other hand, occurs only in response to
applied stress, and {s not continuous.
Moreover, it can be triggered by thermal
"defects"” (fluctuations) as well as by the
presence of crystalline defects, particularly
dislocations. The sta-istical nature of
piastic flow is a major stumbling block to
atomistic simulation. The constitutive
modeling required for solids is inherently more
complicated than for fluids, because the strain
rate has both elastic and plastic components,
corresponding to compressive and dissipative
flows, respe-cively

Early MD simulations of shock waves {n
solids by 1sal and coworkers (summarized in
Ref. 3) led them to conclude that shock waves
are always unsteady. (They have even made that
claim for shock waves in liquidl.8 As {t turned
out, their “fluid" rhockwave calculations were
plagued by numerf{cal errorm in the equations of
motion, incorrect formulas for profile
averrges, and an unfortunate choica of shock
stroangth, which put their final state on the
melting lina, nacurally leading to the
posaibility of a non.steady, two-wrve
structure.) Je now know that non-isteady
(supported) elastic 1D waves are typlcally

obsurved {n MD solids fou small up and T, as

i{s shown {n Fig. 2. In this recent

calculation.1

the atoms, initially in an fcc
crystal, {nteracted via the truncated (short-
range) Lennard-Jones potential.7 with piston
velocity up/c° = 0.1 (¢, is the long-wavelength
sound speed).

The profile in Fig. 2 shows no shear-stress
relaxation, and indeed, there {s only uniaxial
compression, with no plastic deformation. This
result looks identical to shock waves in 1D
chains, whe:e there {s no mechanism for
dissipative motion of the atoms i{n the
direction transversu to the wave propagation.
In these 3D simulations, planes of atoms in the
x-direction bounce off of each other
elastically as though they were 1D “particles.,”
This kind of elastic disturbance grows in
thickness 1inonriy with time, and i{s a
phenomenon which can occur in real materials
only below the Hugoniot elastic limic.

Fr.®wing Tsal's early work (before 1970),
Dienes and Paskin® simulated shock waves ir 3D
crystals end saw nothing but steady waves, cor

at best, the traniient approach to steady waves,
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FIGURE 2. Profile of the normal (xx) component
of the pressure-volume tensor and twice the
shear component [(xx-(yy+zz)/2), for a
nonequilibrium mole~ular dynamics calculation
of a shock wave in the Lennard-Jones fcc
solid at time e/t =9 3 {co = a/(m/¢));:
{irnitial crnditions: N /m = 1,03,

KT /¢ = 0.1, u /ey = 0.1 [cg = J(72¢/m), the
nonrost-nol;hbog. Zero-tomperature, zero-
pressure longitudinal sound speed].



primarily because they were looking mostly at
strong shock waves. There appeared to be no
way to reconcile these very disparate resvlts.

In 1979, we resolved this controversy over
the 1D waves by discovering that they are an
artifact of perfect crystals {n MD: by sectting
the initial temperature low enough (such as
zero), they can be obtained for large up: where
othervise, at finite initial temperature (suth
as kTo/! = 0.1) a strong, steady shock wave
(overdriven plastic wave) would be observad.5
This zero-temperature 1D elastic wave {s very
unstable to perturbations, however. If, after
propagating such an artificially.-1D wave for
some time, the conrdinates and velozities are
instantaneously rounded off from l4-figure
accuracy to 7 figures, then the profile begins
to collapse rather suddenly toward the
overdriven, steady plastic-wave result for
finite T !

We also identified a possible deformation
mechanism which leads to shear-stress
relaxation for strong shocks in solids, namely,
slippage of one part of the crystal over the
other, in the vicinity of the plastic
wavefront, parallel to one of the four
independent close-packed planes. We observed

that the regions of slip ars quite localired:
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FIGURE 3. Normal and shear [x2) componeucs of
the pressure-volume tensor (see Filg. 2 for
key); u /e, = 0.25; t/r = 5. Note the width
of the zlastic disturhance (see Fig. 3).

individually, the atoms move less than one
interatomic spacing. The chuice of slip plane
i{s apparently statistical, being selected at
random according to local thermal fluctuations.
The overall pattern of slippage is therefore
incoherent and heterogeneous, albeit on a very
fine scale of a faw lattice spacings.

Recent calculations! for a serles of shock
strengths shov three distinct regimes for shock
waves in 3D solids via MD: Fig. 2 shows an
elastic unsteady wave, a regime that extends up
to up/c, 2 0.2; Fig. 3 shows clearly the
emergence of an unsteady elastic precursor,
followed by a steady plastic wave; Fig. 4 shows
an cverdriven, steady plastic wave. (At
\_p/c0 - 1, the final state i{s very near the
melting line.)

The transition from purely elastic response
to alastic-plastic waves, which accurs {n MD
calculations at up/c° ~ 0.25, is especially
interesting. At this shock strength, the shear
pressure should be equal to the theoretical
strength of a porfect cryuta1,9 which is
approximately 1/10ch the shear modulus for
slippage of close-packed planes over each
other. We observe from Figs. 3 and 4 that, as

in fluids, the Hugoniot pressure rise {s about
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FIGURE 4. Normal and chear (x2) components or
the pressura-volume tensor (see Fig 2 for
key): uy/c, = 0.75; t/t, = 3.5, Note that
the pllEtic wave has ovsrtaken the elest'c
wave.



10 times the maximum shear pressure independent
of shock srrength. Consequently, the threshold
for plastic flow in MD should occur when the
Hugoniot pressure {s .oughly equal to the shear
modulus, as is confirmed {n Fig. 3.

For up/c° = 0.25, a series of snapshots of
twice the shear component of the pressure-
volume tensor is presented in Fig. 5, showing
the growth of the elastic region {n front of
the plastic wave, which is hccompanied by
relaxation of the shear stress to a quasi-
hydrostatic state. Several years ago, in
unpublished work,lo we made a computer-
generated movie of deformation in a shock of
this strength. A frame from the movie is shown
in Fig. 6, where chunks of crystal have slipped
as the plastic wave passes by. The pattern of
plastic deformation {n this particular
calculation is the most coherent yet seen.
Cther MD calculations near the onset of shock-
induced plastic flow reveal a sensitivity to
initial conditions, including cross-sectional
area. For shocks near the elastic-plastic
transitflon, then, the presence of initial
dislocations ought to lower the theoretical-
strength barrier, as {n rcal solids, where the

Hugoniot elastic limit {s lowered considerably
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FIGURE 3. Sheoar (x2) component of the pressure-
volume tansor for u /e, = 0.23 at times
t/t° -1, 2, 3, 4, gnd 5. Note the growth of
the elastic region in front of the plastic
wdve, whare the shear stress roturns almosat
to zero,

R

FIGURE 6. Snapshot from MD movie of chunks of
slipped fcc crystal (along <lll>-type planes)
for a shock wave in the <100>-direction at
up/co = 0.25.

due to dislocations. Stronger shocks show much
less sensitivicy to initiel conditions. From
these MD results, we conclude that even a
perfect crystal exhibits plastic flow at
sufficient shock strength, so that the presence
of {nitlal defects becomes secondary. There is
a counterpart in real materials in the
transition from weak-shock, heterogeneous shear
bands to homogeneous deformation (or at least

very small heterogeneity) at higher shock

strengthl.ll
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