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THE EMC EFFECT- ASYMPTOTIC FREEDOM WITH NUCLEAR TARGEIS

Geoffrey B. West
Theoretical Division, Los Alamos Natioral Laboratory
Los Alamos., NM 87545

ABSTRACT

General features of the EMC effect are discussed within the
framework of quantum chromodynamics as expressed via the operato.
product expansion and asymptotic freedom. These techniques are
reviewed with emphasis on the target dependence.

INTRODUCTION

The observation that the structure function of a rucleus is
not simply A times that of the nucleon even at very large momentum
transfers was first reported by the European Muon Collaboration
working at CERN! and 4as therefore become known as "the EMC ef-
fect." This apparently subrle nuclear effect secen by a very high
energy probe is a natural -opic for a conference on the “inter-
sections of particle and n. .ear physics.” 1 shall discuss it from
the high energy physics stendpoint and try to emphasize model
independert aspects of the analysis. Over ten years ago a general
theoreticai approach was invented for understanding deep inelastic
lepton scattering? so it is natural to use it to analyze the EMC
effect. Indeed almost everything I have to say in this talk could
have been done at that time by an intelligent gracuate student. The
techniques of the analysis are based upon Wilson's operator product
expansion and the renormalization group, neither cf which is famil-
iar to most nuclear and wedium energy physicists. In view of this
I shall spend part of my time reviewing them. 1 shall explain how
they generalize the quark-parton model and incorporate constituent
or bag models into the general structure. Before doing so, how-
ever, ]I first want to review definitions and kinematics in order to
present the experimental data. I shall assume sume familiarity
w.th the classic SLAC-MIT experiments and their interpretation via
the “naive™ quark-parton model.? The main thrust o1l this talk will
be to emphasize those aspects that tollov from the general field
theoretical framework incorporating quantum chromodynamics (QCD).

KINEMATICS AND DEFINITIONS

Corsider inelartic lepton ncatterinrg from some target where
only the scattered lepton 1is detected (see Fig. 1.). We shall
assume Born aspproximation in the electroweak coupling so, for
example, in the electromagnetic case (one photan exchange, see Fig.
2) the cromas section can be expressed an a deviation from the Mott
value:
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= (357) w,(q%,v) (1)
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This deviation, known as the structure function, depends c¢n the two
independent Lorentz scalars q? and v = p:q/M, where M, is the tar-
get mass (so p2 = M2). In the rest frame ofAthe target (p = 03, v
is simply the energy lost by the scattered lepton. Because the ex-
changed gauge boson has spin 1, W is usually decomposed into fur-
ther pieces representing electric and magnetic transitions. For
ease of presentation we shall ignore any such subtlety due to spin
until the very end. Formally

Wo(a%,v) = I |<N1jlp,a>12(2m% 69 (pra-py) (2)
N

representing the sums of squares of transition matrix elements due
to the current j supplied by the scattered lepton (as in the lower
vertex of Fig. 2). One can use completeness of the final states
IN> to rewrite this as a current corvelation function:

Wy(a2,v) = [ d*x e'9%<p,Al)(x)j(0) Ip,A>

Being an effective total cross section there is an optical theorem
relating W, to the virtual forward Compton scattering amplitude
T,(q%,v) (4% in Fig. 3):
22" in Fig. 3j:

WA(qz,v) = Im TA(qz,v)

Im fdtx 39 %<p AIT[§(x) j(0)]lp, > (3)

Eq. (3), and in particular the ropresentation of T, as a time-or-
dered product of two currents separated by a space-time distance
x , will be the point of departure for our theoretical! discussion
ik Part II1 below.

EXPERINENTAL OBSERVATIONS
A. Bjorken Scaling

From itg definition W has units of (energy)-l; it is therefore
natural tn form the dimensionless combination: F,(q?.X) = vW(q2,v)
where X = q2/2M,v ir a dimensicnless variable first introduced by
Bjorken. Notice that 0 § X § 1, vith X = 1 representing the elan-
tic threshold. For q2 2 few {GeV/c)2. FA(X,qz) turns out to be
slmost independent of q2; Fig. &4 shows early data from SLAC and
DESY plotted versus w = 1/X for a wide rauge of q%. The scaling
phenomenon is quite apparent.® In the standard quark-parton pic-
ture3'5 the large X (small w) region is associated with the valence
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Fig. 1. General graph illustrating inelastic lepton (in this case
electron) scattering from an arbitrary target.
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Fig. 2. The one-photon exchange approximation.

WA(quv) TA(qz.\))

Fig. 3. Symbolic representation of the optical theorem (Eq. 3.



quarks normally identified with the "static" quark content of the
target. The small X (or large w) region, on the other hand, is
associated with the sea of virtual qq pairs which can loosely be
identified with the meson cloud in the "old-fashioned" picture of
hadronic structure.

B. Comparison with QCD

The spread in F, due to the variatic. in q? is consistent with
the predictions of D. This comparison is usually done in terms
of the moments of FA defined by?2

1
M, (a2,n) = [ aX X*"% F, (¢2,%) (4)
0

The reason for this, which I will return to below, is that ac-
cording to tke operator product expansion (OPE) these factorize at
large q2 into a target independent piece c(q?,n) aud q2-independent
target matrix elements TA(n) which will be defined below:

M,(q%,0) = c(q?,n) T,(n) . (5)

The c(q%,n) are properties of the theory which, in QCD, can be
reliably calculated from perturbation theory by virtue of its

asymptotically free character. This predicts c(q?,n) ~ (2n q2) n

where the y are known. As can be seen from Fig. '~ the data are
consistent with the predicted mild logarithmic deviation from the
naive scaling of the parton mode..®’? Fig. 5 represants some of
the earlier plots of the moments and shows the dramatic approach to
scaling for q2 < 3(GeV/c)2; 1 shall return to this "forgctten"
aspect of the data at the end of my talk.

C. The EMC Effect

We are now ready tc present data on the EMC effect. The
original observation! was that for a steel target (A=56) F,(q%,X) #
AF.(x,q2); F, is one-half the deuteron structure function which we
shall identi?y with the average of that of the proton and neutron.
Notice incidentally that for the nucleon x = q2/2Mv, the "usual' x;
obvivusly x = (MA/M) X ~ AX. The data has mostly been presented as
a ratio

2 _ FA(xqu) \
Rya%0) = Ay ®

which is written o,/0_  in Fig. 6. This figure shows a compilation
of data taken at §LA8 (as well as the original EMC points) for a
varicty of targets.® Although the characteristic shape is clear,
it is worth emphasizing that the original EMC dats on iron sticks
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Fig. 4. Early SLAC and DESY data showing the scaling of wW vs.
wE 1/x; see Ref. 4.
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Fig. 5. (a) Early SLAC data show!ng M(Z.qz) ve. q2 [see Ref. 4];
1/v

(b) similarly for M(3,9%); (c) [M(n,q?)) " vs. in q? showing
straight line dependenca [Refs. 5,7]).
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Fig. 6. (A) R,(x,q2) va. x (averaged over q2) for various targets;

(B) RA(x,q:) ve. in A for (a) x = 0.3 and (b) x = 0.62;
(%) AA(x.q ) vs. x (EMC data)--the fit is a quadratic as in Eq. /37).



out like a sore thumb at small x. The sharp rise in R, #8 x * 1 18
.simply due to the fact that ons is dividing by F,(x,q2) which
vanishes in this limit. Because of this (and for rea.ons to bas
explained below) it is more natural agd convenient to represent the
dats as was originally done by Jaffe,” as the difference

8,(q%,x) = 1/A F,(x,q?) -Fy(x,q%) (7

Also shown in Fig. 6 is the variation of R, with A at fixed x; the
data is consistent with & logarithmic dependence whose shape is
strongly x-dependent. Again a large part of this x-dependence is
due to using R, rather than A,. Even though a logarithm obviogi%g
gives a good fit, the experimentalists have chosen the form cA
shown in this figure.

THEORETICAL TRUTHS

I pow want to give a brief review of our formal theoretical
understanding of the structure functions and their relationship to
the quark-parton model. This is hardly meant to be complete but
rather to give a flavor of the basic ideas that lead up to the use
of the moments a the appropriate objects to study.

A. The Light Cone (or Short Distance) Expansion

Recall that the optical theorem allows us to think of the F
as absorptive parts of the corresponding forward virtual Compton
amplitude TA(qz,v) defined in Fq. (3);

To(a%,v) = J d*x e’3%<p,AIT[j(x) j(0)1p,A> (8)

We are interested in the limit q2 » ®. Without going into details,
it is clear that, as in all Fourier integrals, this is sensitive to
x ~ 0, i.e., to the behavior of the current product when the
sBace-time separation becomes very small. Wilson bhas specified
this in a form that is basically the operator generalization of a
Taylor series expansion for an ordinary function.!® For the matrix
element needed bhere this reads

<P, AITII () §(0)]1p,a> "2 1 <plo_1p>(ip-8)" C_(x2) (9

n
where the 0n are local operators Rilinearain the quark and gluon
fields: e.g., YA P .... Py or F D D'F, , etc. |[The D's are

the usual non-Abelian covariantpgerivatives:BPD =8 =~-igt - A ].
Using this in Eq. (8) gives H H +

h ¢

2
T, (a%,v) 1 Ew I c(q?,n) <plo lp> X (10)

where the c(q?,n) are coefficients defined by



c(n,q?) = () f d%x !9 %c (x?) . (1)

The factor (q2)n is included in order to make the c(n,q2?) dimen-
sionless. The moments arise in projecting out the absorptive part
of this equation in order to obtain information on the structure
functions. Formally this is accomplished using a Mellin transform
to give

M,(a%,n) = c(q?,n) T,(n) (5)
vhere
T,(u) = <plo_lp> . (12)
B. The Renormalization Group and Asymptotic Freedom

Equation (5) represents a general statement that the underly-
ing dynamics is described by a field theory. Up to now we have not
needed to specify what the field theory actually is. This enters
via the dimensionless coefficients c(q%,n) which satisfy certain
scaling constraints due to the renormalizability of the theory.
Just as in ordinary dimensional analysis where the invariance of
the theory to the choice of units requires variables that ap, ear
independent to be inextricably linked, so renormalizability re-
qQuires momenta and coupling constants to be intimately connected.
Renormalization forces the introduction of some arbitrary mass
scale (M, say) in order to define the physical renormalized coup-
ling constant. The renormalization group simply expresses the
invariance of the physics to this choice of scale; it can therefore
be thought of as the generalization of ordinary dimensional analy-
sis to field theory. Roughly sgeaking, one typically finds that a
dimensionless quantity like c(q‘,n) must be expressible in a form
involving the combination of (q%/1"2) exp (1/2 bg2 + ..... ) where b
is calculable. Thus if b > 0 the UV behavior (at fixed coupling)
is equivalent to taking g2 + 0 at fixed q2, whereas if b < 0 it is
ti.2 IR that is equivalent to this limit. It turns out that in QED
b < 0 thereby justifying the use of perturbation theory (g2 -+ 0)
for calculating the low energy regime. On the other hand in QCD, b
> 0 so that perturbation theory can be effectively used to calcu-
late the large 92 behavior. This is basically the statement of
asymptotic freedom. At sufficiently large q? the coupling is
effectively small so that the target behaves as if it were cumpused
of quasi-free qu:arks and gluons. Even though the effective coup-
ling inside the target may be large, the renormalization group
allows us to treasform the scatiering situation to an equivalent
small coupling problem if we probe it with a large q2 current. As
already remarked the abogﬁ argument leads to the conclusion? that

in QCD c(qz,n) ~ (log q2) D for large q2 with the yn calculable
from perturbation theory. Symbolically the results of this analy-
8is can be summarized diagramatically as follows:



G~ (4% .n)
OPE :E :
=T, (n)

(13)
In QCD (.or large qz)
QUARK LOOP
c(qz,n) H % - M@\M (+ RADIATIVE
GLUOY CORREC-
TIONS) (14)
0n QUARK
and TA(n) E = = =— "CONSTITUENT"
GLUON
“CONSTITUENT"
(15)
C. Equivalence to che Quark-Parton Model

The above analysis strongly suggests teking the quasi-free
scattering picture seriously; this can be made even more suggestive
by introducing the inverse Mellin transforms of c(qz,n) and TA(n):

1
f ax x°2 F (a%,%) (16)

c(q%,n)
and

J dz 2" g q/A(z) (17)

TA(n)

[That the integrals cut off at 1 can be justified from the original
definitions.]!! Substituting these representations into the moment
equation (5) gives, upon inversion

1
= 2 X
F,(q%,X) = g dz £ ,,(2) F (%)) (18)

This equation has a natural interpretation in terms of scattering
from quarks: f (z) is the probability that a quark carries a
fraction z of t total momentum (py and F (q2,x) is its stucture
function: 1



c(q“,n)

TA(n).

—

P

[Note that at the top vertex X' = q2/2zp-q = X/z as it should.]
From Eq. (16) we can interpret c(q%,n) as the moments of the quark
structure functions. The situation is actually slightly more
complicated than this because there are gluon components to the
f(z) as indicated in Eq. (15); nevertheless the general structure
and interpretation stay essentially intact.

In the original naive parton mode13'5 the scattering from the
quarks was further assumed to be quasi-elastic so that F (qz,X) =
Q26(1-X) where Q is the quark charge leading to F (qz,X)q= Q2f
(X) (summed over quark types). This leads to the i%entificationqé%
F, with quark (and gluon) distribution Junctions, an interpretation
wﬁich bas remained, even though the more natural nomenclature is to
use the f A(z) as the distribution functions. The f's have the
advantage %&at they are properties of the target like a wave func-
tion and are not q%-dependent.

D. Sum Rules

Certain combinations of the O represent conserved quantities
such as the baryon number, .harge, etc., which are invariant to
renormalization. They are therefore "dimensionless" as far as the
renormalisation group is concerned and so the corresponding Yy
vanish leading to sum rules.2’® If we remain within purely elec-
tromagnetic scattering then there is only one conszrved O namely
the energy-momentum tencor whose corresponding Yy, vanishes. For a
purely singlet combination (such as FN), one thereby obtains the
sum rule

2 ‘_'1 2:. <2)
my(a%,2) = I ax Fyaa®) = 5 g, (19)

Here N_ is the number of flavors and <Q2> the average charge
squared of the quarks in the theory. For four flavors this pre-
dicts MA(qz,Z) = 5/42 ~ 0.119 whereas for six /34 ~ 0.147. The
data on deuterium gives 0.15 in remarkably good agreement with six
quarks.” Further sum rules can be derived from other conserved
quantities; however, they lead to sum rules that relate the EMC to

10



the weak structure functions?

briefly beiow.

an example of +« ich 1s discussed

Several points should be emphasized about this sum rule:

a) the right-hand side is independent of q? as would be the
case in the naive parton model;

b) its value is independent of the target;

c) for the non-singlet combination (such as the difference be-
tween proton and neutron), all.y > 0, so all correspondinz moments
eventually vanish; a

d) the factor (1*16/3n_.)"! in (19) simply represents the
fr: :tion of eunergy-momentum carried by the quark degrees of free-
dom, the rest being carried by the (electrically neutral) gluons:
thus N /(N + N.) = 3nf/(3nf + 2x8) = (1 + 16/3nf)'1 assuming an
su(3) &lof symmetry.

E. Summary

i) The pattern of scale breaking is determined_gy the target

independent c(q2?,n) which in QCD behave like (£n q2) 2. [Thus any
target can be used to "test" QCD.] They can be thought of as the
moments of the quark structure functions.

ii) The shape of F (x,qz) reflects the quark/gluon distri-
bution inside the target and is determined by the matrix elements
TA(“) = <p|onjp>_

APPLICATION TO NUCLEI

Thus far we have reviewed the standard framework for under-
standing the structure function data within th~ contuxt of QCD. Its
crucial property of asymptotic freedom allows 1 quark-parton quasi=-
free scattering interpretation to be made. We now turn our atten-
tion to the EMC effect and focus on the target cependence of the
analysis. Within the conventional quark-parton model, the data
says that in a nucleus the sea is enhanced over its contribution in
the nucleon. The energy momentum sum rule, Eq. (19), requires that
such an enhancement at small x be (ompensated for at large x so
tuere must bo a depletion ¢t larger x. Many models have beea in-
voked to explain this phenomena,!? most replacing the quark-gluon
degrees of freedom by effectie ones such as pions, nucleons, heavy
baryons such as six-quark configurations, and so on. Thesc are
presumably not unreasonable especially since there is good evidence
that nuclei can be well described by nucleons and mcsons. There
are, of course, inevitable problems of how to match such a descrip-
tion with the fundamental ideas of QCD and, in particular, how to
coyrectly des.ribe the scattering process. An alternative view is
to stay within a quark-glucn picture and use the fact that a quatk
can travel further in a nucleus than in a nucleon. Below I shall
show that this picture emerges naturally from the OPE QCD analysis
applied tc the nucleus. However, rather than discussing particular

11



models, I first want to concentrate on what features of the data
can be considered as model independent.!3 All of the analysis that
I am going to present could have been carried out over ten years
ago by the proverbial "intelligent graduate student." Had bhe been
asked by his wise protessor to look at the target dependence of the
OPE enalysis, 1 believe he would have predicted an EMC effect.
Whether he would have becor.e famous or whether the EMC effect would
have remained an amusing curiosity is left to the reauer to decide.

A. Model iIndependcnt Features

i) Basic Formula Relating FA(qz,x) to FN(qz,x)

We have seen that the OPE leads to the moment ecquations
M,(q%,0) = c(q?,n) T,(n) (5)

These are valid for any A and, in particular. they are valid for
the nucleon:

My(a®.n) = c(q?,n) Ty(n) (20)

In the usual s&analysis? one eliminates the target dcnendent
matrix elements by wr1t1ng the equation at another value of g2 (q
say): M (q ,n) = c(qo,n) T,(n) thereby deriving sn evolut1on
equat1o P or a particular Qarge relating its behavior at one
value of q" to another:14

2
HA(q2|n) = z_(‘lz“'ﬂ% MA(QSvn)

(q5.n

Here, however, we want to relate one target to another;!® this can
readily be accomplished by dividing (5) by (20) to obtcin

M,(a®,n) = ty/a(m) My (q?,n) (21)
where (n) = T,(n)/T,(n). As before when dealing with the
quarks ﬂ/ natural to jntroduce the inverse Mellin transform of
“N/A

! n-1
LN/A(n) = g dz = fN/A(z) (22)

in order to invert (21). With this definition one straightfor-
wardly obtains

1
. X
FA(ql,x) = g dz fN/A(z) FN(q2,;) (23)

12



This is a remarkable equation because its structure is identical to
Eq. (18) and it is tempting to interpret it in a similar fashion,
namely, that the scattering can be represented as if it were quasi-
free from extended physical nuclecons with a momentum distribution
given by the g2-independent functions f / (z). Obviously scme care
must be taken in making this a strict ‘Interpretation and I shall
return to this question later. At the moment I simply want to call
attention to the fact that F, can be represented either this way or
by Eq. (18) which is based upor. the fundumental degrees of freedom;
this suggests that there are probably several equivalent model ways
of interpreting the EMC effect.

ii) Digression on the Sum Rule - A Problem
Recall that the second moment (n = 2) is (at least for
the singlet piece) target independent, so

M,(q%,2) = M(q?,2) (24)

leading to tN A(2) = 1. This reinforces one's temptation to make a
physical inteépretation of (23) since it is equivalent to

1
J dz z £
0

N/A(z) =1 (25)

which represents momentum conservation.
A more important consequenc: of (24), however, is that

A F,(a%,x)
g dx [*f«jr_——— - FN(qz,x)] =0 (26)

or, using the definition, Eq. (7)

A
J dx A@Q%,x) =0 (27)
0

Since F, (q%,x) = 0 for x > 1, A > 0 in this region, so it must have
at l=ast one zero in the range 0 § x & 1. Furthermore, if it
starts out positive (as in the original EMC data) it must have at
least two zeros for 0 < x < 1, as indeed it does.

Now, however, we come to a problem: from what we have just
said

1
J dx A(q%,x) <O (28)
0



whereas the EMC data taken with .4 iron target and exhibited in
Fig. 6(C) appears to give the opposite sign! Several possibilities
come to -1nd for a way out of this apparent violation.
n) q2,x) is anomalously small for 0.7 § x < 1.
" ftere are large finite q2 scaling violations due to non-
lingle components.
c¢) The normalization of the data is incorrect.

The first seems unlikely., The second is certainly possible
but, to us, also seems unlikely. Our reasoning is as follows:
iron is predominuntly an equal nuamber of protons and neu.:ons and
is, therefore, to a good approximation, in a singlet state just as
the deuteron is. As remarked earlier, the energy-momentum sum rule
for the deuteron is in good agreement with the data provided there
are pix flavors; there is, of course, the question as to whether
all six quarks are 'operable'" since the presumed top quark may have
a very large mass?® and the q2's are at most ~100 (GeV/c)2. Taking
this at face value, however, suggests that finite g2 corrections to
the sum rule are small. We might, therefore, expect corrections to
(27) also to be small. Furthermore, purely non-singlet contribu-
tions tend to be small near x = 0 and large near x = 1, as evi-
denced from the differencel? F -F , whereas the effect in A is the
other way round: namely large nearpx = 0 and small near x = 1. The
logarithmic corrections to the sum rule can lCt-lllj be eliminated
using neutrino data. One simply replacesl1® F (1 ,X) by [F (q,x) -
1/6 FA(qz,x)] 80 if there is z large finite correctlon to F
there must be a similar one in the corresponding neutrino function.
Obviously the analogous sum rule for A should be examined when more
accurate v data is forthcoming.

Our own feeling is that the violation of the sum rule is due
to some systematic normalization problem with the EMC data. This
view appears to be supported by the data from SLAC which shows a
much smaller effect in the small x region. Indced a casual survey
of the SLAC plots [Fig. 6] indicates that they do not violate the
sum rule. 1t is of course quite possible that if ail the data were
carefully corrected for finite q“ and O /o effects, the situation
would be quite different. Clearly a cnrg}ul analysis is called
for. One final point worth noting is that since scaling violations
are larger at small q2 where the SLAC data is taken, this ought to
show a greater “"violation of the sum rule than the EMC if this is
indeed dues to such effects.

iii) Formula for Cnlculating f /A(n)

We have Jult seen that’ in order to caliculate the dif-
ference A, we need the distribution function fN A(z) whose moments
4re the t (n) see Eqs. (22) and (23). The ( (n) are defined
as the rn!{o T,(n)/T,(n) each T(n) being the tnrg‘e matrix element
of the quark and gluon bilin-ars pictured in Eq. (15). As already
mentioned when discussing the quark-parton model [see Eq. (17)],
the triangle graph shown there can be expressed in the form
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1

TA(n) = £ dz zn-1

fq/A(Z) (29)

In the target rest-frame z = k_/M, where k is the quark momentum
and k_ = - k,, the direction 3 being identified with that of the
photon. {%e éhark (or gluon) distribution function f A(z) is
given by3v11v20 q/

a [- ]
f = dw? dk? D2 (k2 kZ,w 30
q/A(z) z iz w {2 q( ) mq/A( »w) (30)
0 0
2 .
where kg = z(Z+“)HA . Dq(kz) is the quark (or gluon) propagator
1-2
and m the absorptive part of its forward scaitering amplitude

from 8‘9 target. The invariant mass of the "spectator” state will
be denoted by w. Also in (30) a = w?/M2_ - 1. The combination

D2(k2)m A(_kz,w) can be thought of as the square of the relstiv-
iftic aérget wave function and will therefore be denoted by

B. A Little Model Dependence

i) Calculation of fq/A(z)

Up to now we have made no explirit use of the fact that the
target itself is a bound state of quarks and gluons. Technically
this produces a so-called anamolous threshold?! in w at a value w
determined by the "binding energy" (B). If we change variables to
€= (w+m-~-M,)/M, wvhere m is the effective quark (or gluon) mass,
then the bouné state nature of the target can be imposed by con-
straining € << A with a threshold beginning at B/M.22 This con-
strains the mass of the virtual spectator states to be reasonably
close to M,; put slight differently, the bound state nature of the
"wave function" effectively cuts-off the k-integration. We can
impose the bound-state physics on (30) simply by using £ and re-
stricting it to be much less than A; if, at the same time, we re-
scale z to z/A we obtain

- -}
f z) = 2M2zA dc dk2 D2 (k2 k?,e 31
0
2 -
where now kg ~ H_E!%ti;Azm/"l and z runs from 0 to A. We rhall not

enter here into a discussion of the precise physical meaning of the
effective quark mass m nor of its effective binding energy B.22
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For the present purposes they can simply be thought of as parame-
ters characterizing the system tha: enter either as threshold
values or positions of singularities.

Now suppose all nuclei are essentially alike as far as their
single quark and gluon binding energies and wave functions are
concerned (except possibly for a normalization tactor ~A2). The
extra factor A comes from the assumption that m A(kz,c) ~Anm N
(k2,e). Tien the dominant difference in their %4stribution fuﬂé-
tions is due to the factor (1-z/A)”! in the lower limit of the
k?-integration. This factor is sensitive to the large k2 behavior
of the wave function and is basically only important when z + A.

If one assumes that the fall-off in k2 is governed by the
quark mass and that both ¢ and m << M then f A(z) peaks sharply at
2 =25 = (m - B)/M. As a simple illustratisé example consider the
analogue to the zero range approximation: m(kZ,e) ~ &8(e-B/M) and
Dq(kz) ~ (k2 - m2)"1, then

_ NBA%2z(1 - z/A)
fq/A(z) ~ (z'zo)z rarrs (32)

where B2 = B(2m - B)/M2.

The difference in distributions between the nucleon and nucle-
us can tiucrefore be pictured as follows: (assuming, for definite-
ness, that m > B).

ES NUCLEON
o
T
o
(Fo)
I
— NUCLEUS
Lg_ y Y - Ot emT 4 . e s m- s A= . = _A‘—z
1 A
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ii) Estimate of A

From its definition via Eq. (21), we can express t (n) in
N/A
the form:

A n-1
J dz z qu(z)

ty,,(n) = A2 4+ a0 O (33)

N/A 1]
g dz 2z fq/N(z)

where Af (z) = A-2 f (z) - £ (z) is the difference in quark
distributions in the ﬂﬂéleus ove hat in the nucleon. This is a
conveaient form because A receives sll its contribution from the
second term which, as expected, is dependent on Af (z). From what
has been said above qu(z) looks as follows: q

TAIL OF f
q/A
4
‘(/

0 V-l ——— -

(z)

Af (2)

Notice that it consists of two pieces: the long positive
slowly varying tail of f (z) from z = 1 to z = A [recall that
f N(z) vanishes for z > Qﬁﬁ and a piece from z =0 to z = 1 which
cﬂ‘nges sign and is predominantly negative minimizing at z ~ z,-

This picture can be used to estimate f /A(z) and thence A.

Because f (z) is strongly peaked at z = z_, 1 can be well approx-
q/N o

imated by

A
8(q%,x) = z, £ dz Fy () &F (22,) (34)
Az0 xzo
=J 2 Fy(37) oF (2) (35)
xzo

showing its explicit dcpendence on the difference in quark dis-
tributions. Becsuse of the above mentioned properties of AF , this
expression gives the following structure for A: ° 1
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A(x,q%) ~ a8 + [b, + by 20 (A/x)] x

1
+ [co t e 2n (A/x)) 2 + .... (36)

If F, and Af are finite polynominals then so is A. The coeffi-
cien£L are qzqdependent and of magnitude Pp. Ignoring the logs for
the moment one can obtain an excellent fit to the EMC data with the
quadratic

A(q%,x) ~ & + bx + cx2 (37)

with a ~ 0.075, b ~ -0.3 and ¢ ~ 0.245. The sum rule constrains
these to satisfy a + b/2 + c/3 ~ 0. Although this appears to be
satisfied by the fit, this is misleading since the sum rule is vio-
lated only by an amount ~10~2? which is much larger than a, b or c!

The signs of the b, are directly related to the slope of FN
which is predominantly negative which agrees with the fit. The
presence of the logarithm is only sensitive to the variation with
target and also agrees nicely with the log A4 dependence of the
data. Indeed, in terms of the ratio we predict

blx Ln A

Ry(a%,x) ~ 1 + f;?azj;j (38)

with b1 < 0, i.e., R should decrease with 2n A as it does. Note
that Eq. (38) also says that BRA/B &n A « x/FN(qz,x) which is in
good agreement with the data.

Thus the standard framework provides a description of the
general features of the cCata. More specific statements can be made
concerning the size of the coefficients if a more specific form is
chosen for the wave function.

SUMMARY AND ((ONCLUSIONS

1. The OPE and asymptotic freedom chnw chat the scattering can be
described as if it were either incoherent scattering from quarks or
incoherent scattering from extended effective constituents such as
the nucleon.

2. The formalism suggests that tl.c difference A, should be param-
elterized by a polyncmial in x, an excellent fit eo the EMC dats is
obtained with a quadratic.

3. The energy-momentum sum rule requires that the area under A
should vanish. This is violated by the EMC data though not by thne
from SLAC. Arguments were given that this was probably due to a
syatematic normalization problem though it is quite conceivable
that finite q? effects could be the origin.

4. The log A dependence of the effect comes out naturally with a
predicted slope for RA' o« x/FN(x).
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5. Obviously more accurate data are needed, especially near x = 0
and x >_1 where nuclear effects dominate.

6. One area not discussed here, that could be fruitful, is the
question of the ratio 0./0. as a function of A. This is difficult
to measure and probably Bif&icult to calculate since it vanishes in
leading order.

7. It is not inconceivalble that new tests of QCD could be pro-
posed bamred on the possibility of varying the target. The fact
that the EMC data violates the epergy-momentum sum-rule points in
this direction. Actually this sum-rule does not depend explicity
on QCD but oanly upon the OPE; thus not only is it target indeperd-
ent Lut also theory independent!

8. Finally, I think it should be mentioned that if the interest in
~hese experiments is to learn about nuclei (rather than QCD), then
.t is quite conceivable that the very low q2 (£ few GeV/c?) might
be more relevant. After all, the approach to scaling is governed
by correlstions in the system: one expects for the second moment
(n=2)

M(2, q2) ~ *»’2, ®) [1 - C(q®)]

foughly speaking C(q2) ~ G2(q2) the square of the elastic form
factor of the target. Fig. 7 shows M(2, q2) vs. q? for the
nucleon: the smooth approach to scaling can be well fitted by the
factor 1 - Gz(qz). Also shown is the same plot for thermal neutron
scattering from atomic argon. ‘he oscillatory approach is in nice
agrecment with these ideas sinc. the elastic form factor of almost
every system except the nucleon (1) is oscillatory reflecting the
typical edge to the system.® 1Indeed in such nonrelativistic sys-
tems it is this lower q2 region that is often of more interest! It
may, therefore, be that when all the fuss over the EMC effect has
di:d down, physicists will turn their attention to a potentially
more interesting region!
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Fig. 7(a) Plot of M(q?,2) va. q? (SLAC data)" showing smoothnass
of the approach to scaling, reflecting the smoothness of the
elastic form factor.
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Fig. 7(b) M(q?,2) va. q for thermal neutron scattering from argon,
shoving an oscillatery approach to scaling, reflecting an edge of
the wave function.
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