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DYNAMICS OF FISSION AND HEAVY ION REACTIONS

J. Rayford NIX and Arnold J. SIERK

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
87545, U.S.A.*

We discuss recent advances in a unified macroscopic-microscopic description
of large-amplitude collective nuclear motion such as occurs in fission and
heavy ion reactions. With the goal of finding observable quantities that
depend upon the magnitude and mechanism of nuclear dissipation, we consider
one-body dissipation and two-body viscosity within the framework of a gen-
eralized Fokker-Planck equation for the time dependence of the distribution
function in phase space of collective coordinates and momenta. Proceeding in
two separate directions, we first solve the generalized Hamilton equations of
motion for the first moments of the distribution function with a new shape
parametrization and other technical innovaticns. This yields the mean trans-
lational fission-fragment kinetic energy and mass of a third fragment that
sometimes forms between the two end fragments, as well as the energy required
for fusion in symmetric heavy-ion reactions and the mass transfer and capture
cross section in asymmetric heavy-ion reactions. In a second directinn, we
specialize to an inverted-oscillator fission barrier and use Kramers' sta-
tionary solution to calculate the nean ";ime from the saddle point to scission
for a heavy-ion-induced fission reaction for which experimental information
is becoming available.

1. INTRODUCTION

We have already heard frcm the other speakers at this International Confer-
ence on Theoretical Approaches to Heavy Ion Reaction Mechanisms about the many
complementary aspects displayed by the atomic nucleus. With its relatively
small number of degrees of freedom, the nucleus is both microscopic and macro-
scopic on the one hand and both quantal and classical on the other, which gives
it a rich dynamical behaviour ranging from elastic vibrations of solids to
long-mean-free-path dissipative fluid flow with statistical fiuctuations.
Experimental clues to this challenging many-body problem continue to be provided
by fission and heavy ion reactions. Yet our major goal of determining whether
in large-amplitude collective nuclear motion the nucleons interact primarily
through the mean field generated by the remaining nucleons, or whether two-
particle collisions play a substantial role, has proved elusive.

Our challenge is not to explain the experimental data in terms of some model
with adjustable parameters--since often several modeis with widely different
physical bases are capable of doing this equally well--but instead to find and
calculate physical observables that depend sensitively upon the magnitude and

*"This work was supported by the U.S. Department of Energy.



mechanism of nuclear dissipation. The difficulty arises because many of the
gross experimental features of fission and heavy ion reactions are determined
primarily by a competition between the attractive nuclear force and the repul-
sive Coulomb and centrifugal forces, and any theoretical approach that includes
correctly these relatively trivial forces reproduces the data with fair accura-
cy. Also, the final effects on observable quantities caused by dissipation are
often very similar to the final effects caused by collective rlegrees of freedom.

A possible starting point for a theory of nuclear dynamics is the time-depen-
dent mean-field (Hartree-Fock) approximation, in which nucleons interact only
through the mean field generated by the other nucleons, with two-particle col-
lisions neglected entire1y1. The approximate validity of this approach stems
from the Pauli exclusion principle and the details of the nucleon-nucleon inter-
action, which at low excitation energies lead to a nucleon m:2an free path that
is long compared to the nuclear radius. In this approximation, the many-body
wave function for a system of A nucleons is represented at all times by a single
Slater determinant consisting of A single-particle wave functions.

However, critical comparisons of two predictions of this approach with ex-
perimental data suggest that in real nuclei the type of nuclear dynamics pre-
dicted by the time-depandcat mean-field approximation is modified significantly
by residual interactions arising from two-particle collisions. These compari-
sons involve the experimental demonstration that nuclei do not penetrate through
each other in nearly central collisions as predicted by this approximation, and
the substantially smaller predicted energy loss at large angles in heavy ion
reactions than is observed experimenta11y1'2.

Some important steps have been taken to incorporate two-particle collisions

into the time-dependent mean-field approximation3'4.

Although certain concep-
tual problems remain and computational difficulties have precluded comparisons
of such extended mean-field approximations with experimental results, these
studies have nevertheless shown that two-particle collisions cannot be neglect-
ed. This motivates us to take the opposite tack and study nuclear dynamics by
use of a macroscopic-microscopic method. Our purpose is to calculate for two
radically different dissipation mechanisms observable quantities in fission and
heavy ion reactions and confront these predictions with experimental data in an

attempt to detcrmine the magnitude and mechanism of nuclear dissipation.

2. MACROSCOPIC-MICROSCOPIC METHOD

We focus from the outset on those few collective coordinates that are most
relevant to the phenomena under consideration. In particular, for a system of A
nucleons, we separate the 3A degrees o* freedom representing their center-of-
mass motion into N collective degrees of freedom that are treated explicitly and



3A - N internal degrees of freedom that are treated implicitly.

2.1. Collective coordinates

In our earlier dynamical studies we have usually described the nuclear shape
in terms of smoothly joined poitions of tn.,ee quadratic surfaces of revolution,
with three symmetric and two independent asymmetric shape coordinatess-g.
Although suitable for many purposes, this three-quadratic-surface parametriza-
tion breaks down in the later stages of many heavy-ion fusion calculations, is
unable to describe division into more than two fragments and leads to very
complicated expressions for the forces involved.

Because of these disadvantages, we have switched to a more suitable parame-
trization in which an axially symmetric nuclear shape is described in cylindri-

cal coordinates by means of the Legendre-polynomial expansion10

2 2 & -
pi(2) = Ry XO q, P [(z-2)/2,]
n=

In this expression, z is the coordinate along the symmetry axis, P is the value
on the surface of the coordinate perpendicular to the symmetry axis, 2 is
one-half the distance between the two ends of the shape, z is the value of z at
the midpoint between the two ends, R0 is the radius of the spherical nucleus, Pn
is a Legendre polynomial of degree n, and Q. fcr n# 0 and 1 are N - 1 shape
coordinates. Since the nucleus is assumed to be incompressible, the quantity 9
is nut independent but is instead determined by volume conservation. Also, aQ,
is uetermined by fixing the center of mass. Throughout this paper we use N =
11, corresponding to five independent symmetric and five independent asymmetric
shape coordinates. In addition, we include an angular coordinate O = Q41 to
describe the rotation of Lhe nuclear symmetry axis in the reaction plane, which
leads to a total of N degrees of freedom that are considered.

2.2. Potential energy

In terms of the N coilective coordinates q = Qpr- -1y WO calculate the
potential energy of deformation V(q) as the sum of repulsive Coulomb and cen-
11, with
This generalized

trifugal energies and an attractive Yukawa-plus-exponential potential
cornstants cetermined in a recent nuclear mass formuIalz.
surface energy takes into account the reduction in energy arising from the
nonzero range of the nuclear force in such a way that saturation is ensured when
two semi-infinite slabs are brought into contact.

2.3. Kinetic energy

The collective kinetic energy is given by
‘l . . —l -1
T=3 Mij(Q) 9 9 = 3 [(M(q) ]1J Py Py

where the collective momenta p are related to the collective velocities d by



Py = My4(2) q
In these equations and the remainder of this paper we use the convention that
repeated indices are to be summed over from 2 to N + 1. We calculate the in-
ertia tensor M(q), which is a function of the shape of the system, for a super-
position of rigid-body rotation and inconpressible, nearly irrotational flow by
use of the Werner-Wheeler method, which determines the flow in terms of circular
layers of fluid> °.

2.4, Dissipation mechanisms

The coupling between the collective and internal degrees of freedom gives
rise to a dissipative force whose mean component ir. the i-th direction may be
written as

= - C - . -1
F1 s nij(Q) QJ ﬂij(Q) [M(Q) ]jk pk
For the calculation of the shape-dependent dissipation tensor n(q) that de-
scribes the conversion of collective energy into single-particle excitation

energy, we consider both one-body dissipation8'9'13'15

6.8,9

and ordinary two-body
viscosity , whose dissipation mechanisms represent opposite extremes. In
the former case dissipation arises from collisions of nucleons with the moving
nuclear surface and when the neck is smaller than a critical size also from the
transfer of nucleons through it, with a magnitude that is completely specified
by the model. In the latter case dissipation arises from collisions of nucleons
with each other, but tke coefficient of two-body viscosity must be determined
from an adjustment to experimenta! results.

Compared to our previous calculations with one-body dissipation8'9'13, our
present calculations incorporate two improvements. First, to describe the
transition from the wall formula that applies to mononuclear shapes to the
wall-and-window formula that applies to dinuclear shapes we now use the smooth
interpolation

- 2,n 2,n

n = sin (Eu) Ayan * €78 (50) wal1-and-window °

where

/R )2

a=(r

)

neck’ ‘min

is the square of the ratio of the neck rudius T neck to the transverse semi-axis
Rmin of the end fragment with the smaller value. Second, in determining the
drift velocities of the end fragments relative to which velocities in the wall-
and-window formula are measured, we now require the conservation of linear and
angular momentum rather then usfng the velocities of the centers of mass. How-
ever, the results calculated with both prescriptions for the drift velocity are

nearly identical.



2.5. Generalized Fokker-Planck equation

In addition to the mean dissipative force, the coupling between the collec-
tive and internal degrees of freedom gives rise to a residual fluctuating force.
When this stochastic force is treated with classical statistical mechanics under
the Markovian assumption that it does not depend upon the system's previous his-
tory, we are led to the generalized Fokker-Planck equation
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for the dependence upon time t of the distribution function f{q,p,t) in phase
space of collective coordinates and momenta. The last term on the right-hand
side of this equation describes the spreading of the distribution function in
phase space, with a rate that is proportiunal to the dissipation strength and
the nuclear temperature tv, which is measured here in energy units.

2.6. Generalized Hamilton equations

Because of the practical difficulty of solving the generalized Fukker-Planck
equation exactly except for special cases, in some of our studies we use equa-
tions for the time rate of change of the first moments of the distribution
function, with the neglect of higher moments. Th.se are the generalized Hamil-
ton equations

and
aM™ 1y
o= 17 ik e 5
Py 8q, 2 8q, "J Pk M4 jk Pk
which we solve numerically for each of the N generalized coordinates and
momenta,
3. FISSION

As our first application, we consider the fission process, with particular
emphasis on the mean translational fission-fragment kinetic energies of nuclei
throughout the periodic table. Although similar to earlier studiess'e, our
present calculations are performed, as discussed above, with a more flexible
shape parametrization, with a more realistic set of constants, and with two
improvements in our treatment of one-body dissipation. Also, our initial condi-
tions at the fission saddle point now incorporate the effect of dissipation on

the fission direction16 and are calculated for excited nuclei with nuclear



temperature 1 = 2 MeV by determining the mean velocity of all nuclei Lhat pass
per unit time through the saddle point with positive ve1oc1ty17.

3.1. Dynamical trajectories

In our fission calculations we specialize to reflection-symmetric shapes and
zero angular momentum, so that only five coordinates are considered explicitly.
We then project out of this five-dimensional space the two most important sym-
metric degrees of freedom, which are conveniently defined in terms of the can-

tral moment.se’-9
r = 2<2>
and
o= 2¢(z - <z>)2>1/2 '

where the angular brackets < > derote an average over the half volume to the
right of the midplane cf the reflection-symmetric shape. The moment r gives the
distance between the centers of mass nf the two halves of the dividing nucleus
and o measures the elongation of each half about its center of mass. Our calcu-
lotions are performed for nuclei with atomic number Z related to mass number A
according to Green's approximation to the valley of beta stab111ty18.

As shown in fig. 1, the mean dynamical trajectories for light nuclei corre-
spond te short descents from dumbbell-like saddle-point shapes to compact scis-
sion shapes, whereas those for heavy nuclei correspond to long descents from
cylinder-1ike saddle-point shdapes to elongated scission shapes. The trajec-

tories for one-body rdissipation lie inside those for no dissipation and two-
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FIGURE 1
Effect of dissipation on mean dynamical trajectories for four fissioning nuclei.
Saddle points are indicated by solid circles and scissfon points by arrowheads.



body viscosity for heavy nuclei, but for very light nuclei lie outside. In
contrast, the trajectories for two-body viscosity always lie somewhat above
those for no dissipation, leading to more elongated scission shapes. Our cal-
culations for two-body viscosity are performed with viscosity coefficient

b=0.02TP=1.25x 10" 23 Mev s/fm3 |

which as we see later is the value required to optimally reproduce experimental
mean fission-fragment kinetic energies.

3.2. Ternary division

An exciting new aspect of these dynamical calculations is the formation of a
third fragment between the two end fragments for sufficiently heavy nuclei with
either no dissipation or two-body viscosity. As shown in fig. 2, the mass of
this third fragment increases with increasing Zz/Al/3 above a critical value
that is slightly lower for two-body viscosity than for no dissipation. Since no
third fragment is formed with one-body dissipation, accurate experimental in-
formation concerning such true ternary-fission processes should help decide the
nuclear-dissipation issue. Further theoretical aspects of this problem are
currently being studied at Los Alamos by Carjanlg.

3.3. Fission-fragment kinetic energies

In calculating the mean fission-fragment translatiounal kinetic energy at in-
finity, we treat the post-scission dynamical motion in terms of two spheroids,

with initial conditions determined by “eeping continuous the values of r, o, r,
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FIGURE 2

Efiect of dissipation on the formation of a third fragment between the two end
fragments.



ana o at SC1SS10N. wnen a smali TNIrad Tragment 1S TYOrmed 1N & realistic Ssitua-
tion off the symmetry axis and/or with some transverse velocity, it moves away
and contributes less to the kinetic energy of the two larger end fragments than
it would in our idealized calculation, where it remains stationary at its origin.
In the presence of a third fragment, we obtain a lower limit to the fission-
fragment kinetic energy by calculating the post-scission separation of the end
fragments in the absence of the mlddle fragment. Also, we estimate an upper
limit in terms of the kinetic energy at scission of the two end fragments plus
the Coulomb interaction energy of three spherical nuclei positioned at their
respective centers of charge.

We compare in figs. 3 and 4 our mean kinetic energies calculated in this way
with experimental values for the fission of nuclei at high excitation energys,
where single-particle effects have uecreased in importance. As shown by the
short-dashed curves in both figures, the results calculated with no dissipation
are for heavy nuclei substantially higher than the experimental values. Dissi-
pation of either type lowers the calculated kinetic energy. However, as shown
by the long-dashed curve in fig. 3, one-body dissipation with a magnitude that
is specified by the theory predicts for heavy nuclei values that lie below the
experimental data. This underprediction arises because the highly dissipative
descent from the saddle point damps out much of the pre-scission kinetic energy
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Reduction of mean fission-fragment kinetic energies by one-body dissipation,
compared to experimental values.
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Reduction of mean fissic-- fragment kinetic energies by two-body viscosity,
compared to experimental values.

and our improved parametrization leads to moderately elongated scission shapes
with lower Coulomb repulsion. We regara this discrepancy a: experimentally
demonstrating that ore-body dissipation as presently formulated is not the
complete dissipation mechanism in large-amplitude collective nuclear motion.

In contrast, as shown by the solid curves in fig. 4, when the two-body vis-
cosity coefficient is adjusted to the value p = 0.02 TP, the experimental data
for heavy nuclei lie between the calculated lower and upper limits and are
adequately reproduced throughout the rest of the periodic table. For two-body
viscosity, the dynamical trajectories lead to elongated scission shapes with
less Coulomb repulsion, but this is supplemented by some pre-scission kinetic
energy. These results calculated with several improvements demonstrate that
mean fission-fragment kinetic energies are capable after all of distinguishing
between dissipation mechanisms.

4. HEAVY ION REACTIONS

Even better prospects for determing the dissipation mechanism reside with
heavy ion reactions, where we are able to choose the total mass of the combined
system, the mass asymmetry of the entrance channel and the bombarding energy
with foresight. This permits us to select for study those dynamically interest-
ing cases that involve large distances in deformation space.



4.1. Energy for fusion

A necessary condition for compound-nucleus formation is that the dynamical
trajectory of the fusing system pass inside the fission saddle point in a multi-
dimensional deformation space. For heavy nuclear systems and/or large impact
parameters, the fission saddle point lies inside the contact point anc the
center-of-mass bombarding energy must exceed the maximum in the one-dimensional
zero-angular-momentum interaction barrier by an amount AE in order to form a
compound nucleus.

This additional energy AE has been calculated both by solving the generalized
Hamilton equations numerically with the three-quadratic-surface shape parametri-
zation and realistic forces7'9 and approximately with the two-sphere-plus-

20'21. Since we have not

conical-neck shape parametrization and schematic forces
yet performed such calculations with our present shape parametrization and other
improvements, we use the results from ref. 9 as an {llustration.

Figure 5 compares calculated and experimental values of the additional center-
of-mass bombarding energy AE as a function of a scaling variable (ZZ/A)m“n
defined in terms of the atomic numbers and mass numbers of the target and projec-
t11e9. Sclid symbols denote values extracted from measurements of evaporation

residues, which require the formation of true compound nuclei. Open symbols
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FIGURE 5

Comparison of calculatea and experimental values of the additional energy AE
required for compound-nucieus formation.
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donnte valuss entrvacted from measurements of nearly symmetric fission-like
traygsonty, where fast-finsion processes involving significant mass transfer but
anl vove ol nuc leus formation also contribute. Because the open symbols
dve aul ropronent (avey whers a true compound nucleus has necessarily been
tvided, aml Lo aune the error bars for the three solid symbols with the largest
valuoy uf (I'IA)...“ entend to infinity, we are not able tc reach definitive

veay tustunn trom comparinons of this type. It is necessary instead to calculate
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reached, belew which some oscillations occur.

4.3, Capture cross section

208 58

Pb +

corresponding to capture, or symmetric fragmentation, was determined as the

average of two separate procedureszz. With the first procedure all mass trans-

In the experimental study of the Fe reaction, a cross section o,

fers greater than 40 amu were included, whereas with the second procedure Gaus-
sian distributions centered at symnetry were adjusted to the data. The result-
ing experimental points, with error bars reflecting the differences between the
two procedureszz. are shown in fig. 7. In calculating a corresponding theoreti-
cal capture cross section, we use the first procedure involving mass transfers
greater than 40 amu. Other than at the lowest bombarding energy, our calculated
curve for two-body viscosity lies substantially above the experimental points,
with the deviation increasing to almost a factor of 2 at the highest bombarding
energy. We regard this important discrepancy as experimentally demonstrating
that two-body viscosity is also not the complete dissipation mechanism in large-
amplitude collective nuclear motion.

Our next step is to perform analogous calculations for one-body dissipation,
taking into account the dissipation associated with a time rate of change of the
mass asymmetry degree of freedom in the completed wall-and-window formuIa15
Like the rest of you at this Conference, we are eager to find out if one-body

dissipation can quantitatively account for experimental capture cross sections.
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FIGURE 7
Comparison of experimental capture cross secticns with results calculated for
two-body viscosity, with viscosity coefficient p = 0.02 TP.
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5. SADDLE-TO-SCISSION TIME

We now proceed in a second direction and apply the generalized Fokker—Planck
equation to a one-dimensional inverted-oscillator fission barrier with frequency
w. The inertia with respect to the deformation coordinate q is assumed constant
with value m and the dissipation coefficient is assumed constant with value n.
It is natural to measure the dissipation strength in terms of the dimensionless
ratio y = n/(2mw), defined so that unity corresponds to critical damping in the
inverted oscillator turned upright.

Except for extremely small values of y, Kramers' stationary solution of the
Fokker-Planck equation for the inverted oscillator can be used to derive an
analytical expression for the mean time t required for the system to move from
the saddle point at q = 0 to the scission point at q = q_.. The result isl7

C
t=2ra+ Y2« 1 redmedmt’ly

where

z ®
R(z) = { exp(yz) dy I exp(-xz) dx
y

is a readily computed function studied and tabulated by Rosser. Because of its
strong dependence upon the dissipation strength, the mean saddle-to-scission
time provides a direct method for determining the magnitude of nuclear dissipa-

tion. As an example of this pessibility, we consider the reaction 160 + 142Nd -

158Er at a laboratory bombarding energy E1ab = 208 MeV, which is being studied

experimentally by the Los Alamos-0ak Ridge co11aboration23. For three values of

angular momentum spanning the window that contributes to fission23, we show our
calculated mean saddle-to-scission times in fig. 8. The constants of the in-
verted oscillator representing the fission bar-ier for each angular momentum are
determined by equating two r uantities calculated for a parabolic barrier to the
corresponding quantities calculated with our dynamical model described earlier.
The nuclear temperature v is determined from the excitation energy E™ at the
saddle point by use of a Fermi-gas relationship.

Experimental data on the spectra of neutrons emitted in this reaction and on
their angular distributions wili he analyzed to yield the number of neutrons
emitted prior to scission and the number of neutrons emitted from the fission
fragment523. These quantities may in turn be related by mears of a statistical
model to the sum of the time required to build up the quasi-stationary probabil-

24

ity flow over the fission barrier®’ and the mean saddle-to-scission time. The

former is currently being calculated for this reaction by Grangé and Weiden-
mu11er25. When fully completed and analyzed, this experiment should set strin-

gent limits on the magnitude of nuclear dissipation.

13
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Increase of the mean saddle-to-scission time with dissipation strength.

6. OUTLOOK

We are entering a new era in fission and heavy ion reactions. Up to now
theoretical approaches with vastly different pictures of the underlying nuclear
dynamics have reproduced many of the gross experimental features of fission and
heavy ion reactions because they include correctly the dominant nuclear, Coulomb
and centrifugal forces. However, calculations are now beiny designed specifi-
cally to test the dissipation mechanism. When compared with mean fission-frag-
ment kinetic energies, these calculations demonstrate that one-body dissipation
is not the complete dissipation mechanism. Also, when compared with capture
cross sections, they demonstrate that two-body dissipation is not the complete
diss ipation mechanism.

We are led experimentally to the suggestion that dissipation in large-ampli-
tude collective nuclear motion is intermediate between these two extremes,
arising from hoth mean-field effects and two-particle collisions. Further
comparisons of the type made here, together with forthcoming experimental infor-
mation on true ternary fission and the mean saddle-to-scission time, offer the
exciting prospect of finally determining the magnitude and mechanism of nuclear
dissipation.
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