A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in [OE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a srnall portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

notice

```
-
TITLE HYDROGEN DIFFUSION FLAMES BURNING IN A MARK-III
CONTAINMENT DESIGN
AUTMOR(S) J. P., Travis
submitted to Juint ANE/ASME Conference on Design, Construction, and Operation of Nuclear Power Plarits, Angust 5-8, 1984, Portiand, Oregon
```


L^-U!i--8s-13]

1) 04011411

DISC I.AIMER

This report was prepured ins inn uccount al work sponsored hy un ugeney of the Uniled Sitaten (iovernuent. Neither the Inited States fiovermuent ure :iny upency liereol, nor any of their
 bility bor the uccuncy. cumpleteness, ir uselulness of any imformation, upparatus, product, or

 mendintion ar livinimg by the Ihited Sintes invermuent or uny upency thereof. The viewn
 Inited Stules d inverimient in any apermy tirient.

[^0]

\author{

Abstract

 For the first time, a time-dependent, fully three-dimensional analysis of nydrogen diffusion flames conbusting in nuclear reactior containments has been performed. The analysis involves coupling an Eulerian finite-differelice fluid dynamic technique with the global chemical kinetics of hydrogen combustion, The overall induced flow patterns are shown to be very complex and greatly influence the maximum wet-well cemperatures and pressures and wall heat fluxes.

}

[^1]
I. INTRODUCTION

In response to the United States Nuclear Regulatcry Commission, we have analyzed diffusion flames burning above the pool in the wet-well of the MARK III containment fesign. In this accident sequence, a transient event from 100% power is followed by loss of all coolant-injection capability. The reactor vessel remains pressurized as the coolant water in the reactor vessel begins to boil away. When the core becomes uncovered and heats up, after roughly 40 minutes into the accident, zirconjum and steel oxidation leads to the generation of hydrogen which is then released through safety relief valves (SRV's) into the su:ppression pool. Under certain conditions, this release of hydrogen (e.g., with an ignition source) leads to the formation of diff zion flames above the release areas in the suppression pool. These flames may persist in localized regions above the suppression pool for tens of minutes and therefnre could lead to overheating of nearby penetrations in the dry-well or wet-well walls. It is of most interest to calculate the temperature and pressure of the containment atmospliere in the wetwell region and the heat flux loads on the dry-well and wet-well walls up to 10 m above the suppression pool surface. Thr major contribution; however, of this analysis is the calculation of the overall induced flow patterns which alluws identification of oxygen starved regions and regions where diffusion flames may lift off he pool surface.

I1. MAThi! MAT'LCAL MODEL

The partial-differentinl equatious thint poveru the fluld dyamien nad spectes trantort and model the hydrogen cominstion process are presented for the вection.

A. The Mixture Equations

The mixture mass conservation equation is

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \bar{u})=0
$$

where
$\rho=\sum_{\alpha=1}^{4} \rho_{\alpha} ; F_{\alpha}=$ macroscopic density of the individual species $\left(H_{2} O, N_{2}\right.$, H_{2} or O_{2}).
$u=\quad$ mass-average velocity vector.

The mixture momentum conservation equations are given by
$\frac{\partial(\rho \overline{\mathbf{u}})}{\partial \mathbf{t}}+\nabla \cdot(\rho \overline{\mathbf{u} u})=-\nabla \mathrm{p}+\nabla \cdot \bar{\sigma}+\hat{\rho} \overline{\mathbf{g}}-\overline{\mathrm{D}}$,

where

$\mathrm{p}=$ pressure,
$\bar{\sigma}=$ viscous stress tensor,
ρ - local density relative to the average density
$\bar{g}=g r a v i t a t i o l i a l ~ v e c t o r, ~ a r d ~$
$\bar{v}=$ structural dray vector.

The cocfficients of viscosity, " and λ, which appear in the viscons stress tensor, e.g.,

$$
v_{r r}=2_{\mu} \frac{\partial u}{\partial r}-\lambda V \cdot \bar{u},
$$

where λ is defilled
$\lambda=\frac{2}{3} \mu$,
and μ is interpreted as the "eddy viscosity", are defined by the simple algebraic turbulence model
$\nu=\mu / \rho=1 / 40$ s $\sqrt{2 q}$.

In this model, s is equal. to a length scale (1.50 m for these calcliations) and $\sqrt{2 q}$ is the turbulent energy intensity $(0.15|\bar{u}|$ for these calculations),
so
$\mu=0.56 \rho|\bar{u}|$

The structurial drap, vector is given by
$\bar{D}=C_{D} \rho^{\prime}$ Area/Volume $) \tilde{u}|\bar{u}|$,
where

Area/Voiume $=\frac{\text { structure area }}{\text { structure volume }}$,
and

```
\(C_{D}=1\).
The mixture ifiternal enorgy density equation is
\(\frac{\partial(\rho L)}{\partial t}+V \cdot(\rho L \bar{i})=-p \nabla \cdot \bar{u}+V \cdot(k \cdot V r)+q\),
```

where

```
I = mixture specific internal energy
k = "eddy conductivity",
T mixture temperature, and
Q = energy source and/or sink per unit volume and time.
The specific internal energy is related to the temperature by
```

$$
I=\sum_{\alpha=1}^{4} X_{\alpha}\left(I_{o}\right)_{\alpha}+\sum_{\alpha=1}^{4} X_{\alpha} \int_{T_{0}}^{T}\left(C_{v}\right)_{\alpha} d T
$$

where X_{α} is the mass fraction, $\left(I_{o}\right)_{\alpha}$ is the specific intericil energy at the reference temperature, T_{0}, for specie α and the specific heato at constart volume, $\left(C_{v}\right)_{a}$, have been represented over the temperature range (200: 2500) degrees Kelvin by the linear approximation

$$
\left(C_{v}\right)_{\alpha}=A_{\alpha}+\Sigma_{\alpha} T
$$

The equation-of-state for the average fluid pressure P_{0} is given by the ideal gas mixture equation

$$
P_{o}=T \int_{\alpha=1}^{4} R_{\alpha} \rho_{\alpha},
$$

where R_{α} is the gat constant for specie $\alpha_{\text {. The eddy conductivity is founci by }}$ assuming the Prandtl Number, Pr, equal to unity, i.c.,

$$
\operatorname{Pr}=\frac{C_{F}^{16}}{k}=1 \text {, }
$$

thus

$$
k=C_{p} \mu
$$

where

$$
C_{p}=\sum_{\alpha=1}^{4} X_{\alpha}\left(c_{p}\right)_{\alpha}=\sum_{\alpha=1}^{4} x_{\alpha} R_{\alpha}+\left(c_{v}\right)_{\alpha}
$$

The energy source/sink term has several contributions: (1) chemical energy of hydrogen combustion, $Q_{f} ;(2)$ heat transfer to the structure, Q_{s}; and if the computational zone is adjacent to a containment wall there is heat transfer to the wall, Q_{w}; therefore,

$$
Q=Q_{f}-Q_{s}-Q_{W},
$$

where

$$
\begin{aligned}
& Q_{f}=.85 \gamma_{c}=85 \% \text { of the chemical energy per unit volume and time, } Q_{c} \text {, pro- } \\
& \text { duced by hydrogen combusting (the other } 15 \% \text { of the chemical } \\
& \text { energy } 18 \text { radiated to the wet-well and dry-well walls), } \\
& Q_{s}=h_{s}(\text { Arca/Volume })\left(T-T_{s}\right) \text {, and } \\
& Q_{W}=h_{W}\left(A_{w} / V\right)\left(T-T_{W}\right) .
\end{aligned}
$$

In the above relations, h_{s} is the structural heat transfer coefficient, $1000 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ for these analyses, h_{W} ls the wall heat transfer coefficient, $20 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ tor these calculations, T_{B} is the structure remperature, T_{w} ic the wall femperature, A_{w} is the wall surface area, and V is, we computational zone volume adjacent to the wall. Wall heat transfer is criculater by

$$
k A_{w} \frac{\partial T_{w}}{\partial r}+h_{w} A_{w}\left(T-T_{w}\right)+c_{r}=0
$$

where

$$
\begin{aligned}
f_{i}= & \text { total amount of energy per unit time radiated from all hydrogen flames } \\
& \text { to a particular computational zone wall area, and } \\
k= & \text { wall thermal conductivity } 0.81 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K} \text { for these calculations . }
\end{aligned}
$$

We have assumed a simple penetration model for calculating the wall heat flux. Using the analytic solution for a transient thermal wave penetrating into a semiinfinite medium, we can write

$$
\frac{\partial T}{\partial r} \frac{T^{w}}{}=\frac{T_{w}-T_{r e f}}{\sqrt{\pi \beta t}}
$$

where $T_{\text {ref }}$ is the deep wall reference temperature, and
$\beta=$ thermal diffusivity, $4 . y \times 10^{-7} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$ for these analyses .
B. The Soacies Transport Equations

The dynamics of the individual species are determined by
$\frac{\partial \rho_{H_{2} \mathrm{O}}}{\partial t}+\nabla \cdot\left(\rho_{\mathrm{H}_{2} \mathrm{O}^{\mathrm{u}}}\right)-\nabla \cdot \rho \gamma \vee \frac{\rho_{\mathrm{H}_{2} \mathrm{O}}}{\rho}=\mathrm{S}_{\mathrm{H}_{2}}+\mathrm{S}_{\mathrm{O}_{2}}$,
$\frac{\partial \rho_{:{ }_{2}}}{\partial t}+\nabla \cdot\left(\rho_{N_{2}} \bar{u}\right)-\nabla \cdot \rho \gamma V \frac{\rho_{N_{2}}}{\rho}=0$,

$$
\frac{\partial \rho_{H_{2}}}{\partial t}+\nabla \cdot\left(\rho_{\mathrm{H}_{2}} \overline{\mathrm{u}}\right)-\nabla \cdot \rho \gamma \nabla \frac{\rho_{\mathrm{H}_{2}}}{\rho}=-\mathrm{s}_{\mathrm{H}_{2}}
$$

and

$$
\frac{\partial \rho_{0_{2}}}{\partial t}+\nabla \cdot\left(\rho_{0_{2}} \bar{u}\right)-\nabla \cdot \rho \gamma \nabla \frac{\rho_{0_{2}}}{\rho}=-s_{0_{2}}
$$

where the "eddy diffusivity", γ, is determined by setting the Schmidt Number to unity, $\gamma=\mu / \rho$, and $S_{H_{2}}$ and $S_{0_{2}}$ are determined by the chemical kinetics presented below. Summing the above species transport equations results in the mixture mass conservation equation.

C. Chemical Kiuetics

We are employing giobal chemical kinetics in which the only reaction modelled is

$$
2 \mathrm{H}_{2}+\mathrm{U}_{2} \stackrel{\dot{山}}{\rightarrow} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Q}_{\mathrm{c}}
$$

Hydrogen combustion proceeds by means of many more elementary reaction steps and intermediate chemical species. The chemical reaction time scale is, however, very short compared with flui : dynamic motions and meaningful calculations can be accomplished using this simplified global chemical kinetics scheme. ${ }^{2}$ Here, Q_{c} is the cheminal energy of combustion per unit volume and time, i.e.,

$$
Q_{c} \frac{\mathrm{~W}}{\mathrm{~cm}^{3}}=4.778 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mole}} \quad \dot{\mathrm{i}} \frac{\text { mole }}{\mathrm{m}^{3} \cdot \mathrm{~s}}
$$

The reaction rate, $\dot{\omega}$, is modelled by Arrenhius kinetics as

$$
\dot{\omega}=C_{f} \frac{\rho}{M}{ }_{H_{2}}{\stackrel{\rho}{M} 0_{2}} \exp \left(-10^{4} / T\right),
$$

where M is the molecular weight and $C_{f}=3.3 \times 10^{5} \frac{m^{3}}{m o l e-s}$. Now, the source terms S_{H} and $\mathrm{S}_{\mathrm{O}_{2}}$ are found by

$$
\mathrm{S}_{\mathrm{H}_{2}}=2 \mathrm{M}_{\mathrm{H}_{2}} \dot{\omega}
$$

and

III. SOLUTION PROCEDURE

The above equations are writcen in finite-difference form for their numerical solution. The nonlinear finite-differeuce equations are then sulved iterativoly using a point relaxation method. Since we are interested in low-speci flows where the propagation of pressure waves need not be resolver, we are therefore utilizing a modified ICE ${ }^{1}$ solution technique where the species densities are functions of the containment pressure, and not of the local pressure. Time-dependent solutions can be obtained in one, two, and three space dimensions in plane and in cylindrical geometries, and in one- and two-space dimensions in spherical geometries. The geometric region of interest is divided into many finite-sized space-fixed zones called computational cells that collectively form the computing mesh. Figure 1 shows a typical computatioral cell with the velocities centered on cell boundaries. All scalar quantities, such as I, p, and ρ_{α} 's, are positioned at the cell-center designated (i,j,k). The finite-difference equations for the quantities at time $t(n+1) \delta t$ furm a system u coupied, nonlinear algebraic equations.

The solution method starts with the explicit calculation of the chemical kinetics yielding the source terms in the species transport equations alld
specific internal energy density equation. Next, the convection, viscous stress tensor, gravity, and drag teriss are evaluated in the mixture momentum equations and an estimate of the time advanced velocities is obtained. The solution method then proceeds with the iteration phase:
(1) The $\left(\rho_{\alpha}^{\prime}\right)^{n+1}$'s are found from the species transport equations using the latest iterates for $(\rho)_{\alpha}^{n+1}$ and $\bar{u}^{\mathrm{n}+1}$.
(2) The global or average fluid pressure, P_{o}^{n+1} is determined by integrating the equation-of-state over the computational mesh.
(3) The equation-or-state is modified slightly to find the mixture density ising the $\left(\rho_{\alpha}^{\prime}\right)^{n+1}$'s and p_{o}^{n+1} from steps (1) and (2)
$\rho_{1, j, k}^{n+1}=\frac{P_{o}^{n+1} \sum_{\alpha=1}^{3}\left(\rho_{\alpha}^{\prime}\right)_{1, j, k}^{n+1}}{T_{1, j, k}^{n} \sum_{\alpha=1}^{3} R_{\alpha}\left(\rho_{\alpha}^{\prime}\right)_{1, j, k}^{n+1}}$.
(4) With $\rho_{i, j, k}^{n+1}$ [from step (3)] and the latest iterates for \bar{u}^{n+1} the residual, $D_{i, j, k}$, in the mixture mass equation is calculated. If the convergence criterion is met, for example $\left|D_{1, j, k}\right|<\varepsilon$ where $E=10^{-4} \mathrm{x}$ $\rho_{1, j, k}^{n}$, then no adjustment is made to the local pressure, $p_{1, i, k}^{n+1}$, and the velocities $\bar{u}_{i, j, k}^{n+1}$ for cell (i, j, k). When the convergence criterion is met for all cells in the computational mesh, the iteration phase of the cycle is complete.
(5) For any cell that the criterion is not met, the lecal pressure is changed by an amount
$\delta p_{1, j, k}=-\frac{\Omega D_{1, j_{2} k}}{\frac{\partial D}{\partial p} 1, j, k}$,
where

$$
\frac{\partial D}{\partial p} i, j, k=\frac{2 \delta t^{2}}{\delta r^{2}+\left(r_{1} \delta \theta\right)^{2}+\delta z^{2}}
$$

and Ω is a constant over-relaxation factor selected $1.0 \leq \Omega<2.0$, and the momenta are changed aue to the new pres sure gradient. The velocities are found by simply dividing the momenta by the updated densities. Step $!$! !) - (5) are repeated until the convergence criterion as presented in step (4) is fatisfied on the entire computationil me.h. After the iteration phase is complete, the apecific internal energy density equation is evaluated and the computational time step is finished with the advancement of the tinc step.
IV. GEUMFTRY, COMPUCATIONA, MESH, AND INITIAL AND BOUNDARY CONDITIONS

The MARK III containment design is show siliematically in rig. 2 . We are only concerned with the containment volume above the water level so we approximate the containment with the configuration presented ill Fig. \dot{S}, which has the same atmospheric contalnment volume as that of Fig. 2. The outer vertical contalnment wall (wet-well wall) is concrete 0.75 m (2.5 feet) thick and the inner vertical wall (dry-well wall) is concrete $1.5 \mathrm{~m}(5$ feet) thicn. The anmiar rigion between these two walls is called the wer-rell. Hydrogen :pirpers or sources are actually at the bottom of the suppiession pool within 3 in of the fil ner wall. The nine sources can le thougit of an circular, 3 in dianoter, centered azimuthally at $16,48,88,136,152,184,256,288$, and 328 deprecene lis. 4 given the iden of the sources rabitive to tile wet-wali mal the contilnment wills.

The geometry an shown in the :wo perspective views of Fign. 5 nidd b Ladlcates that true threc-dimenfonility of the contialnment. The hydrogen mources are showil at the bottom as dark rectangular repidons. I'he cylladrlcal computia-
tional mesh approximating this geometry is presented in Fig. 7 which slows each of the computing zones. A pie shaped region of the computing mesh indicating the dimensions is presented in Fig. 8. Hydrogen enters the computing mesh at the bottom ($J=2$) of specific cells in the annular ring ($I=8$) with a temperaturn equalling $71^{\circ} \mathrm{C}$ and pressure eqialling $10^{5} \mathrm{~Pa}$. The initial conditions in the ntainment is dry air $u t 21^{\circ} \mathrm{C}$ and $10^{5} \mathrm{~Pa}$. The azmuthal positions of the hydrogen sources within the ring $I=8$ are specified at $K=4,6,8,13,15,16,20,22$, and 24 which corresponds to computational zones centered at $322.5,292.5,262.5$, 187.5, $157.5,142 . \underline{2} .5,52.5$, and 22.5 , respectively. The mass flow rate of $100 \mathrm{lb} / \mathrm{min}$ is distributed eqcally among the aine nources.

There are tremendous heat sinks in the containment e.g., 2.2 : $1^{6} \mathrm{~kg}$ steel with heat trarsfer surface area equalling $2.7 \times 10^{4} \mathrm{~m}^{2}$, from which an average sulface area per unls volume can he found. The structural heat transfer and drag formulations both use this average value to compute hent and momentum exchange, respectively, within a computational zone.

TAHLE 1
AZMUIIIAL POSITIONS OF THE HYDRO(EEN SOURCES WITHIN RING $1-8$

Lase "b"		Cinge "C"		Case "3"	
Azmuthul	Poritiolls	Azmu	Positions	Azmı	1 Pogition
\underline{K}	Degrees	1.	Degrees	\underline{K}	Degreen
4	322.5	4	322.'	22	52.5
6	29:. 3	$1)$	292.')		
8	262.')	8	262.')		
11	1,17.'	13	187.3		
16	142.5	$1{ }^{3}$	157.5		
20	82.')	16	142.)		
21	67.5	20	82.')		
22	52.5	22	5\%.')		
2.4	2\%.')	2.4	? ${ }^{\prime}$		

V. RESUI.TS

Fig. 9 displays velocity vectors in an unwrapped (constant radius ve. height) configuration. The radius is at the radial center of the hydrogen source cells ($\mathrm{I}-8$), which can be seen at the bottom of each plot by the openings. For example, there is a double source between 135 and 165 decrees and seven single sources distributed aiong the azmithal dimension. With nine distributed sources. and distributed as they are, Fig. 9 shows the derelopment of very atrong buoyancy driven flows in the partial hot chimney at 45 tegrees and the full hot chimneys at 135 and 315 degrees. A cold chimney (downflow) develops at 225 degrees completing the convective loops. The partial hot chimney (45 degrees) is blocked by a concrete floor about half way to the top and is diverted toward the outer wal. 1 and upwird around the enclosed volumes shown in this figure. The hortmontal Ines designate concrete floors where no mass, momentum or energy is alloved to flux across these lines. Thus we see the hot products of combustion beneith the floors at say 270 degrees convecting hurizontally and contributing to the full hot chinney at 315 degrees. Maximum gas temperitutes are generally found in regions of multiple sources and bencath concrete floors as depleted in fig. 11 . Early in the calcularion, 120 s , most of the hydrogen combusts in the fulet computational zone an shown by the hydroyen density contour plot of fik. 11 . This is conetirmed by the chemical energy contour plot (Fif, 12) which nhows the
 tour plot (fig. 13, showing low valuen near combuation roplous and hiph values fil the cold chimacy (22r, degriges). At later timen (1410n), Fign. $14,15,16$, and 17 show the same overall flow patern, but onty hydrogelt aources near the cold ritmney are continuing to combuat in the inlet repions. The othere which have become oxygen atarved yre combusting hipher up lathe wet-well. rhin in better aloowit perhaps in fig. 18 where high pan tempeataren are found tar above the poot burtace.

Summary results are presented in the next figures. Figure 19 shows the maximum and minimum wet-well temperatures and containment atmosphere pressure. Note that the maximum temperature would always be the adiabatic flame temperature for the composition of gases at that particular wime. We corrrctly calculate the adiabatic flame temperature; however, because of the coarseness of the computational mesh, the temperature of any zone in which combustion is taking place will always be lower than the actual adiabatic flame temperature. Mass historiet ior $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{H}_{2}$, and O_{2} are also included. Note that at roughly 1600 s , oxygen is totally depleted in the containment. Spatial distributions for heat fluxes to the inner and outer wet-well walls at 10 feet and 30 feet above the pool surface are presented in Fig. 20 for various times (60, 150, 600, and 1800 seconds). The hydrogen spurger or source azmuthal positions are indicated on each figure. Maximum heat flux values correspond one for one at the oparger locations, For azmuthal locations 142.5 and 292.5 degrecs wher large values of the heat flux occur, we have siven heat tlux histories at the 10 feet and 30 teet Hhove the suppresulon pool surface for both inner and outer walls. The heat fluxes on the faner wall peak early and then decrease as heat is convected to other replona in the containment. Mont of the heat trangfericed to the onter wall is radiated to these surfaces from the burnding hydrogen.

Without n thame model or resis!ving flame detalis with a finely zonerl computalifonil mesh, it is imposibible for us to aupply detalle about the fame such as thame height, tlane widtle and thme angle. We can miy: however, that: mont of the combuntion taken place in the inlet coll (flame height om), ne long
 then it in posmbibe tor thanea to lite off the water murface and burn hipior fa the wet-well, perhape evoll reateaching to the water murtace an more oxygen is suppled by convection.
VI. CONCLUSIONS

This is the most sophisticated analysis to this date of diffusion flames in reactor containments. Improvements can be made in the wall heat transfer treatment, the amount of radiant heat transferred from each chemical energy source, the turbulence model and the chemical kinetics representation; however, the effects of these phenomena are accounted for, and the fluid dynamics of the overall Induced flow patterns a:c relatively insensitive to changes in these narameters. In strictly conserving aass, momentum, and energy thronghout the computational mesh, these tlme-dependent, fully three-dimensional calculations should be considered benchmarks analyses.
VII. ACKNOWLEDGMENTS

It is a pleasure to express appreciation to T. D. Butler, J. K. Dukowicz, F. H. Harlow, and P. I. O'Rourke for their ielpful discussions throughout this work.

V1II. REFERENCE

1. F. H. Hirlow and A. A. Amsden, "Numerical Fluid Dynames Caloulation Method tor All flow Speeds," J. Comput. Phes, 8 , 197 (1971),
2. T. D. But ler, L. D. Gioutman, J. K, Dukowice, and J. り, Ramshnw, "Multidimensional Numerical ifmatation of Reactive Flow in liternal Combust on Engines," Prog. Eneryy Combusl. Sci. I. 293 (1981).

F18. 1.
Locations of velocity comporente for a typical cell in cylindrical guonetry.

Eig. 3. Schematic vieu of the Mark-ill Contaimert Design showing the geometry used in the Calculation. K : that the Containg the are Equal In Figs. 2 and 3 . tisat

 Itydrogen Spargers (sources) Relative to the Wet-Well.

FRONT VIEW

Fig. 'i.
Perspective Front Vies of Contairment showing Excluded Volumes, Concrete Flours, and Locations of Hydrogen Sources for Case C.

Fig. 6.
Perspective Back View of Containment Showing Excluded Volumes, Concrete Floors and Locations of Hydrozen Sources for Case C.

FJ.g. 7.
Computing Mesh for Containment Geometry.

Fig. 8.
Perspective View of a Ple Shaped Zone within the Computing Mesh.

Fig, 9, Unwrapped (constant radius, $1=8$ vs, axial dimension, 2) Velocity Vectors at $120 \mathrm{~s} . \quad V_{\text {max }}=7.4 \mathrm{~m} / \mathrm{s}$ and $\mathrm{W}_{\text {max }}=2.9 \mathrm{~m} / \mathrm{s}$

Fig. 10. Unwrapped (constant radius, $I=8 \mathrm{vs}$, axial dimension, 2) Gas Temperature Contours at $120 \mathrm{~s}, \mathrm{~T}_{\text {max }}: 1233 \mathrm{~K}$ and $\mathrm{T}_{\text {min }}=399 \mathrm{~K}$

Fig. 11. Unwrapped (constant radius, $T=8$ vs. axtal dinenslin, z) Hydrogen Density Contours at 120 s .

Fig. 12. Unwrapped (constant radius, $1=8$ vs. axial dimension, 2) Chemical Energy of Combustion Conlours at 120s.

 Denalty Contoure at 120 a ,

Fig, 14, Uliwrapped (cocontant radiun, T=8 va, axial dimenaion, z) Vajocity Virtore at $1410 \mathrm{H}, V_{\text {mux }}=3.7 \mathrm{~m} / \mathrm{s}$ and $W_{\text {mix }}=2.2 \mathrm{~m} / \mathrm{s}$

Fig, 15. Unwrapped (constant radius, I=8 vs, axial dimension, z) Gas Temperature Contours at $1410 \mathrm{~s}, \mathrm{~T}_{\text {max }}=732 \mathrm{~K}$ and $\mathrm{T}_{\mathrm{min}}=346 \mathrm{~K}$

Fig. 16. Unwrapped (constant radius, $1=8$ va. axial dimention,z) Hydrogen bensily Contours at 1410 m .

Fig, 17. Unwrapped (constant radius, I=8 va, axial dimension, z) Chemical Energy of Combustion Contours at 1410 s .

Fig. It. Unwrappad (conatant radlun, $1-8$ VA, nxinl dimenalon, z.) Oxypen Donally contoura al 1410n.

1 = 10 FEET $3=30$ FEET $=$ SPARGER LOCATIONS

CASE C TIME $=601$ SECONOS
$1=10$ FEET $3=30$ FEET $=$ SPARCER LDCATIONS

HEAT FLUX TO THE DUTER YALL

CASE C TIME $=150$: SECONDS
$1=10$ FEET $3=30$ FEET $=$ SPAPGER LOCATIONS

Fig. 2\%. Heat Flux to the Wet-Well Nalls as a function of Azimuthal Position ai Selected Iimes (60 s top and 150 s bottom).

HEAT FLUK TO THE INNER YALL

HEAT FLUX TO THE IMEER YALL

CASE C TIME $=18000$ SECONDS
$1=10$ FEET $3=30$ FEET $=$ SPARGER LOCATIONS
CASE C TIME $=6001$ SECONDS
heat flux to the outer vall

1 = 10 FEET $3=30$ FEET $=$ SPARCER LOCATIONS
heAt flux to the outer vall

CASE C TIME $=18000$ SECONOS
$1=10$ FEET $3=30$ FEET $=$ SPARCER LOCATIONS
Fig. 20(continuer) Heat flux to the Wet=Well Walls as a function of Azimuthal Position at Selected Times (600 s top and 1800 s bottom).

$$
=1 \wedge 5 F \quad 3=3 n \text { FFE }
$$

EA: FLES TE IN iPNo- on:

[^0]:

[^1]: Commisaton.

