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CALCULATION.OF SHOCK PROBLEMS BY USING FOUR
DIFFERENT SCHEMES

by

Wen Ho Lee and Paul P. Whalent

Summary

Reaults are shown of the use of several different shock
treatments in one- and two-dimensional Lagrangian code cal-
culations of strong shock problems with krown solutions.
The shock treatments are (A) von Neumann-Richtmyer arti-
ficial viscosity (B) Fixed length artificial viscosity; (C)
Artificial energy diffusivity combined with artificial
viscosity and (D) Modified Godunov. The similarity test
problems are plane and spherical implosions followed through
a reflection., The problems are generated in the codes by
imposing an inward directed velocity at one boundary of an
initially, quiescent, gamma law gc: with the other boundary
fixed. Results are shown for calculations on uniform and
non-uniform meshes. On non-uniform meshes, no method gives
good results although method D is probably superior. Method
B produces good appearing results with much shock smearing
for the initial shock fransit but the worst results after
shock re’lection. On uniform meshes, method C does the best
job of handling the effects of shock initiation at bounda-
ries while method A produces the worst results. Method D
results in the smoothest flow field with less over-or-under-
shooting, Gibbe phenomena.

tComputational Phyeics Group

Applied Theoretical Physics Divieion
Los Alamos National Laboratory

Los Alamos, New Mexico, U.S.A.



INTRODUCTION

In 1950, von Neumann and Richtmyer {1] proposed the use
of the artificial viscosity q for calculating shock wave
propagaton in one-dimensicnal inviscid flow. It 1is well
known that using the artificial viscosity introduces errors
for shock wave propagation through material interfaces or
non-uniform meshes [2]. At material interfaces, impedence
matching reduces the errors, Other errors arise at shock
start up and reflection boundaries. The q method was
orginally derived for steady shock propagation in plane
geonetry so in taking the method over to curvilinear systems
there is 2 question of whether to use grad u or div u (where
u is the particle velocity). In non-tensor codes grad u
should be used.

For shock propagation 1in variable zoning, Noh [3]
proposed the use of the fixed length q. This method results
in spreading a shock over a fixed physical length rather
than a fixed number of 7ones. A linear term similar to
Landshoff's (4) is added in this q. This technique computes
the thermodynamic properties (e.g., density or pressure)
very accurately for a particular direction of shock
propagation but very badly for the other direction.

Use cf an artificial energy diffusivity wirth the arti-
ficial viscosity improves solutions at reflective or non-
flow moving boundaries. The other methods tend to give too
high internal energy and too low density at bhoundaries.

The modified Godunov scheme, computes interface veloci-
ty and pressure through a Riemann solver. In uniform zoning
and a single material, the formulation reduces to that of
the regular Godunov scheme. In a varieble mesh or multi-
material problem, the method ha: second order features.

I. BASIC GOVERNING EQUATIONS

The mass, momentum, &and encrgy equations for one-
dimensional flow in planes, cylinders ard spheres are [5]:

V=R M (n
-1 aP

g-‘ti-—nal-a—M , and (2)
a-1



In Egqs. (1), (2), and (3), V is the specific volume, R
the Eulerian radius, M the mass per unit length or unit of
solid angle, u the particle velocity, t the t¢ime, a ( = 1
for plane, = 2 for cylinder, = 3 for sphere), P the
pressure, and E the total energy, Also,

Ew I+ %-uz , (4)

dR .

d—t- = 4 N and (5)
a~-1

dM = pR° "dR , (6)

where I is the internal energy, o the density (= 1/V), and
dM the element of mass per unit solid angle (for cylinder or
sphere) or of surface (for plane). The two-dimensional
Lagrangian calculations, are done in cylindrical coordi-
nates. Define an area Jacobian J as:

J = R (REZn - ani) , where (7)

Eulerian coordinate in radial direction, R = R(F,n,t)
Eulevian coordinate in axial direction, Z = Z(F,n,t)
Legrangian coordinate, at t = 0, £ = R(F,n,0),
Lsgrangian, _coordiante, at t = 0, n = Z(%,n,0),

dR
and RF " 37 etc.

-
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The mass, momentum and energy equation in two-dimensional
Lagrangian form can be written as;

pJ =M , (8)
;:3 " —vg—g , (9)
;;E - -y %% , and (10)
3_:. _p:_;’ . (11)

In Eqs. (9) and (10), u, and u, are the material velocities
in the R and Z directions.

In general the artificial viscosity, q, can be described
as combinations of terms linear and quadratic in Au., The
quadratic term concentrates the artificial viscosity near
the shock front while the effect of the linear term is more
diffuse, A purely linear form of q will result in a large



overgshoot in energy behind a shock followed by rapid
damping. A purely quadratic form will result in a smaller
overshoot followed by undamped oscillations. Some of the
q's used for one-dimensional problems are:

1. RICHTYMER -VON NEUMANN (1950) (1]
q = —a2pAu|Au| , (12)

2. ROSENBLUTH (1950) [6]
q - azp(Au)2 R du/ax < 0, (13)

3. LANDSHOFF (1955) [4]
q= a2p(Au)2
-0.5pC_Aulb + (1 - b)CsAt/Ax] , du/d3x <0, (14)
where 0 < b < 1 and Cs is the sound speed

4, PIC (1957) (7]
q = -apAu 'Gl , du/dx < 0, (15)

5. SCHULZ (1963) [8]

q = —pruIO.S(Au1+1 =y D s du/ax < 0, (18)

6. KUROPATENKO (1967) [9]

q = 0.5(y + Dp(aw? - pC_tu , du/ox < 0 , (17)
7. AFWL-PUFF (1968) [10]

q = azp(Au)2 - prTAu . Au/dx < 0 , (18)

vhere CT is the isothermal sound speed

8. QLQ (1970) ,:1}
q = a?p(pu)? .
+ 50.b%p(Au)2/(1 + 50.{Aui) , du/ax < 0 , (19)

9. WHITE (1973) [12]
q = azp(Au)z(IAP/(pCsAu) )0+5
- bpCgbu( |aP/(pC bu) 025 au/ax < 0 ,  (20)

10. WINKLER (1978) [13]
g = a? pV.G[Vu -7 . u/3), Ve

ct
N\

0, {21

11. AND NOH FIXED LENGTH (1920) (3]
o a2 2 2
qQ =a p(Axmu) (Au/Ax)
- prgAxmaxAu/Ax . du/dx < 0 , (22)



In the two—-dimensional calculations q is computed only when

the cell is compressing. Eq. (1) in the two-dimensional

calculations is
q=lc‘.pA[

vn_vn—l

2
~ ] where A 1s the area. (23)
VAt

For methods A, B, and C, the artificial wviscosity
calculations, the pressure P in Eqs. (2), (3), (9), (l10),
and (11) is replaced by P + q. (Note that in tensor hydro-
dynamics, Schultz [8] and Winkler [13}, the equations change
in curvilinear coordinates.)

Because it was noticed that the standard artificial
viscosity methods produced poor answers when following a
shock through a variable mesh, Gee, Kramer, and Noh [3]
suggested the use of the fixed length q, method B, which
spreads a shock over a fixed length rather than a fixed
nunber of zones. The coefficients a and b in Eq. (22) are
empirically related to the zone ratio Z.

xo
AXy /2
A

Z= (24)

XO
i+1/2

where i1 is the grid number defined at cell edge and Z {is
defined at t = 0,

The Richtmyer-von Newmann q was orginally derived from
considerations of a plane shock running in a mesh where both
sides of a cell cculd respond to the shock. As this condi-
tion is not satisfied at a programmed boundary, the entropy
production in boundary cells is too large, Landshoff [4]. To
correct this, Noh [14] suggests the use of an artificial
heat diffusivity, method C. An artifiecial heat flux H {is
added to the right hand sides of the energy equations, Eqs.
(3) and (l:). For the two-dimensional calculations,

(RL 4 2Ly (259
R AZ

-

H=2C

The C should be at least dependent on coefficient a
e.%., see Eq. (12) and zone ratic Z (in case of non-uniform
zoning).

For one-dimensional problrms, Noh [14] suggests that

i = hip Au AL + b pC AT when du/ax < O (26)

1

and ho anc hl are constants.



In the q-free modified Godunov method D discussed here,
the one-dimensional Lagrangian equation is solved

od(W) . 3[F@N]
&t~ §

(27)

where W represents specific volume V, velocity u, and the
total energy E in the cell (i-1/2). The flux term ¥ repre-
sents -u P and Pu at the cell boundary (i). § is a_vector
of possible source terms. With initial conditions e 1/ at
cell center a Riemann prgk}?? is solved to get tﬁz glux

at the cell houndary ?i (ﬁ). Then
>n+l = nel/2 n+l/ 2y &t
Wil = Wiyt (F A - (28)

At t = n+l/2, in compression the pressure P* and
velocity u* at the interface are related, by two Hugoniot
relations to the adjacent cells:

* n n * 1 2
Pyo= Piyyya 0025 oy, 00y + Dy - Tayy2)
* _n p n n
* [y - Uis1/2) YPie1/2 Pit1/2
.o W -7 %y + 1 2/1611/2 (25
Pys1/208y ~ Tyayyp) (v ¥ D716 9)

The two unknowns, P* and u*, in these two equations can be

solved in any desired manner. We do a three step iteration,
The ©' defirned at the cell center, is a cell average
velocity which we take as a free parameter to partition
total energy between the kinetic cnergy and internal erergy.
The P* and u* depend on the density, the local velocity and
vy. For a nonideal fluid, y must be the effective y.

For non-uniform meshes, a zone racio Z is defined
depending on (he direction of wave motion in the mesh.

pri—l/Z/pr1—3/2 grad ¥ < 0

24-1/2 " / ; (30)
A%y 172/ PN R4y BTRA PO



n+l1 n

The momentum equation is solved for Su = u -u
* *
80172 "~ 6:(2;;1 ik 24-1/2 (3D
P12
n+1 n * *
Ly = Yoy 4V UMy,
ﬁn+l + ﬁn B - a
- [E—ew 2 T, (32)
For the result shown, a = o, B = 1/2.
I11. SAMPLE PROBLEM CALCULATIONS
Firs%., we shov conparisons of this q-free Godunov
method with the Richtmyer von Neumann scheme. The

calculation is for a plane piston moving from right to left
with a velocity of u = -1.0 against an initially cold ideal
gas of density p° = 100. The left boundary is rigid.

la shows the piston calculation before shock
reflection. The initial density of 100 has quadrupled
behind the shock. The Richtmyec and Von Neumann method with
a = 2 and no linear term has oscillations behind the shock
which are much reduced in the Godunov scheme.
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Figure -1b shows the density profile after shock
reflection. The figure shows again that the modified
Godunov scheme calculates a smoother density, closer to the
analytic solution of 1000. The Richtmyer-von Neumann froat
is a 1little behind. In general, the various methods
calculate pressure well, therefore the errors in density are
reflected in the calculated energy.

Figures 2a and 2b show the piston problem in a
non-uniform mesh. The initial 2zoning was coarse at the
boundaries decreasing uniformly (R = 1.15) to the center.
This is Noh's problem {3]. 1In Figure 2a, the shock has just
passed through the minimum zone area. Neither method A or
D does well (the density behina the shock should be 400),
although the modified Godunov scheme does a little better.
The shock velocity calculated with the modified Godunov
scheme agrees with the anlaytic solution, but the shock
calculated with the Richtmyer-von Neumann scheme is a little
behind again.

The calculation using Noh's fixed length q agrees very well
with the analytic solution at this time. Figure 2b shows
the density profile after shock reflection. The fixed
length q method has become a diffusion solution for u and
has lost all relation to the analytic solution p/p° = 10.

00 aJ —~ T . 1200
-— Modified Godunov == Moditied Godunov
===Richimyer-vonNeumonn |000' ./-‘_:/. === Rithimygr-vonNeumonn
© NOND fised-length @ |, o | 7 g '-~~~vNon1 fiaed-tengtn Q
i\ b a
400 T . .ovf_ )
[ . .
a .
) €00
= T
El 400| o
é 200 - &
) 200 3
4 | &
O tei 2 ps
[ eper00fue-io ° 10 20 30
0 N n el Distoncs (em)

0 20 40 $0 [T) Fig. 2-b Density Profile with

Distonce (cem)
Fig. 2-a Density Profile with Variable Mesh after Refleccion

Variable Mesh before Reflection



The next problem shown is a spherical convergent shock
reflecting from the origin; initial conditions are, p° = 1,
E° = 0, P° = 0, and u° = 0, Material is ideal gas with
vy = 5/3. Boundary conditions in the form (t) and R (t)
are given in Table I. Shock collapse occurs at t = 440 pSec.
The analytic solutions are obtained by the similarity
method.

Figure 4 shows the pressure profiles at time t = 420
usec calculated by the two-dimensional code before shock
collapse. The calculation with heat conduction is much
better. Both over-calculate pressure in the shocked region.

TABLE I

SIMILARITY BOUNDARY CONDITIONS

Time(usec) Radius(cm) Velocitv(cm/ugec)

n. 6.N00ON -, NI708
a0, 3.85A5 -.An70R
an, 5.7167 -.00711
an, 3.3743 -.N0714 -
an, S.4INN -.M717 ucmw: - o= 2D Lagrarglan no
I;g- 5, 2069 =-.N072) (Y] A heat ceonduszion
120, 5.142) -.0N724 N e cmmee-with heat comzioiticn
140, 4.%972 =.NN227 8 0.00:¢ sirflarity |(‘].-‘.§:r‘.
160, 4.A818 -.0n730 . T '
1AN, 4.7083 -.0073) 1 o iy
200, 4.5%2 -, 0734 0,000 s\
220, sd21 -.n733 g | LA
240, 4.2649 -.00736 = o e~
260, ann -.00736 c.00 k
200, 3.9707 -.0M733 g [
0, 3138 -.10733 I ™
320, 3.6773 -.0073n ¥ o.ow: ]
%9, 33319 -.00726 H .
36N, 3.38%% -.00720 n
mn, 3,248 -.nn7)2 & e
«0N, 3.1n24 -.N0702 ) W0 1.3 LIS . i
a2, 2.963) -.Ange9
wn, 2.8273 Z.oer2 Radius (cm)
460, 2.495) =.00650 Fig. 4 Pressure profile in
AN, 2.9677 -.0n622
300, 2,4471 -.An578 sphere at time t = 420 usec.
san, 2.3329 -, 00344
san, 2.2278 =493
50, 2.1 =4 0N4)N
san, 2.n360 -.N0350

Figures 5 and 6 show the pressure profiles at time
t = 460 usec after the shock haes reflected from the center
in the two-dimensional Lagrangian calculations. Without
artificial heat diffusivity, the maximum pressure may Le off
by more than 133 percent; Jith the artificial heat
diffusivity, it 1is in error by 20 percent. In addition, the
shock tront position 1is much closer tc the similarity

solution,
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Iv. CONCLUSION AND DISCUSSIGN

In solving problems of shock generatiorn and pro-
pagation by numerical integration, the most popular method
has been to add aitificial 1iscosity to smear the shock
front (or any discontinuity). For 30 years many researchers
have tried to invent new forms of q with magical properties
for their problems. Others have tried to solve shock
problems without an entropy generation mechanism, Tests of
the myriad forms of q with claimed magical properties are
not shown, No magical properties will overcome the basic
first order in space nature of the prevailing codes. As
shown in the previous section, the modified Godunov scheme
gives betterr calculations. For non-uniformly zoned
problems, a clever choice of coefficients a and b of Eq.
(22) may produce good results for the first shock passage
but not for multiple shocks or reflected .hocks. However,
since artificial wviscosity is still very popular, we
reconmend the artificial heat flux mechanism to couple with
the q term. The appropriate relation between q and the flux
can be taken from statistical mechanics.

Recently developed methods such as adaptive grid,
moving finite element, Glimm's Riemann method, piecewise-
parabolic method, and local mesh refinement are all of
q-free type methods. Most of these methods show good



results for one—-dimensional shock problems and some of them
may have a practical application for two-dimensional
geometry especially when solving problems with multiple
materials. We recommend pursuing techniques such as the
fully second order Godunov schene.
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