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THOMAS-FERMI EQUATION OF STATE-THE HOT CURVE

George A. Baker, Jr. and J. D. Johnson

Theoretical Division. Los Alamos National Laboratory
University of California, Los Alamos, N. M. 87545, USA

ABSTRACT

We derive the high-temperature limit of the equation of state based on the
Thomas-Fermi statistical theory of the atom. The resulting “hot curve” is in fact
the ideal Fermi gas. We expand the thermodynamic properties of this gas in powers
of the fugacity and use this expansion to construct a representation of the pressure,
accurate to about 0.1 %. This representation is compared with the actual theory for
aluminum and the “hot curve” is found to represent it well over a large region of
interest in applications.
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1. INTRODUCTION AND SUMMARY

The Thomas-Fermi (T-F) statistical theory of the atom' as well as the modifica-
tions due to Dirac® have long been used as a basic starting point for the computation
of approximations to the equations of state.’ In order to make use of this proce-
dure, computer programs have been written to compute the numerical content of the
theory. They consume a sufficient amount of computer time, even today, so that it
is impractical to use them to compute, ab initio, the value of the pressure, internal
energy, etc.. every time that a new value is required inside an application computer
program. Besides, as thesec efforts represent only approximate equations »f state, some
adjustment is necessary to bring them into accord with physical reality. Consequen-
tially, to date largely empirical fits have been used to represent the equations of state
for the purposes of applications.

In this work, we are concerned with beginning an analysis of the physical struc-
ture of the equations of state of real matter. As a staii, we will study the Thomas-
Fermi model equation of state which represents a fair amount of the physics, at least
in some regions. One method which is normally fruitful, is to ccnsider various limits.
There are currently two which are known. The first is the low-density limit. Here
there is complete ionization when the system is in equilibrium and the pressure for
an element of nuclear charge Z is

PQ/N = (Z + kT, (1.1)

the ideal gas equation of state. Here P is the pressure, 2 is the volume of the
systeni. .V is the number of atoms, k is Boltzmann's constant and T is the absolute
temperature. The second limit? is the low-temperature limit, or the “cold curve.”
Here the pressure is of the form,

PQN = Z¥g(ZQ/N), (1.2)

where ¢(z) is a well defined function. If we think of the temperature-density, quarter-
plane, these results give the limiting behavior of the T-IE' model aiong the zero-
temperature and the zero-density edges. There remain the high-density and the
high-temperature regions to examine for physical structure,

One might think that in the high-temperature limit it ‘would be appropriate to

describe the system in purely classical terms. Indeed if such were the case, Baker®
has proven that the pressure would be of the form,

PQ/N = kT f(QT3/N, 2). (1.3)

The Debye-Hiickel correction® is of just this forni. Also Baker has shown for this case
that the internal cnergy has tne particularly siinple forin,

w=3PQ - g(z + 1)NkT. (1.4)

The statistical mechanics of Coulombic systems have bheen much studied.” It is now
well known that there does not exist a classical (4.e. Planck's constant h = () gos
beenuse ntoms with o Coulomb interaction collupse to E = —a0, Thus if we are to
ever introduce n Coulomb attraction between the atomie naeleus md the electrons,
we must necessarily include some necount of the quantumn effeets that are needed
to stabilize the system.  As iy nlso well known there are two importent physieal
Irngths to be comsidered. The first is the de Broglie length which is proportionnl
to t/VmkT, where m is the electron mnss, md which mensures in n noninterneting
gus the importonee of quantum effects. The Coulomb internetion does not by itut-l‘;1
")l'()\'l(l(' the m-s-nml length and the ditHeulty of its long ronge enn not be virennvented
' studying dilute systems beenuse it contnins no pnrmncter with the dimensions of
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a length. The second length is the Debye screening length which is proportional to
e2/kT. This length is however a statistical effect and should follow from the theory,
but unfortunately is not there ab initio. Thus when we look to the high-temperature
and high-density regions, if we consider the cases where Q/N >> (e?/kT)?, then we
can hope to start with a noninteracting electron gas (with a background gas of atomic
nuclei) as the basic system.

In the second sectiorn, we derive the limit of Thomas-Fermi theory when the
Debye screening length is negligible compared to the interparticle distance. and the
de Broglie length remains arhitrary. We find that it correctly reduces to the ideal
Fermi gas. We call this limit the “hot curve,” because it is reached if one either fixes
the density and lets the temperature go to infinity, or much less restrictively, it is also
reached if one fixes the de Broglie length and then lets the temperature go to infinity.
In the third section we review the theory of the ideal Fermi gas and describe how
to calculate its properties in a practical manner. We derive lengthy fugacity series
and find that the pressure function can be approximated to witﬁin, say 0.1%, by a
low-order, two-point Padé approximant. In the final section we compare the ideal gas
approximation to results for aluminum and map out its region of validity to various
degrees of accuracy.

2. HIGH TEMPERATURE LIMIT OF THOMAS-FERMI
THEORY

Thomas-Fermi theory his heen applied to compute equations of state at finite
temperature by Feynman et al.? Theg begin with an application of the statistical
analysis of Fermi and Dirac which lcads to the equation

_ /°° 2 . 4wp*dp/h?
p= o exp((p?/2m — eV)/AT + 9]+ 1’

(2.1)

where —eV is the potential energy. We follow them in defining for convenience the
auxiliary functions

(s <] nd
I(n) = / y v 2.2
m o exply—n)+1 (22)
Tlien one uses Poisson’s equation to determine V(r). It yields
1 d? 1673 ! eV(r)
,.m(ﬂ’ (r)) = P e(2mkT) I* ( T q) . (2.3)

Note that in the case of no interaction that the right.hand side of (2.3) vanishes (e=0)
and so the equation nnplies thit V = a+ b/r vhere a and b are constants. In order to

simplify the above equation, Feyninan et al.? introduce diniensionless varinbles. First
they define a length scale,

h:l f T J‘ .
= x T}, 9.4
( (32#%"‘1::(217!&7)* ) x (2.4)
where o == r/e. Then sinee g is independent of r, (2.3) becomes
13
:,.7 :.u[&(.-f/.u), (2.5)

where

A)a = (V) RT) - ). (2.6)
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The boundary conditions of (2.5) become, as at the origin V(r) 1nust behave as Ze/r,

B(0)=a = Ze?/kTcoc T4, 2.7)

The scheme employed is to suppose that each atom is confined to a sphere of volume
equal to the volurae per particle. This is clearly an approximation. The other bound-
ary condition is to require that the number of electrons in the sphere is exactly equal
to the nuclear charge. A little manipulation serves to show that the condition,

ds -
—_ = = 2.
T 3/s at s = b, (2.8)

imposes this normalization in the sphere of radius r = cb. Feynman et al.? derive,
among other things, the formula for the pressure as

= 2. B (B
PQ/N = >(ZkT) aI?(b/' (2.9)

where 3y is the value of 3 on the boundary s = b.

In a parallel way we may set out the corresponding formulae for the ideal Fermi
gas. In this case the electron density is simply given by (2.1) with e = 0. As g
is independent of r, one sees immediately by (2.6) that the equation for the density
(2.5) is simply satisfied. Since by (2.4) and (2.7) both the length and magnitude scales
depend on the electronic charge e = 0, the normalization equetion (2.8), in leading
oraer, is automatically satisfied, and so does not determine the number of electrons
in this limit. Returning to (2.1), we may impose the normalization condition by
integrating the density over a sphere of mXius r. It gives

—3
1672 rv2mkT
which implies n. In this limit, the pressure equation (2.9), becomes,
pa/N = 2zim) (=) 1
/N = 5( )('c';,';) §(=n), (2.11)

a perametric expression for the pressure in terms of the n of (2.10). Note is made
that ¢’a is independent of the electronic charge e = 0, so this form is valid in this
noninterecting limit. Compacison with the results of Huang® for the ideal Fermi gas.
reveal complete ngrecment, when it is remembered that for our case the spin, s = 1,

Now we are ready to consider the “hot curve” limit of the Thomas-Ferini theory.
In tlr brsie equations of the theory, (2.5, 7-8), we muake the following change of
varinbles,

o =slat, 5 =3/ak, (2.12)
We thuas obtain )
y
:17 =atal, (%) (2.13)
-(0) = o}, (2.14)
d
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In the limit o — 0 (by (2.7) this limit is equivalent to T — oc). we obtain the result
that v = Ao solves (2.13-15). Again, as at (2.10) above, we have an undetermined
normalization constant to be determined because in our high-temperature limit (2.15)
is satisfied automatically. Again referring to (2.1) we obtain the normalization con-

dition,
16” T rvamkTP L (1), (2.16)

which determines A and thus the solut on of (2.13-15). When we note the comparison
A = —n, we find that this limiting solution is the same as the one we obtained for
the ideal (noninteracting) Fermi i gas. This result completes our demonstration of the
proposition that the “hot curve” for Thomas-Fermi theory is the ideal Fermi gas!

3. PROPERTIES OF THE IDEAL FERMI GAS

The basic theory of the ideal Fermi gas is described by Huang.® To establish a
correspondence between the results of the previous section and more standard nota-

tion, we note that in (2.16) v/o0 = A; therefore we introduce the notation : = e~4.
We can then rewrite (2.16) and (2.11) as
ZN _ 32 _, 21rmkr)* 2 [ sybevdy 3.1
Q " 4nrd T h? ViJo 1+:ze v’ 4
P _ 9 2rmkT\1 4 ® cyfe-vdy (3.2)
kT ~ h? 3Valo l+4zey’ -

where P is the pressure due to the electrons only and does not take account of the
effect of the :10tion of the center of mass of the atom. If we introduce the further

notation,
A2 ]
= (21rka) ’ (3.3)

o2 [Tayterrdy (-1 )'+' :!
iy == | Troev Z : (3.4)
4 © zyte- ’dy (= 1)“‘l ! .
A =572 | T Z : (3.5)
where the series expansions are convergent for [z|] < 1. We may now rewrite (3.1-2)
s
. ZNX
(=== = fils) (3.6)
nnd
PR fy(z)

ZNKT ~ F4(5)' (3.7)

where ( is the de Broglie density. The procedure to enleulate the pressure of the idenl
Fermi gas is now, in principle, quite straightforwnrd. Eq. (3.6) is solved for z and
then that value is substituted into (3.7).

To evalunte these expressions nmunerically we choose the following method. First
we revert the series expansion (3.6) to give =(¢) ns o series in ¢ Then we substitute
it into (3.7) to obtain

rQ

— s aaf 1 A
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Ve have calculated the leading 36 terms of the series expansion. The method used is
the classical Lagrange formula for the reversion of series.® The only point of difficulty
is that a large number of decimal places are lost in the computation in this case. We
have therefore taken the precaution of using at least 58 decimal places to carry out
these computations. The results are listed in Table 1.

TABLE 1. (PQ/ZNkT) as a series in the de Broglie density

0 1
1 1
2 -3
3 1
4 -3
5 8
6 -3
7 -1
8 7
9 -2
10 4
11 2
12 -2
13 1
14 -3
15 -6
16 1
17 -8
18 2
19 -2
20 -5
21 4
s -2
23 4
24 2
25 -2
26 1
27 -5
28 -1
29 1
30 -1
31 4
32 -7
33 -8
34 7
3% -3
36 1

.0000000000
.7677669529
.3000598199
.1128932846
.5405040961
. 38634703956
.6620617873
.0280667154
.0550978436
.6859639507
.0571834908
.7970439770
.8379673439
.3992940717
.6303052861
.0257400821
2989538163
.1719971340
.9413082494
.0285711098
.7410636166
.84615756378
.2369786852
7888680538
.0304880286
.7811009124
.6149810555
.2554355032
3309033541
.4721238409
.1062516681
.7267873838
.6386716803
.5324794996
.1193401844
.8268661579
.097950074E

0000000000
6636881100
1683655758
6542504524
9736538278
69256”29619
4852703663
3957929799
7263454626
9285424406
0612166197
9162019148
5962690529
5922219970
0821033013
7251347692
2549763684
6344259697
4946667164
2088612486
7615749309
3763503589
5871386652
7474310454
8391266410
7360566430
1163427972
5730228297
33284697E-
86015824E-
9956070E-0
86169E-042
536E-044
62E-045
S5E-046
E-047

-048

0000000000
21109056262
8617889323
9253633917
3050093233
71265848681
1688233937
3273512206
0275709452
0526716388
1066127182
3071234746
6631787032
76562161122
0082398676
8112664263
7035089386
7319803759
3606073469
4658243931
984730023E
33968480E-
1846940E-0
78772E-032
8553E-033
414E-034
12E-035
E-037

039

039

40

0000000000
1225982120
8790328003
1306775999
4626176046
6218474298
9045907824
9735681999
8261969773
7926863588
3031151601
1358106846
9726025304
203412696E
2418074E-0
67093E-022
73544E-022
795E-024
73E-025
E-027

-028

029

30

00000000000000000E+000
8984422118509147E-001
89171139306782E-003
1875768224181E-004
46439677965E-008
427436245E-008
8643167E-010
5254513E-010
09158E-012

4377E-013

36E-015

6E-016

2-017

-018

20

The abhove series expansion was derived for |:| < 1. but the above series plainly
corresponds to a larger range. In the limit as : — so Huang shows that

4 T
- x ——=(log =)} —_—
fy( 3ﬁ(lt)ﬁc ) [1 + 30

2
= +
gz)?

---]+()(.-").

(3.9)

From the identity,® :j‘;fg(:) = f*(:_) one ean casily also derive the nsymptotie be-
hiavior of f;(:). and thus from (3.7) the asymptotic behavier of g(¢). We obtain.

2

y(¢Q) =

3\/?\*

(

Cﬁ ns ¢ — ~x.

(3.1



With this information and the series of Table 1, we may construct a two point
Padé approximant!® to [g(¢)]® of the form [N + 2/N] which is exact through order
(2N+1 at the origin, and is also asymptotically correct as ( — co. We find excellent
convergence for this method and that for 0 < { < co we get an accuracy of about 0.1
percent for g(¢) from the approximation,

€)=~ 1 + 0.61094880¢ + 0.12660436(2 + 0.0091177644(3 3 (3.11)
= 1+ 0.080618739¢ : :
Thus the total pressure would be (including the center of mass motion)
NkT
P===={1+24(O)}- (3.12)

In the case where the temperature is fixed and 2 — oo, the low-density limit, not only
does the Debye density go to zero, as required to obtain the ideal Fermi gas limit of
Thomas-Fermi theory, but also ( — 0. In this case, as g(0) = 1, (3.12) reduces to (1.1)
a}rlld thereby supplies an alternate derivation of the low-density limit of Thomas-Fermi
theory.

)As Huang® points out, the internal energy, U, for this case follows simply from
(3.12) as,

U = 2pQ. (3.13)

Epstein'! shows from the thermodynamic relation dS = (dU + PdV')/T, the
above results, und Nernst's heat postulate that the entropy of the ideal Fermi gas is
simply given by

S. = ZNk (gg(o _ 1osz(<)) , (3.14)

where the limit as T — 0 is the limit ( — oo by (3.6) and as Epstein further points
out Se — 0 in this limit. If we add the contribution of the motion of the center of
mass to the entropy, we get

S=Nk|-(Z+1)log(¢ + g +2 (gg(C) - log[z(()/(])] + constant, (3.15)

The Helmholtz free energy is now given directly by A = U — T'S. The Gibbs thermo-
dynamic potential is also directly given and is G = U = TS + PXQ).

It now remains to give a representation of log:({) = log( + log[z(¢)/¢] to
complete the representation of the thermodynamic quantities for the i(lonT Fermi gas.
Since logz x ¢ 2. the problem of deriving a representation for log[z(¢)/¢] should
be similar to that of the rer-esentation (3.11). We give in Table 2 the necessary
series coefficients in ¢ for = 2 work on this representation, but we will leave it for
the future. Thermodynamic .asistency depends on the cquation between the two
represontations

. . dlog (¢
9(Q) + Cg'(¢) = (B (3.16)



TABLE 2. The 1ugacity z as a series in the de Broglie density

1 1.0000000000 0000000000 0000000000 0000000000 00000000000000000E+000
2 3.5355339059 3273762200 4221810524 2451964241 7968841237018294E-001
3 £.7549910270 1247451636 1707316601 4181450799 416243291041327E-002
4 5.7639604009 1025440341 8852781947 0758923518 58214221729707E-003
5 4.0194941515 2300959555 6172119656 7773364832 0998466829345E-004
6 2.0981898872 2604799054 4860297423 5099614729 957102872728E-006

7 8.6021310842 6030566004 3913343164 3181688359 0277772573E-007

8 2.8647148523 7664872936 8242210245 057364082+ 266032220E-008

9 7.9528314878 5241689019 4817612245 1032872937 50356650E-010

10 1.8774425910 0567756220 4988130993 7541387605 437996E-011

11 3.8247968264 1809029592 4653344686 7070280382 2264E-013

12 6.8432943010 1907998578 8027623030 36596065069 29E-015

13 1.0762104093 0537917245 5417733813 6774703889 3E-016

14 1.5124110216 1988369105 9052478125 978137640E -018

15 2.0715738792 9770436279 3713783632 7032961E-0 20

16 1.3846671521 9900108771 8574569994 14568E-022

17 5.3288541784 7605238410 1301497951 755E-024

18 3.5079561301 2368023505 6432045696 E-027

19 -5.9056175104 9257472195 3065263300 E-027

20 5.2969138512 2627670501 874181389E -028
21 -2.5226985875 2718441504 10473445E- 029
22 6.0209616883 8744484633 5125835E-03 1

23 1.85643035351 4383646:128 76522E-032

24 -3.0176817670 7158240282 6353E-033

25 1.8757233170 6238133052 809E-034
26 -6.7714760730 22568395698 9E-036

7 3.7182698930 255841378E -038
28 1.4954203444 742341364E -038
29 -1.2728642729 99664063E- 039
30 6.0377265821 589225E-04 1

31 -1.3644496192 99721E-042
32 -5.3539191733 757E-044
33 7.8650740191 78E-045
34 -4.7690907071 OE-046
35 1.6535692458 E-047
36 -2.3890246E-0 50
37 -4.2646358E-0 50

An alternate procedure would be to determine 2(() directly fron. this equation
subject to the boundary condition lim¢_¢ z({)/¢ = 1. This equation is an identity in
the exact theory and not an extra condition.

From the theoretical point of view the most satisfactory proceedure would be to
construct a sufficiently accurate representation of, say, the Helmholtz free energy A
that would provide adequately accurate derivatives (%9)7- = =P, and (%?)v = -S.

Using (3.13), (3.15) (ignoring the constant), nnd iategrating (3.16) we have for the
Helniholtz free energy,

— PQ+(Z + 1)NkT log ¢ + ZNkT log[=(¢)/c]

dny

. (3.17)
U

¢
=NkT (Z+1)(logC—1)+Z/ [9(n) 1]
l‘)

for which the series expansion int ¢ can be easily derived from Table 1. The innbility
to assign an absolute entropy for the ordinnrv idenl gas. leaves A uncertain he n
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linear term in T. It remains to be seen which of the procedures outlined above are
computationally most efficient.

4. COMPARISON OF IDEAL FERMI GAS TO
THOMAS-FERMI THEORY

We now show the extent of agreement for aluminum between the ideal Fermi gas
and the Thomas-Fermi theory. We use the computer program of D. A. Liberman?!?
to compute the T-F numbers. We present the results in the figures as contours of
percentage differences (electron properties only).

For the pressure, Figure 1 shows in temperature-density parameter space the
1%, 10%, and 30% contours, ~s one goes from the top curve of the figure to the
bottom, respectively. The expected feature is that for high-temperature and/or low
density the ideal gas is accurate. The 10% contour, for example, will serve as our “hot
envelope,” that is to say, the limit of the validity of the “hot curve” approximation. For
low-{emperature and high-density the ideal Fermi gas is again a good representation
of the T-F theory because the electrons are being forced to the pressure-ionized,
degenerate, free electron gas. Since as the density increases the kinetic energy per
atom is forced by the Pauli principle to increase proportional to the density to the
two-thirds power (relativistic corrections are ignored %ere) and the potential energy
i= expected to increase only as the one-third power of density, the free-electron-gas
energy becomes dominate. This effect is begining to be evident in the behavior of the
30% contour. The ranges of temperature and density shown are those of interest for a
great many applications. Thus the ideal Fermi gas well reproduces the T-I" pressure
over a substantial region.

10°

T (eV)
Q,
T Tlll‘ T T TTITI | B RALRL

T T TTYITT]

107 10 10' 10° 10 10¢0 100 10
f (g/cma)

Figure 1. Pressure contours.



T (eV)

0 100 10 10 18 10 10
p (g/ecm?)

Figure 2. Energy contours.

Figure 2 shows the results for the internal energy. Here we see only the 10%
and 30% contours because the ideal Fermi gas does not represent the T-F energy as
well as it does the pressure. This result is at least partly due to what, in effect, is
an extra term present in the T-F energy and not in the T-F pressure. The bound
electrons do not contribute to the pressure but do have a large effect on the energy, for
the temperature and density both small. Since the iree gas has no bound electrons,
there is more difficulty in matching the T-F energy. However, there is again a “hot
envelope.”

We did one other study that was beyond our original intent. Our goal is really
not to find an analytic representation of the T-F theory, but to obtain a fit to the
T.F with the zero-temperature isotherm subtracted. Thus it is of interest to compare
just such a result to the ideal gas with ius zero-temperature isotherm subtracted. We
expect an even better correspondence between these pressures, with exact agreement
both at low-density/high-temperature and zero temperature. Figure 3 shows again
the 1%, 10%, and 30% contours for pressure and indeed there is improvement over
Figure 1 with the “hot envelope” now at lower temperatures. We do not shiow the
contours that appear at low temperature as they are not of interest to us in this
study. The odd vertical steps arise because really the two contours at that point
loop back under themselves and come back to the lower curves due to the forced
agreement at zero temperature. We did not put in these loops because we felt that
was a misrepresentation of the high-temperature behavior.

The energy contours with zero-temperature isotherm subtracted are not pre-
sented because the results did not turn out as well as for the pressure. This result is
again caused by the absence of the bound state cnergy in the free Fermi gas.

In general we see the “hot envelope™ and reasonable agreement between the free
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Figure 3. Pressure contours for the zero temperature isotherm subtracted.

Fermi gas and T-F theory for a large region of pressure. We understand the difference
between the pressure and internal energy.
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