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A Diffusion Accelerated Sn Transport Method for
Radiation Transport on a General Quadrilateral Mesh

R. E. Alcouffe
X-6, MS B226
Los Alamos National Labo.atory
L.os Alamos NM., 87545

Abstract

We present the development of a diffusion accelerated Sn
iransport method for the solution of temperature coupled
-adiation flow problems on a spatial mesh of arbitrary
quadrilaterals in R-Z geometry. The diffusion acceleration
equation is derived from the diamond-like transport spatial
discretization. The effectiveness of the DSA method 1s shown
on an example calculation and also computation times are
indicated.

I. Introduciion

Two-dimensional, time dependent radiation transport problems are frequently done on systemns
that are described by a general quadriirteral spatial mesh in R-Z geometry. A charactenistic ol
thermal radiation transport problems 1s that 1in order to obtain a solution on reasonably Lipe tune
steps, 1t1s essential that the tme differencing be completely imphicit. norder to salve the nnphient
trinsport equation via the Sn method, both the usual mner and outer source terations must be
performed; and itis vital that an eftective and efhicient iteration acceeleritoe be emploved P b
piper we descnbe the basic approich ased to develop a diamond ditterenced representation foa the
St transport equation that s highly vectorized and hence cormpatationalty etticient on the Con
NXMI"s We also desertbe a nonlinear version of tie diftusion svnthetic aceeleration equanon thoe
works with the above Sn eqaanon with good snecess . We conchide that we have deseloped
viable Snotransport method that s appheable o many peoblems ainomwe dunenswnal themey’

Lidnition tlows



II. Sn Spatial Solution on an Arbitrary Quadrilateral Mesh.

Given that we wish to descnbe the transport of radiation through a medium which exchanges
energy with the radiation field through absorption, scattering. and emission process=s, we can
write the foilowing set of equations:
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1" I(r,v.L2) is the radiation intensity at frequency v and angle €2 at time ("' L
a,(v.T,) is the absorption cross section at frequency v and temperature ‘1.,
o (v.T,) \s the scattering cross section at frequency v and tetmperature T,
o,vTe) g v.Tae o v.To.
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b (\'.'l'c) 1 the normalized Planck tunction (f b v, l'c) dv 1),
T. l‘i\:a\l.

kc 15 the matenal conduction,

Nl s adenvead function of the misdium at temperature Teoand oy,
) and Sc dre extrancous sources of radatron and matern! energy ressectively
I'he time diseretizaton has been meluded m Eqgn o boso that it s apparent that the enuatnn v,
sulved conupletely nuphiatty m e tor accuracy and stabihity comaderations - Also Fane 1 e hee:
denived toom the radiation transter equation by incbudimg the ettects of the medimm npem "
cunssion tenm O radiation transport problenr consmts arsolving Fagne T over some e e

obtun the sadhation ntensaty atthe abvancest nime and ther sobvag: Tagne D weobtoe the e



temperature. From the temperature, the cross sections and other quantities in Eign. 1 are evaluae!
and the procedure is repeated for the next time step. In this work we focus on methods of solution
of Eqn. 1 in two-dimensional R-Z geometry in which the spatial discretization censists of arbiran
quadnlaterals whose connectivity is logically rectangular.

We note that in general Eqn. 1 must be solved iteratively for the intensity and that analogous to
transport calculations with fission, we have both inner iterations (to converse the scattenne) and

outer tierations (to converge the emission term). 1t 1y 1n the nature of rachation transpori

calcutations that for large time steps the quantity NCTL) s very close to anity. Thus, the spectra!

racgius of convergence of the outer iteratons 1y also close to unity requiring many iterations fin
convergence; for most radiation flow problems, the number of iterations required for convergence
At reasonable time steps 1y prohibitive.  Thus a good acceleration method is required for
convergence. In ref. 1 we outline in some detail for the orthogonal geometry case the diffusion
acceleration method for radiation ransport. In the next section of this paper. we detail how this s
adapted for our non-orthogonal mesh.

We focus now on the question of finding the solution to Egn 1 on the nov-orthogonal mesh tor
cach tterate. Following Hill2, we use his non tterative diamond difference-like approach toanvern
the left-hand side of eqaation 1 given that the night rand side 1s known. Reterrmg to e 1 the

transport balance equation over spatial mesh celt o) s written e the tollowing tonn.
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relating the edge values to the cell centered values depending upon the number of sides visable
This method is supplemented by a set-to-zero fixup in case the anguiar intensity extrapobates tooa
negative value. As in the orthogonal case. the diamond differencing method s the simplest methixd
having the diffusion limit.  The simplicity allows Tor efficient coding with nimmimum storage
requireme nts and the diffusion limit allows the accelerator to perform efficiently and vet ohtan an
dceurate solution when the rransport solution 1s diffusion like. This certainly 1s an appropruate fins
attempt with the Sn method itselt. In order to obtain a computationally efficient solution to lign. 3,
we choose a space-angle sweeping sequence by means of ar appropriate arcenng scheme  The b
of the ordening routine is to pick out the sequence of spatial meshes 1in an order which wall atlow e
solver to invert the ransport operator in a non-iterative manner. Since the transport operator s finst
order in both the spaual and angular denvatives. this can always be done. llowever, there 1s an
additional task that the ordering routine must perform in order to take advantage of the architecture
of the CRAY XMP computers. That 1s, since this 1 a vector machine. an ordering must be chesen
so that the mesh sweeping can be vectonzed for maximum solution speed on this machine  This
means that groups of cells that can be colved simultanrously must be found by the ordening routine.
on the logical mesh these cells will he on diagonals.

We do the ordering on the logical mesh by typiig cells as to how many sides are visthle  Ohnis
two side visible cells can be efficiently salved simultincoasly since they have a prechictabie stude as
they da lie on the diagonals of the logical mesh. Operationally the ordernine rowtne collcoos the
follow g information (1) the starting cell number, 12y the starting cell type and (3 the number
sells i the dutgonal  The inesh sweeper can then tike this mtormation, process it m order, an(
cthicieatly mvert the transport operator on the vector machue. Thus the mam ditterence betweer:
sweepie on a Lagrangian mesh aud on an orthogondl mesh 18 making provisions i the mesh

sweeper to solve one and three side visible quadrilaterils,
I{I. Diffusion Synthetic Acceleration of the Source Iteration

I'he dittusion acceleration method s g source tteranon aevelerator tor vadiation tanspua:
problems that mvolves the tollowmg mgredients o) Fornmation of an approprnate ditfuspom
cquation whose solution iy the sanne s the sealar mtensny sobqtion of the tansport eqranen, '
solution =ethoxdt tor mvertag the resutting ditfusion operator tor cach trequency gomp, and ean
ieration inethod tor sotving the muttigroup ditfosoon equatom - For the eseneral Lagranpam mest:
Vose, 1ts ot lear as vet what i the best micthod for addressmg cach of the above aspects

O cxpertence i orthogongl mesh problems sipggests that we denve the DSA eqpatiins by



forming the transport balance for the four mesh celly surrounding cach vertex of the inesh W
Jdevelop our DSA equation in the non-orthogonal case 1 4 manner analogous to ihas s
orthogona! dcvclopmcml. To sketch how this proceeds we tocus on the honzontal iean.ee et

in Eqn. 3, summing these terms for the four cells about vertex -1 2011 21 we have,
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To denve our diffusion operator. we expand the angular flux 1in Egn. 4 as a hnear i augle tuncton

tor cach cell edge. namely,
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Jnd the A and B coetticients are tound trom the defimntions i Laqn 3

Thus with this particular form for the expauston of the nensities on the cell edges, we have
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It we now subsutute expansion $S) imto luqn 4, we obtun the tolowimg dittien cooresaens b
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To proceed further. we invoke some assumptions of lineanty m Egn 6, 1¢ .

+ (A = (R

«3/72. =1/2 v 1

(A

A, =(A

+
*3¥/2 - »1/2

If we further assume a Fick's law between the cell centered currents and the intensities. 1c .
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A.-: o A--:
R Taen 5 e e B T
A'. . A-‘
3(0 ) _:(':.:: A Ve -:)'3((1'_') (':-:.' t. )
1"

Because Eqn 9 15 1n terms of cell edge quantitiss, 1t still 1s not suited for efficient solation with
known methods, thus, we make a further approximation. ‘The most strazghtforwiard one 15 thae

analogous to diamond, 1e., we set
. _ 1, .
'o-xn.-_'('o-xu “v1/2 +‘o 172 0 172 )

Substituting this form into Eqn. 9 leads to @ nine point form tor the diftusion operator wlhitch s to
be expected for a general quadnlateral mesh. However, if our experience trom the orthogonat «ase
15 at all relevant, then trequently 1t 1s not necessary to employ such an elaborate dittusion operatin
Thiy 15 because the correction term tram the transport solution allows the DSA equatnm v be
accurate for a lower order operator  That s, 1t may be possible to go to a tive pomt operator, wis, &
1s tuch fesy costly to solve, and sull have the accelerator be effective monay of the vases we

cncotter w practice . A five pomt forn that can be approxumated trom Fagn s,
’
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The vertical leakage terms are derived in an analogous way. and thus our five point form tor the

DSA equation for a general quadnlateral mesh is written as:
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where
H and V' are the angle ntegrated tform of tign 4 employving  the solution
to kgqn 3, B L, M.
v, V) .. Iy . thesumof the lour cell removal divided by l

Fgn 11 s used to accelerate the source iteration of Eqn. 3 and 1t 1y easily shown that iy

convergence., the solution of Eqn. 1118 the same as the angle integrated solution to Lgn 3 T

invert the diffusion operator of Egn. 11, we ase our mulugnd solver already implemented tor the

orthagonal case siice 1t 1y very efficient tor the tive point torm - Thus Tan 11 serves as the bas:.

tor the acceleranon of the iterations required in the solution of the raduition transport equation

As noted wi ret 1, the multifrequency diffusion terations must themselves be aceclerated, we e

the same grey approach outhined i that reference

It shold be oovioas by naw that the success of the above outhned triansport selution methw!

hghty dependent upon the representation of the dittusion aeceleration equation as a five goee e

l'll‘l"-lll'l'

This five pomt representation s natan essential restiction but it certunts ahoes eyt



the implementation of the method for Lagrange meshes. We use the example problem presented
below to demonsirate the effeciiveness of the DSA ay described above as well as o nnve an

indicauon of the accuracy of the Sn method itself” on non-orthogonal meshes.
IV. Calculational Results

The method descnbed above for solving the temperature coupled radiation transport equatnm
has been encoded in a special version of the TWODANT code which we call SHORTIE. This
includes the tme step control. temperature calculation, cross section generation, and rteratiom
acceleration within each time step as well as the mesh ordenng and sweeping algonthms for the
nonorthogonal mesh. All of the computatuonai pants are vectorized so that the method «an be run
efficiently on our CRAY XMP 48 computers. In this section we address the computational time
and 1teravon efficiency from our expenence with the code so far on model type problems. and we
demonstrate the accuracy of the basic transport method on a problem in radiation flow.

On model problems, our expenence has shown that the solution time per phase space cell on an
orthogenal mesh with negative flux fixup using an XMP 48 15 froin 0.7 to 1.0 microseconds CT'¢
nme in TWODANT. We have benchmarked the nonorthogor.al solver in SHHORTIE for sunilae
model problems at from 1.2 1o 3.0 microseconds per celi. The range of solution umes retlects the
tuct that the solution time 1s a strong function of the number of ‘special’ cells that have to he
calculated: 1€ the one and three side visible cells  The upper lunit is representative of a hiphis
Jdisordered mesh in which 30-40% of the cells are special. These time do demonstraie that the
vectorization of the sweeping algonthm is successful and compares favorably with the highh
efticient TWODANT module.

Our expenence with the DSA accelerator for nonorthogonal meshes shows that it can pe fust as
¢ftective as the DSA accelerator in the orthogonal case.  But 1t also sutffers from the samne
amutations as the TWODANT acceelerator in that its effectiveness decreases as the nuinber o
nevative fux fixups increase or as the size of the mesh in mip increases. Thuy although at
ditficult to generalize, 1t can be said that for many tvpical radiation flow problems the DISA
aceelerator 1y as effective as the orthogonat one  For example, in the below deseribed probleni, we
require on the averiage only two transport iierations per time step to rejuce the ermorn the ¢nnssp
source by an order of magnitude while the time step varied trom 0 001 to 1 0 ns

Oar example radranon flow problem consists of 4 homogeneous ey hnder, 9 cmoan radnis and 9
cm o acight The radiating medam s modeled as polyethelene at a density of 065 @0 A

amborm weurce of radiatton nupimges on the bottom of the evtiader at tine zero The soance -



assumed isotropic and Planckian with a temperature of 1 KeV. The task is to compute the
¢volution of the material temperature as a function of ime and position until equilibrium is aitained
(there is no matenal motion). We chose to solve this problem using 10 frequency groups
¢quilogarithmically distributed between 0.005 to 20 KeV: the matenal initial temperature 1s 0.03
KeV. In the first (highest energy) four groups, we use an S8 quadrature (standard TWODANT)
and in the remaining groups. S4. The given spatial calculational mesh is shown in Fig. X where the
radius increases along the vertical axis and the z axis is honzontal (the source impinges on the feft
side of the figure). There are 48x48 mesh intervals in this problem. As can be seen, this s o
firhly distorted mesh that has been seen a great deal in the literature and has been used to challenye
diffusion solvers. In order to have a reference calculation. we made a varient of this problem with
4 uniform. orthogonal mesh which turns out to be perfectly square in R-Z geometry and hence is
nearly ideal for a benchmark.

In Figs. 3a-3d. we present contour plots of the matenial temperature at selected tirnes: the last
:ime. 30 ns. being the time at which the system attains equilibnium. Each plot is actually of two
sets of contours, one from the mesh of Fig.2 and the other from the orthogonal mesk  Inspection
of the plois shows that the orthogonal and nonorthogonal results match remarkably well. The
dberrations in the nonorthogonal results are at the positions where one would expect fixup effects to
bhe important. We also note that the computation times and ileration patterns are verv close to the

same contirming that the accelerator is performing equally as well in both cases.
V. Remarks and Conclusions

We hive developed a diffusion synthetic accelerated transport solver on a general quadrilaterai
mesh that performs well on radiation transport problems. The development of the accelerator
follows the same kind of logic used to develop the onginal orthogonal one and seems to perlorni i
relatively simple radiation flow problems equatly as well. Will this be applicable to conventionai
neutral particle transport as well? ‘There 1s no theoretical reason why nor zxcept in tie case o
cipensalue problems. lere we would need to develop some kind of diffusion correction schenee e
order to have a compatble outer tteration aveelerator. In this case it may be possible that the e
pomnt form wonld be a severe omitation However trom these resulbts of radiatoon transpeern, -

appears that it s worthwinle to pursae o generai geometry TWODANT
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Fig. 1. Reference Quadnlateral for hte Development of the Transport Balance Equation.

Fig. 2. R-Z Mesh Arrangement for the Example Radiation Flow Problem.

Fig. 3a. Contour Plot of .he Matenal Temperature at Time = 2.0 ns.

Fig. 3b. Contour Plot of the Material Temperature at Time = 4.0 ns.

Fig. 3c. Contour Plot of the Matenal Temperature at Time = 10.0 ns.

Fig. 3d. Contour Plot of the Matenal Temperature at Time = 30.0 ns.
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Flg. da. Contonr Plot o1 the Material Femperature at time = 1.0 ns.
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