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SHORT TIMES AND SHORT DISTANCES IN
NUCLEAR AND PARTICLE PHYSICS - A
PEDAGOGICAL REVIEW

Geoffrey B. West
Theoretical Division
Los Alamos National Laborato.v
Los Alamos, NM 57545

ABSTRACT

The formalism relevant to deep inelastic processes in both non-relativistic and
relativistic systems is reviewed with an emphasis on scaling and its violations. In
the former case we show how a systematic expansion in 1/q? (¢ being the mo-
mentum transfer) can be derived ~hich delineates the incoherent scattering from
bound state and potendal corrections. We demonstrate Fow this exact many-body
non-relativistic formalism corresponds to the light: cone operator product expan-
sion in quintum field theory. As examples, scaling in liquids, nuclei and nucleons
is discussed with emphasis on the EMC effect, shadowing and the relationship to
the photo absorpticn limit.

[ INTRODUCTION

An elementary argument based on the uncertainty principle clearly demonstrates
thiat high momentum transfer processes are sensitive to physics on the light cone:
just simply taking g2 -+ oo probes the region z2 -+ 0. Since QCD is asymp-
1otically free (i.e. its effective coupling constant becomes vauiishingly small when
¢* » 00), things simplify considerably in this regime: perturbation theory, at least
nalvely, s a justifiable approximation. Indeed, it was precisely this property that
led to the establishment of QCD as thg theory of the strong mterictions. In par-
uculir, as will be revicwed below, its prediction of logarithniic violations of exict
scaling in deep inelustic Jepton seattering wis a striking success. ‘The arguments,
which technically relied on the behaviour of praducts of currents neir the light cone,
justified not only the use of the parton model but the identitication of pirtons with
the quirk ;i ghion tundamental degrees of freedom. It wis nitural to try to extend
such arguments to other high momentum processes, such as form factors, lepton pair



production, wide-angle scattering, and heavy quark decays. However, although the
light cone certainly plays an important (and possibly even a dominant) role in all of
these processes ihe application of perturbation theory alone to describe them is gea-
erally impossible to justify. The point is thatin deep inelastic scatrering it is possible
to make a clezan separation of the infrared (i.e. the non-perturbative) from the ultra-
violet(the perturbative). In almost all other processes such a separation is pener:
ally not possible even in the extreme ultra- violet limit. Typically non-perturbative
physics creeps in. Indeed one of the major challenges in QCD physics is to under-
stand how to graft non-perturbative infrared or bound state etfects onto periurbative
ones controlled by light-cone physics.

Particle and nuclear physics are beginning 'o come together in this endeavour
although their emphases have in the past been quite differcnt. The emphasis in par-
ticle physics was originally to try to substantiate QCD as the theory of the strong
interactions! !, Having done so (at least to the satisfaction of most physicists) the
emphasis shifted to using it as a probe of new physics (i.e. new interactions beyond
the standard mode!l or new particles such as the top quark). This meant understand-
ing phenomena such as jet structure, multiparticle production, decay processes and
so on!?!, This has been accomplished almost entirely within the context of pertur-
bation theory (and, by implication, physics on the light cone). Phenotnenologically,
this has proven to be successful in spite of the fact that non-perturbative effects
ought to play some role.

Ironically, even though all particle physicists may believe that QCD is the theory,
nevertheless, it is worth remembering that the self-interaction of the gluons (and,
subsequently the presumed existence of a glueball state) has yet to be experimentally
substantiated! Non-perturbative physics, i.e. physics away from the light cone, has
by and large become the province of lattice QUD though important analytic efforts
hiive been made. The major effort thus far has been in trying to understand the
hadronic spectra.

Until relatively recently nuclear physics worked almost exclusively within the
context of meson ;ind nucleon degrees of freedom. However as energies have in-
creased and the realization that QCD is here to stay has crystallized, the emphisis
lias begun to shift to the question of the role of quarks and gluons inside the mi-
cleus. [lere the fundamental questions revolve around how the description of low
energy phenomenit described in terms of mesons and mucleons evolves into (quarks
and gluons as the energy scitle increases. A centril question for 2xample is the ex-
istence and experimental signal of a quark-ghion plasma. [u coming to grips with
seme of the serious problems raised by going to higher energies considzrable work
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has focused on phenomenological descriptions in terms of relativistic nucleons and
effective relativistic fiell theones of mesons and nucleons (QHD). Whether this is
a more useful, economical or physical way of dealing with some of the problems
rather than trying to come to grips direcily with the role of QCD in nuclei remains
an open question at this time!*!. In the last few years a central battleground for the
advocates of these rather different approaches has been the EMC eftect!*!. This is
the experimental observation that the deep inelastic structure tunctions do not sim-
ply scale with A as one changes the target. All sides have adequate explanations
of the etfect, which is not too surpnising since both descriptions are to some degree
valid and the experiments, after all, only measure gross features.

The rest of this talk will in fact, concentrate on the theoretical descniption of
the scaling phenomena observed in classic deep inelastic scattering. As intimated
by the title, the emphasis will be pedagogical, and, as such, will for the most part,
be i1 review of well-known theoretical techniques and results. [ shall, however,
give the discussion in terms of two rither different contexts: (a) many-body non-
relutivistic potential theory and (b) fully relativistic quantum field theory. The latter
encompasses QCD whereas the former applies to nucleons bound in a nucleus by
inter-nucleon potentials. At the end I shall bri=fly discuss applications to the EMC
etfect and some questions of shadowing.

II Non-Relativistic Systemsl 3]

We begin by considering spinless non-relativistic scittering from a target composed
of Z scattering centers such as is the case of a nucleus or of a macroscopic lig:
uid. The formalism that I shall review applics in fact almost precisely to the case of
thermal neutron scatiening from liquids. In general, the process to be discussed is il
lustrated in Fig. 1: the scattered probe particle (an electron, say) is detected without
regard to the fate of the target tinal states. In terms of the energy loss {v) and mo-
mentum transter (g) it is convenient to introduce the structure function (approprisite
to Coulomb scattering).

' (2o /dadE)
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Figure 1: Genenl graph illustrating inclusive scattering from an arbitrary target.

particles. From the Fermi golden rule W is given by

W(v,¢®) =Y | < ¥ Y Qie*Cl¥o > |*8( Ef — E, + 1) (2)
/

where Q, is the charge of the i'th constituent whose position is r, W) is the initial
(final) state of the target. Using the Heisenberg equations of motion together with the
completeness of the set of final states f (i.e. the conservation of probability) one can
express (2) as a ground state expectation value

W( u,qz) = / ’_t_e“" < w()lEQ.Q)C‘”'“)C -.q L(o)l\y() ~ (‘)
W

RY.Naray: |

The price paid for eliminating the sum over final states is the need for knowledge of
the time developinent of r,(t}. This, of course, is governed by the Hawniltonian of



the system whose general structure is taken to be
H=—Ez"+V(Il. """ .rz) )]

where 4 is the mass of the constituents. Although we will not need to do this in
what follows, it is usually assumed that the potential V can be expressed as a sum
of 2-body potentials.

V(r - -1g) =Y vir, - 1) (5)

3]

Indeed this usually leads to a 2nd quantized many-body description in terms of
creation-destruction operators a:

a0

) dt
Wiv,¢7) =/ se < Yollg(6) pgle)1]¥o > (6)

— 0 -

The density operator is given by

Pq I ) Gp.q0k (7N
L]

Its time development is controlled by the Hamiltonian, eq. (4) which, in this for.
malism, can be expressed as

2

1 '
= E ;;u;uk + E"(Dp;l’l (%)

k Tk

v( k) is just the Fourier transform of the 2-body potential v( r) defined through eq.
(5). This tield theoretic description of eqs. (2) and (3) allows one to think of W as the
imaginary part of the corresponding (virtual) photon, forward Compton scattening
amplitude as illustrated in Fig. . The question we wish to address is what is the
hehaviour of W when g becomes very large?

Although much formal ind phenomenological work hiis been biased on this 2nd
quintized representiation it is more couvenient for our purposes to stiy with the



W(V-q2)=lm

Figure 2: The optical theorem relating W to the imaginary part of the vital forward
Compton scattering amplitude.

equivalent |st quantized form, eq. (3). From a judicious use of operator identities
coupled with the equatons of rnoaon

dp.
L= ilHp)=-wiV(n, 1) =R (9)

[pi 1s the momentum operator for the i'th constituent]| one can derive the following
¢Xact representation

2 o ¢ ' N (p
W(‘..qz) a (Yo Z Q_Qle‘i‘!.-!;)’p/ .‘—"-e‘f“‘"“""f-“""”'"(”“"l\vo)
sl - &
(@)

Here we have defined the z-direction as that of ¢ and introduced the dimension-
less vanable

2uv - ¢?

(1
2uq

<
I

This expression has a lot of nice properties, not least of which is that it delineates
three separate aspects of the physics:



( i) The degree of coherence in the target: this is represented by the term

V4 V4
3 QQe ) = 3 QF+ 3 QuQ e (12)

=1 =1 T 7]

The point is that the incoherent contribution coming from terms with i =
contains no phase factor and so is not damped when ¢ — oo. On the other
hand the terms with i ¥ j which represent the coherent contribution do
contain a phase factor and so fall rapidly witk increasing ¢* just like a form
factor; [see Fig. 3].

( ii) Quasielastic scattering: if the constituents were free and at rest then the
probe scatters elastically from them and so ¢? = 2 uv requiring y = 0. Thus
deviations from y = 0 are a measure of the bound state of the target. Thiscan
be seen explicitly in (10) by setting F = 0 and performing the integration
over t. The term (uy — pi,) in the exponent chows that y is a measure of the
internal momentum of the constituents inside the target - as will be shown
explicitly below.

( iii) Dynamical corrections: these are completely represented by F(¢') in the
expenent. To evaluate them is of course, very complicated. However in the
deep inelastic limi, the expression simplifies considerably as we shall now
demonstrate.

Introduce 8 = qt (and ' = qt') then the incoherent part of eq. (10) can be
re-expressed as

z oo . P 17!
W ( V.qZ) = (\‘P()lEQ.zT/ izl%elﬂlV'#'Ef.‘dﬁ’(l—%)N“ ’ll\‘v()) (13)
=] —o0

Apart from suppressing the coherent contribution which vanishes rapidly with ¢2,
this expression is exact. Now, if we take ¢ — oo at fixed y, it is clear that the term
in the exponent containing F. also eventually vanishes and we are left with

z .
F(y.q*) = qW(r,q") < ¥l Y Q6(y - %)I% > (14)
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Figure 3: Generic expansion of F.



i.e. the incoherent quasielastic scattering. In an explicit momentum space represen-
tation this reads

. , [ dk 4k ) \ )
Fud) L [ Grr o Gl < Yolb k2 > Ptk —py) (15

or, if | f( k) 1? is a single-particle momentum distribution defined by

[ 3k 5
If(k.‘)lzslL G < Yolki - ki £z > (16)

where the integration symbol means integrate over the momenta of all the con-
stituents except the i'th, then (in the symmetric case), (15) reduces to

d*k.
(21)3

Fu )~ 2 [ S [kl k) Po —wy) ()

Thus for large g2 , F(y,q*) = qW (v, ¢?) scales to a function of y which
measures the longitudinal momentum distripution of constituents inside the
target.

It is clear from this discussion that the approach to y— scaling is governed by
correlations as well as explicit dynamics. The expression given in eq. (10) or (13)
allows for a systematic expansion ir. powersof 1 /q. [Actually, with some reasonable
approximations, one can translate 12is into an expansion in power of e'/?]. Thus the
scaling phenomenon simply reflec(s the fact that the target can be well described by
Z scattering centers. In this sense, it is the correction and the approach to scaling
that contain the really interesting physics. On the other hand, in the high energy
case, where it was not known that hadrons were definitely comrposed of quarks,
the scaling phenomena (discusscd below) was the clearest evidence for the ultimate
establishment of the quark model.

Typical scaling curves for electron scattering from nuclear targets (5 GeVrange)
and for neutron scattering from liquids ( (S KeVrange) are shown in Fig. 4. The
theoretical discussion above leads to many interesting results which are in agree-
ment with these uata some of which are the following:



( 1) The dynamical corrections (from F;) dominate the correlations at large q
with the result that scaling should be approached from above.

( ii) The leading correction requires af/aqzlv,o ~ 0; i.e. there is virtually
no correction near the maximumat y = 0

( iii) For a symmetric system F(0,q?) = (u/2k) ~ 2 — 3.

( iv) Scaling results whether F is a confining force or not. Thus even for po-
tentials V(r) ~ r" for r — oo, the system behaves as if the constituents
were free.

Approach to Y—Scaling
0.8 T
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X o) -
- -] (
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Figure 4: (a) y-scaling curve for thermal neutron scattering from liquid helium for
various values of g2(in A-2).

Lastly, I would like to discuss the role of sum rules since these play a crucial rale

when we tum to the reladvistic analysis. Retumning to the representation (3) it is
clear that

- z
[(QI)E/ duW(U,qz) = E(W°|Q|Q’e"'(rd”’4)|\{‘o)

iyal
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Figure 4: (b} Similar curve for electron scattering from iron nuclei with ¢? in
(GeV/c)?.
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2 2

= Y QI+ Y QuQ(%le" =W w)  (18)

izl iy=1

where in the last line I have separated the terms into the coherent and incoherent
coutributions (as in Fig. 3). Nctice that for identical particles with Q; = 1.

Z when ¢2
I(¢*) — { 22 when a2 = 0 (19)

showing how the two extreme regimes pick out the incoherent from the coherent. In
general, the sum rule has integrated out the explicit dependence on dynamics so
that the approach to scaling for [(q2) is completely governed by correlations
alone. In terms of the scaling variable we can write

[ aFru. H~TQ (20)

[Notice that this is in agreement with eqs. (14) - (17) sincc the state |\¥,) is normal-
ized to unity].
It is straightforward to derive other sum rules; for example

/_:dw’f(y. q’)m():Q?)-:z-‘-(%) (21

where T = $%/2 4 is the kinetic energy operator. Thus thi:, second moment of F
measures the mean kinetic enerygy of the constituents. More generally one can aerive
an infinite sequence of sum rules which relate moments of / to matrix elements of
operators:

/_"dw’"f(y.q’)m(zq;*)bwuzump"" m (’—) o)  (22)

mul ne

Although this is not particulirly useful in non-relativistic systems where one cin
work directly with the original expression such aseq. (10), its inu.  ue in reletivis-
tic tield theory turns out to be the key to progress. ‘This is becuise the expression in

12



(22) factorizes into a probe-dependent target-independent piece (i.e. 3 Q?) and a
target-dependent matrix element which is probe-independent. This effectively sep-
arates the ultrzviolet part of the problem from the infra-red bound state aspects. In
the relativistic case, to which we immediately turn, this will bring the behavior of
currents on the light coue.

III RELATIVISTIC FIELD THEORY (QCD)!®

Let us first discuss some preliininaries. The relativistically covariant generalization
of the structure function W of eq. (2) is given by:

Walp @ = 3| < Nljlp > P6“(p + g — pw) (23)

where the bar implies an average over target spin and 7, is the electromagnetic cur-
rent; (for neutrino scattering this becomes the appropriate weak current). Unlike (2)
this incorporates transitions due to both longitudinal and transverse virtual pbotons.
W, can be decomposed into scalar amplitudes W;(q?, v).

Wa(p.q) = -Wi(g* V) gu + Wa(g* V)pupu+ -+ - (24)

where v = p.q/M, }/ being the mass of the target. In the Lab frame where p =
0,v = ¢Y, the energy lost by the projectile. As before, a use of unitarity (i.e. com-
pleteness of the final set of states | N >) allows one to express W), as a ground state
expectation value, analogous to eq. (3):

Wu(p, @) = /d‘IC"’ < pll ju(2), ju (D) ]]p > (25)

With quarks as the fundamental degrees of freedom which carry charge, the elec:
tromagnetic current iy j, = )", 7,Q,7.q: where the sum runs over all quark-types.
MNote also that W, = I'm T,,,, where T,,, is the corresponding Compton amplitude
obtained from (25) by replacing the commutator by a time ordered product.
Iet us now examine more explicitly why the light-cone plays a crucial rdle when
¢* -+ 0o. To do so introduce light-cone variables
¢ * G taq

and . - 30 bz (26)

13



with the z-direction defined along g, [ ie. ¢, = Q ]. Thus P = qug_, T =
z,z. —z2 and ¢.z = 1/2(q.z_ + g-z.). Now, in the large q? limit

g 2201 —g*/4v* + -] = 20l —xt/¢*+ -]
and q— ~ ¢*/2v[1 =3/4 ¢ /v? + -] —z[1 =37 /g% +

where z = —¢*/2v.

The limit g2 — oo, with z fixed defines the Bjorken limit' 5. In this limit ¢* =~
2y — oo. By virtue of the properties of Fourier transforms this drives z_ ~
0(2/q.) ~ 0(1/v) in the representation (26). Similarly the major contribution to
the z, integration comes from the region z. ~ 0(2/q-) ~ 0(2/z). Clearly, then,
the region that dominates the integrand in eq. (25) in the Bjorken limit is given by
1? ~ —12 <0, i.c. whenever z, is space:like or null. On the other hand, causality
requires that the commutator in (25) vanishes outside of the (forward) light-cone,
i.e. the integrand can only te non-zero when z, is time-like cr null (z* > 0). Thus,
in the Bjorken limit, all of the contribution to the integral can only comc from z,
null, i.c. from the light-cone itself 22 = 0. We therefore need to know the behav-
iour of products of currents near z2 ~ 0. To get an idea of what this involves it is
useful to consider a tov model:

The toy model consists of treating the fundamental fields ¢(z) (ths quarks) as
scalars and defining a fictitious scalar current j(z) = ¢2(z) which is a bilinear in
¢(z) — just as the real current j,(z) is bilinear in the quark fields q(z). We then
manipulate the fields as if they were free. In that case the standard Wick expansion
leads to

T(j(2) (D]

T ¢*(z)$* ()]
—282(z,m?) + 4idp(z, m?) () P(0) + $3( ) $2(012T)

where

d‘k c-lkt
(2m) 4kt - m? + ie

Ap(z,m’) = (28)

is the Feynman propagator, m being the mass associated with ¢(z). Diagramati-
cally, the Cownpton amplitude, of which W is the imaginary part, is shown in fig.
5. "T'he first term contains no operutor and gives rise to a disconnected graph which
does not contribute to the physical deep inelastic scattering. The other two terms
give contributions which ire precisely analogous to the result of the non-relativistic

14
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Figure 5: Analog expansion to fig. 3 of F
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analysis, and which break up into coherent and incoherent pieccs as in fig. 3. In
fact, the analogy can be taken even further when we recall that when 22 ~0

2 1
Ap(z,m*) ~ — -
F 4n? 22 — e

+ 0(m*z?) (29)

so that the second term in (27) dominates the third when 2 ~ 0. Thus the leading
behaviour for W is given by

W(g v) ~ Im/d“ze"-’AF(z,m’)(p|¢(z)¢(0)|p). (30)

Suppose now that we introduce a momentum distribution function

fRVE = [ d'ze™=(plo(2) (0 Ip) (31)
then eq. (30) can be re-expressed as
d* k

W v) ~ W!(k)lzél(Hq)’——mle(ko+qo). (32)

Now, in the Bjorken limit (k + ¢)> — m? ~ 2u(k. — z) which immediately
leads to the scaling result

wW(q*,v) F(z,q%)

4

(g-ﬁ-ﬂﬂ k)2 8(k_ - x) (33)

This is clearly the analogue of the non-relativistic many-body formula derived
in eq. (17) and justifies identifying | f( k)|* of eq. (31) as a momentum dis;ribution
function. It shows that W scalesto a function of £ whichin the Lab frume measures
the k . (“the longitudinal light-cone momentum") distribution of constituents in the
tirget. The situation in this toy miovdel is therefore just like the non relativistic case.

‘The situation in the real world is niore complicated; fields cannot be treited as it
they were free. 1lowever, the generulization from the free to interucting cuse is ic-
tually quite straightforward. The crucial charactenstic of the expansion (27) which

16



was based on treating ¢ as a free field is that it is in the form of c_ number singular
functions of z2 (such as Ag) multiplied by (composite) operators [e.g. ¢(z)P() 1.
Wilson suggested (and it was later proven valid) that this structure is mainiained
even in the fully-interacting theory; so, for the scalar case, one would write:

TIH(2)j(0)] &Y Cm(z°)Om( ) (34)

where the Cn( z2) are functions like Ax(x?) which are singular near the light cone
and the O, ( z) are the complete set of all possible composite operators occuring in
the theory. Notice that the O, (z) are, like $(z)@(0) of the toy model, not local
operators (i.e. they depend on at least two different space-time points, z,and () in
this case). Near the light-cone, however, the operators O,,( z) can be expanded in
a2 Taylor series whose coefficients are local operators:

Om(T) =) Ty, -+ Ty, Ok "™ (0) ( 35)

Inserting this in (34) we obtain the operator product expansion:

T(j(2) J(O) ] ~ E Ch( Iz)'-‘m T O ¥ (0) (36)

From the intuition gained in the toy model, where the operators (),,(z) were
interpreted as analogous 10 the wave- function of the nou-relativistic theory the ex-
pansion (35) seems a little strange. For it is as if one were expanaing a spatial
wiave-funciion around the origin (z ~- 0) in a Taylor scries expansion. However,
for the * jorken limit this is a natural thing to do since knowledge of the most sin-
gular behaviour of the Cm(x?) is in principle sufticient to determine the large ¢
hehaviour of W.

From ordinary dimensional analysis one can deduce from (36) that the most sin-
gular C,(x) occur for operators ()4 #* which are bilinears in the fundamental
fields (i.e. quarks and gluons). ‘These are the operators of lowest twist ( . its dimen-
sion - its spin). Higher twist operators are nultilinear in the quark and gluon tields
and give rise to less singular (7, ( £?) and therefore to corrections to the leading
large ¢* -behaviour.

Substituting this light-cone operaior product expansion (36) into the detinition
of the virtual Compton nmplitude - of which the physical structure functions are ihe

17



imaginary parts - leads to an infinite sequence of sum rules:
2 1 2 b p)
M(qg",n) = A dz 2V ° Fa(z,q%) = c(q”,n){(p|Oalp) (n 2> D) (37)

kHere, the c(g*,n) are related to Fourier transforms of the C,,( z%); they are inde-
pendent of the target but probe (and therefore ¢*) dependent. The operators (', are
basically the invariant scalar components »f the O4. #*; their matrix elements are,
of course, target dependent, though independent o1’ the probe (and therefore ¢*). It
is clear that the operator product expansion has allowed one to separate the infrared
features of the problem (represented oy the matrix elements) from the ultra-violet
(represented by the ¢( q2 , ).

By this ruse the determination of ¢* -dependence is disentangled from the knotty
problems of dealing with the structure of the target - which, of course, is a non-
perturbative infrared problem. The leading ¢° behaviour of the moments is thereby
tied 1o the behaviour of the c(g?,n) and therefore the the twist-2 quark and ghion
bilinear operators. Now, QCD is asymptotically free, which means that as ¢? in-
creases, the effective coupling decreases [g2 ~ 1/In (g*/u?)] allowing an ac-
curate perturbative estimatc for the c(q?, n). Technical'y, this is accomnplished by
using the renormalization group which effectively sums graphs and leads to

(gl m ~[Ing?/ul]™ (38)

where the «y, are r=lated to the anomalous dimersi.n of the (), ind are all calculable
This behaviour has been briltiantly contirmed by experiment as s own in fig. 6 and
(becimse ypo1 > v > () leads to a pattern of scale breaking illustruted in tig 7.

‘The target dependent piece, (p|()a|p). remains in general undetermined since it
requires a solution of the bound state problem. Thus the light-cone only determines
the ¢ -evolution of the structure functions - their shape and nomulization are in-
frared properties. Remwkably, however, the nonnalization c¢an in fact be, in scaine
scense, determined. The reason for this is that the lowest moment (n = 2) corre-
sponds in eq. (40) to the 2-tensor (J*'#! which must contain the energy-momentum
tensor. ‘This is not only a conserved (uantity (so tlut its anomalous dimeusion
72 = ()) but, furthermore, its m:trix element. :at rest are known, heing given by
the muss of the target. Thus the complete right-hand-side is known. One tinds
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where f means flavour. This sum rule can be thought of as measuring the fraction
of momentum carried by the quarks. For SU(3) this reduces to

5N

1
2 N~ ON
[) R 2z~ e ray

(40)

where N is the number of quark generations. Thus, foo N = 4, this gives 5/42
whereas for N = 3, 5/34. The data are shown in fig. 8. These indicate that M (q?, 2)
is approachirg a censtant which appears to be consistent with 3 generations. Note,
incidentally, that the operator O#'# contains another operator beyond the energy-
momentum tensor and that this is not conserved and so has a non-vanishing value
for its 2. This means that there are corrections to the sum rule, eq. ( 40), which
are of the form a(ln ¢?)~™. Remarkably, a can be shown to be positive so that
the approach to scaling must be from above which is in agreement with the data.
Further corrections are given by the higher twist operators containing more than just
two quark and gluon fields. These are down by O( 1/¢?) and so are presumably not
of importance for high values of ¢2.

An Aside - Application to the EMC Effect

A remarkable property of the sum rule, eq.(40) beyond the fact that its right-
hand-side is independent of g2 (i.e. of the probe) is that it is also independent of the
target! Thus, if one introduces the difference

2
a(g, z) = EA(:.I)

[ A denoting a nucleus and NV the nucleon], then

— Fn(gt, 2 (41)

(Ca—Ch)

A
aM(¢"2) = [ 8} D)dz m

(42)

In fact a]l moments of A vanish asymptotically so ultimately A itself must van-
ish, with increasing ¢2, albeit very slowly. Thus at very large ¢2, the EMC effect
must eventualiy disappear. Notice also, incidentally, that |A M (¢?, 2)| must de-
crease monotically with g2 which is, in fact, violated when the original EMC data is

21



T U 0TI e 1T 1T TTTTTY U T T TTTT] T T T

10 .- atelian vector gluon (a"1/2) -

09 — QCD ””‘6-/.7*

N N

08} )
\
[FMax -

07

=

Aol b taiil Lol oLl el Ll

) 10 108 103 10
2 (GevH

Figure 8: M(¢*,2) vs. ¢* showing asymptote 10 a constant from above.

22



compared to the later SLAC data! {7)Since that time!®! the EMC points near z ~ Q
which were the largest deviations of A from zero z &2 O have been amended so that
the data is now consistent with this requirement on |A M (¢?, 2)|.
Correlations, Higher Twist and Shad0wi|£

We have seen that the operator product expansion on the light cone leads to sum
rules with the structure:

M(q%,2)

1
[) F:(¢* 7)dz

<Q*> C |
R~ (l+l6/3Nf)+(lnq2)‘n +O(—5>+ ...... (43)

The first two terms represent the lowest twist contribution arising from quark and
gluon bilinears. These can be represented by graphs of the kind shown generically
in fig. 5. These incorporate the naive parton model, modulated with leading loga-
rithmic gluon radiativs corrections which give rise to the second term in eq. (43).
The leading corrections to these asymptotic estimates come from higher twist terms:
the four-quark operator, as illustrated in fig. 5, gives rise to O(1/¢*) corrections.
Notice that these leading graphs are identicai in structure 10 those that arose in the
1/q* expansion for the structure function in non-relativistic many-body theory.

Let us take this conrection with the many-body result seriously - after all, the
basic physics is clearly the same. In that case, as one comes down to modest values
of qg* (below a few GeV?) correlations in the system begin to dominate. Let us
therefore write

M(q*, D) = Mrao(@* D1 - f(4P)] (44)

where Mrap(g?,2) just includes the “soft-gluon" radiative corrections that we typ-
ically calculated from as_"mptotic freedom, i.e. the first two terms in eq. (43). This
is, of course, a slowly ra1ging fun -ion of ¢%. Writing €q.(44) in this form simply
factors out the QCD radiative corrections in much the same way one removes ra-
diative corrections in QED. What remains, i.e. f(q?). contains “dynamics”. Now,
suppose we mimic the non-relativistic sum rule, eq. (i8), 'ind identify f with cor-
relations in the target (i.c. loosely with (e'9(z-1))), then below the "correlation
length" (a few GeV), it becomes very rapidly varying. Of course for large ¢°, it
rapidly vanishes. A crude approximation for f is simply the square of the elastic
form factor of the target, G4(¢?):

e f(¢®) ~Gi(gh) (45)
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This can be “justified" by noting that diagramatically (fig. 5) f is the overlap
of two triangles, cach one approximately the elastic form factor. Thus, a crude
approximation would have

M(q*.2) ~ Mran(®, D (1 — Gi(¢)] (46)

For the nucleon G(gq?) is a remarkably smooth function, well approximated
by a dipole form:

1

Cul @) N ——
i(q°) (1-q1/M3')_1

(47)

where Mo ~ 0.7GeV. Thus the approach to the asymptotic regime governed by
the light cone should, for the nacleon, be smooth - as inde=d it is, as can readily be
seen in fig, 9. Indeed this approach is iemarkably well fit by eq. (46) On the other
hand for systems such as nuclei and liquids which have spatial "edges" Gy (q?) is
oscillatory, reflecting diffraction. In that case the approach to asymptopia should be
oscillatory. For liquids this is indeed the case. Relevant data on nuclei are not yet
available.

We can ke this argument one step further, if we are willing to be bold: we can
suppose that f(¢%) dominates the approach to scaling not just for the sum rule but
for the structure functicn itself: this suggests writing:

Fa(q%, 2) m FMP (g2 o)1 — f(gD)] (48)
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where again FRAP (g2, z) contains only the “soft-gluon radiative corrections”. In
that case, it follows that

F(q* 2)

—_— 49
= Gi(eD) (49)

Fa(z) =

should (up to logarithms) scale down to very small values of g% (i.e. well below
a few GeV? and possibly even down to g2 = 0!f). A fit with this formula was
performed many years ago on early data and is seproduced in fig. 10. It does indeed
show a remarkably good agreement.

Suppose we go even further and try to continue this formula down to ¢ = 0
(with v fixed). On the left- hand-sidz. z — 0 when g2 — 0. On the right-hand.side
we have

q2a,(v)

2
FZ(IIq ) — 41rza

(50)

where o,{v) is the total photo-absorption cross-section. If we therefore set g% = ()
and v = oo in eq. (49) we obtain

2
~ . Mo,(oc)

~ (.38 (51)

which is in remarkably good agieement with experiment!
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