short times And ShORT DISTANCES IN NUCLEAR AND PARTICLE PHYSICS - A PEDAGOGICAL REVIEW

$$
L A-U R--88-4285
$$

SUBMITTED TO

CONFERENCE PROCEDINGS OF NUCLEAR AND PARTICLE PHYSICS ON THE LIGHTCONE HELD IN LOS ALAMOS AT LAMPF. (TO BE. PUBLISHED BY WORLD SCIENTIFIC)

IIST I.AIMFR

Abstract

 [H:

SHORT TIMES AND SHORT DISTANCES IN NUCLEAR AND PARTICLE PHYSICS - A PEDAGOGICAL REVIEW

Geoffrey B. West
Theoretical Division
Los Alamos National Laborato.y
Los Alamos, NM $\mathbf{\$ 7 . 4 5}$

Abstract

The formalism relevant to deep inelastic processes in both non-relativistic and relativistic systems is reviewed with an emphasis on scaling and its violations. In the former case we show how a systematic expansion in $1 / q^{2}$ (q being the momentum transfer) can be derived which delineates the incoherent scattering from bound state and potential corrections. We demonstrate fow this exact many-body non-relativistic formalism corresponds to the light- cone operator product expansion in ụuintum field theory. As examples, scaling in liquids, nuclei and nucleons is discussed with emphasis on the EMC effect, shadowing and the relationship to the photo ibsorption limit.

I INTRODUCTION

An elementiry argument based on the uncertainty principle clearly demonstrates that high momentum transfer processes are sensitive to physics on the light cone: just simply taking $q^{2} \rightarrow \infty$ probes the region $x^{2} \rightarrow 0$. Since QCD is asymp. lotically free (i.e. its effective coupling constant becomes valishingly small when $\left.y^{2}, \infty\right)$, things simplify considerably in this regime: perturbation theory, at least nalvely, is a justifiable approximation. Indeed, it was precisely this property thit led to the establishment of QCD as the theory of the strong interictions. In parricular, as will be revicwed below, its prediction of logarithmic violations of exact sealing in deep inelastic lepton siattering wals a striking success. The arguments, which technically relied on the behaviour of pioxlacts of currents near the light cone. justified not only the use of the parton moxdel but the identification of partons with ilae gairk amd ghwintimamental degrees of freedorn. It wiss nitmral to iry to extend such arguments to other high momentum processes, such as form factors, lepton pair
production, wide-angle scattering, and heavy quark decays. However, although the light cone certainly plays an imporant (and possibly even a dominant) ròle in all of these processes ihe application of perturbation theory alone to describe them is geaerally impossible to justify. The point is that in deep inelastic scattering it is possible to make a clean separation of the infrared (i.e. the non-perturbative) from the altraviolet(the perturbative). In almost all other processes such a separation is generally not possible even in the extreme ultra-violet limit. Typically non-perturbative physics creeps in. Indeed one of the major challenges in QCD physics is to undersland how to graft non -perturbative infrared or bound state effects onto perturbative ones controlled by light cone physics.

Particle and nuclear physics are beginning to come !ogether in this endeavour although their emphases have in the past been quite different. The emphasis in particle physics was originally to try to substantiate QCD as the theory of the strong interactions ${ }^{[1]}$. Having done so (at least to the satisfaction of most physicists) the emphasis shifted to using it as a probe of new physics (i.e. new interactions beyond the standard model or new particles such as the top quark). This meant cirderstanding phenomena such as jet structure, multiparticle production, decay processes and so on ${ }^{[2]}$. This has been accomplished almost entirely within the context of perturbation theory (and, by implication, physics on the light cone). Phenomenologically, this has proven 6) be successful in spite of the fact that non-perturbative effects ought to play some ròle.

Ironically, even though all particle physicists may believe that QCD is the theory, nevertheless, it is worth remembering that the self-interaction of the gluons (and. subsequently the presumed existence of a glueball state) hes.s yet to be experimentally substantiated! Non-perturbative physics, i.e. physics away from the light cone, has by and large become the province of lattice QCD though important analytic efforts hive been mide. The major effort thus far has been in trying to understand the hadronic spectra.

Until relatively recently nuclear plysics worked almost exclusively within the context of meson ind nucleon degrees of freedom. However as energies have increased and the realization that QCD is here to stity has crystallized, the cmphasi; las begun to shift to the question of the role of (quarks and gluons inside the muclens. Ilere the fundamental guestions revolve around how the ilescription of low encrgy phenomena described in tems of mesons and mucleons evolves into cuarks and gluons as the energy scale increises. A central question for :xample is the existence and experimental signal of a puirk ghom plasma. la conning to grips with sime of the serions problems ransed by going to higher energies considerable work
has focused on phenomenological descriptions in terms of relativistic nucleons and effective relativistic fiell theories of mesons and nucleons (QHD). Whether this is a more useful, economical or physical way of dealing with some of the problems Father than trying to come to grips direcily with the role of QCD in nuclei remains
 advocuates of these rather different approaches has been the E.MC effect ${ }^{[1]}$. This is the experimental ohservation that the deep inelastic structure functions do not simply scale with A as one changes the target. All sides have adequate explanations of the effect, which is not too surprising since both descriptions are to some degree valid and the experiments, after all, only measure gross features.

The rest of this talk will in fact, concentrate on the theoretical description of the scaling phenomena observed in classic deep inelastic scattering. As intimated by the title, the emphasis will be pedagogical, and, as such, will for the most pan, be it review of well-known theoretical techniques and results. I shall, however, give the discussion in terms of two ruther different contexts: (a) many bexdy nonrelativistic potential theory and (b) fully relativistic quantum field theory. The latter encompasses QCD whereas the former applies to nucleons bound in a nucleus by inter nucleon potentials. At the end I shall briefly discuss applications to the EMAC. effect and some questions of shadowing.

II Non-Relativistic Systems ${ }^{[5]}$

We begin oy considering spinkess nen-relativistic se:lltering from a target composed of Z scattering centers such as is the case of a nucleus or of a macroscopic liy. uid. The formalism that I shall review applies in fact almost precisely to the case of thermal neutron scat:ering from liquids. In general, the process to be discussed is illustrated in I'ig. 1: the scattered probe particle (an electron, say) is detected without regard to the fate of the target tinal states. In terms of the energy loss (ν) and momentum trinsfier (q) it is convenient to intradace the structure function (ippropriate to Coulomb scattering).

$$
\begin{equation*}
W\left(\nu . q^{2}\right): \frac{\left(d^{2} \sigma / d s 2 d t^{\prime}\right)}{(\operatorname{do} / d s)_{R u t h}} \tag{1}
\end{equation*}
$$

Figure 1: General graph illustrating inclusive scattering from an arbitrary target.
particles. From the Fermi golden rule W is given by

$$
\begin{equation*}
W\left(\nu, q^{2}\right)=\left.\sum_{f}\left|<\Psi_{f}\right| \sum_{i=1}^{\prime} Q_{1} e^{1 \sigma} L_{\mid}\left|\Psi_{0}\right\rangle\right|^{2} \delta\left(E_{f}-E_{0}+\nu\right) \tag{2}
\end{equation*}
$$

where Q_{1} is the charge of the i^{\prime} th constituent whose position is $工 \Psi_{(x f}$ is the initial (final) state of the target. Using the Heisenberg equations of motion together with the completeness of the set of final states f (i.e. the conservation of probability) one can express (2) as a ground state expectation value

$$
\begin{equation*}
\left.W\left(\nu, q^{2}\right)=\int_{\cos }^{\infty} \frac{d t}{2 \pi} e^{i \omega t}<\Psi_{0}\left|\sum_{i J} Q_{1} Q, e^{\cdot i L^{(1)}} e^{-\tau(i(\theta)}\right| \Psi_{0}\right\rangle \tag{3}
\end{equation*}
$$

The price paid for eliminating the sum over final states is the need for knowledge of the time developinent of $L_{(}(t)$. This, of course, is govemed by the Haniltonian of
the system whose general structure is taken to be

$$
\begin{equation*}
H=-\sum_{1} \frac{\nabla_{1}^{2}}{2 \mu}+V\left(\underline{r}_{1}, \cdots \cdots \cdot \underline{r}_{z}\right) \tag{4}
\end{equation*}
$$

where $; \sim$ is the mass of the constituents. Although we will not need to do this in what follows, it is usually assumed that the potential \vee can be expressed as a sum of 2 -body potentials.

$$
\begin{equation*}
V\left(\underline{r}_{1} \cdots \underline{\underline{r}}_{2}\right)=\sum_{i<j} v\left(\tau_{1}-\underline{\tau}_{j}\right) \tag{5}
\end{equation*}
$$

Indeed this usually leads to a 2nd quantized many-body description in terms of creation destruction operators a_{k} :

$$
\begin{equation*}
\left.W^{\prime}\left(\nu, q^{2}\right)=\int_{-\infty}^{\infty} \frac{d t}{2} \frac{d}{\pi} \mathrm{e}^{i v t}<\Psi_{0}\left\|\rho_{q}(t), \rho_{q}(c)\right\| \Psi_{0}\right\rangle \tag{6}
\end{equation*}
$$

The density operator is given by

$$
\begin{equation*}
\rho_{q} \equiv \sum_{k} a_{k+q}^{*} a_{k} \tag{7}
\end{equation*}
$$

Its time development is controlled by the Hamiltonian, eq. (4) which, in this formailism, can be expressed as

$$
\begin{equation*}
U=\sum_{k} \frac{k^{2}}{2 \mu_{k}} a_{k}^{*} a_{k}+\frac{1}{2} \sum_{k} v(k) \rho_{k}^{*} \rho_{k} \tag{8}
\end{equation*}
$$

$\|(\notin)$ is just the Fourier transform of the 2 -bxdy potential $v(r)$ defined through eq. (5). This field theoretic description of e(fs. (2) and (3) allows one to think of W as the imaginary pirt of the corresponding (virtual) photon, forward Compton sc:attering amplitude as illustrated in lig. ?. The guestion we wish to address is what is the behaviour of W when q hecomes very large?

Although much fonnal and phenomenologicall work has been 'bised on this 2nd fumtized representation it is more comvenient for our purposes to stay with the

$$
W\left(v, q^{2}\right)=\operatorname{Im}
$$

Figure 2: The optical theorem relating W to ine imaginary part of the vital forward Compton scattering amplitude.
equivalent Ist quantized form. eq. (3). From a judicious use of operator identities coupled with the equations of motion

$$
\begin{equation*}
\frac{d P_{i}}{d t}=i\left[H, \mathbb{R}_{1}\right]=-\nabla_{i} V\left(I_{1}, \cdots \underline{r}_{z}\right) \equiv F_{i} \tag{9}
\end{equation*}
$$

[p_{i} is the momentum operator for the i 'th constituent] one can derive the following exacl representation

Here we have defined the x-direction as that of q and introduced the dimensionless vanable

$$
\begin{equation*}
y \cong \frac{2 \mu \nu-q^{2}}{2 \mu q} \tag{II}
\end{equation*}
$$

This expression has a lot of nice properties, not least of which is that it delineates three separate aspects of the physics:
(i) The degree of coherence in the target: this is represented by the term

$$
\begin{equation*}
\sum_{i j=1}^{z} Q, Q, e^{i q\left(\Sigma_{1}-\Sigma_{1}\right)}=\sum_{i=1}^{2} Q_{i}^{2}+\sum_{i \neq 1} Q, Q, e^{i q\left(\Sigma_{1}-\Sigma_{1}\right)} . \tag{12}
\end{equation*}
$$

The point is that the incoherent contribution coming from terms with $i=j$ contains no phase factor and so is not damped when $q \rightarrow \infty$. On the other hand the terms with i $\neq j$ which represent the coherent contribution do contain a phase factor and so fall rapidly with increasing q^{2} just like a form factor: [see Fig. 3].
(ii) Quasielastic scatering: if the constituents were free and at rest then the probe scatters elastically from them and so $q^{2}=2 \mu \nu$ requiring $y=0$. Thus deviations from $y=0$ are a measure of the bound state of the target. This can be seen explicitly in (10) by setting $F=0$ and performing the integration over t. The term ($\mu y-p_{i s}$) in the exponent shows that y is a measure of the internal momentum of the constituents inside the target as will be shown explicitly below.
(iii) Dynamical corrections: these are completely represented by $F_{1}\left(t^{\prime}\right)$ in the expenent. To evaluate them is of course, very complicated. However in the deep inelastic limit, the expression simplifies considerably as we shall now demonstrate.
Introduce $\beta \equiv q t$ (and $\beta^{\prime} \equiv q t^{\prime}$) then the incoherent part of eq. (10) can be re-expressed as

Apart irom suppressing the coherent contribution which vanishes rapidly with q^{2}, this expression is exact. Now, if we take $q \rightarrow \infty$ at fixed y, it is clear that the term in the exponent containing F. also eventually vanishes and we are left with

$$
\begin{equation*}
\mathcal{F}\left(y, q^{2}\right) \equiv q W\left(\nu, q^{2}\right) \rightarrow\left\langle\psi_{0}\right| \sum_{i=1}^{Z} Q_{1}^{2} \delta\left(y-\frac{p_{i \mu}}{\mu}\right)\left|\Psi_{0}\right\rangle \tag{14}
\end{equation*}
$$

$q W\left(q^{2}, v\right) \equiv F\left(q^{2}, y\right)$
$\Rightarrow \operatorname{Im} \sum_{i}$

$+\operatorname{Im} \sum_{i}{ }_{j}$

COHERENT

DYNAMICS

Figure 3: Generic expansion of \boldsymbol{F}.
i.e. the incoherent quasielastic scattering. In an explicit momentum space representation this reads

$$
\begin{equation*}
\mathcal{F}\left(y, q^{2}\right) \approx \sum_{i} Q_{i}^{2} \int \frac{d^{3} k_{1}}{(2 \pi)^{2}} \cdots \frac{d^{3} k_{\mathcal{I}}}{(2 \pi)^{3}}\left|<\Psi_{0}\right| \underline{k}_{1} \cdots \underline{k}_{\mathcal{Z}}>\left.\right|^{2} \delta\left(k_{i z}-\mu y\right) \tag{15}
\end{equation*}
$$

or, if $\left|f\left(\underline{\boldsymbol{k}}_{i}\right)\right|^{2}$ is a single-particle momentum distribution defined by

$$
\begin{equation*}
\left|f\left(k_{i}\right)\right|^{2} \equiv\left[\int \frac{d^{3} k}{(2 \pi)^{3}}\right]_{i}\left|<\Psi_{0}\right| \underline{k}_{1} \cdots \underline{k_{i}} \cdots \underline{k}_{Z}>\left.\right|^{2} \tag{16}
\end{equation*}
$$

where the integration symbol means integrate over the momenta of all the constituents except the i^{\prime} th, then (in the symmetric case). (15) reduces to

$$
\begin{equation*}
\mathcal{F}\left(y, q^{2}\right) \approx \mathcal{Z} \int \frac{d^{2} k_{\perp}}{(2 \pi)^{3}} \int_{-\infty}^{\infty} d k_{s}\left|f\left(k_{\perp}, k_{z}\right)\right|^{2} \delta\left(k_{1}-\mu y\right) \tag{17}
\end{equation*}
$$

Thus for large $q^{2}, \mathcal{F}\left(y, q^{2}\right) \equiv q W\left(\nu, q^{2}\right)$ scales to a function of y which measures the longitudinal momentum distrioution of constituents inside the target.

It is clear from this discussion that the approach to y - scaling is governed by correlations as well as explicit dynamics. The expression given in eq. (10) or (13) allows for a systematic expansion ir powers of $1 / q$. [Actually, with sorne reasonable approximations, one can translate this into an expansion in power of $\left.e^{1 ; q}\right]$. Thus the scaling phenomenon simply reflects the fact that the target can be well described by \mathcal{Z} scattering centers. In this sense, it is the correction and the approach to scaling that contain the really interesting physics. On the other hand, in the high energy case, where it was not known that hadrons were definitely cor posed of quarks, the scaling phenomena (discussed below) was the clearest evidence for the ultimate establishment of the quark model.

Typical scaling curves for electron scattering from nuclear targets ($\lesssim G e V$ range) and for neutron scattering from liquids ($(\lesssim K e V$ range) are shown in Fig. 4. The theoretical discussion above leads to many interesting results which are in agreement with these uata some of which are the following:
(i) The dynamical corrections (from F_{i}) dominate the correlations at large q with the result that scaling should be approached from above.
(ii) The leading correction requires $\partial \mathcal{F} /\left.\partial q^{2}\right|_{y=0} \approx 0$; i.e. there is virtually no correction near the maximum at $y=0$
(iii) For a symmetric system $\mathcal{F}\left(0, q^{2}\right)=\langle\mu / 2 k) \approx 2-3$.
(iv) Scaling results whether F is a confining force or not. Thus even for potentials $V(r) \sim r^{n}$ for $r \rightarrow \infty$, the system behaves as if the constituents were free.

Figure 4: (a) y-scaling curve for thermal neutron scattering from liquid helium for various values of q^{2} (in A^{-2}).

Lastly, I would like to discuss the rôle of sum rules since these play a crucial rôle when we turn to the relativistic analysis. Returning to the representation (3) it is clear that

$$
I\left(q^{2}\right) \equiv \int_{-\infty}^{\infty} d \nu W\left(\nu, q^{2}\right)=\sum_{i=1}^{z}\left\langle\Psi_{0}\right| Q_{1} Q_{Q}, e^{i \varphi(L-L)}\left|\Psi_{0}\right\rangle
$$

Figure 4: (b) Similar curve for electron scattering from iron nuclei with $q^{\mathbf{2}}$ in $(\mathrm{GeV} / \mathrm{c})^{2}$.

$$
\begin{equation*}
=\sum_{i=1}^{z} Q_{i}^{2}+\sum_{i j=1}^{z} Q_{i} Q_{j}\left\langle\Psi_{0}\right| e^{i q\left(L_{i}-L_{i}\right)}\left|\Psi_{0}\right\rangle \tag{18}
\end{equation*}
$$

where in the last line I have separated the terms into the coherent and incoherent coutributions (as in Fig. 3). Netice that for identical particles with $Q_{i}=1$.

$$
I\left(q^{2}\right) \rightarrow\left\{\begin{array}{l}
\mathcal{Z} \text { when } q^{2} \rightarrow \infty \tag{19}\\
\mathcal{Z}^{2} \text { when } q^{2}=0
\end{array}\right.
$$

showing how the !wo extreme regimes pick out the incoherent from the coherent. In general, the sum rule has integrated out the explicit dependence on dynamics so that the approach io scaling for $I\left(q^{2}\right)$ is completely governed by correlations alone. In terms of the scaling variable we can write

$$
\begin{equation*}
\int_{-\infty}^{\infty} d y \mathcal{F}\left(y, q^{2}\right) \approx \sum Q_{i}^{2} \tag{20}
\end{equation*}
$$

(Notice that this is in agreement with eqs. (14) - (17) sincc the state $\left|\Psi_{o}\right\rangle$ is normalized to unity).

It is straightforward to derive other sum rules; for example

$$
\begin{equation*}
\int_{-\infty}^{\infty} d y y^{2} \mathcal{F}\left(y, q^{2}\right) \approx\left(\sum Q_{i}^{2}\right) \frac{2}{3}\left(\frac{T}{\mu}\right) \tag{21}
\end{equation*}
$$

where $T \equiv \bar{p}^{2} / 2 \mu$ is the kinetic energy operator. Thus thi:, second moment of \mathcal{F} measures the mean kinetic energy of the constituents. More generally one can uerive arn infinite sequence of sum rules which relate moments of \mathcal{F} to matrix elements of operators:

$$
\begin{equation*}
\int_{-\infty}^{\infty} d y y^{2 n} \mathcal{F}\left(y, q^{i}\right) \approx\left(\sum_{1} Q_{1}^{i}\right)\left(\Psi_{0}\left|\sum_{m=0}^{\infty} a_{m} p^{2(n m)}\left(\frac{F^{\prime}}{\mu L_{i}^{\prime}}\right)^{m}\right| \Psi_{0}\right\rangle \tag{22}
\end{equation*}
$$

Although this is not particuliarly useful in non-relativistic systems where one cian work directly with the original expression such as eq. (10), its amb. .'e in relativistic tield theory turns out to be the key to progress. This is hecunse the expression in
(22) factorizes into a probe-dependent target-independent piece (i.e. $\sum Q_{i}^{2}$) and a target-dependent matrix element which is probe-independent. This effectively separates the ultriviolet part of the problem from the infra-red bound state aspects. In the relativistic case, to which we immediately turn, this will bring the behavior of currents on the light cone.

III RELATIVISTIC FIELD THEORY (QCD) ${ }^{[6]}$

Let us first discuss some prelinninaries. The relativistically covariant generalization of the structure function W of eq. (2) is given by:

$$
\begin{equation*}
W_{\mu \nu}(p, q)=\dot{\sum}_{N}|<N| j_{\mu}|p>|^{2} \delta^{(4)}\left(p+q-p_{N}\right) \tag{2.3}
\end{equation*}
$$

where the bar implies an average over target spin and j_{μ} is the electromagnetic current; (for neutrino scattering this becomes the appropriate weak current). Unlike (2) this incorporates trans:tions due to both longitudinal and transverse virtual photons. $W_{i \Delta \nu}$ can te decomposed into scalar amplitudes $W_{i}\left(q^{2}, \nu\right)$.

$$
\begin{equation*}
W_{\mu \nu}(p, q)=--W_{1}\left(q^{2}, \nu\right) g_{\mu \nu}+W_{2}\left(q^{2}, \nu\right) p_{\mu} p_{\nu}+\cdots \cdots \tag{24}
\end{equation*}
$$

where $\nu \equiv p . q / M, \Lambda^{\prime}$ being the mass of the target. In the Lab frame where $p=$ $\underline{0}, \nu=q^{\nu}$, the energy lost by the projectile. As before, a use of unitarity (i.e. completeness of the final set of states $\mid N>$) allows one to express $W_{\mu \nu}$ as a ground state expectation value, analogous to eq. (3):

$$
\begin{equation*}
W_{\mu \nu}(p, q)=\int d^{4} x e^{i q x}<p\left\|j_{\mu}(x)_{1} j_{\nu}(0)\right\| p> \tag{25}
\end{equation*}
$$

With quarks as the fundamental degrees of freedom which carry charge, the electromagnetic current is $j_{\mu}=\sum_{1} \bar{q}_{i} Q_{,} \gamma_{\mu} q_{i}$ where the sum runs over all guark-types. Nore also that $W_{\mu \nu}=I m T_{\mu \nu}$, where $T_{\mu \nu}$ is the corresponding Compton amplitude obtained from (25) by replacing the commutator by a time ordered product.
let us now examine more explicitly why the light-cone plays a crucial r.le when $\varphi^{2} \rightarrow \infty$. To do so introduce lightcone variables

$$
\begin{align*}
q_{t} & =q_{0} \nmid q_{2} \\
\text { and } & =x_{0} \mid z \tag{26}
\end{align*}
$$

with the z -direction defined along q, [i.e. $q_{\perp}=\underline{0}$]. Thus $q^{2}=q_{+} q_{-}, x^{2}=$ $x_{+} x_{-}-x_{\perp}^{2}$ and $q . x=1 / 2\left(q_{+} x_{-}+q_{-} x_{+}\right)$. Now, in the large q^{2} limit

$$
\begin{aligned}
& q+\approx 2 \nu\left[1-q^{2} / 4 \nu^{2}+\cdots\right]=2 \nu\left[1-x^{2} / q^{2}+\cdots\right] \\
& \text { and } q-\approx q^{2} / 2 \nu\left[1-3 / 4 q^{2} / \nu^{2}+\cdots\right]=-x\left[1-x^{3 x^{2}} / q^{2}+\cdots\right] \\
& \text { where } x \equiv-q^{2} / 2 \nu .
\end{aligned}
$$

The limit $q^{2} \rightarrow \infty$, with x fixed defines the Bjorken limit ${ }^{1.5}$. In this lirnit $q^{2} \approx$ $2 \nu \rightarrow \infty$. By virtue of the properties of Fourier transforms this drives $x_{-} \sim$ $0\left(2 / q_{+}\right) \sim 0(1 / \nu)$ in the representation (26). Similarly the major contribution to the x_{+}integration comes from the region $x_{+} \sim 0\left(2 / q_{-}\right) \sim 0(2 / x)$. Clearly, then, the region that dominates the integrand in eq. (25) in the Bjorken limit is given by $x^{2} \approx-x_{\perp}^{2} \leq 0$, i.e. whenever x_{μ} is space-like or null. On the other hand, causality requires that the commutator in (25) vanishes outside of the (forward) light-cone. i.e. the integrand can only te non zero when x_{μ} is time-like cr null ($x^{2} \geq 0$). Thus, in the Bjorken limit, all of the contribution to the integral can only come from x_{μ} null, i.e. from the light-cone itself $x^{2} \approx 0$. We therefore need to know the behaviour of products of currents near $x^{2} \approx 0$. To get an idea of what this involves it is useful to consider a tov model:

The toy model consists of treating the fundamental fields $\phi(x)$ (the quarks) as scalars and defining a fictitious scalar current $j(x)=\phi^{2}(x)$ which is a bilinear in $\phi(x)$ - just as the real current $j_{\mu}(x)$ is bilinear in the quark fields $q(x)$. We then manipulate the fields as if they were free. In that case the standard Wick expansion leads to

$$
\begin{aligned}
T[j(x) j(0)] & =T\left|\phi^{2}(x) \phi^{2}(0)\right| \\
& =-2 \Delta_{F}^{2}\left(x, m^{2}\right)+4 i \Delta_{F}\left(x, m^{2}\right) \phi(x) \phi(0)+\phi^{2}(x) \phi^{2}(0\lfloor 27)
\end{aligned}
$$

where

$$
\begin{equation*}
\Delta_{F}\left(x, m^{2}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k x}}{k^{2} \cdots m^{2}+i t} \tag{28}
\end{equation*}
$$

is the Feynman propagator, m being the mass assocciated with $\phi(x)$. Diagramatically, the Compton amplitude, of which W is the imaginary part, is shown in fig. 5. The first term contains no operutor and gives rise to a disconnected graph which doess not contribute to the physical deep inelastic scattering. The other two terms give contributions which are precisely analogous to the result of the non-relativistic

Figure 5: Analog expansion to fig. 3 of F
analysis, and which break up into coherent and incoherent pieces as in tig. 3. In fact, the analogy can be taken even further when we recall that when $x^{2} \approx 0$

$$
\begin{equation*}
\Delta_{F}\left(x, m^{2}\right) \approx \frac{i}{4 \pi^{2}} \cdot \frac{1}{x^{2}-i \epsilon}+0\left(m^{2} x^{2}\right) \tag{29}
\end{equation*}
$$

so that the second term in (27) dominates the third when $x^{2} \approx 0$. Thus the leading behaviour for W is given by

$$
\begin{equation*}
W\left(q^{2}, \nu\right) \approx I m \int d^{4} x e^{i \cdot x} \Delta_{F}\left(x, m^{2}\right)\langle p| \phi(x) \phi(0)|F\rangle \tag{30}
\end{equation*}
$$

Suppose now that we introduce a momentum distribution function

$$
\begin{equation*}
|f(k)|^{2} \equiv \int d^{4} x e^{-i k x}\langle p| \phi(x) \phi(0)|p\rangle \tag{31}
\end{equation*}
$$

then eq. (30) can be re expressed as

$$
\begin{equation*}
W\left(q^{2}, \nu\right) \approx \int \frac{d^{4} k}{(2 \pi)^{4}}|f(k)|^{2} \delta\left|(k+q)^{2}-m^{2}\right| \theta\left(k_{0}+q_{0}\right) . \tag{32}
\end{equation*}
$$

Now, in the Bjorken limit $(k+q)^{2}-m^{2} \approx 2 \nu\left(k_{-}-x\right)$ which immediately leads to the scaling result

$$
\begin{align*}
\nu W\left(q^{2}, \nu\right) & \doteq F\left(x, y^{2}\right) \\
& \approx \int \frac{d^{4} k}{(2 \pi)^{4}}|f(k)|^{2} \delta\left(k_{-}-x\right) \tag{3.3}
\end{align*}
$$

This is clearly the analogue of the non relativistic many-body formula derived in eq. (17) and justifies identifying $|f(k)|^{2}$ of eq. (31) as a momentum dis;rilution function. It shows that νW scalesto a function of x which in the I ab frume me asures the k. ("the longitudinal light-cone momentum") distribution of constituents in the target. The situation in this toy mosiel is therefore just like the non relativistic case.

The situation in the real world is more comiplicated; fields cannot be treatect is if they were free. Ilowever, the generulization from the free to interacting case is is tumlly guite strnighfortvird. The crucial characteristic of the expansion (27) which
was based on treating ϕ as a free field is that it is in the form of c_{-}number singulir functions of x^{2} (such as Δ_{F}) multiplied by (composite) operators |e.g. $\phi(x) \phi(0)!$. Wilson suggested (and it was later proven valid) that this structure is maintained even in the fully-interacting theory; so, for the scalar case, one would write:

$$
\begin{equation*}
T[j(x) j(0)] \approx \sum_{m} C_{m}\left(x^{-}\right) O_{m}(x) \tag{34}
\end{equation*}
$$

where the $C_{m}\left(x^{2}\right)$ are functions like $\Delta_{F}\left(x^{2}\right)$ which are singular near the light cone and the $O_{m}(x)$ are the complete set of all possible composite operators occuring in the theory. Notice that the $O_{m}(x)$ are. like $\phi(x) \phi(0)$ of the toy model, not local operators (i.e. they depend on at least two different space time points, x_{μ} and () in this case). Near the light-cone, however, the operators $O_{m}(x)$ can be expanded in a Taylor series whose coefficients are local operators:

$$
O_{m}(x)=\sum_{n} x_{\mu_{1}} \cdots x_{\mu_{0}} O_{m n}^{\mu_{1} \cdots \mu_{n}}(0)
$$

Inserting this in (34) we obtain the operator product expansion:

$$
\begin{equation*}
T|j(x) j(0)|=\sum_{m, n} C_{m}\left(x^{2}\right) x_{\mu} \cdots r_{\mu} O_{m n}^{\mu, \cdots n}(0) \tag{.36}
\end{equation*}
$$

Irom the intuition giained in the toy model, where the operators $O_{m}(x)$ were interpreted as analogous to the wave function of the nom-relativistic theory the expansion (3.5) seems a little strange. For it is as if one were expanciang a spatial wive function around the origiu ($x \sim 0$) in a Ciylor series expansion. Ilowever, for the • jorken limit this is a natural thing to do since knowledge of the most singular behaviour of the ()$_{m}\left(x^{2}\right)$ is in principle sufficient (o) determine the large $q^{:}$ behaviour of W.

IFron ordinary dimensional analysis one can deduce from (36) that the most singular $\left({ }_{m}\left(x^{2}\right) \text { (xcur for operators }\right)_{m n}^{\mu}{ }^{\mu n}$ which are bilinsars in the fundamental fields (i.e. quarks and gluons). These ire the operators of lowest twist (. its dimension • its spin). Higher twist operators are multilinear in the guark and gluon tields and give rise $\mathbf{t o}$ less singular $\left(i_{m}\left(x^{2}\right)\right.$ and therefore to corrections to the leading large q^{2} behaviour.

Substituting this light cone operator proxhet expansion (36) into the detimution of the virmal Compton amplitude - of which the physical stricture finctions are the
imaginary parts • leads to an infinite sequence of sum rules:

$$
\begin{equation*}
\left.M\left(q^{2}, n\right) \equiv \int_{0}^{1} d x x^{n-2} F_{2}\left(x, q^{2}\right) \approx c\left(q^{2}, n\right)\langle p| O_{n} \mid p\right)(n \geq 2) \tag{37}
\end{equation*}
$$

Here, the $c\left(q^{2}, n\right)$ are related to Fourier transforms of the $C_{m}\left(x^{2}\right)$; they are independent of the target but probe (and therefore q^{2}) dependent. The operators U_{n} are basically the invariant scalar components of the $O_{m n}^{\mu, \cdots n}$; their matrix elements are, of course, target dependent, though independent or the probe (and therefore q^{2}). It is clear that the operat:r product expansion has allowed one to separate the infrared features of the problem (represented by the matrix elements) from the ultra-violet (represented by the $c\left(q^{2}, n\right)$).

By this ruse the determination of q^{2}-dependence is disentangled from the knotty problems of dealing with the structure of the target - which, of course, is a nonperurbative infrared problem. The leading q^{2} behaviour of the inoments is thereby tied to the behaviour of the $c\left(q^{2}, n\right)$ and therefore the the twist -2 quark and glaon bilinear operators. Now, QCD is asymptotically free, which means that as q^{2} in. creases, the effective coupling decreases $1 g^{2} \sim 1 / \ln \left(q^{2} / \mu^{2}\right)$) allowing an accurate perturbative estimate for the $c\left(q^{2}, n\right)$. Technically, this is accomplished by using the renormalization group which effectively sums graphs and leads to

$$
\begin{equation*}
c\left(q^{2}, n\right) \sim\left|\ln q^{2} / \mu^{2}\right|^{-7} \tag{3^}
\end{equation*}
$$

where the γ_{n} are related to the anomalous dimer.si.,n of the ($)_{n}$ and are all calculable This behaviour has been brilliantly contirmed by experiment ass own in fige, 6 and (bec:anse $\gamma_{n+1}>\gamma_{n}>0$) leads to a pattern of scale breaking illustrited in fig 7 .

The target dependent piece, $\left(p\left|O_{n}\right| p\right\rangle$, remaiins in general undetermined since it requires a solation of the bound state problem. Thus the light cone only determines the q^{2} evolution of the structure functions - their shape and nomalization are infrared properties. Remakably, however, the nornulization can in fact be, in some sense, determined. The reason for this is thit the lowest moment ($n=2$) corre. sponds in eq. (40) to the 2 -tensor ($)^{\mu_{1} \mu_{1}}$ which must contain the energy momentum tensor. This is not only a conserved (pantity (so that its imomalous dimension $\gamma_{2}=$ ()) but, furthermore, its matrix element:, it rest are known, being given by the unss of the target. Thus the complete right-hand-side is known. One tinds

$$
M\left(y^{2}, 2\right) \quad \int_{0}^{1} F_{i}\left(x, q^{2}\right) d x
$$

Figure 6: Structure function moments vs. q^{2} showing agreernent with predictions from the light-cone expansion and asyn.ptotic freedom

Figure 7: Pattern of scale-vioiations in QCD

$$
\begin{equation*}
=\left(\frac{\tilde{V}}{N_{f}} Q_{f}^{2}\right)\left(\frac{N_{q}}{N_{q}+N_{q}}\right) \tag{39}
\end{equation*}
$$

where f means flavour. This sum rule can be thought of as measuring the fraction of momentum carried by the quarks. For $S U(3)$ this reduces to

$$
\begin{equation*}
\int_{0}^{1} F_{2}\left(q^{2}, x\right) d x \approx \frac{5 N}{6(3 N+8)} \tag{40}
\end{equation*}
$$

where N is the number of quark generations. Thus, foı $N=4$, this gives $5 / 42$ whereas for $N=3,5 / 34$. The data are shown in fig. 8. These indicate that $M\left(q^{2}, 2\right)$ is approachirg a constant which appears to be consistent with 3 generations. Note, incidentally, that the operator $O^{\mu} \mu_{2}$ contains another operator beyond the energymomentum tensor and that this is not conserved and so has a non-vanishing value for its $\boldsymbol{\gamma}_{2}$. This means that there are corrections to the sum rule, eq. (40), which are of the form $a\left(\ln q^{2}\right)^{-n}$. Remarkably, a can be shown to be positive so that the approach to scaling must be from above which is in agreement with the data. Further corrections are given by the higher twist operators containing more than just two quark and gluon fields. These are down by $O\left(1 / q^{2}\right)$ and so are presumably not of importance for high values of q^{2}.

An Aside Application to the EMC Effect
A remarkable property of the sum rule, eq.(40) beyond the fact that its righthand side is independent of q^{2} (i.e. of the probe) is that it is also independent of the target! Thus, if one introduces the difference

$$
\begin{equation*}
\Delta\left(q^{2}, x\right) \equiv \frac{F_{A}\left(q^{2}, x\right)}{A}-F_{N}\left(q^{2}, x\right) \tag{41}
\end{equation*}
$$

[A denoting a nucleus and N the nucleon], then

$$
\begin{equation*}
\Delta M\left(q^{2}, 2\right) \equiv \int_{0}^{A} \Delta\left(q^{2}, x\right) d x \approx \frac{\left(C_{A}-C_{N}\right)}{\left(\ln q^{2}\right)^{n}} \tag{42}
\end{equation*}
$$

In fact all moments of Δ vanish asymptotically so ultimately Δ itself must vanish, with increasing q^{2}, albeit very slowly. Thus at very large q^{2}, the EMC effect must eventually disappear. Notice also, incidentally, that $\left|\Delta M\left(q^{2}, 2\right)\right|$ must decrease monotically with \boldsymbol{q}^{2} which is, in fact, violated when the origital EMC data is

Figure 8: $M\left(q^{2}, 2\right)$ vs. q^{2} showing asymptote to a constant from above.
compared to the later SLAC data! ${ }^{[7]}$ Since that ime ${ }^{[8]}$ the FMC points near $x \approx 0$ which were the largest deviations of Δ from zero $x \approx O$ have been amended so that the data is now consistent with this requirement on $\left|\Delta M\left(q^{2}, 2\right)\right|$.
Correlations, Higher Twist and Shadowing
We have seen that the operator product expansion on the light cone leads to sum rules with the structure:

$$
\begin{align*}
M\left(q^{2}, 2\right) & \equiv \int_{0}^{1} F_{2}\left(q^{2}, x\right) d x \\
& \approx \frac{<Q^{2}>}{\left(1+16 / 3 N_{f}\right)}+\frac{C}{\left(\ln q^{2}\right)^{2}}+O\left(\frac{1}{q^{2}}\right)+\cdots \cdots \tag{43}
\end{align*}
$$

The first two terms represent the lowest twist contribution arising from quark and gluon bilinears. These can be represented by graphs of the kind shown generically in fig, 5. These incorporate the naive parton model, modulated with leading logarithrnic gluon radiati: $=$ corrections which give rise to the second term in eq. (43). The leading corrections to these asymptotic estimates come from higher twist terms: the four-quark operator, as illustrated in fig. 5, gives rise to $O\left(1 / q^{2}\right)$ corrections. Notice that these leading graphs are identicai in structure to those that arose in the $1 / q^{2}$ expansion for the structure function in non-relativistic many-body theory.

Let us take this connection with the many-body result seriously - after all, the basic physics is clearly the same. In that case, as one comes down to modest values of q^{2} (below a few GeV^{2}) correlations in the system begin to dominate. Let us therefore write

$$
\begin{equation*}
M\left(q^{2}, 2\right)=M_{\mathrm{RAO}}\left(q^{2}, 2\right)\left[1-f\left(y^{2}\right)\right] \tag{44}
\end{equation*}
$$

where $M_{\text {RAD }}\left(q^{2}, 2\right)$ just includes the "soft gluon" radiative corrections that we typically calculated from as.mptotic freedom, i.e. the first two terms in eq. (43). This is, of course, a slowly raiging fut ion of q^{2}. Writing eq.(44) in this form simply factors out the QCD radiative corrections in much the same way one removes radiative corrections in QED. What remains, i.e. $f\left(q^{2}\right)$, contains "dynamics". Now, suppose we mimic the non-relativistic sum rule, eq. (i8). Ind identify f with correlations in the target (i.e. loosely with $\left\langle e^{i q \cdot\left(I_{1}-I_{2}\right)}\right\rangle$), then below the "correlation length" (a few GeV), it becomes very rapidly varying. Of course for large q^{2}, it rapidly vanishes. A crude approximation for f is simply the square of the elastic form factor of the target, $G_{0 l}^{2}\left(q^{2}\right)$:

$$
\begin{equation*}
\text { i.e. } f\left(q^{2}\right) \approx G_{d l}^{2}\left(q^{2}\right) \tag{45}
\end{equation*}
$$

Figure 9: Approach to scaling for the sum rule
This can te "justified" by noting that diagramatically (fig. 5) f is the overlap of two triaingles, each one approximately the elastic form factor. Thus, a crude approximation would have

$$
\begin{equation*}
M\left(q^{2}, 2\right) \approx M_{\mathrm{RAD}}\left(q^{2}, 2\right)\left[1-G_{e l}^{2}\left(q^{2}\right)\right] \tag{46}
\end{equation*}
$$

For the nucleon $G_{d i}\left(q^{2}\right)$ is a remarkably smooth function, well approximated by a dipole form:

$$
\begin{equation*}
G_{a l}\left(q^{2}\right) \approx \frac{1}{\left(1-q^{2} / M_{0}^{2}\right)^{2}} \tag{47}
\end{equation*}
$$

where $M_{0} \sim 0.7 \mathrm{GeV}$. Thus the approach to the asymptotic regime governed by the light cone should, for the nucleon, be smooth - as indeed it is, as can readily be seen in fig. 9. Indeed this approach is iemarkably well fit by eq. (46) On the other hand for systems such as nuclei and liquids which have sparial "edges" $G_{\text {al }}\left(q^{2}\right)$ is oscillatory, reflecting diffraction. In that case the approach to asymptopia should be oscillatory. For liquids this is indeed the case. Relevant data on nuclei are not yet available.

We can take this argument one step further, if we are willing to be bold: we can suppose that $f\left(q^{2}\right)$ dominates the approach to syaling not just for the sum rule but for the structure function itself: this suggests writing:

$$
\begin{equation*}
F_{2}\left(q^{2}, x\right) \approx F_{2}^{\mathrm{RAD}}\left(q^{2}, x\right)!1-f\left(q^{2}\right) \mid \tag{48}
\end{equation*}
$$

where again $F_{2}^{\text {RAD }}\left(q^{2}, x\right)$ contains only the "soft-gluon radiative corrections". In that case, it follows that

$$
\begin{equation*}
\tilde{F}_{2}(x) \equiv \frac{F_{2}\left(q^{2}, x\right)}{1-G_{e l}^{2}\left(q^{2}\right)} \tag{49}
\end{equation*}
$$

should (up to logarithms) scale down to very small values of q^{2} (i.e. well below a few GeV^{2} and possibly even down to $\left.q^{2}=0!!\right)$. A fit with this formula was performed many years ago on early data and is reproduced in fig. 10. It does indeed show a remarkably good agreement.

Suppose we go even further and toy to continue this formula down to $q^{2}=0$ (with ν fixed). On the left- hand-sid,$x \rightarrow 0$ when $q^{2} \rightarrow 0$. On the right-hand-side we have

$$
\begin{equation*}
F_{2}\left(x, q^{2}\right) \rightarrow \frac{q^{2} \sigma_{r}(\nu)}{4 \pi^{2} \alpha} \tag{50}
\end{equation*}
$$

where $\sigma_{r}(\nu)$ is the total photo-absorption cross-section. If we therefore set $q^{2}=0$ and $\nu=\infty$ in eq. (49) we obtain

$$
\begin{align*}
\tilde{F}_{2}(0) & \approx \frac{m_{0}^{2} \sigma_{\gamma}(\infty)}{8 \pi^{2} \alpha} \\
& \approx 0.38 \tag{51}
\end{align*}
$$

which is in remarkably good agreement with experiment!

[igure 1): $F_{2}\left(x, q^{2}\right)$ vs. q^{2} for fixed $x\left(=1 / w^{1}\right)$ showing smoothness (as reflected in fig. 6). The solid lines are $\left|1-G_{01}^{2}\left(q^{2}\right)\right|$.

References

[1] See, for example. H. D. Politzer, Phys. Rep. 14c. 130 (1974)
[2] See, for example, S. D. Ellis, "Lectures on Perturbative QCD. Jets and the Standard Model". The Santa Fe TASI-1987 (Ed. R. Slansky and G. West). World Scientific (Singapore, 1988). Vol. I., page 174
[3] Many of these questions were discussed at this workshop and the reader is referred to other papers in these proceedings
[4] For a review, see, for example. G. B. West "The EMC Effect: Asymptotic Freedom with Nuclear Targets". Intersections Between Particle and Nuclear Physics (Ed. R. E. Mischke) American Institute of Physics (N. Y. 1984) p. 360
[5] G. B. West, Phys. Rep. 18c, 264 (1975)
[6] For a good pedagogical introduction see, T. P. Cheng and L. F. Li, "Gauge Theory of Elementary Particle Physics" (Oxford University Press, N. Y. 1984)
[7] G. B. West, Phys. Rev. Letts. 54, 2576 (1985)
[8] R. Arnold, this workshop.

