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A NEW SIMULATION METHOD FOR THE EFFICIENT CALCULATION OF BENCHMARFKS
FOR DETONATION PRODUCTS EQUATIONS OF STATE

M. S. Shaw
Group T-14, MS B214
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

A new variation on the Monte Carlo method is presented here in the
context of its potential impact on the development of dectonation
products equations of state (EOS). The configurational density of
states and other quantities are determined for a nonstandard reference
simulation. Then the EOS for a linear combinations of potentials is
evaluated through a density of states transformation at arbitrary
densities and temperatures in the fluld range. The computer time
required for the EOS calculation (including free energles) 1is negligible
once the reference simulation is made. The EOS over the entire fluid
regime for a Lennard-Jones fluid (including the location of the
gas/liquid equilibrium phase line) is calculated. Preliminary results
on the extension of the method to the exponential-six potential are
presented. The efficient calculation of benchmarks over the very large

parameter space of relevance to detonation products EOS may now be
possible.




INTRODUCTION

In the last two decades, a great deal of
progress has been made in the area of theoretical
equations of state for fluilds. Of particular
intervsc to the explosives community has been the
work of the last decade in applylng these methods
to the construction of physically meaningful
detonation products equations of state. The goal
for thermodynamic theory is to be able to take a
glven set of interaction potentials for an
arbitrary mixture of product molecules and
calculate accurately and quickly the equilibrium
EOS under the extreme conditlons of pressure and
temperature characteristic of detonation products.
Then the potentials could be determined from
quantum mechanics or normalization to data
(typically the quantum calculations are
qualitative and are useful for the determination
of functional forms to be used in fitting data).
Until the thermodynamic theory is tied down, there
will be too many free parameters to assure a
predictive EOS in which all of the constants are
physically meaningful.

Although much progress has been made, we are
not yet at this goal for thermodynamic theory.
Fas: quantitative methods' are available for the
EOS of single speciec with spherically symmetric
interaction potentials. Methods exist for
spherical mixtures?, but thelr accuracv has only
been tested against a limited set of simulations
in the regions of interest. An accurate method®
for treating single specles nonpolar, nonspherical
Interactions (e.g. N2 and COZ) as an effective
spherical interaction has been developed. The
mixture problem for molecules with shape and the
problem of the large dipole moment irn H O are
largrly unsolved. Of course, there are benchmark
type methods such as mnlecular dynamics (MD) and
Monte Carlo (MC) which provide accurase
thermodvnamics at the cost of around 10 minutes of
CRAY time per FOS point. The parameter space is
too large to use these methods directly for a
practical explosives EOS. They are used (o test
the accuracy of much faster approximate methods
thiat are then used to model explosives,

This paper gives results for a new'

varfation on the Monte Carlo wethod that retatus
the accuracy of the standard MC wmethods, but
dramatically fncreases the speced with which the
pavameter space can be mapped out.  Starting {rom
a uot standard reference simulation which samples
essentially all of the phase space relevaut to
{lulds, a remapplug Is made to determine th- kKOS

for differeut values of density and temperature
throughout the flufd regime.  Stoce the reference



simulation is only calculated once and the
remapping Is very fast, the cost per EOS point is
small,

In the remalnder of the paper, we will begin
wirh a discussion of the evaluation of the
configurational density of states for a reference
potential using a nonstandard Monte Carlo method.
Then the transformation of the reference density
of states Into that for a linear combination of
the reference potential and other potentials 1s
presented. Next Is given the method for
evaluation of thermodynamic guantities from the
transformed density of states. Results for the
Lennard-Jones potential are then illustrated.

This is followed by a preliminary version of the
treatment of the exponential-six potential fluid.
Finally, the implications for the development of a
predictive, accurata EOS for detonation products
1s discussed.

DENSITY OF STATES FROM MONTE CARILD

The usual NVT ensemble Monte Carlo (MC)
method uses importance sampling to evaluate
integrals of the form

< ) ff(rl""'rn)exp(-ﬁu(rl,.-.,rn))drl"'drn
£)- L)
Z(8)

where Z(B)=fexp(-AU(r,,...,xr ))dr,~~'dr_ 1is the
configuration integrai, U is the total potential
energy, and f=1/kT. The MC steps are taken with a
probability densiﬁg Pr(r‘,“',rn) which is
proportional to e P!, " The approximation to (f)
from the MC sample is glven by

N N N N N
-8U - - - . -
(£)= LF P (1) '/Fe P (1) 7'=Lf /T1-N'TE . (2)
1=1 t=1 1=1 =1 =1

where only ratios of integrals are evaluated since
the overall normalization is not defined by the
method. Here | designates the coordinates
r, . r at the ith step of the simulation,

We can transform the complications of the
mauy-body futegration to that of finding the
conffpgurational density of states. lLaying the
foundntion for a whole class of methods, McDouald

and Singer®® cvaluated relative values for the
confipurational dieusity of states y(U) over a
limited raupe by reweipbting the rexults of a
standard MC simulation. That s, Fquation (1) ecan
be rewrftten as

Sy (W exp-pu)du
(1)- . (1)
2./
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where Z(ﬂ)-fv(U)exp(-ﬂU)dU, y(U) 1s the number of
configurations between U and U+dd, and f(U) is the
average of f over those configurations. Then y(U)
is proportional to e*” times the number of counts
in the range U to U+dU. With further reweighting,
thermodynamlc quantities can be evaluated for
different values of density, p, and temperature,
T, over a limited range. For example, Equation
(3) can be evaluated {or any value of B provided
vY(U) and f(U) are known over the range of
importance to the integrals. This idea was made
more efficlent by Torrie and Valleau‘’s umbrella
sampling’ in which a non-Boltzmann distribution is
i.sed to cover a wider range in a single sample. A
number of applications of these and related
methods have been made.

Ir this paper, we develop a variation on the
types of methods n.ntioned above with the
advantage of spanning a very large range in U in a
stralghtforward manner. In addition, a reasonable
number of particles can be used in the simulation
(in this example N=122) in contrast to many of the
other methods which are typically implemented with
N=32. The evaluation of thermodynamic quantities
from the simulation Is different from the above
methods although there 1is some overlap. In
addition to the usual steps in configuration
space, a step in 1lnf 1s made after a given number
of steps In U. This combined algorithm samples
with probability density P(ﬂ,rl,“',rN)-
exp(-ﬂU(rl.“',rN))/Z(ﬁ) in the limit of slow
motion in B relative to motion in U. A uniform
distribution over 1nf could be made with random
steps. For numerical convenlence, however, we
have chosen to make constant size steps In 1nj
moviny, alternately up and then down a given range
of 1ug.

Consider each value of B to designate a
separate NVT ensemble simulation. Provided the
initial condition of the A simulation is from a
configuration that is typlical of a simulatiou at
that value of A, then the usual equilibration part
of the 1.an can be eliminated. (Note that there is
no preference inherent in the simulation for any
piven confipguration with energy U over any other
with the same U. So, a change in f# only changes
the overall probibility of sampling a stute with
enerpy U and not the relative prohabilities of
particular conflgurations witl: the same U.) Clven

1) a small cuough step In 8 to yleld a small
change fn the distribution of U's sampled and 2) a
long, encuplht sub-sfmulat fou at each B to ellwluate
ay sipulfieanr correlatton in U between the
fnttial and fiual state nf the sub-simulation,
ther the neglect of the equilibration stape Is
valid., 1w andditfon, a repeated cntry of the g

sub -simlation at several stages tu the full
stmlatfon Is qualitatively the name as taking



uncorrelated sub-simulations from a very long NVT
MC run.

Given this reference simulation, how can we
evaluate y(U)? Now y(U) 1s a very rapidly rising
function and exp(-fU) is a very rapldly decreasing
function such that the product is sharply peaked.
This peak occurs where 3[1lny(U)-pgU]/3U=0. Because
of the very sharp peak, we also know that it
occurs at U=(U). This gives a simple relation
from which to determine y(U),

31nvy(U) |
fo — . (&)
au U=(U),
wkere the 8 subscript is a reminder that (U) is a
function of 8. Then by integration,

1ny (U)=-fB(U)dU. (5)
u

From the reference simulation, we obtain
approximate values for U(f) for as many values of
B as were sampled. The scatter In this data can
be reduced by fitting to a reasonable functional
form. Since the reference simulation used
throughout this paper is for the r '? potential, we
will restrict the discussion to that particular
case. In reference 4, we fit Inf vs. InU which is
fine for a relatively large but finite range in U.
For this study, however, we have extended the
range of the simulation from the virial region to
the melt line. By choosing a functional form
consistent with the virial EOS, the range 1is
further extended from the ideal gas regime to the
melt line.

The soft sphere fluid has scaling properties
that allow the "excess" or non-ideal properties to
be expressed in terms of a single scaled variable,
x-ﬂ“p. (The reference simulation of the soft
sphere fluid was made with parameters p=e¢w=o=1.)

In the viria: region (i.e. ideal gas plus second
virial coefficlent terms only), the
compressabilit; factor Z=-PV/NKT 1s given by Z=1+Bx
where B=r23/%r¢( /,)/3=3.62958864 1is the reduced
second virlal coefficient. Similarly, the excuss
energy is given by U/N=kBx?. Since we have
chosen p- , this exPreﬁsion can be inverted tc
give x-p%~(4U/NB) Y The simulation results arc
then fit to the form.

n
x=p%= ) a U’ (6)

=1
The fit aud the simulation data are compared in
Fipure 1. Note that Equatfon (5) can now be
integrated analytically for the functfonnl form,
fquation (6).

Perfodifc boundary condftions were used with
a potential cutoff radius r_ chosien at half the
box size. Corrections were made with the wininl

approxfmation that g(r)=1 outside r_and



integrating the appropriate expressions to get the
long range contribution to the quantities of
interest. The intial configuration was determined
by choosing each coordinate from a uniform random
distribution within the box and then ignoring
steps in an equilibration period.

As a check on whether §8 is small enough and
the number of steps in U betwe~n steps in B, is
large enough., two sub-averages of U are made for
each value of . One average is made fronm
segments of the simulation where f§ 1s increasing
and the other for f decreasing. The lack of a
systematic difference between the two types of
averages indicates that the simulation is
satisfactory.

DENSITY OF STATES TRANSFORMATION

The real advantage of the method comes from
the transformation of the reference density of
states to that for an arbitrary linear combination
of potentials. Then the EOS over a large
parameter space may be sampled from one reference
simulation., as cemonstrated below.

Consider the following functional form for W
the total potential enecrgy per particle,

W=ya W , (7)
where
1 NN
W= — ) e, (). (8)
2N kml

¢, is the ith pair potential for particles k and 1
separated by distance r .

For a fixed reference energy U, the
probability distribution of configurations with
potential energy W, denoted P(W,U), can be sampled
from the reference simulation. Then the
confligurational density of states fcr the
potential W is given by

r'(W)=[y(U)P(W.U)dU. (9)

The cvaluation of P(W,U) Is greatly simplified
because its functional form in the variable W {s
that of a normal distribution to a very good
approximarion. (This i{s essentially a consequence
of the central limit vheorem.) Then "W, U) {5
determined by the evaluatlon of mowmecuts

<w>u':“|<w|>u' (10)

aud



a(u)2.<u2>u.(<w>u)2-z 2‘3@(“”1”J>u‘<"1>u<"fu)- (11)

where < > denotes the average over all
configurations with the reference energy between U
and U+dU. For a glven value of U, the normal
distribution form is

P(W,U)= exp(-4((W-<W>)%/0(U)?))/0(U)J2n. (12)

Note that the linear coefficients a, enter in a
trivial fashion and Equation (12) can be evaluated
for an arbitrary set of a 's once the set of
<W,>'s and <W W >'s are sampled from the reference
simulation as a function of U. 1In practice, the
moments are sampled over bins in U and fit to
algebralc functions of U over the region of U
sampled by the reference simulation. Then <W>,
and a(U)2 are evaluated using Equations (10) and
(11) for the given set of a 's. For a given value
of W, we can evaluate S(W)~["(W)/T'(W) (1.e.
Equation (4)) from the integral

[ (W)= ((<W>,-W) /o*(U)) 7 (U)P(W,U) dU (13)

and cquation (9).

In order to get the pressure, we also need
the average over configurations in the range U to
U+dU of that part of the virial due to
interparticle forces. For therical potentials,
tite relevant functions are - /srwt'(r) rather than
w‘(r) in Equation (8). For the speclal case of
inverse power law potentials, these two quantities
only differ by a constant multiplier. It is a
straightforward generalization of the derfvation
above to obtalr  an expression for pressure
involving the ratio of one dimensional integrals.
The Gibbs free energy can also be obtained since
the excess entropy is equal to the logarithm of
the configurational density of states.

A further simplification can be made,
however. Again using the sharpness of the
distributions, the integral in Equation {8) can be
approximated as
In T(= 1n [7(UPW,U) ]y + O, (14)
The other thormodynamic averages then become the
values of quantities evaluated at the peak of the
sharp distribution. For example, we now have

B(W)=T" (W) /T'(W)=(<W>-W) /o®(U)  (U@peak). (19)

The detalls are beyond the scope of the present
discussion and will be prescuted in a subsequent
pnpera. The fmportant point is that the
thermodynamic quantities are evaluated from
alpebralc expressions.



LENNARD-JONES FLUID

We now turn to the calculation of
thermodynamics for a system of Interest in order
to test the precision of this method. Because of
its widespread use and avallsble simulation data
from other methods, we have chosen the Lennard-
Jones fluid as the test case with the soft sphere
fluld for the reference simulation.

The soft sphere palr potential is given by

u,(r)=be(r/o) 1, (16)
and the Lennard-Jones potential is
u (r)=be[(r/0) 13- (r/0) "] | (17)

where ¢ Is the well depth and o 1s the point where
the LJ potentlal crosses 0. The same parameters
are used In the soft sphere potentlal to simplify
the connection between the two even though a
single constant would be sufficient. The scaling
properties of the LJ potential make it convenient
to use reduced quantities with the following
relations: T'-kT/c, p'—pas, u'-u/c-U*/N, and
P'-Paa/c, where T Is the temperature, p is the
number density, u is the potential energy per
particle U/N, and P is the pressure. The
simulation was made with p=1 and we have chosen
e=1 for convenience. Then we have p*=¢, a -olt
a=-05, wl-br'u, and ¢.=41r %  With p* and U* as
tﬁe independent variabies, T*, P*, and G* are
calculated as outlined in the previous section.
In this example, the one dimensional integral
forms were evaluated using a 20 point Gauss-
Hermite quadrature.

In Figure 2 we show hecw well the simulation
fits the functional form Equation (12) for several
values of U,. The data are scaled such that the
data would é&en lie on a single curve if the
fuctional form were exact. We see that this form
does fic quite well. In Figures 3 and 4, the
analytic fits to scaled values of <W> and o? are
compared with those directly evaluated from the
reference simulation. The results for P* are
compared with MC®'!® and molecular dynamics™ "
(MD) simulation values in Figure 5. Similar
comparisons for a different range of p* and T* are
shown in Figure 6. Note that differences are
smaller than the inherent scatter in the usual
MD/MC methods. The gas/liquid phase equilibrium
line calculation is compared with standard

simulation'®!? and perturbation metliods!* in Fipurc
7.



EXPONENTIAL-SIX FLUID

The most commonly used pair potential for
detonation products EOS is the exponentlal-six
form given by

o(r)=c[6exp(a(l-r/r*))-a(r/r*)®)/(a-6). (18)

Preliminary results are presented here for a fit
(to an accuracy of better than 1%) of the exp-6 as
a linear combination of inverse power law
potentials given by ¢1-Arq'over & range of 1=6 to
15. The a,'s are chosen for a given value of a
with c-r*-i. The scaling properties in the
Lennard-Jones section are the same here with the
additional relation ¢%-2r*®. Then the a 's are
scaled to glve results for different values of p*.
The algebralc forms for evaluation of
thermodynamic quantities are used. The reference
simulation needs to be run longer to improve the
statistiecs. but the preliminary results are
accurate to about 2% in comparison with standard
MC simulations'® for a=13.5. The analytic
representation for the moments are compared with
the direct evaluation from the simulation in
Figures 8, 9, and 10 for a typical case. Results
for 5 values of a, 30 values of p*, and 3 values
of T* are shown Iin Figures 11 and 12. Since the
final expressions are algebralc, as many EOS
points as are desired may be generated with a
negligible amount of computer time once the single
long reference simulation is made.

IMPLICATIONS

We have demonstrated a very efficlient method
to generate EOS simulation benchmarks for the
Lennard-Jones and exponential-six potentials.
Indeed the final analytic representations could
compete with perturbation theories for speed end
accuracy. The extension of the methnrd to
mixtures, polar fluids, nonspherical interactions,
and combinations of thess appears to he
straightforward. For example, mixtures could be
studied by choosing the W 's to include the
interactions within and between subgroups of
particles rather than all of the particles in a
simulation. Then the cross potential could be
varled as easily as the deusity. The phase
sepgregation line could then he explored as a
function of cross potential paramecters using the
free erergy results for pure specles and mixturcs.
These types of studies would be extremely
expensive in both computer time and man-time for
any systematic study with staudard wmcthods. With
the new method, these studies become tractable aurd
the remainfng parameter space for detonation



products EOS can be explored. The net goal is to
f11l in the gap of missing benchmarks for the
development ot thermodynamic theories that will
lead to a detonation products EOS that is
accurate, predictive, and physically meaningful.

10



FISURE CAPTIONS

FIGURE 1. COMPARISON OF SIMULATION DATA (+) AND
EQUATION (6) (LINE).

FIGURE 2. COMPARISON OF THE NOPMAL DISTRIBUTION
(LINE) AND SAMPLES CF THE ACTUAL DISTRIBUTION FROM
THE SIMULATION (SYMBOLS).

FIGURE 3. COMPARISON OF THE FIT TO <W> (LINE) AND
VALUES FROM THE SIMULATION (+). VALUES ARZ
SCALED.

FIGURE 4. COMPARISON OF THE FIT TO o2 (LINE) AND
VALUES FROM THE SIMULATION (+). VALUES ARE
SCALED.

FIGURE 5. P* VERSUS T* FOR A RANGE OF REDUCED
DENSITIES FROM 0.6 TO 1.2. Mr/MD SIMULATIONS

(SYMBOLS), THIS WORK (LINE), . :D LOCATION GCF THE
MELT LINE (DASH).

FIGURE 6. PV/NKT VERSUS T* FOR A RANGE OF F"-DUCED
DENSITIES FROM 0.1 TO C.9. MC/MD SIMULATIONS
(SYMBOLS) AND THIS WORK (LINE).

FIGURE 7. GAS/LIQUID EQUILIBRIUM PHASE LINE FOR
THE LENNARD-JONES FLUID. THIS WORK (LINE),
STANDARD MC SIMULATION (BOX, +), AND PERTURBATION
THEORY FOR THE CRITICAL POINT (LARGE +).

FIGURE 8. <Ww> VERSUS U''? FOR A TYPICAL EXP-6
CASE. ANALYTIC FIT (LINE) AND VALUES FROM THE
SIMULATION (DASH).

FIGURE 9. SAME AS FIGURE 8.

FIGURE 10. o2 VERSUS U’/ FOR A TYPICAL EXP-6

CASF. ANALYTIC FIT (LINE) AND VALUES FROM THE
SIMULATION (DASH).

FIGURE 11. PV/NKT VERSUS y* FOR a=12, 12.5, '3,
13.5, AND 14, T#*=5, 20, AND 100, AND y*=0.1 TO
3.0. THIS WORK a=13.5 (LINE) AND OTHER a'S
(DASH), STANDARD MC STMULATIONS FOR a=13.5 (BOX).

FIGURE 12. SAME AS FIGURE 12 EXCEPT AU VERSUS .



REFERENCES

10,

11.

Ross, M.,"A High-Density Fluid-Perturbation
Theory Based on an Inverse 12th-power Hard-

Sphere Peference System,"” J__Chem, Phys, Vol.
71, No. 4, 1979, p. 1567.

Ree, F'. H.,"Simple Mixing Rule for Mixtures

with Exp-6 Interactions,"” J, Chem, Phys, Vol.
78, No. 1, 1983, p. 409.

Shaw, M. S., Johnson, J. D., and Ramshaw, J.
D.,"An Approximate Variational Method for
Improved Thermodynamics of Molecular Fluids,*
J, Chem, Phys, Vol. 84, No. 6, 1986, p. 3479,

Shaw, M. S.,"A Density of States
Transformation Monte Carlo Method:
Thermodynamics of the Lennard-Jones Fluid,”,
J., Chem, Phys. Vol. 89, No. 4, 1988, p. 2312.

McDonald, i. R., and Singer, K.,"Calculation
of Thermodynamic Properties of Liquid Argon
from Lennard-Jones Parameters by a Monte Carlo

Method,” Dis¢c, Faraday Soc,, Vol. 43, 1967, r.
40

McDonald. I. R., and Singer, K.,"Examination
of the Adequacy of the 12-6 Potential for
Liquid Argon by Means of Monte Carlo

Calculations,” J, Chem, Phys,, Vo:. 50, No. 6,
1969, p. 2308.

Torrie, G. M., and Valleau, J. P.,"Monte Carlo
Free Energy Estimates Using Non-Boltzmann
Sampling: Application to the Sub-Critical
Lennard-Jones Fluid," Chem. Phys, lett,, Vol.
28, No. 4, 1974, p. 578; "Nonphysical Sampling,
Distributions in Monte Carlo Free-Energy
EFstimatlon: Umbrellr Sampling," J, Comp,
Phys, Vol. 23, No. Zz, i977, p. 187; "Monte
Carlo Study of a Phase-separating Liquid
Mixture by Umbtrella Samplirg," J, Chem,_ Phys,,
Vol. 66, YNo. 4, 1977, p. 1402,

Shaw, M. S., in preparation,

McDonald, I. R., and Singer, K.."An Equatlon

of State for Simple Linuids,” Mol, Phys,. Vol.
23, No. 1, 1972, p. 29,

Hausen, J. ., aud Verlet, {,.,"lI'hase
Transitions of the Lennard-Joues System,”
Phys. Rev,, Vol, 184, No. 1, 1969, p. 151,

Nicolas. J. J., Gubbing, K. F., Strectt, W,
B., and Tildesley, D. J.,"lEquation of State



12.

13.

14.

15.

for the Lennard-Jones Fluid," Mol, Phys,, Vol.
37, No. 5, 1979.p. 1429,

Verlet, L.,"Computer 'Experiments’ on
Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules,” Phys,
Rev,, Vol. 159, No.l, 1967, p. 98; Levesque,
D., and Verlet, L.,"Perturbation Theory and
Equation of State for Fluids," Phys, Rev, ,
Vol. 182, No. 1, 1969, p. 307.

Adams, D. J.,"Calculating the Low Temperature

Vapour Line by Monte Carlo,” Mol, Phys.,, Vol.
32, No. 3, 1976,p. 647.

Veriet, L., and Levesque, D.,”On the Theory

of Classical Flulds VI," Physjca, Vol. 36,
1967 ,p. 254.

Ross, M., and Alder, B. J.,"Shock Comprcssion
of Argon. II. Nonadditive Repulsive
Potential," J, Chem, knys, Vol. 46, No. 11,
1967, p. 4203; Filorese, G. (unpublished
work), quoted by Zerah, G., and Hansen, J.
P.,"Self-consistent Integral Equations for
Fluid Pair Distribution Functions: Another

Attempt,” J, Chem, Phvs, Vol. 84, No. 4,
1986, p. 2336,

.
(WS



. - —
0.8 -

| |

| i

0.4 - |

0-: t

",’— " N [ S | 1 Ju ]

0 =2 e

0.00 0.01 002 003 004 0.05 0.068 O.r 0.08 0.09 0.10

T

Ffj. i



> o1 v
X ¥ “
Q %
) !\A
Q oot A\
- e e
g c X
Q ' a
0001k a
[+]
0.0001 ! . L . 4
-3 2 -1 0 1 2
SCALED vy

F\"j - Q

/,LLLLL.___L_L_LLLULL__L_A_LLLUH__J_L_LLUJA__J.

g



Yo U,

190 - -

-
140 - . 4
!
i
170 A
160 } -
150 4
140 | 1
130 D DU _ - " .| 1 Lo o1
0.0 0.1 0.2 0.3 0.4 0.5N 0.6 0.7 0.8
Xl#

0.9



(VI

-1.5 F

N

0.0



o

-—

»d

TTTIITYTT T T

-
~
-~

-

1

e — b

—_—— ...

1

TI'



~2

1.75 -

1.50 -

) — n (=] N
~! ~ " ~p
- = s o

LN




——— -

ey e o ——e —

-

———

1.8
1.4

0.4 0.5 0.6 0.7 0.8

0.3



100 ’ \.\

\-
.\\
10 : N
. N\
. N
. 5
\
\
\
)

1 - - . e . . PO B s S G i
0.020,vi .06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.228 0.21 0.6
X

Fiq %



[ |

J0

10 ..

'l) .

40

[ S

A ——

e de———— .

-

0.00 0.05 0.0 0.15 020 025 030 0.5 040 0.15 0.50

X



10000 -
100,
100 .

0, \

0.1; N .
' .
.:\;‘
. ~—.
~~y
0.01% ! ~

0.001 .- . 1 . S R N

0.000.05 0.10 0.15 0.20 025 0.30 0.35 0.40 045 0.

X

F\\j' 10

)



~———— g -

ol
5
5

N
Q
-

7.5 -
15 -

20
12.5 -

IMUuad z




fu

&

A—L1<— 14

L —I,<4U,1Uu

2.5



