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THREE-DIMENSIONAL FREE LAGRANGIAN HYDRODYNAMICS—

Dr. Harold E. Trease

Computational Physics Group (X-7)

Los Alamos N9tional Laboratory

Los Alamos, New Mexico

INTRODUCTION :

The purpose of the following discussion is to describe the development of a

3-D free Lagrangian hydrodynamics algorithm. The 3-D algorithm is an outgrowth

of the 2-D free Lagrange model that is fully described in Ref. 1. Only the more

pertinent issues of the free Lagrange algorithm will be presented, the details of the

rest of the code development project are interesting but not appropriate in the

context of the free Langrange conference. Let it suffice to say that a complete

production code is being developed to support the free Lagrange algorithm to be

described. A graphic description that outlines this code development project is

presented in Figure 1.
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Figure 1. Block structure of the 3-1) code,
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. The main objective of this project is to devdop ● computer model that can be

uted to simulate fluid flow in three dimensions. The inspiration for using free
. bgrange ●s ● basis for ● hydrodynamics code was gained from the work of Crowley

(Rd. 2), Fritts and Boris (Ref. 3), and Kirkpatrick (Ref. 4). The 2-D code,

described in Ref. 1, was based on this previous work. This two dimensional model

showed several ●ttractive features about free hgrange. First, it showed that free

IAgrange can be used to handle fluid flow problems that exhibit strong shearing

forces which classically could only be handled by Eulerisn type algorithms.

Second, the accuracy of ● free Lagrange algorithm was shown to be sufficient,

with the irregular mesh, to produce credible solutions, Third, due to the arbitrary

connectivity of the free Lagrange logic, meshes can be variably zoned. This allows

the user to put the resolution where it is needed.

All three of these features of free Lagrange have been ●xploited to extend the

2-D model to include the third dimension. In doing so many aspects of large scale

code development have been investigated. Several modem software tools have been

used to make

associated with

dynamic (heap)

base manager.

the manipulation of the arbitrary connectivity matrix, that is

free Lagrange, easier, Just for reference these tools include; a

memory manager, a storage block manager and also a relational data

DESCRIPTION OF THE FREE LAGRANGE ALGORITHM:-—. — —.. .

The main features of the free Lagrange algorithm that identifies it from a

standard Lagrange algorithm is the connectivity matrix that both defines the nearest

neighbors for each point and the shape of the computational c~lls over which the

fluid equations are integrated, A construction technique, that

mesl,, m used to identify nearest neighbors and define the ❑esh

mesh that is constructed has several properties that make it an

❑aintaining the connectivity mntrix for the 3-D code, these are:

A) The set of resulting polyhedra map the space defined

creates a VORONOI

cells. The Vcm-moi

excellent choice for

by the mass points

and hounding surfaces uniquely, i. e, , none of the polyhedra overlap and

nearest neighbors are guaranteed to be reciprocal.

B ) Each polyhedron remains convex, This is accomplished by

area and the number of faces, i, e. , neighbor swapping,

C) The volume and surface area of each polyhedron changes

These and other aspects of the Voronoi mesh will be discussed more

later sections,

changing the

continuously,

thoroughly in

Onc of the more important goals of the 3-D code is to be able to couple

variouc hydrodynamic algorithms logether, This means that free Lagrangian hydro

will be used in regions where the flow field is most distorted, Then, in the (more)

well behaved regions we will use an adaDtivc rezonixw techniaue. with a mesh



composed of mass points that have fixed connectivity. These two algorithms will

then be coupled through a third algorithm called a ZOC. The free Lagrange and

the ZOC algorithms wiil now be described in detail. The detailed hydrodynamic

equations, that ●re solved by these algorithms, along with their finite difference

representations are discussed in detail in Appendix A.

The basic features that describe the free Lagrmge algorithm are listed below:

A) All ❑esh quantities are cell centered.

B) The computational domain is described by an arbitrary distribution of mass

points .

C) The code automatically constructs its connectivity matrix.

D) Mass points can be merged and/or added to the mesh.

The code determines its connectivity matrix by constructing a unique polyhedron

about each mass point. The resulting polyhedral mesh is known as a Voronoi mesh.

The faces of the polyhedron determine the set of “nearest” neighbors with which a

mass point interacts, The faces of the polyhedron are represented by intersecting

perpendicular, bisecting planes between a given mass point and each of its

neighbors. The details of this construction process are described more fully in

Appendix B, Figure 2 shows several examples of Vorcmoi cells. The set of

polyhedra that describe the mesh completely and uniquely spm the space over

which the mass points are distributed, Figure 3 shows a 2-dimensional projection of

a 3-dimensional mesh. where the arbitrary polyhedra reduce to arbitrary polygons.

Due to the fact that all physical quantities are carried at cell centered mass

points, each point can change the set of “nearest” neighbors that it associates with

by changing the shape of the polyhedron surrounding it while still retaining its

Lagrangian definition. The neighbor changing process is smooth and continuous

because of the integral nature of the algorithm. Two points become neighbors when

a face with “epsilon” surface area appears between them. These points will drop

each other as “nearest” neighbors when (and if) this face area shrinks below

“epsilon”.

There are several advantages and disadvantages associated with free Lagrange

hydro. l’hc advantages are obvious to anyone doing hydrodynamic calculations.

Due to the arbitrary connectivity of the mesh and the ability to change this

connectivity, highly distorted flows can be modeled by ugimg a Lagrangian

~lgorithm. Also , since the mesh maintains itself, nfl-manual reaoning is needed

( this is extremely important in a 3-dimensional code), Complex geometries that

requirr ~-~riable zoning can be setup relatively easily since the code figures out the

connccttvity mntrix from an arbitrary distribution of mass pointa, The main

disridvnnt~gc of this method is the overhesd aoaociated with maintaining ●nd

processing the connectivity llsts, but since the nei~hbor lists are unique, they are

very amenable to a calculation using a multitasking algorithm (i, e. , the neighbor

searches can be done in tiny order, but the resulting ~lobal connectivity matrix is

the same), Also. future machines that support hardware gnthar-scatter operations
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Figure 2. Examples of several Voronoi cells. The Voronoi cells are the polyhedral
shaped objects. The straight lines that end at a point represent the
connections between the cent ral mass point and its “~learest” neighbors,

will improve the efficiency of this algorithm.

One of the weakest aspects of the free Lagrange method just described is the

treatment of continuous interfaces. This results from the fact that the edges of the

computational volumes are arbitrarily defined to be midway between two “nearest”

neighbors. This definition , while consis&ent with the Lagrangian equations, leads

to a poor definition of a continuous interface. The realization of this fact

suggested that an interface tracking algorithm was needed to follow the motion of

interfaces. We will now describe the algorithm that is being used and how we

intend to develop it into a full blown interface tracking algorithm, along with some

of the positive side effects, in relation to distributed processing and slip-line

treatment.

A little reflection on two key properties of interfaces will help the reader’s

understanding of the alk’~rithm to be described. First, a continuous interface

separutes what could be considered immiscible fluids, i, e, , fluid “A” remains

distinct from

interface can

the problem.
Iinm. and {n

fluid “B” even though interpenetration may occur, Second, an

be described in a space ‘that is one dimension less thtm the rest of

In one dimension an interface is B point, in two dimensions it is a

thrma dim~n~inn~ it im II RllrfmfV rhrlar91i9inm thiu iAmn Wm c9n



Figure 3. 2-dimensional projection of a 3-dimensional Voronoi mesh.

represent an interface as a (N-1) construct in a N-dimensional space. Taking these

two concepts into consideration we came up with an interface tracking construct

called a ZOC. An example of a ZOC is shown in Figure 4, where several

observations can be made. First, we can see that the interface separating the two

fluids is distinct. Also, we notice that zoning away from the interface in the two

regions is discontinuous with respect to the other region and the interface.

Most of the technical details of maintaining a ZOC will not be discussed, but

some of the more general aspects of this interface tracking concept may be

interesting, These are listed below:

A ) A ZOC is essentially a special free Lagrange region that uses its

connectivity matrix to connect to the surrounding regions.

B ) Points can be added m subtracted from a ZOC to maintain the interface.
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Figure 4. Example of ZOC. The left—

c)

D)

E)

F)

surface. The right figure
figure
shows

shows the ZOC in
the cclrresponding

relation to the free
grid.

This process is made especially easy since a connectivity matrix is used to

connect points and thus ths mesh reconnection account for the fact that a

point has been added or subtracted, The process of adding new points is

trivial because the Voronoi mesh indicates when a new point should be

added and where the new point should be located. The rest of the details

of adding a point involves the redistribution of mass, momentum, and

energy L1 a local region of space,

A ZOC will work in two dimensions, to maint Iin a line interface, just as

well as in three dimensions.

The treatment of slip-lines should be automatic with a ZOC since there is

no restriction on the tangential velocity of the fluid on either side of the

in terf ace.

This interface will be used to connect regions that use different hydro

algorithms, This means a free Lagrange algorithm can be used on one side

of th,? interface and B fixed mesh algorithm on the other side,

A ZOC makes a naturril communication buffer for connecthg two separate

a~gorithms that are running as distributed procefises. This is where the

dimensionality of th~ ZOC bccomcs important because the dttta transfer

between processes must be Kept to II minimum, The separate region

prwesses ~re N-dimensional data structures and a Z?C iE a (N-1) IIata

structul:, which means the amount of information being communicated

between the regions is small compared to the regions themselves.



APPENi)IX A

THE HYDRODYNAMIC EQUATIONS AND THEIR

FINITE DIFFERENCE REPRESENTATION

The hydrodynamic equations that are solved on this

mass points are given below. These equations represent

momentum, and specific internal energy, respectively;

Continuity Equation;

Conservation of Momentum;

P+ =-Vp - [v”T] ,

Conservation of Internal Energy;

##= -p(ti”i) - (7: VU) ,

where,

where,

where,

P=

P=
c=

ii=

T=

=

i=

Q=

G=

div(u) =

vu =

!luid density ,

fluid pressure ,

internal energy/unit mass ,

fluid velocity vector ,

total stress tensor , and
.-
;+Q,

stress tensor and

artificial viscosity ten sor .

free Lagrange system of

the conservation of ❑ass,

divergence of ~.’elocity vector ~ ,

dyadic product of t~e differential operator ~ and
th- veli.l!itv vector u .

(Eq. 1)

(Eq. 2)

(Eq. 3)

(Eq. 4)



i= unit tensor , and

1 = constant * local grid spacing .

The algorithm used to solve these equations can be outlined as follows. First,

Equations 1 through 3 are integrated over an arbitrary volume (in reference to the

code we integrate over a computational cell). The volume integrals are traxsformea

to surface integrals by using the divergence theorem. The mean-value-theorem

from

then

used

calculus is used to obtain average quantities. These resulting equations are

cast into finite difference form as shown below. The following notation will be

in writing the finite difference representation of the fluid flow equations;

i=

j=

J=

n=

n+l=

R. =
l,j

A. =
l)j

v. ❑

ljj

M. =

P. 1. =
l)]

=

u.! =
1,1

ii. .=
1,1

mass point i, spatial position at (XI. YI ,21) ,
.th
1 nearest neighbor of mass point i, spatial position at (XJ, YJ, ZJ) ,

total number of nearest neighbors associated with mass point i ,

present time step (time = t) ,

next time Step (time = t + At) ,

distance frGm mass point i to nearest neighbor j ,

area of polygon face separating mass point i from nearest neighbor j ,

volume of the polyhedron associated with mass point i and nearest
neighbor j ,

mass of fluid associated with mass point i ,

fluid pressure at the face associated witil mass point i and nearest
neighbor j ,

fluid density in cell i ,

fluid velocity at the face associated with mass point i and nearest
neighbor j , and

normal vector to the face associated with mass point i and nearest
neighbor j .

J
‘+1 (!k)i s -p: ~ :i,j . ;:+: Ai jvi

j=l ) )

J
fli(#i = -z P ;. A.i,j -Z; ..”7’. A,

l,j l,j l,j l,j
j=l j=l l’J

J -n+ 1
‘i(~)i = ‘pi 2 ‘ijj “ ‘i j ‘i, j - 2:. .o[?*ii] A,+

,j=l ) l,J ijj
j=]

l)j

J .

+ u. ■X:, ,-?. ,A. .
ltj ,j=l l’J l’J l’J

(Eq. 5)

(Eq. 6)

(Eq. 7)



APPENDIX B

MESH CONNECTIVITY

(NEAREST NEIGHBOR CALCULATIONS)

The purpose of this Appendix is to describe the manner in which the

comectivity matrix for the free Lagrange algorithm is calculated. The connectivity

matrix contains the “nearest” neighbors for all the mass points. These connections

are used for calculating surface areas and volumes of the Voronoi cells that make

Up the computation mesh. In addition to describing the geometry of the cells the

connectivity matrix indicat~s which cells wiU interact hydrodynamically.

Each Voronoi cell is made of an arbitrary number of intersecting planes.

These planes construct a convex polyhedron with an arbitrary number of “faces”

about each mass puint. Each face forms a polygon with an arbitrary number of

“edges”. The trick is to come up with an algorithm that can calculate the

connectivity matrix from an arbitrary distribution of points. As we proceed

through this discussion the two following definitions should be kept in mind:
A) “face” neighbor: Any two points that are “nearest” neighbors are

separated, in 3 dimensions, by a polygon shaped “face”. A “face”

neighbor therefore refers to the “nearest” neighbor that is across a given

“face” from a given central point “I”. There is a one-to-one

correspondence between the number of “face” neighbors that are associated

with a point and the number of “faces” that make up the polyhedral cell

surrounding that point.

B) “edge” neighbor: Each of the “faces” of a Voronoi cell is a polygon.

Each vertex of a given po!ygon “face” is found to be the center of a

sphere that passes through four points. The four points are: the central

point “I”, its “face” neighbor “j”, and two other points that are called

“edge” neighbors (they are referred to as “h- 1“ and “k”). Also, since

each’ polyhedron is a closed figure each “edge” neighbor must also be a

“face” neighbor. It should be noted that there is a one-to-one

correspondent- between the number of “edges” on a given polygonal “face”

and the number of “edge” neighbor associated with that ‘tface”.

The main idea in discovering the “nearest” neighbors of a point is to identify the

list of “edge” neighbors for each “face” of the polyhedron surrounding that point,

As each set of “edge” neighbors is discovered they are put on a stack of “iace”

neighbors, then the next “face” neighbor to be looked at is pulled from this stack.

When the stack of “face” neighbors is empty the Voronoi polyhedron is complete and

the connectivity y for this given point has been found.

The prcx ess of constructing the connectivity ❑atrix for a given point is

described l? o completely in the following steps:

A) Asremble a list of “poss.ibie” neighbors. This process depends on whether

nr nnt th~ nnint. has hem calculated before.
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●) If the point hasn’t been calculated before.

1) Use any “logical” neighbor information

neighbors ●s possible.

2) Use a proximity rule to select a set

to

of

select as many potential

closest points based on

filters such as distance between and mateti type.

b) If the point has been calculated before.

1) Recall the old connectivity y matrix for a given point.

2) Form the list of possible “nearest” neighbors from the old

“nearestn neighbors plus the “nearest” neighbors of the old

“nearest” neighbors.

B) From this list of “possible” neighbors we identify the 1st “face” neighbor

by the procedure outlined below.

a) First all points are translated

the central mass point, point

where,

so the coordinate axes are centered at

“1”, by using the following equation,

(Eq. d)

Z&= coordinates of a possible neighbor “2” ,

X1 = coordinates of point “I” , and

nkin = number of points on the list of “possible” neighbors for
point “I” .

b ~ Select the first “face” neighbor by using the following equation,

akin
~1 - l~dc~ ~f [~~n ~=1 {l~gl)]

where,

lx I2 = the distance to point 2 and

= index of the 1‘t “nearest”
‘1

neighbor (this is the index into
the global mesh arrays) .

c) Select the first “edge” neighbor for the first “face” by using the following

equation.

nkin
El ~ = Index of [rein C=l W@)l ‘ ($)11 +D

+ W2COB((dii)l, it) +

+ W3 Iiill)l

(Eq. 9)



where,

‘1,1 *

‘kjj =

(zN)j =

Wi =

(zv)g =

‘1 ‘

the kth “edge”
.thneighbor of the J “face” neighbor ,

the coordinates of the “face” neighbor “Nj” ,

weigh ting parameters
W1>W2>W3 .

the coordinates of the ~th Voronoi point. This point is

found as the center of a circle which passes through three

points . These points are: the central point “I”, the “face”

neighbor “Nj” and the next possible neighbor “2” (Ng * Nj).

The equations, in matrix form, that determine the (X, Y, Z) -

coordinates of the 2
th Voronoi point are:

●

NOTE : This step describes the “nearest”

dimensions (2=0). Here we just use it to

algorithm described below.

KQj!2
Iitl*

o )
neighbor algorithm in 2

“start” the 3-dimensional

d) The process of selecting the rest of the “nearest” neighbors for point

“I” serves a dual purpose. First, we finish calculating the rest of the

“face” neighbors and we also discover the list of “edge” neighbors that

make up

important

point “I”

“nearest”

the polygonal “face” that separates Points “I” and “j”. An

point to notice is that the list of “nearest” neighbors fox’

are contained within the sets of “edge” neighbors, i.e. , the

neighbors are a subset of the “edge” neighbors. Therefore,

by sifting the “edge” neirhbors we obtain a list of unique points that

repl’csent the “face” neighbors for point “I”. The “edge” and “face”

neighbor list~ will bootstrap each other to completely describe the

polyhedral cell surrounding point “I”. The 3-D “nearest” neighbor

selection algorithm is described below.

) ) We already know the first “face” neighbor, N1, and the f~st

“edge” neighbor, El, 1, for face one for point “I”. These were
t-,n-d :- Qt.-. != h} mn~ f~ e-]
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2) Now we calculate the “edge” neighbors for “face” j.

nkixl

%,J = Index of [rnin ~=1 (Wl (q, ●

● II($)k.l -N~)jl “

“ [(~)t-i(ipjll+

+ W2 Cos ((aqj, it) +

+bj Iill)l (Eq. 11)

where,

‘k,j # ~ij ‘

‘k,j #Nl, j ‘

“= index of the current face ,1

k= 2 to K (until Ek+l j = El j} where K=number of “edge”
m 1

neighbors) ,

Wi = weighting parameters

W~>W2>W3>W4 ,

(~N)j = coordinates of nearest j ,

(iv)g
th

❑ coordinates of the 1 Voronoi point and ,

●

‘%

%-1

it
d

l(~)j12

2

I;k-l!

Ii,lz .

.“
.

3) From the list of “edge” neighbors, (Ek, k=l, K), we add the

unique indices to the list of “face” neighbors, Nj, j=l, J),

4) Increment j and continue with Step (d, 2). This continues until all

the “face” neigilbors have been calculated, i .e, , J > j. J is lhe

number of “face” neighbors that are as~ociated with point “I”.
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