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I. INTRODUCTION

Traditional Lagrangian hydrodynamic codes for time dependent, comproesuible,
multlmaterial problems in two dimensions use the same general method. A
wagrarglan mesh is defined, which moves with the fluid and this mesh defincs a
set of Lagrangian cells. The mass in each cell remains fixed and the motion of
the mesh delermines the volume and nence th: density of each celi. These melnods
work well until the mes':' becomes distortecd duc to shear or turburlence. Large
distortions cause computer cod2s to quickly grind to a halt.

The usudal solution to distortion is to "rezonc" Lhe mesh, Here we move Lhe
mesn points artificially so as to reduce digtortions and then map the quantities
from the old mesh to the new. This results in unwinted diff'usion of mass, momen-
tum and cncrgy throughout the mesn. Even with resoning, fuw Lagrangian codes ¢ain
handle morca than limited distortions. Recontly, what we eall “"Frece-Lawrangion™
codes have boeen daveloped wpeeifically to handle large distortionan, Theac sodor,
in addition Lo adjusting Lhe mesh points, can rcconnecet menh points, Lhus rreal-
ing new cells. While Free-lLagrangiun codes can handle virtualiy any distortion,
they nre aven more diffunive Lhan rezoners.

We aro trylng o difforenl approiach Lo the problem, We abandon the {dea of
Lagrangian cells entircely. in the next section we will discuss how the canacrva-
tion equations can Lu golved directly without regorting to Lagirengiaa cclly,
NexU we will glive gome oxamploes of calcalationy using Lthiys method. Finally, we

will glive dotinfls of the calculational method preascently teing uned,



I1. SOLVING THE CONSERVATION EQUATIONS

The equaticns we are trying to solve can be written

%t-p--pﬁ-ﬁ . [2.1]
%iﬁ-—zﬁp [2.01
%g--%%-ﬁ [2.3]
P« P(p,e) (2.u]

where ﬁ represents the vector velocity, p the density, e the sperific inl-=rnul
energy and P Lhe pressure of the fluid. Equation [2.1] exprecsscs conservalion of
mass, [2.2] conservation of momentum and [2.3) conservation of cnergy. The
Lagrangian timc derivative, l.c., the derivative following the fluid, is inci-
cated by %—

In a standard Lagrangian calculation only FEq. [2.2], the momcniluT cquation
iu solved dirceclly. The procedurc Is to integrate [?2.7] over some reglon of
space to arrive at the acesleration of ench mesh poinl. The mesh points pre then
movaed and the new cell volumes along wilh the iixed coll mass delermin: Lhe new
density, henerw, indirectly solving Ea. [C.1]).  The assoclated MdV work term up-
dittes the ccll cnergy and indirectly solves kEq. [2.3) and Lhe new preasure is
obtainced from the equation of state [2.4). '

We propoac the following: Instead of Lagrangian celis, we Lhink of a sct of
Loagrangian poinly winaich are emboddad in and move with the fluld, There 38 no
masy y8sceluted wilth these polnts. They are Just moving tracoer polnts al which
wi will atlompl Lo keap Lrack of Lhe veloceity, dansivy, encrgy. and prensure of
the fluld. In our later ocxample caleulations we will show point paanition:

virjous Limes in the oulceuintion, AL aoach o' these polntls, we know Lhe denaily,



energy and velocity of the fluid, but we do not associate any particulsr mass
with the point.

Looking now at Eq. [2.1], we notc that to approximate the time inteprasl of
the density change from time t to time t + &t we necc an approximation to ﬁ . ﬁ
at that point. To solve Eq. [2.2], wo need an approximation for VP and for [z.3]
we again need ¥ . 0. To obtain these, we select a set of "representative"
neighbors. We then make a finite dirference approximation to 3? and v . ﬁ. using
these neighbors, and update p, ﬁ and e at each point. Each point is thon moved
the distance ﬁ 6t and onc time step is complcted.

Al the next time step the sclection of a set of "representative™ neighbors
may change, but this docs not requirc any sort of ro-aapping of variables. It
only means that a different sct of points will be uscd in the naxt finite cif-
ference approximation to 3 . ﬁ and QP. Large distortlions in vhe flow will
produce frequent changes in neighbor selection, but since there are no cells to
distort and no re-mapping to be done the calculation proceeds from cyclc to cyeie

with no difficulty.

II1I. SOME EXAMPLE CALCULATIONS

3.1 Here we will give threec examples of calculations performed by Lho code
HCRO using the frec Lagrangian method described herein. In the first tast
problem, the initial condition is a saphare of perfoect gas <4ith a gumma of 5713.
The gas is dlvided inte four regions as scen in Fig. 3.1. Pressurcy arc in

mcgnburs, dencity in gm/ce and dimension in om.

rig. 3.1



The high pressure in region IV will drive a spherical implosion which will
greatly compress region 1II, II, and particularly I. There are two challenges to
this problem, the first is to maintain a spherical ball wnile running thc cal-
culation in cylindrical (r,Z) geometry. Six snapsholLs of region II are shown in
Fig. 3.2. Region I i3 interior to region I1. The minimum volume of region I oc-
curs in the fifth snapshot after which region I begins to expand., Wwe ran 1002
calculatjonal cycl-s with 73 points in the radial direction and A4 polints cover-
ing 189%° of angle. The left half of the snapshot is a reflection of the rignt

half which was calculated.

OO O o0 ¢ 0

t=0.0 t=,049 t=.099 t=.150 t=.185 t=.289

Fig. 3.2

The secord challenge is the accuracy of the solution, For comparison pur-
posc¢s we ran a standard one-dimension Lagrangian code using 8)J zones, 16D zonces
in each region. 1In Figs. 3.3.4, b, ¢, and d. We have plotted tne averawece den-
sity and average specific internal energy in regions I and Il as calculated by
HOBO with 73 pointy In the radial direction and the onc-dimension Lagrangian cal-
culation with 200 points. #We fecl the agreemenl to be quitc good. Onc notable
difference is the time at. which minimum volume i3 reached. HORO is slo# by aboul
.0075 uscec or 4% of the problem time at that point. Since average densiLy and
encrey are integral quantitics we have plotted one of the varisbles as a function
of radius {n Fig. 3.4, We chose radial velocity, but the agrecement in all other
variables is very similar. The plots are from slightly different times to com-
pensaote for the time shift just mentioned. The 1D l.agrange plot is at 2.12% usec
and the HORD plct is from 2.2% uyscc. Apart from the lnability of the morce

coarscly zone HONO to resolve the shock front al Lhe radius 1.7 cm we fec¢l the



agreement jis excellent. The time chosen for the plot is late in the calculation

when region II has expanded almost back to its original volume.
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3.2. For our second test problem we have chosen a Meshkov instability based
on the geometry used in one of Meshkov's experiments, The initial concitions are
shown in Fig. 3.5. A piston driven shock is driven through a region of air and
then helium. The air to helium density ratio is just over 7. There is an
initial perturbation in the air -- He interface which grows with time after the
shock passes through the interface. In Fig. 3.6 we plot several snapshots of tne
Lagrangian point positions in the air (the He is not plotted). For comparison
purposes we ran the same problem in a two-dimensional Euler.ian code with the ccll
size similar to the point scparation used {in HOBO. In Figs. 3.7.a and b, we com-
pare the size of the perturbation as it grows in time. In 3.7.a the initial
perturbation, §, is .2 cm and in 3.7.b it is .4 cm in width. The agrcement be-

tween the two codes is exccllent.

3).8cx 12 .42 14.3:a
alr v®i.a air vel.a He y=1.6)
Pel.B28 P=:.0.22% - TP M S
o=1.795115 s, 3%ud sol.ch=nld™
t=1%.3; S “w),

r
Fig. 3.5
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t=0.0 t=354.

Fig. 3.6
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Figs. 3.7.a and b

3.3. Our third test problem is the penctration of a concrete plate by a
steel roa moving at an initial velocity of .2134 cm/uscc. Th2 rocd is 9.075 cm in
diameter and 45 cm in length. The concrete is 50 cm thick. In Fig. 3.f we show
six snapshots of the rod penetrating the concrete. Incomprcssible thoory
predicts a constant time rate of change in the length of the steel roa. Thu
sound speed in the rod is .4545 cm/psec and (v/e)2 = ,22, 80 this problern shculd
not be too far from the incompressible solutjon. As is shown in Fig. 3.9, Lhe

rod length as a function of time matches the incompressiblc theory very weli.

Calculatjons with a two-dimensional Euvlerian code produzecd an almost icecntical

result.
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IV. THE FINITE DIFFERENCE SCHEME

4.1 The pressure gradient

We want to approximate UP at the noint k where neighbors are the points kl'

k « Our neighbor selection guarantees at least three neighbors for

2 LI I ] kmax
each point, the average is siy and there is no maximum numbcr, Clearly there are
many methods that could be used to approximate §P. The following was arrivec at

through much trial and error and appears Lo work very well.

.kz .k1

P2 P‘

ok

k3. P3 P5 .x5
b
Py
.k“

Fig. 4.1

Consider point k in Fig. 4.1 that has five nelgnbors. We construct a
polygon with vertices midway between the point and each of its neighbors. Tne
position of the nth vertex is ;n « 172 [X(k) + ;(kn)] end the vector from ﬁk to
;n is denoted by o;n - ;n - ;k‘ The pressure at the nth vertex, Pn. is a
weighted average of P(k) and P(kn) (v0 be described in section 4.3), We assume A
linear pressure distribution along each edge of the polygon and integratc the

pressure over the surface to get a force F. We assume a constant density P, over

the polygon to calculate a mass M. Then we have %E 0 - ; . Now let ;.2 ;R .
\
n
ca;n and the pressure at the new vertecx is Pa - pk + e(pn - Pk)‘ Now F and % are

functions of e and we oompute



1lim F(¢)
€+0 M(g)’

The resulting expression for the pressure gradient is

P'S z _ - z -
§P _ x - Pn (5yn_.‘ ayn,,) ty n Pn (Gxnﬂ___r-'ﬂn-]) (4.1
k -
Z (6 ,, 6y, - 8y, 6x)

where x and y are respectively the uriit vectors in the x and y directions and

> -
6xn - 6xn X ¢ 6yny.

If the preceeding is done in cylindrical geometry, the result is identicial for 3?
with x and y replaced by r and z. It is of interest to notec that if the éig is
not taken, the result does not give a spherically symmctric prcsaure gradient in
a spherically symmetric problem using cylindrical coordinates.

There iIs an easjer way to arrive at Eq. [4.1] althougn the method Jjust
described i1s how we originally aerived it. Since it takes only three points to
describe a plane surface, each zonseculive pair of neighbors along with the point
k defines a pressure plane to first order. If we assign a weight to each of
these approximations we have an approximation for eP. If the weighting function
is the arca of the trjangle formed by the three points, the result is the same as
Eq. [4.1]). We have tried other welgnting function, © and sino whorc Q is the

engle between G;n and 6;n both work fairly well, but area welghting appears to

+1

be best at thls time.

4.2 The divergence of the velocity field

In cartesean coordinates w2 reprcsent the veloclity at the point k by ﬁk = uk X ¢

Y The divergence of the velocity field can be expressused as V.0«

<| -
=4

/I



wnere V 1s the specific volume of the fluid. Referring back to Fig. 4.1 the
specific volume of the constructed polygon is proportion to the area of the

polygon given by
A =172 2n (xnoi * xn) (yn0| - yn)
Hence we can write

) - -
1 25 n (un+l * un) (yn+1 yn) * (anI * xn) (Vn¢| vn) [4.2)
A ot -

Equation 4.2 can bYe derived directly from Eq. 4.' by noting that 4.1 implies

a definition for the operataors %; and %7 and when Lhese are applied to 3 . ﬁ - du

IX
+ %; Eq. [4.2] is obtained. 7Thus, we have In effect Lhrec ways of derivinc the

same finite cifference approximation to Lhe operators 2 and 3—. In ecylinc~icai

ax ay
coordinates we express thc divergence of the velocity field as

E 1 3 v U _ gu . av
Vnﬁ-FF(ru)'@a—z--F#ﬁ:ta—z-

]

where %E + 35 is calculated by Eq. t4.2] with x,y replacecd by r,z.

4.3 The midpoint pressure and velocity

In 4.1 we use a prossure Pn Wwhich i3 midway between points k and kn. This is not
a numerjcal averuage. Conuider the one-dimensional problcm depicted in Fig.

4.2 .4.
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What pressure should we use for PI - PIH? If we usc the average, 1/2 (P1 +
Pz) the acceleration at i+1 wili bc much greater than at i. However, wc know
that the velocity should be continuous across the discontinuity. Given equal

zoning the boundary pressure which gives equa. accelorations to points { and j+1

L ]
18 Py = (P oy, *Pye )0y +0p,,)

It ocan be shown that the resulting finite difference approximation Py " (P; -
PI)IG: is second order accurate when thc donsity is continuous.

Now consider the problem depicted in 4,2,b, Here wc have a hcavy material
on the loft moving into a very light materid] on the right. What should we usc
for UI - Uzﬂ? If we usc the avorago, 1/2 (U1 + Uh‘). thore will be a vary
large rate of compreasion in region 2 whioch is ilncorroctL because region 1 i3
moving into a near vacuum. The® quantity that should be continuous is pressure.
The velocity which causes cqual presaure incrouascs al points { and i+l {a U‘ =
[(pcz)1 u, *+ (pcz)“‘ ulﬂlf'l(pcz)1 + (pc?)lﬂ]. This assumes the sound apced ¢
is a4 constant. Aguin it can be shown that the rasultant finite diffeccnce apr

n
proximation to U,l is socond order accurate if pe’ is continuous.

1o



The midpoint pressure used in Eq. [4.1]) are invcerse density weighted ana tno

midpoint velocities in Eq. [4.2] are pc2 welghted,

4.4, The artificial viscosity

An artificial viscosity, q, is added to the midpoint pressure in Eq. [4.1]. It

18 quadratic inform. Let U. be the closing ratc betwecen points k ana Kn. i.c.

c

Then let q - azpkug and qk - B2pk Uz. In the spirit of paragraph 4,3, wc in-
n n

verse acnsity welght the two to get cur expression for the midpoint q, i. ¢.,

q = 2a° uc2 s (170, + 170, ) (&2

n
n
In all of our examplc calculitions in section < we usad az = 5,75, Lkow w¢ must
fold q into the internal cnergy cquation in which we need to avaluate (P + q)ﬁ-ﬁ.
QOur approximation for V-U is given by Eq. [4.2]). The g term i8s brcuishl Inuice

the summation so that

E I L e A Z (P +apdvi e = % y)

(0 + QU = (o)

% xn+1 yn - yn+l xn



4.5. Prevention of density striations

Tl:e method so far described has one remaining difficulty. By having all of tne
variables centered in space it becomes ilmpossible to detect a sawtooth type wave

a3 depicted in one dimension in Fig. 4.3.

T | '8 ] L
X2 Xi-1 Xy i+ Xi42
Fig. 4.3

If such a wive doevelops It cannot be detocted by a cancered diffurenca
scheme., To correcl for Lhis, we dofine an artificial veloeity u' as depicted in

Fig. 4.3.b. We use our calcuiated VP to gaxtrapclate from point Kk to point 2n

giving PE*t a p o« (X, - %) - ¥ P.. Irf the pessure ficla 18 linear then pCX!
K K kn K K K

n n

- Pk . If they aro not equal, there is u second derivative in the preossure ficeld
n

whioch wa attempt Lo reduce. Physicoally whal should happen ia o velocily would bo

produced at the midpoint uas indicaited in 4.3.b., which would decomproat point |

ext
Py A
n n

and compruss pointL {+1. This veloeiLy must be propcrtioned Lo §P =

e D
Wo choyo Lo uida o! b §B/pe. We then use p¢ weighting between polnly k ana k"

to arrive at



2
b® P (ck . ckn)
i 2 L4.u1

Pk x * Pk
n n

ua is added to u, in 2alculating v.l.
In our present calculations b° « 1.44, We further limit |u'n| to be leas

than 2C% of the maximum of (Ck. ck ). In practioe, u' is a very small term, but
n

an absolutely necessary one. For example, ‘n test problem 1, density striation:
of around 50F will occur without using u'. We note alsc Lhat &P is proporticnal
to 6P is aszxx ana thus {s quadratic in nature., The similarity between q and u'
is striking. Thc q is an arilificial pressurc which smooths thc velocily ficld

while u' is an artificial velocity which smooths the pressure field.

4.6 Neighbor selection

The ncethod requires n good gelcetion of represcntalive necighbors at cohen poinl in
time. We have found out that Lh.: neighbors whouc bisecters form Lne vornoi
polygon around the point K are en exccllnnt choice, 7The kth Vornol polytor iy

dofinod as that reglion of spuocc which is noarer poinL k than any other point.

V. SUMMARY

The partinl differcentinl kEqo (2.1, it.3, and 2.3), along with Lhe caunion of
statle .U, which deoscribe the time evolution of compreasivle fluld flow can be
solved withoul the uusce of n lagranglian mesh. “The method fullows ocbedded 'luld
points and uicys finite difrference approxim.a. tony Lo VP and 6 « U to update p, u
and ¢. we have danonalrating that the method can accurately caleulate highly
distorited [lown withoul difficulty. The finfta difference approximations nre not

unique, fmprovements may be found in the near fulurs., Tha neighbor aclection s



not unique, but the one being used at present appears to 1o an excellent job.
The method could be directly tended to three dimensions. One drawback to thc
method is it's fallure to explioitly conserve mass, momentum and encrgy. In
fact, at &ny given time, the mass is not defined. We must perform anc auxially
calculation by integrating the density ficld over space to obtain mass, eneryy
and momentum. However, in all cases where we have done this, we have found the

draft in thesc quantities to bo no more than a fow present,
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