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ABSTRACT

The best available statistical-mechanical theories consistent with
a reasonable expenditure of computer time are used to calculate a deto-
nation product equation of state for condensed explosives and are tested
by comparison of calculated detonation properties with experiment.

Chemical equilibrium among up to nine product species, including a
separate solid phase, 1s assumed., The LJD cell model is the basic
equation of state. For application to mixtures, a variant of the
Longuet-Higgins conformal solution theory is chosen, although some other
forms are also considered.

The sensitivity of the results to variation of the uncertain inter-
molecular potentials and other doubtful elements of the theory is
sufficient to rule out an a priori calculation, but rough adjustment of
one parameter glves fair agfeement with experiment for a variety of CHON
explosives, Although some insight into the problem is gained, the per-
formance of this relatively complex theory is comparable to that of
simpler forms previously tried. It appears that still more complicated
theories and better knowledge of the intermolecular potentials are re-

quired for further progress.
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INTRODUCTION

If a cylinder of explosive is suddenly heated or struck at one end,
a detonation wave propagates down the length of the charge with approxi-
mately constant velocity. This phenomenon is often treated by the model
of von Neumann and Zeldovich (Ref. 1, Chap. 3). Transport properties are
neglected, and the wave consists of a plane shock followed by a short
reaction zone of constant length in which the explosive material is
rapidly transformed into its decomposition or detonation products. The
material at the end of the reactlon zone 1s in a state of chemical
equilibrium and enters a time-dependent expansion wave extending to the
rear boundary of the charge. This model, with the aid of the so-called
Chapman-Jouguet (CJ) hypothesis, (Ref. 1, Chap. 3) reduces the problem of
calculating the state at the rear boundary of the reaction zone (termed
the CJ plane) to the solution of a set of algebraic equations, provided
that the equation of state of the detonation products is known. The CJ
state and the corresponding propagation velocity are unaffected by the
details of the flow in the reaction zone ahead or in the expansion wave
behind.

This simple theory has inspired a number of efforts to calculate

the detonation properties of both gaseous and solid explosives, These




calculations have been falrly successful for gaseous explosives, where
the equation of state is known, but less so for condensed explosives,
where it 1s not. The calculations for condensed explosives, many of
which are based on seml-empirical equations of state, have been reviewed
recently by Ja.co‘bs.2

Calculations made to date have not completely exploited the avail-
able equation of state theories, partly because fairly extensive numerical
work is required. BHowever, a reasonably complete test of existing theory
is practical with present computing equipment, and this is what we attempt
hefe: to calculate a detonation product equation of state from the best
available analytic statistical-mechanical theories consistent with a rea-
sonable expenditure of computer time, anq to test the theory through
comparison of calculated and experimental results for plane, steady det-
onation waves,

In order to limit the scope of the Investigation and because most of
the experimental work has been done on materials of this class, we con-
sider only explosives containing the elements C, H, O, and N. An initial
investigation limited to a single explosive with fixed-product composi-

3

tion has been published, In the present work,-a number of explosives

are considered and equilibrium product composition is used.
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Chapter 1

THE MODEL AND RELATED ASSUMPTIONS

1.1 The Molecular Model

We assume that the molecular model is appropriate up to the
highest pressures we will consider., Since this assumption, which
underlies most of the others, has been questioned, (Ref. 4, p. 286)
we examine it first.

To get a general idea of the conditions of interest, take the ex-
plosive RDX and assume the decomposition reaction

0336N6°6 - 3N2 + 302 + 3C0 .
For RDX of initial density Po = 1.8 g/cc, the experimental value of

>
relative volume VCJ/VO is about 0.75,

which gives a CJ volume of about
0.42 g/ce. With the mean molecular weight of this product mixture, about
24, we have for the molar volume

'V = 10.5 cc/ﬁoie .
For a face-centered cubic lattice this gives a mean nearest-neighbor

distance of

2.91 A,




Two nitrogen molecules placed end-to end on a pair of neighboring

sites would look like:

—1[.82 A——==-1.09 A—
1 ! |

o————T————b 6————T————0
b— 291 A—
so that for this molecule the distance between nonbonded atomg is about
1.7 times the bond distance, To estimate the intermolecular repulsion
energy, we use the palr potentials of reference 3 which were determined
to give the experimental RDX detonation velocity in a calculation with
fixed product composition. All of these potentials give about the same
result at this distance: an interaction energy, divided by Boltzmann's

*
constant, of about 3500 °K. To compare this with the dissociation

*One of the best-known pair pdtentials is that of argon. It can
also be used to estimate the repulsion energy in the following way.
The radius r* of the potential minimm for N2 obtained from second-
virial coefficlent measurements is about 4.05 A (Ref., 6, p. 1111) so
that at the value of r = 2,91 A given sbove, the reduced distance p/r* is
about 0.7. Using the best available potential for argon in this distance
range (obtained from molecular scattering),7 we obtain at the same re-
duced distance an interaction energy of 3000 °K, The Lennard-Jones
potentials determined from second-virial coefficient measurements give
an energy two or three times as large at this dista.nce,3 but they repre-
sent a consliderasble extrapolation from the data for which they were deter-

mined.
12




energy, we recall that in a face-centered cubic lattice, there are six
pair interactions per molecule, corresponding to a total interaction
energy of

16,500 °K/mole = 1.4 ev/mole = 32 kecal/mole = 1.3 keal/g ,
whereas t%e dissociation energy of N2 is about 9 ev, These simple con-
siderations indicate that molecules exist under such conditions. Since
the CJ temperatures are probably of the order of 2000 to 4000 °K,
however, the Intermolecular interaction energy will be several times the

molecular kinetic energy, and the so-called '"imperfection!" terms in the

equation of state will dominsate.

1.2 Separation of the Partition Function

For calculational convenience, we assume that the partition function
is separable, that is, that the overall partition function, after inte-
gration over momentum, caen be expressed as a product of the configura-
tional and internal partition functions, and that the internal partition
function (for vibration, rotation, etc.) is the same as that at infinite
dilution. While this assumption is probably not badly wrong, it does
introduce some uncertainty.

An estimate of the effect of compression on the vibrational parti-
tion function has been made by Cottrell,8 who has done a quantum-mechanical
calculation for the Eé * molecule ion confined in an ellipsoidal box. At
a pressure of 0.6 mb, a volume of lh‘A;/holecule or 8.4 cc/mole, and a

temperature of 3000 °K; he finds that the vibrational energy has increased

13




by about 1 kcal/hole, or about 1/5 RT, over its value in free space. .

A Tough estimate of the effects of restricted rotation can be
obtained by consideration of molecules having hindered internal rotation.
In ethane at 1000 °K, for example, the contribution to the heat capacity
from internal rotation is about l/h R greater than it would be for free
rotation, (Ref., 9, p. 118) Thus the use of this assumption introduces
non-negligible errors of perhaps 10-15% of the contribution of the internal

partition function.

1.3 Non-Additivity of Pair Forces

Most statistical mechanical theories use the assumption that the total
energy of a system of molecules in a given configuration can be expressed

as a sum of pair interactions, that is,

N
UE), By o B = ) u G, ) (1.1)
1,3=1
i<j

where the T's are the vector positions of the N molecules, U is the total

configurational energy, and u, is the interaction energy of the i-j pair.

J
For a dilute system this description is appropriate. As the system is
compressed, however, it must eventually fail, until finally the appropriate
type of théory, such as metallic band theory or the Fermi-Thomss model,
makes no reference to pair potentials, The failure of this assumption may
be one of the more important sources of error, since its magnitude in re-

pulsive regions 1s so difficult to estimate, However, a first order

1k




quantum-mechanical calculation by Rosen 10 (See also Refs. 11 and 12.)

glves encouragingly small results. He finds for helium

E
abc =1.15 e for the configuration es—r—=p,
E. + Eb + B
ab c a

(o]

= 9.8 e_(8/3)r for the configuration oe—r—o0 o,

where Eabc is the energy of the three-body configuration shown, the de-
nominator is the sum of the three-pair interactions, and r is in units

of Bohr radii (0.529 A). The diameter of the potential well for helium

is r* = 2,95 A (Ref. 6, p. 1111). To obtain results for conditions compa-
rable to those in detonations, we take the reduced distance r/r* = 0.7,

and. thus use r = 0.,7r¥ or 2,1 A, At this distance we find

Eabc

B T Eb T E = -0,02 for the trisngular configuration,
ab c ac

n

n

40,0002 for the linear configuration.

Another way of reassuring oneself about this problem is to compare
results from a pair-potential model with those from a theory appropriate
to higher densities, such as the Fermi-Thomas model. To facilitate this
comparison we have calculated the palr potential which would give to a
system of llke molecules on a face-centered cubic lattice the same energies
at all compressions as those calculated from the Fermi-Thomas model for a
temperature of O OK.]‘3 This filctitious potential for argon is compared
with some potentials estimated from experimental data in Fig. 1l.l. Mole-
cules with the pair potential labeled FID placed on the sites of a face-

centered cubic lattice reproduce the Fermi-Thomas-Dirac results for argon

15
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at 0 °K. The other potentials are obtained from experimental results
quoted in reference 14, The fictitious potential is seen to come fairly
close to the experimental potential obtained from molecular scattering
data at its lower limit of validity. This result is encouraging, but

perhaps fortuitous.

1.4 The Metallic Transition

We have stated above our assumption that the molecular model is the
ﬁppropriate one, but that at some high pressure 1t becomes inappropriate.
This comes about in the following way (Ref. 15, Chap. 10). At low den-
sities, the energy levels of a regular array of atoms or moiecules
correspond to those of the isolated molecules but are highly degenerate
because of the large number of particles. As the material is compressed,
these degenerate levels split up due to the perturbations of near neigh-
bors, but are so large in number that 'bands" of energy levels are formed.
As the compression is continued, these bands eventually overlap. If the
substence is initially nonconducting (lowest band filled with electrons)
then it takes on metallic character when the ground state band overlaps
(or is separated by an energy of sbout kT from) the first excited band.

Some attempts have been made to calculate the point at which this
metallic transition occurs in simple substances. For Eé,l6 it was con-
cluded that the metallic transition may never occur, but if it does the
transition pressure 1s greater than 250 kb. For helium, which has a very
high ionization energy, the transition pressure has been estimated to be

100 to 200 m'b.17 Both of these calculations are for a temperature of

17



0 °X. The point at which this type of transition might occur in systems
of Interest to us is uncertain., The high temperature probably tends to
lower the transition pressure by increasing the kinetic energy of the
electrons, but the perturbation of the regular lattice structure through
molecular motion probably has the opposite effect. In a similar fashion,
the variety of molecular species probably increases the transition pres-
sure. Hirschfelder (Ref. 6, p. 264) states that the metallic state is

probably reached at pressures of about 1 mb.

18




Chapter 2
THEORY

Since we limit our consideration to CHON explosives, it should be
sufficient to consider a system of detqnation products consisting of two
phases: one, solid carbon in some form, and the other, a fluid mixture of
the remaining product species. Thus we require sn equation of state for
a pure solid, an equation of state for a fluid mixture (which we hereafter
call the gas equation of state), and a method of calculating the equili-
brium composition of such a fwo-phase system, These define the overall
equation of state of the mixture; the hydrodynamic conservation equations
mist then be solved with this equation of state.

This chapter is devoted to a qualitative discussion of the required
theory. The corresponding equations are collected in Appendix A, and a

description of the machine code 1s given in Appendix B,

2,1 Ideal Thermodynamic Functions

For fluids it is convenlent to separate the eguation of state calcu-
lation into ideal and imperfection parts corresponding to the factoring of

the partition function into internal and configurational terms. The solid

19




equation of state is formally separated in the same way into an ideal part
at the temperature of interest and one atmosphere pressure and an imper-
fection part depending on both temperature and pressure. The ideal parts,
usually referred to as ideal thermodynamic functions, have been tabulated
by the National Bureau of Standards and others for all of the species of
interest to us. For use in the calculation, the results are represented
by analytic fits constructed to give a thermodynemically consistent set of

functions.

2.2 Solild Equation of State

From the phase diagram of carbon,18 Fig. 2.1, we see that our region of
interest probably contains the diamond-graphite transition curve, For sim-
Plicity, and because this transition is rather slow, we assume that the
carbon is always present as graphite,

The particle size of the precipitated carbon may be limited by several
effects such as nucleation, rate of reaction, and diffusion. To obtain an
estimate of the maximum particle size, we calculate an approximate upper
size limit for a diffusion-controlled precipitation. The simple theory for

diffusion-limited crystal growth™> gives

r = a(at)/? |
where r is the particle radius at time t, d is the diffusion coefficient,
and o is a dimensionless function of concentration ranging from 0.1 to 10,
The principal uncertainty in applying this equation is the value of the

diffusion coefficilent under detonation conditions. In the gbsence of

20
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experimental Information and reliable theory, we assume that it lies in
the range of values measured for liquids under normal conditions: about
1072 cm?/éec. This choice appears to be at least consistent with the
trends of experimental measurements of self-diffusion in 002.20 For a
time of 1 psec, it gives a particle radius of about 300 A.

Thus the carbon particles are not large, and it is possible that the
other effects mentioned above could completely prevent their precipitation
in the reaction zone even when they are present at equilibrium. In any
case, we allow the carbon to be present as a separate phase, and represent
the effects of small particle size by allowing small increases in its heat
of formation as an additional parameter.

The graphite equation of state is constructed from the experimental
Hugoniot curve by a method similar to that described by Rice et al. (Ref. 21,
p. 1) It is assumed thats

(1) The energy is known along some reference curve in the p-v plane.

(2) At a given volume, the energy is a linear function of pressure,

(3) The Gruneisen number,

-1
_ _l_<__aE>]
G_[v 2, (2.1)
is constant. |

Thus the equation of state takes the form

E = Er(v) + (6A)p - pr(v)] . (2.2)

22



The reference curve (subscript r) is taken to be

the experimental Hugoniot®® for vAs <1,

the curve p = O for v/vo >1 .
The energies on the Higoniot are known from the experimental pressures
and volumes and the Hagoniot equation; the energies and volumes on p = O
are obtained by assuming constant values of the heat capacity Qv and
thermal expansion coefficlent «:

E-E =CT ,
o v

(o]
— 2o . (2.3)
(o]

The value of G is obtained from the thermodynamic relation

v o 1
C=Fx "=?;<%%>T

applied at normal volume.

For our calculations, the thermodymemic variables p, v, and T are more
convenient than p, v, and E. The details of this transformation are given
in Appendix A. It results in a more complicated set of equations, and an

iteration 1s required to determine v, given p and T. The constants used

are
QW/R = 2.5 (Ref. 23)
a = 8,03 x ].O"'6(°K)"'-L (mean value for all directions)21L
v, = O.uLk ce/g (Ref. 25, pp. 2-18)
TO = 298 “K
G = 0.1656 .

23




This wvalue of Cv is an approximate mean for the range 300-2000 °K.,
Similarly, the value of G corresponds to an approximate mean value of
#(Ref. 26) over the range of the experimental data. The equation of state
is rather insensitive to the choice of « and u.

This equation of state gives results which are similar to those
obtained with a different form used in earlier work.27 This is not
surprising, since both are fitted to the experimental Hugoniot, and all

of the displacements from 1t are quite small.

2.3 Gas Equation of State

In classical statistical mechanics the imperfection part of the

equation of state is derived from the partition function or phase integral

N V4
Q = f f exp[_ U, e, ;N)/m]d;l...d;N (2.14)
in which the vectors T denote the molecular positions, U is the total
energy of any configuration, and the integration is over the volume v of
tye system. As pointed out in Chapter 1, it is usually assumed that U is

expressible as a sum of pair interactions

N
- > -> > >
u(r,, T, y Ty) = z: uij(ri’ rj) s (2.5)
i,J=1
i<
where uij’ hereafter called the palr potential, is the interaction energy

of the i-J pair of molecules. The problem thus separates into two parts:

determination of the pair potentials u,,, and calculation of the phase

iJ
integral given these functions.
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The pair potentials must be determined indirectly from various kinds
of experimental data, for quantum-mechanical calculation of them is
practical for only the simplest molecules. (Several recent theoretical
celculations for helium agree with each other to within 20-30%, and with
experiment (molecular scattering data) to within 30-50%.28) For pure
fluids, at least, the problem of evaluating the phase integral is in much
better shape. The cell or free volume theory of Lennard-Jones and
Devonshire and its various modifications and improvements provide a
fairly good approximation above the critical density.

The problem becomes much more complicated for a mixture. With.c
different kinds of molecules there are c(c + 1)/2 different pair poten-
tials, and there is very little experimental information on the inter-
actions between unlike molecules, The problem of evaluating the phase
integral becomes more complicated, and it is doubtful whether any simple
theory such as the cell model can give satisfactory results, Most of the
tractable theories of mixtures are obtained by perturbing the pure fluid
equation of state; if these methods are used, it is still of considerable

interest.

Pair Potentials

At the high pressures and densities produced by detonations in
condensed explosives, the attractive parts of the pair potentials are
relatively unimportant; the equation of state depends largely on their

shapes in the repulsive region which is, unfortunately, poorly determined

25




by the usual methods. These consist of measuring, in dilute systems, bulk
properties which can be calculated exactly from the pair potential. The
determination is made by calculating the measured property with a variety
of assumed potentials until one is found which reproduces the experimental
data. The experiments are usually done at low temperatures, where the
small fraction of energetic collisions makes the results insensitive to
the shape of the repulsive part of the potential. In the last few years,
however, a number of potential curves have been determined from the scat-
tering of molecular beams, This method gives results in the repulsive
range of Interest to us but can be used only when one member of the
interacting palir is in monatomic form. With the help of quantum-mechani-
cal ideas, however, appropriate collections of such results can be used
to estimaste potentials for diatomic or polyatomic species. Another source
of information is data on shock Higoniots orginating in condensed msterials.
Subject to the uncertainty in the equation of state used, the Hugoniot can
be calculated from an assumed pair potential and the results compared with
experiment. We have done this where the necessary data were available.
The three most commonly used analytic representations of the pair
potential are:

Lennard-Jones (L-J)

o) = e G - 2 G (.60

Mason-Rice (MR)

u(x) = o a5 (&= (2.6v)

26




Modified Morse (MM)

°<l - %*D o 6(1 B %*-)] , (2.6¢c)

we) =iy e R

where r 1s the separation distance, kT* is the well depth (value of
minimim energy) at separation r¥*, k is Boltzmann's constant, and « and n
are adjustable parameters which may range from 9 to 15. Since the expon-
ential form of repulsion is probably more realistic, the latter two forms
are preferred. The second 1s most commonly used but causes trouble at
high densities because of its spurious descent to minus infinity at zero
separation. The third removes this defect at the cost of a slight dis-
tortion of the correct form at large separations.

The mixture equations of state that we use require that the poten-
tials be expressible as

u(r) = KI*f (x/r*) (2.7)

with the same functional form f(r/r*) for all interactions. To satisfy
this requirement, we assume that one of the above analytic forms (with the
same value of n or ¢ throughout) applies to all pairs of like moiecules and
that, for each such pair, values of r¥ and T¥ are given. Then we use for
the unlike pairs a common analytic form (with the same n or «), and deter-

mine the values of r¥ and T* from the empirical combining rules

- - o
¥ = B(xt = rfj*) THs = (Til“l‘fj‘) . (2.8)
These appear to hold within 2 or 3% for spherical and slightly nonspherical

molecules like argon and nitrogen, but for mixtures like CO2 that contain
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more nonspherical molecules, deviations of 10 to 15% have been found (Ref. 6
pp. 169, 222; Ref. 29, p. 52; Ref. 30).

In a separate reportBl we have described the pertinent experimental
information on the product species we plan to use, the calculation of the
shock Hugoniots where experimental data are avallable, amd the resulting
cholce of a potential for éach species, The results are summarized in
Teble 2,1 and Fig. 2.2. A brief description of the extent of knowledge

about each species follows.

Table 2.1. Potential Constants Chosen (exp-six form)®

Species o z*a) *(K)
A 12 3.83% 119
N, 15 4 .05 120
co 15 4,05 120
B0 it 3.35 138
NO 157 3.97 105
H, 1 3,34 37
co, 15° 4 .20 200
O2 15 3.3 132
CH, 1 .29 154

a"I'he MM form was uéed for Héo and 02.

bThese values of o were guessed.
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Nitrogen, Carbon Monoxide, Hydrogen, and Methane, For all of these

except carbon monoxide, both bulk measurements and molecular scattering
data are available, and palr potentials consistent with both sets of data
have been proposed, Only bulk measurements are avallable for carbon
monoxide, but they give results very close to those for nitrogen, with
which it is isoelectronic, and the carbon monoxide potential i1s, therefore,
taken to be identical to that of nitrogen.

Nitric Oxide. For this substance, only bulk measurements and the

potential determined from them are available. Since there is an unpaired
eiectron, it 1s possible that the form of the potential is different from
those of the other species.

Water, Water has a strong dipole moment and is nonspherical in shape.
A spherically symmetric potentiel function of the sort commonly used may
be a poor approximstion, and several angle-dependent forms have been pro-
posed. To avolid excessive complication in the equation of state calcula-
tion, we tried a spherically symmetric form and made a number of calcula.-
tions of the Hiugoniot curve to compare with the extensive experimental data
avallable. None of the potentials tried agreed well with experiment; the
choice was made to minimize the dlsagreement.

Carbon Dioxide. This molecule, like water, is nonspherical, and the

bulk measurements using different properties give different potentials,
depending on the property chosen and on the temperature range over which
it is measured., There are no molecular scattering results. Our choice

represents a compromise among the mvailable data.
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2.4 Pure-Fluid Equation of State

In the fixed-product-composition detonation calculations mentioned
in the introduction, several different gas equations of state were used.
A1l of them gave results which were falrly close together, particularly
at high initial densities. This suggests that the pure-component equa-
tion of state (given the pair potential) is not one of the major uncer-
tainties of the problem. We feel that the best equation of state con-
sistent with the available computing time is the free-volume theory of
Lennard-Jones and Devonshire, and its modifications (Ref. 6, Chap. k).

In its simplest form, this model (hereafter called the LJD theory)
imagines the available space to be divided into cells whose centers form
a regular lattice spanning the available volume. Each cell contains a
single molecule; all but one are assumed fixed at their cell centers,
and this one is allowed to move in the force field of its neighbors which
are ''smeared out" onto a éphere of radius equal to the nearest-neighbor
distance,

A number of improvements and modifications of this theory have been
made. Kirkwood32 provided a consistent statistical-mechanical derivation
of the cell model which does not fix the neighbors while one molecule moves,
but provides for the calculation of the probability of all positions with-
in the cell, under the assumption that this probability is the same in all
cells. His result takes the form of an integral equation for the cell
probability and contains the earlier theory as a zeroth order approximstion

to the solution. Both Kirkwood!s theory and the original one assume that
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each cell contains exactly one molecule., A number of later investigations
have elaborated the theory to include the presence of 'holes!" (empty cells)
and multiply-occupied cells. In the region of interest to us, these compli-
cations have very little effect because of the high pressures and‘densities.*

To date, no one has presented an exact solution of Kirkwood!s integral
equation for a nonsingular pair potential. Wood.33 has solved it exactly
for the case of hard spheres, with a result which is exactly that given
by the simple LJD theory., An earlier numerical calculation by BirschfelderBh
for hard spheres which removed the approximation of spherical smoothing but
otherwlse retained the inconsistent LJD approach (i.e., did not solve
Kirkwood!s integral equation, but did hold the neighbors at thelr lattice
positions) gave a different answer., Thus for hard spheres, the effects of
these two approximations—mspherical smoothing, and the approximation of the
integral equation solution by the LJD model of fixed neighbors exactly can-
cel each other to give the correct result.

The so-called "improved free-volume' theory for which, with the
Lennard-Jones pair potential, extensive mumerical results have recently
been published by Dahler and Hirschfelder,35 may not be an improvement at
all, since, although the integral equation is solved, the approximation
of spherical smoothing is still made, Thus it is not surprising to find
that their theory agrees less well with Monte Carlo calculations made with

the same pair potential than does the original LJD theory.

* This is not true, of course, at sufficiently low pressures on the

isentrope through the CJ state,
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‘Therefore, we use the original LJD cell theory. Some more recent
developments in this field are not without interest, but we have retained
the LJD theory, partly on the grounds of vested interest in machine codes
already prepared., Moreover, it gives reasonably good agreement with the
Monte Carlo results at high densities, énd in the calculation of Hugonilot

curves the errors in E and P appear to cancel each other to some extent.
Mixtures

The Problem. Getting'a tractable statistical-mechanical theory for
the equation of state of a mixture is a formidable problem, particularly
with molecules of apprecisbly different sizes. An extended discussion of
this problem, with applications of most of the current theories to mixtures
of hard spheres, is given in a separate report.36 The results described
there are qualitatively similar to those given in the next chapter for
systems of more realistic molecules at high pressure, for under these
conditions the size differences are the controlling factors.

Some of the difficulties are brought out by comparison with the simpler
but still difficult problem of determining the equation of state of a pure
fluid at high density. In a highly compressed pure fluid, the average
positions of the molecules are close to the sites of a regular lattice,
and the LJD cell theory, which allows only small displacements from the
lattice sites, gives a fairly good approximstion to the true equation of
state.

In a mixture the problem is far from solved even if the molecules

are assumed to lie on regular lattice sites, for the most probable
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arrengement of the molecules on the sites must still be determined.
Although this order-disorder problem has inspired a number of very complex
theories,37 it has not been solved in closed form for any three-dimensional
lattice. The approximate methods which have been developed are of doubtful
validity when the interaction energies are large compared to kT,

In a mixture, the lattice approximation itself is, of course, very
poor, for the differences in moleculasr size produce an average configure-
tion with a very irregular structure. The extremely complicated problem
of determining this structure is well illustrated by Bernalls studies of
the geometrical structure of pure liquids of normal density.38 This
problem bears some resemblance to that of the mixture, since a normal-
density liquid has a rather open structure which can be roughly described
as a mixture of molecules and holes.

The theory of mixtures is in a rather unsatisfactory state. Although
mich work has been done, much more remains. The present theories do not
agree even on the sign of the corrections to ideal mixing. In view of
their character, this is hardly a surprise. They simply do not go deeply
enough into the details of the very complex problem.

Several different ways of attacking the problem are discussed in
reference 36, Here we consider only two: the perturbation method and
the pseudopotential method.

Perturbation Theories, The theories which use this approach can be

divided into two classes: conformal solution theory, and what we choose

to call n-fluid theory. It has only recently become clear that these
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both stem from a common approach, viz., perturbation from a pure fluid
whose properties are assumed known.39 They differ mainly in the choice

of expansion varieble, The conformel solution method (Ref. 29, Chap. 9,
10; Ref. 40; L41) begins with the assumption that all of the intermolecular
interaction potentials have the same functional form,

uy () = KT4E(r/y ) (2.9)

where Tij and. r§3 may have different values for each component pair. Thus
each pure component obeys the same reduced equation of state
v
‘ T T
w-ifge wm) o Thm AR (2.20)
To obtain the equation of state of the mixture, some reference fluid obeying
this common reduced equation of state is chosen, and the mixture pértition
function is expanded about that of the reference fluid in powers of
(r”i‘J - r;) and (T"{J - T;), where the subscript r denotes the reference
fluid., This expansion can be carried out exactly; for F', the imperfection

Gibbs free energy of the mixture, it takes the form

[
T io)'s : ¥,
R C O D) xixj(___zia -1)

i,J=1

C
1,3=1

where Xy is the mole fraction of component i, and ¢ is the number of
components. The coefficients of the first-order terms have the convenient

property of being expressed entirely in terms of the macroscopic properties
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of the reference fluid (and the composition). Unfortunately, the coeffi-
cients of the higher-order terms cannot be so simply expressed; they con-
tain statistical-mechanical integrals of the molecular distribution
functions of the reference fluid, and thus depend on its microscopic
properties,

In the original formulation by Longuet-Higgins,ho

one of the pure
components was chosen as the reference fluid, We refer to this form of
the conformal solution theory as the LH theory. Nosanow!s recent work39
suggests that the reference fluid be chosen so that the first-order terms
of Eq. 2.11 vanish., Thus, if we choose as the reference fluid a composi-
tion-dependent fictitious substance obeying the common reduced equations
of state with potential constants

c c
T = Z XX ,T¥y T* = Z xix,jT-:){j s (2.12)
i,J=1 i,J=1

the extensive properties of the mixture become, in first order, Just those
of the reference fluid. We call this form of the conformsl solution
theory the corresponding states, or "CS" theory. Unfortunately, this
approximation criterion does not yleld a unique reference fluid, since
any functions of r”i*j may be used as the expansion variables, For example,

if the expansion is made in powers (r')i*J ) and (T":{J "

, with n an adjustable

parameter, we have:

c ' c
@07 = ) xxG)®, @ ) ) L (23)
i,J=1 i,J=1
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Theories of the second class, which we call‘n-fluid theories, have
received wide attention. Recently Nosanow39 has provided a unified
statistical-mechanical derivation of them. The method 1s quite similar
to that of the conformasl solution theory. As before, 1t is assumed that
the properties of any pure fluid with given palr potential are known, i.e.,
that the function F;[T,p,u(r)] is given. The principal differences are in
the choice of the expansion variable and of the reference fluid.

The expansion is made in the differences between the individual pair-
potential functions and the potential function of the reference fluid

w (@) -u ), (2.14)

and these functional differences are treated as the variables of the Taylor
series., It is thus no longer necessary that the potential functions have
the same functional form, but only that thelr differences be, in some sense,
sufficiently small. Of course, for molecules of different sizes these
differences become large at sufficiently small separations, and there the
expansion may become invalid. The hope is that such configurations are
sufficiently improbable that the final result is correct, but this has not
been proved. As in the conformal solution theory, the expansion is exact,
but only the first-order coefficients can be expressed entirely in terms of
the maeroscopic properties of the reference fluid.

The form of the expansion is then generalized to a linear combination
of expansions gbout a set of reference fluids whose maximim number is
equal to the number of different pairs of components. The coefficients

of this linear combination and the potentials of the reference fluids
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are then chosen so that the first-order terms of the overall expasnsion
vanish,
There are three ways of doing this; each ylelds a system which serves
as a model of the mixture, correct to first order in the expansion varisble.
(1) A single substance with potential function

ux) = ) xpea () . (2.15)

The imperfection free energy of the mixture is Just that of this substance.

(2) A set of c substances with potential functions
c

ua(r) = (r) , (¢ =1, s¢¢, c) . (2.16a)

xjuaj
3=1

The imperfection free energy of the mixture is given by

o]

F’(T,p,%) = ZXO{FI"[T,p,ua(r)] . (2.16b)
o=l

(3) A set of c(c+l)/2 substances with potential functions
uaB(r) = uij(r) s (¢y B =1, **°c) . (2.17a)

The imperfection free energy of the mixture is given by

F’(T,px) = Z xaxBFr\:T,p, (r)] . (2.17v)
o, B=1

Pseudopotential Theories, These theories are obtained by an approach

completely different from the perturbation methods. The partition function

for a mixture is rearrsnged to the form
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f"...f"<e-eU(§> & =f°':[ve‘5"’(§’§’T)a§ ’
Av

o(®,%,T) = - ™% 4n Q‘Bﬁ(i» ,
Av

B = 1/xT , R = CIEELY iv’N) . (2.18)

where X represents the chemical composition of the system. The brackets
denote an a priori average, for each set of position vectors occurring in
the Integration, over all possible interchanges of the molecules among
these positions, so that evaluation of this integrand at each set of
position vectors occurring in the integration requires the solution of a
complicated order-disorder problem, Thus the problem has been formally
rearranged to represent a single fictitious substance with an extremeiy
complicated composition- and temperature-dependent poténtial function o,
called the pseudopotential, The fictitious substance corresponding to
this potential 1s clearly not conformal with the components of the mixture,
In the sense of Eq. 2.9.

The order-disorder problem required for the calculation of the
pseudopotential has been solved approximately by three different methods.he-uh
In the moment method, the pseudopotential is expanded in powers of the
uij(r)/kT. Its first term i1s equivalent to the one-fluid theory. The
higher-order terms are quite complicated. The series is known to converge,
but the convergence is slow in systems of interest to us, where uij/kT is
large, and there is no guarantee that two or three terms will give a better

result than one, The pair-correlation method gives a more interesting

first-order result: a rather complicated expression for the effective
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potential function, which contains both the composition and the temperature
and gives the one-fluid result only in the high-temperature limit. Higher
approximations can be obtained in principle by this method also, but the
result does not take the form of a power series, and no expansion variable

can be identified. In the pseudo-pair-potential method, the moment method

series 1s rearranged into a sum of pair interaction terms plus a sum of
triplet interaction terms, etc. The pair interaction terms are summed in

closed form to give

(¢4 (¢4
-B
® = Z‘P(rm) ’ o(T) = - XT 4n Z zxaxYe Yoy (%) . (2.19)

i< o=l y=1

It can be shown that the first-order result of the moment method
(one-fluid theory) is a rigorous upper bound to the Gibbs free energy, and
that the pseudo-pair-potential result is a rigorous lower bound to the same
quantity. However, these bounds are so widely separated as to be of mostly
theoretical interest.

Discussion., The LH theory suffers from the arbitrary choice of refer-
ence fluid. Once this is chosen as one of the pure components, the theory
glves wrong results for the special case of a mixture consisting of any other
pure component,

The CS theory does not have this disadvantage, for in the above special
case the fictitious pure fluid representing the mixture reduces to the pure
component in question. However, both of these theories suffer from the

arbitrariness in the choice of the expansion variables.
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The one-fluid theory is poor in several ways. The predicted mixture
free energy is known to be too high. In the framework of the cell theory,
it implies that all cells must be of the same size., Thus, the large com-
ponents are squeezed too hard, and their chemical potentials are almost
certainly too high., The one-fluid theory has been derived in a number
of ways, but since it so often turns up as a first approximation to some
other theory, one suspects that it could be improved,

The two-fluid theory almost certainly represents an improvement. It
has also been derived in several different ways, but these are generally
more sophisticated and reasonable than those leading to the one-fluid
theory. In the cell theory framework, it corresponds to taking a different
size cell for each component, which seems more reasonable than the one-
fluid limitation to cells of equal size. Both theories suffer from a
practical disadvantage: +they yield effective potential constants only for
a power-law potential function such as the L-J form. That is, the sums in
Egs. 2.15 and 2.16a which become, with & common functional form for the

potential,

Z x5 Q/Jf(r*J) X3 %5 13f<1%> (2.20)

J=

can be expressed in the form

T*f£(r/T*) |, (2.21)
with

T* = T(x, T*, %), T* = T*(X, T¥,T*
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(where T* and r* denote the sets of all T?j and r§J) only for a power-law
potential func“tion.ll'5 Thus, for the exp-six and MM potentials, Eq. 2.6,
for example, the effective pair potential of the mixture in the one-fluid
model or the palr potentials of the reference fluids in the two-fluid model
should be used in the form of Eq. 2.20, rather than in the simpler form
of Eq. 2.21.

Of the pseudopotential theories, the only practical result of the
moment method is the one-fluid theory, which is probably mich too hard.
The results given in reference 36 indicate that the pseudo-~palr-potential
results are mich too soft, at least at high pressures. This leaves the
Palr correlation method, whose worth is difficult to assess., None of the
pseudopotential results are simple enough for use in the complete detonation
calculation, although some limited results for the pair-correlation theory

are glven in the next chapter,

2.5 Chemical Equilibrium

The method proposed by Brinkleyy6’h7 is used, with some refinements;

to solve for the chemical composition.

2.6 Hydrodynamic Conservation Equations

These are standard, (Ref. 1, Chap. 3) with the exception of the

Chapman-Jouguet condition. The correct form of this hypothesis is open
to question, but the best guess on the basis of the present “t:heory'1L8

is that the equilibrium CJ condition — tangency of the Rayleigh line
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P-D
2___"o (2.22)
(o] Vo -V

D2=V

(with D the detonation velocity) to the equilibrium detonation Bigoniot —

should at least be approached asymptotically with time. Therefore, we have

used this form of the CJ condition, which is equivalent to finding the

point on the equilibrium detonation Higoniot at which the calculated deton-

ation velocity is a minimm,
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Chapter 3

IILUSTRATIVE NUMERICAL RESULTS

In this chapter we give numerical results illustrating some properties
of various portions of the theory and show the relative importence of the

different contributions to the equation of state,

3,1 Solid Equation of State

An isotherm calculated from the graphite equation of state 1s shown
in Fig. 3.1, together with the experimental Hugoniot. The isentrope with
the same temperature at p = O lies very close to the isotherm; the isen-
tropic temperature rise is small due to the small value of the Grunelsen
constant G.

This equation of state give; results similar to those obtained from

a different form used in earlier work.27

3,2 Gas Equation of State for Pure Flulds

Calculated isotherms for argon at 300, 1000, and 3000 °K and an

isentrope through the 3000° isotherm at 0.3 nmb pressure are shown in
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Fig. 3.1 Shock Higoniot (experimental) and 3000 °K isotherm (calculated)
for graphite.
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Figure 3.2. The pair potential used in the exp-six form adjusted to fit
molecular scattering data as described in Ref. 31. An experimental isen-
k9

trope through the point T = 300 °X , p = 0,001 mb is also shown, ~ and is
seen to be in fairly good agreement with the calculated one, In spite of
the dips in the isotherms, the isentrope is quite smooth, This is probably
somewhat fortultous: +the isentrope chosen enters the phase transition
region shortly below its lower end in the figure. Isentropes of higher
entropy probably look somewhat like the 3000° isotherm.

As discussed in Chépter 2, the equation of state is often thought of
as divided into ldeal and imperfection parts, the latter arising from the
intermolecular forces. Under detonation conditions, the average inter-
molecular distances correspond to strong repulsion, and the intermolecular

forces make the main contributions to the internal energy and pressure of

the system. As an illustration, take the argon state point:

p = 003 mb-
T = 3000 °K.
Vv = 10.2 cc/mole

E/RT = 4.57 (relative to O °K.)
DV/RT = 12.3 .

The energy and pressure are divided into ideal and imperfection parts as

follows:*
ideal imperfection
E/RT 33% eTh
PV/RT 8% 92%
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Fig. 3.2. TIsotherms and isentropes for argon. Illustrating the
characteristics of the gas equation of state for pure fluids.
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The imperfection part is often thought of as further subdivided into
Mattice" and "excess-over-lattice' parts. The lattice part corresponds
to a (classical) face-centered cubic crystal at O °K, 1s thus independent
of the statistical-mechanical equation of state, and depends only on the
pair potential. When the imperfection parts of the energy and pressure
are divided in this way, the results are

excess
lattice over lattice

E/RT 45% 55%
PV/RT - 1 % o .

Also of interest is the question of what part of the potential curve
makes the major contribution to the equation of state., To see this, we
make use of the inverted form of the cell Integrals given in the Appendix

of reference 14. These express the imperfection energy and pressure in the

form
E’ Gfp u(r)G(r)dr, pvV - RT mjm}u'(r)G(r)dr,
o o

where u(r) is the pair potential and G(r) is the weighting function or
effective radial distribution function for the cell theory. Figure 3.3
shows the normslized weighting function and integrands of these Integrals,
The range of significant distances is sufficlently small, with half-width
on the order of 0.5 A, that the attractive portion of the potential has

almost no effect on the equation of state,
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Fig. 3.3. Normalized weighting function and integrands for the ILJD cell
integrals transformed to integrals over the intermolecular separation r,
evaluated for argon at p = 0.3 mb, T = 3000 °Xk, Not shown is the nega-
tive delta-function portion of the weighting function, which is located
at its maximum and has an area equal to half that under the weighting
function curve shown.
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3.3 Gas Equation of State for Mixtures

Since presently available comparisons of the mixture theories are
limited to low pressures, we give here a high-pressure comparison, and
present some properties of the theories under detonation conditions. The
LH, CS, one-fluid, and two-fluid theories are used, Limited consideration
is also given to the Salsburg pair-correlation theory, which is too compli-

cated for complete calculations, even in the simple binary system,

Thermodynamic Functions

The model used is a binary system at a pressure of 0.3 mb and a
temperature of 2000 °K, whose components have pair potential constants in

the ratios

_2
=z

3] o}
] o3
Wi o

The L-~J form of the pair potential is chosen because it is the only one for
which simple average pair potentials are consistently defined in the sta-
tistical-mechanical sense by the mixture theories used., For the pair po-
tential of component one, we take one of those chosen for least disagree-

ment with experiment in reference 3;
n = 12, T* = 100, r™* = 3,59 .,
Figure 3.4 shows the pair potentials for the pure components and the

effective pair potentials for the equimolar binary system as given by the

CS, one-fluid, pair-correlation, and pseudo-pair-potential theories,
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Fig. 3.4, The pair potentials of the pure components and the
pair potentials given by the different mixture theories.
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The thermodynamic functions* calculated for this system with the
different mixture theories are shown in Figs, 3.5 and 3.6. Figure 3.7
shows the effective values of T% and T* given by the CS and one-fluid
theories together with those for each of the reference fluids of the
two-fluid theory. In order to do an approximaste mixture calculation for
the complicated pair-correlation potential, we have approximated it by the
L-J potential shown with long dashes in Fig, 3.4. The thermodynasmic func-
tions for a substance with this potential are shown as points at x1 = % in
Fig. 3.5

From these results and more extensive calculations not reported here,
we conclude:

(1) The different mixture theories give different signs for the ex-

cess thermodynamic functions,

¥ Some of the results of the calculations are expressed as excess
thermodynamic functions, denoted by the superscript e. These are defined
as the difference between the calculated value of the imperfection thermo-
dynemic function for the mixture and the corresponding value for ideal

mixing.
c

V¥
F(1,p,%) = F/(T,p,X) - zxin,'@*— s —ﬁp—*j—‘) +x, 4o x, , ete,
i H T

oe-
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Fig. 3.5. Imperfection thermodynamic functions for the binary mixture.
The dots at x = & are for the pair-correlation potential approximated
as described in the text.
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(2) At X, = %, the range of the results for the free energy and
volume of the mixture is asbout 6-10% of their values for ideal mixing.
The range of the calculated chemical potentials corresponds to changes
of the equilibrium constents by factors of ten or more. The greatest
range 1s found for compositions having small amounts of large molecules,

(3) The differences in potential constants chosen for this study are
of the order of those in our system of product species, Under these con-
ditions, the effect of differences in r¥* is much larger than the effect of
differences in T¥,

(4) One deficiency of the L-H theory — its failure for compositions
far removed from the reference fluld — is shown.

(5) Although the CS and one-fluid theories are the two extremes when
the r? are appreclebly different, they give the same results for the case
of équal ri.

(6) Calculations at points on an isentrope through p = 0,3 mb,

T = 3000 °XK show that over a wide range of temperature and pressure the
excess thermodynamic functions, expressed as a percentage of the imper-
fection functions for ideal mixing, are of the same order of magnitude.

The qualitative relationships are also unchanged: <throughout, the one- and
two-fluid theories give positive excess quantities, while the CS theory
gives negative ones.

(7) Equilibrium calculations for mixtures of the species listed in
Section 3.4 using the L-J, n = 12 potential and one-fluid theory give

isotherms with mechanically unstable sectlions characterized by the rapid
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shifting of the reaction

N, + CO, — 2NO + c(s) .

Under these conditions the system is presumably unstable with respect
to separation into additional phases. What the composition of these might
be was not determined. Since in this case both the mixture theory and
the pair potential are unrealistically hard, the instability should prob-
ably be regarded as just an interesting curiosity (and, perhaps, as a
warning). It was never encountered in any of the detonation calculations
described in later chapters, for which more realistic pair potentials were

used.

Continuous Variations of the Potential Constants

The LH, CS, and one-fluid theories are all obtained by expansion
about a system in which the pair potentials of all components are the
same, namely, a pure fluid, In each case, the expansion variables corres-
pond to differences in the potential functions, and the first-order terms
are given correctly. While none of these theories attempts to compute the
second-order terms properly, nonlinearity is introduced into the latter
two by their special choices of the reference fluids, which change both
with the composition and with the pair potentials, The same type of ex-~
pansion can be made for a-pure fluid, and gives the properties of a second
pure fluid with a different palr potential in terms of the properties of
the first and the differences between the potential constants., Since the

second-order terms in this expansion are probably comparable to those for
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a mixture, this system is also of interest.

Figure 3.8 shows the imperfection thermodynamic functions of a pure
fluid as a function of r* and T¥*, at constant T and p., The deviations of
these curves from the straight lines tangent to them at the center of the
range glve a rough measure of the importance of the second-and higher-order
terms in an expansion of the type used in the mixture theories, For the
renge of r¥* and T* found in our set of components, these results suggest
that errors of the order of 5 to 10% in the volume might be attributed to
the uncertainty in the second-order terms of the expansion,

Similar presentations for the binary mixture are given in Fig. 3.9,
where the imperfection thermodynamic functions of the mixture are shown
as functions of r¥ and T¥ with r¥ and T¥ fixed. All of these theories

2 2 1 1

give the correct slopes at the central point (rf = rg,

in the curvature. The LH theory is linear in rfi, rfz, and rge; since the

the curve for rg becomes a

% = Tg), but differ

arithmetic-mean combining rule is used for rfe,

straight line. This is not the case for Tg, for which the geometric-mean
conbining rule (T‘i‘2 = vﬁ?;ﬁg;) is used. The other theories are linear in
their initial formulation, but in each case the special choice of reference
fluids effectively introduces nonlinear terms as pointed out above. Ideal
mixing cen be shown to give the wrong slope at the central point in the

Tg plot; in the rg plot it accidentally gives the right slope because terms

cancel through the use of the arithmetic-mean combining rule for r Since

* L]
12
for small deviations the geometric and arithmetic means are nearly the same,

however, the amount by which the ideal mixing curve deviates from the
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the central value, and vice versa., The dashed tangents at the central points are included to
show the deviations from linearity.
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correct slope at the central point is too small to be seen in the figure.
From this point of view, the failure of the different mixture theories
to agree even on the sign of the excess functions is not surprising. The
deviation from ideal mixing depends, in all practical cases, on the amount
of curvature in these curves, a property which is not given with any degree

of confidence by any of these essentially linear theories,

3.4 Chemical Composition and Fugacities

Under the conditions of Interest, fugacity corrections to the ideal
gas equllibrium constants are important. We give here some numerical
examples. For an equation of state point, we take the calculated CJ state
for the explosive RDX (CBEBO6N6) at density 1.8 g/cc, using the pair-
potential constants given in Chapter 2, the CS mixture theory, and the MM
form of the pair potential. For the pot;;tial exponent, the value o = 13
1s chosen to give approximate agreement with the experimental detonation
velocity.

A chemical reaction may be represented by
c

Z\)ixi =0 3
i=1

where c 1s the total number of chemical species present, X, represents one

1

mole of species 1, and v, is the stoichiometric coefficient for species

i
i, i.e., the number of moles of species i transformed by the reaction.
At equilibrium, the mole fractions X, of the species involved in each

reaction mist satisfy a relation of the form
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vy .
II Xy 0= k(T,p,x) ,
(gas
species)

where k can be expressed as

n k = 4n XK(T) - (Av)(4n p + Fg’/RT) - Z \)i(u:{ - Fg’)/RT - vBFs’ ,
(gas
species)
vil:Fo(T) i AH?._—J .
in X(T) = - RD :
(a1l
species)

Here X(T) is the idesl gas equilibrium constent (which is expressed in
terms of the standard free energies, as shown), Av is the change in the
number of moles of gas as the reaction goes from left to right, Fé is the
total imperfection free energy o% the gas,* Fé is the corresponding quantity
for the solid, and.u{ is the imperfection chemical potential of species 1.
The terms u{ - Fé in the expression for 4n k can be given a simple physical
interpretation, Since from thermodynamics
Fg'= Z xi*-*{ ’
(ges
species)
they represent, roughly speaking, differences in size and interaction
energy; molecules which are larger and ‘'harder" than average have u{ > Fé,

and vice versa for those which are smaller and '"softer.!

2 e
The fugacity is defined as pe(Fg/RT) .

62



In Table 3.1 we glve numerical values of some of these quantities
including the equilibrium constants for several reactions (not an inde-

pendent set) for the calculated detonation state described above,

3.5 Kinetic, Internal,and Chemical Bond Energy

It may be of interest to give results for a simple hydrodynaemic
model which produces the detonation products in a constant state.so This
is done by supposing that the detonation wave is followed by a piston
moving with the mass velocity of the products, so that the state variables
everywhere behind the wave are constant., For this model it can be shown
that

Q + W = K.E., + EB(T,p) - E(TO:PO) ’

where W is the work done by the piston, Q is the "chemical bond energy"
(the change in internal energy when the H.E, reacts at constant T and p
to form products), K. E. 1s the kinetic energy of the products, and E is
the internal energy of the products. Writing this equation as percentages
of the total on each side for the calculation described in the previous
section gives

Q + W = £K.E, + \E(T,p) - E(Tb,pgzl .

605 10% 20% 80%

Thus, in this system which produces the detonation products in a constant

state, only 60% of the energy which maintains the detonation comes from
the breaking of chemical bonds, and the remainder is supplied by the piston.

In the reaction products, 20% of this total energy appears as (macroscopic)
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Table 3.1. Equilibrium Constants and Related
Quantities for Several Reactions,

FI

(p = 0.33 mb, T = 4040 °K, fnp = 12.7, Tx% = 14.8.)
Ideal Chemical Imperfection
Potential Chemical Potential
() - ¥ - o), by

Species RT g
c(s) I R
N, . -29.2 16.4
co =334 16.4
0 -37.8 ) 11.0
NO -29.0 15.5
Ee ~21.6 8.4
co, BTl 19.1
0, ~31.2 1.0
CH, ~37.1 19.1

Equilibrium Constants

For Ideal Ges For Ideal Gas With Fugacity
Gas Mole at p=l atm at p=0,33 mb Corrections
Reaction Change (Av) #n K(T) 4n K(T)-(Av) 4n p fn k(T)
(1) co -~ %002 + ¥C(s) -4 -7.5 -1.2 3.5
(2) HO ~ H, + 502 + % -0.5 6.9 -11.3
(3) B0 + §N2 - B, + NO + & -1.7 -8.1 -12.8
) co+ B0 ~ CO, + H, 0 2,1 2.1 -2.2
2 2o + % L .8 4.8
(5) c(s) + 31120 —osco + SCHh +3 +5.1 +0
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kinetic energy, and the remaining 80% as increased internal energy of the

products,

3.6 Some Gross Parameter Variations

In this section we show the effects of certain gross changes in the
calculation. Included are the effects of the heat of explosion and of
the number of moles of gas in the detonation products, two quantities often
used in rough engineering evaluations of new explosives.

The explosive is RDX at density 1.8 g/cc. The calculation is made
as described in Section 3.4, but with fixed, instead of equilibrium, pro-
duct composition. The variations are listed in Table 3,2, In run 2 the
number of moles of gas is increased by converting all of the CO2 according
to the equation

co, + C(s) - 2c0 .

In run 3 the solid is made incompressible. Run 4 shows the effect of
increasing the heat of explosion Q; and in run 5 the LJD cell theory is
replaced by the ideal gas equation of state. The heat of formation of

the explosive is artifically adjusted as required to give the desired heat
of explosion,

The results are given in Table 3.2 and Fig. 3.10.
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Teble 3.2. Description of the Parameter Variations.

Heat of P P YCJ
Product Explosion Moles CJ CJ 3 in D
Run Description Composition (keal/g) of Ges (ub) (v/vo)cJ (°x) 3(5—175') (m/s)
S

1 Reference 12 1.51 7.5 0.315 0.77L 4063 3,36 8741
2P Tncreased number of 2° 1.51 9 0.421 0.777 3833 3.8 10227

moles of gas
3 Incompressible solid 1 1.51 7.5 0.3%20 0.785 4053 3.66 9100
ud Beat of explosion 1 2,26 7.5  0.3% 0.757 5858 3,12 BT

increased 50%
5 Tdeal gas 1 1.51 7.5  0.050 0.566 5011 1.30 2539

a

1.5C(s) + 3E,0 + 1.5C0,
bIn run 2 the heat of formation of the explosive has been artificially reduced to keep the heat of explosion comstant.
c

3N2 + 3C0 + 3H20

dIn run L the heat of formation of the explosive has been artificially increased to give the desired heat of explosiom.
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Chapter L

VARIATION OF PARAMETERS

Because of the imperfect state of the theory, the calculation contains
a number of adjustable parameters, such as the pair-potential constants. To
assess the effect of this uncertainty, we first compare with experiment the
results of a calculation which is a priofi in the sense that the values of
the parameters are chosen from the information presented in Chapters 2 and
3, making no use of the measured detonation properties of the explosives for
which the calculations are done. We then examine the effects of a systemstic
variation of the parameters. Before describing any of the calculations, we

discuss the parameters themselves.

4.1 The Parameters

We describe here the parameters which may be varied, listing them

according to the main subdivisions of the theory.

Gas Equation of State

As pointed out in Chapter 2, this problem may be divided into the

microscopic one of determining the forces (pair potentials) acting between
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the molecules, and the macroscopic one of finding the behavior of the system
once these-force laws are given. For mixtures, most theoretical treatments
divide the latter problem into the determination of a pure-fluid equation
of state and of a mixture theory which gives the préperties of the mixture
as a perturbation on the pure fluid.

Pair Potentials. These are determined experimentally. In the simple case

of interaction between monatomic molecules, the important repulsive part
of the potential can be obtained directly from observations of molecular
scattering. For more complicated molecules, pair potentials can be derived
from this type of data, but only at the cost of introducing some assumptions.
Even these less-certain results are not available for all of the interactions
that we need to know.

As the potentials are usually represented, there are four parameters
for each interaction: the analytic form, the repulsion exponent « or n,
the characteristic distance r*, and the well depth T™*, The conformal
assumption requires that the analytic form and repulsion exponent be the
same for all interactions so that a single analytic form and value of the
repulsive exponent apply to all interactions of the system. The values of
r* and T* for each interaction must still be chosen. For iInteractions of
like molecules, they are taken from the experimental information on the
palr potential; for unlike interactions, the combining rules

Hy=% e, = (mrpt

are used. These rules are of course only approximaste, and one could intro-
duce many more parameters to modify them, but we will use them in this forﬁ

and consider only the r? and.T? of the like interactions as parameters.
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Thus, for a system of c components, there are 2c + 2 parameters: the
analytic form and repulsive index of the potential, and the individual
parameters r? and Tf. It will often be convenient to keep the ratios of

the individual parameters constant and vary the average parameters for

the mixture by scaling all of them by the same factor.

Pure Fluid Equation of State

Consideration is limited to a single form, the LJD cell theory, so
that there are no adjustable parameters in this part of the theory.

Mixture Theory. The practical theories give quite different results,

but there are no high-pressure experiments with which to compare. The
crudeness of the theories compared to the problem to which they apply
makes an a priori assessment of their worth difficult. We therefore try
several, including the extreme ones, and regard this choice as another
parameter.

Solid Equation of State. The principal uncertainty here is the

particle size of the solid; if it is small enough, surface forces become
important. To represent this effect, we vary the heat of formation of the

s0lid by amounts up to about ten per cent of the sublimation energy.

4.2 An A Priori Calculation

For this calculation and for the parameter variations, we have chosen
a minimm number of explosives covering a fairly wide range of atomic com-

position, oxygen balance, and density. These are listed in Table L.1.
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a

Explosive

RDX

Comp. B (65/35)
TNT

Nitromethane (NM)

Nitromethane /
nitric acid/

water’ (NM/BI\TO5 )

pO
RDX 1.800
Comp. B 1.7k
TNT 1.640
M 1.131
1~nvl/mo5 1.293

Table 4.1, Explosives Used in the Parameter Studies,
Oxygen Enthalpy of
Empirical Formula Reduced Atomic Composition  Balance Formation at 25°C
for 1 Mole c )il 0 N (to CO) (keal/mole)
03H606N6 0.5 1 1 1 0 .71
C’+.)+H5.7Q6N)+.9 0.73 0.9 1 0.82 -0.20 3.49
C7H5061\T3 1.15 0.83 1 0.5 -0.58 ~-17.81
03H9O61\I3 0.5 1.5 1 0.5 -0.25 -21,28
Cy,155., 205, 2 0,19 0.87 1 0.37  +0.38 -37.5
Q Moles of Moles of Total Moles
(kcal/g) Gas per Gram Solid per Gram per Gram
1.k9 0.034 0.007 0.041 A1l of these quantities are calculated
1.4 0.031 0.012 0.043 at the densities given with the set of
1.28 0.026 0.022 0.0u8 parameters described in the text, They
1.37 0.040 0.006 0.046 are included to aid in characterizing
1.04 0.037 0.0 0.037 the explosives.

%For an explosive C B 0Ny of molecular weight M, oxygen balance is defined as ldeO (¢ -~ a -~ %b),

bThis mixture is prepared by mixing 1 mole of nitromethane with an amount of 91% HNO3 s containing 1 mole

f HNO. .
oF

The molar composition is CH}NOQ/BNOE/HZO: 1/1/0.346.




The parameters chosen are
(1) The MM potential
) g (-5 oS- %-)]
with o = 1h.
(2) The species
C(graphite), N,, CO, E,0, NO, H,, Oy, CH
with values of r? and T? from Teble 2.1.

(3) The CS mixture theory.

(4) The value zero for the heat of formation of graphite.

Many of these choices are rather arbitrary. The repulsive exponent
could have been chosen to be 15, but all of the o = 15, exp-six potentials
lie above the repulsive potentials derived from molecular scattering data
over most of the distance range (see reference 31), so we have chosen
o = 1} instead. What mixbture theory to choose is really an open question.
The results reported in reference 36 suggest that, where anything is known
about the problem, ideal mixing gives good results. The CS theory is close
to ideal mixing and has the advantage that average potential constants are
defined. The value of the graphite heat of formation is unknown; we have
taken the bulk value. Thus, while we term this calculation a priori, there
is considerable arbitrariness in its specification. How much the results

are affected can be Judged from the parameter variations presented later.
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The results of this calculation are compared with experiment in
Figs. 4.1 and 4.2 and in Table 4.2.* Most of the calculated detonation
velocities are too high, the calculated Hugoniots do not come very close
to the experimental CJ points, and the calculated values of Y** are all
too high. Thus it appears that the parameter variations described in the

next section may effect some improvement.

4.3 Single Parameter Variations

One of the first variations tried was to change the value of the
repulsive exponent o from 14 to 13. With the exception of NM/HNOB,
this moved the calculated BHugoniots closer to the experimental CJ points in
the p-v plane (Fig. h.}), and. brought the deviations from the experimental

velocities closer together. We therefore decided to take this calculation

as the starting point. 1In what follows we term this parameter set, that

*

The figures and tables containing the results are at the end of this
Chapter.

D2
**The CJ pressure is given by P = 59—-—-' ‘n D The quantit
P & YEEYEFT Y e e 4 J

vy 1s chosen for comparison instead of the pressure, since it is a much less
sensitive function of the thermodynamic state. For simplicity, we use in
this chapter only the experimental data from this laboratory, which probably
form a fairly consistent set. This should be sufficient here, where the main
object is to show the effects of the parameters on the calculated results.
More complete comparisons with most of the available experimental data are

nade in Chapter S.
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used for the a priori calculation with o changed from 14 to 13, the
"eentral point.™"

The Iist of variations chosen is given in Table 4.2. Since there
are so meny parameters which can be varied, we have tried to select a
limited set. Without actually assigning numbers, we have taken as a rough
figure of merit for inclusion the product of the range of uncertainty
of the parameter in question and its effect on the results. The range of
variation of most of the parameters was chosen to correspond roughly
to the uncertainty in their values. Some comments on the choices follow.

The results will be discussed in Section L4.5.

Potential Parameters Common to All Species

In addition to o, the repulsive exponent in the analytic form of
the pair potential, we define another common potential parameter: a scale
factor Sr* on all of the molecular sizes, The change in this scale factor
(run 4) was chosen to give about the same effect on the results as chang-
ing @ by 1 (runs 1-3). One calculation was also done with the L-~J , n =29

potential (run 5).

Potentlal Parameters For the Individusl Species

The most uncertain of the pair-potential constants are the values
of r* for carbon dloxide and water. These also have a marked effect on
the calculated results and were therefore chosen for variation. The

observed effects were large enough to make it desirable to take both
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positive and negative changes (runs 6-9). The individual values of T¥
apparently have little effect. This was suggested by some of the mixture
studies menfioned in Chapter 3, and is confirmed by run 10 in which all
T? were made approximately equal to the middle of the range of the calcu-
lated average T* for the central point, with little effect on the results.
(The detonation velocities for this run, not plotted, are within 50 m/s

of those for the central point.)

Mixture Theory

The one-fluid theory* gives a rigorous upper bound to the mixture
free energy, and large positive deviations from ideal mixing; it is
probably much too '"hard!'"., The very "soft' pseudo-pair-potential theory,
which gives a rigorous lower bound to the free energy, is too complicated
for use in the calculation. The softest theory we have used 1s the CS

theory chosen for the central point, which gives relatively small negative

*The one-fluid theory gives a very complicated calculational recipe
for any potential other than the Lennard-Jones form. Therefore, the mix-
ture rule which gives the average parameters was written in this case for
the L-J, n'= 9 potential, which is comparable to the MM, « = 13 form used
in all other parts of the calculation. While this procedure must be re-
garded as empirical from the statistical-mechanical point of view, it is
thermodynamically consistent, and, we believe, a good approximation to the

more exact method.
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deviations from ideal mixing. We have done calculations with the one-
fluid theory (run 11), end also with ideal mixing (run 12), which gives

results between those of the one-fluid theory and the CS theory (run 2).

Heat of Formation of Solid Carbon

Since any solld carbon present is probably in the form of very small
particles, there may be an appreclable surface energy due to interface
interactions with gas molecules, which are neglected in the calculation,
To take this effect into account, we have increased the heat of formation

of the solid up to about ten per cent of the sublimation energy (runs 13, 1h),

4. Compensated Parameter Variations

Since scme of the parameter variations of Section 4.3 caused rather
large changes in detonation velocity and CJ pressure, we repeated several
of them with all r? scaled to compensate for the variation and bring the
calculated defonation velocities back to approximately the original value.
In nearly all cases it was found that the required scale factor could be
obtained quite closely from a simple procedure based on the reduced initial
density scaling described in Ref., 3. Let subscript 1 refer to the central
point (run 2) and subscript 2 refer to a calculation done with one parameter
changed, If (po)l and (po)2 are the densities at which the calculated deton-

ation velocities are equal, then the required scale factor is given by
1/3
(p)

= * =
Sr* scale factor for ri [1537;] .

(See figure at the top of the next page.)
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(2) (n

(P, (P,
PO

Several of the original variations were repeated, using this recipe

for the compensation. These runs are listed in Table k.3,

4,5 Discussion of the Results

The results of the calculations are given in Tables 4,2 and 4.3 and
Figs. 4.1 to 4.7. The central point set of parameters, Figs. 4.3, L.ka,
gives results which compare with experiment as follows:

(1) The calculated detonation velocity for 1\11\4/131\103 is about 500 m/s
below the experimental valuej the next largest disagreement, from TNT at

density 1.4, is about 300 m/s.
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(2) With the exception of NM/HNOB, the calculated Hugonlots pass
close to the experimental CJ points, but the calculated CJ pressures are
too low (with correspondingly high values of ¥), indicating that the cal-
culated Hugoniots are too steep near their CJ points,

(3) The calculated temperature for nitromethane is several hundred

degrees too high, while that for NM/HNO, is sbout right.

3

(1) The hook at the end of the TNT velocity curve is due to the hook
In the experimental data. None of our calculations produced anything like
this for TNT, although the abrupt changes In slope associated with carbon
disappearance in the other explosives, Fig. 4.6c, suggest a possible
mechanism,

(5) The experimental errors, discussed in more detail in Chapter 5,
are such that some of the calculated velocitles are certainly wrong by
several hundred meters per second; but the calculated pressures and
temperstures may possibly be correct.

The parameter variations were made about this central point., We now

discuss the results,

Common Potential Parameters

Figures 4.1 and 4.2 show that the potential with exponent o = 14 is
too hard: all of the claculated Hugoniots with the exception of NM/BNO3
lie to the right of the experimental CJ points. Figure 4.3 shows that
@ = 13 is about rigﬁt in this respect, and it also brings the velocity

deviations closer together, Fig. L4.ha. The potential with o = 12 is
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clearly too soft, Fig. 4k.4b., Increasing all the molecular diameters ¥
by about 2%, Fig. h.lic, has about the same effect as increasing o from
13 to 14, but does not increase y quite so much (Table 4.3). Subétitu-
tion of the L-J, n = 9 potential for the MM form, Fig. 4.hkd, gives re-
sults qualitatively similar to those for o = 12, except that the calcu-

lated velocity for NM'/HNO3 is even lower,

Individual Potential Parasmeters

Fgure L4.5a-d shows that the relative silzes of the molecules have a
marked effect on the calculated results, but that the variations tried

do not give much better overall agreement with experiment,

Heat of Formation of Solid Carbon

This parameter has a pronounced effect on the shape of the calculated
velocity curves, Fig. 4.6c and d, and also decreases the calculated values
of ¥ appreciably. When solid carbon is present, the initial effect on
velocity of increasing the heat of formation depends on the explosive and
the density. The reaction

2H,0 + 3C(s) = 2C0 + CH, AH, = + 4L keal

1s shifted to the right; the resulting decrease in Q and in the +total
nunber of moles of products tends to decrease the calculated velocity,
while the increase in the number of moles of gas fends to increase it.

Of course, when the heat of formation of the solid is increased, the

solid tends to disappear. In nitromethane and in low-density Composition B

9




and RDX, 1t disappears entirely, and considerable quantities of methane

are formed,

Mixture Theory

For the simple theories considered here, changing the mixture theory,
Fig. 4.6a and b, gives results comparable to those obtained by changing
the exponent of the potential or scaling all of the molecular sizes. The

calculated values of ¥ remain too high.
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Table 4,2,

Calculated Values of D, y and T for Single-Parameter Variations.

Dorre RDX Comp. B TNT Nitromethane NM/HNO3
for R st Py = 1.8 Py = LeTlh Py = 1.64 Py = 1.131 P, = 14293

Rm Description P, = 1.8 Y T Y T Y T ¥ T Y T
Experimental 0 2,90 2.77 3.17 2.13 338 2,54 3400

1 "A priori" set, o = 1 660 3,51 L4016 341 3967 3.37 3684 2,7 3865 3,10 3531
2 "Central Point! set, o = 13 55 3.29 L4O4LO 3.22 3962 3.22 3662 2.66 3803 2,95 3517
3 o =12 -512 3,08 LOUS 3,06 393 3.08 3630 2.58 3728 2.81 3502
4 8 = 1.023 (a.'l_lrj*:increa.sed 2.3%) 590 3,40 3871 3.3% 3857 3.32 3618 2,72 3815 3,07 3460
5 L-J potential with n = 9 ~370 3,26 L4406 3,17 Le21 3,16 3799 2,68 3869 2,88 3698
6 €O, r* increased by 10% 626 3.37 3807 333 3755 3,38 3491 2,72 3751 3.07 3453
ki €O, r* decreased by 10% 412 3,25 4158 3.15 L4057 3,12 3734 2,61 380 2.8 3567
8 320r*increased'by10$ 9%9 3.45 3679 3.38 3698 3.39 3508 2.9 3609 3.18 339
9 E,0 r* decreased by 10% ~T02 3.1 L2sh 3.07 4109 3,08 3738 2,41 3913 2.73 3603
10 AL Tf equal -5 3.30 4058 3.22 3987 3,19 3686 2,63 3856 2.9 3522
11 One-fluid mixture theory 550 3.35 386 3.29 379 3431 3553 2.7 3779 3.07 3408
12 Ideal mixing 207 3.31 3967 3.24 3923 3.25 3636 2,67 3798 2,99 3495
13 AH, for carbon = + 10 keal/mle 50 3.23 3887 3.15 3686 3.18 3619 2.87 3626 2,95 3517
% AE, for carban = + 20 keal/mole 170 3,00 3604 2,91 3502 2,95 215 2,87 3626 2.9 3517
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Table 4,3, Calculated Values of D, vy and T for Compensateda Single-Parameter Variations,

5% Dygic = Dexp RO Comp, B TNT Nitromethene  NVHNOs
(Scale Factor for RDX Py = 1.8 O, = LT o, = 1.6k p =131 o, = 1.295
Run Description for All r"{) 0o = 1.8 v T Y T v 7 Y 7 Y T
15 o= 12 1,027 8 3,19 3882 3,15 384k 3,18 3501 2,6k 39 2,93 3438
16 o = 1 0.9776 108 3.38 L4169 3,28 LOGO 3,25 3720 2.68 3849 2,9 3580
17 Co, r* increased 0.9807 85 3,30 3946 3,26 3838 3,32 3521 2,64 3728 2,95 3511
by 10% '
18 B0 r* increased 0,9651 92 3,32 392 3.25 3849 3,25 3566 2.82 3633 2,99 34%
by 10%
19 Orte-fluid mixture 0.9804 99 3.27 3959 3,21 3882 3,24 3589 2.65 3775 2,97 3462
theory

871 each case the r-)le have been scaled to keep the calculated high-density RDX detonation velocity close to the
experimentel value,




Chepter 5

COMPARISON WITH EXPERIMENT

Having examined the effect of varying the parameters, we now mske
a more extensive comparison with experiment.,

The Y"central point! set of parameters described in Chapter 4 was used
for all of the calculations., To maske the comparison as meaningful as possi-
ble, we considered a wide variety of explosives. The principal characteris-
tics affecting the choice were: accuracy of the data, oxygen-balance, density,
and variety of atomic composition, with particular emphasis on those explo-
sives which lack one or more of the elements C, H, O, and N, In order to
attain the desired variety, we included some explosives for which the ex-
perimental data are relatively poor,

The explosives chosen are listed in Table 5.1.

5.1 Applicability of the Hydrodynamic Theory

As often happens, the system for which a simple theory can be con-
structed is not the one on which experiments can be performed. The

Zeldovich-von Neumann theory described in the introduction of this report




%

Comp. B

PETN

/0,

NG

o

CE, /0,

0,/0,

Explosive

Cyclotrimethylene~
trinitramine

65,/35 RDX/INT
Trinitrotoluene

Pentaerythritol
tetranitrate

Hydrazine nitrate
Hexanitroso-benzene
Trinitro-triazido-benzene

Nitromethane/ nitric a
acid/ water(To =0 °C.)

Nitroglycerine
Cyanuric triazide

Nitromethane/
tetranitromethane (To =0 °cC,

Liquid methane/ oxygen
(T, = % °K)

Liq&id:@grll(/) ozone

Table 5.1. Explosives for Comparison of Calculation and Experiment.
b
Composition .
(Mole Fraction c Heat of Oxygen Balance Data References
Empirical of Second Density Formation to CO to 002 for
Formula Component ) (g/cc) (kcal/mole) (%) (%) D b T
1
03H606N6 1.80 .71 ) 22 6, f 1, 16, 17 18, 19
d
C1+.uH§.7°6Nu.9 1.7 3.49 -9 40 8 8, 16, 17 —
0755°6N5 1.64 -17.812 -25 ~Th 1, 9 7, 8, 16, 17 —_—
5 .
CSH8°12Nh 1,67 -12% +15 -10 10, LA LA 19, 1A
B0, 1.63 60" - = L, LA —_ —_
e

CgOgNg 1.76 1h,5(LA) 0 -38 LA —_ —_
CcON1 o 1.7 270.6(LA) o -29 LA — —
c.hHQ°2.5N.9 1,293 ~37.5(LA)  +1h -26 LA LA LA
¢4 O, 1,60 82,7 25 L 7, LA —_ 18, 1A
¢, 1.15 2007 —_ - 1 —_ —
()3H302N o 1.131 21,28 13 38 7, 12, 13, LA 1, LA 18, 1A
cogl, 1 1.64 8.8 57 49
¢ 5o 0.5 0.765 9.8 33 -67 W —_ —
€ 5o 809 ¢ 0.8 0.980 4.3 Sl k2
. 0.L 1.258 11.18 — —_ 15 —_ —
05 1 1,554 30.9 —_— —_




Notes for Table 5.1

S The composition of this mixture is given in Table L4.l.

bThe extremes of composition for which measurements are available,

®For the solids, the meximim density 1s given. The detonation velocity
data extend to less than 1,0 g/bc in most cases., All of the densities are
given in the references below except for O2 - O3 for which we calculated
the mixture densities from the experimental values assuming ideal mixing
(molar volumes).

d'I'his value was calculated from those of RDX and TNT assuming ideal mixing
(molaf enthalpies).,

®1A denotes previously unpublished Los Alamos data described in Appendix C.

fIdeal mixing 1s assumed., For CBﬁ, the value AE% = = 17.33 kcal/mole was
calculated from the gaseous heat of formation given in F. D. Rossini,

et al., National Bureau of Standards Circular 461 (19:47), and from the

heat of vaporization given in F. Din, Thermodynamics Functions of Gases

(Butterworths, London, 1961), Vol. 3, p. 47, with a 10° extrapolation.

For 02, the value AH% = - 1,009 kcal/ﬁole was obtained by a small extra-
polation from the data in reference 5 of this Table,
gIdea.l mixing is assumed, For 03, the value AE% = 30,9 kcal/hole was
obtained from data given in reference 5 of this Table, and the liquid heat

capacity Cp = 0,45 cal/é, from Eandbook.gf_Chemistry and Physics (Chemical

Rubber Publishing Co., Cleveland, Ohio, 1961), 43rd Ed., p. 2237.
h‘I‘he data used for comparison with the calculations were selected from the
references in the last three columms of the Table., Data from the under-

scored references were omitted in this selection.
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assumes one-dimensional flow behind a plane shock front. Edge effects

in the necessarily finife charges used in practice of course produce curved
shock fronts followed by a two-dimensional expanding flow. The usual method
of bridging the gap is to perform experiments at several charge diameters and
then to extrapolate the results t; infinite diameter, where the edge effects
disappear. For pressed solids, of course, the particle size must be small,
so that the material is as homogeneous as possible.

Recent experimental work hass revealed new difficulties: apparently
one-dimensional reactive flow is not always stable, Whitesl has observed
that the reaction zones of gas detonations are turbulent. The turbulence
is probably associated with chemical reaction, for it appears close to the
shock front and decays when reaction is complete. Denilsov and Troshin,52
Duff,53 and others have shown, again for gas detonations, that transvgrée
waves similar to those associated with spinning detonations are much more
common than was once believed., These waves exhibit regular patterns which
are probably assoclated with reflection from the tube walls. Recent ex-
periments with liquid explosives at this laboratory5lL also show effects
which suggest the presence of similar phenomena,

These poorly understood effects, if present in condensed explosives,
may cause serious difficulty. They probably arise more from the unstable
nature of one-dimensional flow than from edge effects, and may not be eli-

minated by extrapolation to infinite charge diameter.
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5.2 Interpretation of the Data

Four quentities associated with the detonation will be considered:
the velocity, CJ pressure, and CJ temperature of the steady unsupported
detonation wave, and the strength of the shock produced in a light gas
at an explosive-gas interface parallel to the front., We discuss briefly

the methods of measurement and the interpretation of the data.

Detonation Velocity

The measurement of detonation velocity is relatively straightforward.
The much-used smear camera method gives single velocity measurements
accurate to within 50 to 100 m/é. With careful attention to detail, in-
cluding the charge preparation, the more accurate pin method has given
errors as small as 10 m/é, about one-sixth of one per cent, in the extra-
polated infinite diameter velocity.55 For most explosives the extrapola-
tion to infinite diameter is facilitated by the apparently linear form of

the detonation velocity as a function of reciprocal charge diameter.
Pressure

The most common method of measuring CJ pressure is an indirect one,
Flat plates of metal (or other inert material) of different thicknesses are
placed on the ends of explosive charges, and the free-surface velocities

produced by the detonation are measured. If the metal shock Hugoniot is




lnown, the metal pressures can be obtained from this data., The resulting

pressure-plate thickness curve,

THICKNESS

is an approximate magnified image of the pressure profile in the detonating
explosive, The break in the curve is assumed to correspond to the CJ plane
in the explosive, and the explosive pressure is obtained from the metal
pressure at this point by the hydrodynamic conservation conditions, Again
the experiment should be repeated at different charge diameters, and the
results extrapolated to infinite diameter.

This is difficult to do, both because the method involves "looking
behind" the CJ plane into a flow region affected by edge effects, and
because the pressure depends strongly on the diameter, Careful attempts
to perform the extrapolation at this laboratory suggest that perhaps the
instability effects described above may be present.

The plots of pressure vs, reciprocal diameter appear to be linear
with slopes on the order of 10 - 15% change in pressure per reciprocal

inch of diameter.
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The metal plate velocities can be measured to within 0.5%, and the
pressures in any given geometry can be determined within about 2%, allow-
ing for impurities in the material and imperfections in the charges. For
the infinite-diameter figure, an error of 3 to 5% should probably be
assigned, depending on the largest diameter used and the way in which the
extrapolation is done., These figures do not allow for uncertainties which

may be introduced by the possible presence of instability effects.

Temperature

Temperature is measured by analyzing the visible liéht from the detona-
tion. A color temperature is obtained from measurements at two or more
wavelengths or a brightness temperature from a single absolute measurement.
In either case, it 1s assumed that most of the radiation seen by the de-
tector originates near the CJ plane, and that the radiating material be-
haves like a blackbody. With the detector facing the oncoming wave, it is
desirable that the detonation products be opaque and the cooler reaction
zone thin, so that only light from the CJ plane is emitted and is trans-
mitted unchanged through the reaction zone. There is some evidence that
this is the case for many explosives and that the blackbody assumption is
satisfied,

Since unreacted solid explosives are opaque, they are more difficult
to measure than liquids. The technique of inserting plastic '"light pipes™
used by Gibson et al.56 may be questioned on the grounds that the results

are affected by the shock interactions at the explosive-plastic interface.
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An alternate method (making the measurement just before the wave emérges
from the end of the charge) severely limits the measurement time., Another
serious difficulty is the spurious light emitted from the voids due to
shocks either in the gas already present or in explosive product gases
which have expanded into them,

Assuming the correctness of the assumptions, temperatures can be

measured to within 100 to 150 °K for liquids and 300 °K for solids.
Gas Shock

The mass velocity of the shock produced by an explosive depends on
the shape of the expansion isentrope of the detonation products, and can
be computed from the Riemann integral if the expansion is assumed to be
isentropic. This assumption will be more nearly satisfied as the shock
moves away from the charge and the flow gradients decrease, so that
measurement over some length of run is desirable as a check, Up to the
point where side or end effects enter, the shock velocity should be
constant if the expansion 1s isentroplc, and this condition 1s met by the
experimental.data. For comparison with experiment, the Hugoniot of the
gas must be known so that the mass velocity can be obtained from the
measured shock velocity,

We use the experimental results for argon shocked by Composition B
and. air shocked by Composition B and TNT (Ref. 57; Ref. 58, Vol. 2,

p. 386).
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5.3 Results

The results of the calculation are presented and compared with
experiment in Figs. 5.1 to 5.5 and Table 5.2, Some detailed numerical tabu-
lations are given in Appendix D, We give here some comments on the data
used and on the calculated results, General discussion of the comparison
is given in the next chapter,

Data. We have selected for comparison those experimental data which,
in our judgment, carry the smallest errors (see Table 5.1). The Russian
values for the RDX velocities are within 50 m/éec of those obtained at
this laboratory. The Russian velocities for TNT are also close to those
obtained here, but not sufficiently accurate and detailed to confirm or
deny the hook at the high-density end of the curve. The Los Alamos velo-
city for high-density PETN does not agree with the curve given in OSRD 5611.
Both results for PEIN are shown in Fig. 5.1.

For pressure, we have used the Los Alamos data exclusively, since
most of the other work has been done with relatively small diameter
charges and there is an appreciable diameter effect. The Russlan pressure
measurements on RDX and INT indicate that vy is spproximetely independent
of loading density down to about 1.0 g/ec.

The temperature data of Gibson et al, are omitted because all of
thelr charges had low enough densities to give an appreclable quantity
of volds, We doubt that the spurious light from this source can be
entirely eliminated; the mich lower value of temperature obtained for

single-crystal PETN at this laboratory supports this view,
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Table 5.2,

Comparison of Calculated

and Experimental Results,

D Y T
(m/sec) (°K)
Explosive cale exp calc exp calc exp
N/ ENO, 6090 6580% £ 70 2,96 2.54 £.25 3500 3400% £100
Nitroglycerin 7286 7500b + 50 3.08 2,70 £.27 4679 3470a +100
7650°% £150 4000% £150
1000% +100
Cyanuric 6005 5545° 2.98 — 4261 —_—
triazide £
5550
55608

8'Da.‘vis and Mader

bMautZ

cVoskoboinik.ov and Apin
dGibson, et al.
®Kast and Haid

fMura.our
€schmidt
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In Figs. 5.1 to 5.5 and Table 5,2 we have indicated rough estimates
of error for the experimental data, For the most part they are the
figures given by the investigators concerned, but in a few cases we have
modified them in the light of more recent experience and the examination
of other experimental results,

Calculations, The calculated results are shown throughout as solid

lines., As mentioned earlier, the quantity

y = d 4n p
d fn v, S
1s used instead of the CJ pressure, since it is a much more slowly

varylng function of the thermodynamic state, It is related to the CJ

pressure by

The discontinuities in the curves of the CJ y of several explosives
as a function of initlial density, Fig. 5.3, and the corresponding slope
discontinuities in the velocity curves, Fig. 5.1, occur at the points
of dissppearance of solld carbon, Separate Investigation of this be-
havior for PETN revealed that the isentropes have the general shape
shown in Fig. 5.6 (the slope change is exaggerated). The change in the
logarithmic slope (y) across the phase line is about 13%., There is
actually a small range of density, on the order of 0.0l g/bc, in which
there are two CJ points (tangencies of the Rayleigh line to the equili-
brium detonation Hugoniot) so that the two branches of the curve over-

lap slightly.
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Chapter 6

SUMMARY AND CONCLUSIONS

Under the assumption that the detonation products consist of mixtures
of well-defined molecules in chemical equilibrium (plus solid carbon as a
possible separate phase), we have used the best available statistical-
mechanical equation of state theories consistent with a reasonable expendi -
ture of computer time to calculate a detonation product equation of state
for condensed CHON explosives, With this equation of state in the usual
one-dimensional hydrodynamic model, together with the CJ hypothesis de-
fining the thermodynamic state of the products in a plane, steady, un-
supported detonation, we have tested the theory by comparing calculated
and experimental results for a variety of CHON explosives, Unfortunately,
there are both theoretical and experimental deficiencies in this program.

The equation of state theory is incomplete in that it assumes know-
ledge of the potentials of intermolecular force (pair potentials)., These
can be obtained experimentally from molecular-beam and low-temperature
equation of state data, but many of them, particularly those for nonspheri-

cal molecules, are poorly known. Even with exact knowledge of the pair
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potentials, major approximastions remain in the statistical-mechanical
theory., Most of the equation of state theories for mixtures are obtained
by some type of perturbation from a pure fluid, and are so crude that at
the pressures of interest even the sign of the deviation from ideal mix-
ing cannot be predicted with any confidence. In our application there

is another major spproximation: it is assumed that the molecules are
spherical, since realistic consideration of other shapes like those of
CO2 and Héo would make the theory much more complicated.

On the experimental side, there 1s the difficulty that conditions
corresponding to the one-dimensional hydrodynamic theory are approached
only at infinite charge diameter, for the unavoidable edge effects in
finite charges produce curved shock fronts and some two-dimensional flow.
The usual practice 1s to make measurements at several charge diameters
and then to extrapolate the results to infinite diameter, a procedure
which increases both the amount of experimental work and the size of
the error. A less transparent difficulty uncovered by recent work is
the apparent instability of one-dimensional reactive flow: turbulence
and other non-one-dimensional effects sometimes appear, so that compari-
son with a one-dimensional laminar flow theory is not entirely asppropriate.
Data obtained at the laboratory in careful attempts to extrapolate pressure
measurements to infinite diameter have some puzzling features which may
be due to such effects, In the following discussion of the comparisons
between theory and experiment, these reservations should be kept in mind.

The comparison with experiment 1s complicated by the uncertain

elements of the theory, mainly +the pair potentials., Regarding these as
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a set of adjustable parameters, we varied them within their ranges of
uncertainty and found that the calculated detonation velocities and
pressures could be placed either well above or well below the experimental
values, Therefore, in making the final comparison, a single parameter,
the repulsive exponent of the pair potential, was set to give approxi-
mate agreement with the experimental Higoniots in the p-v plane for the
more commonly used explosives, Calculations were then made for 13 CHON
explosives and the results were compared with experiment (Chapter 5).
The maximum deviations beyond experimental error were about 500 m/é in
detonation velocity,* 45 kb in pressure, and 1000 °K in temperature., As
a group, the oxygen-excess explosives are the worst offenders.

A possible next step is to ask whether there is some set of parameter
values which lie within the ranges of uncertainty and give agreement with-
in experimental error. A definite answer is precluded by the amount of
work involved, but the parameter variations of Chapter 4 give some hints.

Although the average pair potential can be varied enough to make
all of the calculated velocities and pressures too low or too high, the
relative deviations from experiment and the values of CJ vy and tempera-
ture can be changed very little in this way. The same can be said for
the different mixture theories. It is quite possible that the simple
representations used for both of these very complex functions are in-

adequate. Although the forms used probably cover an adequate range of

*
Excluding the extremes of composition in the liquid methane-oxygen

system, where velocity deviations of about 800 and 1800 m/é are found.
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'"hgrdness", the real functions may have a mich more complicated shape
which could markedly affect the results,

Changing the carbon heat of formation presenté Interesting
possibilities for changing both the CJ y and the shape of the detonation
velocity curves. Again a simple parameter is used to represent a mch
more complicated effect: +the forces acting across the solid-fluild phase
boundary.

The molecular sizes (values of ¥ for the individual pair potentials)
have the greatest effect on the calculated results, In addition to the
results presented in Chapter 4, the calculations with the "geometric™"
sizes in Appendix E show what large changes in the results can be had
from apparently reasonable changes in these values. They have been the
principal source of varlation in previous work of this sort with simpler
equations of state, and would undoubtedly have to be varied to achieve
mich improvement in the agreement’with experiment,

We eschew the large amount of work required to determine whether
agreement with experimeﬁt might be obtained by variation of the uncertain
elements of the theory and the parameters of the experimentally determined
pair potentials., An affirmative result (which could signify nothing more
than a cancellation of errors) might be obtained quickly, but the more
Interesting negative answer demonstrating the inadequacy of the theory
could be established only by an exhaustive survey of all possible varia-
tions.

The conclusions are not encouraging., The possible instability of

one-~dimensional reactive flow casts doubt on the applicability of the
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simple hydrodynamic theory. The available body of equation of state theory,
supplemented by experimental knowledge of the pair potentials, is a crude
approximation to the multicomponent systems of interest. With slight
calibration, this erude but relatively complex theory gives only fair
agreement with experiment, comparable to that obtained with simpler and
more empirical forms.

However, there are some new and interesting qualitative features,
particularly in comparison with results from some of the empirical equa-
tions of state (Appendix E). The dlp in the isentrope, Fig. E5, resulting
from the attractive portion of the potential, is not produced by any of
the simple theories; it partially explains the rather surprising experi-
mental conclusion that some isentropes have a gamma-law form. The dis-
continuities in the CJ vy and temperature curves and in the slopes of the
detonation velocity-density curves, iﬁ Figs, 5.1 and 5.3 at the point
where the solid disappears, are quite pronounced; The increased sensi-
tivity of the results to variations in the molecular sizes should serve
as a warning against a too-cavalier use of the empirical forms.

For practical purposes, probably the best course of action is to
settle on some one form --- in the present state of knowledge a frankly
empirical form may be as good as any and would probably have the advantage
of simplicity --- and sustain a continuing program of calibration and
checking as experimental data are accumilated., The present work suggests
the magnitude of the errors involved, and should serve as a warning against

putting too much faith in the results.
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Appendix A

EQUATTIONS

A,1 Gas Equation of State

The LJD cell theory is used. For a single shell of neighbors, we

have

where the

and the g

Ao1+ I | ployme(1))
! -1
- R e - 5]
t oW
Vo1 e"l[y—z-:c‘df(t) {“3'—8709]
- L= - 2 3 a " Tg(@)
o -mpr (A.1)

cell potential w is defined by the smoothing integral
wix,t) = [T x/[£(tx’) - £(t)lax” | (A.2)
lx

function by the cell integral

g(z) = 2]2 (z) e (%,8)/04, . (A.3)
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Here A’ is the Helmholtz free energy, N is Avogadro!s number, and Z is

the coordination number of the lattice. (Z = 12 for a face-centered

cubic lattice.) Physically, the integration variables x and x’/ may be
regarded as the distance from the cell center, in units of a, the nearest-
neighbor distance, The upper limlt b is the distance from the cell center
to its boundary in the same units, All dimensionless thermodynamic quanti-

ties are functions only of the reduced temperature 6, and the reduced

N
volume t° ==<§%> (= ZQZEEE;;g

The pair potentlal has been written in dimensionless form with a reduced

for a face-centered cubic lattice),

argument
u(r) = XI*f(x/r*) . (A.L)
The primes denote imperfection or configurational thermodynamic functions

on a volume basis, that is, the difference between the total value of the

quantity at glven T and V and the value for an ideal gas at the same T and
V.
Explicit expressions for the cell potential w for the pair potentials

used here are given in references 3 and 34,

A.,2 Solid Equation of State

We sketch the derivation, as well as giving the final results. The
assumptions are:

(1) E(p,v) is linear in p .

(2) E is xnown on the shock Hugoniot pHCv) for v <v_, and on the

line p = 0 for v > Vo oe
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(3) Onp=0:

= Cp(Tl - T

) (A.5a)

< H

'_J

— -1= o:(Tl - TO), o and cp constant, (A.5b)

<
o}

where subscript zero denotes the initial point (normal p and T) and
subsceript 1 denotes values on the line p = o. These assumptions lead

immediately to

E = f£(v)p + g(v) (A.6a)

£(v) =YG- (A.6b)

g(v) = pH(v)[%(vo -V) - %J + E_ for v <v_ (A.6c)
S,

== ;;-- i) for v >v_ . (A.64)

Differential equations for p and T on an dsentrope are given by the

thermodynamic relations

P &v
he) 3 In 1
() = ———= - = — . (A.7 )
®m s fEE

With the above expression for p, these become

£/ (v) ! 4
_@_%>S=p+pfg)+g(v)’ 8;12:_(} . (4.8 )

The solutions are

p = o@D @D ar, (r.50)
V.
1
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= (1’—>~G : (A.9b)
TV )
Glven p and T, we can, in effect, write a single equation determining v
as follows:
(1) Guess v.

(2) Solve Eq. A,9a for v (When the integral is written out, v,

l.
(G+1)
appears only in an additive term of the form (v:L ) .)
(3) Solve Eq. A.5b for T,, and Eq. A.9b for T.
(4) Compare the calculated T with the given T.

(5) Guess a new v, and iterate until agreement is obtained in T.

A,3 Thermodynamic Functions

Tabular values of the enthalpy are fit with a polynomial in T, This
fit is then differentiated and integrated to give the heat capacity and
entropy, so that a thermodynamically consistent set of functions is
obtained..59A_L’L numerical values except those for metha.ne6o are from the

NBS Tables .23

Ak Mixture Theories

We give here the equations for the most-used mixture theories.
Equations for the others can be found in reference 36 and sources quoted
there, The independent variables are T, p, and the mole fractions
Xy (1 =1 4esee ¢ with ¢ components); the dependent variables are F',

HE', V, and w{ (molar Gibbs free energy, molar enthalpy, molar volume, and
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chemical potential of species i, with primes denoting imperfection
quantities on a pressure basis)., It is assumed that all pure, or reference,
fluids obey the same equation of state, denoted by the subscript r and given

as a function of T, p, and the constants of the pair potential:

Fl = F,(ET—;- , %’) , V= @ARP . (A.10)

Ideal Mixing

The free energy is glven by

7 - S T pvi
F (T,P,X) =z xiF T% » BT ’ (A.11)
1l 1 &

with similar expressions for volume and enthalpy. The imperfection
chemical potential of species i is just the free energy of the pure
substance at the same T and p

v

- T i

“{(T’P,x) =F T% > RT¥ . (A°12)
i i
Corresponding States (CS) Theory

A reference fluid is chosen with potential constants
c c
™ = H ™% = = Al
T T;:: Z xixJ ¥55 * r;{' Z xer?J . (A.13)
i, 1,3=1 '

The LH equation (2.11) is used with this substance as reference fluid.

Thus, the sums in Eq. 2.11 venish, and F’, H', and V for the mixture are
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the same as those for the reference fluid., The equations for the chemical

potentials can be written as

tonenf(@)  Jeoe-m2E) L e

3’374 3’37‘1

with

<m> <ZJ‘T‘*;" ) %(§>n={32x3;§"—-1>-

(A.15)

One-Fluld Theory

The mixture is replaced by a single substance with mean parameters

given (for the LJ potential) by:

_ (s )]n/(n-m) _ 5 ‘1/(n...m) c n
T* o= [Egm) ]m/(n-m) ™ = [E{%} ;3 Z(n) = z xiij)ie;](I?J) 3
i,Jj=l

¢ m
Z(m) = Z xixj'.reie ¥ . (A.16)
1,3=1

The chemical potentials are given by Eq. A.1lh, with
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A.5. Gas-Solid Mixture

The molar quantities for the mixture are linear combinations of
those for the solid and gas (sub s and sub g).

v

x V., (T,p) + xgvg(T,p)
H = XS[Héid) (T) + Hs'(T,p)] + xg[féid) (T) + Hé(T,p)]

ete.

n n
S g

X =——; xg = 52_7732; s
where n and ng are the number of moles of solid and gas products, and the
superscript (1d) denotes ideal thermodynamic functions.

As described in Appendix B, the principal independent variables are
T end p; but T and V are used in the gas equation of state. The gas im-
rerfection functions relative to ideal gas at the same T and p are related

to those relative to ldeal gas at the same T and V by
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{E'(T,p)} {E’(T,V)}
E'(T,p) - B'(T,V)

A’(T,p)} {A’(T,V)} v
= -t & A.18
{F'(T,p) e) I (:28)

where

F’(T’P) =F - F(id)(T’p)

FIT,V) = F - FOD (1 v)) ete., (A.19)

Specific quantities are obtained by multiplying the molar ones by
% , where n is the total number of moles of products (n = n, o+ ng) and M
ig the number of grams of material considered (ordinarily the molecular
welght of the und.etoné.'ged substance), The zero of energy 1s taken as

elements at O °K.

A.6 Hugoniot Equation and Heat of Explosion

The Hugoniot equation is given by
' n n
h-ho-%(p-po)(vo-i-v):O, v=—JIMO, h=gH ,
(A.20)
where hO is the specific enthalpy of formation of the explosive from

elements at T° , and h 1s calculated as above but with elements at T, for

the zero of energy.

The specific energy of explosion is given by

Q = %14;- ; xi[AHf(T-O)]i + xs[AHf(TO)]S - b - PMORTO ,  (A.21)
(g&s)
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where X, is the mole fraction of speciles i in the gas phase, and the AE%

are the enthalpies of formation at TO.
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Appendix B

CODE AND METHOD OF CALCULATION

The machine used was the IBM 7090, Much of the coding was done in
the FORTRAN II system, but for both speed and convenience, some parts

were done in longhand using the FAP assenbly program,

B.1 Major Subroutines

Most of the computational work is done by six major subroutines.
We give here a brief description and abbreviated set of specifications

for each,

FROOT -~ Equation Solver

At many points in the calculation, the solution of a non-linear or
transcendental equation is required. This is obtained by writing the
equation as a function whose root is the desired solution, and locating
the root by an iterative search. Given a code to calculate the function,
FROOT controls the interation by supplying successively improved guesses

for the Independent variable and testing for convergence at each stage.
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The method of regula falsi is used, with some added logical control which

ensures convergence for any monotone function and often helps when the
root lies near a pole or an extremum of a more complicated function.
The detonation calculation consists of a hierarchy of iterations,
At the top, a nonlinear equation such as the Higoniot relation must be
solved, but the calculation of the function for this iteration requires
the iterative solution of another nonlinear equation, and so on through
several stages. The routine is coded in such a way that it can similta-

neously control any number of iterations interlocked in this way.

GES - Gas Equation of State

This routine calculates the pure-component equation of state for the
gaseous mixture, using the LJD cell theory, The cell integrals are done
numerically using the 16-point Gauss method, The inner (smoothing) in-
tegral, which gives the cell potential, can be evaluated analytically for
all of the forms of the pair potential used here,

The integrands of the cell integral have the general form

At high densities they are squeezed up into a small fraction of the nominal
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range of integration. Accuracy is preserved by testing for the point at
which the integrand.effecti&ely vanishes and setting the sixteen arguments
for the Gauss quadrature accordingly. It is perhaps worth noting that our
form of the g integral (given in Appendix A) represents an improvement over
that used by HirschfelderBLL and by Wood.and.Fick.ett6l in that the infinite
slope of the integrand at the origin and the resulting numericsl compli-
cation have been removed,

Temperature and volume are the natural independent variables, Given
these, the pressure and energy, and all of their derivatives with respect
to temperature and volume, are also calculated. While this requires the
calculation of several more integrals, it costs 1little in additional
computing time,

Unfortunately, temperature and pressure are more convenient for the
other parts of the detonation calculation, so an iterative loop controlled
by FROOT i1s used to determine the gas volume for a given pressure and
temperature.

The specifications are:

Input: (1) T and p.

. (2) Intermolecular potential constants:
@ (or n), r*, T*,

Output: Gas volume and all imperfection thermodynamic functions and

their derivatives.,

Time: About 0,15 sec, for the primary calculation at given T and V;

two to four times this for the overall calculation at given

T and p.
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SES -~ Solid Equation of State

This routine calculates the solid equation of state by the method
outlined in Appendix A. The required iteration is controlled by FROOT.
The specifications are:

Input: (1) Constants characterizing the solid.

(2) T and p.

Output: Volume and imperfection tﬁermodynamic functions of the

solid,

Time: Less than 0,02 sec,

ITF - Ideal Gas Thermodynamic Functions

This routine calculates the ideal gas thermodynamic functions from
analytic fits of calculated results, using the approach described in
reference 59 in which all thermodynamic functions are derived by appro-
priate operations on the energy fit and are thus internally consistent,
The specifications are:
Input: (l) Coefficients of the energy fit and heats of formation.
(2) T, p, and mole fractions.

Output: Ideal gas thermodynamic functions for the gas mixture
including chemical potentials with appropriate energy zero
for each individual species,

Time: Less than 0,02 sec,
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EQ -~ Equilibrium Composition

The method of Brinkley (Ref. 46, p. 58) is used with some refinements.,
The necessary matrix equation is solved to allow specification of the sys-
tem in terms of its atomic composition rather than amounts of a set of
compounds from which it could be prepared. The entire list of chemical
formilas is given as Input, and a convenient means for specifying the sub-
set of independent components is provided. The special method for homo-
geneous systems is used, modified to allow for one additional pure phase;
this results in an iteration set of linear equations which is of lower
degree than that given by the general theory., Automatic determination of
the correct number of phases is provided. The specifications are:
Input: (1) Atomic composition of the system,
(2) Chemical formulas of the species.
(3) Specification of the independent components.
(4) Standard free energies of each species for the

calculation of the equilibrium constants

F, = My = in x

i i’

where My and.k are the total chemical potential and

1
mole fraction of species i, (For the solid, F‘r is Jjust
its total free energy.)

Unfortunately, the FI in general depend on the composition so that

an outer iteratlion becomes necessary. The procedure used is:

(1) Given the x;, calculate a set of FI.
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(2) Using this set of FI 50

(3) Take the mean of input and output x,, and repeat steps (1) and
i’

as Input, calculate a new set of x

(2) until the input and output x, agree.

from given F‘r is about

The time required for calculating a set of x 1

1
0.1 sec, The complete process takes several times as long.

MIX - Mixture Theory

This code calculates the chemical potentials at each cycle of the
outer iteration of the equilibrium calculation, and the thermodynamic
functions of the gas phase when the final composition has been found, The
amount of calculation done in the equilibrium iteration depends on which
mixture theory is used., For ideal mixing, the chemical potentials are
independent of the composition and the outer iteration is completely
eliminated, but the time-consuming GES calculation must be executed once
at the beginning for each species present in order to get all the chemical
potentials. For the LH theory, one execution of GES is sufficient; the
chemical potentials mist be recomputed for each cycle of the outer itera-
tion, but since the reference fluld is fixed, the GES calculation need
not be redone. The equations for the chemical potentials are quite simple,
so this theory gives the fastest calculation. For the CS and one-fluid
theories, the GES calculation must be repeated at each cycle of the outer
iteration because the reference-fluid potential constants depend on the
composition, The calculation time can be appreciably shortened by applying

the LH type of expansion to the pure fluild to similate the results of a
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new GES calculation with the slightly changed values of T% and r* Tresult-
ing from the successive changes in composition., As a check, the genuine
GES calculation is repeated after the composition has converged, and if
1t differs significantly from the similated one the whole process is re-
peated,

The LH theory gives the shortest calculation time; with the above
shortcut the CS and one-fluid theories are next, and ideal mixing takes
longest. The actual calculation time for MIX is small compared to the
time required by EQ to calculate a new composition from the phemical
potentials, The overall time differences arise from the different ways
in which MIX controls the outer equilibrium iteration, as described

above,
B.,2 Control

A small control code named MES (mixture equation of state) causes
the major subroutines to be executed, then uses the resulting information
to calculate the properties of the two-phase mixture comprising the
detonation products. The rest of the code is based on this routine.

At the next higher level, control codes calculate various curves
such as the detonation Higoniot and isentropes. The Hugoniot equation is
solved by FROOT, taking p as the independent variable and iterating on T,
with use of MES to calculate the energy and volume at each step. The

calculation of other curves is similar; for exesmple, isentrope points are

calculated at given p by varying T under control of FROOT until the entropy
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takes on a specified wvalue.

The calculation of the CJ state is somewhat more involved, A value
of p 1s guessed, and a Hugoniot point is calculated at this p. The deri-
vative (ap/av)s is then gotten from a routine which calculates adjacent
points on sppropriate curves and gets thermodynamic derivatives by numeri-
cal differencing. This value for the slépe of the isentrope 1s compared
with the slope of the ray from the Higoniot point to(go, vo) to test the
CJ condition. The pressure is then varied under control of FROOT until
the CJ condition 1s satisfied,

Calculation times are about 1.5 sec, for an equation of state point
at given temperature and pressure, 5 sec, for a Hugoniot or isentrope

point, and 30 sec, for a CJ point,
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Appendix C

EXPERIMENTAL DATA FROM THIS LABORATORY

The unpublished data obtained at thils laboratory which were used in
the comparisons of Chepter 5 are presented in Table C,1, Comments follow.
The velocity measurements on HNB and TNTAB were terminated before

completion for safety reasons. A similar study of hydrazine nitrate,
terminated before completion for the same reason, gave velocities within
50 m/é of the straight-line fit referenced in Table 5.1,

The pressure measurements are subject to the uncertainties discussed
in Chapter 5. The value for nitromethane is for infinite diameter, ob-
talned by extrapolating results at different diameters. The values for
PETN and 1\11/1/131\103

values for these explosives were estimgted from pressure vs. reciprocal

are for the charge diameters shown. Infinite-diameter

diameter data for other explosives and are shown in parentheses with
corresponding larger errors., The error estimates shown do not allow for
possible deviations from plane wave, laminar-flow values due to insta-

bility effects.

133




HeT

Composition

Table C.1l. Explosives Data, Los Alamos Scientific Laboratory

Charge

Velocity

Mole Fraction Density Diametexr Measurement Detonation Velocity Pressure ’l‘mxrpera:bure5
Explosive of TNM (8/ce) (in) Method (/) (xb) Y (°K)
PETN L6m 123 pins 797825 () 30046 (2.20:0.23)%) 3400800
(323432)%
HNB 1.76 A% pins gage100(2)
M630+5200p°:ﬂ.00(2)
0.8%p_s1.76
TRTAB 174 WA pins 8576£100(2)
Due730+3360p°ﬂ00(2)
o.as%ﬂ.’{s
104/E0, 1,293 11/2 smear 6580470 (3) ms:308)
camers (156416)  (2.5420.25)3)  3u004200
N6 1.60 1 smear 750050+) 370£100(7)
camers
/T 0 131 13p pins, 6au70(5) %Wy 203 33804100
0,067 1.20 3/ arrival 6530+100(5) 34804100
time®
0.20 1.31 3/ " 00(5) 37504100
0.333 1.0 3 " 6780100(3) 35804100
1.0 1.6 3/ " 62502100(5) 30754100(?)
pins® 6361140 (5)

PBame 1/2 in. shots were fired to check the dismeter effect, found to be small, Brass confinement was used.
b'Ve:l.oc:l.t:l.els were obtained relative to nitromethane by comparing the arrival time of the wave at the end of a tube of known length

with that for a similtanecusly fired tube of nitromethane,

indepenient method: pins placed outside of the confining tube.
dE'c'Ihe velocity for pure nitromethane is that given in Table 5.1, included here for completeness,

t

“The

imated infinite-diameter values for PETN and NM/EX

sure for NM is an infin{te_-diameter value cb

The gecond velocity listed for pure tetranitromethane was obtained by an

are given in parentheses.

See text,

pres d by extrapolation from data at several dismeters,
(1) B, G. Craig (2) M. J, Wrizar (3) W, C, Davis, J, B. Ramsay (4) C, W, Mewtz (5) W. C. Davis, C, Mader,




Temperatures were obtained from measurements of the absolute inten-
sity of visible radiation from the detonation. Absolute brightness was
measured to an accuracy of about 100 °K, and relative brightness to an
accuracy of about 25 °K, If the radiation has blackbody character and
most of 1t comes from the detonation products in the neighborhood. of
the CJ plene, then the CJ temperatures are known to about this degree
of accuracy., There is some evidence that these assumptions may not be
satisfied for nitroglycerin and tetranitromethane, where the detonation
products appear to be quite transparent to visible radiation., The error
estimates shown do not allow for the possible failure of these assump-
tlons,

The heats of formation of HNB and TNTAB listed in Table 5.1 were

obtained by A, Popolato of this laboratory.
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Appendix D

NUMERILCAL RESULTS

We give here machine lists of the results of some of the calculations,
Table D,1 is a partial listing of the CJ points from the calculations de-
scribed in Chapter 5. Table D,2 is a detailed listing of points on the
detonation Hugoniot, CJ locus, and CJ isentrope of Composition B, The
parameter set for all of these results is the "central point" set described
in Chapter 4 and used for all of the calculations in Chapter 5:

(1) The LJD equation of state, with the CS mixture theory.

(2) The MM potential form with o = 13,

(3) The experimental individual potential constants r§ and T? from
Table 2.1.

(h) Zero for the carbon heat of formation.

A key to the labels precedes the tables,
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KEY FOR TABLES D.1 AND D.2*

Symbol Definition Units
RHO initial density g/cc
P pressure mb
V/Vo relative volume -_—
7 temperature °k
P mass velocity cm/usec
D detonation velocity cm/usec
Vv (1ine 2) specific volume ce/g
E specific energy mb-cc/g relative to
elements at 0 °K
RBAR mean % for the product mixture 1
T* = ggsxix Jr*{ 5
VBAR close packed volume of a system cc/mole gas
of spheres of diameter T*a(N /.\/E)'z——p
TBAR mean T* for the product mixture °K
T™* = gEBxix J'l‘*i" 3
Q heat of detonation keal /g
N8 moles of solid moles/mole rE.©
NG moles of gas moles/mole H.E,
N total moles of products moles/mole H.E,
vs volume of solid cc/mole solid
VG volume of gas cc/mole gas
Vv (line 3) total volume of products cc/mole products

c(s), N,, ete. composition (c(s) 1is solid carbon) moles/mole H.E.

GAMMA (3 £a /3 40 v)g —_
ALPHA (&/3pv),, -
BETA (3&/3pv),, -—-
c sound speed cm/psec

Bhere two or more successively listed explosives have the same colurm
headings, the headings are given only with the first explosive.

bIn the "CJ Isentxope! portion of Table D,2, U appears on the last line
of the 1ist. The quantity W appeering in the space normally occupied by U 1is
the work done, in kcal/g, on the surroundings by the explosive product gases
vhen they have expanded to the pressure P in a hypothetical experiment which
keeps the products in a uniform state (in space) at all times.

“The molecular weights of the explosives are given with the labels.
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Table D. 1.

ciIs}
coz2
GAMMA

1.8000E 00
4.2610L-01
1.4275E 00
1.4275E 00
1.4630E 00
3.2916E 00

1.4000E 00
5.2984E-01
9.8082E-01
9.8082E-01
1.2892E 00
2.8727E 00

1.0000& 00
7.2485E-01
0.
0.
9.1465t-01
2.6344E 00

COMP. 8

1L.7140E 00
4.4516E-01
2.6640E 00
2.6640L 00
1.5194t 00
3.2195E U0

1.4000L CO
5.3059E-01
2.27T82E 00
2.2782E 00
1.3562E 00
2.8885E 00

1.0000E 00
7.1489E-01
l.2444t 0C
l.2444%E OC
Y46401E-01
2.5075L 0O

N2
02
ALPHA

3.2451E-01
2.7402E-02
7T.5642E 00
2.9990E 00
2.2T13E-05
3.6375E 00

1.9189€e-01
2 .409%4E-02
7.9182e 00
2.9981t 00
4.7595€E-05
2.5621E 00

1.0353e-01
2.0640E-02
8.7449L 00
2.9981E 00
4.0143L-05
2.T485E 00

2.5915E-01
2.1966E-02
7.0085E 00
2.4817€ CO
1.8103E-05
3.6281E 00

1.6974E-01
1.7640E-C2
7.3179E 0¢
2.4814L 00
2.6884E-05
2.7589E 00

9.4560E-02
1.7934£-02
8.1515L CO
2.4815%: 20
1.7903E-0°
2.1784E VO

= 222

v/vo
RBAR

co
CHa
BETA

1.6698E-01
3.8024E 00
8.9917E 00
1.0481CL-01
4.6715E-03
1.4089E CO

T.41717E-01
3.8197€ 00
8.8990t 00
6.7849E-01
5.1470£-02
1.2400E 00

71.2485C-01
3.8491E CO
8.7449E 00
1.9569C 00
1.2848€-01
1.4229E 00

M= 224

7.6301E-01
3.8022¢t 00
9.6724t CO
1.8742E-01
9.1803L-03
1.4375E 00

7.4283E-01
3.8178E 00
J.5961t 00
6.9808E-C1
4.7558E-02
1.3013E 00

7.1489e-01
3.8542E 00
9.3959t 00
2.0241L 00
1.4752E-01
1.2676E 00

T
VB AR
Vs
H20

c

4.0396E 03
2.3420€ 01
3.7974L 00
2.9671L 00
0.

6.7464E-01

4.3790E 03
2.3742E 01
4.3414E 00
2.7391E 00
0.

5.4043E-01

4.3739E 03
2.4295E 01
4.8109E 00
2.2100E 00
0.

4.4462E-01

2.9629E 03
2.3417€ vl
4.0370C 00
2.7T721E 00

6.0944E-01

4.1465E 03
2.3707E 01
4.4395E V0
2.5872E 0O
0.

£.1005E-01

4.1233E 03
2.4390E 01
4.8546t 00
2.0459L 00
0.

4.1177L-01

139

TBAR
V6
NO

2.0496E-01
l,4084E 02
1.1796E 01
1.9918€-03
0.

1.8813E-01
1.3595€ 02
1.4326E 01
3.8360£-03
0.

L.6878E-01
1.2572E 02
1.8412€ 01
3.7188E£-03
0.

1.8929€E-01
1l.4245E 02
1l.2684E 01
1.5630€-03
0.

l. 7658E-01
1.3778E 02
1.4849E 01
2.2818t-03
0.

1.6422F-01
1.2692E 02
1.8891c 01
1.9415L-03
0.

Calculated CJ Points for the Explosives of Table 5. 1.

<00

H2

8.7959E-01
1.4944E 00
1.0526E 01
2.3513E-02
0.

7.2855E-01
1.4330€ 00
1.3225E 01
1.5792E-01
0.

6.1340E-01
1.2946E 00
1.8412E 01
5.3301E-01
0.

7.9873E-01
1.4181E 00
1.0302e 01
3.7025E-02
0.

6.8663E-01
1.3648E 00
1.2377E 01
1.4517E-01
0.

5+7599€E-01
1.2242E 00
1.7032€ 01
4.8652E-01
0.




INT
1 RHO
2 vV
3 NS
cts)
co2
GAMNA

1.6400E 00
4.6537E-01
5.0459E Q0
5.0459E 00
1.6360E 00
3.2232¢ 00

1.4000£ 00
5.3354E-01
447367E 00
4.7367E 00
1.4853E 00
2,9519E 00

1.0000E 0O
7T.1639E-01
3.8071E 00
3.8071E 00
1.0731E 00
2.5259E 00

PETN

1.6000E 00
4.6602E-01
4.6502E-01
4.6502E-01
3.6141E 00
2.9315E 00

1.4000& 00
5.3353E-01
0.
0.
3.2933E 00
2.9517E 00

1.0000€ 00
7.1529e-01
0.
0.
3.1850E 00
2.5124€ 00

ZmT

N2
02
ALPHA

1.8376£-01
1.2958E-02
5.9260E 00
1.4997€ 00
7.0253E-C6
3.9081E 00

1+3062E-01
1.1496E-02
6.1803E 00
1.4996E GO
7.7187C-06
3.1813E 00

7.0933E-02
9.7508£-03
6.9492E 00
1.4997E 00
4.0151E-06
2.5524E 00

2.3129E-01
5.5371E-03
1.0501E 01
1.9968E 00
1.8858E-04
2.6989E 00

1.7098E-C1
2.6050E-03
1.0937E 01
1.9965E 00
2.1110E-C4
3,5429E 00

8.9596E-02
-9.3367E-05
1.1022E 01
1.9807E 00
4.48B36E£-03
3.5847E 00

M= 227

v/voO
RBAR

co
CH4
BETA

7.6320E-01
3.8000E 00
1.0972E 01
3.0390E~01
1.4208€E-02
1.5228E 00

7.46S6E-01
3.8138E 00
1.0917E 01
7.3628E-01
4.1682E-02
l.4165E 00

7.1639E-01
3.8497E 00
1.0756E 01
1.9978E 00
1.2199E-01
1.4064E 00

M= 316

7.4564E-01
3.8378E 00
1.0966E 01
9.0239E-01
1.8527E-02
1.2618E 00

7.4695E-01
3.8440C 00
1.0937E Cl
1.6733E 00
3.3421E-02
1.5391E 00

7.1529E-01
3.8388E 00
1.1022E 01
l.8141E 00
8.7414E-04
1.8249E 00

H20

3466208 03
2.3376E 01
4.3531E 00
2.4235E 00
0.

5.2500E-01

3.7203E 03
2.3632E 01
4.6273E 00
2.2924E 00
0.

4.5357E-01

3.6306E 03
2.4306E 01
449835E 00
1.8555E 00
0.

3.5827E-01

4+5005E 03
2.4080E 01
4.1699E 00
3.8627E 00
0.

5.6211E-01

4.5159E 03
2.4197E 01
4.4475E 00
3.7326E 00
0.

5.18S1E-01

4.7535E 03
2.4100€ 01
4.9133E 00
3.7682E 00
0.

4.0126E-01

140

TBAR
V6
NG

1.6289E-01
1l.4696E 02
1.4130E 01
6.1273E-04
0'

1.5365E-01
1.4224E 02
1.6062E 01
7. 0429E-04
0'

l.4184C-01
1.3003E 02
2.0684E 01
5.0086E-04
0.

1.9175E-01
1.5126E 02
1.3846E 01
6.4084E-03
0.

1.7580E-01
1.4640E 02
1.5424E 01
7.0932E-03
0.

1.5971E-01
1.4503E 02
2.0518E 01
3.8662E-02
0.

<0QO

H2

6.8787E-01
1.2808E 00
9.6336E 00
4.8126E~-02
0.

6.0722E-01
1.2373€ 00
1.1100E 01
1.2423E-01
0'

5.0010E-01
1.1081E 00
1.5127€E 01
4.0053E-01
0.

7.5385E-01
1.4887€E 00
1.3436E 01
1.0024E-01
0'

6.9471E~-01
1.4347E 00
1.5424E 01
2.0056E-01
0.

5.6098E~01
1.4169E 00
2.0518€ 01
2.3004£-01
0.




HYDRAZ INE N1TRATE

1 RHO
2 Vv
3 NS
sOL
GAMMA

1.6000E 00
4.8952E-01
O.
0.
3.6134L CO

1.4000E 00
5.5163E-01
0.
0.
3.3915E 00

1.0000E 00
7.3714E-01
0.
0.
2.8042E 00

HNB

1 RHO
2V
3 NS
Cis}
GAMMA

1.7600E 00
4.2415E-01
2.5874E 00
2.5874E 00
2.9449E 00

1.4000E 00
5.1899€-01
1.9210E 00
1.9210E 00
2.6575E 00

1.0000E 00
7.0840E-01
8.8075E-01
8.8075E-01
2.4294E 00

p
E
NG

N2
ALPHA

2.3539E-01
-5.4973E-03
4.2500E 00
l.4785E 00
3.8579E 00

1.6613E-01
=7.9319t-03
4.2500E 00
1.4728E 00
3.6947C 00

8.0548E-02
-1.0856E-02
4.2501L 00
1.4653E 00
3.3145E 00

p
E
NG

N2
ALPHA

2.9054E-01
4.T225E-02
6.4293E 0OC
2.98458 00
2.9073E 00

1.9077€-01
4.4929E-02
7.0965t 00
2.9836E 00
2.2870E 00

1.0873E-01
4.2154E-02
8.1313E 00
2.9884E 00
2.1218E 00

v/vo
RAAR
N
H2U
rETA

7.8324€E-01
3.6195E 00
4.2500E 00
2.5000E 00
l.3444E 00

7.7229E-01
3.6195E 00
4.2500E 00
2.5000E 00
1.3843E 00

T.3714E-01
3.6196L 00
442501 00
2.4999C CO
1.5386E CO

M= 252

v/vo
RBAR
N
co
BETA

7.4651L-01
4.1091E 00
9.01l67€ 00
8.5854E-01
1.3268E 00

7.2659E-01
4.0894t 00
9.Cl74E 00
2.1929¢ 00
1.2369E 00

7.0840E-01
4.0656E 00
9.0120f 00
4.2626E 00
1.2850t 00

{
VBAR
Vs
NO
C

2.4356E 03
2.0201€ 01
4.0809E 0O
4.2958E-02
6.4527E-01

2.6536E 03
2.0201E 01
4.4002E 00
5.4389E-02
5. 5750E-01

2.9256E 03
2.0202E 01
4.889T7E 00
6.9313E-02
4.0804E-01

T
VBAR
Vs
NO
C

5.4207€ 03
2.9558E 01
3.9640E 00
3.0928E-02
6.0242€-01

5.6437E 03
2.9135E 01
4.3936E 00
3.2724E-02
941295E-01

5.T046E 03
2.8627E 01
4.8364C 00
2.31J34E-02
4.3257E-01

141

TBAR
vG6
H2

1.7858E-01
1.3093E 02
1.0951E 01
2.4T92E-07

1.6438E-01
1.3087E 02
1.2341E 0!I
3.8745E-06

1.4551E-01
1.3079E 02
1.6491E 01
1.0655E-04

T8AR
vG
co2

2.0457€-01
1l.4927E 02
1.5036E 01
2.5540E 00

1.9302E-01
1.3920E 02
1. 7248E 01
1.8861E 00

1. 7806E-01
l.2743E 02
2.1439E 01
8.5669E-01

<D0

02

8.2384E-01
9.0540E-01
1.0951E 01
2.2852E-01

7.2188E-01
9.0280E-01
1.2341E 01
2.2281E-0l

5.5356E-01
8.9935E-01
1.6491E 01
2.1540E-01

<DO

02

8.0699E-01
1.6347E 00
1.1859E 01
1.2342E-03

7.0597E-01
1.5252E 00
1.4509E 01
1.0786E-03

0.1062E-01
1.3588E 00
1.9817€ 01
4.T713E-04




Cis})
GAMMA

1.7400L 00
443205€-01
2.5981E 00
2.5981E 00
3.0285€E 00

1.4000E 0O
5.2380E-01
1.8787E 00
L.8787C 00
2.7498E 00

1.0000E 00
7.1368E-01
7.51856-01
7.5185E-01
2.4925E 00

NG
N2
ALPHA

3.1129€-01
5.8388E-02
9.4238t 00
5.9793E 00
2.8738E 00

2.0525E-01
5.5733E-02
1.0146E 01
5.9762E CO
2.3235E u0

l.1460€-01
5.2591E-02
L.1266E 01
5.9824L CO
2.2159E 00

M= 336

v/Vve
RBAR
N
co
BETA

7.S1717€-01
4.0903t 00
l1.2022€ 01
8.4753E-01
1.2791€E 00

7.3332E-Cl
4.0766E 00
1.2025€ Cl
2.2924E 00
1.2086E 00

7e1368E-01
4.0593k 00
1.2018cC 01
4.532¢€L 00
1.2902E 00

142

NO

5.3050E 03
Z.9153C 01
3.8859E VU
4.1449€-02
6.3820E-C1

5.6759E 03
2.8862E 01
4.3269E 00
44T7584E-02
5.4372E-01

5.85E8E 03
2.8495E 01
4.8078E 00
3.5281€-02
4.5151E-01

TBAR
vG
co2

2.10/3E-01
l.3960L 02
l.4342C 01
2.55%44E 00

1.9773€E-01
1.3284E 02
l.6555E 01
1.8289C 00

1.8115E-01
1.2443€C 02
2.0976E 01
7.1557€-01

<0DO

02

§.4894E-01
1.6046E 00
1.2083E 01
1.1228E-03

7.4145E-01
1.5148E 00
1.4645E 01
1.1004E-03

6.3266E-01
1.3801E 00
1.9965E 0l
5.0137E-U4




NM/HNO3

1 RHO p
2 v E
3 NS NG
ci1sy) N2
coz2 a2
GAMMA ALPHA
1.2930t 00 1.2118€E-01
S.TT9TE-01 -1.2656E-02
0. 2.06¢0E 00
0. 4.0262E-01
4.,258TE-01 1.8984E-01
2.9575E 00 3.7792E 00
NITROGLYCERIN
1.6000E CO 2.0797e-01
4.7196E-01 4.0319E-03
0. 7.2705€ 00
O. 1.4083€E 00
2.9623E 00 1.7883E-01
3.0841E 00 4.1253E 00

CYURANIC TR1AZIDE

1 RHO
2 Vv
3 NS
cis}
GAMMA

1.1500E 00
6.5098E-01
3.0000t 00
3.0000t 00
2.9781E 00

p
E
NG

N2

ALPHA

1.0424£-01
5.9630E-02
6.0000E 00
6.0000E 00
3.5414E CO

vV/ve
RBAR

co
CH4
BETA

7.4732E-01
3.7109c 00
2.0660E 00
4.2718t-04
T.51€2E-13
1.6159E 00

M= 227

7.5514E-Cl
3.8605E 00
7.2705E 00
3.7726EL-02
2.4740E-08
1.6619t 00

M= 204

v/vo
RBAR
N

BETA

7.4863E-01
4.C500E 00
9.C000E 00
0.

1.5249¢t 00

T
VBAR
Vs
H20

C

3.5002E 03
2.1770E 01
4.6709E 20
9.9989E-01
0.

4.5513E-01

4.6T89E 03
2.4511E 01
4.2784E 00
2.49€¢7E CO
0.

5.5020e-01

T
VHAR
VS

[

4.2612E 03
2.8300E 01
4.8017E 00
0.

4.4955E-01

143

TBAR
VG
NO

1.5389E-01
l.4467TE 02
1.5537E 01
4. 7251E-02
O.

1.7840E-01
1l.9672E 02
1l.4736E 01
1.8334E-01
0.

TBAR
vG6

1.5095E-01
1.2000€E 02
1.9732€ 01
0.

<00

H2

6.0902E-01
1.0886E 00
1.5537E 01
1.0915E-04
0.

7.2860E-01
1.5047E 00
l.4736E 0l
3.2588E-03
0.

<0DO

6.0050k-01
l.1144E GO
1l.4756E 01
0.




NM/TNM MOLE FRACTION OF TNM = 0.0
1 RHO P v/vo T
2 v E RBAR VBAR
3 NS NG N Vs
cist NZ co H20
co2 02 CH4
GAMMA ALPHA BETA C
1.1310E 00 1.2480E-01 7.2662t-01 3.8030E 03
6.4246E-01 4.8783E-03 3.7041E 00 2.1650€ Ol
3.668BE-01 2.4297C 00 2.7965E 00 4.6631E 00
3.6688L-01 4.9989E-ul 2.4641C-01 1.1835E 00
2.8493E-01 1.7576E-06 1.0178E-01 O.
2.6580E 00 2.5028E 00 1.3178E 00 4.6164E-01
NM/TNM MOLE FRACTION OF TNH = 0.067
1.2000E 00 1.4704E-01 7.247SE-01 4.2502E 03
6.0396E-01 9.4326E-03 3.7513E 00 2.2489t 01
l.4454E-01 2.7353E 00 2.8799C 00 4.5599E 00
1.4454E-01 5.9962E-01 3.6364E-Ql 1.1725E 00
4.3156E-01 1.0540E-05 6.0258C-02 0.
2.6331E 00 2.3029E 00 1.2544E 00 4.8357E-01
NM/TNM MOLE FRACTION OF TNM = 0.200
1.3100E 00 1.5569E-01 7.3650E-01 5.0389E 03
5.6221E-01 1.2042E-02 3.8l61E 00 2.3674E 01
0. 3.0458E 00 3.0458L CO 4.5456E 00
0. 7.7291E-01 B8.0687E-02 1.1890t 00
9.1931E-01 1.8T744E-02 2.0873E-C6 0.
2.7950E 00 3.7825E 00 1.7110E CO 4.9463E-01
NM/TNM MOLE FRACTION OF TNM = 0.333
1.4000E 00 1.5295E-01 7.4556E-Cl1 4.4570E 03
5.3254E-01 1.2804E-02 3.8513E CO 2.4336E 01
0. 3.5041E 00 3.5041E CO 4.5370E 00
0. 8.9854E-01 7.3463€-03 9.9922E-01
9.9265E-01 4.0261C-01 1.8449E-10 0.
2.9302E 00 3.8195E 00 1.6448C 00 4.8855E-01
NM/TNM MOLE FRACTION OF TNM = 1.0
1 RHO P v/vo T
2V E RBAR VBAR
3 NS NG N Vs
clis} N2 co NO
GAMMA ALPHA BETA C
1.6400E 00 1.3236E-01 7.7987t-01 2.4418f 03
447553E-01 1.3467E-02 3.9163C 00 2.5589E 01
0. 6.0000E 00 6.0000E 00 4.5658E 00
0. 1.9505E 00 2.8l74E-06 S.8917C-02
9.9265E-01 4.,0261E-01 1.8449E-10 0.
3.5427E 00 3.3906E 00 1.2393E 00 4.7221E-01

kg

M= 61.0

NO

1.7368€-01
1.3338E 02
1.5436C 01
2.1028E-04
0.

M= 70.1

1.8365E-01
1.3545E 02
1.5235€ 01
T.6095E-04
0.

M= 88.0

1.7697E-01
1.4882E 02
1l.6251E 01
5.4175E-02
Oe

M= 106.0

1.6673E-01
l. 4648L 02
1.6110E 01
2.0291E-01
0.

M= 196.0

T8AR
vG6
co2

1.3329E-01
1.3776E 02
1.5537E 01
10.0000E-01
0'

<00

H2

6.3531E-01
1.3746E 00
1.4023E 01
1.1291€E-01
0.

6.6721E-01
1.4477E 00
1.4699E 01
1.0703E-01
0.

6.7159E-01
1.6208E 00
1.6251E 01
1.0969E-02
0.

6.5528E-01
1.2994E 00
1.6110E 01
7.8346E-04
0.

<0O

02

6.0550E-01
5.3188£-01
1.5537E 01
2.9505E 00
0.




= 0.5

CH4/02 MOLE FRACT1ON OF 02
RHOU P v/vo T
v E RBAR VBAR
NS NG N Vs
Cis} co H20 H2
CH4
GAMMA ALPHA BETA C
T.6500E-01 7,1952E-02 6.9743E-Cl 3.4426E 03
9.1167E-01 -1.1161E-02 3.6645E 00 2.0964E 01
4.9004E-C2 1.1645E 00 1.2135t 00 4.9683E 00
4.9004E-02 2.0076E-01 5.8527E-Cl1 1.2822E-01
1.4325E-01 O. 0. 0.
2.3051E 00 2.3977E 00 1.4740E 00 3.8885E-01
LH4/02 MCLE FRACTION CF 02 = 0.6
8.3000E-01 B8.4660E-02 6.992CE-01 4.4126E 03
8.4241E-01 -7.2302E-03 3.6106C 00 2.0052E Ul
O. 1.1717E 00 1.1717E 00 4.92S6E 00
0. 243323E-01 6.6146€£-01 1.1027E-01
l.4135E-02 0. 0. 0.
2.3245E 00 3.07B4E 00 1.7545E 00 4.0716E-01
CH4/02 MOLE FRACTLION OF 02 = 0.6667
B8.7900E-U1 B8.75S4E-C2 6.9316E-C1 £.5680E 03
7.8857E-01 2.8336t-03 3.6284E 00 2.035CE 01
0. 1.0344E 00 1.0344C 00 4.9619E 00
0. 5.5414E-02 6.527CE-01 1.3793E-02
1.2310E-06 O. O. 0.
2.2589E 00 3.9155E 00 2.1760E 00 3.9501E-01
CH4/02 MOLE FRACTION OF Q2 = 0.8
9.8000E-01 744619E-02 7.C476E-Cl 4.498lt 03
7.1914E-01 4.9121E-03 3.6820E CO 2.12G6E 01
0. 1.0019e 00 1.C019t CO 4.9985t 00
0. 3.2384E-U3 3.9937C-01 6.2698E-04
3.5033€-11 0. 0. 0.
2.3871E 00 3.5897E 00 1.9227E 00 3.5791E-01

145

M= 24,0

U D
T8 AR Q
vG6 v

co2 02
1l.6870E-01 5,5754E-01
1.2743E 02 1.3349E 00
1.8590E 01 1.8046E 01
1.0698E-01 1.7391E-07
0. 0.

M= 25.6
1. 7516E-01 5.8232E-01
1.2942E 02 1.759%E 00
1.8419E 01 1.8419E 01
l.5263E-C1 2.0130E-05
0. 0.

M=  26.68
1. 7486E-01 5.6988E-01
1,5041C 02 2.1416E 00
2.0340E 01 2.0340€ 01
2.TT89E-01 3.4556E-02
O. 0.

M=  28.81
1.4993E-01 5.0784E-01
1.4803E 02 1.3639E 00
2.0679E 01 2.0679E 01
2.1896E-01 3.7973E-01
0. 0.




02/03 MOLE FRACTION OF 03 = 0.4
1 RHO P v/vO T
2 Vv E RBAR VBAR
3 NS NG N vS$S
02
GAMMA ALPHA BETA C
1.2580E 00 4.4553E-02 7.6020E-01 1.8118E 03
6.0430E-01 1.7519E-02 3.7300E 00 2.2108E O1
0. 1.20C0E 00 1.2000E 00 5.0783E 00
0. 1.2000E 00 0. 0.
3.1701E 00 2.4159C 00 1.0775E 00 2.9214E-01
02/03 MOLE FRACTION OF 03 * 0.6
1.3440E 00 6.43S4E-02 7.5532E-01 2.3695E 03
5.6200E-01 2.,4728E-02 3.7300C 00 2.2108E 01
0. 1.30C0E 00 1.3000E 00 4.96S3L 00
0. 1.3000E CO O. 0.
3.0870E 00 2.5441E 00 1.148lE 00 3.3424E-01
02/03 MOLE FRACTION OF 03 = 0.8
1.4410E 00 8.5935E-02 7.5487E-01 2.8049E 03
52385E-01 3.0961E-02 3.730CE 00 2.2108E Ol
0. 1.4000C 00 1.4000C 00 4.850S5E 00
0. 1.4000E 00 O. 0.
3.0795E 00 2.6506E 00 1.1855C 00 3.7233E-01
02/03 MOLE FRACTION OF 03 = 1.0
1.5540E 00 1.1125E-01 7.5700E-01 3.1423E 03
4.8713E-01 3.6505E-02 3.730CE 00 2.2108E 01
0. 1.5000E 00 1.5000E CO 4.7129E 00
0. 1.5000E 00 O. 0.
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YU
TBAR
vG

9.2155E-02
1.3200€ 02
1.9337E 01
0.

M=

1.0827E-01
1.3200E 02
1.7984E 01
0.

M=

1.2091E-01
1. 3200E 02
1l.6763E 01
0.

M=

1.3189E-01
1.3200E 02
1.5588€E 01
0.

38.4

41.6

44.8

48.0

<D0

3.8430E-01
3.0232€-01
1.9337E 01
0.

4.4251E-01
4.3601E-01
1.7984E 01
0.

4.9323€-01
5.5038£-01
1.6763E 01
0.

5.4277E-01
6.4971E-01
1.5588E 01
0.



Table D. 2.

DETONATION HUGON 10T

Detonation Hugoniot, CJ Locus, and CJ Isentrope for Composition B.

Ci1s)
co2
GAMMA

1.7140E 00
3.6T16E-01
2,7493E 00
2.7493t 00
1.5552E 00
3.1670E 00

1.7140E 00
3.9148E-01
2.7298E 00
2.7298E 00
1.5494E 00
3.2198t 00

1.7140E 00
4,0705E-01
2,7132E 00
2.7132 00
1.5429E 00
3.2350E 00

1« 7140E 00
4.2618E-01
2.6869E 00
2,6869E 00
1.5324E 00
3.2362E 00

1.7140E 00
4.5072E-01
2,6424E 00
2.6424E 00
1.5148E 00
3.2142E 00

1.7140E 00
4.8432E-01
2.5607t 00
2.5607E 00
l.4843E 00
3.1562E 00

1.7140E 00
543527E-01
243973t 00
2.3973€E 00
1.4270E 00
3.0385¢t 00

1.7140E 00
6.27T69E-01
2,0344E 00
2.0344E 00
1.3055€ 00
2.8305E 00

p
E
NG
N2
02
ALPHA

5.0000E~-01
5.8118E-02
6.9403E 00
2.4780t 00
2.1922E-04
4.0083E 00

4.0000E-01
4.2441E-02
6.9544E 00
2.4802t 00
8.2256E-05
3.8605¢ 00

3.5000E-01
3.4917E-02
6.9672E 00
2.4809E 00
4.9182E-05
3.7496E 00

3.0000E-01
2.7638E-02
6.9876E 00
2.4814E 00
2.9025E-05
3.6030E 00

2.5000E-01
2.0638E-02
7.0217c 00
2.4818t 00
1.6891£-05
3.4104E 00

2.0000E-01
1e3961E-G2
7.0832E 00
2,4820t 00
9.5864L-06
3.1638E 00

1.5000E-01
T.6624E-03
7.2041E 00
2.4822E 00
5.08u46E~06
2.8652E 00

10.0000E-02
1.8375E-03
7T.4717E 00
2.4823E 00
2.1795E-06
2.5439E 00

v/vo0
RBAR

co
CHu
BETA

6.2931E-01
3,7989E 00
9.6897e 00
T.2940E-02
2.5383E-03
1.5814E 00

6. 7099E-01
3.7997E 00
9.6842E 00
9.67T70E-02
4.0789€E-03
1.5095t 00

6.9768E-01
3.8004E 00
9.6804E 00
1.1830E-01
5.6300E-03
1.4682E 00

7.3047E-01
3.8015E 00
9.6745E 00
1.5241E-01
8.3302E-03
1.4224E 00

To7254E-01
3.8035E 00
9.6641E 00
2.09u46E-01
1.3341E-02
1.3721E 00

8.3013E-01
3.8073E 00
9.6439E 00
3.1163E-01
2.3304k-02
1.3192E 00

9.1745E-01
3.8150E 00
9.6013E 00
S.1124E-01
4.4495E-02
1.2721E 00

1.0759 00
3.8314E 00
Y.5062€ 00
9.4809E-01
9.2007E-02
1.2520& 00

T
VBAR
VS
H20

C

4.9420E 03
2.3356E 01
3.2962E 00
2.8072E 00
0.

T.6250E-01

4.5112E 03
2.3371E 01
3.5667E 00
2.7998E 00
0.

7.1007E-01

4.3128E 03
2.3383E 01
3.7195E 00
2.7926E 00
0.

6.7888L-01

4.1263E 03
2.3405E 01
3.8872E 00
2.7805E 00
0.

6.4324E-01

3.9511E 03
2.3442E 01
4.0733E 00
2.7593E 00
0.

6.0182E-01

3.7842t 03
2.3512E 01
4.2821E 00
2.7T186E 00
0.

5.5293€E-01

3.6166E 03
2.3654E 01
4.5193E 00
2.6341E 00
0.

4.93935E-01

3.,4226E 03
2.3960t 01
4.7912t 00
2.4406E 00
0.

4.2151E-01

147

TBAR
vG
NO

3.2884E-01
l.4348E 02
1.0536E 01
9.0380E-03
0.

2.7T709E-01
le4329E 02
1.1201E 01
4.5120E-0%
0.

2.4846E-01
1.4310E 02
1.1630E 01|
3.1410E-03
0.

2.1720€-01
1.4279E 02
1.2158E 01
2.1720E-03
0.

1.8214E-01
1.4227E 02
1.2836E 01
1.4930E-03
0.

1.4079E-01
T.4134E 02
1.3758E 01
1.0139E-03
0.

B.4996E-02
1.3957€E 02
1.5128E 01
6.6216E-04
0.

6.6525E-02
1.3586E 02
1.7501E 01
3.7791t-04
0.

<D0

H2

8.8710E-01
1.4274E 00
8.4821t 00
1.5253E-02
0.

B8.4221E-01
1.4264E 00
9.0490E 00
1.9552E-02
0.

8.2186E-01
T.u247t 00
9.4126E 00
2.3618E-02
0.

8.0584E-01
1.4214E 00
9.8610E 00
3,0211E-02
0.

8.0078E-01
1.4157E 00
1.0440E 01
4.1491E-02
0.

8.2881E-01
1.4053E 00
1.1242E 01
6.2248E-02
0.

1.0296E 00
1.3845E 09
1.2479E 01
1.0439€£-01
0.

8.7701E-01
1.3386E 00
1.4781t 01
2.0287E-01
0.




CJ LOCUS 10 vS. RHO!
RHO P
v E
NS NG
cIs) N2
co2 02
GAMMA ALPHA
1.7T140E 00 2.6004t-01
8.4522E-01 2.2020E-02
2.6534E 00 7.0133E 00
2.6534E 00 2.u4817t 00
1.5191E 00 1.8858E-05
3.2214t 00 3.4532E 00
1.7000t 00 2.5521e-01
4.4B844E-01 2.1888E-02
2,6822L 00 7.0221t 00
2.6U22E 00 2.4817E 00
15144 00 1.9476E-05
3,2081E 00 3.4072& 09
1.6000€ 00 2.2315t-01
4.7291E-01 2.1020E-02
2,5431 00 7.0990c 00
2.5431t 00 2.,4815E 00
1.47TU46E 00 2.3478E-05
3.1098t 00 3.0998t 00
1.5000E 00 1.9520k-01
5.0023t-01 2.0294E-02
2.4089t 00 7.2016k 00
2.4089E 00 2.48I14E 00
1.4231t 00 2.6423E-05
3,0054E 00 2.8374E 00
1.4000t 00 1.7056k-01
5.3117E-01 1.9667E-02
2.2370E 00 7.3327t 00
2.2370E 00 2.4813t 00
1.3590E 00 2.T7TB86BE-05
2.9007E 00 2.6190t 00
1.3000E 00 1.4863t-01
2.6676E-01 1.9097t-02
2.0257E 00 T7.494u4t 00
2.0257e 00 2.4813t 00
1.2814E 00 2.7577t-05
2,7993E 00 2.4407C 00
1.2000E 00 1.2893E-01
6.0832E-01 1.8555k-02
1.7Tu4E 00 T7.6887E 00
1.7744E 00 2.4813k 00
1, 1900E 00 2.5587t-05
2,7034E 00 2.2980t 00
1.1000t 00 1.1109E-01
6e5759L-01 1.8020k-02
l.4B34E 00 7.9168t 00
1.4B34E 00 2.,4814E 00
1.0850E 00 2.2204E-05
2.6147E 00 2,1868t 00
1.0000E 00 9.u4Bu4E-02
To1701E-01 1.7470E-02
1.1541e 00 B8.1798t 00
1.1541 CO 2.4815E 00
946727E-01 1,792BE-05
2.5337E 00 2.1043t 00

v/vo0
RBAR

co
CHu
BETA

7.6311E-01
3.8030E 00
9.6667E 00
1.95358-01
1.2055k-02
1.3824E 00

7T.6236E-01
3.8035t 00
9.6643c 00
2,1008E-01
1.3269E-02
1.3738E 00

T.5666E-01
5.8079t 00
?.6421E 00
3.3781k-01
2.4453E-02
1.3183E 00

7.5034E-01
3.8139E 0OC
9.6106E 00
5.0768E-01
4.0276E-C2
1.2768t 00

.4364E-01
3.8213t 00
9.5697E 00
1.2330E-01
6.0760£-02
1.2476L 00

1.3679c¢-01
3.8301E CO
9.5201E 00
9.8737E-01
845563L-02
1.2291€ 00

7.2999t-0C1
3.8399t 00
9.4631E CO
1.3015E 00
1, 1407E-01
12199t 00

7.2335e-01
3.8504E 00
9.,4003t 00
1.6662E 00
1.4543E-01
1.2188t 00

7.1701t-01
3.8612¢ 00
9.3339 00
2.0801t 00
1.7856E-01
1.2252E 00

T
VBAR
)
H20

C

3.,9854E 03
2.3432E 01
4.0343E 00
2.7647E 00
0.

6.1071E-01

3.9981t 03
2.3441E 01
4.,0539E 00
2.7593E 00
0.

6.0593E-01

4.0756E 03
243522t 01
4.1898E 00
2.7110€ 00
0.

5.7288E-01

4.1322E 03
2.3633E 01
4.35169t 00
2.6439E 00
0.

S.4172E-01

4.1689E 03
2.3772E 01
4.4363E 00
2.556u4k 00
0.

5. 1264L-C1

4.1865 03
2.3936E 01
4.5490t 00
2.4474E 00
0.

4.8560€-01

4.1858E 03
2.4120t 01
4. 6557t 00
2.3165L 00
0'

4.6047E-01

4. 1675E 03
2.4318E 01
4,7571E 00
2.1616E 00

0.
4.3705E-01

4.1320E 03
2.4523E 01
4.8554E 00
1.9834E 00
0.

4.1509E-01
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TBAR
vG
NO

1.8958E-01
1,4240E 02
1.2684E 01
1.6107E-03
0.

1.8888E-01
1,4226E 02
1.2770E 01
l.6562E-03
0.

1.8422E-01
l.4108L 02
1.34811E 01
1.9551E-03
0.

1.8025E-01
1.3956E 02
1.410% 01
2.1916E-03
0.

1.7673E-01
1.3769t 02
1.4862E 01
2.3425E-03
0.

17T347E-CI
la 3546€ 02
1.5699€ 01
2.3927E-03
0.

1.7032E-01
1.3291 G2
1.6636E 01
2.3371E-03
0.

1.67I15E-01
1.3004c 02
1.77G2 01
2.1B16E-G3
0.

1.6383E-01
12690t 02
1.8937€ 01
1.9 15E-03
0.

<00

H2

8.0029e-01
l.4172E 00
1.0310E 01
3.8678E-02
0.

T.948CE-01

1.4156E 00
1.0387t 01
4.1633E-02
0.

7.5707e-01
1.4023t 00
1.,0979¢t 01
647599L-02
0'

T.2196E-01
l.38%5E 00
1.1651t 01
1.0307€-01
0.

6.8937t-01
1.3619L 00
1.242%E 01
1.4962L-01
0.

6.5908t-01
1.353482L 00
1.3327t 01
2.0902C-01
0.

6.3080E-01
1.3011 00
1.4390C 01
2.8333E-01
0.

6.0420E-01
1.2625L 00
1.5659E 01
3.7501E-01
0.

5.7892e-01
1.2184C 00
1.7196E 01
4.8701L-01
0.




CJ ISENTROPE

CIs}
co02
GAMMA

1.7140E 00
4,4516E-01
2.6640E 00
2.6640t 00
15194E 00
3.219%E 00

l«7140E GO
3.2722€E-01
2.7896E 00
2.7896t 00
1.5769E 00
3.1532€E 00

1.7140E 00
3.6352E-01
2.77C1E 00
2.7701E 00
1.5684E 00
3.2338t 00

1. 7140E 0O
4.2544E-01
2.6980E 00
2.6980E 00
1.5343E 00
3.2395E 00

1.7140E 00
4.8277E-01
2.5874E 00
2.58T4E CO
l.488u4t 00
3.1669E 00

1.7140E 00
5.2925E-01
2.4796E 00
2.4796k 00
To4494E 00
3.0902E 00

1.7140E 00
6.0508£-01
2.2984k 00
2.2984E 00
le3947E 00
2.9637E 00

1.7140E 00
6.8499E-01
2.0901& 00
2.0901E 00
1.3612t 00
2.8452E 00

1. 7140E 00
1.7287E-01
1.9320t 00
1.9320E 00
1.3397e 00
2.7300t 00

P
E
NG
N2
02
ALPHA

2.5916E-01
2,1968L-02
7.0085t 00
2,4817e 00
1.8105£-05
3.6282E 00

7.0000E-01
7.3076t-02
649044E 00
2.4785€E 00
2,1803E-04
4.9111c 00

5.0006E-01
5.1552€-02
6.9207E 00
2.4801E 00
9.4913E-05
4.5260E 00

3.0000t-0G1
2.7T46TE-02
6.9810E 00
2.4815C 00
2.6883E-05
3.8193t 00

2.0000E-01
1.3399€E-02
7.0685c 00
2.4820E 00
B.u717t-06
3.3293E 00

1.5000t-01
5.3436E-03
7.1499E 00
2.4823E 00
3.2855-06
3.,0684t 00

10.0000k-02
~3.9531t-03
7.2806t 00
2.4824E 00
7.0564L-07
2.8298E 00

7.0000£-02
-1.0593E-02
T.u4044t 00
2.4825t 00
1.4701E-07
2.7029¢ 00

5.0000k-02
=1.5793t-02
7.5010€ 00
2.4825t 00
2.,8760E-08
2.7011€ Q0

v/vo
RBAR
N
co
CHu
BETA

7.6300E-01
3.8022E 00
9.6724E 00
1.8741£-01
941792Lt-03
1.4375E 00

5.6086E-01
3.7975t 00
9.6940E 00
1.3361E-02
1.2426E-04
1.8746E 00

6.2307E-01
3.7981E 00
9.6908E CO
4.0652E-02
8.3305C-04
1.7088t 0C

7.2920t-C1
3.8008t 00
9.6790t 00
T.4166E-01
6.0129E-03
1.4877E 00

b.2TU6E-O1
3.8055& 00
v.6559¢ 00
2.8694E-01
1.7294E-02
1.3670E 00

9.0713k-0C1
3.8105t 00
¥.6295C 00
4.2066E-01
3.0363E-C2
1.3165 00

1.0371t 00
3.8193k GO
9.5790t 00
6.3140E-C1
5.5542E-02
1.2922¢ GC

1.1741E 00
3.8318E 00
9.4945E CO
8.3091E-C1
Y. T773E-02
1.3014E GO

1.3247€e GO
3.8409c 00
9.4330E 00
Y.7977E-01
1.2851t-C1
1.3557E 00

T
VBAR
Vs
H20

C

3.9629t 03
2.3417E 01
4.0370€ 00
2.7721E 00
0.

6.09u5£-01

4.7855€ 03
2.3330E 01
2.8247E 00
2.82435€ 00
0.

B8.4986E-01

4.5125E 03
2.33542E 01
3.2844E 00
2.8176E 00
0.

71.66656E-01

4.0876t 03
203391t 01
3.8860t 00
2.787%E 00

0'
6.4301E-01

3.7398e 03
2.3478€ 01
4,2805E 00
2.7354E 00
0.

5.5297E-01

3.4917t 03
2.3570t 01
4.5143E 00
2.6801t 00

4.9540E-01

3.1499t 03
2.3734E 01
4.7795k 00
2.5791k 00

4.2347€-01

2.8633c 03
2.3968E 01
4.9549t 00
2.4U466E 00
0.

3.6936E-01

2.6141E 03
2.4139E 01
5.0781E 00
2.3408E 00
0.

3.248GCE-J1
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W
TBAR
vG6
NO

U

-4,2822€E-01
1.4245E 02
1.2684E 01
1.95632E-03
0.

=1.6498E 00
1.4410E 02
9.4678€ 00
8.0240€-03
0.

-1.1353t 00
l.4385E 02
1.044 3 01
4.7412E-03
0.

-5.5968E-01
1.4288E 02
1.2140E 01
2.0477E-03
0.

=2.23u456-01
1.4152 02
1.3722E 01
9.2546E-04
0.
2.,3679€E-01

-3.0912E-02
1.4030E 02
1.5004E 01
4.7803E-04
0.
2,8485E-01

1.9128€-01
1.3842E 02
1.7095E 01
1.6 187E-04
0.

3.4632€E~-01

3.4999E-01
1.3688E 02
1.9310E 01
5.2788E-05
0.

3.9503E~-01

4.7427€-01
1.3565E 02
2.1757E 01
1.6545E-05
0.

4.3692€E-01

< O 0

H2

7.9873t-01
1.4181E 00
1.0302€ 01t
3.7021E-02
0.

7.9873E-01
1.4339E 00
7.5561E 00
2.9046L-03
0.

7.98736-01
1.4321E 00
8.3969E 00
8.2754E-03
0.

7.9873E-01
| +4226E 00
9.8393E 00
2.7914E-02
0.

71.9873E-01
1.4079E 00
1.1192E 01
5.7513E-02
0.

{.9873E-01
1.3941E 00
1.2303E 01
B8.6706E-02
0.

7.9873E-01
1.3718E 00
T4 140E 01
1.3734E-01
0.

7.9873E-01
1.3502¢ 00
1.6150€ 01
1.8534E-01
0.

7.9873£-01
13337C 00
1.8341E 01
2.2967C-01
0.




1.7140E 00
9.3785E-01
le7327t GO
1.7327€E 00
1.3377t 00
2.5528C 00

1.7140L 00
l.1041E 00
1.6166t 00
1.6166E€ 00
1.3626E 00
2.4203E 00

1.7140t 00
1,2461E 00
1.5548E 00
1.5548E 00
1.3928E 00
2.3335E 00

7140t 00
1.4892E 00
1.4913€ 00
1.4913k 00
To4493E 00
2.2212E 00

1.7140E
1.7528¢t
1. 4909E 00
1.4909E 00
1.4999E €O
242061E 00

00
00

1. 7140E
2.0453€
1.4836E
1.4836E
1. 5499E
2.24 74t

00
00
00
00
00
06

1.7140E 00
2.5475E 00
1.4045E GO
1.4045E 00
1.6291E CO
2.4599E 00

1.7140E 00
2.9957E 00
1.3091E 00
1.3091e 00
1e6911E 00
2.5466E 00

1.7140L
3.3573E
1.2445E
1.2445E
1. 7330¢
2.4987E

00
00
00
00
00
00

1o 7140E
3.9824E
1.1779E 00
1.1779t 00
1.7876t 00
2.2179E 00

00
00

3.0000t-02
-2.2182E-02
7.6083€ 00
2.4825E 00
1.9441E-09
2.8413k 00

2.0000£-02
~2.6251E-02
T«6551E 00
2.4825€E 00
1.9778L-10
3.0698E 09

1.5000t-02
-2.8711E-02
7T.6692C 00
2.4825E 00
3.7468E-11
3.2918L 00

10.0000t-C3
-3.1685E-02
T.6669E 00
2.4825€ 00
3.5265E-12
3.6867c GO

7.0000E-03
-3.3940E-02
7T.6431t 00
2.4825C 00
5.107CE-13
4.1818E 00

5.0000E-03
-3,5715E-02
T.6190E 00
2.4825E 00
9.2066E-14
5.0484t 00

3.0000E-05
-3.7711E-02
7.5987E 00
2.4825E 00
9.5101k-15
T.1926E 00

2.0000t-03
-3.8829€-02
7.5905E 00
2.4825k 00
2.1166E-15
9.1546E 00

1.5000E-03
-3.9462€-02
7.5839€E 00
2.4825E 00
B8.2278BE-16
1.0409t 01

10.0000E-0%
-4.0231E-02
7.5686E 00
2.4825E 00
2.3999¢t-16
1.1399€ 01

1.6075L 00
3.8537t 00
9.3409 GO
1.1350E CO
1.7453E-01
1.5047E 00

1.8924€ 00
3.8628E 00
9.2716t 00C
1.1917e 00
2.0919E-GI
1.6815E GJ

2.1359e 00
3.8688E 00
9.2240E 00
11994t 0C
2.3298E-01
1.8392e 00

2.5525t 00
3.8769c 00
9.1582E 00
1. 1735E 00
2.6588E-01
2.1100E 00

3.0043C 00
3.8800E 090
9.1339E 00
1.1112E 00
2.7803e-01
2.3488E 00

3.5057E 00
3.8838t 00
9.1026E 00
1,0528E 00
2.9368E-01
2.6913E 00

4.3665E 00
3.8957E 00
v.0032E 0C
1.0030E 00
3.4338E-01
3+3305E 00

S.1347E 00
3.9080E 00
8.8996E 00
9.8454E-0}
3.9520E-01
3.9875E 00

5.7545E 00
3.9165E 00
8.8283t CO
9.7T171E-01
4.3083t-01
4.5660E 00

6.8259E 00
3.9262E 00
8. /465E 00
9.4277E-01
4. 7T174E-C1
5.5903¢ 00

2.2817E 03
2.4381E 01
5.20u6k 00
2. 1895t 00
0.

2.6800E-01

2.0589€E 03
244555 01
9.2676E GO
2.0831E 00
0.

2.3118E-01

1.9219€E 03
2.4670€ 01
5.2985E 00
2.015Ct 00
0.

2.0885E-C1

1.7555t 03
2.4825E 01
5.3284E 00
1.9278E CO
0.

1.8187E-01

1.6367E U3
2.4884E 01
5.3437E 00
1.889GE 00
Je

1.6453E-01

1.5444E 03
2,4957t 01
5. 3530t 00
1,8474E 00
0.

1.5160E-01

1.4392E 03
2.5188E 01
5.3618E 00
1.7383E 00
0.

1.3711E-01

1.,3781t 03
2.5427E 01
5.3659E 00
1.6332E CO
0.

1.2352E-01

1.3424E 03
2.5593E 01
5¢3677TE (O
1.5623E <O

1.1218E-01

1.2983E 03
2.57T84E 01
5.3691E CO
1.4820E 00
0.

9.3982E-02
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6.2696E-01
1.3436E 02
2.6408€ 01
2.3819E-06

0.
4.9399€E-01

7.2422E-01
1.3386L 02
3.1173 01
4.5931E-07
O.

5.3461E-01

7.8302E-01
1.3377E 02
3.5299 01
1.3831E-07
G.

5«6118E~-01

8.54 1GE-CI
le3394E 02
4.2443€ 01
2.5094€E-08
0.

5.9591E-01

9.0799€e-01
1.3422€ 02
5.0294E 01
6.1516E-09
0.

6.2395E-0L

9.5042e-01
1.3456E 02
5.9051E 01
Il 7T7T12E-09
0.

6.4807E~-01

9.9811E-01
1.35208 02
7T.4057E 01
3.4848E-10
G.

6o T965E~-01

1.0248E 00
1.3576t 02
8.7421€ 01
1.1742E-10
0.

7.0078E-01

1.0400E 00
1.3618E 02
9.8217e 01
5.9753E-11
0'

7.1416E~-01

1.0583€E 00
1.3676E 02
1. 1695E 02
2.4733E-11
0.

7.3178€E-01

7.9873Lt-01
1.3156E 00
2.24 75 01
2.8898E-01
0.

7.9873E-01
1.3079 00
2.6656E 01
342599L-01

7.9873E-01
1.3056E 00
3.0242E 01
3.4649E-01
0.

7.9873E-01
1.3063E 00
3.6399t 01
3.679GE-01
0.

7T.9873E-01
1<3111E 00
4,2957E 01
3.8245L-01
0.

7.9873E-01
1.3156E 00
5.0299E 01
3,9278E-01
0.

7.9873E-CI
1.3187E 00
6.3340E 01
4.0191E-01
0'

7.9873£-01
1.3191E 00
7.5351E 01
4.0394E-01
0.

7.9873E-01
1.3196¢ 00
8.5128C 01
4.0349E-0}
0.

T,9873€-01
1.3214¢ 0O
1.0192E 02
4.0198E-01
0o -




1.7140E 00
4.7668E 00
1.1611k 00
1.1611€ 00
1.8315& 00
1.7411E 00

1.7T140E 00
6.0046E 00
1+2062E 00
1.2062E 00
1.8697€ 00
1.2241E 00

1.7140E 00
9.8101E 00
1.3856E 00
1.38%6E 00
1.9175E 00
Y.9740E-01

1.7140E 00
1.4548E 01
1.5137E 00
1.5137€E 00
1.9485E 00
1.0691E 00

1.7140E 00
1.8937€E C1
1.5850& 00
1.5850&e 00
1.9683€ 00
1.1073€E 00

1.7140E 00
2.7173E 01
1.6688E 00
1. 6688E 00
1.9928E 00
1.1369€ 00

17140t 00
3.,7127€ 01
1.7324€ 00
1.7324E 00
2.0098t 00
1.1497E 00

1.7140E 00
4.9719E 01
1.7865E 00
1.7865Et 00
2.0212€ 00
1.1569E 00

1.7143E 00
{.7241E 01
1.8604E 00
1.8604E 00
2.0290E 00
1.1652E 00

1.7T140E 00
1.0934E 02
1.91355e 00
1.9135& 00
2.0265€ 00
1.1722c 00

7.000GE-Ou
-4.0884k-02
7T.5445t 00
2.4825E 00
B841158E-17
1.0709t 01

5.0000t-04
-4.1606E-02
T.5047E 00
2.4825E 00
2,5021E-17
8.5841E 00

3.000GE-04
-4.3047E-02
T.4113E 00
2.4825E 00
2.5287E-18
T.2676E 00

2.0000t-04
-4,4193€-02
7.3407E 00
2.4825€ 00
3.5228L-19
7.5884E 00

1.5000£~04
-4.4948E-02
7T.296u4t 00
2.4825E 00
8.4117L-20
7.7003e 00

10.0000E-CH
-4.5944£-02
7.2394k 00
2,4825k 00
1.0284E-20
T.6690E 0O

7.0000€~-05
-44,6765E-02
T.1934E 00
2.4825E 00
T.4473E-21
7.5138t 00

5.0000E-05
-4.7500E-02
7.1531E 00
2.4825E 00
2.0123E-22
T.2943E 00

3.0000E-GS
-4.8545E-02
7.0974E 00
2.4825E 00
7T.5611E-24
6.8720E 00

2.0000&-05
-4.9317t-02
7.0581t 00O
2.4825E 00
4.184850-25
6.4939E 00

8.1702t 00
3.9312E 00
8.7057e 00
8.9515£-01
4.9217E-01
6.7253E 00

1.0292E C1
3.9307E 00
88,7109 0C
8. I4SUE-01
4.8955E-01
7.8295E €O

1.6814E 01
3.9206E GO
8.7969E 00
6.3035E-01
4.4656L-01
8.2892t GO

2.4918E 01
3.9136E 00
8.85u4E 00
5.0005€E-C1
4.1781E-C1
8.0331E 00

3.2458E 01
3.9101E 00
8.8814t 00
4.2234E-01
4.0431E-01
7.8575k 00

4.6575c C1
3.9065E 00
8.9083c GO
3.2754E-01
3.9087E-01
T.6251E 00

6.3636E 01
3.9039€ 00
8.9258E 00
2.5572t-01
3.8208E-C1
T.4049t 00

8.5218t 01
3.9018£ 00
8.9396E 00
1.9704k-G1
3.7520e-01
7.1697E 00

1.3239¢ 02
3.8987E 00
8.9578t 00
}«2845E-01
3.6610E-01
6.7559E 00

1.8741E 02
3.8963t 00
849715E CO
8.0837c-C2
3.5923e-01
6.3931t 00

1.2611E 03
2.5882E 01
5.3696E 00
1.441 7€ 00
0.

T.6221E-02

1.2222€E 03
2.5873E 01
5.3692E 00
1.4461E 00

0.
6.0623E-02

1.1519E €3
2.56T4E 01
5.3676E 00
1.5347E 00

0.
S.4179E-02

1.0982E 03
2.5535€ C1
5.3659E 00
1.6030E 00
0.

5.5754E-02

1.0625E 03
2.5u68E 01
5.3647 00
1.6410€E 00
0.

5.6082E-02

1.0144E G3
2.5397E 01
5.3630E 00
1.6869t GO
0.

5.5582E-02

9.7339€ 02
2.5347€ 01
5.3614E 00
1.7247E 00
0.

5.4663L-02

9.3545E 02
2.5305& G1
5.3600t 00
1.7605E 00
Q.

5.3627€E-02

8.7860E 02
2.5246E G1
5.3577E 00
1.8175E 00
0.

5.1962E-02

8.3384E 062
2.5198E 01
5.3558E 00
1.8662E 00
0.

5.0630E-02
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1.0739E 00
1.3725E 02
1.4061€ 02
141327E-11
0.

7.4701E-01

1.0912 00
1.3771E 02
1.7824E 02
4.8123E-12
0.

T«6260E-01

1.1257e 00
1.3849E 02
2.9530E 02
B8.93357E-13
0.

1.1530E 00
1.3920E 02
4.4222E 02
2.1009€E-13
0.

1.1711E 00
1.3974E 02
5.7981E 02
7T.3566E-14
0.

1. J949E 00
1.4051E 02
B8.3899E 02
1.5814E-14
0.

1.2145E 00
1.4121E 02
1.1S41E 03
3.7TTu6E-15
O.

1.2321E 02
l.4187E 02
1.5546E 03
B.9392E-16
0. .

1.2570E 00
1.4288E 02
2.4348E 03
8.1590E-17
0.

1.2755E 00
1.4366E 02
3.4664E 03
9.8205E-18
G.

7.9873E-01
1.3254E 00
1.225/7E 02
4.0142E-01
0.

7.9873E-01
1.3328E 00
1.5431E 02
4.0233E-01
0.

7.9873e-01
1.3509¢ 00
2.4963E 02
3.9971e-01
0.

7.9873E-01
1.3640E 00
3.6754E 02
3.8888E-01
0.

7.9873E-01
1.3720E 00
4.7729E 02
3.7791E-01
0.

1.9873E-01
1.3819t 00
6.8282E 02
3.5881t-01
0.

7.9873E-01
1.3897E 00
9.3111E 02
3.3861E-01
0.

7.9873E-01
1.3963E 00
1.245CE 03
3.1661E-01
0.

7.9873E~-01

1.4050E 00

1.9302E 03 .
2.1TTIE-O01I

0.

7.9873E-01
1.4109€E 00
2.7282t 03
2.4281E-01
0.




le 7140E
1.3974E
1.9489E
1.9489E
2.0200E
1.1777C

1.7140E
1.9709E
1.9968E
1.9968E
2.0048E
1. 1861E

1.7T140E
2.6618E
2.,0382E
2.0382E
1.9863E
1.1939E

1. 7140E
3.5283E
2.0780E
2.0780E
1.9652E
1.2013€

1.7140E
5+ 3955E
2.1415E
2.1415E
1.9285E
1.2124E

1.7 140E
7.5394E
2.1961E
2.1961E
1.8966E
1.2210E

1.7140E
9.5471¢t
2.2372¢
242372E
1.8730t
1.2269E

1.7T140E
1.3292E
2.2987¢t
2.2987L
1.8389¢t
1.2352¢

00
02
00
00
00
00

00
02
00
00
00
00

00
02
00

00
00

00
02
00
00
00
00

00
02
Go
00
00
00

00
02
00
00
00
00

00
02
00
00
00
00

00
03
00
00
00
00

1+5000E-05
-4.9834E-02
7.0329t 00
2.4825C 00
4.3590E-26
6.2189t 00

10.0000t-06
-5.0522€-02
7.0015€E 00
2.4825t 00
1.3387E-27
5.8388t 00

7.0000E-06
~5.1088E-02
6.977T7E 00
2.4825E 00
4.4631L-29
5.5264E 00

5.0000£-06
-5.1589£-02
6.,9586k 00
2.,4825E 00
1.3094E~30
5.2586t 00

3.0000t-06
-5.2292t-02
6.9354E 00
2.4825E 00
3.1874E-33
4.9039E 00

2.0000t-06
-5.2803E-02
6.9218BE 00
2.4825E 00
1.2493L- 34
4.6612E 00

1.5000E-06
-5.31421£-02
6.9145C 00
2.4825t 00
1.2480E-34
4.5091t 0O

10.0000E-07
-5.3587E-02
6.9069 00
2.4825E 00
1.2466C-34
4.3160k 09

2.3952E 02
3.8944k 00
8.,9818E 00
5.7028E-02
3.5410€-01
6.1299 00

3.3782E 02
3.,8915E 00
8.9983E 00
3.2559E-02
3.4587e-01
5.7658E CO

4.562u4k 02
3.8885E 00
9.0159E 00
1.8454E-02
3.3703E-01
S.4664E 00

6.0475E 02
3.8852E 00
9.0366E CO
1.0062E-02
3.2672E-01
5.2098E 00

9+2479E 02
3.8791E GO
90770 0O
3.4640E~-G3
3.0651E-01
4.8697c 00

1.2923E 03
3.8733E 00
9.1179 00
1.2943E-03
2.860ut-01
4.6367E 00

1.6364C 03
3.8686E 00
9.1517/E 00
5.9353e-0u
2.6914E-01
4.4903t 00

2.2783t 03
3.8612E 00
9.2056E 00
1.7453E-Cu
2.4219€E-01
4,3038E 00

8.0218E 02
2.5162E 01
5¢3545E 00
1.9030E 00
0.

4.9685E-02

T.S57T7T1E C2
2,5106€ 01
5.3526E 00
1.9579E GO
0.

4.8350L-02

7.1881E 02
2.5048E 01
5.3510E 00
2.0090E 00
0.

4. T166E-02

68247 02
2.4v85E 01
5.3494E 00
2.0595E 00
0.

4.6036E-02

6.2829E 02
2.4867E 01
5.3471E 00
2.139%E 20
0.

4.4299E-C2

5.8647E 02
2.4755E 01
5«3453E 00
2.2055 00
0.

4.2908E-02

5.5758t 02
2.4664E 01
5.34841E 00
2.2533€E 00
0.

4.1916E-02

5.1812 02
2.4524k 01
5.3424¢E 00
2.3220t 00
0.

4.0520t-02
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1.2879E 00
T4l 19€ 02
B.UU64E 03
1.9021E-18
6.

1.3043C 00
.44 89E 02
6.2999E G3
15028E-19
0.

13178 00
1.4543E 02
8.5378E 03
1.2612E-2C
Ve

i.3298€ 00
1.4587E 02
1. 1349 Ob

9.6u453E-22

0.

1.3466E 00
14634 02
1.74135E 04
1.2033E-23
0.

1.3588c 00
1.4654E 02
2.4381E Ou
2.3455E~25
O.

1.3669E 00
1.4660E 02
5.09G6E Ou
1.09536-26
G.

1.3776¢ 00
1.4655k 02
4.3074E Ou
9.6065E-29

{.9873E-01
1.4145E 00
3.4828E 03
2,1633E-01
0.

7.9873c£-01
1.4187e 00
4.9031C 03
1.779GE-01
0.

7.9873E-01
1.4218E 00
6.6089E 03
lTolluut-01
0.

7.9873E-01
1.4243E 00
8.7402E 03
1. 145HE-01
0.

7.9873e-01
1.4272E CO
1.3306t Ou
T.4934E-02
0'

7.9873E-C1
1.4291E 00
1.8510E Cu
4.9885E~-02
O.

7.9873E-01
1.4302€ 00
2.3352E 04
3.5865E-02
Je

7.9875E-01
1.4315C 20
3.2323E 04
2.1135%E-02
0.



Appendix E

COMPARISON WITH OTHER EQUATIONS OF STATE

There are two equations of state of a semi-empirical nature (the
Kistiakowsky-Wilson and the constant-B) which have been extensively used
at this laboratory and others for practical work. With this type of
application in mind, we give here some comparisons between the present
equation of state (LJD) and these two. A portion of the comparison does
double duty: +the detailed comparison on Composition B serves also as a
graphical presentation of the illustrative numerical results for the LJD
equation of state given in Table D.2 (Appendix D),

The so-called Kistiakowsky-Wilson equation of state is a fairly
simple one which allows a priori calculations if a set of molecular
parameters called co-volumes is assumed known, It is similar in principle
to that used in the present work, but substitutes simple empirical expres-
sions for the LJD cell theory and the mixture theory. It has been ex-
tensively compared with experimental data and used for prediction of the
properties of proposed new ex;plosives.27’62

The constant-f equation of sta.te63 is essentially an empirical recipe

(based on some thermodynamic assumptions) for constructing a partial product
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equation of state from experimental data on an explosive, Tt makes no
explicit reference to the chemical composition of the detonation products,
and gives the equation of state in the form
E = E(P,V) )

which is sufficient for meny applications such as numerical hydrodynamic
calculations,

In the first section, we compare the LJD and KW equations of state on
the set of five explosives used in Chapter 4. In the second, we make fairly
detailed comparisons of all three equations of state on the single explo-

sive Composition B,

E.,1 Comparison of the KW and LJD Equations of State

on the Five Explosives of Chapter L4

In order to compare these two equations of state, a relationship
between the KW co-volumes snd the LJD potential constants must be established.
There is no unique way of doing this, for the KW equation of state is not
based directly on intermolecular potentials, and the co-volumes ki have

mixed dimensions:
(s ]= =] -
We have used the two recipes

1) x

o ()3
1 < 1)

(2) 1 = @) @t .

154




Muich of the work with the KW equation of state has used so-called

"geometric" co-volumes obtained by taking the ki proportional to the

volume swept out by the rotating molecule as calculated from bond lengths
27,62

and Van der Waals atomic radii., We have done some calculations with

this set of co-volumes and a corresponding set of geometric r? for the
LJD equation of state calculated from them according to the first recipe
above, We have also used co-volumes computed from the potential constants
glven in Chapter 2 according to both of the above recipes. The constant
of proportionality was chosen to give the geometric value of 380 for the
N2 co~volume in each case, Some of the values used are listed in Table
E.1. The other constants in the KW equation of state were taken to be

@ = 0.5, B = 0.09, and # = 11.85, as in reference 27,

Results are given in Table E.2 and Figs. E.1 through E.3. As in
Chapter L4, some of the variations were repeated with compensation, i.e.,
rescaling of the molecular sizes to give the experimental RDX detonation
velocity, The KW equation of state gives detonation velocity curves of
a qualitatively different shape, lower temperature, and values of y which
are lower and closer to the experimental values., In evaluating these
results, it should be remembered that the KW geometric co-volumes have
already been scaled to give agreement with experiment for several CHON
27

explosives,
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Table E.l. Values of the KW Co-Volumes and the Corresponding LJD rf.

From Chapter 2 Geometric
T* k2 ¥ P

1 1 i 1 i

Species (4) (cc/bole-°K%) (A) (cc/mole-CK®)
N, 4 .05 380 4.05 380
co 4,05 380 4,08 390
Héo 3435 215 3.98 360
NO 3,97 358 k.06 386
H, 3.3 214 3,16 180
co,, 4,20 423 4 .89 670
0, 373 297 349 350
CH, 4.30 455 4.53 528

%From recipe (1): ki‘x(r"i‘)3

bSee reference 62,
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Table E.2, Calculated Values of p, y, and T for the LJD and KW Equations of State

DESCRIPTION S.x Doate ™ Dexp RDX Comp. B ) TNT Nitromethane NM/HNO}/H20
Equation (S;aleaiic;n;r) for'ﬁmf gt‘ Py = 1.8 py = 1.7k o, = 1.6+ py = 1.151 p, = 1.293
R of State Congtants or i Po 3 Y T Y T Y T Y T Y T
Experimental 0 2.9 2.77 3,17 2,13 3380  2.54 3L0O0
20 LJD geometric r}f 2741 3.51 2735 3.50 2923 3.54 2922 3.27 3195 3.52 3021
21 KW ki from experimental I’j':'a 1493 2,62 3354 2,63 336 2,72 3202 2,34 3317 2,35 2825
22 K k, from experimental r} and ~1104 2.68 3153 2.68 3159 2.78 3039 2.2 3169  3.96 2707
a
T
23 K geonetric k, 176 2.8, 2661 2.82 271 2.89 2726 2.61 2870 2,68 2u08

COMPENSATED RUNS

2% LJD geonetric r¥ 0.9117 51 3436 3592 3,34 3378 3.40 3138 2.89 3353 3.07 3432
25 KW k, from experimental r¥ 1.108 ~T5 2,84 2646 2,82 2804 2,88 2877 2,57 318 2,49 2405

&Yalues of r}f and 'l‘i(- from Chapter 2
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Fig. E.1l. Calculated detonation Hugoniots and experimental CJ points

for the KW equation of state with co-volumes k; from the experimental rX'

of Chapter 2 (run 25 of Table E.2).

Compare with Fig. L.l.
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Fig. E.2. Differences of calculated and experimental detonation velocities,
(b) KW, geometric k,, Tun 23;

k%, run 20;

T?, run 22.
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E.2 Detalled Comparison of the KW, LJD, and Constant-B

EqQuations of State on Composition B

In this section we present a detailed comparison of all three equa-
tions of state on the single explosive Composition B, The results are
given in Figs. E.4 through E.8, The parameters used are the central point
set for the LJD equation of state, co-volumes proportional to the cubes
of these r? (scaled for agreement with the experimental RDX detonation
velocity) for the KW equation of state (run 25 of Table E2), and con-
stants determined from the experimental CJ point for Composition B for
the constant-B form.

The complicated form of the LJD results at intermediate pressures
is probably due largely to the presence of the attractive wells in the
intermolecular potential functions, a feature lacking in the other forms,
The very good agreement between the calculated KW CJ point and the
experimental one (indistinguishable from the calculated one in the figures)
1s partly fortuitous but not entirely unexpected since it has been given
the advantage of the scaling of the co-volumes to give agreement with the
RDX detonation velocity. The constant-B equation of state is a good

approximation to the KW results in the neighborhood of the CJ point.
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Fig. E.k. Calculated detonation Hugoniots (at p_ = 1.7 ) for the KW,
LJD, and constent-B equations of state,
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Appendix F

SHOCK HUGONIOTS OF LIQUID N2 AND SOLID 002

Since the publication of ref. (31), experimental data on the shock

Higoniots of liquid N2 and solid.CO2 have appeared.6h We present here

a comparison of some calculated shock Hugoniots with these experimental

results, as a check on the pair potentials of these two species,

The results are given in Figs. F.l and F.2. For nitrogen, the

numbered curves correspond to calculations made with the following

potentials:

1.

2,

The exp-six potential determined from low-energy (second virial
coefficient, crystal, and viscosity) data:

o = 17, r* = 4,01 A, T* = 101 °K.
The exp-six potential determined from high-energy (molecular
scattering) data:

o =15, T* = 14,05 A, T* = 120 °K.
The MM potential used in the detonation calculations of Chapter 5
(i.e., the common value of « ( = 13) and the individual values of
r* and T* for Ne):

o = 13, * = 4,05 A, T* = 120 °K.
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e EXPERIMENTAL

I.a=13, r*=42A, T2 200 °K
2.a=14, r* =4.2A, T*=200 °K
3.a=15, r* =424, T*=200 °K

4.a=13, r* =4.41A, T*=200 °K

PRESSURE, MB

lo} l 1 I 1 l !
0.5 0.6 (o4 0.8

RELATIVE VOLUME, WV,

Fig. F.2. Calculated (—) and experimental (e) shock Hugoniots for
solid CO, (see text).
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It is gratifying, though perhaps fortuitous, that the Hugoniot from
the potential used in the detonation calculations agrees so well with the
experimental data. Potential number 2 actually fits only the low end of
the molecular scattering data. As shown in Fig, 4 of ref, (31), it lies
above the molecular scattering results over most of the range, so that a
softer potential such as that used in the detonation calculations (num-
ber 3) is not an unreasonable choice.

For 002, there is no high-energy data on the pair potential, and the
low-energy data yleld a variety of values for r¥ and T¥*, as might be ex-
pected from an attempt to represent the potential of such an elongated
molecule by a spherically-symmetric potential function. In ref, (31) the
following values of r¥ and T¥:

™* =4.2 A, ™% = 200 °K,
were chosen from this set for use in the detonation calculation. Since
there is no high-energy data on the pair potential, we used these values
of r¥* and T% and three values of «:

o =13, 14, and 15.
The results are shown as curves 1, 2, and 3 of Fig. F.2, The first of
these, which corresponds to the potential used in the detonation calcu-
lations, is clearly too soft, so a fourth calculation was done, again
with & = 13 but with r* increased by 5% to 4.41 A, The calculated
Hugoniot for this pair potential is close to that for o = 15, above,
and is in reasonably good agreement with experiment. Had this shock
Hugoniot data been available earlier, we would probably have used this

value of r* in the detonation calculations.
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As before,31 the experimental initial states were used in the
Hugoniot calculation since the LJD equation of state is poor at low
pressures, These initial states are given in Table F,l. For COQ, an
equilibrium calculation showed that decomposition to solid carbon, CO,
and O2 occurred to only a very small extent; the calculations shown
assumed no decomposition.

The use of the experimental initial states makes it impossible to
calculate the Hugoniot curves down to zero pressure. This difficulty is
aggravated if we use r¥ as an adjustable parameter, as in Curve L4 of
Fig. F.2, since this will distort the potential in the neighborhood of
the well, thus making the low-pressure results even worse, The adjust-
ment of &, as in curves 1 through 3 of fig. F.2, is probably a better
choice for the individual species, but if the resulting potential is to
be used in our mixture calculation, this procedure cannot be used, since
the conformal assumpfion (Eq. 2.9), requires the same repulsive exponent

for all species,
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Table F.l. Experimental Initiel States™

T p H

(o] (o] (o] b

°K g/cc keal/mole
N, (1iquid) TT 4 0.808 -1.333
co, (solid) 194,7 1.54 ~-97.24

®From ref., (64) and National Bureau of
Standards Circulars 500 and 56k.

bEnthalpy relative to elements at T,
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