TITLE: LASL ANALYTICAL CHEMISTRY PROGRAM FOR FISSIONABLE

MATERIALS SAFEGUARDS

AUTHOR(S): Darryl D. Jackson and S. Fredric Marsh

SUBMITTED TO: "Measureme

"Measurement Technology for Safeguards and Materials Control" Nov. 27-30, 1979, Kiawah Island, SC,

American Nuclear Society, National Bureau of Standards,

Institute of Nuclear Materials Management.

Proceedings to be published.

DISCLAMER —

·.. *

By acceptance of this article, the publisher reconnect that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purmoses.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545

An Affirmative Action/Equal Opportunity Employer

LASL Analytical Chemistry Program for Fissionable Materials Safeguards

Ъν

D. D. JACKSON and S. F. MARSH Los Alamos Scientific Laboratory, Los Alamos, New Mexico

ABSTRAC1

Major tasks in this program are (1) development of dissolution techniques for refractory nuclear materials, (2) development of methods and automated analyzers for determining plutonium, uranium, and thorium, (3) preparation of plutonium reference materials distributed as certified reference materials by the National Bureau of Standards, used in the Safeguards Analytical Laboratory Evaluation (SALE) program administered by the New Brunswick Laboratory, and used to calibrate nondestructive analysis apparatus at LASL, and (4) preparation and characteriza ion of plutonium isotope materials and participation in an intralaboratory program to measure longer-lived plutonium isotope half lives. More recent and significant achievements are reported. Gas-solid reactions at elevated temperature, used previously to convert uranium in refractory forms to species readily soluble in acid, are being applied to thorium materials. A microgram-sensitive spectrophotometric method was developed for determining uranium and the LASL Automated Spectrophotometer has been modified to use it. The instrument now is functional for determining milligram amounts of plutonium, and milligram and microgram amounts of uranium. Construction of an automated controlled-potentialcoulometric analyzer has just been completed. It is giving design performance of 0.1% relative standard deviation for the determination of plutoniam using a method developed especially for the instrument. A method has been developed for the microcomplexometric titration of uranium in its stable (VI) oxidation state. A color probe analyzer assembled for this titration also has been used for microcomplexometric titration of thorium. The present status of reference materials prepared for NBS and for the SALE program, as well as examples of working reference materials prepared for use with nondestructive analyzers, is given. The interlaboratory measured value of the ²³⁹Pu half-life is 24,119 yr. Our just completed measurement of the half life of ²⁴³Pu is 14.38 yr. Measurement of the ²⁴⁰Pu half life is in progress.

KEYWORDS: Assay of uranium, plutonium, and thorium, automated spectrophotometer, automated controlled-potential analyzer, complexometric titration of uranium and thorium, dissolution of nuclear fuel-cycle materials, plutonium reference materials, half lives plutonium isotopes.

INTRODUCTION

The primary purpose of characterizing nuclear fuel cycle materials for safeguards application is measurement of their uranium, plutonium, and thorium contents. All measurements must be accurate, with precision requirements ranging from < 0.12 standard deviation for product materials to several percent for scrap materials containing low quantities of these three elements. Many fuel-cycle materials, including scrap materials produced in calcination processes, contain highly refractory components and have multipliase, heterogeneous composition. At present, a particularly time-consuming operation in the chemical ansay of such materials is their dissolution to effect solubilization of the uranium, plutonium, and thorium. In addition to fast, effective dissolution technique, automated analyzers for assaying the three elements will provide economy. The accuracy of assay measurements,

whether by chemical analysis or by use of nondestructive (NDA) techniques, depends on calibration, best attained by use of proper reference materials. Accurate plutonium isotope half-life values are essential to NDA methods based on radioactive calorimetry and decay measurement, as well as for adjusting reference materials and accountable material inventories for their changing plutonium content with time.

DISSOLUTION OF NUCLEAR FUEL CYCLE MATERIALS

Techniques currently being investigated to attain rapid and effective solubilization of uranium, plutonium and thorium in refractory materials are mineral acid reactions at elevated temperatures in pressurized containers and reactions with reactive gases at elevated temperatures.

We previously developed a dissolution apparatus of a Teflon container in pressure-supporting stainless steel and nickel shells which permit reactions with various mineral acids at temperatures up to 260°C and pressures to 320 atm (5000 psl). The apparatus design was made available to industry and was adopted by the Parr Instrument Company. A stainless steel shell is used with 1003, 1250, and 1003-1250, mixtures. A nickel container is used for HC1, HF, and their mixtures. The dissolution apparatus has been applied successfully to a variety of materials including Nb-C alloy, 1002-1000-

We verified NBL findings that the Parr Teflon containers frequently failed when used at $270\,^{\circ}\text{C}$ with $\text{HNO}_3\text{-low}$ molarity HF mixtures for the dissolution of materials such as high-fired PuO_2 and calcined mixed oxide. The Parr Company supplied Teflon containers made from new Teflon steck and we fablicated new containers. Both failed even when heated at only $250\,^{\circ}\text{C}$ with a $\text{HNO}_3\text{-low}$ molarity EF mixture and without samples.

The do Pont Company, in response to our request, recommended two Teflon grades, molded 7A and Type 1 Premium per ASTM D-3294. Gentainers fabricated from both grades withstand repeated use with the INO₃-IIF mixture at 260°C. The Parr Instrument Company has changed its production to use only the molded 7A grade.

Gas-solid reactions at elevated temperatures are being investigated for converting refractory materials to soluble compounds or for forming volatile uranium and thorium compounds that condense as compounds readily soluble in mineral acids. Materials in a quartz boat are reacted in a quartz tube heated by a resistance furnace. The tube is designed to provide a controllable atmosphere and effective recovery of the volatilized compounds.

Reactions with childrine gas and carbonyl childede, especially the latter, are effective for volatilizing dranks. For example, 0.1 g of $\rm U_3O_{5}$, (as well as $\rm UO_2$, $\rm UO_3$, and $\rm UC_2$) volatilizes completely when reacted with childrine at $1000\,^{\circ}\mathrm{C}$ for 12 h or $1200\,^{\circ}\mathrm{C}$ for 5 h. With carbonyl childride, using the same reaction conditions for childrine, 0.1 g $\rm U_3O_5$ volatilizes completely in < 0.5 h at $1900\,^{\circ}\mathrm{C}$ and $\rm In < 1$ h at $700\,^{\circ}\mathrm{C}$. The system has been applied successfully to a variety of uranium-containing materials produced in a LASL wasterecovery calcination facility and supplied for testing by NBL. The method is effective for materials containing zircontum and nioblum which, like uranium, volatilize as childrides.

The technique now is being evaluated for thorium materials. As predicted by the relative bolling points of UCl₄ and ThCl₄, thorium is proving more difficult to volatilize. For example, ≤ 12 of ThO₂, previously calcined at $1200\,^{\circ}\mathrm{C}$ in air, volatilizes during a 1-h reaction with chlorine, contrasted to about 402 for U₃O₈. Under the same conditions using carbonyl chloride instead of chlorine, uranium was completely volatilized, but volatilization of thermal increased only to 3o₂. The formation of volatile UCl₄ and ThBr₄ by reaction of the oxides with chlorine and bromine to the presence of carbon¹ prompted an evaluation of various forms of carbon. Charcoal is proving the most effective. With

¹G. T. Scaborg and J. J. Katz, The Actinide Elements (NcGraw-Hill, New York, 1954), pp. 84, 153.

mixtures of the 1200° C calcined ThO₂ and various charcoals, at a C/ThO₂ mole ratio > 3, the thorium volatilization is > 99% in 1 h at 1000° C. The condensed thorium compound dissolves readily in mineral acids.

ANALYTICAL PETHODS AND AUTOMATED INSTRUMENTS FOR URANIUM, PLUTONIUM, AND THORIUM DETERMINATIONS

Automated Spectrophotometer

The LASE Automated Spectrophotometer is designed primarily for determining uranium and plutonium in scr.p materials. The method used in the original instrument provides high tolerance for the many impurity elements present in scrap materials. Measurement precision is about 1% stondard deviation for a range of about 1 to 14 mg of either element determined in sample portions up to 0.5 ml.

Because many scrap materials have very low translum and plutonium contents, measurements of microgram quantities of the two elements often are required. A method, designed for use in the automated spectrophotometed, was developed. It features measurement of 2.5- to 100-ug amounts of uranium and high tolerance for impurity elements present in scrap materials. The method consists of extracting the U(Vi)-benzoyltrifluoroacetone complex into butyl propionate from a solution that contains Mg(II)-cyclohexanediaminetetracetic acid masking agent to provide high selectivity and hexamethylenstetramine and tricthanolamine to provide high buffering capacity.

The automated spectrophotometer, shown in Fig. 1, was modified to use this microgram-level uranium method as well as the original methods for determining low milligram levels both of plutoniem and uranium. Modifications include (1) a separate reagent dispensing system for the microgram-level method, (2) a mechanism to switch the poleumatic-hydranile system automatically between the two sets of dispensers, (3) removal of the cam-actuated switches that had controlled mechanical operations and expansion of the microcomputer system to provide complete control of all mechanical and electrical operations, (4) installation of a pair of interference filters for absorbance measurements for the microgram-level method, and (5) replacement of the 3\frac{1}{2}-digit, analog-to-digital converter with a 4\frac{1}{2}-digit converter to cover a larger dynamic range.

Output response for the microgram-level method is linear over the range of 2.5 to 100 ug of uranium. The precision ranges from 0.5% standard deviation at 90 ug to 3% at 5 µg of uranium. Under instrument operation conditions, tolerances of 48 metal ions and 17 nonmetal anions have been established.

Automated Controlled-Potential Coulometer

We previously have described³ a controlled-potential-coalometric method for plutonium developed for use in an automated analyzer. Construction of the analyzer has been completed recently. The method features high tolerance for impurities, a precision of 0.1%

²D. D. Jackson, D. J. Hodgkins, R. N. Hollen, and J. E. Rein, "Automated Spectrophotometer for Plutonium and Granium Determination," Los Alamos Scientific Laboratory report Lat-6091 (February 1976).

^{38.} F. Marsh, "Extraction-Spectrophotometric Determination of Microgram Quantities of Uranium with Bensoyltriffuoroacetone," Anal. Chilm, Acta 105, 439-443 (1979).

^{*}G. R. Waterbury, Compiler, "Analytical Methods for Flasionable Materials in the Nuclear Fuel Cycle, October 1, 1978-September 30, 1979," Los Alames Scientific Laboratory report, in press.

⁵D. D. Jackson, R. M. Bolien, F. R. Roensch, and J. E. Rein, "Highly Selective Coulometric Method and Equipment for the Automated Determination of Plotonium," in Analytical Chemetarry in Nuclear Fuel Reprocessing, W. S. Lvon, Ed., Proc. 21st Conf. Anal. Chem. Energy Technol., Gatlinburg, Tennessee, October 4-6, 1977 (Science Press, Frin-eton, 1978), p. 51.

standard deviation for the determination of 5 mg plutonium, and operational simplicity. Plutonium is reduced at 0.2 V (vs SCE) to Pu(III) in 5.5M HCl - 0.015M sulfamic acid electrolyte. Diverse ions are oxidized at 0.57 V at which Pu(III) is not significantly oxidized. Phosphate (as NoH₂PO₆) is added to lower the Pu(III)-Pu(IV) potential and Pu(III) is titrimetrically oxidized to Pu(IV) at 0.68 V. Results of a detailed investigation of diverse ion tolerances for more than 75 metal ions and nonmotal anions have been reported. Metallic elements normally present in nuclear fuel cycle materials do not interfere at equalmole ratio relative to plutonium. Most interfering normatal anions are separated by fuming with perchloric acid prior to analysis.

An overall view of the instrument components is shown in Fig. 2 and its installation in a containment box is shown in Fig. 3. The mechanical portion is installed in the sleping, open-front box that is 0.91 m wide, 0.79 m deep, and 0.84 m high and the electronic components are mounted outside the box.

The major electronic components of the instrument, shown in Fig. 4, are commercial which simplifies meintenance. A Hewlett-Packard 9825 Programmable calculator controls all mechanical and electrical operations, processes titration data, and outputs results on paper tape. A Princeton Applied Research Corporation 173 Potentiostat-Galvanostat and 179D Digital Coulometer, modified for calculator control, do the electrolysis. Also interfaced and under calculator control are a D to A converter, a digital multimeter, a scanner, a real time clock and a digital plotter. The D to A converter provides calculator capability to select electrode potentials. The digital multimeter measures electrolysis conditions of interest and serves as an A to D converter to input data to the calculator. The digital multimeter also monitors interlocks designed to protect the instrument in case of a malfunction. The scanner switches the digital multimeter to the point to be measured. The mechanical operations are controlled through the scanner by contact closur, of relays. The real-time clock monitors electrolysis times and by means of an interrupt system terminates analyses in which the times exceed those found to affect the determination adversely. The plot of log current vs. time provided by the on-line digital plotter allows a trained analyst to spot deviations indicative of a faulty analysis.

The mechanical assembly is designed for long-term, trouble-free operation. A turntable notifing up to 23 electrolysis cells return them into position under a fixed Terion support. Smooth and accurate rotation is provingd by a Geneva-drive, intermittent motion assembly. Positional accuracy is further insure by a cylindrical rod, Jriven by a pneumatic cylinder, that engages slots in the edge of the turntable at each of the 24 positions.

The electrolysis cells are simply fabricated from 4.8-cm-diam glass tubing by flame sealing a flat bottom and grinding the top flat. The electrodes, stirring mechanism, reagent-delivery tubes, inert-gas inlet, and rinsing system are mounted in a rigid Teflon support. The cells are raised by a hydraulic-cylinder-driven assembly to form a gas-tight seal against the Teflon support and to position the various components reproducibly. The reagent dispensers for the HCl-sulfamic acid electrolyte and the phosphate complexant are similar to those used in the actomated spectrophotometer. Only glass, Teflon, and &el-F contact the highly corresive reagents.

The analyzed sample and rinse solution are withdrawn by suction through a Tefion tubo. The aspiration tube is driven by a pneumatic-cylinder mechanism to an exact position at the bottom of the cell near the platinom-gauze electrode for efficient removal of the liquid. Two consecutive rinses, each with ~ 25 ml of $5.5\underline{M}$ HCl, leave less than 0.01% of the pre-sus sample.

Complexometric Titration of Uranium and Thorium

Methods are being developed for the determination of microgram and milligram levels of uranium and thorium applicable to materials produced in various stages of fuel production and ultimater for irradiated fuel analysis. A versatile, automated apparatus, shown in Fig. 5, has alone associated for this purpose. In the instrument, titrant is delivered by a micrometer place driven by a stepping motor to provide precise increments. A probe colorimater immersed in the solution monitors the continuously changing color. Light is transmitted to the probe tip through a flexible fiber-optic light guide. The light passes through the solution and is reflected by a mirror at the end of the probe tip back

through another portion of the fiber-optic light guide to the photodiode detector. A programmable calculator controls the titrant addition, senses the approximate inflection point, processes the data, and calculates the quantity of titrant at the endpoint as the intercept of least squares fitted lines before and after the inflection point. A digital voltmeter serves as an analog-to-digital converter to transfer the measured absorbance values into the calculator. A stripchart recorder also monitors the absorbance output from the colorimeter and provides a plot of absorbance vs delivered titrant volume.

Thorium is determined by titrating the forium-xylenol orange complex with diethylenotriaminepentaacetic acid. Over the $re-\epsilon$ of 20 to 140 ug thorium, the precision is 1 ug standard deviation. Because this method is not selective, a chemical separation procedure is being developed.

A selective, complexometric titration method has been developed for determining aranium. The U(VI)-arsenazo I complex is titrated with dipicolinic acid (pyridine-2,6-dicarboxylic acid) at a pil of 4.9 attained with hex methylenetetramine buffering. Selectivity is gained by use of cyclohexanediaminecetraacetic acid and dischylenetriaminepentaacetic acid as masking agents. Measurement precision for 30 to 180 µg of uranium is about 0.6% standard deviation. Tolerances of diverse impurities are being established.

PREPARATION OF REFERENCE MATERIALS

Reference materials, mainly containing plutonium with leaser numbers containing uranium, are prepared for distribution as NBS standard reference materials, for use in the NBL-administered Safeguards Analytical Laboratory Evaluation (SALE) program, and as working calibration materials for various nondestructive analyzers in operation at the new LASL plutonium processing facility and elsewhere. Table 1 summarizes the status of LASL-prepared materials prepared for NBS. The status of materials prepared for the SALE program is given in Table 11. Examples of working calibration materials for nondestructive analyzers are given in Table III.

Table 1. Plutonium Reference Materials Prepared by LASL as NBS Cortlifled Reference Materials

Composition	Designation	Certified for	Status
Pu metal	SRM 945	purity 99.9%, impurity bload matrix	present lot in ample supply
Pu metal	SRM 949	assay g Pu/g	eighth lot to be pre- pared in 1980
Pu-244	not assigned	atoms Pu-244 per container	prepared. character- ization in progress

Table II. Reference Materials Prepared by LASL for NBL SALE Program

Composition	Cortified for	Status
Pu mitrate solution	g Pu/container, isotopic	one series used in the past. Not planned for future use.
PuO ₂	g Pu/g	second series of 3 lots scheduled for 1980.
(U-Pu)O2 powder	g Pu/g, g U/g Pu and U isotopic	previous scries of 3 lots prepared. Not planned for future use.
(U-Pu)O ₂ pellets	as above	aecond series of 3 lots prepared. Characterization in progress.

Table III. Typical Reference Materials Prepared by LASL
Analytical Chemistry Group for
Calibration of NDA Instruments

Material	Characterization	Various Configurations
PuO ₂	Pu assay, particle size, impurities	solutions
	•	sclids
PuCl _s	Pu assay, isotopi	
		solida on specific
Pu(NO ₃) ,	Pu assay, isotopic	substrates .
UO2(NO3)2	U assny	geometric containers
(U-Pu)Cl _u	U. Pu assay	

PLUTONIUM ISOTOPE HALF-LIFE MEASUREMENTS

Accurate half-life values of longer-lived plutonium isotopes are essential to non-destructive methods of analysis that measure a nuclear property associated with a disintegration rate, including calorimetry and various radioactive particle measurements, and to adjust the platonium content and isotopic distribution values of reference materials and accountable material invertories. In an interlaboratory effort sponsored by the DOE Office of Safeguards and Security, LASL prepares and characterizes pure, enriched-isotope plutonium materials for distribution to participating inboratories, and participates in the half-life measurements.

As shown in Table IV, the Intralaboratory effort has produced a precise measurement of the half-life of $^{2.37}$ Pu. 6 Our recently completed measurement of the $^{2.47}$ Pu half-life, based on mass spectrometric determinations of the decreasing $^{2.47}$ Pu/ $^{2.47}$ Pu ratio over a 3.6-yr time period, is 14.38 yr with a 95% confidence limit of 0.06 yr. At present, an interlahoratory effort is in progress for the measurement of the $^{2.49}$ Pu half-life

⁶L. L. Lucas and W. B. Mann, Editor, Int. J. Appl. Radiat. Isotopes, 29 (No. 8), 479-524 (1978).

Table IV. Plutonium Isotope Half-Life Measurements Status

1sotope	Me as urement Technique	Laboratory	Status
238	not done	-	recommended average of 87.74 yr measured by ANL and ML
239	α-particle calorimetry mass spectrometry of U-235 daughter	ANL, LLI., NBS LLL, ML ANL, LASI., LLL	complete: 24, 119 ± 26 y
240	G-particle calorimetry masa spectrometry of U-236 daughter	LASL, NBS LLL, ML LASL	240 PuO2 pre- pared. Char- acterization and half-life measurements in process
241	mass spectrometry of changing 241/242 ratio	LASL	complete: 14.38 ± 0.06 y

^{*}ANL- Argonne National Laboratory
LLL- Lawrence Livermore Laboratory
NBS- National Bureau of Standards
ML- Mound Laboratory
LASL - Los Alamos Scientific Laboratory

Fig. 1. Automated Spectrophocometer

Fig. ,2. Automated Controlled-Potential-Coulometric Analyzer

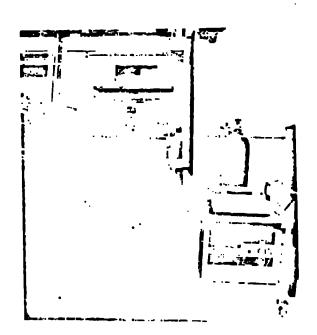


Fig. 3. Automated Controlled-Putential-Coulometric Analyzer in Box

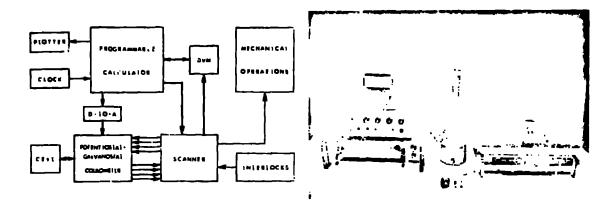


Fig. 4. Control System for Controlled-Potential-Coulometri: Analyzer

Fig. 5. Complexometric Titration Apparatus