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BLOCK RELAXATION TECHNIQUES FOR
FINITE-ELEMENT ELLIPTIC EQUATIONS:
AN EXAMPLE

by

Daniel L. Boley and Seymour V. Parter

ABSTRACT

Consider the Ritz-Galerkin equations for the numerical
solution of the two-point boundary value problem

u' = f, 0 <x <1,

u(o) = u(l) = 0.

We consider Ritz-Galerkin subspaces of hermite cubic splines
with equally spaced knots. These equations are then solved
via iterative methods. The rate of convergence of these
methods is estimated.




1. INTRODUCTION

In [1] Boley, Buzbee and Parter developed an approach for obtaining
asymptotic formulas for the ''rates of convergence" for some block iterative
methods applied to the solution of the "model problem." That is, we

consider the boundary value problem

324 . du
(1.1) Ay = ——§-+ = = £(x,y), (x,y) € Q

ox oy

(1.2) u(x,y) = g(x,y) , (x,y) € 3 Q

where 0 is unit square 0 < x,y < 1. The algebraic problem arises when A
is replaced by Ah » the well known five point difference approximation.
The work in [1] was based on the ideas developed in [4].

In view of the popularity of finite-element methods for the numerical
solution of (1.1)-(1.2), it seems desirable to investigate the applicability
of these ideas for those linear algebraic problems which arise in the
finite-element problems.

In this preliminary report we consider the simplest two-point boundary

value problem

(1.3) u"(x) = £(x) , 0<x<1

(1.4) u(0) = u(l) =0 .

We discuss a Ritz-Galerkin method based on Hermite cubic splines. We
then analyze two particular block iterative methods for the solution of
the ensuing linear algebraic system. It is quite clear that this analysis
can be extended to a large class of block iterative methods for the general

two-point boundary value problem

(1.5) (P(x)u")' - q(x)u = £(x) , 0<x<1
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(1.6) u(0) = u(@) =0 .

However, in order to give a complete, clear discussion without
unnecessary complications, we limit outselves to the simplest case,
2. THE SIMPLEST TWO-POINT BOUNDARY VALUE PROBLEM: FORMULATION

Consider the boundary value problem
d 2
(2.1) (ai- u(x) = £(x) , 0<x<1
(2.2) u(0) =u(l) =0 .

In this section we describe the Ritz-Galerkin method based on Hermite
cubic splines. While this has been done many times [5], [6], [7], it will
be of some advantage to pinpoint certain basic facts.

Let an integer N > 0 be chosen and let h = 1/N+l and let x, = kh,

k
k=0, 1, ... N¥1. Let S(h) be the space of Hermite cubic splines on the

knot sequence {xk} which satisfy (2.2). That is

(2.3) S(h) z{u(x)e clro,11, U(0) = u@) = o , U(x), e H4(Ik)}
I
k

where Ik is the interval (xk,xk+1) and HA(Ik) is the space of polynomials
of order 4 (degree < 3) defined on I -
Let hj(x) and h;(x) be given as in [5, Chap. 3]. These functions are

a basis for S(h). In fact, if ¢(x)e S(h) then

N N+1
(2.4) 0(x) = Y 6(x) R (x) + Y 6'(x) hi(x) .
) Pk ) e
k=1 k=0

The Ritz-Galerkin equations for an approximant U(x)e S(h) to u(x),

the solution of (2.1), (2.2), are given by;

(2.5a) - ($',U0") = ($,f) ¥V ¢e S(h)



where

1
(2.5b) (g,Vv) “f g(x) v(x) dx .
0

Letting ¢ run over the 2N+2 basis vectors hk(x), hi(x) we obtain 2N+2
unknowns U(xk), U'(xk). In particular, if we order the unknowns as follows

(2.6a) U'(xo)’ U(xl)’ U'(xl)s e U(xk)s u' (xk)’ cee U(XN): U'(xN)’ U’ (xN+1) ’

then the equations (2.5a) take the form

~ ~

(2.6b) A(h) U= f

where A(h) is best described as a block tridiagonal matrix (see [5, Chap. 7],

[6, Sect. 1.7])

1 T
(2. 78.) A(h) = 'll_l [Ck_l’ Bk’ Ck] k - 1’ 2’ e e N+2 )
where
(2.7b) B, = B = 2h2/15
* 1 N+2 ’
12/5 0
(2.7¢) Bk = , k=2, ... NH1L ,
0 4h2/15
2
h h
(2.7d) C1 = [— 10 - 3—0] s
[ _ 6 h_ ]
5 10
(2.7e) ¢ = k=2,3 ... N , ’
2
h_ _h-
| - 10 30




(2.7£) c = .

The vector U consists of the interpolation values U(xn), U'(xn)
ordered as in (2.6a). The vector f is given by

(

P - 1

£, = (£, b))

£ = (£, h) k=1, 2, ... N
(2.8) 2k h‘;

farr = (£5 By)

>

1
favbz = (£5 Byyy)

The following facts are particularly useful. If U(x), V(x) e s(h)

~ ~

and U, V are the corresponding vectors of interpolation values - ordered
as in (2.6a) - then

(2.9a) CV, AR) U>= (V', U')
and
(2.9b) <ﬁ, §>= v, f£)

where (U, f) denotes the familiar vector inner product, i.e.,
2N+2 _
(2.9¢) U, £)= E U, fk .

k=1

There is another important matrix, Q(h). This matrix is characterized

by the fact that

am” = e = q(n)



and

(2.9d) <Qh) U, 9> = (U, V)

Once more, it is convenient to describe Q(h) as a block tridiagonal

matrix. We have

h |.T _ )
(2.10a) Qh) = 755 [%k_l s Dy Ek] , k=1, 2, ... M2
where
(2.10b) D, = D._.. = 4h2
. 1 = “n+2 s
2
(2.10¢) E, = [13h -3n°] ,
312 0
(2.10d) D, = , k=2,3, ... N1 ,
0 8h>
54 - 13h
(2.10e) E, = , k=2,3 ...N ,
13h - 3n2
-13h
(2.10f) Egyy = .
—3h?



3. THE ITERATIVE METHODS

To be consistent with the representation of A(h), Q(h) we partition

~

the vector U as ﬁ with

U, = IA’l
IA’zk-z
(3.1) Ek = [ , k=2,3, ...N, Ml
GZk—l
| EN+2 B 62N+2 :

Then the equations (2.6b) may be written as

(3.2) B, U

WU =-C U -C U o +EF , k=1,2,... M2 .

We use this representation to develop the block Jacobi and block SOR itera-

tive schemes to solve these equations.

~

0 ~,
Let a guess U be given. Then the block Jacobi iterates UV+1 are the

solutions of the problems

(3.3) g vl oY

k k __Ck—l Uk—l_ 1( +F ') k=1’ 2’ o o0 N+2 .

A related iterative procedure may be obtained as follows. Suppose N

is even, say N 2J . Let

Bok-1 Cok-1
B, = s, k=1,2, ... J+ ,

T
C2k—1 2k



2k

l

U2k—1

~

Usk

y k=1,2, ... 341,

l

F2k—1

~

F
2k

y k=1,2, ... J+

The equation (2.6b) may also be written as

T
! = - - =
(3.2") B Vi ™ Yieg Vs = Yo Vig F G0 k=12, ce, 4L

For this block representation the block Jacobi iterates V\H.1 are solutions

of the problems

\ Wl T v v .
(3.3" B Vi o1 Vieer " Yier Verr TG K=o 2, e T4

Given a parameter w, the block successive over-relaxation (SOR) itera-

tive schemes take the form

S+l T vl = ~w
(3.4) B, Uk =-w C_4 Uk—l - w Cy Uk+1 + (l-m)Bk Uk + Fk .
V- T W v v
' - - + - + .
(3.4%) B Ve T 901 Vied T O e Vi t T 0B Vi 6y

Since (3.3), (3.3") are each a block tridiagonal iteration which is a
special case of block property A (see [7]) we know that: if p = p(J) 1is
the dominant eigenvalue of the iterative procedure (3.3), (3.3"), then the

optimal w = w, is given by

8
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(3.5)

)
1+ »/l—p2

Moreover, the dominant eigenvalue p(S) of the block SOR method is given by

2
(3.6) p(s) = w,-1 = S - E—

1+ A-o?

Thus, we are concerned with the dominant eigenvalue p = p(J) of the

eigenvalue problems

(3.7) AB U +¢r .7 i

k k k—l Uk—l + Ck Uk+1 = 0 9 k = ]-’ 2’ LR N+2 .

|
o

(3.7') A Bk V 9 k = ]-’ 2’ L) J+1 .

T
k P Y1 Vieer Y Y% Vi T

We are now able to state our basic estimates.

Theorem A: For the equation (3.7) we have
2 .2
(3.8) o) =1 - v’ + o)) .

For the equation (3.7') we have

(3.8") 0(3) = 1 - %nz w2 +omd) .

4. ESTIMATING p = p(J)

As in [1) we write the eigenvalue problem (3.7) in the following form.

Let
4.1) M = diag {Bl, BZ’ e BN’ BN+1’ BN+2}
T T
(A.Z) N = - [Ck—l’ 0’ Ck] 9 k = 1’ 2’ e e N+2 .
Then

(4.3a) A(h) = M - N



and we are concerned with finding
(4.3b) psp(J)=max{|A|;(AM-N)E=0,E¢0}.

Lemma 4.1: The number p is itself an eigenvalue and may be characterized
by
(4.4) p = Max <NU,UD

U0 <MU,TD
Proof: The matrix M is symmetric and positive definite while the matrix N
is symmetric. Moreover, because of block property A (see [7]), 1if A is an
eigenvalue then so is -A . Thus (4.4) follows from the classical Rayleigh

characterization of such eigenvalues (see [2]).

Lemma 4.2: We have the following estimates

(4.5) 1—-i—21r2h2+0(h3)5p<1 .

Proof: Let ﬁ be the eigenvector associated with p . Then

Hence (Nﬁ}ﬁ> > 0 . However, A(h) is also positive definite (see (2.9a))
and
o = {NU,TD
<Ay T,0) + <n0, T

< 1 .

To obtain the left hand inequality of (4.5) we employ the test
function: sinmx . Of course sinmx ¢ S(h), hence we use the interpolant.

That is, let Uo(x) € S(h) and satisfy

(4.6a) Uo(xk) = sin.‘nxk .

(4.6bH) Ué(xk) = T cos Tx, .

10




Then,

o > <MpsUg>

MU0, T >

An easy calculation now completes the proof.
Having obtained these bounds, we proceed as in [1]. Let U be the

eigenvector associated with p . Then

P M T=NT
pPAM) U= (1-p) NT
A T = [1_—§] e’ T .
ph
We write
(4.7) Ah) T =u(h) N T
where
(4.7a) u(h) = =8
ph
satisfies
(4.7b) 0 < u(h) 5_%7 nz + 0(h)
and
(4.7¢) ¥=n’n .

Lemma 4.3: For every U(x) € S(h), let T be the associated vector. Then,

if h < 1 we have

11



Moreover, if U(x) satisfies

(4.9a)

(4.9b)

then

(4.10a)

where

(4.10b)

1/2

[U(x) - Ux )| <R B

0" () | < R 072

N
FURD=EL ) e | + 6@
k=

2

[squ) | i%Rh

Proof: A direct computation shows that

12

2 3

= B2 Ut (xp) UGxp) + 5 UM (xy) U (xp)

h2 h3
=75 U Onup) UGy + 75 UT O UM Ggyy)

N
B Z U0 Ulxyyy)

k=0

N
+ %Z U Gq) [U("k+1) - U(xk—l)]

k=1

N-1

3
+ t11_522 UM (q) U' ()

k=1




Thus we obtain (4.8) from Schwarz's inequality.

Turning to the proof of (4.10), we see that the first and third terms
above are together bounded by %'R2h° so is the sixth term. The sum of the
second, fourth, and last terms is bounded by'i% th. Finally we look at

the fifth term. We note that

ZN: Ux,) Ulxy,,) = %i {[U(xk)]z + [U(xk+1)]2}
k=0 k=0

NIH

ZN: [U(x - U(xk+l)]2 .
k=0

The last term in this expression is bounded by'% R2 and the lemma is
proven.
Lemma 4.4: TFor every U(x) € S(h) let U be the associated vector. Suppose

U(x) satisfies (4.9a), (4.9b). Then

(4.11a) Q) U,i>=n Z lU(xk)lz + o(U)
k=1

where

(4.11b) lo(u)| < RZh .

Proof: A direct computation shows that

13




T 2 2
@m T,0 = 251’ {|U'<o>| + U] }

Zgo n? [U'(O) U(xl) -U'Q) U(xN)]

-3 [U'(O) UGy +UT(D) U'(xN)]

N-1
3 6 .3 , ' '
+ 420 h E: IU (x )‘ 420 ° ZU () U Cx )
k=1

, 312 , 108
+ %20 P Z I U(xk) + 2200 Z UGx) UG,
=1

N

L 26,2 \
*0 " Z U (=) [U(xk+1) } U(xk—l)]
k=1

The lemma now follows from the same pattern of proof as that given in
lemma 4.3.

Corollary 4.4: If U(x) satisfies (4.9a), (4.9b) then

KT = 22w 1,5 + 60 - 220

1
= -é—z lU(x)l2 dx + S(U) - -;—2 ag(u) .
0

5. PROOF OF THEOREM A

We consider only (3.7) and (3.8). The arguments for (3.7') and 3.8'")
are essentially the same. Let E be the eigenvector of (4.7). We know

that {N U,UD > 0. So, we may normalize E so that

(5.1) (NU,UD=1 .

14



Then

(5.2)

That

(5.3)

Then,

Thus,

(4.7) gives

{T,A() T>= uch) <T,N T

is, if h is small enough,

1 2 ~ 2
f [U'(x)|© dx =<U,A(MT) < 7° .
0

y
lux) - vy | = lf u'(t) dt| < |x- yll/2 ‘

X

(4.9a) holds with R=1 . Moreover, as is well-known (see [2, p. 142])

there is a constant R, so that (5.3) implies

(5.4)

(5.5)

and

Thus,

2

[u') | < R, nl/z

Applying corollary 4.4 we have

1 1
-L- Ut ) |? dx = uch) [%—zf luex) |2 dax + 8(U) - —c(U)] ,
0

1
j(; IU(X)I dx==-1—2 +0(h) .

we may rewrite (5.5) as

1
f [ut (x) |2 dx
uh) = 2 2 <1 + o(w)

12 1
L u(x) |2

15
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5

(5.6) >0 (1+om) .

This result, together with (4.7b) proves

(5.7a) um =212 +om)
i.e.,
(5.7b) p@I) = 1 - i—?_nz w2 +omd) .

6. COMPUTATIONAL RESULTS

The following tables summarize our computational experience with this

problem.
For the iteration (3.3). %E = 0.41666%
h Matrix Size p(J) 1- (5/12)1r2 h2 (1 - p)/ﬂz h2
1/4 8 0.7606 0.74298 0.38810
1/8 16 0.9368 0.93574 0.40982
1/16 32 0.984005 0.983936 0.41488
1/32 64 0.995988 0.995984 0.41626
1/64 128 0.9989963 0.9989960 0.41655
1/128 256 0.99974903 0.99974900 0.41662
For the iteration (3.3'). %— = 0.8333%
. 2.2
h Matrix Size o (J) Q-p)/t" 1
1/7 14 0.846647518 0.76135
1/15 30 0.964236885 0.81530
1/31 62 0.991487474 0.82886
1/63 126 0.997930534 0.83222
1/127 254 0.999490238 0.83306
1/255 510 0.999873525 0.83327
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