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BLOCK RELAXATION TECHNIQUES FOR

FINITE-ELEMENT ELLIPTIC EQUATIONS:

AN EXAMPLE

by

Daniel L. Boley and Seymour V. Parter

ABSTRACT

Consider the Ritz-Galerkin equations for the numerical
solution of the two-point boundary value problem

u“ = f,o~x<l, —

u(o) = u(1) = o.

We consider Ritz-Galerkin subspaces of hermite cubic splines
with equally spaced knots. These equations are then solved
via iterative methods. The rate of convergence of these
methods is estimated.



1. INTRODUCTION

In [1] Boley, Buzbee and Parter developed an approach for obtaining

asymptotic formulas for the “rates of convergence” for some block iterative

methods applied to the solution of the “model problem.” That is, we

consider the boundary value problem

2
(1.1)

au
Au=%+—= f(x,y), (X,y) En

ax ay2

(1.2) U(x,y) = g(x,y) , (x,Y) s a Q

where $2is unit square O ~ x,y ~ 1. The algebraic problem arises when A

is replaced by Ah , the well known five point difference approximation.

The work in [1] was based on the ideas developed in [4].

In view of the popularity of finite-elementmethods for the numerical

solution of (1.1)-(1.2), it seems desirable to investigate the applicability

of these ideas for those linear algebraic problems which

finite-element problems.

In this preliminary report we consider the simplest

value problem

(1.3) u“(x) = f(x) , o~x~l

(1.4) u(o) = u(1) = o .

We discuss a Ritz-Galerkin method based on Hermite

then analyze two particular block iterative methods for

the

can

ensuing linear

be extended to

two-point boundary

algebraic system. It is quite clear

arise in the

two-point boundary

cubic splines. We

the solution of

that this analysis

a large class of block iterative methods for the general

value problem

●

✌

(1.5) (P(x)u’)’ - q(x)u = f(x) s _ _()<X<l

2
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(1.6) u(o) =U(l)=o.

However, in order to give a complete, clear discussion without

unnecessary complications,

2. THE SIMPLEST TWO-POINT

Consider the boundary

we limit outselves to the simplest case.

BOUNDARY VALUE PROBLEM: FORMULATION

value problem

(2.1)
d 2 ~(x) = ~(x) ,

()G
O<x

(2.2) u(o) = u(1) = o .

In this section we describe the Ritz-Galerkin

cubic splines. While this has been done many

<1

method based on Hermite

times [5], [6], [7], it will

be of some advantage to

Let an integer N >

k=O, 1, ... N+l. Let

pinpoint certain basic facts.

O be chosen and let h = l/N+l and let Xk = kh,

S(h) be the space of Hermite cubic splines on the

knot sequence {xk} which satisfy (2.2). That is

(2.3)
{ IS(h) ~ U(x)& C1[O,l], U(0) = U(1) = O , U(x) c r14(\)}

lk

where Ik is the interval (x xk, ~+1) and l’14(Ik)is the space of polynomials

of order 4 (degree ~ 3) defined on Ik .

Let hj(x) and h;(x) be given as in [5, Chap. 3]. These functions are

a basis for S(h). In fact, if $(x)E S(h) then

N N+l

(2.4) $(x) ‘,~ $(~) hk(x) + ~ $’(~) h:(x) .

k=l k=O

The Ritz-Galerkin equations for an approximant U(X)C S(h) to u(x),

the solution of (2.1), (2.2), are given by;

(2.5a) - (+~,u~) = ($,f) V @ S(h)



where

J

1
(2.5b) (g,v) = g(x) V(X) dx .

0
.

Letting $ run over the 2N+2 basis vectors hk(x), h;(x) we obtain 2N+2

unknowns U(xk), U’(xk). In particular, if we order the unknowns as follows

(2.6a) U’(XO), U(X1), U’(Xl), ... U(Xk), u’(~), ... U(XN), U’(XN), U’(XN+l) ,

then the equations (2.5a) take the form

(2.6b) A(h) i = ~

where A(h) is best described as a block tridiagonal matrix (see [5, Chap. 7],

[6, Sect. 1.7])

(2.7a)
[

A(h) =; C;_l, Bk, Ck1 k=l, 2, ...N+2 ,

where

(2.7b) B1=B N+2 = 2h2/15 ,

(2.7c)

(2.7d)

(2.7e)

4

Bk =

[

12/5

o

[

6-—
5

Ck =

h
-m

o 1,kac2,00e N+l ,

4h2/15
1

[
cl. _~

h21-m‘
h
m

h2
-m 1

ki=2,3,0.0N ,

.

.
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The vector ~ consists of the interpolation
A..

ordered as in (2.6a). The vector f is given by

(2.8)

A

‘2k = (f, ~)
A

‘2k+l = (f, hi)

k=l,

A

‘2N+2 = (f, +1)

values U(xn), U’(Xn)

2, ...N

The following facts are particularly useful. If U(x), V(x) c S(h)
AA

and U, V are the corresponding vectors of interpolation values - ordered

as in (2.6a) - then

(2e9a) <~, A(h) i>= (V’, U’)

and

(2.9b) <~, ~>= (u, f)

AA

where <U, f> denotes the familiar vector inner product, i.e.,

2N+2

(2.9c)

k=l

There is another important matrix, Q(h). This matrix is characterized

by the fact that

Q(h)* = Q(h)T = Q(h)

5

..



and

(2,9d) <Q(h) ~, ~>= (U, V)

Once more, it is convenient to describe Q(h) as a block tridiagonal

matrix. We have

(2.10a)

where

(2.10b)

(2.1OC)

(2.10d)

(2.10e)

(2.lof)

6

Q(h) ‘& [
T 1‘k-l ’Dk’Ek ‘ ‘=1’2’ ““”N+2

2
‘1 = ‘N+2 = 4h ‘

El = [13h -3h2] ,

Dk .

Ek =

A

312 0

0 8h2

54 - 13h

13h - 3h2

[1

-13h

E
N+l = ●

-3h2

Y k=2,3, ...N+l ,

s k=2,3,0.0N ,



3. THE ITERATIVE METHODS

.

d

To be consistent with the representation

the vector ~ as ~ with

h
:l=;

1

i
2k-2

(3.1) ik = 9 k= 2,3,
A

‘2k-l

I-A

( u
N+2 = ‘2N+2

.

of A(h), Q(h) we partition

... N.N+l

Then the equations (2.6b) may be written as

(3.2)
T

‘k ‘k = - Ck-l

We use this representation

ik_l - Cktik+l

to develop the

tive schemes to solve these equations.
-n

+F k, k=l,2, .00N+2 ,

block Jacobi and block SOR itera-

-.Al
Let a guess U“ be given. Then the block Jacobi iterates U“” are the

solutions of the problems

(3.3)
B &+l T
kk=

?
- Ck-l k-1 -

A related iterative procedure

is even, say N = 2J . Let

cl<Vk+ F
k ‘ ‘=1’ 2’””” N+2 “

may be obtained as follows. Suppose N

‘2k-l c2k-1

1,k=l,2, ...J+l ,

CT
2k-1 ‘2k



Y~ =

Vk=

o

c2k

‘2k-l

1‘2k .J

o

0

, Gk=

, k=l,2, ... J+l.

The equation (2.6b) may also be written as

(3.2’)
‘k

For this block

of the problems

(3.3’)

Given a

tive schemes

Vk . -YT
k-1 ‘k-1 - ‘k ‘k+l ‘Gk’

k=l,2, ....J+l .

v-l-l
representation the block Jacobi iterates V are solutions

13kV;l = -f-l V;_l -yk+lv;+l+~, k=l,2, ....J+l .

parameter u, the

take the form

(3.4)
-v+l T

‘k ‘k “ + Ck-l

block successive over-relaxation (SOR) itera-

&l -v
+ (lw)Bk~k+%k .

k-1 - u Ck ‘k+l

Vv+l
y;+ k-l

v
- fJYk ‘k+l + (1 ‘+G- d~kv~ k “

each a block tridiagonal iteration which is a

(3.4’)
V+l=+

‘k ‘k

Since (3.3), (3.3’) are

special case of block property A (see [7]) we know that: if ()= P(J) iS

the dominant eigenvalue of the iterative procedure (3.3), (3.3’), then the

optimal u = Ub is given by

8

,

.



.

;

(3.5) [1
2

‘b
=1+ ~

r1 + l-p2

Moreover, the dominant eigenvalue P(S) of the block SOR

(3.6)

Thus,

eigenvalue

(3.7)

(3.7’)

●

method is given by

[1P
2

p(s) =Wb-l =

r1 + l-p2

we are concerned with the dominant eigenvalue p = p(J) of the

problems

ABktik+ C;ltikl+Cktik+l =0 , k=l.,2, ...N+2 .

A 13kVk + y:_l vk_l +ykvk+l=o , k= ]-,~, ... J+l .

We are now able to state our basic estimates.

Theorem A: For the equation (3.7) we have

(3.8) p(J) = 1 -~m2 h2+O(h3) .

For the equation (3.7’) we have

(3.8’) p(J) = 1 - ~?T2 h2 + O(h3) .

4. ESTIMATING P = p(J)

As in [1] we write the eigenvalue problem (3.7) in the following form.

Let

(4.1)

(4.2)

Then

(4.3a)

M=
{

diag Bl, B2, ... BN, BN+l, BN+2
}

[ 1N = - C:_l, O, C; , k=l,2, ...N+2 .

A(h) =M-N
9



and we are concerned with finding

(4.3b) {1 IP= P(J) =max A ;

Lemma 4.1: The number p is itself

by

(A M- N)ti=O, ;+O}

an eigenvalue and may be

.

characterized

(4.4) p = Max <6,:>

ti+o <G,:>

Proof: The matrix M is symmetric and positive definite while the matrix N

is symmetric. Moreover, because of block property A (see [7]), if ~ is an

eigenvalue then so is -A . Thus (4.4) follows from the classical Rayleigh

characterization of such eigenvalues (see [2]).

Lemma 4.2: We have the following estimates

(4.5) 1 -fin2h2+O(h3)~p <1 .

Proof: Let ~ be the eigenvector associated with p . Then

--
~=w>o.

<6,:>

Hence <N~,~>> O . However, A(h) is also positive definite (see (2.9a))

and

p=

To obtain

<Nti,ti>
<1.

<A(h) ti,ti>+<Nti,ti>

the left hand inequality of (4.5) we employ the test

function: sinmx . Of course sinnx i S(h), hence we use the interpolant.

That is, let Uo(x) E S(h) and satisfy

(4.6a) Uo(xk) = sinl’rxk,

(4.6b)
%(%) = m Cos ‘k “

10

*

,
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Then,

An easy calculation now completes the proof.

Having obtained these bounds, we proceed as in [1]. Let V be the

eigenvector associated with p . Then

pMti=Nfi

p A(h) fi= (1-P) Nti

We write

(4.7)

where

(4.7a)

satisfies

(4.7b) o<~(h)& IT*+ O(h)

and

(4.7C) fi=h2N .

Lemma 4.3: For every U(x) c S(h), let V be the associated vector. Then,

if h~ 1 we have

11



Moreover, if U(x) satisfies

(409a) lu(l@ .

(4.9b) lu’(~)

then

u(xk+l)l : R h
1/2

~ R h-1/2—

k=l

where

(4.10b) l~(U)@R2h .

Proof: A direct computation shows that

,2 ,3-~u’(~+l) U(XJ +ypml$j U’(h+l)

k=O

, g ‘-1
t

z U’( ) U’(% %+1) “
k=l

12

.

.

●



l%us we obtain (4.8) from Schwarz’s inequality.

Turning to the proof of (4.10), we see that the first and third terms

12
above are together bounded by ~ R h; so is the sixth term. The sum of the

second, fourth, and last terms is bounded by + R2h. Finally we look at

the fifth term. We note that

N
1-—
2 E[

u(Xk) -U(xk+l)]z .

k=O

The last term in this expression is bounded by

proven.

Lemma 4.4: For every U(x) c S(h) let ~ be the

~ R2 and the lemma is

U(x) satisfies (4.9a), (4.9b). Then

(4.ha) <Q(h) ti,ti>= h jj lu(xk)!2+ ‘(u)

k=l

where

(4.llb) IcJ(U)Iz R2 h .—

associated vector. Suppose

Proof: A direct computation shows that

13



<Q(h) fi,fi> = + h3 {luwo12 +-IU’(l)12}

26
+ 420 [
— h2 U!(O) U(xl) - U’(1) U(XN)

1

-&h3
420 [“(o) u’%) + “(1) w]

N N-1

‘i%h2ii “(’k) [U(xk+l)- ‘(’k-d
k=l

The lemma now follows from the same pattern of proof as that given in

lemma 4.3.

Corollary 4.4: If U(x) satisfies (4.9a), (4.9b) then

J12 1=—
50 IU(X)12 dx i-6(U) - &a(u) .

5. PROOF OF THEOREM A

We consider only (3.7) and (3.8). The arguments for (3.7’) and 3.8’)

are essentially the same. Let ~ be the eigenvector of (4.7). We know

that<~~,~>> O. So, we may normalize : so that

---
(5.1) <N U,U>= 1 .

14

,

.

●
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Then (4.7) gives

(5.2) <ti,A(h)ti>=~(h)<ti,; ti>

That is, if h is small enough,

(5.3)

Then,

Iu(x)
Y

- U(y)l = IJ u’(t) dtl ~ lX-yll’2IT .
x

Thus, (4.9a) holds with R=m . Moreover, as is well-known (see [2, p. 142])

there is a constant R
2
so that (5.3) implies

(5.4) lU’(x)l~R2 h-1/2 .

Applying corollary 4.4 we have

J
1

(5.5) ~1 IU’(X)12 ,x =
[J

p(h) & IU(X)12 ,x + 6(U) 1-:Cs(u) ,
0

and

Thus,

.

:

we

fl Iu(x) 2 5
‘X=m

may rewrite’(5.5) as

J

1
IU’(X)12 dx

p(h) = ~ 01

i
IU(X)12 dx

+ O(h) .

(1+ O(h))



16

(5.6)
52

~fi= (1 + O(h)) .

This result, together with (4.7b) proves

(5.7a) v(h) ‘~m2+ O(h) ,

i.e.,

.*,.
(5.7b) p(J) = 1 - ~# hz + 0(h3) .

6. COMPUTATIONAL RESULTS

The following tables

problem.

For the iteration (3.3).

h Matrix Size

1/4 8

1/8 16

1/16 32

1/32 64

1/64 128

1/128 256

For the iteration (3.3’).

h

1/7

1/15

1/31

1/63

1/127

1/255

summarize our computational experience with this

5
=

= 0.41666*

p(J)

0.7606

0.9368

0.984005

0.995988

0.9989963

0.99974903

5
z

= 0.8333*

Matrix Size p(J)

14 0.846647518

30 0.964236885

62 0.991487474

126 0.997930534

254 0.999490238

510 0.999873525

1- (5/12)T2 h2

0.74298

0.93574

0.983936

0.995984

0.9989960

0.99974900

(1- p)/m2h2

0.38810

0.40982

0.41488

0.41626

0.41655

0.41662

(1 - f))/lTLh2

0.76135

0.81530

0.82886

0.83222

0.83306

0.83327

.

.

.
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