
.. .-

AII AfhTldVC J&ctiols&uat @pOrtUOity Enspbyer

.

.,’ ,.”. -.
.< .;’.,.’ .,

,., , ,
,> ’-:-

. \.\
ThisworkwassupportedbytheUS DepartmentofEnergy,OfficeofBasicEnergy
Scismccs,DepartmentofAppliedMathematics.

... ,

,,

“.’.
.

-Y

-1

This report was prepared as an account of work sponsored by an a~my of the United States Coverrunent.
Neither the United states(hermnent nor any agency thereof, nor any of their employees, makes assy
wmaatty, expreaa or tmplied, or assumes arry legal liabitity or responsibility for the accuracy, completeneaa,
or rsaeftdness of any information, apparatus, product, or process diactoaed, or repreaenta that iss use would
rsd infringe privately owned rights. References hereio, to asty spetiic commercial product, process, or
aervfce by trade mme, tmdmurk, mantd’acmrei, or otherwise, does not neczsarily constitute or imply ita
mdorscmcnt, recommendation, or favoring by the United States Government or any agency thereof. The
vtews and opinions of authors expressed herein do not necessarily state or reflect those of the United
SUks Government or any agency thereaf.

. .,!.. . .

LA-8927-MS

I

;

.,

:L

-—. —-l- --

Numerical Methods for

Nonlinear Differential Equations

James M. Hyman

.<, -- -----

-L. .

.-. .

.*

-.

.,

. -, . .

. . .

. .

.0s Allaiims

UC-32
Issued: January 1982

. .

Los Alamos National Laboratory
LosAlamos,NewMexico87545

I

ABOUT THIS REPORT
This official electronic version was created by scanning the best available paper or microfiche copy of the
original report at a 300 dpi resolution. Original
color illustrations appear as black and white images.

For additional information or comments, contact:
Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

NUMERICAL METHODS FOR NONLINEAR DIFFERENTIAL EQUATIONS

by

James M. Hyman

ABSTRACT

New and better methods for the numerical
differential equations are being developed
rate. In this report, directed to scientists
but not necessarily in numerical analysis.

solution of partial
at an ever-increasing
trained in mathematics
we try to unify and

simplify the underlying crucial points in this development. Most of
the new methods can be understood and classified according to how
space, timk, and boundary conditions are discretized and by how
nonlinear algebraic equations that arise in the solution process are
solved. We will discuss each point and present numerical examples
showing how a simple linear analysis can fail.

INTRODUCTION

A numerical algorithm for the solution of nonlinear partial differential
equations (PDEs) can be a highly complicated and problem-dependent process. A
method developed for a particular test problem may not work for similar
problems. Methods that work well in one space dimension may not be easily
extended to two or three dimensions. Linear analysis can rarely ensure
accuracy with nonlinear methods or highly nonlinear equations.

Each year significant and powerful algorithms are discovered, but most of
these methods have a similar underlying structure. To better predict when a
method, which is almost always developed for relatively simple test problems,
will extend to more complicated situations, we must understand this underlying
structure.

First, we will simplify the structure of these methods to study the general
flow of the algorithms, understand their similar patterns of interconnections,
and unify them in a single theory. In this synthesis, new properties and
common features among seemingly different methods sometimes emerge that were ,
not evident when analyzing a specific method for a specific set of equations.

We do not imply that methods tailored to specific equations should be
abandoned. Many excellent methods have come from specialized analysis of a
specific set of equations. But,’ by understanding the general patterns found
in all the methods, we may gain a better view of how and why the algorithms
work as they do.

The prototype system of PDEs studied here can be written as

= f(x,t,u),
‘t

U(x,o) = U. , (1)

where the solution u(x,t) lies in some function space, x is in some domain Q,
and f is a nonlinear differential operator. We use the notation Ut and u to
represent partial differentiation with respect to time and space. On ‘the
boundary of Q, the solution is constrained to satisfy the boundary condition

b(x,t,u(x,t)) = o, x & af2 , (2)

where b is a nonlinear spatial differential operator.

A discrete numerical method approximates u by an element U in some finite
dimensional space whose components are the values of u at a discrete set of
mesh points. The differential operators f and b are replaced by discrete
operations F and B operating on U.

The discretized approximation to Eqs. (1) and (2) is a constrained system of
ordinary differential equations (ODES),

Ut = F(U), B(U) = O , (3)

which are then integrated numerically.

Evaluating F(U) and integrating Eq. (3) often requires solving large sparse
systems of algebraic equations. The methods used to solve these equations
often determine the success or failure of any numerical approach.

This report is organized so that the crucial choices for methods to discretize
space, boundary conditions, time, and methods to solve the algebraic systems
are analyzed independently. The numerical examples are in only one space
dimension for simplicity. We avoid
linearity that may be present so that
to more complicated problems in higher

SPACE DISCRETIZATION

taking undue advantage of this or any
the general conclusions may be extended
dimensions.

The numerical approximation of the spatial derivatives and the distribution of
the mesh points determine how well the spatial operator f(u) and the solution
u will be approximated. We describe some typical methods to approximate
spatial derivatives and then we describe how the errors in a calculation are
related to the order of accuracy of the method.

Often, important properties of the solution behavior originate at the boundary
and the numerical differentiation procedure must take the boundary conditions
into account. For simplicity, we will not incorporate the influence of the
boundary conditions into the discrete operator until the next section.

Numerical Differentiation

The guiding principle in choosing a numerical method to approximate the
spatial operator is that the resulting discrete model should retain as closely
as possible all the crucial properties of the original differential operator.
For instance, for a hyperbolic PDE, the operator f is antisymmetric, so we try

2

to approximate f by an antisymmetric discrete operator F. For a parabolic PDE
when f is dissipative, we approximate f with a dissipative discrete operator.
If f is in conservation form, we also choose a conservation form of F.4

All spatial differentiation methods we describe follow the same algorithmic

●
flow. At time t during a calculation, we are given the approximate solution
vector U at a discrete set of mesh points X and must generate a numerical
approximation F(U) of f(u) at these mesh points. When f(u) is a nonlinear
spatial operator, it will have terms such as g(u,x,t) or [s(u,x) g(u,x,t)] .
First, all nonlinear functions are evaluated to genexrate, say, the vecto?sxG
and S. Next, G, X, and S are input for a black-box-type subroutine package in
the computer library. This subroutine then returns the approximate vectors Gx
and (SGX)X of derivatives at the mesh points as output.

Thus , the spatial differentiation is totally divorced from the nonlinearities
of the PDE. This modularity also reduces the redundancy of programming the
same approximation to the spatial derivatives each time they appear in an .
equation. These differentiation routines are debugged and optimized for a
particular machine only once--with no specific PDE in mind.

The numerical differentiation methods we describe fall into three categories:
finite difference methods, implicit methods, and transformation methods. The
simplest and oldest general technique, the finite difference method, is
described first.

Finite Differences

In a finite difference approximation, the function g is expanded at mesh
points near x. in a Taylor series about x. . These expansions are added and
‘subtracted to ~ive

1

G
&

- Gi ~ ~2
~ Gx(xi) =

i+l -—
ax 2Ax 6 ‘XXX

(xi) +O(AX4)

-G + 8G -8Gi1+Gi2
* ~ Gx(xi) =

i+2 i+1

ax 12AX
+ 0(AX4)

a
s

~= i.+*(Gi+l- ‘i) - ‘i-+(Gi - ‘i-l)

Xi sax –
AX2

where Ax = ~(xi+l - xi_l) and

Here
goes

(4)

(5)

(6)

s = 2s(xi)s(x i+~)/(s(xi) + ‘(xi+~)) . (7)
i+%

O(AXJ) stands for a quantity bounded by some constant times AXJ as Ax
to zero. The formula for (sgx)x uses the harmonic rather than the

3

arithmetic average for S .+1 to ensure flux continuity in the solution [1].
This crucial property of$h% differential operator should be retained in the
discrete approximation.

The vector G of derivative values can be written as Gx = DG. Here, D is
a banded sparse m~trix.

Implicit Methods

The implicit or Pad& methods are a generalization of the finite difference
methods. Equation (4) can be rewritten as

~2 ~2 G
(1 +

i+l
——) (x.) = ~;Gi-l

2gxl
+ 0(AX4) .

6 ax
(8)

Approximating the second derivative operation with Eq. (6) and using matrix
notation, we have

D2GX = DIG + 0(&4) . (9)

Here, D2 and D1 are tridiagonal matrices generated by Eqs. (4) and (6). A
similar procedure can be used to approximate gxx.

Often, time discretization methods require solving implicitly defined
equations such as Eq. (9). In special cases the implicitly defined space and
time systems can be solved simultaneously leading to an exceptionally
high-order efficient method. These are called operator compact implicit
methods [2].

Transformation Methods

In the transformation or pseudospectral method, G is first mapped by a trans-
formation of the form

g = TG = ! aj$j(x)
j=l

(lo)

into nondiscrete function space. The_lbasis functions $,(x) and the
transformation are chosen so that T and T-A are fast
and so that differentiation D is simple in the
derivative approximation can then be written as

Gx = T-lDTG .

Some common transforms are based on the fast Fourier
are trigonometric functions, Tchebyshev, or Legendre
the $i as piecewise polynomials with compact support,

(< m logti operations),
t;ansform space. The

(11)

transform where the $.
polynomials. Choosin~
such as the B splines,

is another good choice. Often the
some crucial property such as the

transformation is chosen to incorporate
periodicity or symmetry of g into the

calculation. This can greatly

Grid Resolution

The accuracy of the numerical
approximates f(u) and how well

improve the accuracy of ‘Gx.

solution is largely determined by how well F(U)
U resolves the solution u. These errors depend

on the accuracy of the derivative approximation and the algorithm used to
locally refine the mesh. Because the accuracy of the method strongly
influences the grid needed to resolve the solution, we first describe these
relationships.

Accuracy

Discretizing with a highly accurate difference scheme keeps the computer time
and storage to a reasonable level in multidimensional calculations. The
analysis is linear, but in practice, qualitative results usually hold for non-
linear problems. Usually, the best we can do for nonlinear equations is to
seek out basic relationships for linear equations that will be stable to small
perturbations. These are the results that are most often retained.

The truncation error in (3) is the amount by which the mesh point values of
the true solution to the differential equation (1) fail to satisfy the
difference equation (3). These errors are typically O(AxJ) in size and j is
‘called the order of the method.

For any fixed accuracy criteria, the number of mesh points M. needed in a
jth-order linear calculation is related to,the number of mesh po~nts needed by
other methods according to the relationship

= C2M; =
4 6

‘1 C4M4 = C6M6 “
(12)

For the periodic unidirectional wave equation Ut = vu , the phase error intro-
duced will be the same using second-, fourth-, or s~xth-order differences if
the number of mesh points in the calculations satisfy [3]

(13)

Table 1 compares the number of points per wavelength necessary to obtain a
given phase error e in the kth Fourier mode of the periodic solution to

::f;e:gc:: ‘lme t ‘S=ng
second-, fourth-,

different fr~que~;;es

and sixth-order spatial centered
In a calculation where the solution contains many
the high modes (2-5 points per wavelength) are

approximated equally ~oorly with all the methods. The middle modes (6-16
points per wavelength) are computed much more accurately with the fourth- and
sixth-order differences than with the second-order method. The sixth-order
differences are more accurate for the lower modes than either second- or
fourth-order differences, but this gain is often lost because of errors
introduced in the approximation of the boundary conditions.

5

*

2nd order M2 4th order M4 6th order M6
Accuracy
e/(vkt)

4 4 3 2.6
8 5 4 0.65

16 7 5 0.16
32 10 7 0.04
64 14 8 0.01

128 19 10 0.0025
256 27 13 0.0006

Table 1. Points per wavelength for second-, fourth-, and sixth-order differ-
ences to have the same accuracy.

The relationship of the accuracies of the different methods compared to the
number of points per wavelength is even more impressive in higher dimensions.
In two space dimensions, the number in Table 1 should be squared, and in three
dimensions, cubed.

The corresponding relationship for the damping error in Ut = Uxx for second-
vs fourth-order finite differences is [3]

- 0.44 M; .
‘2 -

(14)

The qualitative results from this linear analysis hold true for many nonlinear
equations, as shown in Fig. 1 where the density is plotted into solutions of

the Euler equations of gas dynamics for a Riemann problem. (A complete
description of these calculations is in Ref. 4.) Second-order finite
differences were used in Fig. la and fourth-order in Fig. lb, otherwise they
are the same. Note that the higher order differences resolve the solution
better.

I

.$

z

c

6

\

FfOrtfochn wow

Confoct
dlsconliruiiy

shock

u

Figure la
Second-order

o0

Radoctlon WOVe

Figure lb
Fourth-order

Figure 1

Numerical Solutions to the Euler Equations for the Riemann Problem
on a Grid of 50 Mesh Points

.

a

*

I

The oscillations near the shock are caused by errors in the high frequencies
where all the methods do poorly. To efficiently resolve the gradients in this
problem, it would be best to adaptively refine the mesh around the
discontinuities [5]. These methods either continuously redistribute a fixed
number of mesh points to,approximate the solution in some near optimal way as
the solution changes in
to minimize the work
prescribed accuracy [7].
that reflects the errors

BOUNDARY CONDITIONS

Before calculating the

tirn~ [6] or they add and remove mesh points as needed
required to approximate the solution within some

This is done by equidistributing a mesh function
in a calculation on a given grid.

solution to any differential equation, boundary
conditions should be consistent to form a well-posed problem. A numerical
method cannot generate reasonable results for a problem that does not have a
well-defined reasonable solution. The importance of proper boundary
conditions cannot be overstressed: boundary conditions exert one of the
strongest influences on the behavior of the solution. Also , the errors intro-
duced into the calculation from improper boundary conditions persist even as
the mesh spacing tends to zero.

A common error in prescribing boundary conditions for hyperbolic equations is
to over- or underspecify the number of boundary conditions. Overspecification
usually causes nonsmooth solutions with mesh oscillations near the boundary.
Underspecification does not ensure a unique solution, and the numerical
solution may tend to wander in steady-state calculations. In either case, the
results are not accurate and one should be skeptical of even the qualitative
behavior of the solution.

It should be noted that the way in which boundary conditions are specified for
the difference equations can change a well-posed continuous problem into an
ill-posed (unstable) discrete problem. However, our experience with the
suggested implementations of following technique has been favorable.

Two of the most common methods used to incorporate boundary conditions into
discrete equations are the extrapolation and unentered difference
methods [4].

Extrapolation Method

In this method, the domain of the problem is extended and the solution is
extrapolated to fictitious points outside the integration region. The

nonphysical solution at these points is defined so that the discrete equations
are consistent with as many relationships as can be derived from the boundary
conditions and differential equations. The extrapolation formula can do this
best by incorporating the discrete boundary conditions [Eq. (3)] into the

extrapolant. Additional relations can be generated by differentiating Eq. (2)
with respect to time, replacing all time derivatives by space derivatives
using Eq. (l), and discretizing the resulting equations.

7

For example, use a centered five-point formula to approximate the spatial
derivative in the equation

Ut = (U2) x & [0,11 ,
xx ‘

(15)

with the boundary conditions

B(u(x,t),t) = O, X = 0,1 . (16)

The five-point formula at xl = Ax uses the nonexistent mesh point x-l = -Ax.

The value U(x) needed here,
-3

is constructed explicitly with an extrapolation
formula as fol ows; Eq. (16) is differentiated with respect to time to give

~ (U(o,t),t)ut+: (U(o,t),t) =0

or

~(uz)xx+~.o. (17)

Discretizing Eq. (17) with Eq. (6) and rearranging yields the extrapolation
formula

u = known data + 0(Ax4) . (18)
-1

Unentered Differences

The second approach is to extend the number of boundary conditions so that “all
components of the solution are defined at the boundary. Again, these

additional boundary conditions must be consistent with the original problem
and as many relationships as can be derived from it. An unentered difference

approximation is then used to approximate the spatial derivatives at the mesh
points nearest the boundary.

This

with

method is described for the linear hyperbolic system of M equations

‘t
= h(x)ux , (19)

the boundary conditions

Su = b(t), x=x. (20)
o 0

Difficulties arise in defining the solution at the boundary when O < Rank(s) <
Rank(h) = M, and there is no unique solution uo of Eq. (20). If Rank(s) = O,

,

.

8

all the characteristics are outgoing, and using either unentered differences
at the points near the boundary or straightforward polynomial extrapolation to
the fictitious points gives accurate results. When Rank(s) = M, all the
characteristics are entering the boundary and all the solution components can
be solved for on the boundary. Unentered spatial differences can then be
used at the points near the boundary and will result in an accurate
approximation of the boundary conditions. When Rank(s) is greater than zero
but less than M, then by differentiating Eq. (20) with respect to time and
replacing Ut from Eq. (19), we have

sh(x)ux = b“(t), x=x.
o

(21)

Approximating Ux by second-order one-sided differences gives us

SHOUO = [SHO(4U1 - U2) - 2Axb0(t)]/3 + 0(Ax3) , (22)

where H =H(x). Equation (22) gives additional information about the bound-
%“ary con ~tions” that is consistent with both the original boundary conditions

of Eq. (20) and the differential Eq. (19). If we still do not have enough
boundary conditions to solve for U uniquely, we can continue by
differentiating Eq. (21) with respect to ?ime and using Eq. (19) again.

Often, H is nonlinear and the above procedure must be iterated.
“e

Usually one
or two I erations will supply a stable accurate boundary approximation.

Once U has been found, we can use unentered finite differences to
approxi~ate the spatial derivatives at the mesh points near the boundary or we
can extrapolate the solution to fictitious points outside the integration
region by replacing the derivatives in Eq. (21) with second-order centered
differences and solving for U_l.

TIME DISCRETIZATION

The numerical solution of Eq. (2) is advanced in time in discrete steps that
vary depending on the local behavior of the solution; that is, the length of
the time steps depends on whether the solution is evolving on a slow or fast
time scale. The methods that approximate the time derivatives, like those
that approximate the space derivatives, are based on Taylor series. The major

difference between time and space differentiation is that time has a
direction. This time flow allows savings in computer storage, but introduces
questions about the time stability of the difference equations relative to the
stability of the differential equation.

The integration methods discussed in this section are called k-cycle
Runge-Kutta multistep methods and can be written

n+a ‘1 ‘2 k n+a .
U1=

i~O al,iu
‘-1 + At 2 ~1 iFn-l + At Z yl iF 1

i=O > i=l ‘

(23)

region shown in Fig. 2. Here, A is any of the eigenvalues of the linearized
Jacobian matrix of F.

i

5
G
g

R

i

Figure 2
Stability Region for the Forward Euler Method Eq. (24)

.

n+a ‘1 ‘2 k n+a
u ‘= ‘-i+At 2 ~ ‘-i+At Zy

i
i~o ‘kjiu i_. k,iF i=l k,iF

n+a
u
n+1

=U k

Here, U
n-t-a n+a

and F = F(Un+a) are approximations to the solution at time
t = tn + a(tn+a - tn) = tn + aAt, where a is a scalar.

n+1

The method is explicit if y. . = O for j ~ i and implicit otherwise. Implicit
methods require solving onel‘Jr more algebraic systems on each time step. The
extra work required to solve these systems is often rewarded by a
substantially larger stability region than a similar explicit method might
have.

Explicit Methods

The

is

simplest integration method , called the forward Euler method

u
n+1

= Un + At F(Un) (24)

linearlv stable if At is chosen so that AAt lies within the stability

.

10

If F in Eq. (25)
to the parabolic

‘t
= Su

xx

is a second-order finite difference
equation

approx.imation [Eq. (6)]

(25)

with periodic boundary conditions and an equally spaced mesh between [-n,x],

A= - =(1 - Cose) ,
AX2

(26)

where O takes on discrete values between O and 27I [3]. From Eq. (26) and
Fig. 2, it follows that the stability restriction for At is

lAt Amaxl ~ 2 , (27)

or

(28)

This restriction is called the Courant-Friedricks-Lewy or CFL condition. We
can vary At to retain a stable numerical solution as long as Eq. (28) is not
violated.

Equation (24) is a first-order integration method.
discretization section, higher orde~lmethods are often
If Eq. (24) is used to predict ~ then this value
second order using the improved Euler ~orrector method.

u
n+1

= Un + # (;n”+ Fn) .

An excellent explicit method for hyperbolic equations
leap-frog predictor method

“n+l = ti- 1 + 2AtFn ,u

combined with the third-order

u
n+1 .$n+y-l+?$!

As in the spatial
more cost-effective.
can be corrected to

(29)

is the second-order

(30)

leap-frog correction method [4]

‘n+1
F

+ 4At n
~F . (31)

The stability region shown in Fig. 3 is very good along the imaginary axis.
Note that if one stops after the predictor, the method is unstable when the A
have nonzero real parts, making it unsuitable for parabolic equations.

The stability for a centered finite difference approximation to

‘t
= vu (32)

x

11

with periodic boundary conditions is determined by [3]

A2= i sin(3/Ax

or

A4 = i(8sin0 -

where A and
‘4

fourth-o~der finite

Stability

(33)

sin2~)/6Ax , (34)

are the eigenvalues associated with the second- and
difference approximation Eqs. (4) and (5).

-1 0
Re (XAt)

Figure 3
Regions for Leap-frog Predictor Corrector Method

The resulting stability restrictions for the second-order space difference are

Atv<l
Ax–

predictor stability [Eq. (30)] (35)

*

lkv<~
Ax –2

predictor-corrector stability [Eqs. (30) and (31)] . (36)

For the fourth-order space difference [Eq. (5)] they are

Atv<~
Ax –4

predictor stability [Eq. (30)] (37)

Atv<g
Ax –8

predictor-corrector stability [Eqs. (30) and (31)] . (38)

The leap-frog predictor is unstable for systems of equations with eigenvalues
having a nonzero real part. Therefore, when artificial dissipation is added
in shock calculations [4], or when the boundary conditions shift the spectrum
of the discretized equation, the leap-frog method cannot be used without the
corrector cycle. The first corrector application extends the limit on the
maximum time step by 50% and improves the method to third order.

Another difficulty of the leap-frog predictor is a unique type of error caused
by time and space mesh decoupling. The odd and even points of a mesh are only
weakly coupled for even spatial derivatives; errors with frequency 2Ax or 2At

.

.

12

can degrade the accuracy of the solution with
corrector cycle couples the mesh points among
prevents this instability.

A relatively new explicit method, called the
method [8], can be written as

n+a . n+a . n+a . n+a .
U l=U l-l+ Atc[F l-l-F 1-2] .

i

Here, ai = lfori~3.

high-frequency noise. The
the three time levels and

iterated multistep (IMS)

(39)

An explicit predictor-corrector is used to start the iteration and the c. are
chosen so that Eq. (39) increases the order of the method on each iter~tion
for linear autonomous systems. For example, if Eqs. (24) and (29) start the
iteration, then c. = I/i, i =3,4,.... If the leap-frog predictor-corrector
Eqs. (30) and bl) start the iteration then C3 = 3/10, C4= 7/30,9

C5
=4/21,

In general, the stability of the IMS methods increases on every iteration, as
can be seen in Fig. 4. Another advantage is that IMS methods allow for local
improvements in the stability and accuracy of the calculation. Only,a single
time level is used in the iteration, so only those ODE components that have
failed to pass some accuracy test need be iterated. That is, by iterating
locally in regions of rapid changes such as shock fronts, boundary layers, or
regions with a refined mesh, the stability and accuracy of the calculation are
improved precisely where needed.

JI I I 31
I 1

3
21 - s 21 -

.

I -

i

I ;1 -

0
-s -2 -1 0 I o

-s -2 -1 0 IROOIAds
Real Ash

Figure 4a Figure 4b

Stability region for the Stability region for the
Improved Euler IMS Leap-Frog IMS

Implicit Methods

Many problems occur when the solution changes on a slow time scale but the
stability criteria limit the time step far below that needed to retain accu-
racy. In these cases, it is often best to use a more stable implicit method.

13

Two

“and

of the best implicit methods are the second-order trapezoidal rule

u
n+1 At n+l

~F
=un+~Fn-—

2

the second-order backward difference (BDF) formula

(40)

u
n+1

- $At Fn+l = $ - y-l . (41)

These methods are stable when Re(A) < 0 for all At, as can be seen in Fig. 5.

1

t

Figure 5a Figure 5b
Trapezoidal Method Second-order BDF

Figure 5
Stability Regions for Trapezoidal Method Eq. (40)

and Second-Order BDF Eq. (41) Method

On each time step of a one-cycle implicit method, we must solve a nonlinear
algebraic system of the form

u‘+1 + Aty F(Un+l) = known quantities . (42)

Several iterative methods, discussed in the next section, show how Eq. (42)
might be solved. A good first guess can often be made by using an explicit or
extrapolation method.

ALGEBRAIC SYSTEMS

Iterative Methods

In the discussions on space and time discretization, it became necessary to
solve large sparse algebraic systems of equations, which can be written

A(v) -b=O , (43)

where A is a nonlinear discrete operator, b is a known vector, and the
discrete solution vector is v.

14

Often the solution of Eq. (43) is difficult to obtain directly, but the
residual error

r = A(w) - b (44)

for an approximate solution w is easy to evaluate. If there is a related
systern

P(w) -b=o (45)

that approximates Eq. (43) and is easier to solve,

I
the defect correction algo-

rithm may be appropriate.

Given a guess v near a root Vn+l of E . (43), we can expand Eq. (43) using
Taylor series tonget

O=A(V)-bn+1

= A(vn+l) - b + p(vn+l) - p(vn+l)

= A(vn) - b + p(vn+l) - p(vn) - (Jp - JA)(vn+l - vn) + 0(s2) , (46)

where & = v . The defect correction iteration is any O(E)

approximationn~% ~q~n(46). The simplest such iteration is

P(vn+l) = p(vn) - A(vn) + b . (47)

This iteration will converge if Vn and Jp the Jacobian of P, are near enough
to v

t“
and J , respectively. Table 2 lists some of the more common

appli?; Ions of ~efect corrections.

The iteration (47) can often be speeded up by using a one-step acceleration
parameter w to give

P(vn+l) = p(vn) - Wn[A(Vn) - b] . (48)

These methods include successive overrelaxation, dynamic alternating direction
implicit methods, and damped Newton. Often a two-step acceleration method

P (vn+l) ‘b +wn[p(vn) - anA(vn)] + (1 ‘Wn)p(Vn-l) (49)

can speed up the convergence even more. These methods include the

Tchebyshev [12] and conjugate-gradient [11] methods.

P(v*+1) =

A(vn) + JA(vn) (Vn+l - Vn)

Diagonal of JA

Lower triangular part of JA

Lower triangular part of JA

+ first upper off-diagonal

Coarse grid operator + relax

using one of the above

Symmetric part of JA

IfA=(I+AtLx+At Ly),

then P = (I + At LX)(I + At Ly)j

where L = linearized lower order
x

approximation to L.

LU where

L = lower triangular

U = upper triangular

matrix

matrix

Method

Newton [9]

Jacobi [9]

Gauss-Siedel [9]

Line Gauss-Siedel [9]

Multigrid [10]

Concus-Golub-O’Leary [11]

ADI [9]

Incomplete LU method [9]

Table 2. Common examples of the defect correction iteration.

NONLINEAR TROUBLES

When using linear methods to approximate the solution of well-posed linear
equations, one can have some confidence in the results> thanks to Lax’s
equivalence theorem. This theorem states that, for these problems, a stable
consisten~ approximation is necessary and sufficient for the numerical
approximation to converge to the true solution as the mesh is refined.

The theorem is false for general nonlinear equations or nonlinear methods, as
shown in the following two examples.

Nonlinear Equation Example

Consider the nonlinear diffusion equation

(U3)XX, U(x,o) = {:: :;: “
‘t =

(50)

The solution to this equation is a wave front traveling to the right.

16

I

Equation (50) can be rewritten as

- 3U(U Uxx + 2U
‘t – :) “ (51)

The solution U is discretized and the space derivatives are approximated by
any method in the Space Discretization section. The time variable is inte-
grated with any stable method from the Time Discretization section.

Note that Ut(x.) = O, a discrete version of Eq. (51), is zero for all t when
x. > 0 since ~i ~ O at these mesh points. This implies that the wave can

n~ver propagate to the right of zero, no matter how fine a mesh is used.

Thus, we have a stable consistent approximation that can never
true solution. If Eq. (50) is difference directly using Eq.
then the resulting numerical solution will converge to the

Nonlinear Method Example

Consider the unidirectional wave equation

‘t = ‘x ‘
U(x,o) = {:’ : ; :

$_

converge to the
(6) with G = U3
correct answer.

(52)

with the solution u(x,t) = u(x+t,O).

After discretizing, we approximate the space derivative using a nonlinear
transformation method (Space Discretization, Grid Resolution). The transform
interpolates the discrete solution with a monotonicity-preserving interpolant
that has a continuous first derivative [13]. The derivative of this
interpolant is then used at the grid points to define the ODES [Eq. (3)].

We know that the true solution to Eq. (52) is monotone and we might expect
that an interpolant that preserves this monotonicity will greatly improve the
accuracy of the calculation. However, since the interpolant is monotone,

:E$;:s; 0 ‘
we have Ut(xi) = O at all the grid points. The solution never

suMMARY

We have used a modular approach to develop accurate and robust methods for the
numerical solution of PDEs. The methods to discretize the spatial operator,
the boundary conditions, and the time variable, and solve any algebraic system
that may arise are combined when writing a code to solve the PDE system. As

b the last two examples show , special care must be taken when solving a
nonlinear equation or when using a nonlinear method. This means that the code
must be field tested.

.)

The field test is to check the
nonlinear system of PDEs. The
reformulations of the equations,

reliability of the method on a particular
numerical results should be insensitive to
small changes in the initial conditions, the

mesh orientation and refinement, and the choice of a stable accurate
discretization method.

Another excellent analysis tool is verification that any auxiliary
relationships (such as conservation laws) hold for the numerically generated
solution. These checks should be made -- even if one is absolutely,
positively sure that the numerical solution and coding are correct.

When the above checks are made, the methods given here can be combined to give
reliable efficient methods for solving a fairly large class of nonlinear PDEs.
Also, by using the modular approach presented here, these codes can evolve
efficiently since new methods can be quickly incorporated into the program.

ACKNOWLEDGEMENT

I am grateful to Joe Dendy, Blair Swartz, and Burton 14endroff for providing
much welcome advice in our many discussions during this work.

REFERENCES

[1] Wachspress, E. L., Iterative solution of elliptic systems (Prentice-Hall,
Inc. , Englewood Cliffs, NJ, 1966).

[2] Ciment, M., Leventhal, S., and Weinberg, B., “The operator compact
implicit method for parabolic equations,” J. Comp. Phys. 28 (1978)
135-166.

[3] Hyman, J. M., The method of lines solution of partial differential
equations, Courant Institute of Mathematical Sciences report COO-3077-139
(1976).

[4] Hyman, J. M., A method of lines approach to the numerical solution of
conservation laws, Adv. in Comp. Methods for PDEs - III,
Vichnevetsky, R., and Stepleman, R. S., (eds) Publ. IMACS (1979) 313-321.

[5] Hyman, J. M., “The numerical solution of time dependent PDEs on an
adaptive mesh,” Los Alamos Scientific Laboratory LA-UR-80-3702 (1980).

[6] Gelinas, R. J., Doss, S. K., and Miller, K., “The moving finite element
method: applications to general partial differential equations with
multiple large gradients,” J. Comp. Phys. 40 (1981) 202-249.—

[7] Berger, M., Gropp, W., and Oliger, J., Grid generation for time dependent
problems: criteria and methods, numerical grid generation techniques,
NASA Conf. Proc. Publication 2166 (1980) 181-188.

[8] Hyman, J. M., Explicit A-stable methods for the solution of differential
equations, Los Alamos Scientific Laboratory LA-UR-79-29 (1979).

[9] Young, D. M., Iterative solution of large linear systems (Academic Press,
New York, NY, 1971).

18

[10] Brandt, A.,
Math. Comp.

[11] Concus, P.,

Multi-level adaptive solutions to boundary value problems,
U (1977) 333-390.

Golub, G. H., and O’Leary, D. P., Numerical solution of
nonlinear elliptic ‘partial differential equations by the generalized
conjugate gradient method, Computing 19 (1978) 321-339.—

[12] Manteuffel, T. A., The Tchebychev iteration for nonsymmetric linear
systems, Numer. Math. 28 (1977) 307-327.

[13] Hyman, J. M., Accurate monotonicity preserving cubic interpolation, Los
Alamos National Laboratory report LA-8796-MS (1981). ,

19

Domestic NTIS
Page Range Price Price Code

001.025 s S.oo A02

026450 6.00 A03

051475 7.00 A04

076-1C12 8.00 A05

101-125 9.00 A06

126-150 10.00 A07

Rinted in the United States of Amerka

Available from

N.ztionaI Technical [n fc.rmati.an Service
US Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

Miaotichc S3.50 (AO1)

Domestic NTIS Domestic NTIS
Page Range Rice pIiCe Code Page Range Rim RICC (bale

151-175 $11.00 A08 301-325 S17.CX2 A14

176-200 12.00 A09 326-3S0 18.00 A15

201-225 13,00 A1O 351-375 19.00 A16

226-250 14.00 All 376400 20.00 A17

251-275 15.00 A12 401425 21.00 A18

276-300 16.00 A13 426-$50 22.00 A19

Domestic N1-ls
Paze RanEe Price Price Code

451475 S23.00 A20

476.SIY3 24.00 A21

501-525 25.00 A22

526-5S0 26.oo A23

551-s75 27.00 A24

576-600 28.00 A25

601-uP t AY3

tAdd S1 .00 for each additional 25.p?.gc increment of portion thewaf from 601 pages up.

