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MAG’NETOHYDRODYNAMIC SIMULATION OF SOLID-

DEUTERIUM. INITIATED Z-PINCH EXPERIMENTS

by

Peter ~ogdon Sheehey

ABSTRACT

Solid-deuteriurn-initiatedZ-pinch experiments are numerically simulated us-

ing a twedimensional resistive magnetohydrodynamic model, which includes

many important experimental details, such as “udd-start” initial conditions,

thermal conduction, radiative energy loss, actual discharge current vs. time,

and grids of sufhcient size and resolution to allow realistic development of the

plasma. The alternating-direction-implicit numerical technique used meets the

substantial demands presented by such a computational task. Simulations of

fiber-initiated experiments show that when the fiber becomes fully ionized (at a

time depending on current ramp and fiber thickness), rapidly developing m=O

instabilities, which originated in the coronal plasma generated from the ablating

fiber, drive intense non-uniform heating and rapid expansion of the plasma col-

umn. The possibility that inclusion of additional physical effects would improve

stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pres-

sure terms in the magnetic field evolution equation, corresponding energy equa-

tion terms, and separate ion and electron energy equations are included; these

do not change the basic results. Model diagnostics, such as shadowgrams and

interferograrns, generated from simulation results, are in good agreement with

experiment. Two alternative experimental approaches are explored: high-current

magnetic implosion of hollow cylindrical deuterium shells, and “plasma-on-wire”

(POW) implcsion of low-density p!asma onto a central deuterium fiber. By min-

imizing instability problems, these techniques may allow attainment of higher

temperatures and densities than possible with bare fiber-initiated Z-pinches.

Conditions for significant D-D or D-T fusion neutron production may be re-

alizable with these implosion-based approaches.



CHAPTER 1: INTRODUCTION

1.1 Motivation

The confinement of plasma by the “pinch effect”, in which a unidirectional

(“z”) current generates a self-constricting azimuthal magnetic field, was one of

the earliest investigated routes by which it was hoped to reach and sustain condi-

tions of temperature and density sufficient for controlled thermonuclear fusion.

Theoretical analysis of the stability of such a confined plasma, based on the

ideal magnetohydrodynarnic model, seemed to agree with early experimental

observations of gas-initiated Z-pinches: rapid development of “sausage” and/or

“kink” instabilities disrupted the discharges, long before desired temperatures

and densities could be reached’. Efforts to stabilize such pinches by employ-

ing additional, more elaborate magnetic fields have led to present-day magnetic

confinement configurations, such as the tokamak; however, the simplicity and

relatively low cost of the Z-pinch have been lost with such elaboration.

Advances in technology have led to the possibility of obtaining conditions

quite different from those obtained in the early experiments. This has led to a

new round of high density, fast-current-rise Z-pinch experiments. In one such

approach, a very fast rising electrical current (peak reached in 0(100 nsec)) is

discharged through an initially solid deuterium fiber2-4. Some discharges of

this type appeared to show %nornalous stability”: absence or greatly delayed

onset of visible instability development. If this alleged stability were to hold

as current is scaled up to the Pease-Braginskii level (the theoretical limit for

a Z-pinch discharge, at which ohmic heating is balanced by Bremsstrahlung

radiation coding S-T), the Z-pinch could be the basis for a compact md relatively

inexpensive fusion reactor8-10.
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Such dense Z-pinches employ modern high-voltage pulsed power technology,

capable of producing current ramps approaching the “Haines-Harnmel curve”

9$11*12,which in a constant radiusplasma column balances ohmic heating, Brems-

strahlung cooling, and temperature/current increase, up to the steady-state

Pease-Braginskii current (roughly 1.4 MA for deuterium)s-’. Deuterium fiber

experiments, with current peaks up to about half the Pease-Braginskii current,

reported very long-lived, compact plasmas showing little indication of disruption

by m=O “sausage” 2-4 b=ed on visible radiationor m=l “kink” instabilities ,

emission and shadowgram images. Second-generation machines13-15 designed

to reach the Pease-Braginskii current, however, have to date shown stronger in-

dication of expansion and m=O instability growth, in

half the Pe~e-Braginskii current (700-900 kA) 13~*4.

Can it be expected that the apparent stability

discharges at greater than

seen in lo-w-currentdense

Z-pinches will be retained as current is scaled up? Analytic stability thtmry is

insufficient to answer this question, u the experimental plasmas produced move

through a range of non-ideal conditions (a function of temperatures, densities,

etc., varying in time and space) more complicated than any stability calculation

can handle. If a computational model of the experiment can be constructed in

enough detail to accurately depict existing experiments, it can aid in analysing

and understanding such experiments, and may further serve as a starting point

for the prediction of the rcsu]ts of future experiments. That is the goal of this

thesis. It will be seen as this model is assembled, that the “simplicity” of the

Z-pinch is a relative concept; inclusion of sticient capability and detail to accu-

rately model such an experiment is still a very demanding computational task.

2



1.2 The Computational Modelinr Task

The dense Z-pinch is fairly unique among fusion experimental plasmas, in

that for a significant fraction of its lifetime, it meets the classical (collisional-

ity) requirements for description as a magnetohydrodynamic (MHD) fluid (see

Appendix A). Therefore, a detailed MHD fluid simulation can be expected to

reasonably well describe the behavior of such a system. Furthermore, the consis-

tent (but so far unexplainedlG)observation that three-dimensional (3-d) behavior

(e.g., growth of m=l “kink” instabilities) is virtually absent in such experiments

(diagnostic images are highly symmetric about the axis, until quite late in the

d;sch=ge)Q-A,ls,lA,]? encourages confidence in the results of simulation in only

two dimensions. This is fortunate, because the inclusion of vital experimental

details discussed below would at present make full 3-d simulation prohibitively

expensive.

Linear ideal MHD stability theory for a Z-pinch plasma in general predicts

instability to “sausage” (m=O) and ‘kink” (m=l) modes18. However, the growth

rate of such instabilities is dependent on radial pressure profiles of the plasma;

indeed, “Kadomtsev” profiles exist which are m=O stable18. Linear stability

results for a number of non-ideal fluid regimes (such as resistive MHD) have

been developedJg-soo An}, actu~ experiment is likely to move through severalof

these regimes, as density, temperature, etc., vary during the discharge; nonlinear

effects, as well, are likely to be encountered.

Therefore, it is highly desirable to simulate such experiments starting from

time zero (zero current, frozen fiber) if possible, in order for realistic plasma

profiles to form and develop linearly/nonlinearly, as they will. Energy terms

such as thermal conduction, Joule heating and radiation are clearly going to

3



be important. And the plasma “surface” must be free to develop as if, as in

the experiment, in vacuum, without the influence of an unrealistically confining

boundary or an insufficientlyresolved grid.

Hence one needs a two-dimensional resistive MHD code with classical (Bra-

ginskii3]) heat conduction, ohmic heating and radiation cooling terms in the en-

ergy equation, and the capability to deal with huge density and temperature

gradients (e.g., solid deuterium vs. hot plasma vs. vacuum), as well as po-

tentially rapidly changing relevant length and time scales, without running into

prohibitive numerical timestep restrictions. This suggests that an implicit algo-

rithm, with some capability to adjust time and space step-sizes as the problem

develops, will be desirable. Given that such a code can be found or devised, it

should be possible to simulate such experiments in a very direct manner. One

may then compare the simulation results directly to experiment, by generating

from the results predictions of what diagnostics used in the experiments would

show. If agreement of simulation and experiment is good, one may begin to

use the computational tool developed to interpret experimental results, and to

evaluate new experimental concepts with some coxifidence.

1.3 Earlv Work and its Limitations

The first efforts by this author to cornputationally evaluate the “anoma-

10USstability” of fiber Z-pinches employed a 3-d resistive MHD code developed

by Schnack and Nebe123~30~32.This code had been developed to model the rel-

atively ideal (non-resistive, non-radiative, non-thermally-conductive) magneto

hydrodynamics of such controlled fusion research devices as the reversed field

pinch, approximating the toroidal configuration of such machines by cylindrical

(r, 9, z) geometry with periodic axial boundary conditions. Details of transport-

4
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resistivity, viscosity, heat conduction-were not implemented to follow classical

(Braginskii) MHD; however, resistivity, as expressed by the Lundquist number

(“S”= ~~~.,~~,”~~:,,”~,~~/r~lfv,. ~r~n~iftan index of the ideality of the plasma),

and a scalar (vV2t~ artificial viscosity (both essential to this code for numeri-

cal stabilization purposes), were parameters which one could vary to approach

expected classical transport properties of a given experiment, such as the fiber

‘Z-pinch, The algorithm was pseudospectrai (going between Fourier and normal

space representationswhen each are of greatest utility) in the z and @directions,

and finite-difference in the r direction, with a semi-implicit time advance.

In order to run even a portion of the high-gradient (solid/vacuum) dense

Z-pinch problem with this code, it was found necessary to restrict the model

to incompressible, resistive MHD: magnetic field and fluid velocity evolution

from resistive MHD, with an adiabatic pressure (energy) equation. Resistivity

and Lundquist number were set to values of a plasma of near-solid density,

at temperatures believed to be reacned in the experiments (eV to keV), and

the artificial viscosity was set to the corresponding classical (Braginskii q033)

viscosity (in effect, assuming that the initial condition frozen fiber has evolved

to such plasma conditions). The surrounding vacuum was simulated by an area

of very high (lOG times plasma) resistivity and pressure 10-2 times tne peak

pressure of the plasma. Then various radii Z-pinch pressure/field equilibrium

profiles (for a Z-pinch, radial pressule/field profles satisfying Vp(r) = J=(r) x

BO(r)) with small perturbations were time-advanced, to measure the growth rate

of m=O and m=l instabilities. Even with this restricted model and the efficient

semi-implicit algorithm of the Codel it was clear that run time was going to be

a problem; however, it was possible to survey the linear stability of a range of

5



plasma profiles and temperatures.

The basic resultswere unchangedeven after this author implemented a more

sophisticated explicit full (five-coefficient) Braginskii viscous stress tensor34,and

included an ohmic heating term. They were that at low temperature/Lund-

quist number (i.e., below S- 100), resistive field diffusion could act to very

much reduce instability growth rates (both m=O and m=l). This could be part

of the explanation for the observed “anomalous stability”, if existing experiments

actually remained in this regime. This resistive stabilization effect was more pre

nounced for field/current profiles concentrated at the plasma edge, which from

an ideal MHD standpoint would have been expected to be maximally unstable*s.

An ideal-MHD-stable “Kadomtsev profile” was also tested, and did exhibit the

theoretically predicted stability; such a profile has cen~er-peakecipressure and

current density profiles, quite the opposite extreme from the edge-peaked, re-

sistively stabilized current profiles. At temperatures in the range of 5 keV, the

viscous tem~swere also observed to exert a strong stabilizing el;ect, but this is of

doubtful physical significance, because such a plasma loses its collisionality (an

assumption on which the Braginskii viscosities were calculated; discussed further

in Chapter 2 and Appendix A) above about 1 keV.

These resultswere in agreementwith other analytic and computational work

going on at the time19-27, but ]&e these Other investigations, rather begged the

question of dense Z-pinch stability. Yes, various initial profiles and non-ideal ef-

fects will make a difference on stability, but into which profiles and effect regimes

do the experimental plasmas actually enter? As mentioned above, one clearly

desires to be able to evolve plasma profiles as they do in the experiments, from

fiber to hot plasma, and allow linear and noniinear development in a surroud
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ing vacuum. The 3-d code, like other computational and analytical tools in use

at the time, could suggest possible stabilizing mechanisms; it clearly could not

make the key connection between the plethora of theoretical possibilities, and

experimental reality.

Lindemuth, McCall, and Nebel began the effort to do a computer “experi-

ment” which corresponded, as much as feasible, to the actual laboratory Z-pinch

experiments, first in one dimension and then in two, using a code developed

-38 This code (about Which milch more will be stid later, be-by Lindemuth35 .

cause it is the starting point for the bulk of the work reported here) could solve

the equations of compressible, resistive MHD with an energy equation including

classical heat conduction, ohmic heating, and radiative cooling, utilizing a semi-

empirical equation of state and material plopcrty data base (SESAME39) which

can be expected to reasonabl:- %llow the state of deuterium from solid to hot

plasma.

yt W= Possib]e with this code to run one-dimensional (radial) simu~ations35

of the low-current (< 600kA) Los Alarnosand NRL fiber Z-pinch experiments up

to times (~ 200 nsec) well past the discharge current peak, and twmdimefisional

(rtz) runs36~37up to about half the current peak. The results showed some agree-

ment with experiment, such as visible radiation emission (compared to streak

photographs), but suggested some controversial features: current was carried

largel~ in a coronal plasma ablated from the fiber surface, of density several

orders of magnitude below solid density, while some non-ionized core fiber could

persist for a significant fraction of the discharge time (in Los Alamos HDZP-1,

30 to 100 nsec out of a 125-nsec current peak discharge); this coronal plasma

tended to show very early instability development, in seeming contradiction to



the “anomalous stability” observations. Severalproblems would have to be over-

come in order to address this controversy with a more definitive, two-dimensional

computational model,

1.4 J4eeded Additions/Enhancements

Lindemuth’s code had featuresand capabilities vital to performing a realistic

simulation of a problem such as the fiber-initiated Z-pinch. The basic magne-

tohydrodynamic model included important details, and the implicit algorithm

was robust enough to deal with the huge temperature and density gradients in-

volved, at a reasonable though not insignificant cost in computer time. However,

when this author began collaboration with Lindemuth on the problem of dense

Z-pinch simulation, there were a number of problems to be solved before t-win

dimension simulations of the low current experiments could be extended to

larger fractions of the discharge times (e.g., at least to the current peak), much

less before high-current planned experiments could be evaluated.

First, very fine radial zoning in the vicinity of the fiber is required to resolve

the ear!y stages of fiber ablation, but in 2-d runs, as current incresses, the

plasma corona expands to many times the original fiber radius and develops

instability, making fine zoning desirable at larger radii. When current nears half

the discharge peak in an HDZP-I simulation, a significant amount of plasma and

current density has reached the computational radial wall, at a radius of about

a millimeter. Mass could be allowed to leave through the wall, preventing an

unrealistic mass buildup or bounce-back, but the field and current profiles are

limited to this radius; hence the fkeedevelopment of instability and expansion in.

a vacuum-like environment is lost. Fixed grids of much greater than a millimeter

would be prohibitively expensive in 2-d.



Second, resolution of the controversy about early onset of instability requires

close examination of experimental data, Ideally, given details of experimental!

diagnostics, gener~tion of corresponding diagnostics from simulation data would

allow direct comparison,

Third, as temperi.~uresincrease and densities drop, the c.iterion for the

single-temperature MHD model (see Appendix A) approaches the point where

ions and electrons cannot be considered in equilibrium, even though the colli-

sional fluid model may still hold. This point may well be reached in high-current

fiber Z-pinch discharges, as well as late in low-current experiments. Hence a

tw~temperature model is desirable.

Fourth, ideal MHD fluid theory orders out the Hall (~ x ~/(nce) ) and

diamagnetic pressure terms in Ohm’s Law, and accompanying energy equation

terms, on the basis of a small ratio of Larrnor radius to plasma scale length 40.

That this ratio may not be small in a Z-pinch, with its field null on axis, is well

knomlg,fl.; ~ so, the fiber Z-pinch will have areas of partial ionization, and a

low-density corona, in

potentially important

such experiments.

which the Hall term may become important. It is then

to include such terms in a computational evaluation of

How these problems have been solved, and the -pplication of the resulting

computational tool to the evaluation of existing and proposed solid-deuterium-

initiated Z-pinch experiments, are the subjects of the rest of this report. The

first step in this, in Chapter 2, is a derivation of the equations actually solved

in the model used here, from the generally acceptc~ Braginskii two-fluid plasma

transport equations31. In Chapter 3, the adaptation of the basic MHD code

to model dense Z-pinch experiments is described, along with the results of that
I

9



modeling. Addition of che Hall and associated terms to the code, and the re-

sults for the dense Z-pinch, are described in Chapter 4. The application of the

computational tool developed to the evaluation of some promising variations to

the fiber-initiated Z-pinch is the subject of Chapter 5. Finally, the conclusions

of this work are summarized in Chapter 6, and some directions for future work

are discussed.

I
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CHAPTER 2: DERIVATION OF MODEL EQUATIONS

2,1 BrwzinskiiCollisional TwmFhlid Model

The detailed tw~fluid equations of plasma transport derive.t by S. I. Bra-

..31 from the Lmdau kinetic eqUfitiOn42ginslm in the 1950’s aw still the most

widely accepted formulation of the cl=sical pl=ma.transport thecry. R. Balescu,

in his recent comprehensive book ‘IhnsDort Processes in Pl*~mas43,expresses

his admiration for, and only limited disagreements with, the 13raginskiiwork.

Braginskii’s equations for a fully ionized plasma consisting of electrons and a

single ion species of charge Ze are (rewritten here in Systeme International-

meter, kilogram, second-units, and as vector equations):

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)

3 aTe
~ + (tie “V) T”) + p. v . v; + v . Z + (II. : v;. ) – Q. = o-n~(—

2

L (J6

where subscripts e or i refer to electron or ion species, e is the magnitude of charge

of an electron, n is particle (number) density, F is velocity, E is magnetic field,”~

11



is electric field, p is pressure, T is temperature, II is the stress tensor (minus, as

in Braginskii, the isotropic pressure part), ~ is the momentum transferred from

ions to electrons by collisions, ~ is heat flux, QC is heat generated in electrons

due to collisions with ions, and Qi is heat generated in ions due to collisions

with electrons. Electric and magnetic fields are governed by Maxwell’s equations.

These equations are for a fully ionized plasma; tlie simulations reported here also

deal with the partially ionized case. How this is accommodated for these, and

for the derived single-fluid MHD equations which the computer code employed

actually solves, is discussed in section 2.4, below.

It should be noted that Braginskii derives his equations and transport co-

efficients using the assumption of a collisional plasma40’4s’~4,as discussed here

in Appendix A. He alludes to the “highly magnetized” regime in which fluid-

Iikeequations hold for motions perpendicular to the magnetic field, and supplies

transport coefficients for both highly magnetized (~cuciotron~cottiaion >> 1) and ar-

bitrary wCrconditions. The equations and transport coefficients given, however,

&-e for a collisional plasma; the distinction between this and the highly magne-

tized “collisionless MHD” regime is well discussed in F’reidberg40. In Appendix

A it is argued that the experiments modeled here (and the corresponding sim-

ulations) take place substantially in the collisional plasma regime, unlike many

controlled fusion experiments (at which one can marvel that MHD predictions

work so well, or scoff that MHD ultimately fails ta work for such experiments).

In general, the code developed here will run outside the collisional regime,.and

some care has been taken that in this case non-physical results will be avoided

(for instance, by employing a cutoff density below which highly resistive, low

density “vacuum” plasma regions do not undergo ohmic heating). However, this



author is wary of making claims about MLD simulation results for collisionless

plasmas. The modification of this code to give fully consistent physical results

in the ‘bcollisionlessMHD” regime is a worthy subject for further research, but

beyond the scope of this thesis.

The full Braginskii two-fluid equations are still a highly nonlinear (partic-

ularly in the transport coefficients), strongly coupled set of equations, involving

a ver}. wide rar ;e of length and time scales. They include the motion of the

-rer~’low-inertia eiectron fluid, as well as what is more commonly considered the

plasma fluid motion, that of the ion fluid (properly in a one-fluid model, as shall

be developed here, fluid motion is that of the center of mass of ions and electrons;

in general, because of the much greater mass of the ions, they dominate the fluid

motion).

From a computational perspective, these equations present a formidable

challenge. Even if one assumes that in a given problem to be computationally

modeled, the equations will act relatively linearly (so that primarily linear nu-

merical analysis results might hold), one is faced with two choices, neither of

which is likely to be fully satisfactory. An explicit computational algorithm will

require excessively small timesteps in order to satisfy Courant-Fkiedrichs-Lewy

(CFL) numerical stability restrictions ((vCOn~)cC~iv~At/Az) < 1) 45 due to the

very high speeds of information propagation by the electron plasma fluid; this

is carried by electron plasma waves, which transport information at essentially

the electron thermal speed46. Implicit algorithms are theoretically (for linear

equations) numerically stable for any timestep, but if one chooses very large

timesteps, the accuracy of the solutions sfiers, particularly if important phe-

nomena are occurring at the electron fluid time scale. This author is not aware
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of an}’ computational implementation of the complete two-fluid Braginskiiequa-

tions ili more than one dimension. Multi-dimensional particle and kinetic theory

codes do exist, which should duplicate all the physics contained in Braginskii’s

equ(.. . s L~’hichare derived from such models) and then some, but they too

must face the computational difficulties mentioned above.

2.2 Th.nsformation to Center-of-Mass Eauations j “Hall hfHD”

The model equations used here, in simulating the dense Z-pinch, solve for

magnetic field, plasmc. specific internal energy (either total or separate ion and

electron energies), total mass density, and center-of-mass plasma \“elocity. By

solt’ing for total mass density and center-of-mass velocity and using quasineu-

t.rality,the need to resolve the full Braginskii model’s electron fluid motions is

avoided, although it will be seen that the Hall and associated terms do bring

some electron fluid effects into the model (in effect, preserving a distinction

between electron motion and center-of-mass plasma motion; see Appendix C).

Their introduction brings a corresponding price in required temporai resolution.

It is instructive to go through the derivation of the model equations from the full

Braginskii equations, to highlight the numerous assumptions that must be made

to obtain a model with which twedimensional simulations of these experiments

can be carried out. At the end of this chapter, the plasma parameters for the

dense Z-pinch, which justify such assumptions, will be worked out.

Define the (total) mass density, p = nimi + neme, and the center-of-mass

velocity, t7= (nimitii + n,mci7.)/(nimi + neme). Before going further, a cxm-

siderable simplification of the algebra can be gained by invoking the assumption

of quasineutrality, that is, ni = ne. This assumption exploits the fact that the

energy required to produce an ap~reciable separation of the ions from the elec-



trons is so large (much larger than the thermal energy, for re~luns larger than

a Debye length47, AD = (cOkTC/(ne2))*; much larger than the magnetic energy,

for regions larger than AD/~*) that no significant deviation of ni from n. oc-

curs on scales greater than JD: ln~– nt I/(n: or ne) << 1. By awmrningelectrons

move “quickly” (i.e. instantaneously) to take up their neutralizing positions,

the inertia of electrons is ignored (this will be returned to in the Ohm’s Law

deri~ation); hence time and length scales dealt with in the model must be much

longer than those involving electron inertia, specifically the characteristic times

and lengths of the electron cyclotron frequency (UC~= eB/m~) and the electron

plasma frequency (wPe = (ne2/(tome))*). The effect of this on the model is

to remo~’ePoisson’s equation, COv . ~ = e(ni - n,), from the set of equations,

requiring that ~ be obtained by other means; it does not imply that

everywhere or that Y7“ ~ = 0, only that COv oJ?/e(ni or n.) <148.

h’umber d nsi!ies ~i cx nc will thus henceforth be written simply n

E=o

(except

in the Hall and associated terms, for reasons which shall be discussed later).

Now mass density is simplified to p = n(mi + mc), and center-of-mass velocity

to i7= (mi;i +mct7c)/(mi + m,). Multiplying the Braginskii electron continuity

equation by me and the ion continuity equation by mi, adding the two equations,

and applying the definitions of mass density and center-of-mass velocity gives the

total mass continuity equation:

(2.2.1)

the first of the model equations.

If one drops the electron inertia term,

(2.2.2) mene( ~ + (iL “V) Fe)
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from the Braginskii electron momentum equation and solves for ~, an “Ohm’s

Law” expression for the electric field can be derived:

(2.2.3) E=—~;e (- v - v “ + -

The electron viscous stress tensor II,, even more so

x z

its divergence, v” IIc~is

4g0S0The le~ng-order terms (for huge WCT,thesea complicated seriesof terms .

are the diagonal terms IIC,jj) are proportional to Braginskii’s electron viscosity

coefficient qo, and to the divergence of the electron velocityso:

(2.2.4)

where vf~c refers to the electron thermal spmd, the parallel marks refer to the

direction parallel to the magnetic field, and a is a relevant scale ]ength, typically

in this problem the effective radius of the plasma column. Then the ratio of

v” IIe to Vpe is:

.rl. ( +)nez-er.e(Q&)
—1’ pq-----

‘ a

if electron collisionality holds, as established in Appendix A. Exactly the same

argument holds for the ratio of v . IIi to VPi (although the ion viscosity effects

are a factor of (mi/mC)* larger than the electron), if the subscripts e for electron

quantities are replaced with z for ion quantities; this result will be utilized below

in the derivation of the center-of-mass momentum equation.

The above argument somewhat glosses over the complexity of the stress

tensor and its divergence: it is conceivable that v o ti, v “ II, and vp will have

different scale lengths; and the non-parallel viscosity coefficients ql through q4

can be of the same order as q. when wCr # 1 49J51(at the end of this chapter it
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will be seen that the plasmas modeled here are not generally highly magnetized).

There is good reason to place the inclusion of these terms on a lower priority than

other terms (such as the Hall and associated tern. ) which have been included in

the present work. Our own early computational results with the Nebel/Schnack

code23 suggest that viscosity (a full five-coefficient stress tensor, or portions of

such) does not have a strong stabilizing effect until temperatures are in the sev-

eral keV range, temperaturesso high that the collisionality-dependent Braginskii

coefficients are not applicable to the problem under consideration. Parallel com-

putational work by Glasser23~30agreeswith this result. Furthermom, an attempt

to reconcile earlier theoretical and computational results25~2G,which suggested

that ‘viscoresistive” (due to resistivity and viscosity) effects could account for

the claimed “anomalous stability” of the experiments modeled here, concluded

“viscoresistive effects are inadequate to account for these observations’’ 29. Hence

one is not confident of seeing much of a payoff in return for the significant amount

of work involved in adding ~ oII to a code, particularly if one maintains energy

consistency by adding viscous heating, (~ : @), to the energy equation as well.

Bowers and Haines52and others have developed fluid equations for a colli-

sionless, xaagnetized plasma which include finite-Larmor-radius (FLR) ordered

viscous stress terms, related to the Braginskii “gyroviscous” non-diagonal stress

terms (his q3 and q433’53). Haines has projected22’54 that the nominally 2-MA

fiber-pinch machine “MAGPIE”, recently completed at Imperial College, may

take a Z-pinch into the regime where these are important, unlike the (largely

collisional) experiments modeled here. Simulating such a plasma would then call

for a consistent “collisionless MHD” model, which among its FLR effects should

include such viscous stress terms, as well as the Hall and associated terms which

17
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are included in the present c.ollisional,firtite-Larmor-radius“Hall MHD” model.

It has been argued that for high WC?,the Braginskii “gyroviscous” stress terms

33,s3become independent Ofcollisiontime. However, it will be sen that when

typical ion and electron WC7’Sarc computed for the experiments modeled here,

the large UC~assumption necessary to consider these gyroviscous stress terms in-

dependent of collisions is not satisfied, so it is consistent for these to be ignored,

as long as collisionality holds.

~, the change in momentum of electrons due to electron-ion collisions, can

reasonably be related co the relative velocity of the two species, tie—tii, which

is proportional to the current densityss~ss:

(2.2.6) Y= TLat?G:

In the case of a plasma without a

between ~ and ~is a scalar, and

(2.2.7)

— ncei7c= ne(tia—ve).

magnetic field, the constant of proportionality

can be written so that

whe~”eq is the electrical re.sistivityof the plasma. In the case, such as dealt

with in this paper, of a plasma with a magnetic field, the relationship between

~ aad ~ is a tensor relationship, with a resistivity (or its inverse, a conductiv-

ity) tensor. This is because the magnetic field introduces an anisotropy into the

plasma: particle motion parallel to the field will be unafected, because of the

nature of the Lorentz tio x ~ force (and in fact the parallel resistivity will be

identical to the unmagnetized one), but particle motion perpendicular to ~ is
.

influenced by 1? and must be dealt witl~separately,resulting in different resistiv-

ity coefficients. Due to the symmetry of the prCJ.JkI1157, there can be only three

18
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independent coefficients: resistivitiesparallel and perpendicular to the field, and

a non-diagonal effective resistivity, relating current in one direction to electric

field in another direction. This non-diagonal effective resistivity in fact leads to

the Hall effect, which has already bem. incorporated (i.e., separated out from R)

in the Braginskii transport equatioris, and will be pointed out shortly.

Braginskii5a and otherss’

fects (Nernst and Ettinghausen

The ordering of these effects is

also discuss noil-diagonal thermoelectric ef-

effects) which axe due to ion-electron collisions.

not simple. As W gets much larger than one,

a l/(wC~) dependence emerges (as in all the non-diagonal transport coefficients,

including the above-mentioned gyroviscous coefficients; in the gyroviscous case,

an additional r factor can cancel out the collision time dependence). These

~hcrmoelectric effects are also dependent upon electron density, the gradient of

temperature, and ~ x ~. Chittenden and Haines59in a recent paper state that

these effects “cannot be ignored when electron and ion temperatures are suffi-

ciently decoupled.” They have not been implemented in the present model; some

implications of the Chittenden/Haines work will be discussed later. Replacing

the (l/(n, e))~ term in the Ohm’s Law with the twc’diagonal components of the

resistivity tensor (additionally dropping the v” 11~term) &hengives

(2.2.8)

Using the definit~onsgiven above of current density 7(2.2.6) and center-of-mass

velocity ti (above 2.2.1), and using ne = ni = n, one can solve for Ce and tii in

terms of i7and ~. Here we use

(2.2.9)
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where the mC/mi factor for a deuterium pl~ma (approximately 1 over 3698) can

be dropped with very little effect, to give an Ohm’s Law:

(2.2.10)

This is the “Hall MHD” Ohm’s Law, where specifically (l/nc)~x ~ is known as

the Hall term.

Neither ~ nor ~ is solved as a separate variable in the model used here.

Fua&Y’s Law cm be used tO transformthe above ohm’s L~w into an equation

for the time evolution of magnetic field, removing l?:

.

(Z.z.lq g = -v -v X(-+(fx ii- v + - m
e-

Finally, the usual “low-frequency” assumption of magnetohydrodynarnics ne-

glects the displacement current in the full Ampere’s Law, i.e.,

(2.2.12)
-J+ (v x =

/ =0
This requires that electromagnetic disturbances of interest have phase velocities

(such as the Alfven speed, VA= B/(pop)*) much less than the speed of light, as

must be the thermal speeds. Note that the restricted geometry employed in the
4

model (discussed in section 2.4), that 13(r,z) 1 plane of computation, removes

many possible waves (such as ion cyclotron waves) from the problem. Then using

~= (v x z)/p”,

This is the “Hall MHD” equation for advancing the magnetic field.

The two Braginskii Jnomentumequations must be added to obtain a center-

of-mass momentum equation. The two viscous stress divergences are dropped,
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following the above argument that their respective pressure gradients will domi-
.

nate. The forces due to Z cancel out under charge neutrality, that is, Zni = ne

(the quasineutral deuterium plasma generally discussed here has Z = 1 and

hence ni = n.). Now first in the tii.,, x ~ expressions, substitute for tie (as
4

above, 2.2.9) in terms of i7and J, and for i7iby the corresponding expression:

(2.2.14)

(where writing the second expression will be seen to be helpful in ordering terms,

shortly). A number of terms cancel out, leaving:

d;, a<:
(2.2.15) m,n.(= + (tic “V);c) + mlnl(~ +

-(1 + ~)~x 5 =
ml

At this point, substituting 17c(ti,J> and Ei(til~) in the inertial (convective deriva-

tive) expressions, further cancellation, and replacing (mi + m)n with p gives:

(2.2.16)
a(pq
~ + ~(fi “V)fl + Z V “(@) + v(~i + Pe) – ~ x ~+

+(tcrms proportional to m,) = O.

Dropping the electron-mass-order terms, writing ~in terms of ~, and use of a

tensor identityso gives:

(2.2.17)

This is the model momentum equation; using the dyadic tensor “pi7ti” form has

been found helpful in coding the equation in a conservative forrn61.

One can multiply the Braginskii continuity equations (2.1.1, 2.1.2) by ~kTm

and add them (because these still equal O) to the first terms of the respective
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Braginskii energy equations (2.1.5, 2.1.6), to obtain energy equation terms in

conservative form:

where subscripts o refer to electron or ion species. The code used here solves for

the specific internal energy cm(energy per unit mass); energy per unit volume,

which in Braginskii (ideal gas) is ~nokTO, is in these terms p~o. Then the first

terms in the Braginskii energy equations can be written

(2.2.19)

The heat fluxes qa, analogously to the discussion of the resistivity tensor,

have parallel (to ~), perpendicular, and off-diagonal components. Heat fluxes

coupled to the previously mentioned (and neglected) off-diagonal thermoelectric

effects (Nernst/Ettinghausen effects), and diagonal thermoelectric heat fluxes

(Balescu discusses “thermoelectric coefficients”, relating 1? and beat fluxs2), are

not included in the present model. This leavesthe more familiar “Fourier’s Law”-

type heat conduction, again split into components parallel and perpendicular to

1%

(2.2.20) it= ’011 WI To + &YA VA To

where Xa’s are prescribed by BraginskiiG3(the formulas used are given in section

3.1).

Of course if viscous stress is neglected, as discussed above, the viscous heat-

ing terms (II. : Vtia) also drop out. Collisional heat source terms, Qo, fol-

‘ b i ~ e lenergy equilibration term Qeilow Braginskn .
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( 3mcnc(Tc – ~ :n the inverse T ,dependence, characteris-

tic of the electron-km collision time ~ci‘5), while the electron heat source also

includes ohmic heating, qllJ112+ q~JA2, but does not include any thermoelect-

ric heating. This lea~”esonly the compressional work terms, pa v ● V., and

the replacement of ~i and tie by their expressions in terms of 0 and ~. After

rearranging, the energy equations (2.1.5, 2.1.6) become:

(2.2.21) ~

.

+ v “ (%%)+ v “ ( (:)Pte) + Pev “~+Pev “(neefl”)+

(2.2.22)

where Q~i is the electron-ion energy

trons to ions), ~= (v x ~ and

tional to mc/[mi + me) have been dropped,

equilibration term (energy lost from elec-

the two terms in the ion equation propor-

(2.2.23)

These are the “Hall MHD” (tw-temperature) energy equations.

If one makes the further assumption of temperature equilibration (Ti = T,,

Pi = p~yEj = t~yp = pi + p~, ~ = ~: + K ~d c = ~i +“Ce) ~d dds the two

energy equations, the total energy equation is:
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The above developed equations for the time dcvclopmcnt of mass (2.2.1),

momentum (2.2.17), energy (2.2.21 and 2.2.22, or sillgle-tex~l~]crat~lrc2.2.24),

and magnetic field (2.2.13) constitute the “Hall MHD” model used here in sim-

ulation of dense Z-pinches (the geometric restriction, that D(r,z) L plane of

computation, discussed in section 2.4, eliminates the parallel resistivity and par-

allel heat conduction terms). The equations are valid subject to the numerous

assumptions mentioned. These assumptions will be summarized and examined

for the dense Z-pinch at the end of this chapter, Quotes are used in this paper

around “H,all MHD” to distinguish this model from the Hall MHD, dealt with

by numerous authmslg@’67 , which includes only the magnetic or electric field

Hall term, ~x ~/(nCe). The other terms (diamagnetic pressure arid associated

energy equation terms) included here shall be shown in the next section to have

the same ordering as the Hall term.

2.3 Elimination of Finite-Larmor-Radius Terms/Standard MHD

The equations derived in section 2.2 represent a relatively standard single-

fluid MHD model, with the following exceptions. Ideal MHD drops the resistive

field diffusion and ohmic heating terms. Many MHD simulations usc a simpler

energy equation, isothermal or adiabatic,.because the Braginskii heat conduction

coefficients, which can be drastically different parallel and perpendicular to the

magnetic field, can presentnumerical difficulties. These difficulties are geometri-

cally avoided in the simulations done here, as will be pointed out in section 2.4.

When the Hall term is included in the magnetic field evolution, this is generally

termed Hall MHD. Sometimesthe diamagnetic pressureterm (Vpe/(nee)) is also

included, but it will be shown shortly that unless the p v “ ) energy

equation term is also included, total (thermal plus magnetic) energy will not be
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conserved. The electron-current energy convection term v “(pt, (–~/(nCe)) ) is

rarely included, although Haines68’Gghas done some theoretical work with it,

notably a calculation of tolerable energy end-losses for a fusion Z-pinch’”. In

this thesis, the Hall, diamagnetic pressure, and the two just-mentioned energy

equation terms are referred to as “Hall and associated terms.” It will be shown

that these all have a sirni!ar, finite-Larmor-radius ordering; hence a consistent

finite-hrmor-radius model should include them all.

Some vector algebra will illustrate the ~bove-mentioned problem of conser-

vation of total energy when the Hall and diamagnetic pressureterms are included.

These terms’ effect on the time derivative of magnetic energy, l?2/(2po), is pr~

portional to E” (0~/&), hence to ~” (v x J?H), where EH is the electric field

due to the Hall and diamagnetic pressure terms. A vector identity gives

(2.3.1) E “(V x f = v “( X @ + ~H s(v X E

The first term, a divergence, is already in conservative form for an equation

giving the time development of magnetic energy; that is to say, if one spatially

integrates the divergence in order to obtain the change in magnetic energy ~(l?2 )

in time t%, by Gauss’s theorem that integra! will be the sum of the fluxes of

~H x ~ across the surface of the volume integrated. The second term becomes

(2.3.2)

is added to the thermal energy equation,If the equation for magnetic energy

one should still have conservation of total energy, but this term is clearly not in

conservative form. However, if the p v “ r ) term has been included in

the thermal energy equation, it can be added to the offending magnetic energy
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term, to obtain the desired conservative form:

(2.3.3)

The v a 7 B terms are both in the momentum equation and should

be comparable; in fact, for an isotropic equilibrium with V = O, these terms

should be equal (hence the “pressure balance” expremion ~BscI= l?Pso2/(2po) ).

Therefore, the ratio of the diamagnetic pressure term to the ti x 6 term in the

Ohm’s Law expression (2,2.10), should be similar to the ratio of the Hall term to

i7x@. A characteristic fluid speed to use in such scaling is the ion thermal speed’1

vc~i = (kTi/mi)~; one might prefer the Alfven speed VA= B/(pop)$, but under

pressure balance p = nkT = B2/2po, this scales the same way (in section 2.5

will be seen that these quantities are similar for the dense Z-pinch). Then for a

plasma near temperature equilibrium (Ti * T,):

(2.3.4) IV P e
Ivx q -

where r~i = Vthi /~ci = T?ZIVi~/(d?) is

$ nekTc/n~e rL1

(kTi/mi)~B - ~

the ion Larmor radius.

Using similar scaling, that J * vp/B and that ~(pc)/& goes as nkTvthi/a

(again for a near-temperature-equilibrium, Ti - T., and quasineutral, n; - ne,

plasma), the xatiosof the electron “work” term p. V“(–~/(n.e)) and the electron

current energy convection term v “ ( p+(-~/(nee)) ), to the time derivative of

thermal energy ~(p~)/~, are also shown proportional to ion Larmor radius over

scale length:

(2.3.5) IV “(~~e(-~l(nee)) )! ~ ~nekTe(nkT/aB)/nee r~;
w —*

lt?(pe)/al nkTvthi /a a’

(2.3.6) IPcV “(-~/(n,e) )! nekTe~(nkT/aB)/nee rL~
li?(p6)/al -

w—
nkTv:hi /a a“
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Hence if (r~, /a) << 1 in the plasma to be modeled, these terms can be

ignored. This reduces our model equations to a relatively standard one-fluid

resistive hfHD, with perhaps a more detailed energy equat.io.l (including heat

conduction) than is often used. It wili be seen that for the dense Z-pinch,

(r~,/u) cs 1 is not necessarily a good assumption. This has motivated our

efforts to add the Hall and associated terms to the computational model. How-

ever, simulation of dense Z-pinches with the standard MHD model presented in

the next chapter, still shows remarkably good agreement to experiment.

2.4Additional Details

There are a number of additionid details concerning the model used here

which should be noted. First, as mentioned in Chapter 1, is the geoinetri-

cal simplification to cylindrical symmetry, The computational model is two

dimensional, solving for mass density, radial and axial velocities, specific in-

ternal ener~’ (or separate ion and electron energies), and azimuthal magnetic

field, as functions of radius r and axial location z only; i.e., azimuthal symme-

try is assumed. Experimental evidence that this is a good assumption, at least

for a significant portion of the experiments, has already been noted 2-4’13~14’17.

Because quantities are computed only in the plane perpendicular to ~, terms

proportional to parallel rcsistivity (parallel field diffusion and ohmic heating)

and parallel heat conductivity are not needed; hence the scales of resistivity

and heat conductivity with which the numerics must deal, depend only on the

perpendicular values.

The Braginskii transport equations, and the single-fluid models derived

above, assume a fully ionized plasma. The intent of the simulations done here

is to follow these experiments all the way from %old-start”, that is, the solid,
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neutral deuteriurn fiber, up to the hot, fully ionized plasma state. To allow

this with a Braginskii-like set of equations would require additional equations

for the density, momentum, and energy of the third, neutral fluid species. A

means of relating the neutral and plasma densities, such as the Saha equaticm72,

would he necessary (this would be reflected in “source terms” in the continuity

equations), as would be other terms coupling the neutral and plasma equations.

Details of transport (e.g. resistivity), which were calculated by Braginskii for a

fully ionized plasma, would nmd to be re-exmnined for the neutral-dominated

case.

To allow “cold-start” simulations with the derived, single-fluid model equa-

tions, an assumption is made that neutral atoms will move as the ions do:

tin = i7i, i.e., no ion-neutral slip, Center-of-mass velocity U is then redefined

as G = (n”(m, + m.)tl’n + nim~17~+ n.mcC,)/(nn(ml + m,) + nimi + neme),

and total mass density p = nn(m: + me) + nimi + %mc. When C, arid tl’iin

terms of the redefined U(with S“ = i7,) and ~are incorporated into the derived

equations, the results are very little difierent from the original derivation; terms

proportional to m,/(mi + me), which were dropped, are still small quantities,

proportional to n The meanings of pc (or, in a twmtemperature model,

~~i) and p (or pi; also ?’i) have changed: these are now quantities including energy

and pressuredue to neutral particles. Appropriate values for these quantities are

obtained from equation(s) of state (relating specific internal energy, density, and

temperature), pressure(s), resistivity, and average ionization level, contained in

a semi-empirical data base, the Los Alarnos SESAME tables3g, which provide

the best available (to my knowledge) values for such quantities over the wide

range of temperatures and densities covered. The SESAME energies and pres-
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sures include the effects of energy going into phase changes and ionization, which

a simple ideal gas model does not; it is remarkable, however, how closely these

quantities follow the ideal gas values from O K up to the fully ionized plasma

state. MIiD runs were done using ideal gas temperatures and pressures, and

very little difference could be seen from those done with SESAME values.

In the “Hall h4HD” model used here, correct values of p t a n w

in conditions of partial ionization can be substantially less than total pressure,

ener~”, or number density values, have bmn incorporated. This is done by

obtaining the average ionization fraction “zb” as a function of mass density and

temperature from the SESAhlE table, then computing nt = zb ~/(mi + m,),

Ce= c zb/(1 + Zb), and pc = p z6/(1 + zb).

Braginskii’s transport equations do not include an energy loss term for ra-

diati~.eeffects. The Z-pinches modeled here were designed to reach umlitions

where radiative cooling is very significant in the energy balance. An energy loss

term is incorporated in the energy equation (electron energy equation, in the

two-temperature case) to account for this. The values are also obtained from

SESAhfE tables39, and include line and Bremsstrahlung radiation.

2.5 Dense Z-Pinch Plasma Parameters

In Appendix A, the case is made that the dense Z-pinch experiments mod-

eled here exist for significant times in the collisional regime in which Braginskii’s

transport equations are valid. To go horn those equations to the single-fluid

equations actually used in the simulations (ss is done in this chapter), a number

of additional assumptions have been pointed out. Quasineutrality and the drop-

ping of the electron inertia require that plasma scale lengths be greater than the

Debye iength, and that time scales be greater than electron cyclotron or electron
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plasma oscillation times. Further, the “low-frequency” assumption (dropping

of displacement current) requires that characteristic speeds of important distur-

bances, such as the Alfven speed or ion thermal speed, be much ICSSthan the

speed of light. If the standard MHD equations are to hold, the ior Tarmor ra-

dius should be much less than plasma scale lengths; otherwise, the “Hall MHD”

model should be used.

The scale length a used here is typically the radius of the plasma column,

which can vary from tens of microns to several millimeters or more. For a given

radius, other plasma quantitiescan be estimated. For instance, the small radii oc-

cur generally very early in the discharge, when temperatures and fields/currents

are relatively low; larger radii occur when the plasma has expanded, and may

correspond tc lower densities. Thus one needs to compute the desired plasma

parameters for a range of plasma conditions. For given parameters’ functional

dependenci~~, it may be possible to compute “worst-case” values, that is, the

combination of conditions (temperature, density, etc.) which can occur in the

plasma, which will give the parameter value closest to violating an assumption.

The Debye length73, AD = (c~H’e/ne2)* = 7.4(Tcv/nt~-s)* m, will be

largest at high temperature and low density. The highest temperature at which

the fluid model for these simulations can generally be taken seriously is about

1000 eV, and the lowest density is about 10-4 solid, or 0(1016 cm-3). This gives

a }D of about 2 x 10-7 m., much less than the smallest radius, about 10-5 m.

Characteristic times for comparison to the electron cyclotron or plasma os-

cillation times, can be derived by dividing characteristic speeds-thermal speed or

Alfven speed-into the scale length a. The ‘worst-case” thermal speeds, of course,

occur for the electron fluid at the highest temperatures; 1000 eV cm-respondsto
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a vth. s 2 x 107 m/see. DividixiOthis into the smallest scale length, z 2 x 1O-s

m, the characteristic time is about 10-12 sec. This compares to a slowest plasma

oscillation time (for the smallest density, 1018cm-3), of I/uPe * 10-13 see; the

comparison for higher derlsitiesor slower ion motion will be much more favor-

able. The ion thermal speed for 1000 eV is about 3 x 105 m/see. Xfone assumes

pressure balance (p = 132/2po) to obtain field and density vaIues with which to

compute an Alfven speed (l?/(pop)*), it will be of the same order as ion thermal

speed. “Worst-case” Alfven speeds, for fields of20 megagauss at densities of 1018

cm-3 (p* 10-2 kg/m3) still are of the order 10”’m/see. Hence these ion motion

times will be larger than the electron plasma oscillation time (and ion motions

will be slower). These ion speeds are generally much less than the speed of light,

satisfying the “low-frequency” assumption.

The electron cyclotron time l/wC. = m for a 20 megagauss field is

0(10-15) see, and the electron hrrnor radius for such a field at 100UeV is

0(10-8) m. These are well below the characteristic scale times and lengths of

the plasma modeled. Of course, in a Z-pinch the field goes to O at r=O, so the

cyclotron times and Larmor radii become large (Z-pinch particle orbits in the

vicinity of the origin are actuaily of more complexity than a simple “Larmor

radius” orbit, as pointed out by Haines70). Hence the zereelectron-inertia re-

quirement, that eiectron cyclotron times and lengths be much less than plasma

scale times and lengths, may be questionable near the origin, although this area

is surrounded by a plasma which does satisfy this assumption. The plasmas

modeled here do remain collisional near the origin, where the density rernak

relatively high (for a near-solid density plasma at 1000 eV, the mean free path

is 0(10-4 cm)), until very deep instability development sets in (collisionality is
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further discussed in Appendix A).

Ion Larmor radii, even for the conditions (20 megagauss, 1000 eV) which

satisfied the small ~’roradius assumption for electrons, me relatively large: on

the order of microns, approach& the initial fiber/plasma column radius (as

small as 15 p). The above-mentioned worsening of this ratio as the origin is ap-

proached, is thus much more serious, where rL;/a is concerned. Hence inclusion

of the rLi/tl ordered terms, as done in the ‘Hall MHD” model here, is important.

Tj ;Ji(”idh)itiJ,,ll”ti(’!f’(-())],ii)l ;!T:I ;)rcm-rti,-}?:d to To; /r~o ) Me calculated

here for two extreme conditions: 1) “core” plasma: 1 J eV, solid density (~

5 x 1022cm-3, in which case ret z 10-16 see, ~d rii * 10-14 see; 2) “coronal

plasma”: 1000 eV, density 5 x 1018cm-3, in which case r,, z 10-10 see, and

TII~ 10-8 sec. Hence Teevalues may range from 10-10 to 10-16 see, while ~ii

values range from 10- 8 to 10-14 sec. Above, an electron cyclotron frequency of

1O1ssee-l was calculated; for the same, 20-megagauss field, the ion cyclotron

frequency will be 0(101] see-l). Hence wCC7,tvalues may range from 10-1 to

105, ~d~Ci~81 valuesfrom10-3 to 103. It is thusnot safe to assumewara >>1, to

justify the use of some simplified transpcrt coefficients or a “collisionless MHD”

model, requiring UO~O>>1.

Although it is here indicated that the “Hall MHD” model is of greater

validity than the basic MHD (negligible Larmor radius) model. the results of

simulation using the basic MHD model will be presentedfirst. It will be seen that,

even with the basic MHD model, reiwonably good agreement with experiment

has been obtained.
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CHAPTER 3: MHD MODELING OF HDZP-I AND HDZP-11

3.1 Detailed Basic MHD Model of EXD~“merits

The primary experiments modeled here were performed on the Los Alamos

High Density Z-Pinch (HDZP) machines HDZP-13S~and -114’14. These machines

employed Marx bank generators with water-insulated pulse-forming networks

to apply maximum voltages of 600 kV (HDZP-1) and 2 MV (HDZP-11) to the

deutenum fiber loads; this would bring current roughly linearly in time to peaks

of 2 0kA at 125 nsec (HDZP-1) and 800 kA (to date; design maximum 1.2

MA) at 100 nsec (HDZP-11). frozen deuterium fiber loads were typically 30pm

in diameter by 5 cm long. Diagnostics included X-ray pinhole photography and

filtered PIN diodes, neutron counting with wious techniques and time history,

electrical diagnostics, and highly time-resolved (better than 0.2 nsec) optical

imaging (shadowgrams and interferograms; see Appendix B).

The computations reported here represent an extension of Lindemuth’s

MHRDR (Magnet~HydroRadiative-Dynamics-R..esearch) code 38. MHRDR

uses a time- and space-centered alternating-direction-implicit (ADI) numerical

method which avoids “splitting” of the equations: all quantities are solved in

vector equations, which include representation of all terms in the equatious at

every step of the solution procedure. Newton-Raphson-like iteration” is em-

ployed to deal with nonlinear quantities, i.e., nonlinear terms are approximated

by the first two terms in a Taylor series, then the resulting linear implicit problem

(solution of a block tri-diagonal matrix) is iterated to convergence. The model

applied to the dense Z-pinch problem in this chapter is basic (negligible rL~)

MHD, the tw-dimensional ( equations of magnetohydrodynamics including

thermal conduction, radiative energy loss, and resistive diffusion (as developed in
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Chapter 2: equations 2.2.1,2.2.17,2.2.24, and 2.2.13, dropping the ‘-Hall MHD”

terms noted in section 2.3, and with the additional details notsd in section 2.4):

(3.1.1)
ap
~ + v “(pq = o

(3.1.2)

(3.1.4)
W

- +v x (–+x B + : v x17) = o

where p is mass density, F is velocity, ~ is magnetic field, J(= v x ~/po) is

electrical current der ity, ~ is specific internal energy, p is pressure, T is tem-

perature, Qr.~ is the radiative energy loss, q is the electrical resistivity, and X4

is the (perpendicular) thermal conductivity. When a two-temperature model is

used, tlie single energy equation above is replaced by ion and electron energy

equations (from 2.2.2!. and 2.2.22, again as modified in sections 2.3 and

(3.1.5)
a(pee)
~ + v - (PZG) + P, v oZ – v o(fil, v T.) – VJ=+

+Qr.ti + Qei = o

(3.1.6)
6’(~ti)
~ + v “(Ptiti)-1pi v “Z- v “( v ~ – Qei = O

2.4):

where Ce, p To, and KAOrefer to the appropriate ion or electron quantities,

and QCiis the electron-ion energy equilibration term.
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The basic alternating-direction-implicit solution algorithm is as follows38

(portions of Reference 38, which describes this in much greater detail, are repr~

duced in Appendix D), The component forms of the equations to be solved (such

as shown in Appendix D) contain terms which are exactly spatially integrable

in one direction (i.e., in “conservative” form), representing fluxes of mass, mo-

mentum, etc., and terms which are not so integrable, which Lindemuth refers to

as “forces.” Spatial integration of these terms is done at a given finite-difference

cell; one then has expressions for the fluxes, at the interfaces between cells, and

approximates the “force” terms, by taking the average of such terms at the two

interfaces of a cell. Each flux and force term at a given cell interface is then writ-

ten in finite-difference form, i.e., in terms of the cell and neighboring cell values

of the quantities to be solved. The key to the alternating-direction-implicit al-

gorithm is that the finite-difference equations which result at this point, are the

sum of terms depending on qm.ntity values and their spatial derivatives in one

direction, and terms depending on quantities and derivatives in the other direc-

tion. This is because none of the equations to be solved contains mixed spatial

derivatives (the presence of m;xed derivatives in the Hall term thus presented a

major problem, the solution of which is described in Chapter 4).

One can then treat the terms dependent on quantities and derivatives in

one direction implicitly (on this step leaving the other direction terms explicit),

and the resulting matrix to be salved (after linearization) is not the huge matrix

which a full tw~dimensional implicit solution would require, but only a much

more tractable block tri-diagonal one-dimensional implicit matrix, because the

unknown quantities are only along a single line in the implicit direction. On

the next step, the alternate direction is treated implicitly. In MHRDR, which is
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“time-centered” (in a Douglas-Gunn senseys), the first step includes implicit and

explicit flux and force terms in one direction, plus explicit terms (which have just

been solved for in the previously completed full step, incorporating implicit and

explicit contributions) in the other direction; the second step includes implicit

and explicit terms in the second direction, plus the just-computed implicit terms

and explicit terms in the first direction. Both steps include a representation

of all terms in the equations (in both directions) at once. Hence, each step

results in solution values which are entirely consistent with the complete set of

partial differential equations, in contr~t to the results of “operator splitting,”

where each intermediate value is actually inconsistent. In MHD, where physical

processes “compete,” the MHRDR method should in principle allow the use of

larger timesteps than splitting methods.

The program proceeds using essentially a Newton-Raphson iterative lin-

earization method74, At each cell interface on a given line, the implicit fluxes

and forces are approximated by calculating the explicit fluxes and forces and the

explicit derivatives of those fluxes and forces with respect to the quantities to

be solved (e.g., ~, p etc.). These numbers become elements in the block tri-

diagonal matrix to be solved for the implicit quantities. When all the elements

have been calculated for a given line, the implicit matrix is solved by forward-

7 u t ~ W&WS have not converged to a presetbackward substitution .

degrtx (for each quantity, typically 10-5 times its largest value), they are used

as explicit values with which to compose a new matrix, the solution of which

is iterated until convergence for that line is reached (up to a limited number of

iterations; if convergence is still not reached, the timestep will be cut). When all

the lines in one direction have been solved in this way, the implicit and explicit
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flux values are stored (because they will be used in the secoud step), and the

implicit solve procedure is repeated for all the lines in the second direction. The

solution values of this second step are the final values for the solved quantities

at the new time.

By careful differencing of the equations, the code has uncommon conser-

vation propertiesTTOThe spati~ differencing (in the limit At -+ 0) not onlY

conserves mass, momentum, energy, and magnetic flux, but also maintains “sub-

conservation” properties, that partial sums of component energies (thermal, ki-

netic, magnetic), such as the sum of kinetic and magnetic energies, are conserved

where appropriate (i.e., each pair of corresponding terms individually maintains

energy conservation). In general, the time- and space-centered algorithm is sec-

ond order accurate in At and Ax.

MHRDR employs an “artificial viscosity” in the vicinity of strong shocks

(large velocity gradients) in order to more accurately depict the physics in such

areas (give the correct increase in entropy when a shock traversesthe plasma, ir-

reversibly converting ion kinetic energy to ion thermal energy). Lindemuth77-79

strongly argues that “artificial” is a misnomer here, because the numerical re-

sults wi!l be farther from physically correct without it. The functional form of

the artificial viscosity is such that it is very localized to the large velocity gra-

dient regions. Intrinsic to the use of such artificial viscosity is a shock heating

term, included in the energy equation (ion energy equation in a tw-temperature

model, because of the mass dependence of viscous effects) for consistency.

For certain types of 1inearequations80, the time- and space-centered alter-

nating-direction-implicit algorithm employed in MHRDR is unconditionally nu-

merically stable, i.e. there is no limit on the size of the timestep allowable.
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For the nonlinear equations which are being solved here, this is probably not

tree; one is hard put, in advance to know what timestep will be desirable to

resolve important details of a given problem, even if such a timestep is numeri-

cally stable. MHRDR uses an adaptive timestep: a starting timestep and min-

imum/mtuimum allowable timesteps are set, then, as the simulation proceeds,

the timestep goes up or down, depending on a number of conditions. If quan-

tities are not changing much, the timestep will go up until the largest change

in any quantity reaches a preset value, often a percentage such as 30% of the

given quantity; timesteps will be cut if changes exc=d this value, if non-physical

results such as negative temperatures or densities are encountered, or if the it-

erations are not converging. In this way, it is possible to relatively efficiently

follow a problem, such as the fiber-initiated Z-pinch, with timesteps which re-

solve interesting physical phenomena as they develop.

The magnetohydrodynamic model used requires for completeness the spe-

cific internal energy, the pressure, thq thermal conductivity, the average ioniza-

tion level, the radiative energy loss, and the electrical resistivity as functions of

the density and temperature. To obtain the equation of state (specific energy

and pressure), the ionization level, the radiative energy loss, and the resistivity,

the Los Alamos SESAME39 tabulated atomic data base computer library is used.

SES.4ME Planckian opacity is employed for the radiative energy loss term, ap-

propriate for on optically thin condition (wr.~ > UP,), which fiber pinches such ~

HDZP-I and -II can be shown to maintain for temperatures and densities typical

of such discharges, Thermal conductivity follows the (arbitrary UC~) Bragin-

skii formalism63, as does electron-ion energy equilibration. Hence the thermal
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conductivities are:

(3.1.7)

(3.1.8)

Single-temperature X4 is the sum of these. The electron-ion energy equilibration

term64 is

(3.1.9).

Actual experimental current vs. time values provide the boundary con-

dition for magnetic field at the outer radial wall: Ampere’s Law prescribes

~e(~wlu) = pOI/(27rrW.li). The code employs a method by which field and

plasma can realistically pinch inward from a radial wall, if equations and bound-

ary conditions so dictate, and later expand back to the wall in a consistent

fashional (at early stages of the simulation, field very rapidly diffuses across the

low-density “vacuum” region to the current-carrying surface of the fiber). Mass

is allowed to leave through the outer radial wall, if it is moving in that direction;

this prevents an unrealistic build-up or “bounce-back” of mass at the outer ra-

dius, which is intended to simulate the surrounding vacuum. When it was iound

that significant current and plasma density needed to be resolved in the vicinity

of the outer radius, a means was found to expand the grid to treat this appropri-

ately; this is described below. The axial boundary conditions are usually taken

to be electrically conducting and heat insulating, giving ‘mirror” conditions at

these boundaries for field and energy; axial walls are intended to be solid, as are

the real electrodes, hence &r~61 = O. Haines has done some theoretical work
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predicting that end losses of energy from such a pinch will not be significant

over the typical 0(100 nsec) discharge time’”, and a single simulation run with

zerwtemperature axial boundaries agreed with this result.

“Cold-start” initial conditions are a solid, cryogenic dcutcrium fiber (density

88 kg/m3, which is half that of solid deuterium, to account for observed voids

and other non-uniformities in the fiber; temperature 0.001 eV; radius 15 pm; 2Y0

random density fluctuations provide perturbations for instability growth) sur-

rounded to about twice the fiber radius by a low density, ‘warm” halo plasma

(e.g., density 0.088 kg/m3, with no perturbations; temperature 1 eV), which

provides an initial current conduction path. Computed results are insensitive to

the details of this halo plasma after a short-lived (<10 nsec) transient, because of

the small mass involved relative to the fiber-generated plasma. The surrounding

vacuum is simulated by a cold, very low density region (e.g., density 10–7 kg/m3,

temperature 0.025 eV) of total mass less than 1% of the fiber, extending out to a

zero-temperature, electrically insulating wall. To avoid unrealisticohmic heating

of the highly resistive “vacuum region”, a “cutoff density” is used, below which

ohmic heating is turned off. Because the bulk of the plasma in such discharges

may go from high, near-solid densities to expanded, much lower densities, this

author implemented a variable cutoff density, which adjusts itself, within pro-

grammed limits, so that (typically) 99% of the plasma (presumably the bulk of

the fiber-generated plasma) remains above cutoff at all times. The results from

runs with both fixed cutoff densities, and these adaptively varying cutoff densi-

ties, showed no significant differences (typical cutoff densities are from 10*8 to

1016cm-s).

The early fiber-ablation stage of the discharge necessitatesrelatively fine ra-

40



dial grid spacing, but this stage can be followed by an explosive expansion of the

heated plasma. Because of this, Lindemuth’s initial two-dimensional simulations

could only be run to about half the HDZP-I current peak before “running out of

grid”: significant current and plasma density needed to be resolved outside the

original, maximum aRordable radial grid. To overcome this problem, this author

explored the use of an existing capability in the code, allowing pre-progmmmed

radial grid expansion. This was found to be impractical, because one doesn’t

know in advance when and how fast the grid should be expanded. It was neces-

sary to implement an adaptive system, capable of expanding or contracting the

grid (within programmed limits) to follow an expanding or contracting phwma.

The radial grid is checked at each timestep, and adjusted so that the outer

boundary is always at least 150% of the radius within which 95% of the total

axial current is contained. Provision for this grid motion is written into the

“generalized Eulerian” (moving-orthogonal-grid) difference equations, avoiding

the complications of the Lagrangian approach: i.e., finite-difference equations

are written and solved for quantities, such as velocity, reIative to a known (pre-

programmed, or now, adaptively set) grid velocity.

To allow direct comparison of simulation results with experimental data,

this author wrote an addition to the code’s graphical post-processor to generate

shadowgrams and interferograms, as collected on the experiments, from simula-

tion results (this is done by tracing a grid of rays through the simulated plasma;

see Appendix B). A dynamically developing instability may be overboked in

a plasma imaging diagnostic which lacks temporal resolution (visual and X-

ray images require rather long exposure times relative to the nanosecond-scale

dynamics of such pinches). It has been possible to produce very highly time-
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resolved (better than 0.2 nsec) experimental shadowgrams and interferograms.

Hence these present experimental data of primary interest for comparison with

the simulations.

In the simulationsreported here, radial grids of 80 to 100 points, more finely

spaced near the axis (zones smaller thim 2 p) to better resolve the fiber/pkisma

column, cover a radius as small as 1 millimeter, but ultimately as large as several

centimeters, if rapid expansion is followed, It would be desirable to cover the

full 5 centimeter axial length of the experimental chamber with many hundreds

of grid points, to resolve the smallest and largest instability scales possible, but

this is prohibitively expensive at present. It has been possible to cover axial sec-

tions as large as 2 centimeters, and as small as 0.25 millimeters, with uniformly

spaced axial grids of 31 (sometimes 62) points. These are respectively capable

of resolving the largest (X-ray “beads”) and smallest (shadowgram “spicules”-

fine spikes radiating outward from the main axial column at early times in the

discharge) features observed in any of the experiments. Although the smallest,

most finely resolved grids do show fine-scale instability growth starting earlier

than the larger grids, these fine-scale instabilities are not ultimately the most

unstable or fastest expanding disturbances, because as heating and expansion

take place, shorter wavelengths saturate, and larger-scale instabilities tend to

dominate the system. Mid-size grids, covering about 2 millimeters axially, show

the most rapid instability growth ail 1expansion; larger grids show a delay before

the larger modes they can resolve begin to develop. Hence the timing of insta-

bility development and expansion may vary by as much as 20 nsec (in 100-nsec

current-peak discharges) ‘or different grid sizes. This is comparable to experi-

mental timing uncertainties (e.g., the reiation between driving voltage, current,
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anddiagnostic images in time).

With these improvements lmplernented,it has been possible to run simula-

tions to about 120 nsec for HDZP-1, near its 200-250 kA current peak, and to 44

nsec (about 300 kA) for HDZP-H (also as high as 430 kA for an as yet not exper-

imentally realized 1.2 MA-peak shot on HDZP-11). At tbese points, not only is it

numerically difficult and expensive to deal with the very rapidly expanding and

highly irregularly developing plasma, but large parts of the plasma have reached

temperatures and densities where the validity of the fluid model is very much

in doubt; this will be discussed further below. Extending the simulation beyond

these points, then, is as much a matter of finding an appropriate physical model,

as it is a matter of numerical ~tichnique.

A potentially important limitation of these computations is geometric:

quantities vary only as functions of r and z, and only the azimuthal magnetic

field and velocity components perpendicular to the field (V.,VZ) are computed,

along with scalar mass density and internal energy. Within the fluid model,

the finite-Larmor-radiusordered terms in the magnetic field equation (Hall term

and diamagnetic pressure), the viscous stress tensor, and accompanying terms

in the energy equation, are ignored as well. Up to the point where the fluid

description and classical transport break down, comparison of the results of such

a simulation with experiment can suggest whether or not any of the aspects left

out, geometric or otherwise, were essential to the behavior of the system.

3.2 Results of Basic MHD Modela2-84

An account of the low-current experiment HDZP-I described plasma

columns “free from visible instabilities for typically 80 nsec into the current

discharge, at which time the (m=O] instability growth times would be expected
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to be S1 nsec...m=l modes are not observed.”3 Fastest growth times for ideal

m=O (and m=l) instabilities18are on the order of the Alfven time 7A = a/uA,

where a i a scale length of the plasma, and VA is the Alfven speed. Typical

Alfven speeds and scale lengths of these plasmas (discussed in section 2.5) do

indeed correspond to Alfven times on the order of 1 nsec, if not smaller. Plasma

columns also appeared to be relatively compact (radius s 200pm), based on

shadowgraxnimages (Figs. la, 2a; note that these are electronically collected

images of finer resolution than the original photographic shadowgrams on which

the above comments were based; see Appendix B), which were employed to pro-

vide well time-resolved images without the complex temperature dependence of

passive radiation emission. A similar experiment at the Naval Research Lab-

oratory (about which more will be said later) also appeared to exhibit such

compactness and rela ive stability, on the basis of visible and X-ray emission

imaging ~~fthe plasma.

The tw~dimensional (2-d) basic MHD simulations of HDZP-i discharges

show significantexpansion and m=O instability development (Figs. Ic, Id) before

the fiber has become fully ionized, which occurs in the simulations at 30 to 50

nsec. Model shadowgrarns generated from simulation of HllZP-I reasonably

agree, in size and instability wavelength, with those from experiment (Figs. la,

lb). The width of the shadowgrarnstends to remain smaller than the effective

diameter of the plasma column, in terms ofmass (Fig. Ic) or current (Fig. id).

This is true because light ray deflection (which creates the shadow) depehds on

density gradients, and is greatest near the central core of the plasma column

(particularly while this is still being fed from the ablating fiber), where these

density gradients are the hugest. The lower density, more gently varying outer
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regions of the plasma column do not provide enough ray deflection to cause

obvious shadows, even though a significant fraction of the mass or current may

reside there. Significant instability development in these outer regions (Figs,

Ic, ld) only shows up as slight variations in the shadowgrams (Fig. lb). After

the fiber is completely ionized, the simulation-generated shadowgrams expand

and become more irregular, even disappearing at some points along the axis,

again in agreement with experimental results (Figs. 2a, 2b, also la, right-hand

image, 3a, 3b). This may be interpreted as evidence of full development of the

instability, to the extent that line density (total number of particles 2~:runit

axial length, Fig. 5c) along the axis becomes very irregular (i.e., plasma column

separates into distinct “blobs”, ultixxiatelyreflected in formation of “beads” in

X-ray images2’14).

Simulations and observations of the Los Alarnos high-current experiment

HDZP-11 4114resemble the higher-current, later phr~esof HDZP-I discharges. In

the simulation of HDZP-11, the higher current fully icui:es the (15pm radius)

fiber in 10 to 20 nsec (where 0.75 to 1.2 MA current peaks would occur at 100

nsec, although HDZP-11 simulations were not run all the way to current peak).

Instabilities develop rapidly, and drive intense nonuniform heating and rapid

column expansion to radii on the order of centimeters, within 50 nsec. Only

very early in the experiment is there enough density gradient to give a useful

shadowgrarnat all (Fig. 3a), and this wide and irregular image resemblesthe late

shadowgrams of the low-curnmt experiment HDZP-I (Fig. 2a). The computed

shadowgram (Fig. 3b) has many features (width and instability wavelength) of

the observed one [Fig. 3a).

Because late time shadowgrams were impossible to obtain on HDZP-11, in-
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terferometric imaging techniques (see Appendix B) were then employed. Inter-

fer~)gramsgive images integrated directly off plasma density rather than density

gradient (as in shadowgrarns). These images, both experimenta114and simulated,

show characteristic ‘island” patterns of large amplitude m=O modes (Figs. 4a,

4b); again, a repeat of what is seen in late low-curnmt simulations (Figs. 4c, 4d,

4e). The line density along the axis, derived fkom the simulations, is in good

agreement with the results from experimental interferograrns(Figs. 5a, 5b, 5c).

Experimental variation in fiber size, and the use in simulations of starting fiber

density one-half that of pure solid deuterium (to compensate for possible voids

in the experimental fiber), account for the minor differences between computed

and measured line density.

Theoretical and computational investigation into the reported “anomalous

stability” of the early, low-current experiments has concentrated on the con-

nection between driving current ramp times and plasma profiles24’85@, and the

stability of such profiles as modified by non-ideal effects such as resistivity19-30.

In particular, it has been found that low-temperature plasma columns which are

. . . . .
relatively res]st]ve,with Lundqulst number (~r~sisriv~~ijfU#iOn/~~/f”~” ~~~fi,g~)Up

to about 100, may be m=O stable21~23~24~30.The plasmas for which these re-

sults have been derived are constant-radius, uniform (Bennetts’) temperature,

and of near-solid density (i.e., fully ionized, and expanded to no more than a

few hundred pm). In contrast, what is seen in early (pre-complete ionization)

stages of these one- and two-dimensional simulations (e.g., Fig. 1 of Ref. 35)

is a low-density (e.g., 10-3 ~solid) coron~ Pl=ma with a temperaturePe* at

the edge that may be considerably higher than the Bennett temperature. Such

profiles resemble those discussed by Bobrova, et al, for exploding copper wire
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88 ~w den~jty ~d ~gh temperrLtureare factorsand deuterium fiber Z-pinches .

which would raise the effective Lundquist number of such a plasma from “safe”

Lundquist numbe~ of order 1, beyond the critical values around 100, even dur-

ing the low current, early stages of the discharge. Once instabilities begin to

grow in the corona, expansion of the column is enhanced, leading to still lower

densities, larger radii, and still higher Lundquist numbers.

The presence of the cold core does wxm to inhibit full nonlinear instability

development, such aadisplayed in Figs. 4d and 4e (note the drop in density in the

m=O “neck” region, in contrast to the earlier density contours, Fig. Ic), which

appears connected with the explosive expansion of higher-current discharges on

HDZP-H. The simulations show re-connection of the outer regions of such m=O

lobes, and current jumping across them at progressively increasing scale lengths;

this may not only directly contribute to the physical expansion of the column,

but may lead to instability heating89, which further drives expansion (note in

this regard the tw~temperature simulation results discussed below).

The high temperatures and low densities, which may be seen in the fully

developed instability/expansion stage of the discharges, are likely to drive the

plasm~ out of the one-tempera’.ure xegime (ions and electrons in energy equilib-

rium), as noted in Appendix A. Lindemuth’s code has an existing twmtempera-

ture capability, but it was found impossible to run the fiber Z-pinch problem in

the tw~temperature mode, due to problems either with the very low tempera-

ture sections of the two-temperature SESAME equation-of-state tables, or with

the energy equilibration section of the code; these problems have not yet been

resolved. However, it was possible to do two-temperature runs using an ideal gas

equation of state in place of the SESAME tables (still using SESAME resistiv-
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ity, ionization state, ~nd radiation); confidence in this procedure was bolstcrcci

by the fact that one-temperature ideal gas runs showed little overall difference

fkom all-SESAME one-temperature runs. The ion and electron energy equations

differ, in addition to the use of appropriate ion or electron pressuresand thermal

conductivities, in that the electron equation has the ohmic heating and radiative

cooling terms, while the ion equation has an “artificial viscosity” shock heating

term (both have complementary equilibration terms).

The general instability/expansion behavior was still seen in these two-tem-

perature runs, but an interesting detail emerged in the heating pattern [see Fig.

6). In l-d and early stages of 2-d runs, ohmic heating of electrons was the

primary heating source, and electron temperature thus either led or remained in

equilibrium with ion temperature. However, when instability development led

to extreme and irregular density and velocity gradients (such as in Figs. 4d end

4e), shock heating of ions caused the ion temperatures to exceed those of the

electrons, by as much as 50 eV for average temperatures (Fig. 6a), and hundreds

of eV for peak temperatures (Fig. 6b). This .6tsthe pattern of instability heating

suggested by R. Lovberg8g,which is under expwirnental investigation by Lovberg

and R. Riley Jr.

Chittenden and Haines in a recent paper have stated that the thermoelec-

tric Nernst and Ettinghausen effects “cannot be ignored when electron and ion

temperatures are sufficiently decoupled.”sg In l-d Lagrangian two-temperatur:

simulations using Braginskii perpendicular resistivity, they see such decoupling

in the very low density outer edge of the coronal plasma; this region carries

a lot of current, and hence has large ohmic heating of the electrons, but they

do not equilibrate with the ions. The ions could normally conduct much of
.
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the heat away, because the ion cross-field thermal conductivity (3,1,8) is larger

than that of the electrons (3.1.7) by the factor (~i/~~)~. h this case, the

low electron-ion thermalization rate (3.1.9, proportional to n~/T}), leads to a

runaway electron temperature situation at the plasma edge; higher temperature

(lower resistivity and thermalization) leads to higher currents, more heating, etc.

However, if the Nernst and Ettinghausen effects (which cause a radial flow of

heat and current density) are included, the ion and electron temperatures stay

much closer together, resulting in B much more uniform current distribution.

Chittenden has also found a similar effect, causing current to be more uniformly

distributed across the pinch radius, due to anomalous (microturbulence gener-

ated) resistivitygo.

In the two-temperature runs done here, one does not sewa significant de-

coupling of the electron and ion temperatures at the edge, as seen in the Chit-

tenden/Haines paper, for several reasons. There is a cutoff density in MHRDR,

below which ohmic heating is not included, in order to avoid unrealistic heating

(and runaway processes such as described above) in the low-density “vacuum”

plasma regions. Although the use of such a cutoff does introduce a somewhat

arbitrary, physically inconsistent element into the model, the intent is to use it

only in “vacuum” areas which do not meet the criteria for the fluid model, and

which do not have a decisive effect on the bulk plasma dynamics. Cutoff density

vah~eshave been varied over two orders of magnitude without seeing my signif-

icant differences in the simulation results. Also, the resistivity used here is from

the SESAME tables, rather than Braginskii. The semi-empirical SESAME re-

sistivity tables give values for a wider range of temperatures and densities than

the Braginskii fully-ionized plasma model; in particular, for conditions where
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neutrals are dominant, and for conditions of such low density that almost no

current-carriers are available. Hence it may be that SESAME resistivity, in

the low-density coronal edge regions where the above discussed phenomena take

place, is greater than Braginskii resistivity, and so tends to exclude current from

such regions.

In a one-temperature model, as noted above, ohmic heating at the edge

can be balanced by (predominantly ion) heat conduction away from the edge.

Hence not including the Nernst and Ettinghausen effects in the one- and tw-

temperature simulations presentedhere did not lead to the runawayedge current

and heating problem brought up by Chittenden am-lHaines. There are other

situations in which ion and electron temperatures may decouple, such as the

instability ion heating discussed above. Shock-heated ions, in areasof low density

and high temperature, would also have a low electron-ion thermalization rate.

The possibility of Nernst and Ettinghausen effects playing an important role in

such situations makes addition of these effects desirable.

A major difference between the Los Alamos experiments and the deuterium-

fiber-initiated experiments at the Naval Research Laboratory (NRL)2S13is the

thicknessof the fiber: NRL used 40- to 60-pm-radius fibers, as opposed to 15-pm

at Los Alarnos. Current rise rates have also varied among the two Laboratory’

experiments, from about 1 to 10 kA/nsec. A striking observation of the early

NRL experiments (current peaks up to 640 kA at 125 nsec) is that significant

expansion of the or. . .mlly very compact visible emission image (taken to indicate

onset of gross instability) does not occur until current peak (dI/dt=O). Thus the

pinch would appear to remain stable ‘as long as the current is rising.n2

The NRL experiments have not been as comprehensively modeled as the
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Los Alamos ones, but 2-d simulations have been carried out for 60-pm-radius

fiber, 640 kA at 125 nsec NRL discharges; a simulation was also done of a

planned 40-pm-radius fiber on Los Alarnos’ HDZP-11 with current peak 750 kA

at 100 nsec. In these simulations, the fibers did survive considerably longer

(40-50 nsec for the 40-pm fiber, as opposed to 10-20 nsec in the analogous,

HDZP-11 15-pm fiber run; survival w= longer than 60 nsec for the 60-pm fiber).

Onset of drastic instability development and expansion did not occur until the

40-pm fiber was gone (around 55 nsec, as opposed to 30 nsec for the 15-pm

run). The 60-pm simulation could not be run beyond 60 nsec (260 kA), because

portions of the coronal plasma had reached the highly irregularly developed, high

temperature, low density (fluid model invalid) conditions which have ultimately

defeated the numerical algorithm used in all these simulations. At this point in

the 60-pm simulation, a cold (S1 eV) core remained, surrounded by a medium-

hot (*1OO eV) corona of about 10-1 times solid density out to about 100 pm

(which could be responsible for the visible radiation image of about this radius

at this time), surrounded by a hot (into keV range), several orders of magnitude

lower density, strongly unstably developing outer corona, This resembles the

pre-complete-ionization coronal plasma seen at earlier times in the 15-pm-fiber

HDZP-1 and -11runs. In tw~dimensiomd simulations, the expansion and severe

instability development, which occur shortly after complete fiber ionization and

are reflected in shadowgram and interferometric imaging, would also be reflected

in a sudden expansion in the visible emission images36. Hence if ionization

of the fiber is completed prior to current peak, one would expect the above

“dI/dt=O hypothesis”z to be violated, and visible expansion to occur while the

current is still rising. Such instabilities and expansion while the current is rising
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were reported for the later, higher current NRL experiments*3. These later

experiments did employ a current ramp (920 kA peak at 840 nsec) much slower

than that of the original NRL experiments, which were considered to use an

optimum current rise value (*4 kA/nsec). The 2-d simulations of the original

NRL experiments are consistentwith the fibers becoming completely ionized very

near the time of current peak, making it difficult to distinguish betweea whether

the visible expansion at this time is due to dI/dt=O, or due to completed fiber

ionization. It would be desirable to run a series of experiments on a single

well-diagnosed machine, accompanied by a series of simulations, in which fiber

*.hicknessand current ramp rates were varied, so that one could clarify the effects

of each, Because at this point in time, operations have ceased on the Los Alamos

and NRL machines, it is hoped that such work may be done on the Imperial

College high-current fiber-pinch machines4.

Comparison of simulation and experimental resultson HDZP-I and -II leads

to the following i~~terpretation.The ‘anomalous stability” reported fm the thin-

fiber HDZP-I experiments may have been a misinterpretation based upon limited

diagnostics; “stability” in any event is limited to the earlier, lower-currentstages

of che discharge. Even at early times, there appears to be instability develop-

ment in the outer corona which is only faintly reflected in shadowgram images.

Full nonlinear instability development does appear to be held back, as long as

some portion of the heat-sinking fiber persists. Because of the higher currents

encountered earlier in HDZP-U disch:uges, the fiber becomes completely ionized

earlier, allowing drastic instability development to ck~iverapid expansion at a

very early point. It appears thicker fibers, such as those used in the NRL exper-

iments, coc?d delay the early onset of gross instability and expansion (although
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the simulations still show M] unstable coronal plasma). However, this would

almost certainly reduce the temperature and may prevent conditions for signifi-

cant neutron production from being reached; this is a question to be settled by

further experiment and computation.

Once a mmputational tool shows the capability to give results in agreement

with existing experiments (and in the next chapter, an effort is made to include

terms which might enhance this agreement), one can with caution begin to use it

to predict the outcome of new experiments. A natural area to explore for fiber-

initiated discharges is the effect of the driving current ramp. Both theoretical

and experimental investigations have related the current ramp to the resulting

plasma profiles, and the connected issue of stabilitylg-30~8s~86.One example is

the H~nes.H~mel Curveg,lI*1Z, which will theoretically maintain a constant ra-

dius plasma column while raising the current up to the Pease-Braginskii limit,

where ohmic heating is just balanced by radiative cooling. Of course, the actual

experiments, and the simulations done here, start with a cold fiber, not a plasma

with the fiber’s dimensions. One-dimensional simulations using such a current

ramp did show roughly constant radius behavior; however, in 2-d, the charac-

teristic explosive instability/expansion set in strongly by the time the current

reached 500 kA. Extremely fast rising current ramps (as much as 30 kA/nsec)

gave similar results. Ramps as slow as 1 kA/nsec have been tried; they also

show instability and expansion. This code was also used to do a simulation of a

“flat-top” current ramp discharge, in which current goes to 160 kA in about 20

nsec (at which point no instabi~ityor unusual expansion is evident), then is held

at that value. The same explosive instability/expansion u seen in the rising cur-

rent case, still occurred within 20 nsec of the time current was flat-topped; the
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plasma did then settle into a low-density (expanded out to centimeters radius),

less unstable configura’.ion. There is some interest in using a slow-ramped or

flat-top current rise fiber-inititated Z-pinch as a means of providing an initial fill

plasma for a heavy liner “magnetized target fusion” implosiong1~g2.In this case,

the expansion of the plasma is not critical, because the intent is to re-compress

it to fusion conditions, by imploding a surrounding liner.

The pattern which is seen repeatedly in these fiber-initiated pinch simu-

lations is formation of a low-density (orders of magnitude below solid) coronal

plasma, which carries most of the current; consequently, it heats rapidly into the

hundreds of eV range. Such a plasma has a relatively high Lundquist number,

well beyond the levels for which resistive stabilization has been theoretically or

computationally predicted, Accordingly, it acts like a classical ideal MHD Z-

pinch: it is an unstable plasma, and when there is no longer a low-temperature

core to provide some restraint to instability development, violent instability and

expamion result. These simulations have been run far into the nonlinear stages

of instability development (see Figs. 4d and 4e), although plasma conditions

tend to occur at this stage which make doubtful the validity of the fluid model.

The only nonlinear “stabilization” mechanism seen is re-connection of the outer

plasma lobes; this produces an expanded, lower density plasma, which is not

what one looks for in an ostensibly self-cofining, self-heating fusion device.

It has been noted by Kiesg3 and others that the plasma initiation stage

of an initially non-conducting fiber-int~plasrna discharge may be crucial to its

subsequent development. As discussed above, instabilities first develop in the

low-density, early coronal plasma; higher density may be stabilizing here (lower

Lundquist number). Some pre-ionization of the fiber, by a voltage pre-pulse or
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radiation flash, may be desirable to set up current/density profiles which may

lead to a stable or relatively stable high density Z-pinch. To this end, simulation

parameters of the initial conduction (coronal) plasma were varied, without much

effect. Although the details of current initiation at the beginning of such a dis-

charge are unknown, it would seem that providing an inititd conducting corona,

of negligible mass compared even to the quickly appearing ablation-generated

corona, should not have a crucial effect. 2-d simulations attempting to model

flash-ionized fibers have bmn done, including a 2 eV, half-solid-density pinch

which immediately starts at 200 kA current, to prevent sudden expansion; it too

ultimately showed explosive instability and expansion. Investigation of experi-

mental variations, such as plasma initiation techniques, is continuing. Some hope

for obtaining the desired micron-scale, high-density plasma current channel has

recently been generated by experiments utilizing the “plasma-on-wire” (POW)

technique94, which will be examined in Chapter 5.

As temperatures rise and density drops, particularly in and around the

narrow m=O “necks” which develop in the simulations, the appropriateness of

the fluid model breaks down. Thus late development of instabilities may well be

controlled by fiects absent from the model. An improvement in the fluid model

would come from the inclusion of terms usually ordered out on the basis of small

Larrnorradius (which may indeed not be small in the case of the Z-pinch1g~41,as

noted in Chapter 2 and Appendix A): the Hall and diamagnetic pressure terms

in the Ohm’s Law (magnetic field evolution) equation, and accompanying terms

in the energy equation.

Analytic and numericalwork on the influenceof the Hall term gives equilibri-
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urn-dependent results (lower m=0 growth rates for some equilibria, higher for

others)lg, so the present simulation work’s close-to-the-experiment approach is

important, to insure that realistic equilibria are evaluated. That the Hall term

may have drastic effects 01 the important scales of an instability is graphically

illustrated in a recent paper by Huba, Lyon, and Hassan~G6.The implementat-

ion of Hall and associated terms in the 2-d code used here, which required a

major adaptation of the alternating-direction-implicit algorithm, is described in

the next chapter.
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C13APTER 4: HALL MHD SIMULATIONS

4.1 “Hall MHD” Comwtational Mocielinr Task

The “Hall MHD” model developed in Chapter 2 requiresthe addition of four

similarly ordered terms to the standard MHD equations. These are the Hall and

diamagnetic pressureterms (added to the magnetic field evolution equation), and

the electron “work” and electron current energy convection terms (added to the

energy equation): w x (~ x ~/(nce) ), v x (Vp~/(nce) ), p. v o(–~/(n. e) ), and

V o(Pft (–~’(n~e)) ). From a practic~ point of View, these are four separate

numerical modeling tasks; it’s hard enough to debug and benchmark a single

new term in a large code, without trying to do four terms at once. By doing

terms one at a time, one may initially miss compensating effects between two

or more terms, which the MHRDR code, with its simultaneous solution of all

quantities, is able to exploit. It is the most practical approach, however, to

implement one term at a time, deal with the obvious problems which it presents,

then go on to the next term, and any inter-relationship which then arise. A

look at the algebra in section 2.3, in which it is shown that if the diamagnetic

pressure term is included, energy consistency requires that the electron “work”

term be included, also reveals that the Hall term by itself only conservatively

re-distributes magnetic energy. Hence a natural division of the task is u follows:

do the Hall term first, then the diamagnetic pressure term, then the “work”

term, and finally the electron current energy convection term. XIIthis chapter,

development of the additional te.~s is reported in that order; then the results of

simulations of the dense Z-pinch will be given, including some of the new terms

(physically inconsistent, but potentially informative cases), and finally including

all of the new terms.
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To the extent possible, it will be desirable to follow the existing MHRDR

algorithm, which has proven suitable to the demands of the fiber Z-pinch prob-

lem. However, all the new terms introduce a significant complication: they

involve cross-derivative quantities. For the limited-geometry MHD model solved

by MHRDR in Chapter 3, a key feature of the equations, which made the

alternating-direction-implicit approach possible, was that the flux of any quan-

tity in a given coordinate direction, depended only on quantities and their spa-

tial deri~atives in that direction. Hence the problem very naturally splits into

one-dimensional implicit lines to be solved (sequential implicit solves for both

directions give the final values for the new time). The curl of the pressure gra-

dient Vpc, in the diamagnetic pressure term, and the curl or divergence of the
.

current J in the other terms, couple the fluxes of quantities in one direction to

the cross-derivatives (the derivatives in a perpendicular direction). Hence, if an

implicit approach is to be used, some means must be found to deal with this,

hopefully compatible with the existing ADI coding.

The computational physicist, searchingfor an answerto an interestingphys-

ical problem, may take a more pragmatic approach than a numerical analyst or

mathematician. The elegance of a solution is of less importance to the physicist

than its accuracy, in the broad sense of the term: does the numerical technique

used preserve the essential physics of the problem tc be modeled? Of course,

advanced numerical techniques may be vital to the possibility of solving a phys-

ical problem, even with today’s impressive computing hardware; the present

investigation would have been impossible without the extremely robust implicit

algorithm employed. However, even though ordering of terms in the fluid model

suggests the possible importance of the Hall and diamagnetic pressure effects,
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one could not know in advance that these would be significant relative to other

complex processes taking place as the plasma develops (such as the distribution

of heat and current density over the ablating fiber and coronal plasma). Nor

could one know whether or not the new terms would have an overriding efiect

on numerical stability (though some 20/20 hindsight will Iatcr be displayed on

this matter). Gne might desire the relative freedom from timestep restrictions

(of unknown severity) provided by implicit methods, However, implicit methods

tend to be programming intensive: the additional coding complexity and com-

puting time required discourage one from starting with this approach. Hence,

the logical first step in adding these terms to the present simulation is through

explicit additional fluxes of magnetic field.

4.2 Exdicit Hall and Diamagnetic Pressure Terms

The Hall and diamagnetic pressureterms, as additions to the left-hand side

of the magnetic field evolution (Vx(ohm’s Law)) equation 3.1.4, are:

(4.2.1)

These terms were spatially center-differencedin conservative form using the

explicit values of (electron) density, pressure, and magnetic field. “Conserva-

tive form” means that the component for::]s of the equations (such as given in

Appendix D) are the sum of all spatial derivative terms. ~o that after an exact

spatial integration, they will representfiuxes across a cell interface. No analytic

manipulation is done to the terms before differencing. A center difference for a

spatial derivative is a second-order accurate approximation for the derivative:

(4.2.2)
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where the j’s are the indices of the grid in the z-direction.

These explicit fluxes of magnetic field (in the appropriate direction) were

then added to the time-centered (i.e., half implicit and half explicit) magnetic

fluxes in each direction, on each alternating-direction step. “Floor” valuesof the

electron density were implemented (similar to the cutoff density valuesmentioned

in chapter 3, below which ohmic heating is turned off to prevent unrealistic

heating of “vacuum” regions), so that very low density “vacuum” regions would

not show an unrealistic Hall effect. After constant density runs (which for this

geometr~’ will result in complete cancellation of Hall and diamagnetic pressure

efiects) were done to establish that this differencing

null effect, the same fiber-initiated Zpinch problems

chapter were started.

would have the expected

described in the previous

These would run only a few narmsecondsbefore fine-scale perturbations in

the magnetic field would begin to appear at the edge of the still relatively cool

(e.g. 10 eV) coronal plasma (Fig. 7a), long before any instability growth had

been noted in the MHD runs. Unfortunately, this was quickly accompa.uiedby

a breakdown of the numerics: the adaptive timestep setting routine found that

it could not cut the timestep enough (within the pre-set limits of 1O-g to 10-16

seconds) to keep field at some point from growing uncontrollably (see Fig. 7b).

If the other terms (magnetic convection, diffusion, and diamagnetic pres-

sure) in the field evolution are neglected, and the Hall term (in r,z coordinates)

is transferred to the right-hand side, one has the following equation:

(4.2.3) $ = ~{-~$~f+~;;~- ~~+$~}
epo e ●

Characteristic of the Z-pinch is a large radial density gradient. At points

with such large &nsity gradients, the second term in the above equation may
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strongly exclude field where the axial gradient of field has one sign, and gain field

where the sign is opposite, leading to the perturbation growth mm. However,

if enough field is excluded that the sign of the field at that point zlmnges, the

sign of the second term also changes, leading to a reversal of the process de-

scribed. Hence the “hole” in the field should not grow without limit (of course,

accompanying changes in field and density gradients can also fiect this). It does

appear, however, that the explicit algorithm misses this self-limiting effect (see

Fig. 7b), and the field “hole” tries to reach large negative values; in essence, this

is a numerical instability.

Can this be simply explained? Numerical stability analysis is most easily

done for linear equations. For ncnlinear equations such as the above, one may

start by finding a linearization that preservesimportant features of the problem,

and then analyse the linearized equations (of course, stability of the linear case

does not guarantee stability of the nonlinearcase, as shall be seen). First, azsume

that all but the second term of the above equation can be ignored, and !here

is a large fixed density gradient in r, but no density gradient in the z-direction.

Then linearize about a constant field (l?e = Bl(r, z,t) + 130):

(4.2.4)

The result is a simple (one-direction) convection equation for l?l in the z-

direction. A constant field is perhaps not a very good model for the Z-pinch;

one could try a second linearization, for example, about a field varying only in z

with a large constant axial gradient (axial gradients could be expected to appear

for a number of reasons, such as if any MHD m=O mode growth were present,
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or due to axial boundary effects). Then where the BOfield equals O,one has:

(4.2.5)

where Be = Be(z) + Ill(r, z,t) with constant 8Bo/~z and 8Bo/5z > L1131/i?z:

a simple exponential equation.

Both these linear equations bode ill for an explicit algorithm. Numericalsta-

bility for the exponential equation is subject to strict timestep limitsgs (which

may become insuperable due to the nonlinear dependence of the linearized “con-

stant” k,=P), and the simple convection equation can be shown to be uncondition-

ally unstable for a spatially centered (as this code is, although also time-centered

for all other terms) explicit algorithmgG(the reasons for which shall be much fur-

ther discussed). At this point it is apparent that an implicit treatment of these

terms will probably be necessary.

4.3 Adaptation of Imrdicit (Ai)Il Al~orithm for Hall T-

There are good reasons for trying to stay within the existing alternating-

direction-implicit algorithm, when adding new physics to the numerical code

used here. First., it is knew.] that this particular code, with the modifications

described, can handle the not insignificant (Iemandsof this problem; a different

approach might have trouble with the string graciients,for instance, before even

nmning into the additional numerical demands of the new terms. N’o doubt

related to the demonstrated robustness of the present algorithm is an integral

feature of its design which, though probably not unique among multi-dimensional

MHD codes, is at least uncommon: there is no operator splitting. MHRDRsolves

for the complete vector of time-advanced quantities (e.g., density, magnetic field,

velocities Ur and Vz, and internal energies) simultaneously, always including all
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terms of a given equation (e.g. magnetic convection and diffusion). Although

only one direction is handled implicitly on each half-step, every (half-step) set of

difference equations solved is a complete representation of the differential equa-

tions, including the effects of implicit and explicit fluxes in the implicit dir~-tier),

and the previous half-step’s implicit and explicit fluxes in the other (presently

non-implicit) direction. Thus, a very natural simultaneoustreatment of all phys-

ical effects is maintained, while any unnatural tiect of the directional splitting

(which makes the implicit solve task a relatively tractable one-dimensional C:W)

is minimized. To separately solve in some other manner for the Hall and fiia-

magnetic pressure effects, and then add them in, would violate this scheme, and

potentially lose its demonstrated robust nature.

The fiber-initiated Z-pinch, and the effect of the Hall term on it, are prob-

lems on which there is no defiitive theoretical, and only limited experimental,

knowledge of the outcome. In attempting to model complicated physical system?

such as this, it is extremely desirable to find one or more test problems with clear-

cut results dependent on the newly added physics, to serve as ‘benchmarks” of

the code. If the computational tool gives correct physical results in such known

cases, one gains confidence in its application when the results are unknown. The

Hall term is difficult in this regard, in that it is an intrinsically two dimensional

effect; one cannot first do a simpler one-dimensional case, and then deal with

the more complex two dimensions. Fortunately, computational and analytic re-

search on Hall-driven magnetic penetration into highly cmducting plasmas into

which no penetration would occur without this term, has yielded an excellent

test problem for a Hall MHD code: KingsepMokhov-Chukbar (KMC) magnetic

penetration’.
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Kingsep, Mokhov, and Chukbar have shown that the Hall MHD magnetic

evolution equation becomes a Burgers equation (a nonlinear equation, which

can be transformed by substitution into a linear equation with exact analytic

w have further developed theirsci-cions) under certain conditions. Mason, et al

solution into a shock-like magnetic penetration along a density ramped channel

(see Fig. 8); the result resemb;es the penetration of magnetic field in a plasma

opening swlich. The

term can be tvitten

(4.3.1)

problem sets up as follows: the field evolution by the Hall

This can be simplified for l?z(x) and n,(y) to

(4.3.2)
~Bz ~ Bz i?Bz

( —)
DBz

x = ‘— —tly poen. & = ‘UWX

where Uw= (l?./(pOe) )~(1/n.)/@.

Kingsep, Mokhov, and Chukbar found shock-like solutions traveling to pos-

itive x at speed uw/2 for BZ <0 and dn~/8y >0. Mason’s density ramp channel

is a channel in which ~/~y[l/ng ) is a known constant value (hence UWwill be

fixed), above and below which are constant density regions (see Fig. 8); in

this case the penetration occurs only along the density ramp region. This is

a striking, nonlinear result, and provides a clear (and numerically challenging)

test problem for a Hall MHD code. It has been s~ccessfully modeled with Ma-

son’s multi-fluid/hybrid code ANTHEM97 (Ah’THEM has not proven suitable

to performing the very detailed simulation of dense Z-pinch experiments such

as performed iv ~e, although perhaps it could be modified to do so; it could be

used to do short rum-e.g. *1 nsec-to evaluate the stability of late-time plasma

profiles generated by MHRDR).
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As mentioned above, a major problem must be overcome before the addi-

tional terms can be implemented in the alternating-direction-implicit algorithm.

In the limited-geometry standard MHD solved by MHRDR originally (~(r,z) L

plane of computation), the equations are free of mixed partial derivatives. This

has the effect that the flux of any quantity in orie direction depends only on the

values (and derivatives) of all quantiti~ in that direction. Thus, the equations

divide easily for purposes of the alternating-direction-implicit advance. The HalJ

and associated terms, however, intrinsically involve mixed derivatives; this leads

to the unusual property that a gradient in one direction drives fluxes of mag-

netic field (or energy) in the perpendicular direction (a discussion of the phyaics

behind this is contained in Appendix C). If these cross-derivatives must be fully

implicitly evaluated to maintain numerical stability, an ADI approach will nci

sdhce.

However, one csn approximate the implicit value of the cross-derivatives by

using a first-order spatiid backward difference between (implicit) quantities on

the line presently being solved implicitly, and quantities on the adjwxmt, just

implicitly solved line. That is to say, (~~/~y)n+l cx (f~+”l – f~~~’)/Ay, where

k is the index of the y- (cross-) direction grid, and the prime on ~~~~’ is to

indicate that this is an “implicit” (time n + 1) value, but from the previously

solved adjacent line, and is not being implicitly zxdvedfor on the present line.

Thir Jrops spatial accuracy froID second to first order, and could have the re-

sult that differences all in one direction would lead to a spatial biasing of the

solution. These effects can be mitigated by alternating the order of solution of

lines between bottom to top (using backward differences) and top k bottom

(using forward differences), on suc+ng timesteps. Because the average of a
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forward difference and a backward difference is a (second-order accurate) central

difference, theeffcct ofthisshouldbc in the direction of higher accuracy.

Using the method just described for treating cross-derivatives, but in all

other respects following the existing MHRDR space- and time-centered differ-

encing scheme, the Hall and diamagnetic pressure terms were implemented. If

the Hall term were to act, as suggested in the above analysis of the explicit ap-

proach’s numerical instability, as a convective operator on the magnetic field, this

implicit scheme could be expected to work, as in fact it does for the (v x (i7x ~))

convection already impkxnented in the code; ADI schemeshave been shown to be

98 Of course, the highly nonlinear naturestable for simple convective equations .

of the Hall term’s effective convective velocity (including the special treatment

of cross-derivatives) could still prove troublesome.

After successful t~’stingof simple null cases, the KMC problem was set up

and run on the MHRDR Hall coding described above. Since MHRDR is writ-

ten in generalized coordinates, going from cylindrical t~)Cartesian coorchnates

required only minor changes. An “open” magnetic field boundary condition, to

silnillate the infinite space in which the solutions were derived, had to be added;

this entailed ailowing mag.~etic flux convection through the bouxldaries, as if

~ !nfinite expanse of plasma and field were available. The first runs brought

out some previously undiscovered bugs in the coding, which were removed. The

debugged code then showed the formation of the magnetic penetration front,

which begins to move along the density ramp into the field-frm area. However,

large positive and negative spikes in magnetic field appear and grow rapidly, dis-

rupting the solution and driving the r.apired timestep down unacceptably, i.e.,

numerical instability still appeared to be present. The coding was thoroughly

66

—



checked, and it was determined that the fluxes from one cell to another were

exactly as had been planned. That nonlinearity can render unstable algorithms

which are stable for related linear equations is well known; in particukr, the

nonlinear effective convection velocity, which involves the cross-derivatives dis-

cussed above, was known as a possible source of trouble. A simpler approach

for the cross-derivatives was tried: explicit central differences; this removes any

part of the cross-derivative from the implicit line solved, except as explicit matrix

coefficients, This still appeared numerically unstable.

If the field equation could be considered as fundamentally a convection equa-

tion (though nonlinear), the appearance of positive field anywhere in a problem

which started with all negative field raises a red flag: from where can this positive

field have been convected? It was seen that the positive field spikes originated

in zero-field cells, adjacent to negative-field cells in which the convection veloc-

ity pointed from the zerofield cell into the adjacent cell. The value of field to

be convected, based on our center differences, was the average value of the two

cells, hence less than zero. The result was that negative field was convected from

the zermfield cell into the adjacent one, leaving behind a positive spike. If the

algorithm used had been an explicit one, this would have been a classic example

of “wrong-way” (i.e., not upwind) differencing for a convection equation: only

values behind (in the senseof the convective velocity) a point can tiect its value

at future times 99. The time-mntered implicit algorithm using central spati~

differences is supposed to be immune to this problem, because it solves for all

points at one time self-consistently, but the stability analysis yielding this result

is for a linear convection equation with constant convective velocity, not for the

nonlinem:convective velocity dealt with here. This nonlinear convective velocity,
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–~/(n,e), can change magnitude and direction as field and density vary.

However, if in this case even the implicit space-centered algorithm is going

to give clearly nonphysical results, i.e., convecting field from points where there

is no field to be convected, one can prevent this in the same way a proper

explicit algorithm does. A donor-cell scheme convects only the quantity from

the cell behind (again in the sense of convective velocity) the interface between

two cells, not the average value of the twt>cells. This results in only first-order

spatial accuracy for the spatial derivative driving convection at ‘he interfase,

but insures that perturbations will be convected only in the pr~per direction

(the s~called “transportive” property100),and will not convect something that

is not there out of a cell. Adapted so that the correct donor-cell is selected

based on the local, nonlinear convective velocity (using the second scheme for

this, based on explicit central-differenced cross-derivatives), MHRDR with the

Hall term finally gives the correct result: a well-defined magnetic penetration

along the density ramp channel (see F~gs. 9a and 9b). For the values of field

and density ramp used in this problem [13=-1.5 Tesla, n~ ramped from 1013

to 10~4cm-3). the shock front advamxs at the correct speed, approximately 2

cm/nsec. Some Gibbs ~henornenon-l!kenoise is seen originating at the steep

field gradient (Fig. 9c), but this dvs not grow out of control. Spatial definition

of the front along the channel is good, and can be improved by a finer (half

the cell width) mesh (Fig. 10). Noise suppression was enhanced by limiting the

timestep to 3x 10-’2 seconds (even with an implicit algorithm, smaller timesteps

will still give a solution with less error O(At2)), but the algorithm is stable and

fundamentally correct at considerably larger timesteps.

An explicit donor-cell convection algorithm works well, but has the disad-
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vantages of potentially significant numerical diffusion proportional to At and

Az, and strict Courant-Friedrichs-Lewy (CFL) numerical stability restrictioji

((vCOmvcCcivcAi/A~) < 1) 45. One can show by doing a Hirt’s analysis]o] of the

time-centered implicit donor-cell schemeused here, that this differencing removes

that numerical diffusion present in explicit donor-cell which is proportional to

At. In a Hirt’s analysis, one studies the differential equation which most closely

corresponds to a difference equation, to reveal properties of the difference equa-

tion, such as the nature of its error terms. This procedure, applied to the implicit

donor-cell scheme

is proportional to

used here, reveals that the time-differencing numerical error

(At)2 and is dispersive, not diffusive. The explicit scheme’s

numerical diffusion, proportional to At, is closely related to the CFL timestep

restriction (if the restriction is violated, this error term represents a physically

inadmissible negative diffusion), so it is anticipated that the timestep restriction

will be relaxed.

This is confirmed by doing a von Neumann stability analysis102’]03. For

purposes of analysis, the effective convection velocity c = (l/(ncepO) )~J3/~ >

0, and all other quantities are taken to be constant. Then the implicit donor-cell

equation has the form

B?+] - 1?; c p+l - ~;:; + q’ - q-l)
(4.3.3) = -—

At 2Az ~

where subscripts j refer to the spatial grid number and superscripts n refer to the

timestep. If a spatially periodic solution is assumed of form B(z, t) = ei&’-f(t)

(where xj = jAz), and the resulting equation is multiplied by e-ik~Az, then

(4.3.3) becomes

(4.3.4)
fn+l - fn

At
= -~(fn+~(l - #k*z) + jn(~ - @iAs)).
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This can be rearranged to give the relative amplitudes of ~n+l and ~n:

~.+1 II - *(1 -e-i~Ax)l
(4.3.5)

T = II+ ~~(1 - e-~AAx)l”

This ratio must be lessthan or equal to 1 if numericalstability is to hold. Because

e-ikAz = cos(kAz) – i sin(kAz), the ratio is

(4.3.6)
11 – ~(1 - COS(kAZ)) - ~(i Sin(kAZ))]

II + %(1 -- co.9(kAz)) – ~(i sin(kAz))l.

The complex contribution to the magnitude, a sin2(kAz), is the same for top

and bottom. (1 – cos(kAz) ) is always between O and 2, and cAt/(2Az) is

always positive. Thus, the contribution to the magnitude of the real part of the

upper expression is always smaller than that of the lower expression; this assures

unconditional numerical stability of the algorithm. That the nonlinearity of the

full set of equations solved, and the necessityof using explicit cross-derivativesin

the effective convection velocity, did not apparently upset this numerical stability

(as seen in the results on the KMC and Z-pinch problems), is indeed fortunate.

Numerical dispersionis presentin many other implicit schemes’”’ (and likely

already present in the rest of MHRDR). In the time-centered implicit donor-

cell scheme used here for the Hall term, there is a raiduti nurnerica!diffusion

proportional to Ax. This can be controlled by choosing appropriately small

Az, without any concern about simultaneouslysatisfying CFL restrictions. The

sharpnessof the magnetic penetration fkontvisible in Fig. 9 is evidence that this

implementation of the Hall term does not give unreasonably diffu~ivezesults; the

“roundingn of the bottom corner, where the front leavesthe initial field area, may

be due to dispersive effects.

The first-order spatial accuracy of the scheme does represent a drop from

MHRDR’s otherwise second-order accuracy (second-order temporal accuracy is
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also compromised by the use of the purely explicit cross-derivatives), so some in-

vestigation was made into alternate schemesof potentially higher accuracy. Van

Leer convection schemeslos vary between donor-cell and average quantity con-

vection, depending on the speed of convection and whether or not the result will

change the nature of the sollltion (e.g. change its monotonicity). Fhlx-cm-rected

transportlOGconvects potentially unstable quantities such as averages, then goes

back in an anti-diffusion step to restore a more correct solution. Neither of these

methods fit readily into the existing code. However,a simple technique was tried

which brings the method closer to second order spatial accuracy: average field

was convected whenever velocities and relative field values in neighboring cells

were such that this could take place without causing the nonphysical changing of

signs noted above. This did seem to sharpen some of the edges of the advancing

magnetic front (Fig. 11), but some thought about the approach, which convects

donor-cell quantitities at some points and average quantities at other points, re-

veals a potentially serious drawback: this may result in a distortion of the shape

of a field configuration, such as a wave, as it is convected. This is because the

rising part of a wave might be convected with donor-cell differencing, while the

falling part could be convected with average differencing, leading to a ‘wave-

breaking’’-like effect of the wave changing shape as it travels. Because the Hall

term is intrinsically nonlinear, and hence is expected to do this itself (e.g. the

formation of the nonlinear shock front in the test problem), it would seem inad-

visable to use numerics which might add their own, nonphysical contribution to

this effect (any more than existing numerical dispersion-whi~ causes different

Fourier spatial components to travel with different speeds-already does).

An effort was made to use donor-cell convection with the origina? implicit
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scheme, which used alternating forward/backward differences from the implicit

lines for the cross-derivatives. This would be no worse in spatial accuracy (first

order or better) than other donor-cell schemes,but by using more nearly implicit

cross-derivatives, is closer to second-order accurate in time. Several variations of

this idea were tried, and all appeared to t~.numerically unstable on the magnetic

penetration test problem. Donor-ceil I-i”tdlmagnetic convection, using center-

differenced explicit cross-derivatives, is i!~.ealgorithm found here to correctly

execute the KMC magnetic penetration problem (the differencing of this term

is shown in Appendix D). This is the algorithm used in the dense Z-pinch runs

reported later in this chapter, which yielded a number of interesting results.

Discussion of some details regarding boundary conditions will be deferred until

then, because these tie in to some of the results noted.

4.4 Diamagnetic Pressure and Electron “Work” Terms

As pointed out in the previous section, the Hall term 7X ~/(n,e) splits up

into an effective convection velocity –~/(n,e) (the minussign comes in because of

the curl operator in Ampere’s Law) and a magnetic field ~ to be convected (such

as in equation 4.3.2). The diamagnetic pressure term, while still nonlinear and

involving a cross-derivative of the electron pressure, is not clearly a convective

term, but more resemblesa new sourceof field (magnetic energy exchanged with

electron thermal energy). Therefore, it may be that MHRDR’s original time-

and space-centered differencingwill work, again employing explicit values for the

electron pressure cross-derivatives. However, one must be careful to include the
w

accompanying electron “work” (pc v ● (-J/(nCe))] term in the electron energy

equation, to account for the energy which goes into (or leaves) magnetic field by

this term (expansion or compression of the electron fluid by the magnetic field
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as the two move together).

The diamagnetic pressure term was installed in the code in this manner

(differencing appears in Appendix D), first without the accompanying energy

term. A “benchmark” problem comparable to the Hall term KMC problem

could not be found, so debugging and evaluation of the algorithm had to be done

on constant-density null cases (these ran correctly), mock “Z-pinch” problems

containing some very strong density gradients (along which instability patterns

quickly developed), and on the dense Z-pinch problem itself. The time- and

srace-centered algorithm appears to run stably on these problem~, with similar

effects on the self-adaptive timestep to those of the Hall term (these shall be

discussed in section 4.6).

The electron “work” term presents some new challenges. The Hall and dia-

magnetic pressureterms (and the electron current enerpv convection term, to be

discussed later) all have the form of fluxes: terms which can be exactly spatially

integrated in one direction, giving expressions at the fkont and back interfaces

of a cell which represent the fluxes of conserved quantities entering or leaving

the cell. To insure proper conservation (and for efficiency), MHRDR computes

the flux at any interface only once, then uses that quantity, properly signed, for

the flux leaving one cell, and the flux entering the adjacent cell. The ‘work”

term cannot be so exactly integrated, representing a source or sink of energy

at the cell (what Lindemuth calls a “forcen term, as discussed in section 3.1

and Appendix D), rather than a flux. To represent such a term with similar

accuracy to the flux representations, an average of second order spatially accu-

rate differencings of the term at the front and back interfaces of the cell was

implemented. These differencings are ‘direct “, i.e., represent the term to be dif-
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fcrenced exactly as written, without any intermediate analytical manipulations;

this resultsin differenceequations very close to the original differentialequations.

Because the electron pressure used in the diamagnetic pressure tcrin is explicit

(the cross-derivative), the electron pressureused in the work term is also e)(~)licit,

for consistency. As usual, the cross-derivative current term is also explicit, other

quantities space- and time-centered (differencing appears in Appendix D).

When dense Z-pinch runs were attempted with the above coding, it was

found that the adaptive timestep dropped an order of magnitude or more com-

pared to runs without the “woxk” term, beginning several nanoseconds into the

simulation, when the first Hall effects become noticeable. Investigation revealed

timesteps were frequently dropping because the iterations of the implicit line

solves were not converging. In some cases, one iteration would include the Hall

and associated effects, but the resulting p~v o(-~/nCe) cooling would drop the

temperature (and hence electron density, which is supplied by the SESAME ion-

ization tables as a function of mass density and temperature) below the cutoff

value for Hall effects; the next iteration, without these effects, might bring con-

ditions back (e.g., by heat conduction into the cell) where Hall effects would be

allowed. Hence the iterations would bounce back and forth between with Hall

terms and without Hall terms, and fail to converge within the allowable limit

(typically ten iterations, and requiring that the largest quantity on a line not

change by more than a factor of 1O-s between iterations).

To counter this problem, a switch was installed which disabled computation

of Hall and associated effects at a cell for all iterations following any iteration in

which the conditions caused n~ to fall below cutoff. This improved performance

(larger adaptive timesteps), but one would still run into points in dense Z-pinch
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simulations where the timestep would become unacceptably small (still smaller

than the Hall term alone would require). The intent of the “cutoff” density

coding was to prevent unrealistic (and numerically disrupting) effects in regions

of plasma (e.g. “vacuum” are=) which are not part of the main plasma column.

‘This does prevent computation of such effects in large areas of plasma which do

not meet the requirementsfor treatment as a collisional fluid (Appendix A), but

there may still be some regions above cutoff which, because of the temperature

dependence of collis~onality, are not properly treated as a fluid. The model

used in these simulations assumes collisionality. The inclusion of the “work”

term at points where collisionality is not satisfied, in energ-vequations which

use col!isional quantities such as Braginskii heat conduction and electron-ion

equilibration, is physically questionable and, numerically speaking, just asking

for trouble.

Therefore, a second set of numerical switches w= installed. The simple

collisiomdity parameter vt~iTii/a (equation A. I), which is supposed to be much

less than 1, is computed, using as the scale length a, the radius, for a given

axial location, within which 9070of the total axial current is contained. If this

parameter is greater than 0.1 in a ce~, the diamagnetic pressure and “work”

term there are not computed; switching off of the Hall term itself is optional

(because the Hall term does not cause numerical problems, and is arguably

still present in collisiordessconditions). With this modification, the code would

stably run dense Z-pinch problems with Hall, diamagnetic, and “work- terms,

at comparable timesteps to those with the Hall term alone. This is the final

implementation of diamagnetic preasureand “work” terms, which was used in

the fiber Z-pinch runs discussed at the end of tbis chapter.
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4.5 Electron Current Enerm Convection: Donor-Cel~

The convection of energy by current-carrying electrons, reflected in the

V “ (~f, (–~/(n, e)) ) term, is a nonhear convection problem essentially sim-

ilar to the Hall magnetic convection problem; the effective convection velocity,

–~/(n, e) (essentially the electron flow velocity relative to the bulk fluid), is

the same. Hence a donor-cell treatment, analogous to the one derived for mag-

netic convection, is the obvious choice. This ww implemented (differencing in

Appendix D) and, indeed, ran stably with minimal complications. The above

noted switch disabling the term at cells in violati-m of the collisional model was

also applied to this term, for simkr reasons: applying this effect at such points

to a collisional energy equation is physicrUy

merit. Whether or not this term would cause

case that the “work” term caused, has not yet

and computationally of dubious

the timestep problems in such a

been determined.

4.6 ~all MHD Results on Z-Pinches84

The full ‘Hall MHD” model equations used in the following simulations of

the fiber Z-pinch experiments are (equations 2.2.1, 2.2.17, 2.2.24, and 2.2.13,

with the additional details noted in section 2.4):

(4.6.1)
ap
~ + v “(P3 = o

(4.6.2)
a(pq
~ + v “(pw’) + Vp - fx i = o

a(pc) -f
-

(4.6.3) ~)+~ + V” (~P~) + V” ( (~)Pfe) + P V “~+Pe V” (nee

-v c(KA VA T) - VJ2 + &d = O
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(4.6.4)

where p is mass density, i7 is velocity, ~ is magnetic field, 7(= v x ~/po) is

electrical current density, ne is electron number density, c~ is electron specific

internal energy, c is total specific internalenergy, ,pcis electron pressure,p is total

pressure,T is temperature, Q,.~ is radiative energy loss, q is electrical resistivity,

and KL is (perpendicular) thermal conductivity. In this one-temperature model,

separate electron pressure, electron energy, and electro~ number density values

(needed for the Hall and associated terms) are obtained by the use of SESAME

tables giving averageionization fractions as functions of density and temperature,

as explained in section 2.4. Details of numerical implementation are as described

in this and the previous chapter; the spatizd differencing used for the Hall and

associateci terms, and other details, are shown in Appendix D.

It v-m not possible to do nearly as complete a set of simulations of the fiber

Z-pinch with tae Hall model as it was with the basic MHD model, described

in Chapter 3. Early-appearing Hall-driven instability efTectscause the adaptive

timestep to be reduced by roughly an order of magnitude, causing runs which

took a few Cray hours to become mns in the tens of Cray hours, a significant

expense. Hall runs were limited to the 750-kA peak HDZP-H discharge, which

was thoroughly examined with the basic MHD model in Chapter 3. However,

it was possible to do l-mm and l-cm axial section simulations of HDZP-11 with

the complete “Hall MHD” model; the Hall term alone; the Hall and diamagnetic

pressure terms; and the Hall, diamagnetic pressure, and ‘work” terms. In runs

including the energy equation terms, some computed the Hali term regardlessof

whether the fluid approximation was violated (unlike the diamagne’,ic pressure
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and energy equation terms, which are not computed at points in violation; see

sections 4.4 and 4.5), while other runs limited all terms to regions where proper

fluid conditions were satisfied. Runs without the energy equation terms com-

puted the Hall and diamagnetic pressureeffects regardlessof the fluid parameter

value (although the cutoff density still disabled these effects for large portions of

non-fluid “vacuum” @sma). By doing l-mm and l-cm axial sections, one has

rotlgh]y bracketed the importmt instability length scales in this experiment, ~

discussed in Chapter 3: the l-cm section approaches the actual 5-cm length of

the fiber (and the largest observed instability features), although development of

instabilities is delayed by lack of axial resolution; and the l-mm section resolves

what appear to be the fastest-growing instabilities. “Set-up” details of the runs

are essentially the same as given in Chapter 3 for basic MHD runs; all grids here

were 96 (radial) by 31 (axial) zones.

Because some interesting boundary effects will be noted below, it has been

delayed until this section to discuss some details of boundary conditions used in

the Hal) model implementation. At an electrically conducting boundary, ~11= O.

Since it is ~11which gives rke to this boundary’s contribution to the change in

magnetic flux for the cdl adjacent to the boundary (Faraday’s Law), no contri-

bution to magnetic field can be allowed from this boundary, including Hall or

diamagnetic field flux. This is implemented in the code- no Hall or diamagnetic

field convection is allowed across a conducting boundary.

However, in cmmputingHall flux adjacent to a conducting boundary, if the

general center-differenced cross-derivative for ~is used, one needs the value of

E at the boundary. For the limited-geometry r&istive MHD of the original

MHRDR code, it can be shown that 8~/& = Oat a solid cxmductingboundary,
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i.e., ~ at the boundary is the value at the point adjacent to it in the plasma: a

mirror condition. If the Hall and diamagnetic pressure terms are included, how-

ever, one has a more complicated expression for ~ at the boundary, relating the

cross-deriwitive at the boundary to a derivative of E parallel to the boundary.

An attempt was made to incorporate this boundary condition into the code,

but it proved numerically unstable. A major factor in this instability is the

fact that MHRDR does not compute quantities at (or “infinitesimally close” to)

boundaries, but only starting at the plasma half a cell into the system. Hence

applying boundary conditions for the adjacent boundary to the line Az/2 into

the plasma, is intrinsically an O(AZ) error, mixing (non-boundary) plasma rela-

tionships with the complicated relationship of the cross and parallel derivatives

at the boundary. To avoid this problem, an alternate O(AZ) approximation

for the cross-derivative was used: the forward (or backward) difference between

the value of ~ at the first line in the plasma, and the value on the next line

in the plasma, in the direction away from the boundary. Like the first-order

accurate donor-cell scheme used for Hall convection, this sacrifices second-order

“accuracy” for numerical stability and more physically consistent properties.

It will be seen that results obtained with this method agree with indepen-

dent theoretical and computational results; one can interpret this as an indication

that the crucial boundary condition is accurately modeled here, that Hall flux

is not permitted from a conducting boundary, while the condition parallel to

the boundav has less importance. One detail which was noted, concerning the.

adjacent-flux cross-derivative ~, was that the implicit value of ~ for the line

adjacent to the boundary (not the explicit value, as used in all the other cross-

derivatives) provided much more stable results than the explicit value, perhaps
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following fast-changing boundary phenomena better. Cross-derivativesinvolving

pressure at the boundary emplcyed the mirror condition, that the wall pushes

back exactly as hard as the plasma pushes on the wall, without numerical difE-

culties.

An interesting feature of the Hall effect is its directional asymmetry: pure

MHD modes develop without regard to ‘up” or “down” along the axis of cuirent

flow; this is not true for the Hall effect. An example of this is the twisting of the

density and pressure (including magnetic pressure) contours for Rayleigh-Taylor

modes shown by Huba, et alG6,when the Hall term is included. Hall magnetic

field convection is strongly directional (see Fig. 8): the primary convection of

field in the KMC magnetic penetration problem was up along the field gradient,

then out in the direction of penetration, up the front, and then back at the

top of the density ramp channel and out the top. This was clearly shown when

boundary conditions at the top and bottom of the KMC problem were “closed”,

i.e., allowe~ no Hall convection through them (as is proper for a conducting

boundary, such as the axial boundaries for the Z-pinch runs): the field at the

bottom became depleted, and “piled up” at the top.

The first feature xiotedin Hall term dense Z-pinch runs (and runs including

all the other terms) is such an asymmetry in the current flow pattern (some-

times these patterns are obscured by instability development). At the anode,

lines of constant axial current appear to be pinched inward (toward the axis),

while at the cathode, they spread outward (see Fig. 12a). This is not seen in

MHD runs without the Hall term, which show a relatively constant current dis-

tribution from anode to cathode. This effect had been predicted on theoretical

grounds by Haines107and recently displayed in Hall MHD computational work
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by Vikhrev and Zabajdullin1°8, One can interpret this phenomenon in different

ways: Vikhrev and Zabajdullin describe it as ‘enhanced magnetic field propa-

gation along the anode,” compared to the usual resistive MHD uniform inward

diffusion of field. Taking the point of view, suggested by the Hall work described

here, that the Hall effect giv-s a convection of magnetic field in the –~(current-

carrying electron velocity) direction, one can interpret this as a convection of field

away from the cathode, leading to “piling-up” at the anode. This was observed in

the KMC Hall test problem, and if one plots ~pinch field profles as a function of

radius near the cathode, and compares these to field profiles near the anode (Fig.

12b), the “pinrhed” current pattern does correspond to the depletion/’’piling-

up” interpretation. Vikhrev and Zabajdullin also note that this field build-up

at the anode does not lead to compression of plasma at the anode (i.e., the

field “slips” through plasma, violating the ideal MHD ‘field-frozeri-tqdasma”

effect); the Hall MHD results here agree with thac result, showing no plasma

compression at the anode.

Runs with the Hall and associated terms in general display new small-scale

instability development early in the fiber Lpinch discharge (Fig. 13) in the

vicinity of the edge of the plasma corona; such tiects were hinted in the first

explicit Hall term runs, although it is difficult to distinguish physical from nu-

merical instabilities in the brief explicit code results. This is in agreement with

the recent Vlasov-fluid model result of Scheffel,Arber, and Coppins2s, predicting

a destabilizing trend as rL1/a (the order of these terms; section 2.3) is increased.

The same basic explosive instability, and instability-chiven expansion, seen in

non-Hall MHD runs, is still seen to assert itself here, on top of and ultimately

overriding the newly added tiects. The timing of the explosive instability growth
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and expansion is generally a few nanoseconds earlier when the Hall terms arc in-

cluded, perhaps due to a “head start” associated with the early-developing Hall

modes. As noted in Chapter 3, the timing of tliis expmion is experimentally

uncertain, but the earlier trend of the Hall runs is in the right direction; experi-

menters are hard-prewed to get a plasma image early enough in the high-current

discharges to miss the explosive expansion. It would have been rather suprising

to see a drastic stabilizing trend from the Hall runs, because the basic MHD

simulations already show good agreementto the experimental data from the Los

Alarnos device HDZP-II; this is also the case for the Hall runs.

Allowing the Hall term to be computed regardless of the value of the fluid

parameters in a cell (see sections 4.4 and 4.5) gave a somewhat faster (~ 2 nsec)

instability development and explosive expansion, compared to runs in which all

Hall-order effects were suppressed in cells outside the codisional regime. This is

a difference in timing well below anything that has bmn measured experimen-

tally, although again in the direction experimenters expect. Because the other

effects are of the same order as the Hall term, but the model used here is inade-

quate to execute them in the collisionlessregime, such a run could be considered

somewhat physically inconsistent. On the other hand, the Hall term appears

responsible for the main features distinguishing these runs from standard MHD

runs (asymmetric current flow pattern, early appearance of instabilities), and it

does continue to exist in the collisionless regime52.

The electron current energy convection term did lead to a flow of energy

in the direction of -~ (current-carrying electron velocity), as shown in Fig. 14,

quite analogous to the Hall-driven flow of magnetic field. Again, however, this

did not substantially change the ultimate explosive plasma behavior.
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The approach taken in these simulations has been to try to very closely

model specific experiments: in this chapter, specifically the Los Alamos experi-

ments, to which this author has had the greatest access, and in which the simula-

tions (and corresponding experimental data) indicate that the callisional MHD

model used stays valid for long enough in the discharge to hugely determine

the results. Other fiber-initiated Z-pinch experiments may substantially avoid

22,S4 the ~~p]=ma.omwjren technique discussed inthis collisional MHD regime (

the next chapter may be a means to do this). In that case these (collisional)

“Hall MHD” results would not be expected to be valid, because there are other

finite-Larmor-radius effects of potential importance in the ‘collisionless MHD”

regime. This includes effects such as gyroviscous stresss2; furthermore, certain

features of the model used here, such as compressibility, should not be used in

a collisionless MHD model 40. It should be possible to adapt the present code

to such a co)lisionless MHD model, but that is beyond the scope of the present

work.
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CHAPTER 5: TWO PROMISING RELATED FUSION CONCEPTS

5.1 Jleuterium Shell and “Plasma-on-Wire” 1m~losions

Variations of the deuterium-fiber-initiated 2Lpinch concept (in fiber thick-

ness, current ramp, and “flash” plasma initiation, as discussed in Chapter 3)

simulated to date have not shown any fundamental improvement over the basic

HDZP-I/li-type experiments, in terms of avoiding instabilities and the explosive

expansicn which prevent fusion temperatures and densities from being reached.

As has been mentioned before, such an expanded plasma might serve as a suit-

able “magnetized target” to fill a chamber, which would then be imploded to

raise the target plasma to fusion ~mnditions91,920T. ~~uate such a “mawetized

target fusion” (MTF) concept, including various means and geom%ries of impl~

sion, plasma-wall interactions, and fusion processes, is beyond the scope of this

thesis. However, the work reported here is a good starting point for modeling a

fiber-Z-pinch-based MTF experiment.

The computational tool developed here may be useful in evaluating and op-

timizing some related experimental concepts, which vary more s:gnifkantly from

the original fiber-pinch approach. Two such concepts are the magnetic impl~

sion of hollow, annular columns of deuteriurn,and the “plasma-on-wire” (POW)

discharge through a low-density plasma surrounding a central fiber core. Both

concepts have been the subject of some recent experimentation, with encour-

aging results. This author has therefore begun a computational exploration of

these concepts.

One cannot assume that, because the model used here can be argued to be

valid, and agrees with experimental results, in the fiber Zpinch case, such will

still be true for any proposed experiment. It will be seen, however, that these
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related experiments do fall within similar regimes to those of the fiber Zpinch,

so similar modeling techniques should apply. As in the case of the fiber-pii:ch

modeling, careful attention must be paid to the details of the experiments to be

modeled.

5.2 ~mrdosionof Hollow Deuterium CvIinderq

Recent experiments at the SATUk-q high-current, fast-current-rise facil-

ity at %mdia National Laboratory have imploded hollow ‘gas-puff deuterium

columns with Apeak current of 8 to 11 MA reached in approximately 40 nsec]og.

From a total deuterium massof 1 mg, total neutron production has been 0(1012),

with good evidence (better than 10Yoisotropy) that these are largely from ther-

mal reactions, and net from a beam-target interaction. A slight enhancement of

the neutron yield (up to 3x1012) was observed when a central, CD2 fiber was

included.

Parks suggested a fusion scheme also involving an imploding deuterium

shell’ 10, although in his concept the fusion conditions were reached by a um-

tral, HDZP-11-likefiber Z-pinch (on which the work presented here casts doubt),

and the separately driven shell largely provided fuel for a propagating fusion

burn. A hybrid of Parks’ concept and the SATURN experiments is this: apply

the SATURN current ramp to a thin, solid deuteriurnshell of radius 1 cm, sur-

rounding a solid deuterium fiber; it is possible enough field/current will difluse

through the initially solid shell that the central fiber will form a fiber-initiated

pinch, on which the outer D shell will implode.

Such a concept was simulated in one and two dimensions using the b=ic

MHD model of Chapter 3, following the practices used herein fiber-pinch simula-

tions. A 10 MA in 40 nsec current ramp provided the radial wall magnetic field
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boundary condition; a 300-point stationary nonuniform radial grid was used,

with the grid spacing varied to provide 2 pm resolution in the vicinity of the

solid deuterium (at the center and at the shell). Apart from the half-solid den-

sity deuterium fiber {30pm diameter) and shell (lOpm thick at 1 cm radius), and

initial current-path coronas of 1O-s times solid density and temperature 2 eV,

extending 25 pm from the surfacesof the solid, a room-temperature, 10-9X solid

density “vacuum” filled the region between the shell and fiber, and the region

outside the shell to 1.5 cm (see Fig. 15). TwAimens~onaI ru,m used 31 axial

points covering a section 1 mm in length (the actual experimental chamber is

2 cm in length, but experience with dense Z-pinches suggested a 1 mm section

would give the most appropriate instability resolution).

The dimensions of the shell described above were chosen so that the total

mass of deuterium involved (for a 2-cm section) would be about 1 mg, approx-

imately the same as used in the %ndia gas-puff implosions. Some current was

observed to diffuse through to the fiber well in advance of the impkding shell

material, leading to a weak fiber pinch (certainly not near the l-MA, HDZP-

11-idealizedfusion source envisioned by Parks), but the bulk of the heating and

neutron production came from the radial convergence of the shell material, which

had come to resemble a 10-2X solid density, several mm-thick, 100-eV plasma

annulus as it approached the center. Convergence produced temperatures of

several keV in a column of several mm radius at 10-~ x ~ohd &nsity for 10-20

nsec; this is enough to prod~lce the observed 0(1012) D-D neutrons (Fig. 16).

Conditions of 0(1021 cm-3) at z 5 keV are sustained for M nMY-,resulting in

an nr of order 1013cm-3sec, close to the controlled fusion gcd of IOi+. Some

instability development was noticeable, particularly in the lower-density region
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between the fiber and anmdus, These instabilities appeared to be “swept-up”

by the rapidly imploding plasma, and resulted in no appreciable reduction in

neutron yield, as determined by comparing l-d and 2-d runs. Some “spread-

ing” of the plssma density (and corresponding spreading out in time of neutron

production) did occur. An implosion from something on the order of radius 1

cm, to a plasma column of approximate radius a few mm, does not sound like a

very impressive convergence, but the temperatures and densities reached over a

10-20 nsec period result in rather good plasma conditions for fusion and neutron

production. A variety of one- and twdimensional runs were tried. varying the

shell thicknessfrom 1.2 to 25 pm, and including a 120-pm central fiber, a 30-pm

fiber, or no fiber at all. It was found that the presence or absence of the fiber

made very little difference to the neutron yield. The best neutron yield (0(1013))

was obtained with a 5 pm shell, or about 0.5 mg total deuterium.

Sandia National Laboratory has proposed to build an electrical pulsed power

generator capable of driving up to 60 MA with an 80-100 nsec peak]]~ (high ex-

plosive flux-compression current generators have been developed by the Russians

capable of at least 30 MA, but only over psec rkc times; recently at Los Alamos,

a high explosive c~xrent generator delivered 12 MA to a load in 400 nsec). A

series of l-d deuterium shell implosion simulations was done to examine what

scrt of performance could be expected, if the %ndia-prop~d generator became

available (or explosive generators can be adapted to faster rise times). These

runs were set up similar to the above shell-implosion runs, except the current

ramp was to 50 MA at 80 nsec. N,, central fiber was included, and shell thick-

nesses were 50 pm to 500 pm. D-II neutron yieMs were greater than 10]8, with

the best 1017from a 100-pm-thick shell (a single 2-d run has been taken to 51
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nsec, yielding more than 10’4 neutrons to that point). Peak rnagnctic fields were

over 100 MG, high enough that fusion-produced alpha particles would be re-

tarded from leaving the plasma, leading to additional heating and neutron yield.

Because the 1O-MA shell-initiated simulations did not show substantially differ-

ent neutron production from the gas-puff initiated ex~~eriments,it is not clear

whether or not starting with n solid shc!l in the 50-MA regime is critical to the

results predicted by the simulation. Simulations of 1O-MA and 50-MA annular

gas-puff implosions are planned, to help answer this question.

D-D neutron yields of 1013from the 1O-MAexisting generator at Sandia sug-

gest the possibility of 10]5, if a mixture of deuterium and tritium is used. This

would be a significant production of neutrons and fusion energy. Conditions

reached in the SO-MA simulation runs, in which considerably higher numbers of

neutr:ms are produced, may approach D-T ignition conditions, when the addi-

tional alpha-heating mentioned above (which the present code is not capable of

computing) is inciuded.

Similarplasma temperaturesand densitiesexist in these simulationsto those

discussed in Appendix A, where the validity of the fluid model for the dense

Z-pinch is established. The eflective sci~lelengths i.~ this case are larger, on

the order of mm, which helps to satisfy the fluid conditions. In contrast to

the fiber-initiated pinches, where instabilities lead to high-temperature, low-

density regiom of questionable fluid conditions, the highest temperatures for the

implosion pinches are reached at the cxmter,in high-density regions; thus the

fluid model is valid longer in these simulations. However, temperatures above a

few keV do still lead to breakdown of the cullisional fluid model, as represented

in equation A.3 of Appendix A. Because the radial acale lengths of these plasmas
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are greater, and due to the larger fields, the Lmrnor radii are smaller, the Hall

and associated terms are smaller and lebssignificant than for the fiber pinch; this

is fortlmate, because the computation times for the 2.d basic MHD simulations

of these implosions are already very large.

5.3 “P1=ma-On-Wire” Im~]osi~ns

A seriesof Z-pinch experiments’ performed by Etlicher, ChGi,Wessel, Chu-

vatin, and others (a Rench-British-American-Rusian elaboration) have shown

remarkable differences in the heating and apparent stability of discharges initi-

ated on a wire surrounded by a low density “puff” plasma, compmed to bare

wire-initiated discharges. These experimentshave involved a variety of materials,

often with the wire material different from that of the gas puff, but sometimes

with gas puff and wire all one material, such as aluminum A Zpinch initiated on

a bare aluminumor other wire rapidly goes unstable ( ‘exploding wire”), produc-

ing hot spots whose temperature can be inferred from the spectroscopic details

of the materia!. “Plasma-on-wim” discharges, however, tend to show (in visib!e

and X-ray radiation images) a very compact, -uniform,straight line of very nigh

temperature; often it is several keV, higher than even the hot spots of a cor-

responding exploding wire. This is suggestive of some stabilization mechanism

allowing much more uniform heating than is generdy seen in pure exploding

wire discharges (or indeed, in the deuterium fiber discharges modeled here).

Having developed a tool to model deutenum fiber discharges, it should be

useful as a first step in evaluating single-material wire and plasma-on-wire dis-

charges. This will allow us to address tbe question of whether or not ‘plasma-

on-wire” might be helpful in the stabilization of decterium pinches. In general,

radiation is a complicating factor b plasma dischargesof materkls heavier than
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hydrogen, particular-]yif the plasma becomes optically thick. In t!mt case, one

must track tl,e radiative energy transport from place to place; it hiusbc~mfortu-

nate that the d,:~ltmium-fiber-initiated plasz!jts modeled here have been opticaily

thin in the important frequency range (w..d > wP,), so that rfdiatiw }W only

produced an energy loss term. For some plwma-on-wii-e discharges, the optically

thin assumption may still be good; even if not, 2-d MHD modeling may stili offer

insights iuto the important physics.

Details of an all-aluminum plasma-on-wi:-tidischarge were obtained from

Etlicher1]2, and the problem was run using the 1- ar,d 2-d basic MH13model of

Chapter 3. T4e current ramp went in two stages to a 250-kA peak at 70 nsec

(seeFig. 17), -VI-r piied to a 30-pm-diameter aluminur.~Wiie with and without a

1OITcm-3, 0.5 eV aluminum pufl plasma extending out to a radius Gf 2.5 mm.

A fixed 96-point radiaI grid extending to 4 mm was us~d, with a “vacuum” of

10-9 x solid density at .025 eV; 2-d runs were done for a l-mm , 31-point axial

section. of course, appropriate SESAME tables fm alun~inumwere substituted

for the deuterium tables. The bare wire dischargedisplayed significant instability

development by the 70-nsec current peak, with fo~mation of h~t spois (Fig. 18).

At this point the plasma-on-wire discharge appeared much more uniform, with a

sudden jump to keV temperatures at the surface cf the wire (which has carried

very little current until then) when the low-density puff plasma converges at the

wire (Fig. 19). This might represent a means of jumping a micron-size wire

or fiber to high current and temperature almost instantaneously; it appeared

desirable to do this for deuterium didmrges, to avoid the low-density unstable

corona (which motivated the flash-ionization simulations discussed in section

3.2).
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Whether the sudden, uniform jump to high temperatures, at the time of

current peak/puff convergence, causes a strong, uniform diagnostic image which

masks later insta”t)ilitydevelopment (analogously to the early visible and shad-

owgram images of deuterium fiber Z-pinches), or actually brings the wire to a

high-density, high-temperature (collisionless MHD?) stable regime, is a question

to be answered by future computation and experiment. The 2-d POW simula-

tions done to date run into timestep trouble at the point of current peak/puff

convergence on the wire. This may be due to so m: .. heating happening in such

a small region, at the surface of the wire, and might be remedied by finer spatial

resolution there.

A small number of l-d, and one 2-d, simulations of plasma-on-wire dis-

charges with deuterium puffs and w“ireswere run, using the same current ramp

and other details as used in the above discussed aluminum POW simulations.

The l-d runs showed a notable difference from aluminum POW runs: when the

aluminum puff converges on the wire, the current is brought down to the wire

and stays there (Fig. 20a), while for the deuterium case, the puff converges on

the fiber, but then bounces back to near its original radius (Fig. 20b). The 2-d

deuterium run showed considerably greater instability development throughout

the puff plasma, than seen in aluminum runs. Several factors come to mind

to explain these differences. One is the relative differences in resistivities: the

aluminum puff plasma and the aluminum wire are both conductors, so that the

current carried by the puff is readily accepted by the wire at convergence; while

the deuterium fiber (to the extent it remains cold, which it does until near the

the 70-nsec current peak) is initially an hsulator, less able to accept current

from the puff. A second factor is the ability of the aluminum wire to accept a
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large amount of energy from the *100-eV puff plasma and re-radiate it as line

radiation, while in this range deutcrium is not nearly as strong a radiator. An-

other f:~ctor is the relative masses of the two materials: the deuterium plasma

is much lighter, so an equal amount of energy can push it around (i.e., collapse,

re-expand it, or develop instabilities) much more readily. The current ramp and

other details used in these simulationswereexperimentally optimized for the alu-

minum POW system, so it is probable that different values would be optimum

for deuterium.

It is likely to take considerably more computational and experimental re-

search to determine if POW techniques can lead to deuterium discharges with

the desired stability. The simulations done to date do support the view that the

POW technique can produce greater heating levels and uniformity in higher-Z

material discharges, such as aluminum, than can be produced with traditional Z-

pinch methods. Hence this technique may lead to a useful flash radiation source

for industrial applications.
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CHAPTER 6: CONCLUDING

6.1 Summarv

REMARKS

In this thesis, a very detailed computational model of a class of controlled

fusion experiments, the deuterium-fiber-initiated Z-pinch, has been constructed

(the primary examples modeled here of such experiments are the “high-density

Z-pinches” HDZP-I and -II, constructed by ~. Hammel, et a13~4~14). It has been

shown that the collisional magnetohydrodynamic equations are valid for sub-

stantial portions of such experiments.

ics computer code has ken adapted

direct and detailed fashion, following

solid to high-temperature plasma. In

A tw~dimensional magnetohydrodynam-

to simulate these experiments in a very

the development of the fiber from frozen

this way, one obtains a direct predict~on

of the details and outcome of an experiment, which can then be compared to

real data. To facilitate this comparison, diagnostic images of the plasma, such as

shadowgrams and interferograrns,have been generated from simulation results.

A major deficiency in applying the standard magnetohydrodynamic model

to such Z-pinches has been identified: the assumption, that ion Larmor radii

are much less than relevant plasma scale lengths, is not satisfied. The terms

which have been ordered out of the model based on this assumption, in the colli-

sional regime, are the Hall and diamagnetic pressure terms in the magnetic field

evolution equation, and electron pressure “work” and electron current energy ,

convection terms in the energy equation(s). These terms have been added to

the computational model (which this author now refers to as “Hall MHD”), and

demonstrated to give results which are consistent with known theoretical and

computational predictions.

Both the standard magnetohydrodynamic model, and the enhanced “Hall
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MHD” model, predict that the deuterium-fiber-initiated experiments modeled

here undergo explosive instability-driven expansion shortly after the fibers have

become fully ionized. Shadowgrams and interferograrnsgenerated from sim-

ulation results show good agreement with experimental data, supporting this

prediction. The “Hall MHD” model predicts slightly faster instability devel-

opment and expansion, which is in agrmment with experimenters’ qualitative

observations, but beyond confirmation with present quantitative experimental

data. Simulatic 1sof variations to present fiber-initiated experiments in fiber

thickness, current ramp, and plasma initiation techniques have not shown any

exceptions to the instability/expansion problem seen. A fiber-initiated Z-pinch

might serve as a suitable target plasma for a “magnetized target fusion” impl~

sion, but this requires a secondary plasma compression scheme to reach fusion

conditions.

The computational techniques developed here have proven useful in begin-

ning the evaluation of two related fusion concepts, which involve similar plasma

scales, conditions, and geometries. Simulations of the implosion of hollow deu-

terium shells,with fast-rising (0(100 nsec)) 10- to 50-MA currentramps, indicate

plasma conditions, which would produce significantamounts of fusion energy and

neutrons, may be obtained. Simulationsof “plasma-on-wire” discharges,in which

a low-density Z-pinch plasma implodes on a central fiber or wire, suggest that

such techniques may produce hotter and more compact pinches than traditional

Z-pinch techniques.

6.2 Deuterium-Fiber Pinches: Future Work

Although it is argued that the fimdamental details and results of the exper-

iments modeled here, primarily the Los Alarnos HDZP-I and -II devices, have
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been reasonably correctly simulated, and the variations examined did not show

substantial ultimate differences in results, one cannot claim that these results

hold for all fiber-initiated Z-pinches. The philosophy behind the simulations

done here is that details are important, and though an attempt has been made

to include tdl the details expected to be relevant, this is obviously limited by the

knowledge of the modeler. Furthermom, the details of the experiments included

here are subject to endless variation by other experimenters; as well, the details

of the computational model are subject to debate. It would be very desirable

to run a series of controlled experimental variations on one machine, well diag-

nosed, and compare these to a corresponding series of simulations. This may

be possible, in collaboration with the fiber Z-pinch group led by M. Haines at

Imperial College.

A major change from the type of experiment modeled here, which has been

shown to exist for substantial times in the collisiona.1plasma fluid regime, would

be an experiment which operated primarily in the cdlisionless, or “collisionless

MHD”, regime. At first glance, it might appear a fiber-initiated pinch would have

to go through the collisional reg?me, with its instability hazards so repeatedly

illustrated here, to get to the collisionless regime, in which stabilizing conditions

might prevail. But techniques, such as the “plasma-on-wire” discussed in Chap-

ter 5, show the possibility of producing very sudden changes in temperature in

a material; even a very dense material can become a .ollisionlessplasma, if its

temperature is raised high enough. To adapt the present code to give consistent

results in the “collisionless MHD” regime, or even to follow cdlisionality and

adapt “on-the-fly” from collisional to collisionless fluid models, should be possi-

ble. This could give very useful results in systems, such as the dense Z-pinch,
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which can spend time in both regimes.

It has been argued that experimental evidence supports the geometric limi-

tet.ionsof the model used here (@ 1 plane of computation; variation of quantities

only as functions of r and z). The agreement with experiment, of the results of

simulation with those limitations, supports this argument. The absence of the

ideally predicted m=l (non-azimuthally-symmetric) modes cannot be explained

by such a model, nor can it deal with the experimental evidence (Fig. 2a) of

such asymmetry}’)at late times in the discharge. Because including the many

important details of the experiments involves such computational demands, on

even the 2-d code employed here, one imagines a 3-d fluid code would need to be

considerably more efficient, but equally robust, to tackle these issues. A shorter-

term solution would be to take plasma profiles generated by the 2-d code at

intervals in the discharge, and using these as initial conditions, run a 3-d code

for short times, e.g. one nanosecond, to get some idea of m=l stability at those

intervals. At later points, when the fluid model is breaking down, one could do

the same thing with 2-d or 3-d particle or hybrid codes, for insight into colli-

sionless behavior. Continuing advances in the power of computers should make

it possible to handle the full 3-d problem, not too many years into the future.

This author would like to make some shorter-term enhancements to the

computational model. The thermoelectric Nernst and Ettinghausen effects have

been mentioned as of potential importance when electron and ion temperatures

become decoupled, which can occur, for example, in the case of instability ion

heating. Enabling the code to run in twotemperature mode with SESAME equa-

tions of state, rather than the ideaJgas model which had to be used to date, would

be desirable. This would also open the possibility of doing tw~temperature runs
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with the full “Hall MHD” model, although unless code efficiency is substantially

improved, this may be just too costly in computer time (“Hall MHD” runs with

one temperature are already very expensive, in the tens of Cray hours). Support

for some of this work appears available, but the opportunity to pursue major

projects such as “collisiordess MHD” is unclear at this time.

6.3 Other Hall MHD Armlications

The “Hall MHD” computational model constructed in this work may prove

useful in other applications. One application, made obvious by the KMC mag-

netic penetration problem used to ‘(benchmark” the code, is modeling of plasma

opening switches. Because this code has been developed to model specific ex-

periments by including important detai’ :, such as “cold-start” initial conditions,

etc., it may be possible to model a given opening switch experiment more closely

than with previous Hall codes. If an experimental plasma spends significant time

in tfie collisional regime (like the Z-pinches modeled here), the inclusion in the

present code of the diamagnetic pressure and associated terms may bring new

results; this author is not aware of any other “Hall MHD” computations which

include these additional terms.

Another active Hall MHD research area is magnetospheric and other space

plasmas. However, such plasmas are gmerally cdlisionless. While this code,

ircluding the Hall term, will run in the ‘collisionless MHD” regime, the consis-

tency of the results has not been carefully examined, as discussed several times

in this paper. Hence adaptation of the code for the collisionless regime, which

above was noted as desirable for evaluation of some variations of fiber Zpinch

experiments, could also be useful toward some space plasma applications.
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6.4 I%tential of Shell and “Plasma-On-Wim” Implosions

The potential of hollow deuterium shell and “plasma-cm-wire’’-type Z-pinch

implosions, as relatively inexpensive fusion concepts in the original spirit of the

fiber Z-pinch, appears high. These are both being pursued actively by small

research groups, who have expressed enthusia..m to this author about collab-

oration. A third concept, which has been mentioned briefly in this paper, is

a fiber-Z-pinch-tar@ “magnetized target fusion” experiment. There are many

unansweredand critical questions regarding all these approaches, but these ques-

tions can be answeredat mociest cost (without investment of billions of dollars).

The achievement of controlled fusion in one of these inexpensive ways would

not immediately translate into cheap, clean, and safe energy, but it would be

a very significant step toward such a goal. These methods may also lead to a

useful fla..h X-ray source. Perhaps a completely “pure” scientist would not be

concerned with such considerations, but this author has always intended to do

science which can be useful to humanity.
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APPENDIX A: VALIDITY OF FLUID MODEL

A common criterion for the validity of MHD fluid theory40is that the ion-ion

collision time be much shorter than the ion thermal transit time:

(Al)
<...
‘88 Uthi788

—= —<1
Tthi a

where a is an appropriate scale length of the system, here the effective radius of

the plasma column. That the mean free path of a particle be much shorter than

the scale length a will also result in the above restriction. For a two-fluid model,

this same criterion holds for the electron fluid, because the (mi/m~)* factor

needed to obtain ~~&from vt~i is cancelled by the (m~/ml) * factor to obtain r~~

from Tgl; hence vt~cree/a is also much less than 1. What these criteria amount

to, is that particles in the plasma must experience sufficient collisions, as they

traverse the system, that their distribution functions will be nearly Ma.xwellian;

then, by taking moments of the kinetic equation, one obtains (as did Braginskii3],

et a140S43) a set of equations for the familiar fluid quantities density, velocity, etc.

More strictly, if ion-electron energy equilibration is to hold, one must have:

(A.2) () *
m ?):hiTaime

<<1.
a

For a (single-temperature, T. = Z’i) deuterium plasma, this requirementcan

be written in terms of density and temperature as

(A.3)
2.2 x 101’Z-”V2

(ncm-~acm)
<1

where T~v is temperature in eV, ncm-s is (number) density in cm-3, and aC~ is

in centimeters.
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A 100 eV plasma of dimensions similar to the fibers used in these experi-

ments (radius 15 to 60 pm, solid density w 5x 1022cm-3) meets this requirement.

The important coronal plasma generated as the fiber ablates, in which the first

instability development seen in the simulations occurs, may have densities sev-

eral orders of magnitude below solid; however, its temperature is often lower,

and it exists at radii of several hundred microns to several millimeters. Hence

the factors compensate for each other, and the fluid parameter generally remains

in the required range.

Because the actual plasmas created in the experiments heat and expand

nonuniformly, the relevant scale length to use is subject to question. From

the computed density and temperature profiles, plots were made of the fluid

parameter (Al), using as the scale length a, the radius, for a given axial location,

within which 90!!10of the total axial current was contained. For the most part,

these plots showed the plasma column remained within the fluid Iegime until

very deep m=O instability development, with accompanying high-temperature,

low-density regions, occurred.

A cutoff density, below which ohmic heating (and later, Hall efiects) was

turned off, was employed in the calculations to prevent unrealistic heating (and

exagerrated Hall effects) in low density, non-classical-fluid “vacuum” regions.

Both fixed cutoff densities, and cutoff densities which were varied as the plasma

developed so that 99% of the mass of the plasma remained above cutoff, were

tried, without significant differences in the results.

The strict single-temperature, single-fluid criterion above may be violated

as the plasma heats and expands, as noted in Chapter 1, even wi ‘!e the ion

and electron fluid criteria are still satisfied. This motivated the two-temperature
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MHD work reported in Chapter 3.

Ideal MHD fluid theory orders out the Hall (Jx ~) and diamagnetic pressure

terms in Ohm’s Law, on the basis of small ratio of Larmor radius to plasma scale

length40(this is discussedfurther in section 2.3 and Appendix C). That this ratio

may not be small in a Z-pinch, with its field null on axis, is well known1g~41(also

see section 2.5). Plots of this parameter from the MHD simulations (Ch. 3)

showed this as well, motivating the implementation of Hall MHD in the code

(Ch. 4).
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APPENDIX B: IMAGING OF THE PLASMA

The bending of light rays by density gradients in a plasma allows imaging of

the plasma with a numberof techniquesknown as ScMierenmethods or shadowg-

raphy (Los Alamos experimenters refer to their images as “shadowgrams’’)113.

In the Los Ahunos scheme, a 530 nm laser shines through an area of plasma

(typically 1 cm2), on which an imaging lens is focussed. Rays which undergo

large deflection, due to a high density gradient, miss the lens, leaving a dark area

(shadow) on the image collected (photographically or electronically),

When higher-current experiments appeared to lack steep. enough density

gradients to produce good shadowgrams, interferometric imaging was employed.

The phase shift of the beam passing through the refractive plasma, relative to

a vacuum reference beam, is used to generate interference fringes, which map

the density of the plasma113, With these methods, the laser can be “fl=hed”

for extremely short times, so that it has been possible to generate highly time-

resolved (better than 0.2 nsec) images of the plasma.

To generate comparable diagnostic images from simulation density profile

results, one solves the Euler-Lagrange equation1]4, which describes the path of

a light ray travding through a medium of varying index of refraction p:

(B.1)

where ~ is the position of the ray.

This may be expressed as six first-order O.D.E.’s:

(B.2)
dfz dp
x ‘TX

dz f.
z=~
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(similarly for y iad z).

A seventh term may be added to this to compute the phase (shift) of the

wave @ traveling through the refractive medium:

(B.3)

where w is the angular frequency of the wave.

Refractivity of a fully ionized plasma is given by:

(B.4) ‘=(’-s’
where tiP~2= e2ne/come.

However, for significant parts of the discharge, there may remain solid, non-

ionized material-which also has refractive qualities (in fact, of converging effect,

as opposed to the diverging effect of plasma refractivity). An empirical equation

for the refractivity of liquid deuterium, believed applicable for solid of similar

densities, is usedl]s. A grid of light rays is then traced through the computed

density distribution (n, for plasma refractivity, neutral density for solid refrac-

tivity) to generate our predicted shadowgrarn/interferogram, using a packaged

O.D.E. solver, LSODE]16.

Test cases of this ray-tracing algorithm on deeply m=O modulated Gaussian

radial plasma density distributions, pointed out something critically important

in the interpretation of experimentedshadowgrarns: geometric factors (imaging

lens size and distance from the plasma) may cause the shadowgrarn image to

differ drastically in size and modulation from the actual plasma.
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APPENDIX C: PHYSICS OF HALL AND ASSOCIATED TERMS

In examining the physics of the Hall and associated terms, it is useful to

look at some key steps in the derivation of single fluid MI-ID equations from

Braginskii’s twofluid transport equations, as done in Chapter 2. A first impor-

tant step is the dropping of the electron inertia term (2.2.2) from the electron

momentum equation (2.1.3, 2.2,3, 2.2.8). This has the effect of saying that, on

the time and length scales of the model, all forces on the electron fluid-electrical

(~), magnetic (t7ex ~), (electron) pressure (vp./(nce) ), and those due to col-

lisions with ions (resistive, qJ~-are in balance, that is, sum to zero. Solving this
.

equation for E gi~’.s an “Ohm’s Law:”

(Cl) E= +(–VP,) +llt– i7,x B.

One can eliminate J?from this equation by application of Faraday’s Law, il~/&

= – v x~ (note also that in this model ~= (V x ~)/pO):
.

(C.2) * = – v xi!= – v x(:(– Vpe) + rJ 17.x 5).

This equation gives the time evolution of magnetic field as a function of magnetic

field and electron pressure, density, and velocity (where p!asma resistivity q is

a function of these four quantities). It is limiting forms of this equation which

determine the magnetic field behavior in the variousMHD models discussed here.

Jumping first to the “Ideal MHD” model (some assumptions of which shall

be more carefully discussed below), in which the VpC/(nee) and q~ terms are

negligible, and the dominant part of electron velocity in i?ex 1? is given by simple

plasma (center-of-mass)

(C.3)

velocity U,one has:

as
— = v x (c x S).
&

106



—

This equation leads to the interesting result117,118that ~aglletic flux through

any surface area moving with the (Ideal MHD) plasma is constant; in effect,

plasma is “frozen to the field lines,” and magnetic field is convected with plasma

velocity fi.

If one maintains the more exact 0, x ~ expression (and then uses for tic

equation 2.2.9, t7c= U- (7/(nee)) ),

(C.4) : = v x (C’ex @ = v x (:(JX q) + v x

This is the field equation commonly used in a “Hall MHD”

this paper, additional terms of similar order are retained).

almost the same “frozen to the field lines” result can still

(17x3).

model (although in

It can be seen that

be applied, except

that the field is now frozen to the electron fluid, and convected with electron

velocity ti,. This has been noted by Coppins et a119,and is a major reason why

the Russian literature often uses the term “electron magnetohydrodynarnics”’19
. .

in reference to Hall MHD. In this light, the Hall term, J x 13/(n~e), is men as a

correction to the Ideal MHD assumption that electrons (and field) are convected

with center-of-mass velocity 17. The odd result that convection of ~ in one

direction is driven by its derivative in a perpendicular direction, arises from the

Hall term’s cross-product of ~ (which contains the cross-derivative of ~, since
.

J = (V x ~)/Po) with ~, to which the Faraday’s Law curl operation is then
.

applied.

If the Hall term is an important correction to the field equation, one expects

that the vpc/(nee) term may also be important; these terms are of similar or-

der, as noted in section 2.3. The vp,/(n,e) term leads to an effective current

corresponding to a magnetic field tending to reduce the existing field; hence it
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is called the diamagnetic pressure term. It is relatively easy to see the reason

for this diamagnetic current in the c~e of an isothermal plasma, where an elec-

tron pressure gradient corresponds to an electron density gradient kT. v n. 120.

Through any fixed volume element, humor gyration of particles around the field

lines will lead to a fluid drift perpendicular to ~ and Vnc. This is because more

particles from the high-density side will gyrate through the element, than cor-

responding particles on the opposite side of theiz orbits {moving in the opposite

direction) from the low-density side.

Thus the Hall and diamagnetic pressure terms can be seen as corrections

to the motion of the electron fluid, which ultimately determines the evolution

of the magnetic field (equation C.2). The electron energy convection term (see

section 4.5) and the electron pressure “work” term (section 4.4) in the energy

equation, which are included here in the complete “Hall MHD” model, also arise

from this same attention to the details of electron fluid motion. The electron

energy convection term comes directly from the substitution of ; – (J-/( rz~e))

for V, in the ener~ equation. So does the “work” term, which in section 2.3

has been shown to be vital to total energy conservation, when the diamagnetic

pressure term is included in the magnetic field equation.

These corrections can be dropped, as argued in section 2.3, when ion Larmor

radius is small compared to plasma scale length a. Specifically, this is to say that

the magnitude of the field convection term Cx ~ will be much greater than that

of ~ x ~/(nte), or the similarly ordered Vp~/(n~e) term, when rL:/a << 1.

Although the algebra relating the ratios of the correction terms to ]; x ~], and

the ratio rL1/a, of section 2.3 is relatively straightforwar~ it is somewhat difficult

to paint a simple physical picture why this is so. The correction terms can
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be regarded as creating additional electric fields (“Ohm’s Law” equation Cl)

leading to E x ~ drifts, which occur in fluid as well as particle models. The
+4

magnitude of an ~ x 1? drift t~D= E/B 121.Such drifts are the result of Larmor

gyration, but they are not directly proportional to Larmor radius; however, like

Larmor radius, they are inversely proportiomd to B. The drift due to one of

these correction terms’ electric field will be UD = (VI%/(n~e) )/~. If such a

drift velocitj” is compared to a characteristic center-of-mass convection velocity

(which would appear in the Ux ~ term), such as the ion thermal sp=d Vthi,the

ion Larmor radius ordering emerges.
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APPENDIX D: SOME DETAILS OF NUMERICS

The component forms, and the integrated spatially difference fluxes/forces,

representing the four “Hall and associated” terms added to the code in Chapter

4, are as follmv. These terms are incorporated into the numerical algorithm

described in ~tefex.nce 38, five pages of which are reprodumd following this ma-

terial. Reference 38 describes the code “ANIMAL”, which is the predecessor of

the MHRDR code developed here; the details reproduced are essentiallyidentical

for the two codes.

Hall term :

jHd/ =

Diamagnetic pressure term :

fflitz.prea. =

Electron pressure “work” term :
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f“tvork”= -- – (h’’+’’~B’J+;;+;:k;b;::::k’’k-’B2‘+’’k-’)+4T;OP’( 1 ::,,){ 1

(~2 j,k+l~2 j,k+l – h2 j,k-1 ~2 j,k-1 )]
Pj,k ‘“~j,k

Electron energy convection term :

where ~ = (Qj+l,k + Qj,&)/2, c$(Q)k = (Qj+l,k- Qj,k)/21 andQfocoiS the
appropriately selected donor-cell quantity Qj,k or Qj+],kt depending on the di-

rection of 17~O~Ve~~~~~= –,~/nee, The generalized coordinate {1, in the Lpinch

work done here, corresponds to the radial (r) direction (for which j is the index),

and (3 to the axial (z) direction (for which k is the index); the second coordinate

~2 is the azimuthal (6) direction, for which the scale factor h2 is r. The above

formulas representfluxes in the (1 (r) direction; fluxes in the ~3(z) direction can

be obtained by replacing (I with {~ (indices j with k) and multiplying by -1.
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h MHD modelbsscdonlocaltkrrnodynamicquilibnum issrtcorporucdimoANIMAL.Thebasicmodel
apanonsuc

(1)

-(qw- : “+AD””J
P;

xrsd

aii— - v x (; x ii)+v x
[ 1~(V” ii)-~ “VT =0.

at Po

(3)

(4)

InEqs. (1) to (4), p is thedensity,V istk ffuidvelocity,ptk pwme,~ tk mxgwcticfield, ethecpccifIcintcrsssl
etkrgyof thefluid,Ktk thermxlconductivity,Tthetcrnpcmwcinjoislcs,qthcelccrncxlresistivity,4M srxdixtive
energyloss,snd~the fru-s~ Pamexbility;mksunitsxmusedthroughout.Equxtion(1) ictk continuityquation.
Equation(2) istheequationof motion;thefoh tcnnistheLorcntxforce,Y X B, wbcrctk current&nsityThasbeen
elimin.mdthroughtheuscofAmpere-tIAwwiththeUSUXIncglcztofdisplacementcurmm.EquxtioD(3) istk intcrnx!
encrg}quation; thefourthtermis thedivergenceof tk kxt-!iow vectorxndtk fustpxrtof therscxt-tcAxstterm
representsohmicheating,@. Equxtion(4) is RdSY”S IXW, bad on ~ s~dc fJ~’s ~w. E = - ~ x ~ + d
- ~ x VT, wh~m ~ VCCtOr flis thc ‘Wsvemc” tkrrnockrnc cdfrcient multipliedby a unit vector in tk E

direction
For implementationintoANIMAL. Sk vector-modelEqs. (1) to(4) mustbe writsn out intocomponent

form.I& gcomerncvcrsxsdifyofANIMAL isxtsxinedbywritingthecomponentequationsinL- .irgencralorthogonal,
runihwar coordinateform xnd msk.ings coordirsxscmnsformtxlionfromtk USUXI(xl,x3,~)~~~~j~
coordma~esystemtoa ““ftxcd””cmnhss“ c system(f], ~3,t).1tisrcqtsimlttsxttk ~SfmtiOn rn~t~tisfy
ax, .aXJ = O. Ignoring Sk xxirnuthxlcomponentof &j. (4), tk wmposmt forms of Fiqs. (1) to (4) tkn
~ atl

a
# (h1h2h3~1X33~)+~ (‘33h2h3p[’l-v:])++ (xll~ha~ [v3-vfl) ‘0’ ‘5)

: (~h2h3xi1x330’1) + ; (x33h2h3~vI [’1 - v:])

( h v [V3-V:l) ‘h~pv3(vlh~3x~J-v3h31x33’2 xllhl 1P 1
+ at3

~ (h2B2) = 0,~ T ~ h3x33B2 ati
+ ‘2h3x33 a~l (6)
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: (h1h2h3x1ix33P~3)+ A (
U, ‘~3h2h3”v3 [v] -Vfl)

+ ~ (mh2 PV3 [V3 - v:]) + h2 V] (v3h3,X33– vlh13x11)

ap+ 1
*n1h2xll 313 PO ~ (112B2)= O,— hlxl192 ~13 (7)

; (h, h2h3x11x33PC)+ ; (x33h2h3PC [vl - ‘:])

a
‘~ (X,1hlh2m[v,-vf]) +p~ (h,h3X,,V,)

[(‘2h3x33 a? f11921 a
~ (h1h2x11v3)- ~ -~

+ p aE3 at,
— +—- —

K atl [h2g21
1 11 ~oh2B2 U1 )]

a
[(

hlh2% al fiTlB21 a
-— —

313
—+— —

K at3 lh2Bzl
h3x33 #oh2Bj 3/3 )]

h3x33 -

[

h2#19113T
~ (h2B2)

~–. A (h2B2)+ ~ —
h1h2x11Ao U1 MO at] atl 1

‘lid

: (h,h3x11x33B2)+ : [h3x33Bdv@’f)] ‘; [hlxllgdv,-v:)]
a h,xu

[(

1921 3T
-— —

u3
& ; (h2B2)+fl — —

h3x33 B2 a&3)]

a
[(

‘3X33 ~ a 1921aT
-—

)]
— — (h2B2)+# ~ ~ ‘0 -

ul ~ ~h2 atl
(9)

t9xl ~x3 ~ = 8hl b - 8h3 @= b,=,In Eqs.(5) 10(9), tbcdefinitionsx,, = 8X1 d Vf = t23Ti3x3

w’ ’33 ‘w’ ‘3
~e 31 K* 1

havebeenintroducedfor convenicm. TIE notationsV1xndv refer to the velocitycumpcmrntsin tk /1 ad /3
tdirection,rcspcctivelyoxndB2 is tbecomponentof UMgnetic Ad normxl to tk /,-/3 pk.

Tk conqmen~Eqs.(S)to(9) xrcwhen essentially in tbc form in which sky xrc diffaenced. h is very
importxmtonotethxtonlyfmt xndsecondspxtixldcrjvtivecof thedepc~ntv~~lcgpo vi, V30c,xndB2MCpfCK13t

Xod t&t mixed SkriVxtives of tbc form & ~ ~ -O ~y ~~o~ Bq@# Pbyh Cff= ~ ‘-

m
ckkd in as. (1) to (4) gcnerxliyinvolv; ’k-kixcd secondskivxtive.
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The compsent Eqs. (5) to (9) cm be Wrinenin OXform

%+’(’+)“(w ‘0 (17)

hat %, f’, ~, and~ am five componentvccIors,and

i = (p, v, , V3! t, B2). (18)

h)) derivativesWM rCSpCCIto oneorthogonalcoordinate(1 appcsuin ~ mtdOtdYdcri”~atlveswih ~~ct 10tic
secondcoordinateg3appearin i’. Theswoxhcmatel}@ fmite-dtifemncewu~!ion$in A~IMAL cxssbCconside~
to have!heform

(19)

what ~;ckdcsignmsvaluesaI timet“uk 6PM cmrdimtes(tll,t (h)k ~ EW. (19) ~d (z’), ~ ~d ~ ~ sPa~~
fsnkc-differenceapproxunationsto ~ and~, respectively.EquxtiorIK(19) xrrd(20) showthestandardADI coupling
between unknown quantities.In Eq. (19), whichisusedtocdvanccthecalculationsfrom1°toP+ 1,theunkrsowrssare
dscvalues~~] xlong● lineof constantk; tie quantities●t k + 1andk - 1xrcknownquantitiessincetky havethe
superscriptn. k @ (20), whichisusedto advancethecalculationsfromto”’ to [n“2, * unkno~ms~ ~ v~ues
~;z alonga lineof constamj; thequantities●I j+l andj-1 arcknownquantitiessin= hey hcvethesupcrscrip(
rs~l. Equations(19) and(20) arcin generalnonlinearfunctionsof& unknownquantitiesandtherefore CMISOI&
solveddirrxtl>. To solveEqs. (19) and(20), ANIMAL usesesscnsisdlya Newton-%sphsonmerhodas givenby
~~g[on,2a ~ong o~m. Applic~tion of the ?+ewron-ftnphsonmethodto ~. (19) gives~ Wation of tie fo~’

(21)

wheretheadditionalsuperscriptsf xnd f + 1 indicatetheiterationnumberxndwhcmA, ~, and~ uc matrices.
TbecaiculationsrcponcdbyLindcmuthandKiUccn17catrbcconsidcmdasusingEq.(21) for 1?= Oonly.As

shownb) LindemuthandKiUccn,Eq. (21) for fi = OgivesM ●pproximationformally second-orderaccuratewifh
respecttosheCimestcpAt = tn+‘ - F’.RepeatedapplicationofEq. (21) untilconvergenceisachievsxldoesnolincrease
sheformalaccuracyof the solution.andas. ( 19)and(20) rut, whenusedtogether,stillof accom&or&xxccum:ywith
respecttothetimesmp.However,thebasicreasonforsltcsuccessof ADI isthattheerrcrsinnud:cedononetirncstep
arcccnccllcdonthefollowing simcstcp.Thisxppammlyrquims thetwoapproximationssotheX of Eq. (17) tohave
theaarncvalues,xsindicmdinEqs.(19)and(20). IfEq. (21) isnotiteratedtosomesonofconvcrgcncc,thenclcffcct
istousca wmcwhatdifferentvsducfor% in (20) thanisusedin (19). Experienceduringthecodedevelopmentprocess
Isasshownthatfailurctoitemrcintroduccsunwmstcd,nonphysicaleffutsthatdfcct tbealculations unlewthc timcsscp
is reducedconsiderably.



Note IIIIM~. (19) or (20), cmsidcmdalone,isanapproximationtothecompletephysicalsystem,Eq. (17).
ANIMAL, as IIS predecessor,f? das nol Uw ~tionaj timeslepor splittingprocedures,Whettby Onephysical

proces4r onedimension-is mad asif theotherswerenotpresent.Exphncc duringcodedevelopmenthas
showninstanceswherethecoupling&t wcn physicalpmcesscsordimensionswassufficientlystrongthatafractional
timesrcpmethodwouldhaverequireda considerablyreducedtimesteptomaintainaccuracy.Forexample,situations
havebeenobservedwheretheenergyirsa=~ dueto Ohmicheatingwasbalancedby theheatlossdueto thermal
conduction,sotlsmtnonetchangeoccumed,t ndyeteitherprocessb) itselfwouldhaveledtoodmsticchange in the net
energy.

Equation inappropriateonlywhm 1 <j <Jand 1 <k <K. ANIMAL csIstsboundaryconditionsin the
fonts

(22)

(23)

Equations (21) to (23) form ● act of linear. siasulrarreous,“’uidiagonal”’ algebm”cequationsits the unknown
quantities~~~1. e‘1 far 1=j =J aIongaIineofconstantk, 1 <k <K.Themctbodof solutioninvolvescalcsdating
E’S and~“S suchthat

Substitutionof Eq. (26) imo Eq. (21) leadsto thescsultthat

and

[
= n+1,fS+ (~ “)?+10*● Ej- , :k

~f:l”o = (A1)J,k 1-1‘n+]e .1j,k

(26)

(27)

(28)

(29)

(30)
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UsingEqs (29) a..d (30) for J-1 andJ–2 in Eq. (26) and substitutinginto&q. (23) leadsto

(31)

@is the solutionprocedurealong a line ofcons[~~k isto setandstoresheboundarycondition~. (22), cafsula!e~,=,
~. and~ofq.(21 ) forj = 2, calculareand S(ORq and ~2 fmm tis. (27) and (2g), repctisivelycalculate~, E, C, and
V of Eq.(21), andcalculateandSIOI’Cthe~’sand~”sofEqs.(29)and(30) for2< j < J. UJ :S tindctild fp~ .

7!(31)4A allaher UJ’SISRC~CUISl~in~m~ingordcrof] fromIUI. (26). NoIethaIit isnotrrcccsarsrytostorcA, B, ,
andV foreach]aslongastheboundaryconditionshavehe formgiveninEqs.(22) and(23). Also,notcthsteachk line
is computedirrdeprdentl).

Equations(21) to (31), as● methodof solvingEq. (19), gi-vcthebasic_ANIMALalgorithmfor advancing
thecalculasioufromtimetnlotn+1.ThealgoridrrrrbcginsbyscttingU~J1,O = U~k .?bcnfork = 2(~r K-l)Eqs.

1((21) to (31) am appliedrxqrccisivclyurrsil ,~;; l.Q+l – iJ:; l”Q
)

/ u:~l’~ < & where 6 is typically

s x 10-4. Tkn eachsuccessivek isadvancedsimilarly.WhenaUk suchthat2 G k G K – 1have&n athmmuf, h
boundaryconditionsEqs. (24) arrd(25) areusedto setvaluesat k = 1 andk = K.

To advancethecalculationfrom time to+l to tn+2, tbc Newton-lUtphsonrncthodis appliedto Eq. (20).
Boundaryconditionshavethe sameform asin Eqs. (22) to (24), with thc SU~pt n+l ~pl~ by SS+2. ~
~uations usrrcspondingto Eqs. (21) and(26) arc

= n+2,Q , @+2,Q+ I + (~ )g+2, E, @2,e+ I + (~ )9+2,Q. ‘@+2.Q+1
‘A3)J~ J,k 3 j.k j,k+ 1 3 J,k J,k- 1

= (V3);:VJ

and
(32)

(33)

respectively.Tbcderivationof expressionsfor ~~~20Q. ~ ~c~21e. ~~,~20Q, F~o~2”q, ~~~2-Qsmnespondirrgto Eqs.
(27) to (31) ISsuasghrfonvard.Tbus,&#gori@ns for solving both @. (19) and(20) ~=id~nsicalexceptfor ths
mcrkodofestablishingthecoefficientsE2H, andFof Eqs.(22) to(25)andthecocffrcientsA, B, C. and~ of Eqs.(21)
md (32). (Rigomrslyspeaking,~ andV art not “coefficients.”)Theonlyotherdifferc- in thetwoalgorithmsis
wheredsccompu*dresulrs,Eqs.(26) arsd(33), amssorcd,Tbcsimilarityinthetwoafgonthmsisusedtominimhethe
codingin ANIMAL.

A formularu!byEqs.(19):0(33). ANIMAL’s basicslgorithrnisquitegencrafandDA notbercstrictcdtos
fsve~mponentsolutionvector~ asindicatedinEq. (18). ANIMAL isin fact set up to cslcuhtc subsetsof themodel
equations.Tlscfollowingsubsetscanbe selectedin additionto Eq. (18):

(1) ~ = (p. c, B) irsone-dimension,i.e., oncdimen=ionaldiffusivetraxssport.
(2) ~ = (P. t, B) k two dimensions.
(3) u = (p, Vl, c), i.e., orscdimcnsionalhydmdynsmics.
(4) u = (p, Vl, V3, c), i.e., two-dimensionalhydrodynamics.
(5) ~ = (p, v,, c, B2). i.e., one-dimensionalMH23.

For Eq. (18) andeachof thesubsetsa varietyof physicsoptionsam available;e.g., ~ = (p, v,, c) cur be ideal
orredimensionalhydrodynamicsif thethermalumductivityandradiationamsetto zero.In addition,becauseof the
gcrscrality,tbcA!WMAL algorithmissetuptohandleasmarryastenvsriablesin anticipationof theadditionof mom
dcpcrsdcmvtiables. Forexample,mostof thestructuretohsndlcadditionalmagneticfieldsxmsportcnfaBJarrd.B3is
tidy in dsccode(ANIMAL”s pmdc.cessor17did ~ fut c~culamBI ~ B3);whatis missingis merelydmg to
skwxninctheappropriatecoefficients,andthiswo~’ be a relatively@nor fractionof* entireding.

1!is impxtant to notethatfor theoncdirncnsiorsalsubsets,Y of Eqs. (19) and (20) arc identicallyzmo.
Hence,in onedimcnsionalcxfculations,ANIMAL usesa fullyimplicitmethod(Eq. (19)]to dvmcc from tn to to+]

andthenANIMAL usesa fulJyqlicit method[Eq. (20)] to tdvancefromtn+t to ta+2.BycombiningEqs.(19) and
(20), orK w seethat the oncdirrtcnsiotuldifferenceqtrntionsrelatingW+2 to W, for n even, appearto bs
Crank-Nicholaon,2whcms thoserelatinglP+3 to LP+l qrpcarto be “’leapfrog.”2
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FIGURES:

Figs. l(a-d): Shadow=m and simulation results, HDZP-I (early): (la) Exper-

imental shadowgrams, HDZP-1, shot 3863: left-hand image, z30 nsec (z50 kA);

right-hand image, 40 nsec (.u65 kA); each grid block is 0.1 mm square.
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Fig. lb: Simulation shadowgram from section of same size as la, HDZP-1, 30

nsec (5O kA).
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Fig. Ic: Corresponding simulation density contours, 30 nsec (50 kA); right-most

solid contour (0.01 kg/m3) contains 9570of the total mass; dotted cxmtours,from

right: 0.012, 0.036, 0.23, 1.3 kg/m3.
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Fig. Id: Simulationmdal current amtours, 30 naec (50 kA); right-most solid con-

tour (48 kA) contains 95% of the total axial current; right-moatdotted contour:

20 kA.
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Figs. 2(a-b): Shadowgrm, HDZP-I (late): (2a) Experiment~ shadowgrams,

HDZP-1, shots 3876,7: left-hand image (3876), z65 nsec (~120 kA); right-hand

image (7), *8O nscc (*150 kA); each grid block is 0.1 mm squan .
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Fig. 2b: Simulation shadowgr~ HDZP-1, 65 nsec (120 kA).



Figs. 3(a-b): Shadowgrms, HDZP-11: (3a) Experimental shadow~am, HDZP-

11,shot 194, -5 nsec (*50 kA); each grid block is 0.25 mm square.
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Fig. 3b: Simulation shadowgranq HDZP-11, 12 wc (160 kA in 1.2 MA ramp).



Figs. 4(a-e): InterferogrU and simulation results, HDZP-I and-II: (4a) Exper-

imental interferogr=, HDZP-11, shot 205, z20 nsec (*200 kA); each grid block

is 0.25 mm square.
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Fig. 4b: Simulation interferogram, HDZP-11, 32 nsec (230 kA).
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Fig. 4c: Simulation interferogr~ HDZP-1, 50 nsec (85 kA).
I

127



N

259

20.

1.5

1

0

0

.

Ill
WI 1 1 1 I 1 1 1 1 1 1 1 1 1 I I 1 I 9 1 1

10● 15●
r (mm)

209 25●

Fig. 4d: Correspond% simulation density contours, HDZP--, 50 nse (85 kA);

right-most dotted contour: 0.007 k~/i.3, right-n~ostscl.idc~,llour: ~ (“}S Lg/msc

128



25.

20●

.- E
it
I I

kI
t., A s

0 I 1 1 1 1 1 1 1 1 1 1 I 1 f 1 I

05 10 15 20 25
● 9 9 ● 9

r (mm)
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solid contour: 75 kA; dotted contours, from right: 60, 45, 30 kA.
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Figs. 5(a-c): Line density VS, axial location: (5a) Experimentally computed

total line density vs. axial location, HDZP-11, shot 205, z20 nsec (z200 kA).
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Figs. 6(a-b): Results of twetemperatwe HDZP-11 simulations (6a) Average

(mass-weighted) electron (dotted) and ion (solid) temperature (eV) vs. time
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Figs. 12(a-b): Hall MHD axial boundary effects (HDZP-11 simulation): (12a)

Axial current contours ‘pinched” at anode (bottom), 4 nsec.
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Fig. 12b: Magnetic field (Tesla) vs. radius (m) for axial locations adjacent to

anode (line A) and cathode (line B); ‘piling-up” at anode, 4 nsec.
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(8 nsec), with (left) and without (right) Hall term: Hall-driven small-wavelength

instability development.
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tLC- TtW.

Fi}*. 14: Full “Hall MHD” model energy convection - H

simulation (6.5 nsec); (top) temperature contours; (bottom) temperature (eV)

vs. radius (m) for axial locations adjacent to anode (line A) and cathode (line

B).
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Fig. 15: Initial conditions far deuterium shell implosion simuhtions: density

(kg/m3), temperature (eV~, and magnetic field (Tesla) vs. r (m) at axial

midsection.
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M

Fig. 16: Conditions at peak convergence of deuterium shell implosion simulation

(54 nsec): temperature (eV), magnetic field (Tesla), and number density (cm-3)

vs. radius (m) at axial midsection.
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Fig. 17: Experimentally prescribed

aluminum POW simulation.
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Fig. 18: Aluminum “exploding-wire” simulation, *69 nsec density, tempera-

ture, current contours.
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Fig. 19: Aluminum POWsim~ation, -69nsec: demity, temwrature, current

contours.
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Figs. 20(a-b): Radius (m) within which 90% of total axial c.wrent is contained

vs. time (see), l-d POW simulations: (20a) Ahuninum POW simulation.
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