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ARSTRACT

The diffusion and simplified PN ~uations are derived from the transport equation by means
of an asymptotic expansion in which the difhsion equation is the leading order approximation
and the simplified PN equations are higher-order approximations. In addition, the simplified PN
equations are reformulated in a “canonical” form that greatly facilitates the formulation of boundary
conditions and the implementation of the resulting problem in a conventional multigroup diffiion
code. Numerical comparisons of SIN,diffusion, and simpli&d PN solutions show that the simplified
PN solutions often contain most of the trarwport corrections for the diffusion approximation.

1. INTRODUCTION

The spherical harmonic or PN equations have teen a weil-known and widely-used approximation
to the transportequation for the past 50 years, This approximaticm has the following properties:

i. The tinguiarly-dependent transport equ~tion is repiaced by a finite system of equations in
which the anguiar variable is explicitly a“bsent.

2. As the order PI of the approximation increases, one recovers the exact transport solution.

;]. ‘l’he P j equations are rotationally invariant; their solutions are free of ray etfer ;s.

4, In t hreedimensiomd geometry, the number of PN equations equab fV2. In planar geormtry,
the number of PN equattons is only iV.

5, For N > 1, the PN quations are not known to have a pcwitive solution.

To deal with the large number tmd complexity of the PN equations, Celbardl ’3110 and other
researchers’- ‘I*1‘“1h have proposed a ‘%implifled PN” (SPN) approximation in which the number of
equations equal~ fV (hence is ~igniiicantiy low than with the tnultkihnenaional ~3Nequations), but
one abandonn the requiromcmt that the exact transport solution is obtained as N -+ m. hmtead,



the goal is to obtain a relatively inexpensive generalization of diffusion theory t hat contains most of
the transport physics lacking in difhion theory. Presently, the SPN .Auations have an incomplete
theoretical foundation. Nevertheless, they have been tested in 1-D as well as 2-D and 3-D problems,
and the reported numerical resuits are impressive. For many problems, low-order SPN ~uations
capture mmt (Gaminol 3 reports “greater than 80Yo”) of the transport corrections to the difhsion
approximate ion.

In this paper, we show that the SPN equations are robust high-order asymptotic approxima-
t ions of the transport equation in a physical regime in which the conventional PI equations are
the leading-order approximation. In other words, SPN theories contain higher-order asymptotic
correct ions to P 1 t htwry. This explains the high accuracy often exhibited by numerical solutions of
the SPN equations.

We also reformulate the SP3 equations in a new “canonical” form. For planar-geometry prob
lwns, this form reduces to the second-order even-parity SN equations, and for general isotropic
scat tering problems, it reduces to a conventional system having the form of mult igroup diilhsion
equations. Because of these properties, the canonical form (i) makes the question of boundary
cxmdit ions for these equations almost trivial, (ii) greatly facilitates the implementation of the SP3
problem in a standard mtdtigroup diffusion code, and (iii) shows that for a proper choice of bound-
tuy conditions, the solutions of the SPS equations are positive. This canonical form can be obtained
for any odd-order system of SPN equations.

Finally, we present multidimensional numerical resuits obtained from a test code utilizing the
canonical form of the SPN equations. As earlier work has shown, we find th,lt low-order SPIN
soiutions are a significant improvement over PI solutions and are obtained at a small fraction of
the cost ~f an SN calculation.

The remainder of this paper is organized as follows. In Section II we asymptotically derive the
P 1,SP2, and SP3 equations for the om+group transport ~uation with iso~ropic scattering. (Higher-
order SPN equations can be derived by continuing thk procedure. ) In Section 111, we reformulate
the SP3 (quat ions into “canonical” form, and we propose boundary conditions for thh new form.
In Section IV we present numericai results. We conclude in Section V with a discussion.

II. ASYMPTW.I’lC ANALYSIS

[n this paper we shail consider the one-group three-dimensional transport equation with isotropic
scat tering:

Q(r)
Q ‘S?@(r,i)) 1-xt(w(z!il) = * / dir, Q!)dfl 1-~ , (1)

More mm piex (muitigroup, anisotropic scattering) problems require a more complicated asymptotic
mdysis that we will present elsewhere. We consider Eq. (1) under the scaling:

(2)

(3)

(4)

c)(r) ‘ W(d ~ (5)

wtwrc ~t, on, and q are 0(1) and c < 1, The physics hnplled by this scnlhg 18:



The rates of absorption and production due to interior sources are comparable and weak
[Xa = O(c) and Q = 0(s)].

The infinite medium soiution o = Q/Xa = q/u. is 0(1).

The diffusion length L = (3ZtZ. )-1\2 = (3a~cro)-if2 is O(l).

If one introduces the scaling defined by Eqs. (2)-(5) into the standard diffusion approximation
to Eq. (1), the resulting equation is independent of c. In other words, the standard diffusion
equation is invariant under the scaling (2)-(5).

The scaling defined by Eqs. (2)-(5) has long been known 16.17to be one in which transport theory

asymptotically transit ions into difhsion theory as e + O. In this paper, we show that higher-order
asymptotic corrections to diflusion theory yield simplified P~ theories.

To begin, we introduce Eqs. (2)-(5) into Eq. (1) and multiply by &/o: to get

(6)

where
@(~) = / @(?’,Q’)df-Z’ (7)

i~wt, we invert the operator on the left side of 12q. (6) and hmqpate over Q to obtain the Peierls
integral equation for the scalar flux:

4 [ /( ] ,-++.2:] ~1 f+:$mz’)-’m[(‘G (8)

If there are non-vacuum boundary conditions, then extra term occur in Eq (8). However, these
are O(e-flJC), where p is the optical djstance to the boundary. Thus, in the interior of the system
these terms are exponentially small and we will ignore them,

Next, we formally expand the operator on the right side of Eq. (8) in powers of ~. We obtain

where

The operators fo, C2, and L4 are explicitly defined by

C()=t ,

(9)

(lo)

(11)

(12)

(13)

[f the systcm {shomogeneous or the prclhm has spatial varlatkm In only one dk!tkm, the formulaa
for CXn, n >2, flitnplify to:

Can Z: —
2:, ‘c’)” ‘

(14)



In our analysis, we shall replace the original deftition of Zzn [Eq. (10)] by Eq. (14). This is
rigorously correct for a homogeneous system or for a spatially one-dimensional problem, but not
for a true multidimensional problem at material interfaces. We shall dkcuss this approximation
ilgain in Sec. V.

Introducing Eq. ( 14) into Eq. (9), we get

Formally inverting the operator on the right side of this equation, we obtain:

(
4&* ~

– at C*4 + -&21#) + :C:4+0 (.’)) +-a.@= q .

(15)

(16)

(17)

If we now retain terms of 0(e2”) but discard all higher order terms, we obtain a partial differential
Iquat ion for o of order M. This equation is an asymptotic approximation to the Peierls equation
(8), but it is not any of the simplified PN approximations. To derive these approximations, we
must rewrite the equation obtained from Eq. (17) in an asymptotically equivalent form as either a
single second-order equation or as a coupled system of second-order equations. We shall now give
the details of this procedure.

11.1 Diffusion (Pl ) Equation

We dekte terms of 0(c2) and higher in Eq. (17) and use the definition (12) to get

“J-3Lp+uatlkq.–E tit

Multiplying this tquation by ~ and using the definitions (2)-(5), we obtain

-Y” #@$(d +~o!JMd = Q(z) .

‘l’his is the conventional diffusion (P{) equation,

11.2 Simplified P2 Equation

We delete tcrma of O(.SJ) and higher in Eq. (17) and rearrange slightly to get

(’+$+2$”+ ~
operating on thhi vquation b,y (f - 4Exf12/5) and ~gain deletln~ terms of O(C4), we obtain

(18)

(19)

(20)

(21)

(22)



.Multiplying this equation by &and using the definitions (2)-(5), we obtain

This is the SP2 equation.

11.3 Simplified P3 Equations

NOWwe delete terms of 0(E6) in Eq. (17) to obtain

( )
- IJ,L2 4+ ;L,d+ ~L:4 +0.4= q ~

then Eqm(24) can be writt6n
–otL2(@+20+a*r$=q .

Operating on Eq. (25) by (1 -1 l&2Ez/7) and again deleting terms of 0(e6), we get

(23)

(24)

(25)

(26)

(27)

Now, multiplying Eq. (26) by e and using the deflnitiona (2)-(5) and (12), we obtain

-x” +@N#@)+X(IY + ~a(do(d = Q(t) . (28)

Likewise, multiplying Eq, (27) by ut/c and using the definitions (2)-(5) and (12), we obtain

Eqs. (28) and (29) are the SP3 quations.
We note that the three-dimensional PI, SP2, and SPS results derived above could have been

obtained by the following ad-hoc procedure:

1. Write the planar-geometry PN approximations to Eq. (1) in second order form (i.e., ellm.inate
the odd angular flux moments).

2. Replace the onedimemdomd diffusion operator by lta three-dmensiomd generalization:

(30)

This, in fact, is the procedure that has previously been used to derlvo the SPN equations. The
nsymptot ic analysis presented above, which can easily be extended to higher-order SPN approxi-
mations, iqqlthnlms the results of this procedure by showing that for certain problums, the SPN
t~uations are an asymptotic approxhnation to the transport txption. The problemsfor which this
Is strictlv true MOones for which RI. (14) holds for n z 2, i.e.,



1.

2.

Multidimensional problems in a medium in which G is constant (but 2. can vary).

OnAhnenaional problems in an inhomogeneous medium.

The problems for which thk is appmtirnatei~ true are:

1. Truly diffusive problems, in which Lz~@* O for n z 2. (For these problems, the higher-order
asymptotic corrections are negligible, so the approximations made in deriving them play no
role.)

2. Multidimensional problems in inhomogeneous media for which the solution at interfaces is
locally one-dimensional in the direction normal to the interface.

Thus, for multidimensional heterogenexms nondiffusive problems, the SPN equations for n 22 are
not strict asymptotic approxhationa to the transport equation. Hcwever, they are very closely
related to asymptotic approxhnations, and numerical calculations show that in many problems,
they contain most of the transport physics that is lacking in the P 1 approximation.

III. CANIONICAL FORM OF THE SP3 EQUATIONS

We now rewrite Eqs. (28) and (29) in “canordcal” form. TO do this, we multiply Eq. (29) by a
constant A and add the result to Eq. (28), This yields

Now we seek constants p2 and J such that for arbitrary functions o(z) and <(z),

We easily obtain two solutions; for n = 1 and 2,

15+ (-l)”2@
P: = 35

: p, * 0.340 , p~ =0.861 ,

then Eqs. (31) and (32) Imply

Also, if we define

(31)

(32)

[33)

(34)

(35)

(36)

(37)

(38)



and Eqs. (36) can be written

fl~v7#n(z)+G(z)vk(l)–v”—
– w)-

= z,(c) ~ wnk)wn + Q(z) , n=l,2 . (39)
m= 1

This is the “canonical” form of the SP3 equations. The constants p., w. in these equations consti-
tute the usual planar-geometry S4 Gauss-Legendre quackature set. Therefore, in planar geometry,
the canonical SP3 equations reduce to the even-parirj S4 equations. In general geometry, the
canonical SP3 equations (with isotropic scattering) take the form of twogroup diffusnon equations
with upscattering.

Eqs. (39) could have been obtained from Eq. (1) by the following ad-hoc procedure:

1. Write the planar-geometry even-parity S4 approximation to Eq. (1) using the SA Gausa-
Legencire quadrature set:

2. \lake the same operator replacement m shown in Eq. (30), i.e.,

(40)

(41)

Eqs. (39) are algebraically equivalent to the the SPN equations for the following reason. The
planar geometry even-parity S4 equations (40) are algebraically equivalent to the planar geometry
P3 equations. Thus, introducing the operator replacement (41) in Eqs. (40), we ob’ ain Eqs. (39),
and introducing the same operator replacement in the planar geometry P3 equations, we obtain
MS. (28) and (29).

We now turn to the question of boundary conditions for Eqs. (39). In principle, one could
derive S?3 boundary conditions using a high-order asymptotic boundary layer analysis, but this
leads to a very complex result that is diflh.tlt to implement. Instead, we shall invoke the following
“onedimensiomd” principle: because Eqs. (39) reduce to the even-parity S4 equations (40) for
planar geometry problems, the boundary conditions for Eqs. (39) should reduce to the standard
even-parity S4 boundary conditions for planar geometry problems. For multidimensional problems
in which the solutions have a locally one-dimensional character near the boundary, this principle
swms reasonable and int tit ive.

Thus, for I a point on the outer boundary with u the unit outer normal, reflecting boundary
conditions that satisfy

Also, for z a boundary
conditions that satisfy

the one-dimensional principle are

?.I” S?A(Z)=O , ~=l~z , (42)

point at which an incident flux J(L Q) ISprescribed for Q” ZI<0, boundary
the one-dimensional principle are

~n(~) = h(f)+ ~z&)
ZA”Si!ik(Zj , n= 1,2 . (43)

Ilere we have detlned
(44)



(45)

We note that /1 and ~z are proportional to the incoming partial currents over the angular “cones”
‘he definition of these functions ensures thatthat correspond to jL1 and P2. .

.

(46)

Therefore, for onedimensional and multidimensional problems that behave in a loc~!ly ondhnen-
sional manner near the outer boundary, the total incoming partial current is preserved.

We have shown that the canonical SP3 equations are useful for prescribing boundary conditions.
However, these equations have other important advantages:

1. They can easily be implemented in a conventional multigroup diffiion code.

2. [3ecause sointions of standard multigroup diffusion problems are guaranted to be positive,
this is also true for solutions of multigroup diffusion SP3 problems. This guarantee does not
exist for solutions of standard SPS problems (with boundary conditions that are not equivalent
to those given above) or of conventional Ps problems.

3. The SP3 equations are tightly coupled and ohen require acceleration for efficient solution.
However, the canonical SP3 equations, which so closely resemble the even-parity Sd equations,
can easily make use of di,tiion acceleration procedures that apply to the e*~en-parity S4

18 Lack of space prevents a full discussion of this here.equations .

The procedure described above can easily be applied to higher order SPN appproxirnations.
For example, the canonical SP5 equations take the form of a thregroup difusion problem with
boundary conditions that are patterned after Eqs. (42)-(45). For planar geometry, these quations
reduce to the conventional even-parity so equations.

IV. NUMERICAL RESULTS

First we shall consider two *D k-eigenvalue test problems for which the conventional diffusion
solutions are inaccurate. These probierns utilize a 3-D 2-group model of a small light-water reactor
containing a core, o reflector and a control rod. They are described as Model 1, Case 1 (control
rod out ) and Mmiel 1, Case 2 (control rod in) in the benchmark problems compiled by Takeda
and Ikedalg. We solved these problems uain~ the NIKE codeW321,with a uniform 1.0 cm3 mesh,
on the CM2 computer at Los Alamoe National Laboratory. The diffusion, canonical SPN, and S4
eigenvaluea and running times are plotted in F@re 1.

We see that for both problems, the low-order canonicaI SPN calculations require significantly
less computational time than the S4 calculations. Also, the low-order SPN results for the “rod in”
problem are significantly more accurate than the dlffua{on results. The SPN results for the “rod
out” problem are more accurate than the diffusion results, but are less accurate than the “rod
in” problem results. This is because the “rod out” problem contahui a region with long neutron
streaming paths. Hence, this problem contains transport effects that are not welldescribed by any
diffusion or SPN approximation.

Next, we consider a 3-D problem in which chsslc ray effects are observed In SN solutions. This
problem consists of a homogenootrs, one-group, isotroplcally scattering 130 cm cube with at = 0.0S



cm- i, us = 0.0025 cm-1
cm sub-cube situated in

(c=O.05), six vacuum boundaries, and a uniform isotropic source in a 17.3
one comer. The system is depicted in Figure 2. In Figure 3, various SIU

and canonical SPN scalar fluxes are plottwi along the line z = 26 cm, r = 43.3 cm, and O ~ ~ ~ 80
cm. These results were also calculated with NIKE. Figure 3 shows that the S~ solutions all contain
ray effects, which tend to diminish as iV increases. However, the 5P 1 (diffusion) and SP3 solutions
contain no ray effects, the diffusion solution is inaccurate, and the SPS solution agrees basically
with the Slfj solution. (The SP5 solution, which is not shown in the figure, agrees very closely with
the SP3 solution. )

We conclude t hat although SPN solutions do not limit to the exact transport solution as IV ~ m,
they also do not contain the ray effect errors that are inherent in the SN equations, which do limit
to the exact transport equation as N -+ co.

V. DISCUSSION

In t his paper, we have derived the conventional and canonical SPN equations from the transport
equation using a high-order asymptotic expansion in which the diffusion equation is the leading-
order approximation and the SPN equations are higher-order approximations.

Problems in which the SPN equations are not accurate contain significant multidimensional
heterogeneities that generate strong multidimensional space and angular variations in the angular
fiux. Problems in which the SPN equations are accurate are onea in which the mtdtidimensional
spatial and angular variations are weak. or if strong spatial and angular variationa occur, they are
locally on~dimensional in nature. ‘I’his is depicted in Figure 4.

In summary, we have shown that the excellent numerical SP~ results obtained by previous
researchers is not accidental, The SPN equations are often just as t heretically valid an approxi-
mation of the transport equation as the P1 equations, and as a practical matter, they are usually
much more accurate, They should be useful in many problems for which conventional diffusion
theory is not a sufficiently accurate approximation to transport theory.

ACKNOWLEDGEMENTS

Work by the first author (E, W. L.) wm supported by the NSF grant &S-9107725 and the
DOE grant DE-FC02-92ER75’/O9. Work by the second and third authors (J.E.M. and J. M.M.) was
performed under the auspices of the U.S. Department of Energy.

1.

2.

3.

4,

5.

E.M. Gelbard,. “Application
BT-20 (September, 1960).

REFERENCES

of Spherical Harmonics Method to Reactor Problems,” WfAPD-

ILM. Gelbard, “Simplified Spherical Harmonica Equations and Their Use in Shielding Prob
Ierns,” WAPD-T-1 182 (Rev. 1), (February, 1961).

E,hf. Gelbard, “Apphcations of the Simplified Spherical Harmonics Equations in Spherical
Geometry,” WAPD-TM-294 (April, 1962).

C, Dawson, “Modifkd P2 Approximations to the Neutron Transport Equation,” DTMB-1814,
David Taylor Model Basin, Dept. of Navy, Washington, D.C. (1964).

J.A. Davis, “Tramport Error Bolmds Via PN Approximatioris,” Nucl. Sci. Eng. 31, 127
(1968).



6. D.S. Selengut, “A New Form of the P3 Approximation,” nuns. Am. NUCLSot. 13, 625(1970).
Also pubiished in Proc. ANS Topicai Mtg., New Developments in Reactor Mathematics and
Applications, March 2%31, 1971, Idaho Falls, CONF-71O3O2, Vol. 2, p. 561 (1971).

7. M. Lemans~ “On the Simplified PN Method in the 2D Diffusion Code EXTERMINATOR,”
Atomkemene@e 37, 173 (1981).

8. 1<.S. Smith, “Multidimensional Nodai Transport Using the Simplified PL iMethod,” Proc.
ANS Topical Mtg., Reactor Physics and Safet#, Saratoga Springs, NY, p. 223, (September,
1986).

9. K.S. Smith, “Multidimensional Nodal llansport Using the Simplified PL Method,” 7hms.
Am. NUCLSot. 52, 427 (1986).

10. Y.H. Liu and E.M. Gelbard, “Accuracy of Nodal Transport and Simplifki Pa Flux@ in
Benchmark Tests,” Zlnns. Am. NUCLSot. 52, 430 (1986).

11. A.M. Mui, Y.L Kim, and D.R. Harris, “Modified P3 Transport Improvements ior Reactor
Diffusion Calculations,” ‘l%ms. Am. NUCLSot. 55, 584 (1987).

12. KG. Gwnino, “Simplified PL Nodal Transpcrt Applied to Tw@i)imensional Deep Penetration
Problems,” Zluns. Am. NticL Sot. 59, 149 (1989).

13. R.G. Gamine, ‘ThreeDimensional Nodal Transport Using the Simplified PL Method,” Proc.
ANS Topicai Mtg., Advances in Mathematical, Computations, and Reactor Phgsics, April 29
- May 2, 1991, Pittsburgh, Vol. 2, Sec. 7.1, p. 3-1 (1991),

14. E. W. Larsen, J.M. McGhee, and J.E. Morel, “The Simplified PN Equations as an Asymptotic
Limit of the lkansport Equation,” I%ms. Am. A%cLSoc 66,231 (1992).

15. D. Tomailevicfand E.W, Larsen, “The Simplified P2 Correction to the Multidimensional Dif-
fusion Equation,” l%ms. Am. iVucL Sot. 66, 232 (1992).

16. E. W. Larsen and J.B. Kelier, “Asymptotic Solution of Neutron lhnsport Problems for Small
ikleanFree Paths,” J. Math. Phgs. 15, 75 (1974).

17. E.W. Larsen, “Difhwion Theory as an Asymptotic Limit of Transport Theory for Nearly
Critical Systems with Small Mean Free Paths,” Ann. NUCL Ene~ 7, 249 (1980). (TMs
paper is a review of work from 1971-1980,)

18. W.F. Miller, Jr., “An Analysis of the Fitite Difference, Even-Parity, Discrete Ordinate
Equations in Slab Geometry,” NUCLSci. Eng. 108,247 (1991).

19. T. Takeda and H. Ikeda, “3-D Neutron ‘lhnsport Benchmarks,” .J. Afucf. Sci. Tech. 28, 656
(1991).

20. J.E. Morel, J.M. McGhee, L,A. Olvey, and G.W. Clabom, “Solution of the 3-D Even-Parity SN
Equations on the Connection Machine,” Proc. ANS Topicai Mtg., Advances in Mathematical
Computations, and Reactor Ph@cs, April 29- May 2, 1991, Pittsburgh, Vol. 1, Sec. 1.1, p.
2-1 (1991).

21. J.E. Morel, J.M. McGhee, and L.A. Olvey, “Diffusion-Accelerated Solution of the Even-Parity
SN Equations with Anisotropic Scattering,” NUCLSci. Eng., submitted.



.’

0.97“

0.96

0.95

0,94

P ~ Rod Out

0.93 ~ Rod In

PI

0.92 Time (see)
o 200 400 600 800 1000

Figure 2: 3-D RAy Effeet Problem (Geometry)



.
*’

Figure 3: *D Ray Effect Problem (SIUand SPN Scalar Fluxes)
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