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AUTOMATED SOFTWARE ANALYSIS OF NUCLEAR CORE DISCHARGE DATA

by

Ted W. Larson, Jaines K. Halbig, Jo Ann Howell,
Georgew Eccleston, and Shirley F. Klosterbuer

ABSTRACT

mmituh; dwﬁneh;;fp:wmofmon-lo&dn‘t;c:ummisa
or nuclear agencies. Nuc conedischaz
mnimj(%bDMs)m eonu:wu,unamndedmdin
reactor’s fueling activity for later, eneviewbyasaf
inspector. A quantitative analysis thnscolbcteddmoouldprovcto
be a great asset to inspectors because more information can be
exuwwdﬁ'omthedataandmeanalyﬁstimcanbenducedconsidu
ably 'lhispapa prototype for an automated software anal-
ofiden tifying whea fuel bundle pushes occurred
andmomtonn power level of the reactor. Neural network models
mdevelopedfo:calculaingtben on on the reactor face from
which the fuel was disc and g the burnup. These mod-
cls were created and usingacmaldauoollectedfmmaa)u
system at an on-load reactor facility. Collectively, these mtomued
quanuutiveanal oonldhe safeguarding agencies to -

lo.Jnuclearmcwr This type of “umaw&

effective solution for automatéd moni g of on-load reactors
significantly reducing time and effort.

INTRODUCTION

Nuclear power stations in the United States contain reactor cores, which can only be accessed
from one end, usually the top; fuel can only be accessed when the reactor is shut down. One safe-
guards advantage to this type of reactor is that it is relatively easy for a nuclear safeguarding agency '
to monitor the fueling process. An inspector from a safeguarding agency can be sent to the site to
oversee the fueling procedure. On-load nuclear reactors are different from United States reactors in
that operators may obtain access to the core from both ends, and they can be continuously fueled
without shutting them down. Such an operation offers an interesting challenge from a safeguards
perspective because it provides a greater opportunity for the diversion of nuclear material. On-load
reactors are well-suited for producing plutonium from their standard fuel bundles. Safeguarding an
on-load reactor requires keeping track of fuel as it is pushed through the reactor. When a fresh fuel’
- bundle is pushed in one side of the reactor, a spent fuel bundle is simultaneously discharged into a
collectionmechmismontheotberside Usingthisfueﬁngsclm,atypicaloa-loadmwm



discharge 55 to 65 fuel bundler ner week. Figure 1 shows a conceptual diagram of this fueling cycle.
Because this is an ongoing proc 2ss, it is not simple for a safeguarding agency to continuously
monitor fueling; it is rather labor 1 ~tensive to have a safeguards inspector on-site all of the time.
There are several approaches to the problem of monitoring the constant fueling process of on-
load reactors. Obviously, some type of a measurement system for providing continuous, unattended
monitoring of fucling is the most attractive alternative because it is the least labor-intensive. Core
discharge monitors (CDMs)! provide a convenient system for safeguarding on-load reactors because
they can be installed as an independent, tamper-resistant package. A CDM uses radiation desectors to
monitor the movement of fuel between the reactor core and the fuel storage area. Core discharge
monitoring can be performed by an electronics package called GRAND (gamma ray and neutron
detector) and associated detectors developed at the Los Alamos National Laboratory (Los Alamos).
A typical measurement station consists of a GRAND, which is the data acquisition electronics, and
four detectors mounted in one enclosure. Each GRAND continuously collects data from its associ-
ated detector at discrete time intervals and transmits the data to an MS-DOS compatible computer
for recording. The four detectors in each enclosure include two neutron detectors (fission chambers)
and two gamma-ray detectors (ion chambers), one shielded and one unshiclded. Because of low-
enriched fuel and low exposure of the spent fuel, relatively few neutrons are emitted by the spent
fuel. The neutron detectors are encased in a container of heavy water. In the ideal situation, the
neutron detectors are sensitive to neutrons created by (y,n) reactions in the deuterium surrounding the
detectors. To produce a neutron in the (y,n) reaction requires a gamma-ray energy threshold of
2.2 MeV. To monitor core discharges, we mounted four GRANDs around the nuclear core, two on
each reactor face. For purposes of discussion, Fig. 1 shows an example of how a typical on-load




reactor might be laid out with tie detectors and GRANDS insta: ‘ed. In Fig “/a), the core is mounted
in the building such that the core faces are : 1 the east and ~est sidc f th : reac*or. So, fueling takes
place from cast to west. or west to east. Because the core is mounte: ~  .his fashion, each measure-
ment station is designated by iis locauon in relationship to the -ore, eith~- *he southeast (SE), north-
e:st (NE), southwest (SW), or northwest (NW) corner.

Each GRAND collects nuclear radiation da:a from tne detec:. ~ enclos. ¢, ahiers it time stamps
it, and temporarily stores it. The data are then fec to the collection ampu 't upon request for more
permanent storage. At a later time, data can be ofi-loaded {rom the << Wlection computer for off-line
review. The detector data fed from the GRAND consist of five channe! . of .. ‘ormation. The chan-
nels are labeled as follows: fission cha: iber A, fissiou chamber =, fission cxambe- C, ion chamber 1,
and ion chamber 2, Fission chamber A ¢ wresponds to the first neutron detecto. ©  .ne doie > enclo-
sure. Fission chamber B is another view of the first neutron detector, which can be used for possible
tamper detection. The second neutron detector in each desector enclosure is labeled.c fission cham-
ber C. This neutron detector is not wired (0 its correspond’ g GRAN,., .. rathes to the TR AND oa
the opposing face. For example, the NE fission chamber C is wired into the I 'V GRAND, and the
NW fission chamber C is wired into the NE'GRAND. This provides the ovec. il <ystem with a
backup, in case the GR AND for one of the detectors fails. This cross wiring is shown in Fig. 2(a) as
the splice box between the two GRANDs on each side of the reactor coru. Finally, the iwo gamma-
ray detectors correspond to the ion chamber | and 2 channels, respectively. Figure 2(b) shows (¢
layout of a detector enclosure. An in-depth discussion of the detector assemblies and the GRAND
electronics package can be found in “The Design and Installation of a Core Discharge Monitor for
CANDU-type Reactors,” by J. K. Halbig, et al.2

The data collection computers sample the GRAND:s at a pre-deter .ined interval, vsually oy, y
10 or 11 seconds. ‘The total number of data poin:. collected by «:ne detector ¢ one GRAND is lim-
ited to 7 855 points per day. For all 20 detectors, this works out to :»¢ about 157 100 data points per
day or 4 713 000 per month. To store all the data point.. for one mo: *» requires around 150 816 000
bytes of storage. It is impractical to analyze this amount of data. Because of these data siorage con-
s srations, the GRANDs employ a data compression technique w reduce the amount of data. During
periods of low activity, the GRAND sends only a representative 2% of the incoming data to the col
lection computer. This reduces the data se! considerably. Becsuse the data are time st-.nj -d, thex
gaps do not piesent a problem in analysis or review of the data. Shown in Fig. 3 are graphs of data
from two detectors during one particular day.

A qualitative analysis of the data by a safeguards inspector can yield a considerable amount of
information on the fueling activity at the reactor. Each large spike on the graph corresponds to a pair
of fuel bundles being discharged from the reactor. Smaller spikes or decay curves or both ~n the
graph may correspond to other activities such as the rotation of the fueling machine, or the radioac-
tive decay, called cooling, of the speat fuel fission products being held in the fueling machine during
a shuffling operation. The reactor power level can also be determined from the duta because the
amoumofbackgroundthcdcmasmsensingcmpmdswﬂwmompowalevd of the reactor.
The background in this context is considered to be the amount of radiation the reactor emits during
normal operation when no fuel is pnsentoutsndeofthecon Cumcmly. asafcgwds mspector can
make qualitative judgments about reactor activity by visually examining the graphs of detector
activity on both faces of the reactor. For example, an inspector can count the number of spikes on the
graph and determine the toral number.of fuel pushes the reactor made in a particular day. The fotal
number of fuel pushes counted could then be compared to facility declarations for safeguards
verification. Unfortunately, reviewing all the information collected by all the detectors is a
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Fig. 3. Sample CDM data from an on-load reactor.

time-consuming task for a safeguards investigator. Anaumwdptocessoouldconsidunblym
the review time and make it easier for a safeguards investigator so wade through the volumes of data
available from an operational on-load reactor. This paper examines the feasibility of developing an
aumwdwﬁwmsymupabkofqmnﬁuﬁnlymdyﬂugmmﬂabbdauwwpamm ,
. investigator review reactor defueling activities.

- AUTOMATED SOFTWARE ANALYSIS ,
: Andysisofﬁnhngdmﬁunmomloaquawmpkxmk.Asamulgmd&imm
=wwmwdmdymsymwmvmmdwfuﬁbiﬁtyofmuﬂobjecﬁmwhmvdym .
difficult 0 implement. These objectives are as follows: . - '

1. ldentify areas of interest in the data for a safeguards investigator to examine in greater
- detail. -

.'2. Countﬁnelbmdlepnshesuididmtifywhentheyoccmnd. E
Determine reactor power level as a percentage of full power.



4. Correlate an event for one detector channel with all other detector channels. This could be
used to detect possible tampering and to easure that all the channels are operating comectly.

S. ldentify the fueling channel from which the spent fuel was discharged.
6. Compute the burnup of the spent fuel bundles.

Each of these objectives extracts features from the entire set of collected data. These features can
then help a safeguarding inspector assess all the data collected for a particular on-load reactor. To
facilitate these objectives, a prototype analysis tool was developed called CDM analysis. The CDM
analysis package accomplishes objectives one through four reasonably well. We developed this tool
to explore the possibility of developing a production-grade analysis tool. Objectives five and six
were attempted using a neural network modeling paradigm described later. To develop and test
CDM analysis as completely as possible, we needed a considerable amount of data. Unfortunately,
only about 30 days of data was available for analysis. We concluded that although the total amount
of daia used for testing the analysis software was sparse, the software still performed very well.

IDENTIFICATION OF AREAS OF INTEREST AND FUEL DISCHARGE EVENTS

Aagmﬁcantpmblemwuhanautomawdanalys:sofCDMdataisndennfyingamsinﬂwdau
that a safeguards inspector would be interested in examining. Identifying areas of high activity can
considerably reduce the amount of time the inspector needs to peruse the data. At such an carly stage
in program development it is important that inspectors do not use this system as a substitute for
visual examination of all the data, but rather as an aid in the review process. When the reactor is run-
ning at a constant power level, a baseline can be established as an average of the background noise
collected by the detectors. Important data regions can be identified as large changes in the slope of
the average signal, above or below the baseline. This is one technique we used to identily areas of
interest.

CDM analysis makes two passes over the CDM data during its search for areas of interest. In the

first pass, it slides an average along the signal looking for significant changes. When the slope of the -

signal jumps above or below the sliding averagé by more than 10%, the data points are flagged as
something to look into later. In the first pass, a huge amount of data points may be flagged as inter-
esting. To reduce the clutter, a second pass is made over just the areas that were flagged. Areas near
cach other in the time series are clustered together with the maximum data point being marked as the
middle of the event. From the resulting list of areas of interest, a report can be generated to alert the
safeguards investigator to specific areas of the data. During this development, CDM analysis was not
expanded to explain to the investigator what is actually occurring in the underlying system. It cur-

reatly tells the investigator to check out certain areas for activity. In the future, a detailed analysisof

an actual reactor in operation along with the collected data could be used to develop a system that .
could generate such a report. Finding just the refueling spikes is as casy as finding all other events;
‘CDM analysis just needs to be more discriminating. If the threshold is set very high, at S50%, this
.m-pauuchniqmmﬂynﬂuw&puuﬂdwﬁnlmgspikafadwﬁmdanmmm
~ event spikes will be marked by the center, or high point, of the events. Coincidentally, this solves
.objecﬁvennmbumhuimpaummmlmthuthismdyskknﬂmwbjecﬂvcmh
. mdwwudmmmdeddmngnomulmopenﬁon.



CDM analysis can generate graphs of collected data. Figure 4 is an example of an output graph
from CDM analysis. Two channels are graphed, which are typical of all eveats occuiring on both
faces of the reactor. The vertical lines represent marked fuel discharge events or power level excur-
sions of the reactor or both. The fuel discharge events and the power level excursions are all marked
in different colors on the computer screen to make it easy to differentiate between them. The thresh-
old value mentioned earlier is marked by a horizontal line. In this case the threshold is high to locate
only fuel discharge and power level events.

CORRELATION OF EVENTS

Once all the fuel discharge events are identified and clustered, each event is then located on the
data from all the other channels. To accomplish this correlation, we had to overcome the problem
that the clocks on the GRANDs are not synchronized. Correlation is difficult because an event
marked with one time stamp on one GRAND may not be found at the same time on another
GRAND. Finding events on GRANDs that are on the same reactor face is not too difficult. CDM
analysis simply finds the spike height maximum nearest to the time at which the event was recorded.
The problem of finding events that occurred on the opposite face in one particular GRAND's data,
can be resolved by using the cross wiring of the C fission chambers. CDM analysis finds the event
on fission chamber C and uses the spike to perform a pseudo-synchronization of the GRAND’s
clock. This allows CDM analysis to find where the peak should be on a detector viewing an eveat on

an opposing face.
MONITORING REACTOR POWER LEVEL

Owedwamsofinmmidennﬁed,powbvelmniwﬁngismhuampk.thmem
mmm&mkmmumbymmmawauwkmmu '

Fig. 4. Sample output from the CDM analysis program.



used to compute the power level by establishing a baseline reading of what is considered to be full
power. This baseline is computed by examining data from a reactor that is operating at a fixed power
without fuel outside the core. The average value recorded by each detector is used as the baseline.
This baseline is marked on the graph in Fig. 4 by a horizontal line. If the average value of the
background moves from this baseline, then the power level is changing. The data has shown that
most power changes occurred in a stepwise fashion. CDM analysis evaluates the power excursions in
the following manner. If the reactor power is raised or lowered, the slope of the average bacl ground
starts to become very steep. This is marked as the beginning of a power excursion. When this slope
flattens out again, the end of the power excursion is marked. The new value at which the average
background comes to rest is considered the new power level of the reactor. The average background
as a percentage of the pre-defined baseline is the percentage of full power at which the reactor is
running. Currently, CDM analysis does not examine more than one channel on one detector when
making its power level computations. In a production-level analysis package, this percentage should
be an average of all the percentages computed from all channels on all detectors. By taking power
level measurements from all sides of the reactor core and averaging them, a more accurate power
level reading could be obtained. Even though examining just one channel gives a fairly accurate
reading, within 5%, examining all channels is a much better strategy because it provides a
redundancy check. Figure § is an example of the power level of a reactor being raised from micro-
power to 100%. Notice that the excursion occurs in multiple steps. CDM analysis is also capable of
printing a report that details each step of the power level change and what power level the reactor
moved to. Anexampleofarepmforthedmgraphedinﬁg.ﬁsshownmﬁg.a

. STATISTICAL PHENOMENA OF CDM DATA

To better understand the reactor fueling process, we statistically analyzed the available data. The
height of the radiation spikes representing fuel discharge events can be correlated to the fuel burnup
and the location of the fuel channel from which the fuel is being discharged. The burnup contribution
to the spike height is a result of fission product buildup in the spent fuel bundles. If one knows the
spike heights from all 20 channels for a particular event, one should be able to compute the location
and possibly the burnup. Determining bumup is a difficult, multivariate problem that will be dis-
cussed in greater detail later. Do all 20 channels make a valid contribution to computing the location
of the fuel bundles? The most important question is whether or not detectors on one face of the reac-
tor see events occurring on the opposite face significantly enough so that the error in measurement is
small. Figure 7 demonstrates that detectors on one face do not see events on the opposite face. When
an event is occurring on one face of the reactor, the spike appearing on the detectors on the opposing
face is insignificant. This means that one should treat each face of the reactor separately when
atiempting to determine the location of fuel bundles being discharged. A comrelation does exist
between the two spike heights on opposing detectors on the same reactor face. For a given bumup of
the fuel bundles being discharged, and as the source is closer to one detector and farther from
another, the signal will be larger on the nearer detector and smaller on the farther detector. The graph
of the signal strength from two opposing neuaon detectors on the same face is shown in Fig. 8.

The relationship is cone shaped because the error in data from a channel becomes greater as a -
function of the distance of the discharged fuel from the detector. The variance depicted in Fig. 8 is
not large enough to prohibit developing a model for locating fuel bundles on the reactor face. Each
-point on the plot in Fig. 8 corresponds to a position on the reactor face as a function of two opposing
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Fuel Events on the East Reactor Face, As Seen From a West Face Detector
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desectors. The neutron channels appear t0 be the least ervor prone. Figure 9 shows the same view of
the east reactor face, except from the viewpoint of the unshielded ion chamber channel.

Unfornately, the variance in the ion chamber data is very pronounced. There are a considerable
aumber of outliers in the data set bocause of the operation of the data acquisition system. The fission
chamber data are integrated over the entire sampling time, whereas the ion chamber is a point sample
over about 50 ms. Becauss the ion chamber data are not integrated over the entire data acquisition
time, the resulting daia are not as representative of the radiation fueling event. Integration causes an
averaging effect to occur over the entire sample time yielding much more representative date. This
causes less variance to occur in the neutron detector measurement than the ion chamber measure
ment. We attempted to use the area of the entire fueling event to minimize variance during the anal
ysis, but it did not yield better results. This occurred because the fuel spikes do not have a well
defined shape on cither the neutron or the gamma-ray channels. As a result, it was difficult to deter
mine the time interval to integrate over. Often, there are decay curves following fueling events,
which corrupt the integral value. A fixed interval analysis was tried, but it did not reduce the vari-
ance in the data enough to be significant. Changing the data collection to a higher sampling rate
would create a better data set for analysis like this in the future.

Geometrically speaking, the detectors from which these data were taken are set up on each
reactor face with the south-side detec.ors being higher than the north. If the distances from each fuel
channel to each of the two detectors are computed, we can derive an equation from physics
peinciples that correlates the ratios of these distances to the ratios of detector spike height. Figure 10
shows how thie detector are set up and gives sample variables for deriving a functional form of the
distances as a function of the spike height.

An equation can be derived for the spike height or signal strength (Sig1 o« Sig2), as a function of
the source term S; and the distance to the fuel channel, R1 or R2. Using a point source functional
. form for each detector, for which each fuel bundle nair is a. point source, the “quations are as

sans(54 %)

Sig2=&(%2q»+%)

In these equations, the o values are coefficients of fit. When the two equations are combined as 2
ratio, the source serm drops out of the equation thus, yielding the following final form.

o
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A nonlinear optimization was performed to obtain the values fo.:

equation. These values were

determined to be the following:

O =33.82
o= 0.01
ay=13.19

% = 0.00

It is interesting to notice that the 1/R component makes a minimal contribution to the equation
after this fit. The graph in Fig. 11 shows the relationship between the function and the actual signal
values for fission chamber A. If the fit were perfect, one would expect the plot to be linear. Unfortu-
nately, there is variance in the data from this exact, functional form. This means that the functional
form cannot be used for determining exact locations on the reactor face of fuel discharge events.
Some type of error-tolerant model is needed to make this determination. Neural network models are
perfectly suited for such applications. The variance shown in Fig. llcanbccanpenmedforby
using a representative sample of the data, which conforms to the 1/R2 relationship, to make a math-
ematical model of the distance-to-spike-height system. If the model is fairly robust, the other fuel
. Channels can be extrapolated from only a few exampies out of the total data set.

Plasion Chamber A Actval Sighal Ratio vs Calculated Signal Ratte

Fig. 11, mmmmnﬁa
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NEURAL NETWORKS FOR SOLVING THE FUEL GEOMETRY PROBLEM

Neural network models are mathematically derived from nerve cell biology. They are an abstrac-
tion of a collection of fundamental units organized in a hierarchical fashion. In biological systems
each unit would represent a nerve cell. Learning, and thus reacting to stimuli, ic accomplished in a
black box scheme. The black box is molded when patterns of stimuli and their corresponding
responses are presented in a repetitive fashion. Given the input and the expected output, the black
box learns the mapping from input to output. The leaming inside the black box takes place by updat-
ing a series of weighted mathematical functions after each pattern presentation. The goal is to mini-
mize the global error over the entire training set. After training, the model is presented with new
stimuli. If the mode! has been trained to a minimal amount of error, it should generalize and predict
the appropriate output for an arbitrary input pattern. Further details regarding the internal, technical
aspects of the neural network modeling paradigm may be found in Parallel Distributed Processing,
by David E. Rummelhart and James L. McClelland.3 The neural networks used in this proof-of-prin-
ciple were created using NeuralWorks Professional II/Plus,4 a commercial neural network develop-
ment tool manufactured by NeuralWare, Inc. A Sun SPARCstation computer was used to perform
the analysis and develop the neural network.

Neural networks seem well-suited for automation of continuous processes because of their
capability to generalize given only a representative sample of data. For example, Nippon Steel has
utilized neural networks to achieve greater reliability in their continuous casting process (Hidetaka
1991).5 Neural networks are also moving into the nuclear power arena because of their predictive
capability. Roh and Cheon have developed several neural network models to attempt to predict
thermal load requirements of a nuclear power station and have achieved very promising results.6.7
Bartlett and Uhrig have also applied neural networks to nuclear power by creating a model to auto-
mate status diagnostics.3 The particular neural network applications described in this paper are con-
siderably different from previous applications to nuclear power in that we are performing nuclear
safeguards rather than optimizing the power generation capabilities of the reactor.

The 30 days of available data yielded around 170 examples of fuel discharge events. Unfortu-
nately, these events only used 90 out of the 460 available fuel channels in the reactor core. As well,
all the 170 events occurred as a result of fuel shuffling operations during initial reactor startup. This
provides a challenge because data from shuffling operations are not necessarily indicative of normal
reactor fueling activity. Regardless, we thought that an appropriately trained neural network model
could classify fuel events into different regions on the reactor face. This type of classification could
be a potential benefit to safeguards because an investigator could then verify the event against facil-
ity declarations. Regions on the reactor face must be used because of the symmetry of the geometry
in the problem. It is possibie that there are fuel channels for which the proportion of the distances
from each detector is the same. Figure 12 shows the progortions of the distances for all the events on
the east face of the reactor: 88 fuel discharge events.

The overlapping points represent examples of the geometric symmetry problem. This problem is
that the ratio of the distances from the two opposing detectors to a given fuel channel could be the
same for more than one channel on the reactor face. This problem can be solved either by using
regions of the reactor face, which include symmetric points in the same region, or by eliminating the
symmetric points during creation of the model and allowing the neural network to infer the region in
which they lie. The latter method was used in the models preseated in this papcr, although we think
that using symmetric regions would be a good solution to the problem as well. The potential capa-
bility to extrapolate the fuel discharge location, based on only a few examples, is one of the key

14
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Fig. 12. Dissances of fuel events from two opposing .ctector enclosures.

reasons we chose a neural network model to solve this probler. We esumate u. * by training the net-
work on only a few examples of each rcgion, the other events in that region conld be ferred. This
would allow the model t0 use events that have occurred to ¢! ssify events that will occur.

mﬁmnewnawakmodeldivndeddwchmmlmapmwenghtmmwchmmlm
and the cight regions are shown in Fig. 13. Almost all the regions w cre chosen because of the distri-
bution of the points in the available data.

Because detectors on one face do not reliably see events on the opposing face, only 10 channels
from the same face out of the 20 total channels were used in the ncural network model. Although the
ion chamber channels are virtually useless in the computatica, they -¢ needed to bring the neural
network to convergence. The ion chambers act as noise during the training process 10 help separate
the input vectors into appropriate categories. Back-propagatior was chosen as the modeling
paradigm because of its ability to use real-valued inputs.? The resu...ng neural network model was
composed of 10 inputs, 2 hidden layers each with 9 nodes, and 3 out, :1ts. The three outputs were
usedaopaformabinuymappingofdwcightpossibbmﬁons.ﬁgm 14 shows a graphical repre-
sentation of the eight-region model.

Bmﬂwpukuighuddwwmwmumuxdumpmwdwmm
there is a scaling problem. The numeric values for the heights can be very large numbhers to feed 0 a
neural network. To overcome this problem, the inputs are normalized to within the nge of -1.0.00
1.0. The result of this normalization is a very tight clussering of the information, which leads 0 a
training problem for the network. Normally, one would use the normalization range of 0.0 t0 1.0
because that is the dynamic range of a standard sigmoid transfer function. In this case, a hyperbolic

15
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Fig. 14. Graphical represemation of eight-region newral network.
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tangent function was used as a transfer function because its wider bandwidth stretches the auenua
tion. The hyperbolic tangent equation used for the transfer function is10
. ex - e-x

o= *+e

-X

As a result, the error equation for the local error for a particular node at level # as a function of the
errors at level n+1 is10

e ).

where s"'lnstheen'orof node j, l"listheoutputof node j, and the Wi are the weights on layer
n+l.

To get the neural network to converge, it is necessary to use slight variations of the standard
back-propagation algorithm’s delta-rule. Instead of the siandard delta-rule, the cumulative, general-
ized delta-rule was used.!0 Instead of updating the weights after each pattern presentation, a cumula-
tive weight update was tallied and then applied at the end of the training epoch. This helps speed up
thetmmngofdnenetwo:kandovemomcanyptoblemsdtatmayexnstwitho:detinthetrmningdan.
The model also used a bias to assist in speeding up the convergence of the network.

A four-region neural network was also created with 10 inputs, 1 hidden layer containing 15
nodes, and 2 outputs. The internal structure, such as the transfer function and the learning rule, are
the same as for the eight-region model. The two outputs of the four-region mode! also performed a
binary mapping to the four regions on the reactor face. The regions in this case were chosen ran-
domly to be quadrants on the face of the reactor. The four-region channel map is shown in Fig. 15. -

In the case of both the cight- and four-region models, binary mappings of the region numbers
were used instead of bin-sorted outputs because it scemed to improve the generalization skills of the
model. Both models were able to achieve convergence in under 50 000 training epochs, with an
epochsnzeofIZWeusedtwohuddeulayersmmeenxht-mgmmodelmdwbopethatuwould
improve the gencralization of the network, but we found that both one- and two-layer networks
seemed to generalize equally well. For this problem, the two hidden-layer networks were more diffi- .
cult to train and required a greater number of training epochs. ‘Ihefw-ngionnetwotkshownin
Fig. l6mautedusmgonlyoochiddwlayubecmseofthisﬁndmg. -

NEURAL NETWORKS FOR FUEL BURNUP COMPUTATION

Computing fuel burnup is the most difficult of the-original objectives because i contains the
 greatest number of variables. mfmmmgmmmummmby
- the CDM are as follows:

The fuel channel where the bundle is located (1 of 460)

1!

2 ‘ncponnonofﬂtebundleinsideeachﬁnelchamel(l-l3)
* 3. The time at each position

; - The time after shutdown of a fnelpnsh

~ The rate % which the fuel Qccurs
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Bast Reactor Face - Looking West
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Fig. 16. Graphical represeniation of four-region neural network.

For safeguards, it may be important to be able to determine if the facility is discharging low-bur-
nup fuel from the reactor. As in the fuel geometry probliem, we think that the fuel burnup problem. .
can also be solved using a neural network to classify the burnup into different categories, one being’
low-bumup. It is difficult to actually compute numbers for the burnup of each individual fuel bundle
because the spike recorded by the CDM is an additive value of tv> bundles being discharged simul-
tancously. The measured activity from which the bumnup computation is made also depends on the
recent irradiation history of the fuel bundles being discharged. For normal i*actor operation, this fac-
tor would need to be taken into account. Because the data used for this research only included shuf-
fling operations, the irradiation history becomes irrelevant. Figure 17 shows the distribution of the
known, additive burnups for the discharged fuel bundles on the east reactor face. It is interesting to
notice that the bumups fall into one of four distinct regions.

Because the available data only contained fuel events during the initial reactor startup and shuf-
fling operation, the fuel in the reactor only occupied the last four positions in each of the 90 fuel
channels for which there were recorded events. The fuel bundles discharged from the reactor were
never at different positions in the fueling channel. This means the fuel-exposure-dependent variables
have a negligible effect on the bumup prediction, hence, it is possible to create a neural network
modclforclasafymgﬂuehnmupimomofﬂwfwcategaiubasedupontheCDMdata.

mnemdmwkmoddusedfaﬂwmmpmmmwhwmlbiddenhw
'Mlommzwmmmmmuxduaumwﬂmomwfwm
mmmwmaummk,anhudwumsfafwmmngmk.. :
.mmmumwmummmm R
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Fig. 17. Four categories of recorded burmips in sample daia.

RESULTS OF NEURAL NETWORK MODELS FOR SOLVING GEOMETRY AND
BURNUP

The neural neiworks used for solving the geometry problem were trained and tested on data from
the cast face of the reactor, although the west face could have been used just as well. Because of the
limited amount of data, a representative number of fuel events were chosen as the training set in an
attempt to extrapolate fuel eveats on channels the network had never seen before. For the eight-
region model, 63 patterns were used in the training set out of the 88 total fuel events on the east reac-
tor face that were used as the tes: set. As a result, 72 events were classified correctly into 1 of the 8
regions on the reactor face. This mcans the network generalized and extrapolated the correct region
for nine events, and correctly classified the region 82% of the time. Because the region was cosrect
for 9 out of 25 possible extrapolated events, the network extrapolated correctly 36% of the time.

The four-region model performed slightly better than the eight-region model, with only 32 pat-
temns in the training set out of the total 88. The model classified 68 events correctly into 1 of the 4
regions on the cast reactor face. Although this is only 77% accuracy, it generalized and extrapolated
the position for 36 events out of a possible 56. This means it extrapolated correctly 68% of the time.
This is considerably better than the eight-region model with only nine correct extrapolations.

The neural network for computing bumup performed especially well. It is important to reiterate
that part of this performance is explained by the fact that the exposure-dependent variables were
missing from the equation. The burnup neural network was trained on 48 patterns out of the 88 total
in the test set. The network classified the bumup correctly into 1 of the 4 categories 81 timies, This is
‘aay acevracy of 92%, whh33mbdngexmhwdomd40.msismaumm
ness of 82%.
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CONCLUSIONS

The CDM analysis tool created here will act as a prototype for studying and creating a more
robust CDM data analysis tool. The potential of this tool as a bundle counter and a power-level
monitor has been demonstrated. Neural network implementations for determining the area of the
reactor face from which the fuel was discharged and the additive burnup of the two fuel bundles
have been successful enough to warrant further research. We think that with a more complete set of
representative data from an operating on-load reactor, neural network models could be created to
render up to 100% accuracy in position and burnup. The data needed 10 achieve this capability
should include fuel pushes from all 460 channels of the reactor and a complete cycle of fuel through
all 13 positions in every channel. The results obtained in this research are extremely promising con-
sidering the limited amount of data available. We believe that the results can only get better with
more data.

Future work should include devising a more accurate technique for determining areas of interest
in the CDM data, rather than a sliding average. Power level monitoring using an average over all 20
channels will also yield a more accurate power level calculation. Deficiencies in the collection of
quantitative data should be corrected. We need more samples of data per unit time and a gamma-
channel reading more representative of the measurement period. In addition, different types of neural
network models should be tried once a representative amount of data has been obtained. The porta-
bility of neural network models to other reactors of the same type should also be investigated. Neural
network models hold great promise for future work in the area of core discharge monitoring and
automated examination of large volumes of continuously collected data for better nuclear safeguards.
We firmly believe that a commercial-grade tool for monitoring power and counting fuel bundles
from CDM data should be developed. o o :
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