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STEADY-WAVE ANALYSIS OF THE EFFECT OF POROSITY ON VISCOUS

AND INVISCID DETONATIONS BY USE OF A REACTIVE-POROUS ANALOG

by

R. L. Rabie

ABSTRACT

A simple two-rate reactive material analog is
used to determine reactive flow in a slightly porous
medium. The rates govern the evolution of a chemi-
cal reaction coordinate and a solid volume coordinate,
respectively. The rates are coupled so that “mechani-
cal” phenomena can affect “chemical” phenomena and
vice versa. Steady waves in both viscous and inviscid
flow have been examined, with variations in ignition
criteria being of prime interest in the viscous flow.
A particular result is that the steady-state detona-
tion velocity depends upon the ignition conditions.

I. INTRODUCTION

In shock-compression of solids
pation of energy. This dissipation

one tends to associate porosity with dissi-
near a particular pore or void is an irre-

versible process that generates internal entropy, which causes localized heating.
The material is assumed to respond to this preferential heating in some charac-
teristic manner. If the material is an explosive one generally expects enhanced
reaction at these local “hot spots.”

The theorists’ problem is to specify this irreversible process of pore
crush-up in terms of bulk material properties and to combine this process with
other pertinent rate functions, in particular the chemical rates.

In an experiment, the problem is somewhat different in setting, although
the solution must agree with the correct theoretical prediction. An apparently
comprehensive one--dimensionalexperiment involves acquisition and direct
Lagrangian analysis of stress-time records at several material positions in a
given sample.1 This analysis provides a history of the specific internal energy,
stress, particle velocity, and density at each material point covered by the
gauge data. When an equation of state is given, one can solve for the reaction
coordinate A at each material point in the experimental range. These data are
compared with preclictions,and the theory is adjusted to lead to agreement.
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Complications arise when the experiment involves an additional rate, and
thus an additional progress variable V. Unless A or v is measured independently,
direct analysis will give only a relation of the form

A = A(v)

at each point in the reaction zone, and even that changes from point to point.
Thus one is generally not able to separate out the varying effects of the two
different rates. One might ask whether any useful information may be obtained
from direct analysis at all concerning the individual rates. The development of
a simple two-rate material analog is begun here.with the ultimate intent being a
test of direct analysis.

This report examines theoretically the steady-flow behavior of a simple re-
active porous material. Steady waves are assumed and their profiles are obtained
in both inviscid and viscous flow. The effects of varying elementary material
parameters, such as the viscosity coefficient, the “q” of reaction, rate multi-
pliers, and ignition conditions, are examined with respect to changes in the
steady-wave profiles. Inviscid flow is examined first to define the terminology
and to orient the reader to the problem.

The first four sections are given to the inviscid problem. The second of
these deals with the chemical and mechanical rates. The third discusses the
equation of state and the fourth the steady-frame equations. The fifth section
combines the first three and sets forth the problem to be solved and its solution
in considerable detail. Section six sets forth the viscous flow equations in
the steady frame together with a restatement of the rates and equation of state.
The viscous problem is stated and its solution is presented. Also presented is
a detailed study of variations in the viscous problem allowed by the introduction
of viscosity. A particular example is variation in ignition conditions. The
final section, seven, is given to discussion and conclusions. The outline of a
followup report on time-dependent calculations is also contained in this section.

II. CHEMICAL AND MECHANICAL RATES

The two rate laws given govern the evolution of the mass fraction of reacted
material denoted by A, and the evolution of the solid volume fraction V. The
ratio v of the specific bulk density to the matrix or solid density is evaluated
at some point in the material. The physical limits on v are O S v ~ 1, in which
v= O implies no solid volume, i.e., all void, and v = 1 implies no voids. The
limits on A are conventional with O S A < 1, and A = 1 is totally reacted. I
will call the A rate a chemical rate and the V rate a mechanical rate. The chem-
ical rate is

+)X++t =i .(~) ,,+2 v .

The mechanical rate is

(1)

(2)
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The additional parameters are rate multipliers kl and k2; new variables are posi-
tion x, time t, x-frame particle velocity u, and density P.

The first thing to note about Eqs. (1) and (2) is that the chemical and
mechanical rates are coupled. By doing this I have in mind the following picture
of this material; since pore crush-up leads to the formation of centers of con-
centrated energy I would like to enhance the chemical rate in some manner related
to pore crush-up.2 This is done by the addition of the factor V in the chemical
rate. Thus, as v + 1 from its initial value, say 0,9, the chemical rate is
slightly increased. Additionally, as chemical reaction proceeds and some voids
are filled with reacted products I would like the mechanical rate to be decreased
in agreement with the thought that a void filled with reacted products is no
longer discernible as a void.2 Thus the factor (1 - 1) is used in the mechanical
rate to accomplish this. The occurrence of (1 - A)2 in the chemical rate is
simply a mathematical convenience as is the presence of the density. This will
become clear when the steady-frame equations are set forth in Sec. IV.

The rates displayed in Eqs. (1) and (2) are set to zero in the initial state
and, in the inviscid case, are to be turned on at the arrival of the detonation
wave. This “shock jump” ignition necessitated by the lack of viscosity is rem-
edied in Sec. VI.3

III. THE EQUATION

The material
librium processes

P=~ 1 ao(p _

CIFSTATE

equation of state that gives the material’s response to equi-
is

00)2 + Aql + (1 - Al)(v-vo) q2 . (3)

The parameters are p. - the initial density, a“ - a constant of magnitude 1 car-
rying units of [pressure/(density)21,ql - a constant pressure of chemical reac-
tion, q2 - a constant pressure of mechanical reaction, A - a constant whose value
(between 1 and O) allows zero, partial, or complete memory of the pressure of
mechanical reaction, and V. - the initial solid volume fraction. In all that
follows I will restrict the density p to be greater than or equal to p , V will
be required to satisfy the condition V. “?y constantS v S 1, and the magnitude unl
a“ will be deleted for simplicity of notation.

FromEq. (3),the frozen (A = constant, V = constant) sound speed is

C2=P-P0 .

The specific internal ener~ is

J
v

e-e=-
0

pdv! ,

v
c)

.

(4)

in which v = 3 is the specific volume. Integration gives
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()P-POe-e o = #P-Po)(l-Po/P) - P. !Ln(p/po)+ ~ [Aql + (1-AA)(v-vo)q2] . (5)

Note that Eq. (5) is an equation of state, not a fundamental relation.
The pressures of chemical and mechanical reaction ql and q2, respectively,

are assumed to satisfy the inequalities

and (6)

qz<o .

The first inequality states that the pressure of chemical reaction ql is
greater than zero. Consider a process at constant p and at v = V. in which A
goes from O to 1. This process increases the pressure from p to p + ql. Thus
the chemical reaction adds pressure to the unreacted system at constant p and
V=v. The second inequality states that the pressure of mechanical reaction q2
is le% than zero. Thus a constant density, A = O change in V from V. to 1,
causes a pressure decrease of (1 - Vo) q2. This simply says that a constant vol-
ume decrease in porosity in the unreacted material results in a pressure
decrease$-6 These results are shown in Fig. 1.

IV. THE STEADY-FRAME AND THE FLOW EQUATIONS

I am interested in the behavior of the material, whose reaction rates and
equation of state have been set forth in the preceding sections, as it may vary
in steady detonations. As a prelude to the discussion of these detonations I
will give precise meaning to the term steady frame by writing down the laboratory
frame conservation equations. I then transfo~m them into equations that define the
flow in the steady frame. Any flow that satisfies these one-dimensional equatiom
is said to be steady.

In the laboratory
energy for an inviscid

pt+up2=.pux

frame, the conservation equations of mass, momentum, and
nonconducting fluid are

‘t
+UUX=J pPx$

9 (7)

(8)

and

‘t +Uex= - (9)p(vt+llvJ 9

where subscripts indicate partial differentiationwith respect to the subscripted
variable. D is the velocity of the steady frame in the laboratory; that is,
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every discernible feature of the flow in the steady frame travels from left to
right with speed D in the laboratory. The head of the flow is at x = O at time
t= O, and the steady-frame coordinate is

~=x-Dt .

The transformation

t+t .

The transformation

and

(lo)

does not change t; that is,

(11)

of the differential operators is given by the chain rule,

I
(g)(+ (12)

x t

+) =+ ; (13)
t t

(%)x is just (-D). When Eqs. (12) and (13) are used in Eqs. (7)-(9), the results

are

‘t
-DP +uPr=-pu~ ,

c.
(14)

‘t
-Du+uu=-~P

E<PE’
(15)

and

- De + ue,:= -p(vt -
‘t E

Since the frame in which Eqs.
tives are set to zero and the
atives. Thus,

D dp d(pu)
~- dc

Dv+uv).
cc

(14)-(16) hold is steady,
partial space derivatives

(16)

the partial time deriva-
become total space deriv-

(17)

and

(18)
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(D-u) $=-p(D-u)~ . (19)

Recall that the equation of state is independent of the internal energy e, and so
Eq. (19) will be neglected. Equation (17) may be integrated directly if the par-
ticle velocity ahead of the flow is U. and the density ahead of the flow is PO.
Therefore,

D(P - po) = pu- pouo ,

which may be rearranged to give

P(D - u) = PO(D - Uo) . (20)

It is possible to integrate Eq. (18) with Eq. (20) so that

P - Po= P. (D - Uom- Uo) “ (21)

Note that all steady solutions to some specified boundary value problem must sat-
isfy Eqs. (20) and (21). In particular, they are represented in pressure-particle
velocity space as straight lines of slope P (D-uo). Also, by solving X. (20)
for u and substituting into Eq. (21), we ge?

P -PO= P: (D- UO)2(V0-V) ●

(22)

Thus, like the pressure-particle velocity path, the steady flow lies on a
straight line in pressure-specific volume space. This particular equation of a
straight line is generally called the Rayleigh Line> and its slope is -p2(D-u )2.

The rate equations also must be transformed to the steady frame wit!?the”
results

g= kl

d< - po(D - u
(1-X)2 v

0)

and

dv ‘2

~= - PO(D - Uo) ‘1- ‘)(1 -
v)

(23)

Y {24)

in which Eq. (20) has been used to replace p(D-u) with PO(D-U ).
Given the reaction rates for A, and V, the equation of s ate relating pres-?

sure to density, A, and v, and the two steady-flow Eqs. (20) and (22), I have a
set of five fquations with five unknowns, the pressure p, particle velocity u,
density p = --,chemical reaction progress variable A, and mechanical reaction
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progress variable v. I can now
problem.

v. THE INVISCID DETONATION

present and solve a one-dimensional steady-flow

The problem ccmsidered here is the form of the steady flow at t = O that
results from SO= boundary motion at x << 0 and t << 0. In fact I assume that
the distance and time at which the flow began are sufficiently far removed from
the present time and position of the flow that any asymptotic processes are
changing on a time scale very long with respect to any times during which I ex-
amine the system. The head of the flow is now stationa~ in the steady frame at
~ = O and the flow extends to negative values of ~. The head of the flow is oc-
cupied by a jump discontinuity in pressure, particle velocity, density, and in-
ternal energy through which A and V maintain their initial values of O and Vo,
respectively. This discontinuity travels with speed D in the laboratory frame.
For all vaues of l;< 0, A and v evolve according to Eqs. (23) and (24), which
may be solved by forming the equation

which may be

A=l-

integ~ated directly to give

[ 1(1 - v) V-v.
Ti=ip e

(kl/k2)
.

(25)

(26)

Note that when V = v Eq. (26) gives A = O, whereas whenV = 1, A = 1. The func-
tion A = 8A(v) given y Eq. (26) is called the reaction path and the A-v plane is
termed the reaction coordinate phase plane.

The first steady-frame profile to be obtained results from substituting the
reaction path into Eq. (24) and integrating; the integral is

A very useful approximation in evaluating this integral is to set eV-v. > ~

This is satisfactory if v > Vo, that is, v 3 1.
●

Thus, I will restrict initial
porosi~ to b$ ~10%,

= 0.9, ev- 0
which is not a large ~hysical restriction. Note that when

v varies from 1.1 to 1.0 while (l-v)/(l-vo) varies from O to 1.0.
W?th this approximation incorporated,

{[1 - &’ ~1k2/kl - (l-vo)}

v(~) = —

[;- &, ~3k2/kl “
o

(27)
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Note that at C = O, V(E) =V andv(~)+las~+-~.
The next steady-frame p~file is obtained by substitution of Eq. (27) into

Eq. (23). This results in an equation in A and ~ that can be directly integrated.
The function ~(~) that results from the integration is

The integration of Eq. (23) after the substitution differs as k2 =kl ork2 #kl,
leading to a logarithmic integral in the former case. I have chosen to work with
k2 # kl. This is not a serious limitation, but it must be observed. Again the
limits on A(<) are A(L = 0) = 0, and ~~1 as ~+-m”

To simpli@ further equations, some initial-state (c > O) conditions are set
down.here. In the initial state, p = 0, U. = 0, ~ = o> V = VOS and P. = 10
This assumption will carry over to ?he viscous case as well.

Now I can calculate the steady-frame pressure profile by eliminating the
particle velocity between Eqs. (2o) and (21) to yield a single equation in Pres-
sure and density. Solving this equation for the density in terms of the pressure
and substituting the result into Eq. (3) gives

()1P2
P — = A(~)ql + (1 - Al(~))(V(~) - vo) q’ ●

‘?7D2-p
(29)

The pressure of reaction is

Pr (30)= ~(~)ql + (1 - AX(E))(V(~) - vo) q2 .

Because this system behaves very differently given differing values of A, I con-
sider the two extremes A = 1 and A = O sepmately.

Case I: A=l
With A = 1, the system retains no memory in pressure of the mechanical re-

action a9 A + 1. At the end of the reaction zone (that is, A = 1 and V = 1),

Pr= ql” Substituting this value into Eq. (29) gives

(31)

%
where p is the particular pressure at the end of the reaction zone. PromEq. (3)
the fully reacted equation of state is

P= +(P-Po)2+ql ●
(32)

The pressure ~ and the density & must satis@ Eq. (32), SO
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(33)

Additionally, since the flow is steady, ~ and ~ satisfy Eq. (22), giving

; = (POD)2 (V. - ;) . (34)

Equation (34) is a straight line in p-v space that must be tangent to the curve
in p-v space given by Eq. (33). This requirement is shown in Fig. 2 as the curve
R, along with some additional equation-of-state curves for various pr. To be _
s~ecific ql is assigned the value 0.5.

Figure 2 shows that the Rayleigh Line R. is the unique solution curve for
the given problem. Consider the possibility of R1 as a solution locus. R1 inter-
sects the pr = 0.5 locus at two points E and F. Let a nonreactive shock take the
system to point G where reaction begins. Suppose reaction is complete at F. The
following unsteady flow is a rarefaction into state F traveling with a speed p-ro-
portional to the slope of the pr = 0.5 locus at F. The wave represented by the
line R1 travels at a speed proportional to its slope, with the proportionality
constant the same in both cases. Thus, since the pr = 0.5 locus is steeper at F
than at Rl, the advancing rarefaction overtakes the detonation and slows it. The
slowing continues until the Rayleigh Line R. is reached and the rarefaction has
precisely the same speed as the detonation
faction is impossible.

, so further degradation by the rare-
The other possibility is that reaction starts at G and is

not complete untiJ.E is reached on R1. This violates the condition that the e-
quation of state be satisfied at each point on RI when the system is between
points F and E; that is, there is no state between F and E on R1 for which p <
0.5, thus satis~ing the equation of state. The Rayleigh Line R. does, in &ct ,
represent the minimum steady-wave velocity as well. For example, if the solution
curve were R2, the maximum of p would be 0.4--again in violation of the correct
value. Thus, the locus R. is t~e unique steady solution 10CUS.3 The velocity D
with which this flow propagates in the laboratory frame may be calculated direct-
ly by setting the slope of the Rayleigh Line (p.D)2 equal to the slope of the

P; =-0.5 equation-of-state curve.- The resultin~

;3 - (3q~ +$) ;2 + ql(aql + *):- q;(ql +

With ql = 0.5, this equation simplifies to

2;3 - 3.25 & + 2:- 005 =0,

which yields the solution

%
P = 0.716 .

Equation (33) is solved for & and gives

-u

cubic equation for p is

+=0 . (35)



; = 1.6567 .

When both ~ and ~ are substituted into Eq. (34), the result is

D= 1.3436 .

Recall that ~ ahd ~ are the pressure and density at the end of the reaction zone
and D is the speed of the steady flow in the l~oratory frame.

I have assumed that the pressure suffers a jump discontinuity at g = O to a
state on the unreacted pr = O equation-of-state 10CUS. Because this discontinu-
ity is a part of the steady flow, it also must propagate with speed D. The inter-
section of the unreacted equation-of-state locus and the Rayleigh Line R is
called the ZND point,3 and detonations in which the ZND point is attaine2 are of-
ten called ZND detonations. In this case, the flow is a jump discontinuity to
the ZND point followed by a reaction zone of formally infinite extent.

Now, I find the actual pressure profile by solving Eq. (29) for P, given
~(~), V(G), and D, at all values of c < 0. This calculation was performed numer-
ically. 1 have displayed the results for several values of q2, kl, and k2 in
Figs. 3-14. Note that the corresponding A(g), v(~), and A(v) plots are also
shown.

The first two sets of figures, Figs. 3-6 and 7-10, have a large pressure of
mechanical reaction q2 = -1000 with respect to the pressure of chemical reaction,
ql = 0.5. The ZND point is at PZND = 1.1O, PZND = 2.48$ ~ = O, andV = V. = 0.9.
The plots against distance, ~, cover four decades on a log scale starting at ~ =
-0.01 and ending at < = -100, so the ZND point is not shown but the pressure at
that poin~ is shown as the line labeled Pz~. Also included is the line at pres-
sure p = P, which is labeled PCJ for the pressure at the Chapman-Jouguet point,
which is reached asymptotically.7

In Fig. 6 the pressure profile is seen to exceed PZND. This is because the
mechanical reaction is fast enough and the pressure of mechanical reaction suf-
ficiently large that the pressure of reaction pr becomes negative. Figure 2 shcm
that the Pr < 0 loci are at higher pressures on the Rayleigh Line R. than the
pr > 0 loci. Thus, the total pressure increases from pzW to a higher value as
long as the mechanical reaction dominates. When the chenmcal reaction begins to
quench the mechanical reaction, Pr increases and the sys~em point moves to lower
pressures along the Rayleigh Line Ro, going to pressure P ~ PCJ as 5 + -~.

Figures 7-10 show a similar result, except that the magnitudes of the rates
are reversed. This causes more rapid quenching of the mechanical rate with a
subsequently smaller pressure rise after the initial shock to pz~. Note the
vastly different A = A(V) plot.

Figures 11-14 show the approach to a single-reaction ZND detonation. Because
q is quite small, the mechanical rate effect is minimal. The overpressure after
t~e initial shock jump is nearly gone and the system approaches ~ ❑ PCJ much fast-
er than in the previous examples.

Case II. A = O
When A = 0, which allows complete memory of the mechanical reaction, the

problem is more complicated. The function pv (A,v; A = ())may have a maximum
larger than its value at A = 1, v = 1, which-occurs at
zone. Consider the flow when q2 = -2.5 and ql = 0.5.

the end of the reaction
At~= land v=l,
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Pr =o.5- (.1)(2.5) =0.25 .

Now, let kl = 2 and k2 = 1; and solve for the extremum of the

Pr = Aql + (’J- Vo) q2 ,

subject to the constraint

‘= ‘-[(=%)‘-vOl(k’’k2)●

Equation (38), the phase plane locus, is valid for all values
derivative of Eqs. (37) and (38) and setting them equal.gives

()‘1 (1 - A) ()q2~mv= - g “

(36)

function

(37)

(38)

of A. Taking the

(39)

The equivalence of derivatives of the functions pm(A) and V(A) is a tangency con-
dition on these CLU’AWS. Eliminating A
(38) and solving the result gives v at
iteratively,

v= 0.9781 .

When this value is put into Eq. (38),

A = 0.9441 .

from Eq. (39) by substitution from Eq.
the extremum of pr. This is best done

(40)

(41)

Finally, P- at the extremum is found by substituting the above values into Eq.
(37). ‘“

Pr = 0.26767 ,

which is greater than 0.25 as predicted.
given by solving Eq. (35) withpr set to

D= 1.1026 .

(42)

The velocity of this steady wave is
0.26767.

(43)

The point in the A-V phase plane on the 10CUS of Eq. (38) at which pr has its ex-
tremum is often called the eigenvalue point. A detonation that travels with
velocity D given by solution of Eq. (35) with pr set to its eigenvalue is called
an eigenvalue detonation. Figures 15-18 contain the graphs of ~(~), V(C), A(V),
and p(c) for this case. A detailed discussion of eigenvalue detonations in a
simple context may be found in Ref. 8. Additional discussion of eigenvalue deto-
nations in this system is contained in the Appendix.
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VI. THE VISCOUS DETONATION

The main shortcoming of the inviscid
show ignition phenomena. The head of the
takes the system discontinuously from its
urnthermodynamic state at the head of the

assumption is that the system cannot
flow is a shock discontinuity that
initial state at ~ > 0 to an equilibri-
shock with no meaningful intervening

states. Because there are no definable states of the system within the shock it-
self, the problem of an ignition condition becomes acute. Real explosives are
initiated readily by shocks whose strength is a small fraction of that of the
fully developed steady detonations.

To handle this initiation phenomenon in time-dependent calculations, I will
solve the viscous steady detonation problem to show the character of the steady
viscous flow end its dependence on ignition conditions.

A simple viscous problem can be solved by adding the physical form of the
viscous stress to the hydrostatic pressure P to get the total stress.9 Thus, de-
fining the viscous stress to be

‘VIS ‘ q

gives for the

0= ~$

du
~ , T1a constant ,

total stress

-P*

For the sake of similarity we can define and use a compressive stress as

(44)

(45)

(46)

a-l=
‘ote ‘hat‘hend~ “.~= ‘“

When P replaces p in the equations of motion and
the steady-frame equations are reder~ved, the only change is that P_replaces P in
the results. Thus, Eqs. (21) and (22) become, respectively,

~- PO’ PO(D - uo)(u- uo) , (47)

and

~- p. = P:(D - UO)2(V0 - V) . (48)

Note that I still have five equations in five unknowns p, p, A, v, and u. Equa-
tion (48) shows that the steady solution in ~-v space is a straight line of slope
P2 D2, (s. = O).
0!!equations;

Thus, the steady viscous flow is governed by the following set

P(D-U)= POD , (49)

12



(IJ=
‘d~ p

- ~: D2(v0 - V) ,

()CIA= kl
d~ -= (1- A)2V ,

0

dv=

()

k2

d~-~
(1- A)(l-V) ,

(50)

(51)

(52)

and

P=$ aO(p-po)2 + Aql + (l- AA)(v-vO) q2 . (53)

Equation (53) may be used in Eq. (50) to eliminate p as a function of p, A, and v.
Equation (49) may then be used to replace p and v in Eq. (50) with a function of
u. Thus, I am left with three equations in the three dependent variables U, x,
andv with parameters n~ kls k2~ ql~ q ~ As v ~ P > and D. This system of cou-
pled ordinary differential equations, ~50)-(58), ~an be solved numerically when
the material parameters and D are specified. Also, I can manipulate ignition
conditions. For example, if I want a pressure-dependent ignition criterion, I
set up the conditions

and

—= f(u, A=o, v=vo) ,Tl$ (54)

(55)

(56)

until p > p. (p. is ignition pressure). When p ~ p. , the zero rate requirements
are remo;ed~g An%her example with more interesting pl?$sicalpossibilities is to
require v to advance to some point between V. and 1, say v*, before the chemical
rate is turned on;

—= f(u, a, v) ,Q$

O for ]2< Pig
dv=

10
de -

kz
~ (l- A)(l-V)fOrp~ Pig s

(57)

(58)
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and

I
o for V. ~v<vfi

g=
d~

()

kl
-— (1 - A)2 V for V > Vfc

poD

. (59)

There is no limit to the possibilities that now exist for igniting the system.
To proceed with an actual calculation, one must find D for given material

parameters. The calculation of the wave speed proceeds exactly as it did in Sec.
IV, except for the ability to turn on the rates independently, which does not
alter the general technique outlined in Sec. IV. I will again consider A = O and
A = 1 separately.

Case III. A = 1, Viscous Flow
This discussion concerns the ignition condition set out in Eqs. (57)-(59).

This leads to enough complication and provides a good look at the trickery re-
quired to solve this and similar problems.

Equations (58) and (59) show that I can integrate Eq. (58) from V = V. to
v= v:*because, over these values of V, A = O. The result is

3 E
v=l- [(1 - vo) e ‘POD ], V. ~ v < v~~ . (60)

When V becomes equal to V>%, Eq. (59) is turned on and the phase plane locus is
found as the solution of

dA kl (1- x)
—’(~) (l. v)v ‘dv

(61)

in which as ~ moves from O to 1, V moves from V;% to 1. Integrating Eq. (61)
directly gives

,=1- [(_)&v~(k,’k2’ , (62)
~

Note the similarity to Eq. (26). As in Sec. IV, assume that e
v-v* ~ ~

. Figure
19 shows the A-V phase plane loci of Eqs. (62) and (26) when kl 2’k2 and V* =
0.93. The differences are apparent.

First I examine the case for A = 1; the system retains no memory of the
mechanical dissipation occurring as both reactions move to completion. In fact,
the maximum value of pr is q = 0.5. Further, at the point in ~ - v space where
the straight line of Eq. (48\ is tangent to the Pr = 0.5 equation-of-state locus,
it is assumed that & = p. Thus, the value obtained for D is precisely that found
for case I, Sec. V,

D= 1.3436 . (63)
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With D known, solutions of Eqs. (50)-(52) (subject to the given ignition condi-
tion) are readily obtained. I have written a short computer program using the
FTNMATH subroutine ODE to solve this particular problem. The figures described
below contain the results of several calculations with various values of kl, k2,
q2, V~~,andq. The figure captions contain the information about the material
that pertains to the given calculation. Note that these sets of figures result
when A = 1.

The Figures for Case 111

Figures 20-23~ The material parameter values are A = 1, ql ‘ 0.5, q2= -1.0,

h = 10, k2 = 10, and q = 0.01. The plot of primary interest is that of V - V.
Vs A. Note that V - v increases to wO.03 before any chemical reaction occurs.

?“When the chemical reac lon begins, note that V - v. varies approximately linearly
in A. The plot of pressure and stress vs distance is also noteworthy in that the
system is only slightly viscous, ?l= 0.01, so the stress and pressure are approx-
imately equal even in early parts of the wave.

Figures 24-27. The material parameter values are A = 1, ql = 0.5, q =
~10.0, kl = 10, k2 = 10, and ~ = 0.01. These figures show the result o~nging
q2 by an order of magnitude. The only really discernible change from Figs. 20-23
is the slight increase in peak pressure and stress, which is a result of more
mechanical reaction pressure during the middle stages of the mechanical reaction.

Figures 28-31. The material parameter values are A = 1.0, q
k
= 0.5, q2 =

-10.o, kl = 10, k = 2, and q = 0.01. I have decreased kz byhal an order Of
magnitude. Note*Kthe V - V. vs A plot shows A increasing relatively faster
than V - Vo. Also, the pressure and stress vs distance shows an increasing ramp
near the peak because the retarded mechanical rate allows a longer pressure
buildup before the ignition of the chemical rate, which subsequently lowers the
pressure. Note that the first bend in the pressure profile coincides with the
ignition of the mechanical reaction, whereas the peak in the pressure profile co-
incides with the i~mition of the chemical reaction, in agreement with the fore-
going discussion.

Figures 32-35, The material parameter values are A = 1.0, q = 0.5, q2 =
-10.0, kl = 10, k2 = 2, and~ = 0.10. kThis figure demonstrates t e effects of
varvin~ the viscosity parameter q, which has been increased by an order of mag-.-
nitude. TheV- -Vc)VS-A plot is unaltered because ~ does not appear in the phase
plane equation. However, the graph of pressure and stress vs distance is altered
considerably. The stress peaks at the same value but at a greater distance than
it did in Figs. 28-31. The pressure, however, peaks at a higher value because
the viscous stress OVIS becomes positive after the stress Peak. Note that when
dP/d~ = O the pressure locus crosses the ~ locus as it should. This would not
occur if a viscous stress were incorporated only in compression to handle sharp
shocks rather than as a real material property.

Finally, the effect of the increased viscosity on A vs distance and V-V. VS

distance plots shifts the onset of both reactions away from the origin.

Figures 36-39. The material parameter values are A = 1.0, ql = 0.5, q2 =
-10.0, kl = 10, k2 = 10, and ?l= 0.10. I have returned k2 to 10 m this highly
viscous calculatfi~e primary change is in the V-v. vs A phase plane, as ex-
pected. Note also that the slight pressure overshoot shown in Fig. 39 remains,
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though it is not so large as that shown in Fig. 35 because the chemical rate is
turned on earlier than it was in the previous figure. Recall that a slow mechan-
ical rate retards the chemical rate and moves the chemical rate ignit~point
away from the origin.

Case IV. A = 0.0, Viscous Flow
I will now discuss the extension of Case II to viscous flow. Because A = O

the system retains complete memory of the pressure of mechanical reaction. Re-
call that I am using the ignition condition set out in Eqs. (57)-(59). The pri-
mary result of interest is that, besides forming eigenvalue detonations caused
only by memory of the mechanical reaction as in Case II, the ignition condition
also influences the location of the eigenvalue point. That is, a material’s ig-
nition, according to Eqs. (57)-(59), leads to different detonation velocities as
the value of V* is altered. This behavior can occur for any value of A such that
I)~A<l.

The change in detonation velocity as influenced by changes in V* is shown in
Fig. 40, the (v-vo) - A phase plane. TWO reaction loci are shown with three Pr=
constant loci. Curve 1 is a reaction path for v~~= 0.905, and curve 2 is a re-
action path for v~~= 0.92. The pr = constant loci are given by

Pr - (V-vo) q~
A = .

ql
(64)

These are simply straight lines of slope (q2/ql) and A intercept pr/q in the
a- (V-V ) phase plane. The three pr = 1constant loci are, respective y, a tan-
gent to !, a tangent to 2, and the pr = 0.0 locus. Note that pr(l) > pr(2), so
the detonation velocity corresponding to ignition at V* = 0.905 is greater than
that corresponding to ignition at V* = 0.92, although the material parameters for
both are identical. Decreasing the value of lq21 relative to ql decreases the
slope of the pr curves and will lead to greater differences in detonation veloc-
ity for a given change in ignition point.

I have made a Pair of calculations with k, = 5, k, = 2.5, q, = 0.5, q, =
-2.5, A = 0.0, and ~ = 0.01. In the first, V~r’=0.905~ and
0.92. The results are displayed in Figs. 41-44 and 45-48.

VII. CONCLUSIONS

This analysis of the steady waves possible in a simple
log with asymptotic rates has shown much of the behavior of

porous-reactive ~a-
similar systems.

In viscous flow, both the wave profiles and the detonation velocity are affected
by the ignition condition. The dominant eigenvalue detonation in cases II and
IV suggests that when an endothermic reaction accompanies an exothermic reaction
one could observe this phenomenon. Some control over the degree of endothermici-
ty wouldbe useful.

The remaining area of interest is the system’s behavior during the initia-
tion and buildup to detonation. Simple boundary conditions such as constant
pressure boundaries will be used to check the purely porous (dissipative) re-
sponse, the purely chemical response, and mixtures thereof. System initiation
will be simulated by short-shock flyer plate impact to compare the analog with a
genuine explosive such as PBX-9404.
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APPENDIX

A DISCUSSION OF THE EIGENVALUE PROBLEM

Discussion in the text shows that the reaction path A = A(v) can be calcu-
lated for the system independently of the current thermodpamic state. The re-
lation A = A(v) holds along the Rayleigh Line, which is a straight line (inviscid
flow) in the p-v plane of slope (POD)2. The entire flow problem is reduced to a
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matter of nunibersby requiring the Rayleigh Line to be tangent to some equation-
of-state locus at some point in the p-v plane. This appendix gives the reasoning
that leads to a solution of the tangency problem.

Recall that the function

Pr = Aql + (V-vo) q2 (A-1)

gives the reaction pressure. To see how this function behaves, it is worth not-
ing that for any path A = A(v), in which A is a monotonic increasing function of
v, the function p has as its largest possible value ql and as its sm~lest pos-

5sible value (l-V. q2. prat~=l,v = 1 (the end of the reaction zone) is ql +
(l-VO)q2. These special points are shown in Fig. A-1.

Two cases between the extremes are also shown in Fig. A-1 as the solid
lines. One of these has an extremum that is a maximum, the other, one that is a
minimum, of pr. One can get a path A = A(v) that has both a maximum and a mini-
mum of pr. If pr has no maximum on the interior of the interval O < A < 1, the
maximum value will be pr = q + (1 - Vo)q2.

i.
This is less by (1 - vo)q2 than the

corresponding case with A =
In pressure-volume space, the fact that pr has a maximum along the reaction

path (and hence the Rayleigh Line) allows a complete solution. Given the maxi-
mum value of pr along the Rayleigh Line, I construct a Rayleigh Line that is tan-
gent to the curve (see Fig. A-2),

P = 1/2 (p-po)2 + pr(max) .

A tangency condition must hold because the largest value ofpr on the Rayleigh
Line is pr(max). Note that the reaction zone ends in a point below the tangent
point that has weak (supersonic) character. This is manifested as a plateau at
a pressure p - ~ that grows at a rate d!2/dt= D - (u+ c) where u and c are par-
ticle velocity and local sound speed at the end of the reaction zone and g is the
length of the plateau.

This class of detonations in which a maximum of pr < ql occurs is called
eigenvalue detonations because the detonation velocity cannot be found by simply
considering the state of the system at the end of the reaction zone.
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Fig. A-2. A pressure-volume plane representation of an eigenvalue deto-
nation in the porous-reactive analog.
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