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M-3 SERIES ON DETONATION SCIENCE

II. ONE-DIMENSIONAL FLOW

by

Wildon Fickett

ABSTRACT

The M-3 Series on Detonation Science
consists of lectures on various topics in
detonation theory and explosives re-
search. The plan is to have each set of
lectures accompanied by notes in the
form of a LAMS report.

The first set of lectures, byW. C.
Davis, offered an overview; the report
for these has not been written. The
second set, for which this report con-
stitutes the notes, is an introduction
to one-dimensional nonreactive flow.
The plan of attack is to, in effect,
take the equations apart and put them
back together again, adding complications
one by one as the reassembly proceeds.
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I. INTRODUC”rION

.0. again the Physics foreshadows the solution.

> Keywords

conservation

dissipation

equation types:

linear/nonlinear

hyperbo-lic/other

kinematic equation

kinematic waves

linearization

The governing

series, here?ifter

fj+pux::r)

(J+vpx::o

&!+pi =()

-- J. Hadamard, Lectures on Cauchy’s Problem, Ch. 2.

of state
..//

equations were given in the first set of lectures of this

referred to as I. They are

(1.la)

(1.lb)

(1.lC)

e = e(p,v) (1.ld)

v=l/p .

The first three equations express the conservation of mass, momentum, and en-

ergy, and the fourth is the equation of state (EOS) characteristic of the ma-

terial. Thrc]ughout we shall require that the EOS be well-behaved; that is that

Pe >0

>0
‘Q

‘PP
>0.

The dot is shorthand for a derivative along a particle path

+Zft+uf
x“
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The only dissipative mechanism in the system is the shock wave, treated as a

jump discontinuity. The Rankine-Hugoniot conditions governing this jump, which

are algebraic relations relating the states on the two sides of the discontin-

uity to its propagation velocity, are derivable from the differential equa-

tions. The passage of a fluid element through a shock is an irreversible pro-

cess which raises its entropy. the entropy jump can be calculated from the

Rankine-Hugoniot conditions if the (thermally) complete EOS is known.

Our object is to understand the general properties of these equations and

the qualitative nature of their solutions, with particular reference to large-

amplitude waves in bodies made up of layers of different materials.

The equations are nonlinear (the coefficients of the derivatives depend on

the dependent variables) and hyperbolic (their solutions are propagating

waves ). Our approach is to begin with the simplest mathematical object having

some of their properties, and then add new features one at a time until we

finally arrive at the full set of equations.

The simplest such mathematical object is the law of conservation of mass

expressed by the first equation (1.la). This is perhaps more transparent in

integral form. If xl and X2 are two fixed stations in a time-varying one-

dimensional flow, the conservation of mass is expressed by

J
X2

& p(x,t)dx = pu(xl,t) - pu(xz,t) ,
xl

(1.2)

which states that the time rate of change of the mass between the two stations

X1 and x2 is equal to the difference in the fluxes through the boundaries.

Taking the time derivative inside the integral on the left and passing to the

limit xl + x2 gives the partial differential equation

Pt + (Pdx = o , (1.3)

identical with (1.la).

We would like this to be our only equation of motion. But it has two un-

knowns: P and u. So we assume a simple (mathematical) “equation of state”

.

,

v

4

u = U(P) ,

4

(1.4)



so that (1.3) and (1.4) together constitute a determinate system for P(or u).

The usual (equivalent) formulation is to give the mass flux pu a name and let

it be a function of.p. For reasons which will become clear later, we choose p

as the symbol for mass flux

p:pu

P =P(P) 9

so that our system of equations for p(x,t) is

Ot+px=o

P=P(P) ●

In this context p is not the physical pressure but ~a

it.

(1.5)

(1.6a)

(1.6b)

mathematical analo~ of

The system (1.6) is called a kinematic wave equation, because it often

applies in gclodapproximation to those situations, such as the extremely S1OW

flow of a glacier, in which the kinematics (fluid distortion) of the flow is

important, but the dynamics (momentum and energy changes) are not.

We have now got down to just one equation of motion plus an equation of

state with a single independent variable. But our differential equation is

still nonlinear, for, using (1.6b) we can write (1.6a) as

Pt+ C(P}PX= o (1.7)

c(p) = p’(p) ,

in which the coefficient c(p) of the space derivative Px is a function of

the dependent variable p. (We choose the symbol c for p‘(P)knowing that it

will turn out to be the wave speed.)

To make things still simpler we

P= T. The resulting equation will

propagating <n this constant state.

change notation slightly. Let ~ be

linearize (1.7) about a constant state

describe small-amplitude disturbances

Before performing the linearization we

the density, expressed as the sum of the

unperturbed density_p and a perturbation ep, with c small, that is

~(x,t) =p+ ep(x,t) . (1.8)

5



We take ~and P of the same order, letting the

order of the perturbation. Substituting (1.8)

(~+ Sp)t + (c

(in which c(p) has

+Elep+ ...)(F+ CP)X=0

been expanded in a Taylor’s

order parameter s express the

into (1.7) gives

9

series about F) and where

~. c(~)= P’(F) 9 c’ =C’(F) ‘P’’(F) ●

n the first-orderMultiplying out and retaining only terms of order c, we obta”

equation for the perturbation p(x,t)

Pt+rpx=o . (1.9)

This single, linear, first-order partial differential equation is our starting

point for the next chapter. We now suspend further use of our perturbation

notation until then.

Problems

1. Problem 1.1. Traffic Flow. Take a continuum model for single-lane

traffic flow in one direction with p the number of cars per unit length. Sup-

pose that each driver at all times sets his own speed instantaneously to some

function of the local density, so that we have the required function u = u(P).

Write down the function p(p) and the differential equation (1.7) for two

cases (the significance of which will appear later)

(1) Safe drivers, U(P) = a = constant.

(2) Reckless drivers, u(p) = 1/2 P.

2. Problem 1.2. Thermodynamics. Our experiments usually determine the

function e(p,v). Suppose that this function is given; write a partial differ-

ential equation for the unknown function T(p,v).

Hint: ‘The equation sought turns out to be a linear kinematic wave equation

(in ~T)

.

.

a(p,v)Tp + b(p,v)Tv = T ,

6
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with the coefficients calculated from the given function e(p,v). There are

different ways of deriving this. One way is to start with the differential of

e

de = epdp + evdv

and the thermodynamic identity

(*/av)T =T(ap/~T)v -p .

3. Problem 1.3. Flood Waves. Consider a thin layer of incompressible

fluid of density p* flowing slowly down a rectangular channel of unit width

inclined slightly at an angle a to the horizontal, Fig. 1.1. Assume that the

flow can be described in the one-dimensional approximation, that is, with

everything a function of x and t only, with x distance along the channel.

Let h be the (normal) height of the fluid above the bottan of the channel.

The quantity p to be used in the kinematic wave equation is a generalized den-

sity, the mass per unit area

.

.

Fig. 1.1. Flood waves
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The body forces on an element of length dx (mass pdx) are: gravity

pg sin adx ,.

and bottom friction, assumed proportional to U*

ku2dx ,

with friction coefficient k. Obtain the kinematic equation of state by equat-

ing these two forces, and write the kinematic wave equation with h as the in-

dependent variable.

Note that equating the gravity and friction forces is equivalent to adding

terms representing these to the right side of the momentum equation (lb) and

neglecting the derivative terms in it.

II. ONE LINEAR EQUATION

. . like travelers

who send their

Keywords

boundary conditions

pondering the road ahead

souls on while their bodies delay.

-- Dante, Purgatorio, Canto 2

characteristics - information carriers

characteristic speed (sound speed)

directional derivative

parametric solutions

.

We start with the simplest possible system: a single linear equation in“
one unknown. The results are very simple, but lay the groundwork for the lat-

er elaborations as we gradually build up to the full system.

The solutions are just those of the (physical) acoustic equation, except

that they represent waves propagating in only one direction. There is a sin-

gle family of

8

characteristics, along which information is propagated.

.

.



A. Differential Equations

We treat the linear equation

kinematic wave equation (1.9) of

. Pt+~Px=o 9

with one independent variable, the linearized

the preceding chapter

(2.1)

where we have returned to the perturbation notation used there.

B. Characteristics

The most important property of hyperbolic equations is that they posses

characteristics -- paths in the independent-variable space along which the

equations take on a particularly simple form.

The key idea here is that of the directional derivative. Suppose we are

given a function f(x,t), defined over the t-x plane. It has partial deriva-

tives ft and fx, which we may think of as total derivatives of f along the

special directions parallel to the tand x-axes, respectively. We want to find

the total derivative of f along some arbitrary given direction (unrelated to

f). This derivative can be expressed as a linear combination of ft and

fx, just as a vector can be expressed as a linear combination of its compo-

nents. Consider an arbitrary monotone curve C in t-x with slope

(dx/dt)C = m(t) .

Let us calculate the total derivat ve of f with respect to t along this curve.

We can do this from the total differential of f

The

df = ftdt + fxdx .

desired clerivative is

(df/dt)c = ft+ (dx/dt)cfx

= ft +m(t)f x“

At each point.of the curve this is the derivative

the direction m, the tangent to the curve, or the

with respect to t in the direction m.

of f with respect to t in

directional derivative of f



With this result in mind, we see that our differential equation (2.1) is

just the directional derivative of P in the (constant) direction c. We can

thus write it in the equivalent form

dp/dt =0 on dx/dt = ~ . (2.2)

Thus along any member of the one-parameter family of straight lines with slope

~, the partial differential equation (2.1) becomes an ordinary differential

equation and is thus much easier to solve. The curves dx/dt = ~are the char-

acteristics and (2.2) is the characteristic form of (2.1). In this case,=

partial differential equation (2.1) is essentially in characteristic form as

given. In general, as we shall see in the next chapter, putting the equations

into characteristic form requires some effort.

c. Boundary Conditions

A particular solution to (2.1) is defined by a boundary condition -- a set

of boundary (or initial) data, consisting of specified values of P along some

noncharacteristic arc like BB of Fig. 2.1.

Now the characteristic equations (2.2) state that P is constant along any

line of slope ;. We see from the figure that the given boundary data -- values

of p along the noncharacteristic arc BB -- define the solution everywhere be-

tween the characteristics Cl and C2 through its end points. To satisfy

the boundary conditions, the constant value of p on each characteristic must

t
c~

t
c,

B

9

x

Fig. 2.1. Boundary data and characteristics.

.

.

.

&
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be equal to the specified value of p at the point where it crosses the boundary

arc. The specified value of p at each point on the boundary arc is thus prop-

agated along the characteristic through that point at the characteristic speed ~

?7. Notice that if we take for the boundary arc the unfortunate choice of a

line segment in the characteristic direction,? Fig. 2.2, the solution is deter-

mined only along the single characteristic line which is the extension of the

boundary segment. Notice further that in this case we cannot make an arbitrary

specification of the boundary data, for since the boundary arc lies on a char- 1
acteristic the data along it must satisfy the characteristic equation p = con-

stant. Thus we may specify any single value of p on the boundary arc but it

must be constimt everywhere on the arc.

From here on we shall stick to a special choice of boundary data, Fig.

2.3. We shal”lconfine our attention to the first quadrant x = O, t = O, and

take as the boundary arc the union of the positive x- and t-axes. Furthermore,

we will ordiniirily take a constant state on the x-axis (data on the x-axis is

often called initial data), so that the interesting part of our boundary data.
is that on the t-axis. We shall call the boundary specification on the t-axis

the piston. Applying it to the system generates a wave.

D. Problem 2.1. Solution of (2.1)

Given the”boundary data

P= Po$(l on t=O ,p=Pb(t) on x =0 ,

/’
/

B

B

t

Fig. 2.2. An unfortunate choice
of tht! boundary arc.

x

t

~~ Boundary data. variable

/

Initial data, constant

-

x

Fig. 2.3. Our standard boundary
the positive axes.

arc-
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find the solution p(x,t) of (2.1).

(1) Write the solution in parametric form P(T) and x = x(~,t), where the

parameter T is the time at which each characteristic intersects the

t-axis, and

(2) Write the solution in explicit form p(x,t) by eliminating T.

(3) Choose (sketch) a function Pb(t) and sketch the corresponding solu-

tion profile at some time.

E. Problem 2.2. Refraction

Let a wave of finite (spatial) extent pass from one material into another

with different ~. How is the extent of the wave in each material related to

the sound speeds?

F. Problem 2.3. Thermodynamics

Consider the differential equation for T(p,v) obtained in problem 1.2.

1. Characteristic Form. Put the equation into characteristic form.

2. Identification. Identify the characteristic paths in the p-v plane

with the level lines of a familiar thermodynamic function. Hint: use the

first law and the differential of e(p,v). Essentially this same identification

was made in a problem of I.

3. y-Law Gas_. Specialize the results of (a) and (b) to the y-law gas

e= pv/(y- 1) .

4. Ideal Gas. Take as boundary data T a linear function of p along the

vertical line v = Vo, that is

T = (vo/R)p on v = V.

with R a constant. Find T(p,v) everywhere.

For a general approach to thermodynamics along these lines, see

Cowperthwaitel.

III. TWO LINEAR EQUATIONS

.0. many shall run to and fro,

and knowledge shall be increased.

-- Daniel 12:5

.

.

.

.
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Keywords

boundary-data constraints C_~

characteristics .

interactions

p-u matching

reflectiorl

reverberation

Riemann irlvariants

simple waves

span

superposition

transmission

Adding a second dependent variable greatly complicates matters. However

it will allow us to study a physically interesting system whose solutions in-

clude, in a fairly reasonable approximation, most of the one-dimensional

applied problems of interest to us.

The main difference from.the equations of Chapter 2 is that there are now

two families of characteristics. This complicates the solution procedure scxne-

what, although all problems can still be solved exactly. The most important

effect of the change is that there is now a much larger variety of solutions.

A. Differential Equation

The system we choose is again a simplified version of the general set. We

simplify the equation of state by neglecting the dependence of p on e (that

is, taking zero Gruneisen gamna), so the EOS p(p,e) reduces to just p(p).

Thus the energy equation (1.lc) is not needed and we are left with (1.la) and

(1.lb) with independent variables p and u or pand u. We choose p and u, re-

placing the derivatives of p in (1.la) by derivatives of p via the relation

dp = c2dp

C2 ‘P’(P) ●

(Note that we are now using the usual physical definition of sound speed).

We next linearize the two equations about the constant state p =~, u =~= O,

adopting essentially the notation defined in (1.8)

73



G(x,t) =~+ p(x,t)

t(x,t) = U(x,t) .

The resulting equations for the perturbations are

pt +Z*UX = o
Ut+vp =()

$
P’(a 9

(3.la)

(3.lb)

where, as before, the bar denotes the unperturbed state and the plain symbols

p and u denote small perturbations on it.

B. Characteristics

The next step is to put these equations into characteristic form. There

are several ways of doing this, each of which provides its own insights. We

choose one of the simplest for presentation here.

To find the characteristic directions consider at each point (x,t) a linear

combination of the two equations (3.1). We ask for those values of the com-

bining coefficients such that, in the resulting linear combination, p and u

are both differentiated in the same direction. This comnon direction is the

characteristic direction.

Let the coefficients of the linear combination be 1 and b, with b to be

determined. Taking 1 times (3.la) plus b times (3.lb) gives

(Pt + b~px) + (but + Z2UX) = O . (3.2)

Now determine b by requiring that the ratio of the coefficients of px and

pt be the same as the ratio of the coefficients of Ux and Ut (that is,

that in the linear combination (3.2) both p and u be differentiated in the

same direction). This requirement is

or

~2
= (Z-)2

—
b =j)c.

14



There are two possible values of the combining coefficient b and thus two char-

acteristic directions at each point (x,t). Substituting the first value

b = +~back into (3.2) we find

(Pt + EPX) + E(ut + Zux) = o ●
(3.3)

We see that p and u are indeed differentiated in the same direction, and that

this direction is

(dx/dt)+ = ~ . (3.4)

We distinguish the two characteristic directions by the subscripts (+) and

(-). The subscript (+) here means “along a (+)-characteri stic.” Substitut-

ing (3.4) into (3.3) and recognizing the resulting directional derivatives we

have

(dp/dt)+ + ~(du/dt)+ = O
~:~.

Repeating these steps with b = -~and collecting our results we find for the

characteristic form of (3.1)

(dp/dt)+ + ~(du/dt)+ = O on (dx/dt)+ = +~ (3.5a)

(dp/dt)- - ~(du/dt)- = O on (dx/dt)- = -~ . (3.5b)

These may be viewed as two ordinary differential equations, each holding on

one family of characteristics. But note that they hold on different paths, so

they are not the usual pair of coupled ordinary differential equations. Be-

cause the p-u equations in (3.5) have zero right side, we can eliminate dt to

obtain

(dp/du)+ = -~ on (dx/dt)+ = += (3.6a)

(dp/du)- = +Z on (dx/dt)- = -F (3.6b)

These can be integrated immediately to
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R+(P,U) p+~u = constant on x -Et = constant (3.7a)

R-(P,u) p -Zu = constant on X+zt= constant . “ (3.7b)

The quantities R+ and R- are called Riemann invariants.

Now let us see how these are applied to the solution of a problem. Suppose

we know the solution at two points 1 and 2 in (t-x) space, Fig. 3.1. We can

find the solution at a certain new point 3 as follows. The location of the

new point 3 in (t,x) space is the intersection of the (+)-characteristic

through point 1

x -x
1 = F(t - tl) 9

and the (-)characteristic through point 2

x -x=
2 -F(t - t2) .

Along the plus characteristic we have

P - P1 = -7(U - u,) ,

and along the minus characteristic we have

(3.8)

(3.9)

(3.10)

t

A
3

+ —

1 2

P

x

*
u

.

.

Fig. 3.1. Finding the solution at point 3
from that at points 1 and 2.
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P- P2 = Z(u - U2) . (3.11)

Just as both (3.8) and (3.9) must be satisfied simultaneously at point 3 in

(t,x) space, so must (3.10) and (3.11) be satisfied simultaneously at point 3

. in p-u space; the (p-u) intersection gives the solution (P3,U3)at (t3,

X3). We now have the complete state at point 3. The process of finding the

state at the new point is thus much like the standard p-u matching at inter-

faces.

all

the

and

In general, our entire solution is built up in this way. We begin with

pairs of points (like 1 and 2 above) lying on the boundary consisting of

positive x- and t-axes. Now on the x-axis we can specify any values of p

u at each point. Having done this, we are restricted in how much we can

specify on the t-axis: we can specify

about because each point on the t-axis

coming up from the x-axis, as shown in

tic carries a relation between p and u

p(t) or u(t), but not both. This comes

is intersected by a (-)-characteristic

Fig. 3.2. Because this (-)-characteris-

which must be satisfied, specifying

either one where it intersects the x-axis determines the other. Thus specify-

in9 either ub(t) or Pb(t) (Onthe t-axis) determines the other, and the

values of p and u are known on the entire boundary.

C. SimDle Waves

We distinguish two regions of t-x space (other than a constant state):

(1) simple waves, and (2) interactions. For linear equations both can be

t

(

x

Fig. 32. Either p or u, but not both, may
be specified on the t–axis.
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calculated exactly, but the simple wave is the simpler. Although the linear

case is somewhat degenerate, we define the simple wave here and discuss it

briefly because it results in a more important simplification when we come to

the nonlinear case.

A simple wave is

state, Fig. 3.3, the

characteristic. Its

tirely.on one curve,

defined as any region of the flow adjacent to a constant

dividing line bounding the constant-state region being a

most important property is that in p-u space it lies en-

the characteristic through the constant state adjoining

the simple wave. This is readily seen to be the case. Consider all (-)-char-

acteristics entering the simple wave from the constant state, such as those

shown in the figure. These cover the t-x space of the simple wave and each

starts in the constant state, so the entire .simple wave maps into this one

(-)=characteristic in p-u. Furthermore, the state along any (+)-characteristic

in the simple wave is constant. To see this, consider the (+)-characteristic

through the state 2 in the figure. Let its state (which must lie on the (-)-

characteristic through state 1) be as shown in the p-u plane. Now calculate

any other state, say 2’, on it in the standard way, by intersecting, in p-u,

the (+)-characteristic through 2 with the (-)-characteristic through 1. The

result, as seen from the figure, is that 2’ is the same as 2; hence the state

is the same everywhere on the (+)-characteristic.

t

Simple Wave

2
Constant state(pl,ut).

P

k
+

-(PIOU1)

(2,2’)

x

Fig. 3.3.

u

The simple wave.

.
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In contrast to a simple wave, an interaction region is adjacent to a non-

constant state, and its map in p-u space occupies a finite area. This will be

. amply illustrated in the problems, and we shall not discuss it further here.

Another way of distinguishing simple waves and interactions is by consider-

. ing superposition of waves. A simple wave is a region having only a single

wave. An interaction is a sum of two waves running in opposite directions.

D. ...l?roblems

The following remarks apply to the problems other than problem 3.1.

l. ...StandaMa terialial. If not otherwise specified, the material is a

solid with infinite tensile strength, initial pressure p. = O, and initial

velocity U. = 00 (Without going into detail, we state that our equations

describe longitudinal waves in a linear elastic solid.)

2...-Standard Waveshapes. We name these as follows. Each is generated by

the u vs t (piston) function sketched, having unit amplitude and (for the last

three) unit duration.

(1) shock r

(2) jump rarefaction

(3) square wave I I

(4) ramp rarefaction

(5) “detonation” ~

3. Displays. Present some selection from the following sketches: t-x

diagram, p-u diagram, snapshots (p-x and u-x) at several times, and particle

histories. Where it is reasonable to do so, keep the particles at their orig-

inal positions the first time around. Particle paths can then be sketched and

the results modified if necessary.

E. Problem 3.0. p-u Riemann Relation.

Find the Riemann relation between p and u.

F. Problem 3.1. Simple Wave = Kinematic .Wave

Show that the flow within a simple wave obeys a kinematic wave equation by

deriving a kinematic wave equation for it in three different ways. (Hint:

the constancy of the Riemann function furnishes the kinematic “EOS”.)

(la)

(lb)

(2)

Use the result of problem 3.0 in the linearized mass conservation

relation Pt + Tux = O.

Use the p-u Riemann relation (3.7b) in (3.la).

Use the p-u Riemann relation (3.7b) in (3.lb).

19



G. Problem 3.2. .Wave Generation

(1) Sketch the wave shape generated by each standard piston motion given

above. ,

(2) How does the wavelength depend on~?

(3) How does the pressure amplitude depend on;?

(4) If we had specified piston pressures instead of velocities (of the

same shape and unit pressure amplitude) how would the velocity ampli-

tude depend on=?

H. Problem 3.3. Reflection

Let each of the standard waves reflect from

(1) a rigid wall (u=O)

(2) a free surface (p =0).

Note that free-surface reflection the wave. Note that when a

shock reflects from a free-surface, the free-surface velocity is

the original particle velocity behind the shock.

I. Problem 3.4. Span

Let a detonation wave run into a free surface, as in problem 3.2, but this

time let the material have finite strength. To simplify the analysis, assign

a tensile strength of one-half the peak wave amplitude to only a single parti-

cle located far enough from the free surface to be outside the interaction

region, and assume that it spans (breaks) a short but finite time after first

experiencing tension.

Spalling can be avoided by moving the single breakable particle close

enough to the free surface (inside the interaction region). How close to

surface must it be so as not to span?

J. Problem 3.5. Ringing

the

Consider a plate of finite thickness with a free-surface (p =0) at its

right boundary. At its left boundary apply the following boundary condition

to generate a square wave

P =0 for t<o

PI= for _()<t~l

P =0 for t>l.

Take the plate thickness

through two reflections.

20

several times the wavelength. Follow the motion

What is the time-average velocity of the plate?

.

.
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K. Problem 3.6. Gas Gun

A semi-infinite tube of gas at pressure p. is closed at one end by an

incompressible piston ofmassm per unit area with p = O outside the piston.

The piston is clamped in place until t = O and then released. Write and solve

the ordinary differential equation for the piston motion u(t).

Consider also the case in which the target consists of three pieces (in

contact), each the same thickness as the projectile. Recall the analogous

experiment with steel balls.

L. Problem 3.7. Colliding Plates

A projectile plate moving at velocity U. strikes a stationary plate of

the same material. Consider the three cases in which the thickness of the

projectile plate is greater than, less than, or equal to that of the target.

M. Problem 3.8. Reflection/Transmission

Let each of the standard waves pass into an adjacent material of (a)

higher, and (b) lower impedance. Take both pieces semi-infinite and the inter-

face glued with infinite strength. For a continuous incoming wave like the

ramp rarefaction, how does the relative steepness of the transmitted and inci-

dent waves depend (qualitatively) on the impedance ratio?

Note that the entire flow in

placing the second material by a

nor u alone is specified, but wh

What is this linear relation?

N. Problem 3.9. Driven Plate 1

the first material may be calculated by re-

right boundary

ch consists of

condition in which neither p

a linear relation between them.

Reverberation

Let a shock pass from semi-infinite material A into a finite-thickness

plate of material B. Consider four cases, the possible combinations of

and (b) interface glued (infinite tensile strength) and not glued (zero tensile

strength).

For which impedance ratios do the plates want to separate and how strong

must the glue be to hold them together?

For the unglued, no-separation case, make a qualitative sketch of the free-

surface velocity vs time.

Pullback: discuss qualitatively how this velocity history would change if

the incoming wave were the detonation instead of the shock.

2)
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o. Problem 3.10. Flyer

A finite-thickness plate A (the flyer) moving with velocity U. impacts a

semi-infinite plate B (the target).

IV.

For what impedance ratios will the flyer bounce off the target?

.
ONE NONLINEAR EQUATION

Wie Schlanglein krumb

Gehn liichelndumb

Die Bachlein kfihl in Wiilden.

-- Friedrich Spee, Liebgesang

I

Keywords

amplitude dispersion

centered rarefaction wave

Hugoniot

nonlinearity

Rayleigh line

self-similar flow

shocks and shock formation

We now introduce nonlinearity. We retreat to one equation in one unknown,

as in Chapter 2, but now take the complete equation of state p(p) instead of

linearizing about one point. The equation thus has a coefficient which is a

function of the dependent variable p.

As in Chapter 2, we have just one family of characteristics, but they now

depend on the given boundary conditions, instead of being fixed ahead of time.

They have in general different slopes, giving rise to the phenomenon of ampli-

tude dispersion.

A. Differential Equations

We introduce nonlinearity by taking the system (1.6)

Pt+px .()

or pt + c(p)Px = O

c =P’(P) ●

(1.6)
.
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It suffices here to take

P = 1/2 ;2

c ‘P9

giving

pt+ppx”o , (4.1)

although any p(p) with p’(p) > 0 and p“(p) > 0 would give similar results.

B. ...Characteristics

The characteristic form of (4.1) is

dp/dt = O on dx/dt = p . (4.2)

Hence the characteristics are still straight lines, as in Chapter 2, but they

may now have varying slopes. This change is quite important, as we shall see.

c. .Rarefact&

For monotone decreasing boundary density Pb(t) we have a rarefaction

wave, Fig. 4.1. As before each boundary value is propagated along its charac-

teristic, but since pb is decreasing with time the characteristics now fan

out as shown, and the wave exhibits amplitude dispersion or spreading. As

indicated in the figure, because of its shape in t-x, the wave is sometimes

Pb

P.

Pf

t x
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x

Fig. 4.1. The rarefaction wave.

called a fan. The head and tail are the characteristics bounding the fan on

the right and left.

The solution in parametric form (Problem 2.1) is

P= ~b(T) on x = ~b(~)(t - T) .

The parameter T labels the characteristics; its value for each characteristic

is the time at which that characteristic intersects the x-axis. For suffi-

ciently simple ob(~) we can eliminate T and write an explicit expression for

O(x,t). For example, let ~b(t) be the ramp function

~b = PO for t<o

Pb = (10(1-t) for ():t”&l/2

Pb = PO for t > 1/2.

Within the fan we have

P =po(l - T) on X=po(l - ~)(t-~) .

Eliminating T and solving for o(x,t) gives the quadratic equation

.

.

P%. + (t -l)p-x=o
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for p(x,t).

Another way of solving this problem is to note that the general solution

of (4.1) is

P =f(.g) ,g=x/p-t ,

with f an arbitrary function. Evaluating this on the boundary x = O determines

f, giving the solution inwnediately in implicit form

P=f+@h- t) .

A comnon and particularly simple configuration is the centered rarefaction

wave, Fig. 4.2, the limit of the wave of Fig. 4.1 as the time over which ~b

drops to its final velocity approaches zero. All of the characteristics of

the fan now emanate from the origin. The solution in the fan is

P = x/t ,

as can be verified by substitution. A flow such as this which is a function

of a sinale variable which is some combination of x and t is called self-

similar.

t

x

Fig. 4.2. The centered

P

\

x/t

rarefaction wave.



D. ...Cornp~ession

With Pb increasing with time we have a compression wave, Fig. 4.3.

Successive characteristics now converge instead of fanning out and will even-

tually cross, leading to a nominally triple-valued solution.

Now the usual physical requirement on the solution is that p be single-

valued, and we replace the triple-valued solution by a moving jump discontinu-

ity, or shock. The shock forms with zero strength at the point of first cros-

sing of the characteristics and then grows in strength as it overtakes charac-

teristics ahead of itself and is overtaken by characteristics from behind.

E. Shock

The shock velocity D depends on the states on either side of the shock.

The easiest way to derive this shock-jump or Hugoniot relation is to appeal to

the physics. Denoting the state ahead of the shock by subscript zero and that

behind by a plain symbol, we equate the mass flux u on each side

Po(uo - D) = P(U- D)

or, using the definition (Chapter 1) p = PU

x

Fig. 4.3. Compression wave with shock
formation.

.

.

.
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D=
P.-.PO
—- ●

P-PO

In the p-pplane this is a straight line of slope D through the initial state,

Fig. 4.4. The upper point S at which the Rayleigh line crosses the EOS P(O)
.

is the shocked state for this velocity. For our EOS p = 1/2 P2 the jump

relation becomes

D= 1/2 (p+po) = 1/2 (c+

that is, the shock speed is the

behind. This is a special case

shock overtakes characteristics

behind, Fig. 4.5.

co) ,

mean of the characteristic speeds before and

of the general property enunciated earlier: a

ahead and is overtaken by characteristics from

The compression analog of the centered rarefaction wave, that is, the re-

sponse to a step-function Pb(t), is a flat-topped shock.

F. .Problem~

Take (4.1) as the equation of motion, with p. = 1 throughout.

l. ...Problem.4.1. Shock Degradation by.Rarefaction. Take a square-wave

boundary function which generates first a shock and then a centered rarefaction

t

P

Rayleigh line————

P

Fig. 4.4. The Rayleigh line.

t

x

Fig. 4.5. Shock overtaking characteristics

characteristics ?rom behind.
ahead and bein overtaken by
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Pb=l for t<o

pb=3 for O:t<l
pb=l for .t>l–o

Find the point at which the head of the rarefaction overtakes the shock. Then

write and solve the ordinary differential equation for the subsequent shock

path. Hint: good new variables are

;=t-1 , y=x#)/;

where xs(t) is the shock path.

How long does the overtake last? What is the late-time dependence of shock

strength on t?

2. Problem 4.2. Shock Formation. Find the point of shock formation

(earliest crossing of characteristics) for the two boundary conditions

(a) linear piston

Pb(t) = 1 for t<o

pb(t)=l+at for o~t:l

pb(t) = 1 + a for t>l

(b) quadratic piston

Pb(t) = 1 for t<o
pb(t)=l+at2 for o~t~l

b(t) =l+a for t>l .

Sketch a few snapshots before and after shock formation for each.

v. TWO NONLINEAR EQUATIONS

Wie Ast an Ast sich Xchzend reibt und knackt,

Wie Blitz an Blitz durch Schwefelgassen zuckt.

-- Annette von Droste-Hfilshoff,

Am dritten Sonntag nach Ostern

.

.

28



.

Keywords

curved chiiracteristics

domain of dependence

interactions

range of influence

simple waves

The next step is like that between Chapters 2 and 3. We add the momentum

equation to get a system of two equations in two unknowns. The equation of

state p(p) is unchanged. In addition to the effects of adding a second equa-

tion in the linear approximation, we have the important result that the charac-

teristics in the interaction regions are curved. This comes about because of

the nonlinearity of the equations with the concomitant dependence of the char-

acteristic slope on the state. Because of this curvature and state dependence,

the solution at any one point now depends not on just two points of the bound-

ary, but on the entire boundary arc cut off by the (+) and (-) characteristics

through the point in question.

A . ...Differential .Equations

We consiclerthe same system which we linearized to get the equations for

Chapter 3: the mass and momentum equations (1.la) and (1.lb) plus the re-

stricted equation of state p(o)

Pt+uPx+Pux=o (5.la)

‘t
+LJux+vpx=() (5.lb)

P =P(P) . (5.lC)

B. .--Characteristics

Analysis like that of Chapter 3 gives for the characteristic equations

(exercise for the student)

(dp/du)+ =-z(p) on (dx/dt)+=u+c

(dp/du)- =+z(p) on (dx/dt)- = u - c ,

(5.2a)

(5.2b)
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where we have taken, as before, p and u as independent

c = p’(p) can be expressed as a function of p alone as

have p = p(p) by inverting the equation of state.

variables. Here

can z = PC, since we

Things are now much more complicated than in the linear case. The location

of the characteristics in t-x space can not be determined in advance, for their

(changing) slope depends on the dependent variables and thus on the given

boundary data. The p-u equations can, fortunately, be solved, but their solu-

tion is more complicated because z is a function of p instead of a constant.

The solution is

R+(P,U) = u + ~dp/z(p)

R-(P,u)= U - Jdp/z(p)

As before, the functions R+

= constant

= constant .

and R- are called Riemann invariants. Given

the equation of state and thus z(p), these functions can be calculated and the

characteristic paths in p-u space determined (without knowing anything about

the characteristics in t-x).

Consider now the process of finding the solution at a new point given its

values at two previous points, as in Fig. 3.1. The p-u state at the new point

is known, but its location in t-x space is not -- we know what the new state

is but don’t

To get a

P= k~y

Taking k = 1

.

know where it is.

feeling for the Riemann function we write it down for a y-law gas

9 yconstant . (5.3)

for simplicity, we have (exercise for the student)

Cf = YP/P= yp(Y-1)/Y
z = pc =yl/2p(ytl)/2y

R+ = u * [2/(y - l)]yl/2p(Y-1)/2y
=U * B/(y- l)]C .

(5.4)

.

Taking y= 3 results in a great simplification.
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WPV3 ,

R; :u**/3
—

.U*C

For this special case u + c is constant along the (+)-characteristics and u - c

is constant along the (-)-characteristics so both families are straight lines

in t-x (since their slopes are just u * c). Solving the nonlinear problem is

not much harder than solving the linear one. The characteristics in p-u space

are curved, but even this slight difficulty can be removed (for a single mate-

rial) by working in c-u space instead.

To simplify our discussions, we shall choose a boundary condition which is

not the usual physical one, namely, values of ub(t) on X = O. (For the usual

solid piston, the piston position is x = ~ub(t)dt. ). Physically, specifying

uonx= O corresponds to a porous piston through which some matter flows.

C. ...Rarefactiandand Simple .Waves

The distinction between simple waves and interaction regions in Chapter 3

applies here also, with a greater

simple wave the governing partial

ordinary differential equation.

A simple wave is defined as a

constant state, and containing no

difference in complexity here. Within a

differential equations again reduce to an

region of the flow adjacent to a region of

jump discontinuities (shocks). It has two

nice properties: (1) the entire wave lies on a single characteristic curve in

p-u space, and (2) each characteristic of the family facing in the same

direction as the wave is a straight line in t-x, and the state along it is

constant.

We demonstrate these properties for a

repetition of the argument of Chapter 3.

Let the simple wave be a right-facing

simple rarefaction wave, with some

rarefaction wave moving into a con-

stant state (po,uo), generated by a specified monotone decreasing u =

ub(t) OtIX ‘o , t >09 Fig. 5.1. Note that in t-x the (-)-characteristics

all start in the constant-state region, and that the (+)-characteristics all

start on x = O. The proof proceeds in three steps:

(1) The entire simple wave lies on the (-)-characteristic through (po,

uo) in p-u space. This follows immediately from the t-x diagram

and the assumptions: Consider any (-)-characteristic in t-x. It

starts in the initial state (PO, Uo). With no shocks, the
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Tail

Head

+

D

P

x

Fig. 5.1. The simple

differential equations apply everywhere on it, that is R-(p,u) =

R- (PO,UO), so that all states On it lie On the (-)-characteris-

tic through (po,uo) in (p-u). Since this is true for all

(-)-characteristics, it is true for the entire flow.

(2) Every (+)-characteristic in t-x is a straight 1ine and the state is

constant along it. Proof: Since the entire wave lies on the (-)-

characteristic in p-u, so do the boundary points on the t-axis. Con-

sider one of these, point 1 in the figure (Its pressure pl is the

intersection of the vertical line u = ‘b(t~) with the (-)-charac-

teristic in p-u.) Now consider any point on the (+)-characteristic

through point 1. Its state is the intersection of the (+)- and (-)

p-u characteristics through state 1, that is, just state 1 itself, as

is evident from the figure. Hence the state is constant everywhere

on this (+)-characteristic and it is therefore a straight line in t-x

by the t-x equation of (5.2a).

As in Chapter 4, the simplest rarefaction wave is a centered rarefaction

wave. For any EOS the solution is

x/t = u +C ,

\

A
peu.

—

,1

+

&udtJ

wave.

r

with the p-u relation through the wave depending on the particular EOS.
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D....Compression .Waves——
A simple compression wave can of course

ing ub(t) and constant initial state. Such

only up to the time of shock

here, the motion beyond that

formation is essentially the

E....Shocks

As we saw in I, the mass

relation (independent of the

a straight line in p-v slope

formation, but

time is easily

same as in the

be generated by taking an increas-

a wave remains strictly simple

for the simple system considered

calculated. The process of shock

system of Chapter 4 (Problem 4.2).

and momentum equations lead to the Rayleigh-line

equation of state)

of p:D2. With our restricted equation of

state p(v), we have no separate Hugoniot curve; all states whatsoever lie on

the EOS p(v).

Thus all shock states lie on p(v). For a shock of velocity D, the shock

state in p-v is just the intersection of the Rayleigh line for this D with the

state curve p(v), Fig. 5.2. The picture in the p-u plane is topologically the

same. The Rayleigh line there is given by

(P -Po) = (POD)U ,

b

Constant–-

P Rayleigh Iin&

v

Fig. 5.2. The shock state S as the
intersection of the Rayleigh
line and the state curve.
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and the analog of the state curve is

U2
=(p-po)(vo- v(P)) 9

with v(p) the (inverted) EOS. We may also consider the loci of constant u in

the p-v plane

U2
= (P(v) -Po)(vo -v) .

These are a family of hyperbola, with u as the parameter, Fig. 5.2. Note

that specifying either D or u determines the

state).

It is easily shown (qualitative exercise

bisects the characteristic field in the same

equation, Fig. 4.5.

F.....Problems

shock state (for given initial

for the student) that a shock

way as for the single nonlinear

I...-Problem 5.1. .Simple Wave .~.Kinematic Wave. The flow in a simple

wave satisfies a kinematic wave equation. As in problem 3.1, the relation

R- = constant provides the desired “EOS.” Write this kinematic wave eqUatiOn

with p as the independent variable, starting from (5.lb).

2. Problem 5.2. Characteristic Curvature. Consider the collision of

two simple rarefaction waves in a y-law gas. In t-x, the (+)-characteristics

of the wave coming from the left and the (-)-characteristics of the wave coming

from the right are straight lines before the collision. Which way do they

curve within the interaction region for (a) y < 3, (b) y > 3? Answer the

same question for two simple compression waves (assume no shocks form).

3. Problem 5.3. Simple-Wave Paths. Write the ordinary differential

equations for the following paths through a forward-facing centered rarefaction

wave: (a) particle path, and (b) (-)-characteristic. Use y = x/t as the in-

dependent variable.

Solve the particle-path equation for the y-law EOS p = Py.
4.. Problem 5.4. ..Plate Push. A semi-infinite tube of a y-law gas is

bounded on the right by an incompressible piston of mass m per unit area,

clamped in place until time t = O and then released. Write and solve the dif-

ferential equation of the piston motion.

.

,

.
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5......l?ro5l5m.5.5...Wave.Reflection .and.Refraction. Discuss qualitatively

the impingement of (a) a flat-topped shock, and (b) a narrow-fan rarefaction

wave, on (1) a rigid wall, (2) a free surface, and (3) a second material of

lower and of higher impedance.

What are the main differences from the linear case?

6. Problem 5.6. Wave Interactions. Consider qualitatively all cases of

collision (of two waves facing in opposite directions), and overtake or lack

of it (of two waves facing in the same direction) for all combinations of the

following two waves: (1) a flat-topped shock, and (2) a weak (narrow-fan)

centered rarefaction. Consider the Tait isentrope

P = a [(P/Po)y- l]

or, for P. = 1,

p+a=apy.

For po=l, po=O, a=l,and

and (b) a compression wave, at

vI. THE FULL (THREE) EQUATIONS

Is crumbled

Y = 3 calculate p and u for (a) a shock,

P = 1.2 and 1.4.

out to his Atomis.

‘Tis all in pieces, all coherance gone. . .

-- John Donne, The First Anniversaries

Keywords

entropy production

Hugoniot

isentropes

particle paths

the full equations (l). The required changesWe have finally arrived at

in the equations (5.1) of the preceding chapter are those needed to take ac-

count of the energy: the addition of the energy conservation equation (1.lc),
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and the extension of the EOS from p(v) to p(v,e), so that it depends on both -

volume and energy.

The main new feature is the entropy production by the shock. For concep-

tual purposes it is useful to think of the EOS in the form p(v,s), with the

isentropes (curves of constant entropy s) of particular interest. A particle’s

entropy remains constant, that is, it stays on the same isentrope in p-v, until

it passes through a shock, which increases its entropy and displaces it to a

higher isentrope. Thus, for example, a particle which is shocked and then

rarefied (isentropically expanded) back to its original pressure ends up at a

higher temperature -- the result of its increased entropy induced by the trauma

of its passage through the shock.

What are the consequences of this entropy production by the shock? The

first is that we have a new family of thermodynamic loci, the Hugoniot curves.

Each of these is the locus of all possible shock states for a given initial

state. Now the equation of state p(v,s) may be regarded as a one-parameter

family of isentropes with parameter s. A Hugoniot curve in p-v is steeper

than the isentropes everywhere except at its initial state, as seen in Fig.

6.1. Also, in contrast to the isentropes, which approach infinite volume at

zero pressure, a Hugoniot has a vertical asymptote at finite volume.

t

\ -Hugoniot

P

o
-

u

Fig. 6.1. Hugoniot and isentropes
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The second consequence of entropy production in the shock

of varying strength produces a more complicated flow field --

entropy. Each particle passing thru such a shock experiences

is that a shock

one of varying

a jump of dif-
.

ferent strength, so that the shocked region has an entropy gradient. Problems

like the degradation of a shock by an initially simple rarefaction wave are no
.

longer soluble, except for especially chosen equations of state (see, for ex-

ample, Ficket.tz.

A. Differential Equation

Our system is the set of

~+pux=:o

ll+vpx=:()

d+~v=:o

equations (1)

(1.la)

(1.lb)

(1.lC)

One route to the characteristic equations is to eliminate derivatives of the

inverted EOS e(p,v)

de = epdp + evdv .

Putting this in (1.lc) we obtain

;=C2; ,

where C2 is a symbol for

C2 =s-vz(p + ev)/e
P“

(6.3)

Before proceeding, we make a few remarks about the significance of the

quantity c. If we are willing to make use of classical thermodynamics, we can

identify the right side of (6.3) with (ap/ap)s, as shown in problem 2.3.

Thus (6.2) states that the entropy of a particle remains constant (in any con-

tinuous region of the flow). Another approach is to minimize the number of

assumptions by eschewing the use of classical thermodynamics, never mentioning

(6.1)

(6.2)

entropy, and using

as the sound speed

our whole subject.

purely mechanical arguments. In this way we can identify c

component of the characteristic speed and proceed to cover

Although we will continue to speak of the entropy because

37



it is conceptually useful, but it is perhaps well to remember that it is in no

way necessary to the solution of our equations. It appears that this point is

sometimes missed, with entropy introduced as a necessary fundamental quantity

at the outset. See for example Truesde113.

Returning to our analysis, the next step is to eliminate

favor of p via (6.2). When this is done our system becomes

; + PC*UX =0
li+vpx=o

b = C*6

c = C(p,s)

pfrom (1.la) in

(6.4a)

(6.4b)

(6.4c)

(6.4d)

We

it

Note that for each particle, c is some function of pwith s as a parameter.

must of course know the value of s for each particle, and keep track of how

changes when the particle is shocked. Thus to actually compute with these

equations as they stand is inconvenient, because we would have to track each

particle by integrating

dxp/dt = U (6.5)

to find the particle paths xp(t) and thus determine s(x,t). This strongly

suggests use of a particle label instead of x as one independent variable. We

shall not pursue this here, but instead continue with the

ysis of the set (6.4).

Notice first that (6.4c) is already in characteristic

derivatives are in the same direction, that of a particle

characteristic anal-

form, since both

path. We have then

only to deal with (6.4a) and (6.4b). The analysis of these is the same as

that of Chapter 5. The complete set of equations in characteristic form is

tic

saw
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(dp/dt)+ +z(du/dt)+=O on (dx/dt)+=u+c (6.6a)

(dp/dt)- - z(du/dt)- = O on (dx/dt)- =U - c (6.6b)

(dp/dp)o=c on (dx/dt)o=u . (6.6C)

There are three families of characteristics: right and left running acous-

signals with vel~city u * c, and particle paths with velocity u. As we

earlier, entropy is constant on each particle path, by (6.2), so that on

●

✎
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each particle path (away from shocks) c is a function of p or p alone, although

it will in general be a different function of p on different particle paths.

Because of this property, we were able to multiply (6.6c) by dt. We could not.
do this in (6.6a) and (6.6b), for these characteristics cross particle paths

. and thus z is in general not a function of p alone, but is instead a function

of both p and s, with s in general a function of x and t. In the important

special case of a constant-entropy flow, the entire set reduces to that of the

Chapter 5, with z a function of p alone as before through the EOS p =P(v;s),

s = constant.

B....ShoRelationsons

We now turn to the jump conditions for the shock. We state without proof

that these are the same as the equations relating any two points in a steady

flow, and arrive at them by this route.

The first.step is to write the equations in conservation .form, in which

each equation has the form

ft+gx=:o , (6.7)

like (1.3) or (1.6a), and thus represents an integral conservation law like

(1.2). In this form each equation has the form (6.7) with

.f. & (6.8)

mass P pu

momentum u (Pu)u+ P
energy p(e + 1/2 U2) p(e + 1/2 U2)U + pu

We obtain the equations for steady flow by simply setting the time derivatives

to zero to obtain

(Ou)x = o
((PU)U+ P)x= o

(p(e+ l/2u2)u+pu)x =0

(6.9)

These can of course be integrated immediately to give
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(6.10)(w), = (W)*

etc.

where 1 and 2 are any two stations in the steady flow, or, as stated above,

the states before and behind a shock (here u must be interpreted as the parti-

cle velocity in a frame in which the shock is at rest). These can be trans-

formed into (exercise for the student) the usual forms (in the frame in which

the material ahead of the shock is at rest)

U2
= (P- PO)(VO -V) (6.11)

~2D2
o = (P -Po)/(vo -v)

e-eo= (p+po)(vo -v) .

We have already met the first two in Chapter 5. With use of the EOS p(v,e) to

eliminate e, the third yields the Hugoniot.curve in p-v, the locus of all pos-

sible shock states from.a.given .initial.state. The topology of the p-v plane

for shocks is similar to that presented in Chapter 5 except that this Hugoniot

curve replaces the EOS used there as the locus of shocked states. The Rayleigh

line and constant-u curves are unchanged.

C. ..-Rarefactioan daSimpleple Waves

We still have simple waves, defined exactly as before in Chapter 5, and

just as simple as before. The constant state adjacent to the simple wave must

now of course have constant entropy as well as constant p and u, so that the

entropy is constant throughout the simple wave. Consequently the equations of

Chapter 5 apply with z(p) and c(p) replaced byz(p; s) and c(p; s), with s the

given constant entropy. for example, the y-law gas isentrope reads, as in

(5.3)

P =k(s)py ,

the value

Thus ,

just like

of s affecting only the constant multiplier.

simple-wave rarefactions, including the centered rarefaction, are

those of Chapter 5. But the moment a shock enters the picture, as

when the rarefaction wave overtakes a shock, all is lost, for the flow then

becomes one of varying entropy.
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D. .-.Corupressions

We can also have simple compression waves as before, up to the time a shock

forms . Up to this time the description is again the same as that of Chapter 5.

After shock formation, we have the same variable-entropy complication.

E.. .-Shocks

As stated earlier, the Hugoniot relations governing shocks are a new ther-

modynamic function, distinct from isentropes. They also have a different type

of parameter: the initial state (that of the particle just before it enters

the shock). The topology of the p-v plane with its Rayleigh line and

constant-u lclciis the same as in Chapter 5, except that the EOS curve is re-

placed by the Hugoniot curve through the initial state.

We shall compare Hugoniots and isentropies briefly, mostly by stating some

properties. As suggested by Fig. 6.1, entropy increases monotonely with p or

P along a Hugoniot. The isentrope through the initial state of a Hugoniot is

second-order tangent to the Hugoniot, so that the isentrope is a reasonable

approximation to the Hugoniot up to a reasonable shock strength. The “weak-

shock approximation” based on this property is often very useful.

We may also compare the energy differential for an isentrope

de = -p dv ,

with the energy difference for a Hugoniot.

Ae = -j Av ,

with p the mean of the initial and final pressures. The ordinary differential

equations for the two curves are also similar. For an isentrope in p-v we have

(dp/dv)s = (p+ev)/ep ,

and for the Hugoniot (sub H) (exercise for the student)

(dP/dv)H= @+ev)/(ep-%Av) .

The

in p-v,

in Fig.

Hugoniot lies everywhere above the

and everywhere below it in p-u. An

6.2.

sentrope through its initial state

example for a y-law gas is shown
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Fig. 6.2. Hu oniots and isentropes in p-v
an$ p-u for a y-law gas.

1.. ..Probletn.6.l...Shock.Reflection. For the y-law equation of state

e =pv/(y - 1) ,

*

.

1

derive the expression for the shock Hugoniot in p/p. vs. v/vo, and p/p.
vs. u*/povo. A convenient abbreviation is k = (y - 1)/(y+ 1). Also

derive expressions for p(u) and v/v. as a function of p in the strong shock

limit p/p. +cO.

Calculate the ratio of reflected-shock to incident-shock pressure for shock

reflection at a rigid wall for y = 1.4 and y = 1.3 for two incident-shock

strengths: p/p. = 2 and p/p. = =.

2..-.Probletn 6.2. ..Murnagha( ModifiedeTait)t) .EOS. Derive the energy ex-

pression e(p,v) which will give theTait isentrope of problem 5.7. Choose the

constant of integration so that e = O at PO = O, v = Vo. Derive the ex-

pression for the Hugoniot curve in p - v through p = O, v = Vo.

3. .-.Prob16m .6.3...Surfacerface -Velocity. Let a flat-topped shock run

into a free surface. Using the Murnaghan equation of state with a = 1, y = 3,
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= 1, calculate the ratio of free-surface velocitY uf~ to shock Particle
‘o
velocity up for shocks with v/v. = 0.7 and 0.6.

VII. NOMENCLATURE

A.-. .Symbols
I

e- specific internal energy

D - shock velocity

P- pressure (or mass flux pu for kinematic waves)

R - Riemann invariant

P - density

s- specific entropy

t - time

u- particle velocity

x- position

B.. .Terms

EOS - equation of state

piston - the (rear) boundary condition

C....Subscrip~

o- initial state

+, -, 0 -.forward and backward acoustic- and particle-path characteristics

overbar - unperturbed state

D. ..Differerltiation

The usual subscript notation is used. For f(x,y)

fx = 2f/3x , fy = af/ay .

A prime denotes ordinary differentiation. For f(x)

f’ = df/dx
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