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The Design of High-Resolution Upwind
Shock-Capturing Methods

by
William Jackson Rider

Abstract

The design and construction of high-resolutionupwiud shock-capturingmethods
is an effecti~”emeans of solvi:lg conservationlaws of physics numerically. In the past,
the design of such methods was gemxa!ly categorized into several distinct methods.
This work shows how these methods can he viewed in a unified malll]er. Thus, the
various types of methods can more easily take ideas from one another to improve
their design.

A generalizedflux-correctedtransport (FCT) algorithm is shown to be total vari-
ation diminishing (TVD) under some conditions. The new algorithm has improved
properties from the standpoint;of use and analysis. Results show that the new F~
algorithmperforms better than the older FCT algorithms and is comparable with
other modern methods. This is shown to bc especially important for systems of
equations. The new formulationahows Riemann solvers to be used effectively with
FCT methods. This directly leads to a geometric analog to symmetric TVD and”
FCT methods that is developed and expanded upon. This unities these methods with
high-orderGodunov (HOG) methods. Two new variants of this method are derived,
and shown to be uniformlynon-oscillatory.

Limiters ve an effective means of designing these types of methods. Earlierwork
by Sweby concentratedon a small set of limiters in relation to one specific difference
scheme. In this research,mare~ner~l classes of Iimitcrsare discussed with extensions
to a wider CIUSof schemes. In addition, flux-correctedtransport and total variation
bounded (TVB) limiters are discussed, modified, and expanded. Two new classes
of limiters are described: s-limiters and generalized average limiters. The recently
defined ULTIMATElimiter is analyzed within the frameworkof the other limiters.
Some insight on the properties of thistimiter is shown. The ‘benefits of relaxing
stric! constraints on the limiters such aa TVD requirementsare also discussed. For
coaM grids, limiters such as the TVB and the generalizedaveragewith bias improve
resolution considerably, This advantage does not hold as grids are refined, because
T~D-type limiters have an advantage in terms of convergence.

Lastly, the question of whether the polynomial reconstruction technique used in
a }\()(; Illf’t }If M! s\I(JIJ]dk ]Med 011d] avc!rq!ys or poifl~-va]m!s is studied. Despite
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>troitg theoretical support of the cell-averageb~ed method, point-value reconstruc-
tion does work quite well i:t practice. This question is considered from two stand.
points: the eficiency or economy of the rcmmtruction, and the accuracy and quality
of the solution. The generalbehaviorof the cell-averagereconstruction is slightly more
effective than point-value reconstruction it the scheme is TVD. When the scheme is
not TVD, point-value reconstructionshave some advantage in performance.

Fromthe basis of the workgiven here, the design of high-resolutionupwindshock-
capturing methods can be advanced in a more unified manner. This should yield
benefits for all of the methods falling into this general category,

.

. .
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Preface

The path which led me to this poiut is worth exploring before going further. My
interest in numericalmethods for fluid flow began as a prerequisitefor the effective
modeling of heat pipes. I began by studying the work of S. V. Patankar [1] as
suggested by Dr. D. V, Rae. Over time, 1 became somewhat displeased with the
nature of the methods, their results, anti limitations. By this time, I had become
interested in the numerical methods for fluid flow as things unto themselves. This
time cuincided with my beginning employment at Los Alamos National Laboratory.
Shortly before arriving to work at the lab, 1 began to be interested in the work of
Dennis Liles [2)for modeling two-phaseflows. This workis based in large part on the
earlier workof Harlowand Ams&n on the ICE methods [3].

While investigating these methods, I came across a lmok by Oran and Boris (4).
The viewpoint expressed there was different than anything 1 had looked into before
and 1foundthe methodologyintriguingto say the Ie=t. lnitiaily, 1was very impressed
by the flux-correctedtransportmethods &scribed by Oranand Boris when compared
[o the classical methods I wwiused to. When I tried to use these methods on a more
complex, system of equations problem,1saw a numberof problcmswith the solutions, “
These observation formm!the genesis of the researchthat followed,

Soon, I began to read and attempt to understand total variation diminishing
schemes and later high-orderGodunov methods. Both of these method types were
similar to the flux-correctedtransport, but their performanceon systems of equations
is significantly better. 1 hey sinned to have a much more appealing mathematical
basis. It was seeking the answer to tlm questions: how can flux-correctedtransport
be improved? and how are flux-correctedtransport, total variation diminishing and
high-orderGodunov methods relatvd? that produced Chapters 5, 6 and 7.

Furtherworkpresentwlherr primarilycenteredabout answeringseveral questions
about the use of high-orderGodunovmethods. The ties made in Chapter6 makesthis
applicable to the other method categoric%mentioned here. Chapters 7 and 8 expand
the line of thought taken with the flux-correctedtransport methods and look at the
problemof designinglimiters forsecond-orderhigh resolutionschemes. Limiteraare at
the core of the constructionof this type of numericalmethod and understandingthem
is essential. The last two chaptersof the dissertation clean up loose ends. Chapter 9
addressessome questions in reconstructionmethods for high-orderCodunov methods.

This dissertation can be viewed as a skewed reflection of my own evolution in
the understanding of these methods. 1 started by looking at FCT methods and
ended up relying on HOG methods for idgorithrndesign. The reason for this is that
the Godunov-type methods are morephysicallyand mathematically (philosophically)
appealing to me. This is a matter of personal taste, but I do believe that they
representan effective basis for future development along a numberof fronts.

The work fc.”::ldill [s] has INVWaccepted for publication in
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Applizd Numcricm’Altthods. ‘!’his workforms part of C%aptvr&
Finally, the bulk of tlw workpresentedin this clissrrtationhas been submitted in

thr form of papers to several professionaljournals. Referencesto these can bc found
iu the bibliography [6, 7, 8, 9, 10, 11).



Notation

The notation used in this work requiresa short explanation.
References are denoted by square brackets. Therefore the third referencewould

be seen as (3]. l’he referencesare listed in order of their use. When more than one
referenceis given, the first referenceis the recommendedone.

Equations are denoted by regular parenthesis. The fourth equation in the sixth
chapter is referencedby (6.4).

Theorems and similar structurm will he referenced if their proofs exist in the
‘literature. Those proven by myself will not contain a referencewith their labels.

xi
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Chapter 1.

Overview

A)though a meal can be crtpycd without understanding the process of digestion,
numerical methods shoutd be both understood and enjoyed. This requirement
is not merelythe whimof a tidy mind,for a method once understod canoften
be improved with little effort. ~. ~. Monaghan//2’

The topic of this dissertation is the design of high-resolution upwind shock cap-
turing methods. By high-resolution I mean that the method is capable of resolving
various fine dctai] features of the solution field without resorting to an excessively
fire=grid. l~pwind makes ref(*rcnccto the method’s usc of the mathematica)/phyrnica)

structure of the solution kid, and the governing equations in constructing the nu-
merical method. Finally, the adjective shock-capturingclarifies the type of rncthod
developed. Some tncthods track discontinuities or shocks in the solutiw ficdd and
essentially use these trackedfcaturcaas internal boundaries. Shock-capturingmetlt-
ods do not do this, and “capture”discontinuities without modificationof the method
used throughout the solution field.

The next three chapters give a brief introduction to these topics. The first of
these three chapters gives backgroundand motivational information regarding the

study of this topic. Classical shock-capturingmethods are the topic 01 the second
of these chapters. These classical methods provide the foundation for the work that
follows. The third and final introductory chapter gms an introduction to modern
high-resolutionshock-capturingmethods. and the categories they fall into.

Following this introduction, 1 introduce the topic of method design. This be-
gins with the method known as flux-correctedtra-.sport (FCT). The FCT method is
known to have ccftain pathological problems, and this chapter addresses this mat-
ter in a systematic fashion. Through this analysis it becomes clear that the FCT
is more intimately related to other modern methods. moat notably symmetric total
variationdiminishing (TVD) methods. ‘rhis relation is expanded upon and exploited
in improving the FCT mctbod’s performance. in the chapter that foliows, the corn.
bined F~/Symmetric TVD methods are related momC1OIAY.to high. order ~~unov

(NOG) methods. The UOG methods area philosophicallysatisfying means of defin-
ing high- rcsdution upwind shock-capturingmethods because the process is divided
into two parts: reconstruction (interpolation,)and evolution (unwinding). This de-
coupling of the method development allows onc to concentrate on ond or the othet
feature. Fromthis, unity of the meth~s is demonstrated. and new. improvedmeth-
ods can be derived.

The two rhaptrrsfohvitig tlii~ unification of thr methods discllss t}w c(mstrllrt ion
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of Iimitcrs. Limitersare the means through whichmocicrn methods are differentiated
from classicalmethods. Their construction is the most important portion of method
design, and hwJ a profound impact on a method’s performance. P=t studies of
limiters have been narrowly focused,and these chaptersare aimed ●t broadeningthis
view. Finally, a chapter on some basics of the reconstruction atep are discussed with
a critical view taken of current practices.

In the appendices a numberof more practicalaspects of extending these methods
to systems of quations are discussed.



Introduction

Of a good beginning comcth a good end. John Ileywoaf

2.1 Background and Motivation
Recently, several articles have app~;~l~dhighlighting the importance of numerical
approximation of con.smvation laws from both a theoretical and practical stand-
point [13, 1I]. High quality numerical approximations to conservation laws are nee

cssary IIIa nulnh!r d rndlgavorsiw noted al thr cn~i O( }I~s1}lAIJtCr.~umcricd work
is also bcmning increasingly important for thcuretica] stmiies. In a very real sensci,
nurncricai rxpcrirnentation is becoming a third major thrust of scicncc along side
cxpcrimcntal and theoretical work.

This chapter gives an intro~ju~:ion to the subject of numerical approximations t?

hyperbolic conservation laws (i{ f*Ls). It covers the basis and motiv,:tion for the stud:!
of the subjvct and provide a brief introduction to some of the important theorcticaJ
concepts in Section 2.2. Aiso, the basic philosophy us”d INdeveloping numerical
algorithms to SOIVCthese sortz of equations is presented in Section 2.3. A numberof
applications of the accurate solution to NCLSis presented in %ctio,t 2.4. l“his serve
to underline the importance of this subject to a wide tange of ~-ientific pursuits.

The primary motivation for pursuingany subject is to MWtunderstanding. In a
numberof diverse fields, a similar process is responsiblefor a rich variety of physical
(or mathematical) behavior. “1he roleof transportof some qaamt~y like mass, energy,

particles, sound, wave packets etc.) can be thought uf to tw at the heart of mod

physical processes (the iaat section of this chapter (xMttinp● kmger wow detailed
list). These physical systcms can all be charactctized at a sinvpl~’kv~i by the sarrw
modci cfluation..

(2.1)

where u is the transported quantity and j (u) is the flux lunctkm iv. this quant~~y.

In mathematical terms, this is a hyperbolic equat’mnif Oj/Ou s z red number. This
equation describes the transport and conservat’mnof u in the ~ - c p)MN,Ingeneral,
this equation can represent a system of equations as well. In tkt w, u aud ~(u)

are vectors. Section 2.2.1 covers this subject in more &tail. Thus, (2.1) :cpr~
the basic for of a HCL.

The solution of the above quation exists in closed form for only a fcw simple.
id(%dl~t!(i~i%sf?$t}111s5tJ?llCapjJrO%imatiOllsmllst b~’IIlad(.10 !UdV{”1~ III~h(”g(”ll(’~JdCA%*.



If the approximationsarc suflirivntlyd~tailed and accurate, the solutions found can
cxliil)it. the wick range of nonlinrar twha~”iorand rich phmolncna found in nature.
l\s is discussed latm, good apl)roximations can also lead to the discovery and/or

clarification of physical phCllOIIK!llii~15. !6].
A rtumhcr of drtailcd rcfmcrms 011thmc subjects exist in the Iitcraturc. On the

~A%i(”$0( }1(!1,s SOiIl(*of th~’ r(~l”orltlrlt~rr(lt~(ireferencesam Lax [17, 18J,%nol!cr[19],

I.amlau and Lifshitz [20], Mihalw and Nlihak.. [211, Duderstadt and Martin [22],
Choritr and Marsdcn [23], Anderson [24] and C’ourarrtand Fricdrichs[25]. These
refcrcllcc~Prwflt t}l(~matcria]in a rcada}dcinformativemanner,although lhcy VUY
io emphasis and difficulty. All of thmc rcfercnccs arc biased in the direction of fluid

flow (rxccpt Dudcrstadt and Martin), but consideringthat that is the most common

application, this is {int!crstal~(lal>lc~.
h“rornthr prcsmtations found iri both Mihalas and .Mihalaaand Dudcrstadt and

}lartil~ it can hc seen that fluid equations can be viewed as continuum extensions
of the I]oltinnann transport equation (via a Chapman-Enskog expansion or similar
procedure). The Jloltzmann transport cwluationhas a form that is very similar to
(9J ) [~6, ’27]

(2.2)

where j is a tirncdcpcndcnt distribution function, ~ (r, u, t), in position and velocity
spare. S.dl is a scattering kernel that I ignore. In fact, with S.dl set to zero, the
equation is the f~lt~lti(lilllt~llsionalequivalentto (2.1) with constant velocity by setting
p = j. Additionally. the diffusive terms in the full set ofcquations (Navier-%kes) can

be viewed similarly. This “transport”vicwp)int has been an active area of research
in hypcrbo]ic heat conduction [28. 29). Similar lines of thought can be found in
radiation transport in the passage froma transport to diffusiveapproximationto the
Boltznlann transport rquation [22].

Remark 1 The .du!ton collisionkss to tht Boltzrrmnnquatiun is ezplomdin some
rfeplhby I!arten, Lax and van Lccr[90] m“thrtlation 10the gencd solution GjHCLa.
This hn.~specijic application to a method known as jiux uplifting which is cotwtd in
.~omcdetail in Appcndiz B.

‘I”hrnumerical solution of equations of this sort (fm continuum ●pproximations)
can lw fo md in a number of sources as WCI).The mat basic and perhaps ekgant
source is Richtmyerand Morton’sbook [31]which contains much af the basic theory
to support classical rncthodsof solution. The historyof computational fluid dynamics
(CFD) is presented in R-he (32), Potter [33) as well M Anderson, Tarmebi)land
Plctchcr [.34].Roache contains a complete account of the early development of CFD
and a Iargc number of references. More recent developmentsare covered in several
texts: Oran and Boris [4], Hirsch[$5, 36) and Fletcher[37, 381. The text by Oramand

fh~ri~i~ cspwially rwornnwndd ASan introduction to the entire subject of numerical



I solution of complex physicalproblemsas well as HCLS.A book by Sod [39]contains a
good deal of mathematical theory. Reccntly,LeVcquehas rclcasal some Iccturcnotes
in the formof ii monograph[40]. This work is highly recommendedasan introduction
to conservation laws from both a mathematical and numerical perspective. In addition
to these books, a number of survey papers have appeared in recent years; these
include [41, 42, 43, 44, 45, 46, 47, 48]. An interesting survey of methods has been
done in relation to nonlinear acoustics of rocket engines [49) as an extension of the
review by Baum and Levine [50]. This survey underlines the point that fewer and
fewerapproximationsare necessaryin the analysis of physical systems because of the
power of modern hardware and algorit!itna.

Figure 2.1 shows the rough family tree for the developmentof upwind (explained
later) approximations to (2.1). Beginning with the work of Richardson [51] on the
soiution forstress in dams and movingon to the paperon partial differentialequation
by Courant, Friedrichsand Lewy [52) this subject had its genesis Von Neumann
and Richtmyer [53] introducd artificial viscosity which WMfollowedshortly by two
methods that did not introduce numerical dissipation artificially [54, 55], but did
throughthe natureof the finitedifferencequations. The beginningsof morepowerful
methods for solving HCLs can be found in several papers by Godunov [56, 57] and.
Lax and Wcndroff’sfamous paper [058].These papers lead to severalseminal worksby
Boris and Book [59)and van fax [60]who were,thefirst to wmgnize the importance
of nonlinearityin differenceschemes. These two papers wereat the root of a largeset
of work in the last twelve ycam highlighted by the workof Harten [61], Zale+k[62],
Roe [63]and ● group of researchersat UCLA [61, 65, 66] where the earlier workwas
clarified and extended. It is the construction of these approximations that is the
subject this researchtopic. .

I 2.2 A Mathematical Introduction

I
Consider the same equation as above

(2.3a)

which is a first-orderhyperbolic transprt quation for u and as befbre \ is the flux
of u. Equation (2.@3a)can be written as

8U au=o
z +ai%‘

where the flux Jacobian is defined by

af
a=z“

(2.3b)

.7
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If the characteristic speed, a, is constant for all z, then an exact solution exists for
(2.3b). This solution is

u (z$t) = u, (z - at) , (2.4)

where UO(x) = u (z, O) is the

equation. For a more general
initial condition.
prescriptionof\

This defines the scalar wave (Kriess)
a closed form solution doea not exist.

2.2.1 Systems of Hyperbolic Comervation Laws

A system of m conservation hyperbolic laws can be similarly defined;
behavior which it describes is considerablymore complex. Consider

~ + ~F(U) = o

X8X’

however, the

(2.5a)

whichisa setof hyperbolicconservationlawswhereU is a column vector(u’, Uz,..., u’”)7
of conserved quantities and F is a column vector (J1, ~,... ,~)7 of fluxes of U.
Equation (2.5a) can be written aa

where

afl/aul . . . aflfthlm
. .. ●✎ ✎✎ ✎ ✎

(2.5b)

The matrix A is the flux Jacobian for the system defined by (2.5b).
In general, equations of the type considered●bove can develop discontinuous ~

Iutions even when the initial data ia smooth. fkawe of this, the solutions are not
unique. To rectify this, the admissiblesolutionamust satisfy an entropy condition (for
detailson this see [17, 18, 19,40]see[67] for a simple introduction). it is the formation
of discontinuitics in the solution that causes the difficulties for finite-differccceAI- “
tions of (2.3b). At these discontinuities, the function ceases to be smooth, and the
usual assumptions made in constructing finite=difference●pproximations cotlapise.
As a result, more physical information needs to be incorporated into the solution
procedure.

The systcm of equations is classified as hyperbolic if all the eigenvalueaof A are
real (30). These eigcnvaluesJ&can be arrangedin the orderof increasingmagnitu&$
thus

A, < ~... < Ah<. c.Am-, < & .

Lax [18) has defined mtropy conditions for hy@mlic equations and systmns. Given

7
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F“igurc2.2: The left and right statm have m wavesassociated with them (4) in this
case and m -1 constant states between them for I >0.

two states Un and ULat f = O (in one spatial dimension), which exist to the right
and left of a discontinuity respcctivcly,the admissiblespeed of the discontinuity must
attisfy this inequality

A(u~) > s > A(u/!J), “ (2.6a)

wheres is the speed of the discontinuity. Forsystems this conditionis

A&(uf#)> a >“A&(u/#) , (2.6b)

with
A&-*(u~) <$< A&+*(u~) , (2.6C)

These conditions form an entropy condition for systems. Stated in other terms, this
means that the entropy must either remain constant or increasein a system. An
increa.win entropy occurs across discontinuities, These conditions must be met for ●

solution to the system to be physicaJin nature. Menikoffand Plohr [68]explore more
general cases. In some c- especially near phase transitions, the isentropes of the
systcm fail to be convex thu:~causing physical solutions to violate Lax’s conditions.

Lax also states that for a system of m quations, m -1 constart states exist
bctwccn the left and right states at t >0 (see Fig. 2.2). These states can be sep
aratcd by rarefaction or shock wavesor contact discmtinuit”ks. A rarefaction is a
smooth cxparwivetransition, while a shock is a sharp sudden change where the flow
is discontinuous. A contact discontinuity is like a shock, but some quantities may be
continuous amass it.

An additional manner of characterizing sysk (or equations) of HCLCis
a~alyzc the structure of the eigenvalues. Lax [89, 17, 18] defines an eigenvalue

to
as

8



being linearly degenerate if
i)~k
m “‘k = 0 ‘

and as genuinely nonlinear If
dA~
XJ”

r~ # O,

(2.7a)

(2.7b)

where rk is the kchright eigenvt’ctor. An example of a Iincitrly degenerate ciguvalue

is the characteristic speed in the scalar wave equation (Al = a, &/i2u = O, and

rJ = f). A genuinely nonlinear eigenvafuccan be foumi in Uurgrr’sequation (Al =

IJ. ih/&J = I, and rl = I). These equations can thus serve as models for the
behavior of these types of waves in more complex equation(s). 1n the Eu[cr equations

(discussed in drtai} in Appendix B) the cigcnvalucs ~~sociatcd with sound waves are
genuinely nonlinear while the cigcnvalue(s) associated with fluid motion is linearly
degcncratc. A shock is associated with genuinelynonlineareigcnvalucswhilea contact

discontinuity is associated with Iicwarly dcgenmate cigenvalues. A shock in this sort
of system is referred to iusa k-shockand a rarcfactionx a k-rarcfaction. k-orco~,tact
discontinuities, the above relations must be modified to read

A(UL)= .*= A(u~) , (2.8)

thus the flow speed remainsconstant across the contact discontinuity.

Remark 2 Systems of conservation laws which arc not strictly hyperbolic [70] has
been the subjcc. of intense researchlately. This is a topic oj fhcorcficaland pnacficaf
interest whichhas directapplicationto three-phaseflow in porou~media whichjomi a
two rquation system oj conservationhmwin one dimension. The numerical solution
oj such systems is jollowing suit and bencjiting gmatfy jivm the recent incrwrsein
theontical understanding. Another related ama that could benefitjrom some thtorrti-
cal/numerical work is two-phase flow [7!, 72’. The application oj numerical methods
lo two-phase j?ow has a number of stn”kingsimilarities to multiphase Jlow in porous
media.

These equations admit (discontinuoussolutionsthus requiring that the solution
converge in a weak rather than a strong sense. By a weak solution I mean that
solutions satisfy (2.1) in the sense of distributions [30, 19], i.e.,

(2.9)

for all C:= test functions ~(z, f) with compact support.

‘r}fpal)fwf” ffCaCmnfmt ran he rcforrnulatw! to giw a fwlll IJAIII for tlI(oc(~llstrllcti(m

fJ



of difkrencc schcnws. integrating (2. I) over the rectangle (zo, ZI) x (/.,/1) gives

!

Xl

!

21
11(z, tl ) Cfz- u (z, 10)dz + j“ j(u(r,,t))di- j“ j(u(zo, t))df = 0. (2,10)

Xg Xo fo 10

Thus WIICICthe solutior issmooth, (2.1) holds, but across curvesof discontinuity,the
Rankinc~Hugoniotcondition holds as

s (Un - ?f~)= J(u,{) - f(ff~) , (2.1 1)

where s is the speed of the discontinuity and UR and ULare the states to the left
and right of the discontinuity,respectively. Fornumerical work the above statement
is quite profound. The solutions src conservedcell-averagesrather than point-values
and tlw fluxes arc time averages of the flIIx at the cell boundaries. These definitions

arc convenient for usc with finite volume discrctizations.

It is WCIIknown that the weak solutions to (2.1) are not unique. To find the
correct solutions, an additional condition must be met. This type of condition is
known a.. an entropy conditionafter tkz physicalquantity of the samename [17, 18).
In [73], it was shown that entropy satisfying solutions of (2.1) are limiting solutions
to a parabolic equation

(2.12)

with ( >
length in

Oand the !imit
Chapter 8.

being taken as c j O. This connection is explored at some

2.2.2 The Rankine-Hugoniot Conditions

The Nankinc-Hugoniotconditions are especially important to the theory of conser-
vation laws when solutions are discontinuous. Several elegant proofs are available in
the literature. One is found in [18]. Referringto Fig. 2.3 and defining

u (t) = J’ u (z, t) dz = /v u (z, t)dz + J’ u (z, t)d.z ,
● 9 v

(2.13a)

dificrcntiating v~ithrespect to time, and using the governingequation (2.1) one gets

(2.13b)

where ULand URare the states to the left and right of the curve of discontinuity
z= y(i) and s = dy/df. Using 8u/8t = -~f/~z and awrying out the integration
one gets

dU
~ = j. - fL + uL~ - fb + fR - URS , (2.1%-)

10



t = y(t)

Figure2.3: A pictorialrepresentationof the domain used in the prdof the Rankine-
Hugoniot condition (adapted from [18].)

with the conservation law stating that

dU
~ =j. -sb, (2.13d)

then
s [u] = (fl , (2.134

where [u] = UR- ULand U) = JR - f~. In [23]another proofis giv~

2.3 General Numerical Philosophy
This section coversthe basic philosophyused in the numericalapproximationof NCLS.
The methods discussed here can all be classified as finite differenceor finite volume
type methods [74]. Becauseof Lax and Wendroff’stheorem [S8]concerningthe nature
of solutions to lfCLs, the equations areaJwaysdifference in conservationform.

Theorem 1 (Lax and Wendroff [S8]) /’a diflervnce equation is in conserwdon
form and is consistent with theoriginal consewafion law as well aa slable, it conwcrp
to a weak sofution oj that conscrwafion&w.

With this form,the solutions converge to solutions whichsatisfythe Rankine-llugoniot
conditions. Conservationform implies that quantities are conserved numerically,as
they are physically, thus when a domain is subdividedinto a set of subdomains
(control volumes), the amount of material exiting one subdomain exactly enters the
subdomain adjacent through a common interface.
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‘Wse schemes can be expressed in the followingform,

n+l = n
‘J ‘J - u (L+} - 1,.})= 0, (2.14a)

in one dimension whereu = A1/AI, or more generally

n+l
‘J = It; - $&j, =o,

J&

(2.14b)

for a homogeneousgoverningequation. Herej refersto the index of a control volume,
n to the time level (see Fig. 2.4), and ~ is the numerical flux. In the generalcxse
~ is the cell volume, A&is the areaof a faceof that vohunewith ● total of N faces
(sides) to a volume.The ●boveequations can alsobe written in ● semi-discreteform

(2.14c)

The determination of the numericalfluxes,] is at the heartof the subject. To
insure that the solutions are consistentthen

j(u, u,.. ., u) = j(u) ,. (2.15)

Given this condition with the stability of the overall solution procedure implieathe
convergenceof the scheme by the Lax quivalence theorem[31,67J.

Theorem 2 (Lax equivalence theorem) Given u well-posedinitiaf W& problem
and n corrcupondingnumen”culapp~”mafion fhaf is consisfenf, fhen stability is a
nccemary and sufieient condition for (equivalentto) eonverycncc.



Unfortunately,this thmmm can only be applied to the linear types of schemeslike
those described in Chapter 3. Nevertheless,this thtorem is importantand can be used
to analyze linear methodsthat arc the building blwks of more advanced methods.

As a measure of the accuracy of the solution, 1 use the Taylor series to act as a
measure. This meam that if a method is stated to be r’horder accurate, the leading
term in the truncation.error isO(Ax’+l), Later,the problemsassociated with this are
discussed. In genera!, the general Taylor series driven difference approximations are
used in favoroi a polynomial approximationdriven approximations(although Taylor
series are often used to mcawe the polynomial’saccuracy). This is motivated by the
course of rcccnt developments in numerical algorithms for solving HCLS. One caveat
with the usc of Taylorseries based measuresof accuracy is that discontirmities make
the concept of accuracy somewhat meaninglessat those points.

The accuracy of solutions can also be measured in terms of norms. The three
most commonly used norms are the Ll, La and L- (also known as the maximum)

..’

norms. These are definai by

(N e? #
L,=

,“ zj $’ ‘

1 - suP (Icjl) 94* -

(2.16a)

(2.16b)

(2.16C)
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given an exact solution. Although this gives a quantitative measureof algorithm
performance,the qualitative measureof performanceis also generously Id. These
two meansof measureshould providea complementarymeansof determiningsolution
qualities.

2.4 Applicability to Other Disciplines
The successful soiution }lCLs is vita] to a largenumberof endeavors. This gencrai
problem is present in any system where fluid flow is present (with the exception of
Stokes iiow or subsonic potential flow, but these representsimplifications of the ac-
tual physical ::’stcm). Thus the range of applicability is quite Iargc. The methods
discussed in the next chapter have been fwnd to be useful in the solutionof acrody=
namic ilows [43, 45,.36, 7S]wherethrj are currentlywi&!y used. These methods (the
modern advection solution algorithms)are also ikiing use in turbulence modciing.
The processof large-eddysimulation[76]involvesthe solution of f)uidequations with
fin!y th(’!!~i”g(%(killt”ti~(!llf’r~”carrying) !4trll~~IIW3 I)t’lllg r(”.WJl$“(’d. f{(”(’~ll~!j’,it hiL%
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been ~woposcd that modrrn advcction algorithms (SW {’haptm 4) could serve as a

turbulcnm modrl [77, 78, 7!1]4
ltrthods of a modern t)”pc arc also finding usc in tlic solution of inctJn~prcssible

flows (the flows ahtivv ,w~”primarily compressible). Ttw solutiun of this typv of prob-
lem is Iargeiy dominated by first-order schcnws [1), tmt rcccntly .wvond aml third
ordrr uwthods have hccomcrnorcwidely used [80). Lvormrd[81, 82, 83, $1] has dc-
v~loped a scheme bawd on his QU 1(’K’ scheme, which has a great deal in common

with some other I:lodcrnalgorithms. This method or oilc Iikc it ha%tlm prmniscof
greatly improvingcodcacurrentlyusmlto compute a variety of industriid flows. other
workers have also appliedother modernmethodsto more classical irw-omprc.witk flow
scdvers [$3, 86, 87).

‘l”}wsolution of three equations is also very useful in astrophysical fluid dynam-

ics [88. S9, 78, 90, 91, ~?]. The physical systems in astrophysics place scvrw dcmands
on nllmcricalmethods (27], and the methods must be carefully designed to compute
solutions with needed accuracy. Other flowsof a geophysical nature arc amenable to
modern approachesto solving advcction !46, 93, 94].

‘1’hc solution of wa~,c equations is important in applications which usc a fully

Lagrangianformulation [95]. In these methods, the grid flows with the fluid thus
Icavingonly sound wavesexplicitly in the equation set. The solution of this sort of
systcm is amenable to similar methodology as other w*avcequations. The Lagrangian
formulationoften rids the problcmof the linearly dcgcncratc cigenvaluc(s) (they go
(o zero), but still leaves gcnuinc]ynonlineareigcnvalucsin the set. Thus the primary
approximationproblemstill exists.

As mentionedearlier,the hyperbolicheat conductionproblcmis open to numcrica)
solution by methods applicable to tiCLs. The quality of the solution is significantly
enhanced through the use of modernalgorithm..[96]. Also mentionedearlier was the
workof Brioand WU[15],whichsolved the M}{Dequations. Using modernalgorithm
new phenomenawerediscovered,which may have been validatedby observations[16].
Also along these lines is the solution of problems in electromagnetism by methoda
developed for compressibleaerodynamics [97, 98] with promisingresults.

Several uses in nuclearengineeringapplications requiringthermal hydraulicanal-
ysis can be found in [99, 100, 101]. These methods are also showing agrcat dczdof use

in the modeling of solid dynamics under severe physical conditions [102] where the
solid behaves in a fluid-like manner. Additionalapplications can be found in reservoir
modeling [103, IOIt,105] with implicatirmato petroleum recovery.

in the next chapter 1explore aorneof the claaaicalnumericalmethods for solving
conservation laws and the problcrnsassociated with them.

~’rhc QUICK ~he~ UMS● third-order (spatially) upwind algorithm baaedons finitedifference
stencil containing the one downwind point and two upwind paints. It can also be derived by meaM
(}(ymdratv f+ nfmlah



Cha@~l* 3.

Classical Methods for Conservation Laws

The present containsnothingmorethanthe paatandwhat is found in thee!h
wasalready in the cause. }Icnri&rgwn

3.1 Introduction
In this chapter, several of the most important classical methods for solving }ICLSis
covered. These methods although outdated by modern standards still comprise the
backboneof most modernmethods, and contain some of the essential concepts forthe
successful design of numericalschemes. This chapter discussesthe baqicconstruction
of these methods, their stability and other pertinent properties.

Error”in the numericalsolution of hyperbolicproblemsarc generally classifiedaa
being of either a damping or a dispersive variety. As is seen below, a useful numerical
schcmc must contain some minimal amount of dissipation to remain stable and pro-
duce physicalsolutions. This dissipationdampsout errorwhich wouldotherwisegrow
in an unboundmlfashion, but it also dmtroys many featuresof the flow field. Lack of
sufficientdamping results in dispersiveerrorsthat can cause unphysical maxima and
minima to be created in the soiution by the msmcricalscheme.

Phase errorsresult in informationbeing transportedat a numericalvelocity below
or above the true velocity of this information. These errorsarc dcpictcd in Fig. 3.1.
Typically, VonNeumann stability analysis [31, 4, 35, 37] is used to analyze these
errors. The process consists of replacing the dependent variables by ~’ouricrseries,
ei~rnt,defining the new time vahteof the variab)eto be equal to Fourierseries at the
old time multiplied by a function A or the amplification factor, in general

)U;+l =g(u:, u~+s ~ Ae’Jmo= g (e’hmo,Aetio) . (3.1)

Generally, the expression of A is a combination of real and imaginary trigonometric
terms and is transformed to extract useful information. This is accomplished by
separating the functional form of A into two pieces: an amplification factor and a
phase angle,

A(kO) = IGlc’~ , (3.2)

where C’i~ the magnitude of A and d = tan-: lm(A)/Rc(A) is the phase angle. For
stability, C must bc less than or equal to onc for all kO,but this implies damping.
Small t-a!mss[If C’ illlljly t“xcvssi~.rdamping. F(N t}w scalar wavr rqllatit~ll. thr vxact
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1Dispcrslon
x

ArtifwialDissipation

Lagging Leading

Figurt* 3.1: }Icrc the thr= main types of errors in the solution hyperbolicinitial
vahw problemsare shown: artificial dissipation, dispersion, leading and lagging phase
errors. (The exact solution is in the Iightc:pen and the representationof the numerical
solution is in the darkerpen.)

phase speed is known’ so that the ratio of this to the numericalphasespeedcrmbe
taken. lf this quantity is less that onc the error is lagging, if it is greater than onc
the error is kading (see Fig. 3.1). These errorshave a spectrum of values which can
have a Iargcrange of values.

Al] the methods discussedin this chapterarcexplicit in natureand arc thus limited
by a stability condition (some multiple of the Courant=Friedrichs-Lewy(CFL) [52]
numb-r). This number, v = IalAf/Ax, is a dimensionless value which describes the
proportionof the domain of dependence covered during ● time step (see Fig. 3.2).
‘1’hmcmethods arc: the central differencemethodwithor withoutartificialdifksion,
upwind diffcrcncing,the Lax-Fricdrichsmethod, the Lax-W~droff method, and the
Beam”Warmingschcmc or second-orderupwind differcncing.

I 3.2 Central Differencingand Artificial Diffusion
The simpkst type of numericalschernescernsto be a very naturalmannerto deal with
the hyperbolicequation. This method deals with approximatingthe first derivativeof
the flux function with a centered spatial differencewhich has second=orderaccuracy
and marching explicitly in time and is known as the f~ard time-centered space
(FIX%) scheme. This method carIbe written

u, - ;(C+,-C.,) v
Un+l = n

J (3*3)



Figure 3.2: An intelprctation of the CFL limit s!:etchedin the x - I plane for point
j. For an explicit calculation, information should not be transported more than one
mesh interva) from its origin or in other words the adjacent grid points must lie on
or outside the domain of dcpcndcnce (Ax ~ aAl). If waves from two dilferent grid
points are not allowed to interact, the restriction becomes twice as scvcrc.

where u = At/& for uniform grid spacing. ‘1his is equivalent to saying that the
cell edged fluxes arc the arithmetic mean of the neighboring grid points or taking
the fluxes to be a linear interpolation of the initiaJdata. Thus the
functions are

fi+~ = : (c + r+l) “

Unfortunately, this method can be shown to be unconditionally

numerical flux

(3.4)

unstable, with
errors growing in an uhunded manner. This behavior can be seen in Fig. 3.3
plotted after 20 time steps showing the impendingdisaster.

Through the addition of artificial dissipation [53, 31] this solution method can
be resurrected to some dcgrcc. This requires the addition of ● term on the right

hand side of the equation which acts in the same fashion as physical dissipation. The
coefficient is somewhat arbitrary,but too little dissipation results in a morestable,
but low quality solution. Too muchdiffusion~can either result in destroying some or
all of the fea uresof the solution or cawing a ncw instability because of the stability
restriction implied by the explicit diffuskmquation. Results u-ing the FTCS scheme
with artificial dissipation arc shown in Fig. 3.4. The dissipation!ms largelycured
the instability,but now the solut”wnexhibits ● largeleadingphaseerror. Smarter
fmms of artificial viscoaity arc used (- Jarneson[l@) fbrexunpk) withacceptabk
performance,but the rncthodsarc always somewhat ad hue in nature[107].
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Figure3.3: The results found using the FTCS sclmmeshow the growth of instabilities
and their unboundedgrowth. (The exact solution is in the solid pen ●nd the numerical
solution is denoted by the circles.)
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Figure 3.4: The resultsfoundusing& FTCSschemewith an ~tificial dissipation
wdliri(v]t of 0. I (~~= 1 and u = 0.5).
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3.3 Upwind DifferencingType Methods
The behavior discussed in the lastscdion is clearly unacceptable although useful
computations can be performed using artificial diffusion brcause it doen converge
to the correct solution [108). In [54] a new more physically based approximation is
dcscribcd. This method formsthe basis fora largeclass of modernnumericalmethods
in Chapter 4 (see Fig. 2.1).

This methwi is first-orderaccurate in both time and space, and takcathe direction
of the wave propagation in the problem into account when computing the cdl-edge
fluxes. There arc several ways to derive this approximation, which all have relative
advantages. Typically, thi~ scheme can be derived with a first~ordcrTaylor seri~
approximation which is biased by the direction of the flow locally.. This results in a
differencescheme for (2.1) like

n+l
‘J = u; ( )- Oa U; - U:. a , (3.5)

where a >0, this can aho be written in conservationform by stating

i,+~ = au; .

Anotherway to write the cell.edge fluxes is (109]

1],+} = ~ [.~+, + ~ - lfJl(U;+t - %)] ‘ (3.6)

where j’= au;. This form is advantageous because it shows the riqnitude of the
diffusion miated with the spatial differencing. For the upwinddifferencing,the
numericaldiflusioncodkicntis

AZ
@.7a)=Pd. Ia[~ “

The effective induced viscosity is

d-d (3.7b)

which reflects the fact that the upwinddiffercncingrecoversthe exact solution to the
scalar wadeequation if v = 1 [.30].This term can be &termined fromthe comparison
of upwind diffcrcncingwith the FCTS scheme assuming the Lax=Wendroffscheme
has =ro diffusion (not a particularlygood assumption).

Remark 3 The jht tcnn for the numericaf difl’wionis dated to the jorvn oJthe
diflwion operator pwaent in the determination oj a cell edge
jormally defined as the dif&nce &tween /he a second-order

numem”cafflu. /1 b
centml diflcrence ap=

19
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Figurr 3.5: ‘l”hcsolution for first-ordmupwind diffcmncingshows the large amount
of diflusion present with this algorithm (a = I and v = 0.5).

Proximationand the numericalj?ax in a girrn achcme. 7’hccflcctim inductd viscosit~
w from the numtrical rrror OJth( .whcmc at~dk [hc c~ficjea~ on the Stcond o~er
spatial lrrm.

Remark 4 Ano/hcr way fo deriucfhi~.whemc is kJ assume fhat each comoutafioraaf
CC1lb ~ntrrpalatd by a pIwtwi.w con.~lanlptvjik m“ththe numericaljkcs king based
orJthss rtronslrucfion. Whm u is rhmsging, the prvjife is discontinuous at the cell
cdg~s and a solution can k found by solm”nga
the basic concept in Godunov5 method. lb the
.lchcmr Jdcntical to thr ont presented above.

local Riemann probkrn /56]. This is
acalar wave .~ation Ihk results in a

Figurr %5shows thr rrsults of using first-orderupwindin& ‘k solution’s pak
is .SCtOd)Oclip@ and dw prdilc is diffmed both in front of aad in back of the
exact solution. h shouhi also he noted that the solution remains positive ddlnite
throughout the com;m[ationatdomain.

3.4 The Lax-FkiedrichsMethod
The Lax-Frbdrichs[M] (sometimes Lax’s) method was derived as an answer to the
instability of ttw forward-timecentered=space (FIX%) algorithm. It has the following

20



form,
“n+t =

J ; (u;.,+u;+,)-au (u;+,- U;.J,

I which can be rewritten in conservationf“.tmas,

(3.8)

(3.9)

Lookingat the formsof Lax’smethod and upwindingone can see that the diffusion
portion of the fbx is always greaterthan or equal to that found in upwinding. Thus
this method has ● luger amount of diffusion associated with it than the upwind
differcncedmethod. The numericaldiffusion is

I and again the effective induced viscooity is

(3.104

(3.10b)

because this method also producesan exact solution for u = 1 (M Remark3).
Figure 3.6 shows the solution obtained with this method, although the solution

is psitive definite, there are several disturbing features to the solution. One is the
terracingof the solution, which gives way to ● sawtooth-like structureat the peak of
the solution. This is due to the algorithms form which does not requirethe putici=
pation of the informationfor the jfh cell at time step n for the solution of the n + 1
time step of that cell.

I Remark S lnfc~mtcdgcomcfricafl~, & La.x-f%+cdrichsmethodu a sort ojan Wfra-
upm”nd”method becawe the aolution u over bmscd (a cocficient gmkr than one) in
the apw”nddirection. In mccnf pra, the Laz-Ftiedrichs method has been wed wI”th
a alight variation. The magnitude of the dkipation in the /fu u d to the absafufe
valueo! the laryeat Id chamcferidic#peed. For a &r ww qaat~ this h iden-
tical to the uptvind method, bat jor qstemu oj e~ti”ons % u much di#krwd(this
b discwsed in mom detail in Appendu B).

I 3.S Lax-WendroffType Methcds
The Lax-Wendrof?method [58] is the canonical classical second~ordermethod. This
method produces second-ordersolutions, but with spurious ouillations near discaw
tinuities, thus raising the possibility of producing negative values of pcxitive definite
values such M density or pressure, From the standpoint of algorithmic description,
geometric depiction is particularlyuseful. Normally, the method of Lax*Wendroffis

I 21
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Figurr 3.6:I“twsolutionfor the Lax-k”rimlrichsmethod shows the extreme ●mount
of diffusionprtscn{ with this algorithm. Also noticeable is the terracing ●nd the
sawtooth structure in the solution (a = 1 and u = 0.5).

describedasa finite-differencealgorithm;however,it also can be d~ribed geornetri”
cally. Figure 3.7 gives a qualitative dmcription of the method,

lt is WC]]known that the second-order central difference scheme with forward
Euler time differcncingis unconditionally unstable. This can be easily verified with
VonNeumannstability analysis, but I proceed from ● different standpoint. This is
motivated by th~ desire to have ● more heuris~icexplanation for this well=known
phenomenon. First, some nomenclatureneeds to be introduced. The flux functions
for differenceschemes are functions of the dependent variablesand can be weitten in
terms of interpolating polynomials, Thus, given ● pkewise polynomial, P, (x), the

I
fhl%functions can be wrjtti

m)= Jim)] .

With this definition, the problem reduces to ●pproximating the &pendent
on a grid and computing the value of the interpolant at ceil edges.

Returning to the wcond~ordercentral di!krencc,

22
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variables

it can be written as a picccwisc
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Figure3.7: The Lax-Wendroffmethod can be viewed geometrically as a linear inkr-
polation of the initial data with a time centeredcorrection (Oi time averaged)to the
cell edged state. If one thinks of the form of the exact solUtionto the scalar wave
equation,u (z, t) = U@(z - aAt), th~: form makes rense.

, polynomial on the interval [:).l,x,+l] and has the form

where
UJ- UJ-I ‘J+ I - Uj

SJ-~ = , and s
J zJ - z,-~ J+\ =

‘J+l - ‘J

(3.128)

(3.12b)

This functional form is both & and C’ continuous. Evaluating the flux function at

‘j- ! and ‘J+} * the =ond-order central diffcrcnccscheme ig r~over~. This func.
tionalformtakesabsolutely no considerationof the directionof the flowin the problem
in finding the numerical flux functions. Perhaps this is ● more p~atable physically
based explanation for the unconditional instability. The method produces spurious
oscillations because the solutions computed with these flux functions can lie outside
the given values of u.

.,
By considering the fluid motion and in a Lagrangian sense computing the tinv-

centered cell edge pmitions, which is for the right hand side cell edge

aAt
‘?.J

-—
= z, & ~

2“
p.l%i.)
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and for thv left hand side cell edge

aAt
Il,j = z,.~- —

2“
(3.13b)

Insmtingthesecxorcssionsinto the second-ordercentral differencepolynomials gives
the Lax-WendrofTscheme (for a scalar equation). This method is stable for Aa <
1, hut still produces spurious oscillations. This stability is solely the result of an
%pwind” centcrmi ap} -oximation, which now is dependent on the flow direction
rattwrthan completelyccntmed in a spatial sense.

Remark 6 This diflrrs /rem the a:counf of fhc Laz-Wemfroflmcfhod giurn 6y LtV-
qwr [./0] that rquirr.~ the direction of ihe jfow to br known in ordrr to drjinr the
interpolation.

The original Lax-Wcndroffmethod [58]uses a second-orderaccurate Taylorseries
approximation in tilne to stabilize the FTCS method. The original derivation was
ba..cdaround the followingideas: given a second-orderTaylorseries in time

u (r + At) = u (r) + :I,+*I,+O(A,3)* (3.14a)

and making substitutions for the time derivatives defines the method. Using the
foilowing relations

au aj
z = -z ‘

(Ibtb)

and

(3.14C)
gives the final form

;fl,+:(a~)l+o(A*%u (e + Al) = u (t) - —
:

(3.14d)

or

;:l,+&(u’&)l,+O(A”~ou (f + At) = u(t) - — (3.14e)

The derivatives are all approximated with central differences. The numerical flux
functions can be written [] ]())

———
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Figure 3.8: Lax-Wendroff’smethod shows a shup capture of
the solution is polluted with dispersive ripples (a = I and v =

the di-tinuity, but
0.5).

which shows that the numericaldifhsion coefficientassociated with this methodis

uaaAzp = .—,
2’

(3.168)

or an effective induced viscosity of

dLw = 0. (3.16b)

Again,alwith the past two methods, the Lax-Wendroffmethod reproducesthe exact
solution when used on the scalar wave equat”kmand v = 1 (- Remark 3). These
resultsdo not suggest that this is alwayspossible in the generalcase; however,they do
suggest that the CFL numbershould be maximized to the extent possible for quality
solutions.

The solution found with this algorithm ia shown in Fig. 3.8. It shows ● sharp
location of the discontinuity,but the solution shows ● great amount of dispersionand
negative values.These vaJuesmay not be physical as discussed earlier and are aes-
thetically unappealing. There is also a fairlysignificantamountof numericaldifhssion
associated with the fronts. Typically, the Lax-Werldroffmethod is ●ugmented with
artificial diffusion to combat rippl= [111, 112].
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3.s.1 The Two-Step Lax-Wendroff Method

The Lax-WtmdrolTmethod has been reformulated= a two step method, first by
Richtmyer(113] and then by Burstein [114]. It can be written as follows,

n+} 1( ) 1- u; + U;+i ( )- -ua Uf+l - U! ,‘)+ } = ~ 2

and a second step
n+l = n ( m+ ~ n+)

‘J ‘J )-‘a ‘J+) - ‘J-~ “

(3.17a)

(3.17b)

“[’hisform is already in conservation form. This method is equivalent to the original
i.ax.~t”vndroflmethod for a scalar equation (proven through simple backsubstitu-
tion). This formulation has been useful in simplifying the implementation of the
Lax-N”c*ndroffnmthodon systemsof equations. It may be useful to consider this
form (or something similar) in future method development.

3.5.2 MacCormack9s Method

MacCormack’smethod [115] is another derivative of Lax-Wendroff’smethod ●nd
produces si-milarresults. The formof the solution ●lgorithm is as follows,

(3.13a)

and a second step
Un+I = 1

[ I
- U“ + UJ- Ja(ti, - U)-l) .1 2J (3.18b)

h this form, the Lax-Wendroffmethod appears to bra predictor=correctormethod.
This method h= been particularly importantin aerodynamicapplicationwhereit
hasfound widespreaduse.

3.6 Second-OrderUpwind(Beam-WarmingMethod)
One classicaJcureforthe problemsof the Lax”Wendrc#methodis to makea second”
order scheme with an upwind biased stencil’. Using tbe form (3.12a), this scheme
can be defined by setting

u, - u$-~
‘J+} = =)+, (3.19a)- *, 9

if a >0 and
‘J+a - ‘J+t

8J+~ =
‘J~t - z, ‘

(3.19b)

~he termstencilrcbs tothegridphs MA bys Aerrw,
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Figure 3.9: The Beam-Warmingmethod shows a sharp capture of the discontinuity,
but the aolutionis polluted with dispmsivc ripples, but the orientation of the ripples
is different than the Lax-Wendroffsolution (a = 1 and u = 0.5).

if a <0. With time-centered differencingthis is the &am-Warming scheme [116).
The solution of the test problemis shown in Fig. 3.9.

The methods discussed in this chapterdo not coverall “classical”CFD methods,
but representthe most commonly wed, The concepts presentedabove also represent
the basic means throughwhich modernmethods are based. The methods discussedin
this crmptvrare linear. Linea:ity is expressedin the application of the finite difference
stencil to the governingdifferentialequations. In all the classical methods, the stencil
if, identical for all grid points. The importanceof this will become clear shortly.

In the following chapter I describe the basics of high resolutionupwindmethods
forconservationlaws. Ratherthan ● fixed finife difl’ence stencil, the methods in-
troduml in the next chapter use ad8pCiveste@s hat chaa~ as the 80Wchang~
The methods of this chapterare hid u the Ibnduion b Wh8t fdbws.



Chaptrr 4.

An Introduction to High-Resolution
Upwind Shock-Capturing Methods

Linearitybreedscontempt.

4.1 Motivation

Peter Liu

“1’ostart the discussionof high-ordermethods in CFI) for solving HCi.s, I thought
a quickmotivational introduct”wnis nccdcd. The first modern method discussed in
detail hereis that of Codunov [56, 57), which is at the root of most recentmethods
(.SCCt’ig. 2.1). Onc might believe that using a high quality method Iikc Godunov’s
woulddo the job (if more detail is nccdcd, use more grid points). To illustrate why
higher order methods arc worth exploring, ) makeuse of a test problem used by
Woodwardand Colclla 144]. This is an interacting blast wave problcm describedin
more detail in Appendix A.

In ivone-dimensionaldomain, the density is set to unity everywherewith the fluid
at rest, the left most tcn percent of domain has pressureset to 1000, the right most
10 pcrccnt has a pressureof 100, and the rest of the domain set to 0.01 with 7 = 1.4.
1*WOvery strong shocks formand cventua]ly interact forminga combinationof shock
wavm,contactdiscontinuiticsand rarcfactions.This turns out to be a very strin~t
test of a numerical metho,d and it is very difficult to resolve all the phenomena
involved.

Figures 4.1 and 4.2 show the results for density using Godunov’s method (Sec-
tion 4.3) and a Second.orderGodunov (Section 4.4) methodrespectively.The first

order Godunov’s method uses 5 times the computer memory and 35 times the U*
putcr time to SOIVCthe problemyet the second-ordersolution is of muchbetterquality
and is closer to the ,.onvergedsolution‘. This pointhas &n raised in [89], in ● simu-
lation of hydrodyrwmicphenomenain the 1987Asupernova, Thecostandcomplexity
of the partial parabolic method (PPM) they used allowed the resolution of phenom-
ena in their simulation. With other methods the solutions could not be attempted
because of limitations on computermemory. It shouldbe pointedout that as the
dimcnsionality of the problem incr~, the advantage of high resolution methods

ITh~~ inIimwiththere~~ foundin [89]. Thereit wasatatdthmhigh~lu~bn =Cond-
ortkr(or higher)methodswere15to30tirncshigherin resolutionthaaCoduaov’smethodfor
cm!Sfi .!isferttimitii=+

2s
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increases. Things like adaptive griding could also improve matters considerably al-
though a combination of adaptivity and high resolution appears to workbest[117].

Remark 7 The use u~ 10 times as many g~tf poinfs :.*;pliesthrough k acfion of
the CFL stability cn”tem”onthat 10 times a.~manp time a;.ps be used for a given

calculation. This equals 100 times w many ~~”dpaints timrs time siepa, ~hich in turn
indicatesthat the high omftr method is abant three times as ezpensiveas Godunov
method on a per grid paintper time step bask From the perspective oj per~urmvce,
at f5 timesthetwohdior, ;Aehigh ttuohdion mc(hod is $ fimcs cheaperper grid paint
per timestep. /“these rzsul!uam applied to muftidimcnsic:talproblems, the diflertnca
become more prvlound.

4.2 Introduction
The workof Godunov [56]has led to manystrikingadvancesin the numcrlcalsolution
of (2.1). “1’hcuniquenatureof Godunov’sworkwas rccognizec!by van Leer[118). III●

serim of papers, hc [119, 120, 60] spearheadedthe moderndevelopmentof HOGalg-
rithms. Godunov’smethod and van k’s extensions usc polynomial representation
of the conserved variablesin eachgrid cc)!in the process of computing the solution.
These picccwise polynomials can be discontinuous at g;id cell interfaces and as such
require some closure relations at these interfaces to compute the numerical fluxes.
This closureuses the local solution to a Riemann protr!em(Appendix B) though ei-
ther an “exact” [41, 60, 121, 122, 1*H,124]or an approximate[12S, 126,63, 127, 128]
Ricmann solver.

Colclla and Woodward[122)advancmlthe method developed by van Leerin their
PPM. This method is still considereda premiermethod forcomputing the solutions to
(2.1) [129]. Several theoreticaladvancmhave been made as well as the more practical
ones. Hartcn’s theory of TVD schemes [130, 61] (Section 4.5) made great strides
toward understandingthe t!wsoreticalpropertiesof methods like van Leer’sand those
discussed below.

Severaldifkent varieticsof ‘IWOmethods have been developed: the modifiedflux
formulatic,ndue to Hartenand severai symmetric TVD schemes. Roe introduced the
symmetric form of TVD scheme [131]. Sweby [132] and Davis [133) also presented
methods of the same general form. These wereall derivedas a Lax-Wenckoffmethod
augmented with a nonlinear upwind biased dissipation term. Yee [134) christened
these schemes as symmetric TVD schemes in hcr paper. The general form of sym=
metric TVD schemescan be viewedin difbent ways: as an advancedkwmof artificial
diffusion, and as a Lax-Wendroff[s8] with w additional dissipative flux to ensurea
TVD solution.
t’imvsimilarto

Along other lines, Goodman and LeVesque[135] took a geometric
van Leer’sworkin derivinga ‘J’\’[) method.
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Figure4.1: The densitycomputedwith Codunov’smethodusing 10,000grid points
showsthegeneralstructureof thesolution;however,thesolutionalsoshowssignificant
smearingbehind :he contactdiscontinuityat x = 0.6. The peaks at z ~ 0.6S and
z s 0.80arcclipped. (Az = f).ol,v = ().~, / = 3.M.)
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Figure 4.2: The density computed with ● second-orderCodunov methodusing MOO
Kid points shows a nearlyconvergedsolution. Much of the smearing and clipping
) writ in the first.ordersolution is gone. (Set Woodwardand Cbklla 1984 for t$e
cfmw-rqetjwdutifin.)



A limitation of these methods is that they are limited to first-orderaccuracy in
the maxil:mmerror norm. This is due to the actionof the flux or slopelimiter used

in amiring the TVD .lualityof the solutions To increase the accuracy of this sort
of n~ethod,moreelaboratenumericalalgorithmshavebeendevelopedin the pastfew
years. Among thesearc the uniformly non-oscillatory(UNO) schemeof Iiarten●nd
Osher 1136],whichissecond-orderaccuratein all norms.Essentiallynomoscillatory
(HO) methodsarc describedin a seriesof papers[64,137,65,66),wheretheseideaa

havebeenextendedto arbitrarilyhighordcr~of accuracy(section 4.4.2). Theseidcaa

arcalso makingtheir way into multidimensionalalgorithms[138,139].

Anothermodernadvectionalgorithmalsocanbeviewedalongtheselines. Perhaps

the firstmodernalgorithmto recognizethe necessityof nonlinearityin the difference
schemewa.+the FCT methodas introducedby Boris and Book [59) (Section 4.6).
‘rhis methodwasdevclqed with the recognitionof the theorem of Cbdunov,

I Theorem 3 (Godunov [56]) No monotone numerical algorithm for soluiag (~.1)
canbc both Iincarand second-order accumle.

‘l-his(iomnotprecludethe possibilityof producinga “monotone”second-orderscheme,
]JUtsimply state ghatsuch a method cannot be Iincar in nature. Thus the FCT is
designed M a nonlinearblending of high- and low~ordcrnumerical fluxes,whicherl-

suws the lack of dispersive ripples. In a seriesof papers [59, 140. 141,142,62) this
methodhasbeenrevisedand extended.

Digressingslightly,thereappearsto beivschismin theliteraturebetweenthe TVD,
110{; and ?WOtype methods and the FCTmethods. Authorsdoing researchon each
method usually mention the other methods, but the synergismends there. lt is of~
4tatcdin the E*CTliteraturethat the TVD type methods requireRicrnannsolversand
as such arc horrendouslycomplex in comparison to FCT. It is my contention that
this is simply not true. Umlcrlyingeachmethod is a schemefor scalaradvection,
which is at the genesisof more complexdevelopment. In extending the methods

to systcmsof equations, the TVD type methods use Rierrmnnsolvers, which have
many exceptional theoreticaland .-hetic ●ppeals. The qtension of FCT, on.the-
othtw-hand,is usually extended in what seems an ad hoc or naive(see Section B.3.4)
formulation[143Q144].

Mrowing from [45]one can sort of “SCC”how varioussch~ arc relatedpic-
torially. This is done in Fig. 4.3. If onc imagines some sort of space of schemes
with monotonescherncs,SM being the mostrestrictiveand the spaceof all traruport
schemes, .$’7encompassing●ll methods. The variousmethods can be =n aa a setof

overlappingspaces. The space of all TVD methods is *O U SM and ENO schema
are the unionof the TVI) spaceand that labckd .$~~o.

Rcccntly,I have thought a lot ●bout the philosophy rclatd to the design of high
r~,S~~III~I~,Il.(}l~”rIImand J Lelicvcthcw ptlilowptiicqcan he clas..ifimias follows:

:\]



Figure 4.3: In this diagrama rough classification of modern numerical schcmcs is
AOWOn..$uis the spaceof upwindmrthodsand Sc is thespaceof ccntctcdschemes,
theo[hcr termsarcexplainedin the text. (adapted from [45,145].)

1.

2.

3,.

4.

ArtificialViscosity: There arc those that believe that the high”orderschcr.ws
arc simply fancyartificialdiffusionprescriptions.This is largelya productof

the ‘WD-Lax-Wcndroff [133,131,132;and thesymmetricTVI) [134)methods.

}fybridization: The FCT [59, 140, 141, 142, 62) and }Iybr-d[146) methods arc
mat easily classifiedas combinationsof first-●nd higher”ordcrclassic schemes.

Mathcmatica) Thomry:Nartcn 1130,61) and Martenet. al 164]haveproduced

a mathematical frameworkwhich is useful in producing rigorous proofs and
bounds on the behaviorof these schemes (TVD) and a vague generalization to
Icss restrictive schemes (ENO).

Interpolationand Advection: This was given by van ber [120, 147] (baaed on
the work of Codunov) and SIwnextendedin PPM. The methodseemssome-
whatheuristicin nature, althoughit workswell. TVD theoryaidsandexpan&
this train of thought. which works well for conceptualization of lhe schemes.
‘lshcENO algorithmsextend this view to a broaderclassof methods,but ●t

this point do not include the breadth of pouiblc methods. In ● recent paper,
Ilarten brings th~:●rgumentsof semi4agrangianmethod[112)into the arena of
high=resolution mthods. This should be clarifkd by the fact that unlikethose
methodsusedin meteorological(148, 149] fJowby v ~ 1. Despitethis kind of
differentviewpoint,the results●re generallysimilar,althoughthe metcorolog.
ical schema am not conservative in nature. Thus they arc not ●ppealing for
computations of dlscontinuom solutions.

At some point, tkse variousapproachesshould be ~quivalent,which would result in
an increasedsynergism between methods and cew of analysis.

Remark 8 In [149] it wu noted hat van Leer bega~)?Aing d scmi=k!agmngian
mtf}totl.~ corig In hts sludtts, buf dropped them jtom conauftluilon btcau.w o/ fheir

:$?
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Figure 4.4: The initial data is denoted byt, h,solid line while the dotted line shows
the solution at someadvanced timeon aperiodic domain. Theupper figrrre’ssolrrtion
is monotone because theextremain the advanced time solrrtion are bounded above
and below by the initial data. The lower figlrc)s solution is not monotone because
new extrema exist in the solut,ion.

lack ofconsematiorr

A key concept in this entire discussion is that of monotone convection. This

means that the solution is a physical solution for physical initial data and that it

(ioes not create new extremaiu the solution I’bis is depicted graphically in Fig. 4.4.

Definition 1 (Monotone Numerical Advection [151]) Monotone nttmerical ad-

uection is defined by a scht!rne which is a combination of coejicients of the local data

which am allpositiue, L’onsistency ~equive.v that some conservation principle be en-

forced i.e. the coefjiciertts.mnz to one. This a[so merrnst hat the numer-icalscherne

drxs not introduce new cztrema into the .so[a(ior.

Fortheremainder of thepresentation, the following nomenclature isused: Aj++u=

Uj+] — Uj. A conservative finite-difference w ,lution to (2. 1) using a simple forward

Euler time discretizatirrn IS

2Defined rigorously, monotone convection implies that the finite difference scheme is first or-
der [73]. Also some work shows that as currently dcfi ned no scheme can be TVD in more than one

dimension [150].
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“1’hctvmporalspacingis N and Ax is the spatial mesh spacing. The superscript n
mfcrsto tirrw,t, n + 1 refersto the time I + Ai, and the subscript~ refersto space

with j hcinga wll ccntcr and j A ~ being the cell cdgm. The construction of the
numericalfluxesI,* ~ isat theheartOfthissubj=l. ‘rhc CCJJ~ge flUXCm ~ dcfin~
as

1,+: = ; (f, + M + 4,+} t (~$.2a)

I w!ww ~ is a n,lmcricaldissipationtmm. For a systcmof equationsthe flux is written

(4.2b)

I whew F and O ar(~vmtors, hut arc definedsimilarly to the single equation case. For
instance, the first-or{krdonor-cellflux can be written

thus

(4.3)

Remark 9 Whennumericalschcmcs becomenonlinear in nature and/or am applied
to nonlinear problcms, standard means oj anal@s am not t~picafly valid. New ap-
proaches to method anal@s have been developed, but am nol as nratu~ as classical
methods. LeVC9ue[~0] gives an octrvicw oj ihti topic. Much O!the modem analysti
ISbaml on ‘comptnsatrd compactness” as used by DiPcma /152, 15$ in his prooja
0/ conrffyencc. .f”onlintardynamics ma~ abo yield u@d means ojanal@s 1!S4].

4.3 Godunov9sMethod
Ihave already visited (;odunov’s method in the Section3.3. For a singk scalar

equationthis is simply the upwind methoddcsmibedthmc. For nonlinearproblems
this is not so straightforward. The key point in constructing ● Godunov method is
to use some sort of Ricmann solver. Another consideration is entropy satisfaction

of the solution 11.%15].This generally means that the solutionmustcontaindlic”knt
numericalvi.wosity to insure physical solutions.

The”followingalgorithm gives a generaloutline for Codunov typemethods.

A

I Algorithm1 IGodanovb Mtthd]

I 1. (InitializationStep) Averagcthc initial distributionover thecomputational eclls

I J8)++s/1u;=—
.~)Z E,-A,s/2

u (r)ds , (4.4a)



2.

3.

4.

%%.

This

(Reconstructionstep) Reconstruct the initial distribution as pieccwise poly-
mials over the computational cells

u, (z)= P, (2) , (4.4b)

where P, (s), x E [X)- AzJ2, zI + AzJ21

(Solutionin the Small Step) Solve the initial
where discontinuities can exist

is a Polynomial in cell j.

value problcmat each cell interface

14(z,t) = E(z,c- f“) “U(x, fn) , (4.4C)

whereL“(z, f - t“) symbolicallyrepresentsthe evolutionoperatorgiven by the
solution to the Riemann problem.

(Averaging Step) Rcaveragethe solutionoverthe gridcells given the dulkm
operatorin the previous step,

Go back to the reconstructionstep.

process is shown schematically in Fig. 4.5.

(4.4d)

Remark 10 Oshcr /f55/ dcfned a Gcdunovflux for scalar equationsas

and the inequalityjor an

For the xalar equation,

(4.5b)

jlux. Thw/iwthe case olacalar equationsone candiowwhd tht approptiale entmp~
inequalities are. Thia mequalit~ can be tvritlcn

(4.!k)

Oaher defined schemes which meet the entropy rquirtmerik as ‘B$ehemw”. This
concept hanproven to be importantin the development o~higher der $ehemeawhich

3.5
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F’igurc4.5: The Mowing steps are shown: ●ver@og ad feca19tnJcbl, solutionin
the small,and maveragingin this schematicnpNeMatioa of GOdaoov’9method



produce
with an

physical aohdiona. It iu commonprcdice to develop the higher order uchemtw
E-scheme as a building block.

This algorithmcan be formulatedin severalways: in a fixedor Euleriancoordi-

natesystcmor in a movingor Lagrangiancoordinatesystem. With the Lagrangian
formulation.thecommonpracticeis to setthemordinatcfrarr,esspd equalto that
of the flow. Another common practice is to compute solutionsin the Lagrangian
frame and map the results backtoan Eulcriangrid. For the Eulcrianalgorithm,the

solutionin the smalt is done in a fixedcoordinateframe so the averagingstep is a
simple onr step process. In the Lagrangianalgorithm, the averagingstep takes place
in twosteps:firstan averagein the Lagrangianframeand thena remapto the fixed
Eulcriangrid.

The averagingstepcan be simplifiedwith the divergencethrmremthat Mows the
‘. integral

to bc transformedto
“n+l = n
J ‘J - J (i)+}

(z,**+’)&,

- i,+) 9 (4.6)

(4.7)

This formulation is just like the normal finite differenceequations for a differential
equationin conservationform. Forthemlution in Lagrangiancoordinatca,the spatial

variablex in the above equations is replaced with ~, the mass variable. The remap
step of th~-LagrangianGodunov alsocan be expressed in these terms. In this step.
the solution in the Lagrangiancomd;natesis mappedonto an Eu!eriangrid. This cm
he expressed as theadvectionof theconservedquantitiesthroughthe cell txmndaries.

This rcavcragingstep (see Appcmlix B equations (B.3a)-(B.3c)) can be derived
from the concept of operatorsplitting[1s6]. The Lagrangianstep is the solutionfor
the Eulerequations for the aoundwaverelatedtransportandtheremapis thesolution
for the advnction relatedtrarqm:t. This concept is at the genesisof the Arbitrary
Lagrangian-fhderianalgorithms [157). but these differences are more philosophical
than substantive.

The rcmapping procedure must deal with aevcralspecific possibilities, as shown
in Fig. 4.6. C’arryingout the summations over the Euleriangrid CCIISreveals that the
usc of a simp!c upwind differenceformulasuffices to carry out the rcmapping. From
the wdutionof c.h~?,ngrangianequations thp rdl rdgc wdocitirs arc known, thus lhc
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Figure4.6: The cases which nl Lbe cor,~:Jcrcd by a rcmapalgorithm.

remappingis uniquelydetermined.The formulais constructed as fo)lows

with

n+J Ak -
4, ~z4,= .— - ~ [j(J,+l)-J(i,.})]. (4.8a)

where all quantitieswith a “tilde” arc ncwtime Lagrangianframevariablmexcept

d, whichis timecdcrcd.
The formulationabove has several stability limits. For the solution step to make

sense(30]requiresthat the waves not interact which Icads10the restriction

(4.9)

wherea, is the maximiJmwavespmd present in each CCII.This mrans that waves

cannot pass throughmore than half a grid ccl] in a timestep. Thestabilityrestriction
is the morefamiliar Courant-Priedrichs-Lewy(CFL)condition

(4.10)

which is the restrictionumiallytaken formethodsof this type. ForthepurelyEukrian
calculationswith the Eulerequations.see (B.la)-(lllc),

( AZ) Az,
‘t s ‘~f 1~,- c,l IU,+ Cjl

)

—9— .

where c> is the Eulerian sound speed. For the Lagrangiancomputationswith the
remap step, see (B.2a)-(B.3c), there arc three restrictions to consider:

where C: = ~) ‘he &rMgim ‘Und ‘d ‘d ‘hc ‘Und ‘- ‘-triction ‘Cfcrs

to the Lagrangian~tep. the adv=tive velocity is for thr rrrnapstrp.and the zorm

:LY



tanghnglimit.

4.4 High-Order Godunov Methods
1%Godunov’smethod,the recon8twtkm step cmoiete of eetting

orpiecewiicon8t8nt. The Buleri8nGodunov ueestbe Bulerianeqaatkneet far
the Aution step,whik the Lagm@an with remapGodunov ueeetbe Lagru@M
equatioiMwith 8n aver@ng donein the movmgcoofdii framefallowedby the

~ ~ ~ tOthe Eukrian ~ (eeeAppoIIdixB).

I&mark II %primmy (oado@en tbe (+) &renee betvom Godwwba
whichie#rdodereeeurde,dhigher osdermdhode(see.%etioa~.~) likeMUSCL[80]
endPPM [12S’] ie ihe OAT o~he polynomial tsrd an&e ~*.

Aellieforcomrvat” ion Iawe(MUSCL). Fkeently,reaea&m IWe&e!ndedtbeidaM “
of vanLeertoarbitrarilybi&order 8@idly M l~jWdly andchrktenedthesemeth-
odeu uniformly[136]ur ewentially[64]non.awilktory(UNO or ENO) echemm

4.4.1 MUSCL -e Schemes
TIM eecond-orda methods Ckvdopd by van Leer eeeentiallympbmd tbe Conet8nt

Pkcewieepm61eueedin Godunov’8method withalinearprolik. Tbkpro6h3ie
‘limited” (Section4.7 and Chapter8) in urdvr to prevent non—manotmebdwior
in the solution pfocedurv Van Luw’e criteria wae aomewbat hewktk in mtare,
althougbitturneout to be faklyrigomusaft.a Huten’swork onthetbeoryof TVD
W, [130,61]. TIE criteriastake that th.. interpohii in ● @en cellebould
notliiouteide tberange ofvaluesdehed bythecell aver~and the neighboring
valuesUCthe variabk beingintqdated [120. !7!. “I’& ieshownin Fii. 4.7. %ted
ma&IMticaUy tbii ie

(4.11)

woodwud $t8testbatthiican bereJaxed81iitly tothe We#8gaeofthea&?cted
quantitywithina celland that whkb remainsmite originalcellmuetlie withinthe

rangeof theoriginal cellaverageanditeneigbbom. Aecbemetypkal oftbneeuead
hereis

P,(z) =uj+A;u~.
a

(4.12)
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Figure 4.7: A graphical depiction of van IAwr’sheuristic monotonicity constraint.
Forthe second constraint given by Woodwardthe interpolationis monotone forsome
time step siza.

where d~u is a limitedapproximationto du/dxl_, AJZ.
With a second”ordcralgorithm, the queationof time accuracy must be Adrcsaed.

This is usually done througha Lax-Wendrofflike procedureIikcthat describedin tk
previous chapter. This can procccd from two viewpoints: the firstbeing that 1 am
moving with the fluid to the point in time which is the averageof the old and new
time steps and evaluating the polynomial reconstructionthere, the second is that of
averagingthepolynomialoverthcdamainofdependenccftithetimestep[122).These
twoviews am equivalent if the integraltime ●verageis evaluatedwith● midpointntk.
This process is depicted in Pig. 4.8.

Van Leer [158, 1S9]reportsanother●pproachto finding● second=orderaccurate
temporal solution. Defining uj3 as the value ●t tk kft celledgeof cellj and u,, as
the valueat the righthandcell edge of j, the second-ordertime accuratevaluesof
ujJandUJZarecomputed from

and

(4.138)

(4.13b)

This form of the algorithm beam
sehmnepmmtd in %vtki 3.5.!.

great resemblanceto the tw~stepLax-Wendroff
Similar-sortsof Mc*%art”alsovxprm.scdin a scrim

‘!0



Figure4.8: Two viewsof time accuratecomputationof celledgevaks.

of papers (65, 160, 66] where a TVD Runge-Kutta time discretiaation is introduced
and implemented.

Remark 12 The TVDRunge-Kuttu tempddbcmtizafion pwtidti the meansthruqh
which high-order temprd w:umq can k achieved m“bd 8igni~td impkmenta-
tion difiuftia
OJIKXs. These

This u cspeeiafl~truein maltidimewianaf pmbkrns *Vmoths@ems
muftistogealgorithmscan k w“ttcn in thesolbwmgform

u’ = : [o,,u~ + #,&JfL(u4)] ,
k-o

(4.!4*)

whcmthe discrute difl’rwttiafopemtor i~denoted by

(4.14b)

and oi~ ami 8,4 am coe~”en~. T$e criteria jor thio to prwduc TVD WUUS(we
Seclion ~.5) fiven an appropriatespatialopcmtor b a CPL condition

(4.14C)

t’f,9,b i.~nrjmtirc. thr .tipafia!opcra!or mus! bc aniiuptcind[6.5, !60]. In !ho.wrrjcrrn~c.~



I
a numbrr of schcmcs arcdr]incd,

4.4.2 ENO Type Schemes
I{artmi and Oshm [136]defineda ncw classof schcmcsas being uniformlynon-
osvi!latory. This class of method is part of and prcdrcessmto thr ENO schemes.
OnC*particularlydistinguishingfactabout this schemeis that it is sccoml-orderac-
curat(*in all its norms. This givesit somestrongadvantagesoverothersecond.ordct

high rwolution schmncs,whichdcgcncrateto first-orderaccuracyin the maximum
norm.

Definition 2 (Harten and Osher [136]) Ncm-owilla&wy inlcrpolaiion is defined
by interpolation, l; (r) /hot has its number OJcztrcmn in an infcrual /hat is nol
~zcrtd(d by the local czfrcma in the data, u (x).

Th(”co!~tructionof ENO schemeshascxtcndcdthe conceptof high.orderGodu-

nov nwthodsto a muchwiderrangeof potential schemes [161](this classof mctbods
inchdml other GodIItIovtype algorithms). The basic concept of the ENO schcmcsis

to computea intcrpdatingpolynomialusingthe data from the smoothest part of the
grid locally [162]. To do this a Iimitcris usedto choosewhichdirectionto go forthe
moothest rcconstmction.Thus the stencil used for the finitr differenceformul- is
adaptive in natureand theaccuracyof theschcmcis Iimitcdonly by its implementa-
tion and the propmtiesof thedata. Onc problemis that despitethe relativelysimple

concept,the ENO schemes(64]asoriginally formulatedarc horribly complex.This

problcm is rvcn more scvcrcin multi-dimensionalimplementations1161,64], Shu
and oshcr [6S,66] haveeasedthis burdensomewhatand if more rcccntwork is any
indication [139]this should c- more. For ENO schcnm, in general,mostproperties
suchM convcrgcncc,boundcdncssof solutionsetc. haveyet to be proven.

Definition 3 (Harten, Osher, Engquist ●nd Chakmvuthy [64]) likenliall~ noa-
oscillatory inte~lation is de$ncd by interpolation, Pj (z) that is the #mooiheat ap-
proximation /o the data in aome SCWC.

An ENOalgorithmforpolynomialreconstructionis outlined bebw. This is known
a reconstructionby ● primitivefunction. This ENO bndation “Ubased on the
interpolationof a functiondefinedby

thus

(4.15a)



By virtue of the previoustwoequations,the interpolationcan be integratedto the
CCIIaverageof cellj, but alsoeverycellthestencilfor cell j.

Beforeshowing the algorithm, some tcrrm nmd to bedefined

a’= z;,;:n,...,z;,:8+, ,Q[ 1 (4.16a)

b~= Q IX;o::a-t,. . . ,x:,;:,] , (4.16b)

Whcrrthe brackets denote the &’Adivided difierencc [163] which can be defined
rccursivcl~The algorithm computes a polynomial for Q (x,+!), which once differ-
entiatedcansave as the polynomialapproximationin the J’hcell,

Algorithm 2

1.

2.

3.

4.

5.

6.

Initialize

/ENO

k = O,

Rccondrucfion via Primitive Function 164]]

Z~o-i~= Z~,_.*= Zj+~

t+= bb ,

(j, rein)&+’= (~,rein)’ -1, (j,max)’+l = (j, maz)’ .

If Ia’1< IYI then
2 = Ok,

(j, min)s+t = (~,?njn)k , (j,mas)k~t = (j, max)k + 1.

k=k+ I

Return to step 2 until desired ucuracy is uhieved (k=n).

Definethe followingpolynomial

P(z) =“~y ‘-yf(= - gJ .

(4.178)

(4.17b)

(4.17C)

(4.17d)

(4.17e)
h-t *=)pamb

Remark 13 The considerationojpoint vakeu versus ceJlavemga u olpammount
importance in a theoretical te~c. C..odunov’smethd u predicated on ihe concept lhal
/he gtid point vafuts we owragea over a ccmtml volame. The ●pdial determination
of /he uafues is onJyset in the avemged sense, but Ihc point vafues am not defined
clearly u to where the~ hould mide in apce. This u a aod o~gri”duncertainty pruk
!em or Cibbk emr. Becawe mod EM) implementation ~m bed on inttrpokting

“~ft\ Iv I&d dtffrr-nce IS ddinaju QIXl,.. ,J*]= (Q[S2,. ..Xn]- QIS1,., .,X6-1])/(xm- X1).

“1:~

—



Q (r) this prvblcm dors not arise. Fiwm the standpoint of conservationthe interpo-
lation methodology is not crucial. It is prtciscl~ this point on which the problem oj
impk mcnfation0$ENO schemes hinges. Src Chapicr 9 JorJurthcrdiscussion of fhis
topic.

Remark 14 in shu and Oshcr’spaperson the easy impl~mcnlahonoJLWOschemes,
a jormu!a was prt scnlcd wi!houl much tzplanation. Thtir numerical j?ux is dejincd

whcrt al = ~ and aa = &. Whcrt docs this come fromf Fbm earlier ENO work

Fiom llildcbmnd’.~numrrical analysis trxt [/6,?], thr rotfi”cicnts in tht above equa-
(ion arc fmm tht h“ulcr-,\facClaurtn cquatton for errors in intcgmtion wi!h a slight
modtjiraiiontO take fht Junction lo approximatej,+ ~ mfhcr than j).\ os Ihc tqM@-

tion in /he !cxi u“ouldindicate. This co~sp~~ to addingj,+! tOtheC9UalIOnand
mcfrsing the .~ign.eoj tht error terms. This mists the qucslion of whciher or not the
Q junction is corrtcfin the sense that this implica.The dejinilion ojthe point values
a.~CCIIaverages would support fhis, but if raises questions ojthe cornet dcm”vationoj
these concepts in multidimrnsions especiallyon non-orthogonalgrids or unshwctuwd
grid~ IIti].

To cloecout this section, the resultson the same test problemused for the classical
methods is used witha high-orderCmhmovmethod.The resultsshown in Fig. 4.9 we

much Letter than thosefoundbyanyof theclassicalmethod,withthe discontinuitics
remainingsharpand with little smearing and no creation of oscillations.

Remark 18 One problemmoththis sortoj methodis that it b ezpwuiveto use in
some cases. Some promising work has appcamd rwenfly whichonl~applied10 more
complcz methods described above at a few grid Ibsations(uAemoscillationswatd
wcur with classical methodk). These method we a JWem”ngtechnique to choose whew
10 apply the !10C4ypt methods [!64, 16S].

4.s Total VariationDiminishingMethods
The cfiortto put the newmodernalgorithmson firmertheoreticalfootingresultedin
:IVSConr(-ptof totalvariationdiminishing(TVf)) methods[130],whichhave a numhm
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Figure 4.9: Computation of a square wave by the scalar wave quation usinga HOG
algorithm(t~= 1. and w= 0.5).

of desirable properties.To be total variationdiminishing, ● scheme must satisfy the
followinginequalities,

Tv(lr+’) STV(U”) ,

where

W(u) = ~ ]U,+l - U,l ●

J=-w

While thw rncthorlsincludeclassic rmmotoneschcrnes(suchas upwinddiflecencingor
Lax.Friedrichs),they can also be extended to includemethods thatweaecond=orderin
the LI norm. By construction,thesemethodsue still first-order•~ pointsofextrerna

(in the f.- norm). A secondpropertyof TVII schemes,whichis both usefuland
satisfying,is that they can he extended to includeimplicittemporaldiffkrenciog(120],
Thisgenerality is quite desirableas it allowsa moregeneral use of TVD algorithmsfm
a wide range of problemsand ●pplications.It shou)dbc notedthatMUSCLschemes
havealso beenextendedto includeimplicittempod differencing.

The basicproofof the TVC)propertyproceedsas follows:

Theorem 4 (Marten [180]) Givena scalarwaucequationand a conserwfiwnu-
mtn”calscheme-“tten w

U*+4
J = U;+ C~+lA,+jum- c- A u“ ,J-) j-# (4018a)
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I

and

(4.18b)

(4.l&)

then the scheme is TVD.

l+oo~ Start by subtractingtheequationsat j + I fromj giving

fkau.scI amassumingtheconditionslatedin the theorem,allthe lcrrnson the right
handsidearcpositive,thusby the triangleinwpiality

IA,+\ul~c;-}iA,-\ul+(l-c;+~-c:+})IA,+~'`l+~;+\lA,+\Ul . (4.19b)

I
Summing over all j (-00 < j < cm)gives the newssaryconditionsu the dove
equation must hold for all j. This takes the conservation principle into account

I resultingm the cancellationof moattermsin the equations. C
I

Remark 16 The theory of TVD schema has also lead to implicitachcmes baaed
on the.~epm”nciplcs[110]. Xhcu have ken ascdto prudwcedeadpataie pwflea jor
aerodynamic designs in a varietp ojjlou mgim~ [166j. In addition,the HOGand
EN0(167’algorithms have ako btcneztendtdto implicittimedi~ervncing.Bytti”ng
the acmi-dticmte jorm ojthme cquationa

m“ththe conditions ~or a TVD approm”mationking

(4.2ob)

@.ZOb)

Onc can see that the SC1of lint+ quatihs ding jkm thb schemein the we
of an implicitdiffercncing u diagonatlpdomiaan8 and thu stablefor wlmtionby a
var8e@o! meana

JarnesonandLax(168]haveprovideda moregeneraldefinitionof•‘II/D scheme.
This theoremprovidesconditionsby which● schemecaa have muchluger support
and be TVII. Shu [169]reportsthat EngquistandO&r haddevclopxlveryhigh
orderTVIIschcrncsalongthese Iincs,
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ia TVD ij the jollowing conditionsam satisjid +ruif .&

and
- Co(k) z Cl (k + 1) z . . . z cj.. - . - ]) ~ I (4.21c)

Remark 17 This Iheomm alien intcrpded m-, nrrm~ thd the support /or an
interpolationwifhin a given cell musf de~ ~- j~Q7r. ~m fhaf point.

Remark 18 Thr questions dating to the dib. .-f accumcp o! a 2 VD appmz-
imafion must be addressed sepamkfy jbn tie p.wr.on oj ib naturewifh regard CO
beingTVD. It is ojkn the casethat when a .WtJemJCjah do provwkTVD aolutiona,
it aL~ois wscntiafly undablc.

Forinstance,to prove● polynomial~M d a function u TVD (in one
dimension), ● general procedurecan be Mrmxi. ~ tim-polymnial, P, (0) where

and then taking the case where Au>0. -*

P,(e)= 3“,(4) -- 1;

with the function Oc l-~, :]. The ~ r t~maon law :x:-of TVD
●lgorithms (explicit)is

wherc

The conditions to be TVD ue
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thusttmfollowingconditionscanbe broughtto bearon the Q functionssuchthat

and
Q, (8) - Q,-, (0) S ; - I .

ULI Modified FluxTVD Schemes
The modified ltux TVD scheme has its dissipation function defined by

1‘::~=; 19) + 9,+, - l’%+} +T+,l%}uj ,
(U&?@

where
g, = Q(P,-j~,.~U.P,+~A,+jU~ , (Am)

{

A)+ g& if A,+~u + o
7j+\= J+}u

● (4.22C)
o othctwise

and
p = ~ (Iai - Au?). (4.22d)

4.5.2 Symmetric TVD Schemes
The symmetricTVD schemehas its dissipationfunctionstated as

(4.23)

4.6 Flux-CorrectedTYansport
The fhlx-corrcctmitransportschemewasthe firstalgorithmdevelopedthatrec~ized
the importanceof Codunov’s theorem. Someofthefluxlimiters(notablythe minmod
Iimitcr)seem to havetheirgenesisin the FCT method. Yet despite this, the other
methods have flourishedwhile the FLT methods have languished by comparison.



The originalFCT was definedin a seriesof papers whichgave ●nalysis and results
of using the scheme. The best recent reference is the book by Oran and Boris [4].

This methodblendsa highorderfluxwitha low ordermonotoneflux is such a way ~
to preventthecreation of rtewextrema. Although it is an improvementover classical
methods, ?he FCT h= not done well in tests against other modernalgorithms[170,44]
and rcmains a pariah of sorts. The primary usesof the FCT haveprimarily been

confined to turbulence [77], Mf[D [171]andreactiveflowptoblems [172],

Zalcsak[62] redefinedthe FCT in such a way iu to make it more general. A
standard low-ordersolution,similar to thatobtainedby donor-celJdifferel;cing, is
used to Wine a monotonicsolution. This solution is then usedto limit an●ntidiffusive
flux, whichis Mined as thedifferencebetweena high-orderand low-orderflux. As
with the earlier versions of the FCT, the limiter is &signed to give no antidiflusive

flIJxwhenan cxtremaor a discontinuity is reach-i. This prescriptionof the FCT can
allow the user to specify a wide rangeof Iow-orderfluxes as WCIIas a largevarietyof

high-orderthlxcs. These haveincluded centraldiffmcncingof second. or higher.order,
l.ax-Wkndroff,and sprctraifluxes(173].

Rtw-ntly, severalresearchefi[174)have introducedan implicit FCT ●lgorithm;

howrvcr, this algorithmis limited to small multiplesof the CFL number. This is
becausethe low-ordersolutionis producedby multiplesubcycles with ●n explicit

donor”ccll (or other monotonic) solution ●nd ●n implicit high.order solution. The
high.ordersolutionisonly stable forsmall multiplesof theCFL number,thus limiting
the applicability of this algorithm. The FCT has●lso beenextended for use with a
finite-clementsolution method with great success [ld4]4.

One problcmthatplaguesthe FC!T method is extensionof the method to sys-

tems. .30rncschemes have used an equation-by-quation synchronizationof flux Iim=
itms [144). but the results ●re not ●kgether pleasing. To my knowkdgenoonehas
publishedresultsof a Riemannsolverbeingusedtoextenda FCTtihod to syalems.

The flux-correctedtransport algorithmscan be written as !blIows:

1.

2.

‘1● *

4.

5. .

6.

find low-ordermonotonic cell-edge fiUXtS,]~+},

find thediffusedsolution,il.

find a high order flux /fi},

define an ●ntidifhive !Iux,~~
J+! = ~:} - ):}9

limit the antidiffusiveflux to ~,~1, and

apply the correctedantidifhsive flux to the diffused solution to find u~+l.

- “h useofdaptive unstructuredgridahasheenakeypartof b SUCCSMofthisworh,

4!)



‘f%, Boris and Book algorithm and Zalesak’s algorithm differ only in a few steps. The

Boris and Book algorithm uses a monotonic flux defined by

(4.24)

[n Zalesak’s algorithm, a simple donor-cefl flux may be used (or any other monotone

method) as the low-order fl,lx. [n the Boris ald Book algnrithm, the antirliffmive

IIUXis defined by

(4.25)

and in Zalesak’s algorithm It conld be a Lax- W’r=wfroff flux or another higher order

flux minus the monotowc flux.

Remark 19 The jorrnaltsm adopted above M Jr,,m .2alesak ‘a generalization. f?oria

and Book ‘a original 1:( !7’ Irn.. strurdumd sliqhtly diflewutly$ although the eud result

i.%cquivaleut. ?’hrir algonlh In pm,., r?ri$IL. Jollmrs ~d, \7.5]: Compute a tmnsparted

.wduliim
,/’ = ,,,; - A(j;+i . i:}) . (4.26a)

7?Ii~ solution ia unstable and rnu.d b~ stabili:cd with a diflusion step

# = # .
JJ P)+; (It:+,- U;) - II; ..$ (u; - u;-,) . (4.Xib)

Thi~ solution can then b,, rmrmctvd with an wdid,flusion step, but this step ISjiltrrcd

evilh a JfWZIimiter to avoid mcillntory .vohttmn..

wlum v ia au antidiflrmon mcfiu!rvd not tht.( ‘}”1.numbrr.

Remark 20 The main probkm with the F(~T s ik+ lack OJ theontical basis in the
light of other modern methods. W’rrr this present thzs method could move back toward

the mainstream OJnumrn”d anahlsis.

Before moving on, the rwdts of the square wave test problem are given in Fig. 4.10.

Itshould be noted that these results are very similar to those produced from the HOC

algorithm (see Fig. 4.9). ‘W results is .sorncwhat less aesthetically pleasing due to a

lack of symmetry. A similar test with a sine ware prodncea a “squaring” of the sine

wave because of over compres.siol I

I explore FCT method. m a great deal of de! ail in Chapter 5,6 and 7.
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F“igure4.10: Computationffl a squarewaveby the scalarwaveequation using ● FCT
(Zalcsak) algorithm.

4.7 The Role of Limiters
#*hJx.dope or gradient limiters play a pivotal role m the construction of modern
methods forsolving HCLs. The sourceof the nonlinearitynecessary to produce high-
order \:on-oscillatoryalgorithmsis in theselimiters. Despite their importance, the
amountof workdonetowardunderstandingtheirbehavioris relativelysmall[132,176)

and Iimitcdto a smallclassof schemes.A notableproblemis that the analysiswas
confjned LO the same cl~ss of schemes, whichare not necessarilyrepresentative of
all the modern algorithms. This hspsc in the collective understanding of limiters
is important because limiters ●re a means through wbich a large class of modcm
numericalalgorithms caribe unified theoretically.

The F(T limiter htis remainedIargclyunstudied; the only m-w development is
that of Zafesak[62~.The reasoningbehind the formandfunctionof theFCw~Iirniter
is unknown tmycrd the purely obvicms. h is high!y liluly that both the FCf and
other modern algorithms could benefit greatlyfrom ● greater understandingof thei~
rcspectiv~ limiters.

A; thispoint, it istJSdIJlto delineate the differencebetween slope and fiux limiters
more closely. This is done from the standpoint of ● philcmophicaJdifferentiation
rather than froma purely technical basis. The slope limiters can be thoughtMbc~ng



ittltlthe IIIIXlimitingapplim to TVD am{ fi”(~Talgorithms.onr cavmitcanImplaced
on thisclassification;it is not stringent,aIIvxampleof this arcthe ENO schmnesdIIC

to !jhu find Oshcr [65, 66].

A morr cm~ph~tr dmcrlption of Iimitms is given in Chapters7 and 8.

4.8 The Role of RiemannSolvers
‘]”ht*rdr of Ricmannso]vcrsin modernmcthcJdsfor .sdving !. i’Ls i+nol alwayschsar.

At onr lmwl,thtw methodcan be thought of M an essential ingrmii(*ntfor a succmsful
algorithm, hut at another level they appear to bc a closur~ relation U.UOCIto improve
accllracy,or an extravagant feature which is not noccssary.

‘IVwissue of Ricmannsolvers is critical to thcw t}.pesof methods. “IWphilosoph-
icid Im+isof thew nwthndsisthatthecomputationaldomainhasken cutup intoa
numbm of discrrtvddomains with the distinctpossibilityof dkmtinuities at th~
subdomainhotJndarirs.‘k Ricmannsolversmsdvc the behaviorof thr interaction

of thv suhdomains. The llicma?,~Mvms ●rc integralpartsof theschemes,but .s0
is chc fundamentaldifkrencingstheme.The prescriptionof the stateof the fluid at
tlw computationaldomainisas important(for high accuracy)asthesolutionfor ttm
mwuingfluid behavior.The Riemannsolver howevermustensure the physical nature
(satisf~ctionof an ~ntropycondition)of thesolution.

Appendix B developsRiemann.solvmsin signifwantlymoredetail.

In the next chapter1 begin the study of the designof high=resolutionupwind
shock-capturingmethods through looking at the FC.!! method critcally.

“. 1.-



Chapter 5.

An Improved Flux Corrected Transport
Algorithm: A Finite Difference
Formulation

I
Iron rustsfromdisuse,stagnantwaterlosesits purity,●nd in coldweather
becommfrozen;evensodoeskwtioa sapthevigorsof themind. LeononfoDa
t’inci

~
5.1 Introduction
~\sdiscussedbefore,G*odunov[56]showedthat the monotonicsolutionof first-order

hyperbolic conservation laws is ●t most first-orderaccurate for linear differencing
schemes. The first algorithm to successfully ●ddress this difficulty was the FC7T
algorithm of Horis, Book, ml Hain [59, 140, 141. 142]. This algorithm performed
tlui[cw41on linearadvectionptohlcmsand pavedthewayfor futuredevelopmentsis~

thefield. It essentiallyconsistedof computinga solutionwith a nondifhive transpo~t
nwthod followmlby a stabilizing diffusivestep. This monotone solution is then used

I
~ to aid in the constructionof ●n antidifftJsivestep in which the dution from the

I
first part of thr algorithm is locally sampkd and corrtitions are “patched” to it.
This is accomplished with ● flux limiter that only applies the flux corrections in the
wnooth part of the flow. As a reault, the solution will be of a high-orderin smooth
\JiICkof theconvectedprofile,but first.order neardiscontinuities and steep gradients.
Extension of the Ff”T algorithm to systmnsof conservationlaws, however,h- proved
1-s Sucwssful.

}“urtherdevelopmentson [his topicwereachievedby van Leer [60] in his higher
orderextensionsof Godunov”smethodol~tmreferredto as Mb”SC’L.The prescription
of s)ope.limitingusedby van Leer has great similarity to the flux-limiting usedin
thr original F{.T. The difficultiesassociatedwith FCX with systems quations is not
shared tJy MI”SCL because●n exactsolution to the bcd Riemann problem is used
to construct the convectivefiuxes.While this approachadds complexity and cost to
ttw solution procedure,the correspondingquality of the xdu;ion is greatlyimproved.

Zalmak [62] redefined the FCT in siJcha way as to make it more general. A
standardlow~ordersolution. similarto that obtained by donor=cclldifferencing,is used
to dcfirwa mWICJt4JfIk .sohJt’km.This MJh#hfI h then usrd to limit an antidiffusivrfhx,

whichis Mind as thedifferencebetwwna high-order and )ow.ordct flux. As withthe
. . . .

earliervcrslonsO{theF(T. tlw hm~tmI*dewgwdto gi*;eno mtirhfhiw fhJx whrn m;.



t’~trc’lllisor a discontinliity i,. wached. This prescriptionof the FC’Tcan allow the IJscr
tospvcifya widt*rangeof 10**orderfluxesaswellasa largevarietyof high-orderfluxes.

“1.kwhaw inclmkd cmtral diffcmtciag of second or higherorder, Lax-Wcnrlroff,and
spin;ral fluxes [173;. Recently, several researchers[174] have introduced an implicit
F“(”-I’algorithm; however,this ●lgorithm is limited to small multiplm of the CFL

numhcr. This is hecausethe Iow”orderaolutionis produced by rnultiplc sub-cyclvs
with M explicitdonor.cdl (or other monotonic)solutionand an implicit high-ordrr
solutitm. The high-orderscdutionisonlystableforsmall multiplesof the L*FLnumber,
thus limiting the applicability of this algorithm. The FCT has alsobeen extendedfor
IW wit]] a finitr-rknwnt solution nwthod with greattt.tccess[144].

T!l,cpe~rforlllallcf*of thr explicitXT algorithmis thr subject of this chai)ter. SCV-

cral intwtigators[170][,t~l]havenotedfor theolderFL*T●lgorithmthat a IowcrC*FL

limit is rcquirewlfor stability. The FCT algorithmalso suffersfrom bring overcom-
pwssitv(M isdown in .Section5.3). This wasshown in ● testof th~ FCTon a shock
tulw pr(JbkITI [143], whereevenal a c~”l. numberof 0.1, thesolutionwassof relatively
pw)r quality. This probably is duc to the handling of the pressure-relatedterms in
the ;l14JIIWntlJm andenergyequations.This work●imsto addressthreeproblems,first

thKJU~h makingseveralimprovcnwntsto the FCT and thenby showingtheextension

of thismodifkd }*f’T to systemsofequations.In accomplishingthis, 1makeextensive

uscsof approximate”Rirmann solversof the type introducedby Roe [63].

“his chapteris organizedinto four sections.The following section provides an
overviewof the numericalsolutionof hyperbolicconservationlaws. Later in that
.sation. the FCT methodaccordingto Zaksakisintroduced.This methodis●nalyzed

andsuggestionsfor improvementsare made includingtheextension of FCT to systems
of equations. In the third stwtion, results ●re presented for the methods discussed in
this chapter. Thtweresults●rc for a scalar wave equation, Burgers’quation anda
shocktu}mproblmnfor the Eukrequations.Finally,someclosingremarksaremade.

5.2 Method Development
Tkdmwlopmentof improved methodsfollows
Irldhod%

5.2.1 Zaksak’s FCT Algorithm

● shott descriptionof currentFCX’

Zdt-sak”s}IVl”hm hccnclassifiedasa hybridmethod that is applied in two steps. By
hcing hybrid, th~ algorithm is based on the blending of high. and Iow=orderdifference

schemestogether.Step one is ucomplishedwitha !irst”ordermonotonic solution such
as donor-cell plussome additional dillusion (the entropyfixdiscussed in the previous

accomplished with other first.order
A OsIwA ~f!?7\,Thrsr f?mcmart=



used to pruducca transported diffusedsolutionri aafollows:

I

I

(5.1)

A high-orderflux,/“, isdefinedin somewayandthenthe low-orderflux is subtracted
from the high-orderflux to define the antkliffusivcflux as

The antidiffusivc flux is then limited with respect to the local gradientsof the con-
wvvcdvarialJlccomputedwith the transportmland diflusedsolution. Zaksak defined
his IirnitcrM a preludeto a truly multidimensionallimiter, but also defined an equiv-
alent limiter as

(5.2)

where .$,+~ = A,+lfi/ IA,+ltil is the sign of ttw consmvedvariable’sgradient spa-
tially. ‘1’hisIimitcris identical~ot}wIimitcrMncd by Ibis and Dook (59], but with

.A~oThefinal~c]l.e(!gcnumcricajdilfusionisddkd bya diffmcnt definition of j

(5.3)

The F(.X generally carriesa stability limit on its time step of

Ikforc go;ng further, several critical cornrncntsneed to be madeconcerning tbis
algorithm. Dmpitc the striking generality, which is drivenby the prescriptionof
tLcantidiffusivcfluxes, the algorithmhas some deficiencies. By its formulationas
a twost~p method it has some disadvantagesin tcrrnsof analytical analysis and
cftkimwy of irnplcmentationo JJythe usc of the inverse grid ratio U-: in the fl~x
limiter, thr algorithm is cfktivcly limited to explicit time discrctization (as is shown
in the following section]. The usc of a diffused solution in the limiter is important
in stabilizing the solution, which could yield oscillatorysolutions without this step.
[Jndmcloser examination, the use of a difiused solution acts as an upwind weighted
artificial diffusionterm. This sort of definitioncould lead to ● fairlycomplexone-
stcp F(7 algorithm, which has, at first giancc, similarity to UNO=type schema.
The difkive tcrrnsin the FCT algorithm’s limiter are upwintjweighted rather than
centered as with UNO based algorithms. Additionally, mJmericaJexpesimeats with
a scalar advcction equation show that the total variat”m I& & FCT sohlko can
incrciwewith time for a CFL numbm Icss thau one.



raiwswmwquintions ah. vt the actd o!der of the approximation. The antidiffusivc
thJxis of the higher ordtt, but the localgradientsin the limiter are only accurateto
wamd-mkr. This wggm!s that the solution may actually be of only sccomi-order
spatial]}. (in the L1 norm). ‘1’hisalso holds for temporal order as the local gradient
tmmsarconly firs.-ordm in space,thusan antid;ffusiveflux basal on a I.ax-Wcndroff
flux my actuallyyield a first-ordmaccuratetemporalapproximation.Thusthe form
of thv localgradimts U.SCVIin the limiter may alsonmd to be modified to accomplish
tlw god of true higherorderaccuracy.

5.2.2 A New FCT AIgorithm

‘1’hrfirst and simplrstchangr is to rwritc the flux limiter m

where

or

and S“j,; hiusthe same definition as before. % Section 1).3.8for the definition of #l.
‘l-h~smmd choicefor@j+l giv= second”ordcraccuracyinboth tinw~d spaceif ~,~~

is of similaror higheraccuracy(61]. This relativelysmall change has a significant

impart on the FCT algorithm,the solutionis betterbehaved,●nd with some minor
modifications can be watcd as a st~blc implicitalgorithm. This form is also ● great
deal closer to the definition of limiters IJd in TVD algorithms. Ilowevcr, this still
Icavm a twostcp method whichposes some problemsfromthe standpoint of dficiency
and extensionto systemsof consmvationlaws.

‘[’hesimilariticsofthismodificationof the}*CT with symmetricTVf) dwrr@3’4j
arc quite strong. ‘rhe ncccssary chanb~ to convertthis schemeinto one equivaknt
to the onc dcscribcdby Yce●rc simple. ‘1ilis consists of dividing the localgradient

termsin the Iimitcr by two ●nd removing the first step of the F(X. Ye writes the
numctical flux for the symmetric TVD methoda8

~$nexample of the Q,+\ function would be

(s.5)

,-)1;



(5.6)

which strikes a strongrcsenl nce with (5.4a) for an antidiffusiveflux definedwith a
second-order central differem.. For ease of analysis, this methodis rewrittenin the
following form:

(5.7)

where

Q,+! (
= minmod 1,r+ -

)j+ ~’ ‘J+ \ 9

with r+ = J,+j@)+# u and r- = AJ+@J+ju. The minmod limiter used
J+ ~ J+}

with symrmtric TVD schemes is defined by Yec, but hu the same efkt as (5.6).
The minmod functionof two●rgumentsIYM~hc usual definition given in [45],which
gives the same effect as the FCT iimiter for three ●rguments. In words, theminmod

limiter returnsthe minimttm ●rgument if the ●rgumentsareof the wne signanditem
if the signs differ.

.

The FCTcell-edgefluxcan be writtenin the sameway as the fluxfora symmetric
TVD schcmc by defining

Q,+~ = minffd(l,2i+92F-) ,

and jf Q,~l is basedOn ~-2Ic)

Q,+\ =(1 - ula,,~l)minfd(l.z$+om-) 9

●nd
++= !?&

A,+lu ‘

*-= f%#~ ,

%+p

in [134] the inequalities that needto be satisfiedi,~order fw ● flux of the formgiven
in !5,5) to ~ TVD we

q,, } <2, (S.9a)
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and

%<+-2’ (S.!)b)

Iv<i= (5.9C)

whineO isan implicitness paranwtcr, such that O = Ois ful)yexplicitandO= 1 isfully

implicit. TINSFCT limitergivenin (5.4a)satidicsthe fht and lastof theserrlations,

but satisfactionof the other relation (Mb) in a rigorous tnanncr has provd to be

momdillkuk. To cstahlishsomeboundson th~ propertimof the F(T sdutio“w.the

first~t~i~of the FCT is ignored forthe timebeing. Giwn this, theworstcasesftJrWe
Iimitcrarc Q = Zr=sor 2(] - v) #. Comparing the firstof thesecaseswittt(s.!)IJ)

gives

2<
2

0(1 - O)la] -2 ‘

or
1

‘<m”

Forthe secondof the twocases(onlyconsideredfor@= O),

2( I -v)< : -2,

or

U<l.

‘rhlss.even withonl the first step, the rwwFCT algorithm is TVD under some condi”
tions. It is also unconditionallystablefor fullyimplicittemporal discrctizatkm.The
firststepaddsmoredissipationintotheaJgorithm,whichshouldresultin higberCFL
limitsforthe firstrose.Numerical experirncmtaconfirm tbis and sbow that the new

: FCTis TVD for●l CFLnumbm lassthanone.

‘~lmak’s K.. canbesubjectedtoa similarlestafter a reformulation of its limiter.

f:ivt:nthe ~amcr!r}initionu hrforc !(.; /;;}-

(5.10)

where# ar~ Mined a,, before. I.h$ng (Mb), and againneglectingthefirststep,one
canshowthat o

“<CT” (5.11)

Thus, for a fullyexplicit approximation withext tbe tin! step, Zalesak’sFCTis never
TVD. }Iowcvcr,as the dcgrcwof implicitness incteam, the algoritbmbecomesTVD
‘t)rwn;v ( ‘1;1.r}ljrr}wrs awl rvrntua]ly hrcomcsunconditionallyTVf) M@= 1. Ifone

—



lock at the form of the limiter as theCFL numberincre=, theeffectiveantidiffusive
flux rrducrs in aa inversc!yproportionalfashion. Therefore,at large CFL numbers,

Zaiesak’sF{’T is largely ineffectiveas a high-order implacitalgorithm. Numerical
expcrimcn?shaveshownthat with the firststep,Zalesak’sFC*Tproduces results that

diminish in totalvariationup to a [’FL numberof about o.%. Becausethe algorithm
described above does not meet all my goals, further improvements are sought.

5.2.3 A Modified-Flux FCT Algorithm

To attain thesegoals,the FCT is recastin the formof Ifartcn’s modified- flux TVD
scheme [61]. From this basisseveralFCT limiterscan be shownto be TVD by the

criteriagivenby [132],andtheFCT canbewrittenM ● one-step method and extended
to use as an implicit algorithm in the samewayas ‘rVI) methodsare [110].This will
bc examinedin lhe future.

The modified-fluxTVD method is defined@ computingcell-centeredmodified

fluxesand makinhthe ovma!lfiuxupwind with respectto boththe “physical”●nd

modifiedfluxes.Formally.the modifim{”fluxformulation has ● dissipationterm,

(5.12a)

where

9J = mjn~ (P,-) ~,. ]IStPj+}A,+}U) ~ (5.12b)

and

I

A)+ g
h if &~+}u # o

1,+#= J+j ” . (MC)

o otherwise

A mor~ generalformof theminrnodfunctionis

minmod(a, 6,n) = sign[u) max [ O,min (n la~,sign(a) b),

min(lal ,n sign(a) 6)] , (5.13)

whichfor n = 2 gives the Superbee limitetdevelopedby Roe [176]. ‘I’hefunction

P,t} C- have-~ forms,including

I ( 4)p,+}=y aJ* ● (’i 1fa\

}“orI ‘).I la’). thr sta}nlitylimit dqxwds on the form of the limiter, for instancethe

‘J’)



general minmod limiter yields a stability limit of

2

“S(2+rt)(l-01

for n <2. The usc of ( 5.141,) gives a stability Iimlt of

for all values of n <2. ‘~hc second definition has been recommended for explicit,

limo-accurate solutiows [61] 1110].

‘ro formulate the fK!’T in a sintilar form, simply change the specification of the

Iimitcr. The traditional limlt.er used with the h’f~T is effectively a cell-edged flux

rather than a cell-centered flux as needed for t.h,, modified-flux formulation. The

definition of the imtidiffusivc flux must also hc changed to a form more amenable to

this formulation. This requires a more thoughtful statement of the antidiffusive flux,

which can be easily incorporated with the type of formulation desired. For instance,

the second-order central difference antidiffusive flux is

or a Lax-WendrofT flux

or a fourth-order central ditkroncr-

(5.15a)

(5.15b)

(5.15C)

which can be written

These forms can be incorporated with a new limiter that has the desired properties.

This limiter has the following form:

where ~j+~ is defined by (5. Its) or (5.14b).

Analysia of this limiter for the second-order central-difference-ked antidiffusive

flux follows that of Sweby (132]. For the. vafues of O s n <2 in (5. 16), the resulting
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Figure5.1: Thecharacteristicsof the FCTlimitersforthe modified-fluxformulation.

limiteris in theTVD regionof the curvesshownin Fig. 5.1. Forthe valueof n = 2,
the resultinglimiter is identicalto Roe’sSuperbeelimiter [176].Shownin this figure
are the plots for n = 1 ●nd n = 1.5; the plot for n = 2 is identicalto the upper
boundaryof the second-orderTVD region.The boundariesof the second-orderTVD
regionareshownby the thicklineson the plot. These IimitemareSecorJd=orderfbr
all n forr g 1/2 andalsosecond”orderforr ~ 2/n. Theody Iirnitcrofthiacl~ that
is alwayssecond-orderis the n = 2 limiter.The definitionof r followsfrom%mby%
work.

5.2.4 Extension of FCT to Systemsof Equations

The extension of the previously &scribe.4 methodsto systemsof hyperbolicconser-
vationlaws is no sirnplcmatter. The F(,T currentlyis ●xtendedto systems in the
simpleatfashion. Traditionalimplementationsof the ITT take b ~rrnum terms
in F as sourcetermsaad are handled with centraldifkmnces. This ids to a -
representationof the wave interactionsand the results that follow are often less tban
satisfactory.

The use of exact and approximate Riemann solversoffers● way tbrougb wbicb
more of the physicaJnature of the solution can k integrated into tbe solutionp->
cedure.To tbe●uthors’knowkdgeno ●ttempthasbeenmadeto incorporateE.,s
mannsolverswithanyof the previousFCT algorithms.Usingvan b’s Riermcm
solver[60][177],with CMunov’sfirst-ordermethod(S6][41]as tbe Iow”ordcrmethod



with the first modification of the FL*T,is my firstattemptto incorporatea R~wnann
solverwith FCT. While the resultsarc better than thestandard FCT implementation,
they arc worse than the Godunov method ahme. To provide a mom accurate●nd
robust method, an approximate Ricmann solver of the type introduced by he [63]
is used.

The implementationof these Ricmann solvcrs relicson the foJJowingtransforma-

where
0:,, = ~i:+p,+p’ “ (5017b)

J
The numericaldissipationterms arc then written as

and

(5.18a)

(5.18b)

and

[

‘J+ #

#-
if at+! # O

?;+# = J+j .

0 otherwise

(s*l&)

Giventheseexpressionsforthe numericaldissipation,the fluxlimitersdin the

modified FCT (and for that matter classical FCT) Fkp. (5.2),(5.4P.),and (5.16) are
rewrittetsto take advantageof these forms. When● monotonefirststep u rquimd
with the FCT. Roe’sfirst=ordermethod[63]plus the entropycomectionis wed for
the tow-ordermethod. The antidiffusivefluxesforthe kmwaveare remkn as

or a LaxoWeadroffflux

(50198)

(5.19b)



. .
or ● fourth-ordercentral dMerence

For the clausic FCT method, the flux limiter becomes

(5.19C)

(!mb)

The new FCT limiter komcs

where

The modified-fluxFCT methodbecomes

where

or

Again the FCT correspondingto the syrnmet~icTVD schemeswould requirethat
(5.20b) bc divided by two and the first step of the FCT rernovd from the al#thrn.
In the next section, theefkcts of these changesin the F(7 is presentedandeompwed
withotherstandardmethods.

It has corm to my ●ttrition thab Hartenhas developedsimilar“Measin [17~.
Theseideasare directly mlatcd to Hatten’s modified flux algorithm.

5.3 Results
To gauge the capability of the methodsdiscussedin the previoussections,tbree-
problemsweresolved with the FCTmethodsandseveralotherhigb=resolutionfinite
differencemethods. The other methodsusedare not describedin detail hem The
firsttest problemWIWS●scalaradwrdion quatiq on ●uniformgrid. Twoproblems
ate considered: a square wave and ● sine wave over ● complete period. Eotb waves



have an amplitmk of one. The secondproblemis the inviscid Burgers’equation with
initial data of a sine wave on a periodic domain with an ●mplitude of one. This
solution is compard with the exactsolutionand tl:c correspondingerror normsare

used to show convmgcnceand orderof approximationin theae rwms forthe various
mctho& Finally, the shock tube problein used by Sod [41] is used as a vehick for
comparisonof thesemethodsfor their usewith systcmsof hyperbolic conservation
laws.

l’h( testproblcms arc discussed in moredetailin Appendix A. !$pecifi~differences
in the use of the problctm is given in the discussion.

s.3.1 Scalar Advection Bluation
For (Iw scalaradvcctionof a squarewavewith a uniformvctocity, the FCI’ performs
quitewcl!with very Iittk numericaldiffusionpresentin the solution. These solutions,.
arc obtained for a CFL numberheld constant at 1/2 ●fter 80 timesteps.

As shown in Fig. 5.2(a), thesquarewaveiscapluI~ quite well by the difference
schenw, }~owcver,there is a distinct lack of symmetty in the solution. This !ack of
symmetry is evident in this versionof the FCT dmoitc the choiceof theCFLnumber
.(whichshouldkad to symmetric Msults. i&ally). i’his can be attributedto the w
of ●nti-upwinddata by the limiter. This is morecvidcrttin Fig. 5,2 (b), but tdSO
*violentis the ovcrcomprmivenatureof the scheme.‘I’hesinewaveis in the proceas

“ htiingcompressed into two squarewaves. This behavioris clearly unacceptabk
I.1 me the characterof the wavesis largelydestroyedby this aJgmithm.FigureS.3
. ,.~~~sthatthenewF(7I’algorithmis somewhatmorediflusive(lesscompressive)and
.- hCmoreof the expectedsymmetryin the solution. Figure!5.3(b) still s!tows
[i~~ r,hb algorithm rcmainstoo compressivedespitebeing TVD. One negative aspect
u~lhls calculation is the clipping of the extterrtawith respect 10 the ptmbus fi,gure,
m:;tough overall this solution is superior in most respects 10 M’s F~.

Uy using the Lax-Wendroflflux- as the base for the antidiffusive flux-, tk
~jblem of overcompressionis eliminatml from both algorithms. This is at the cost
af=orncclipping of the sotution’s ●xtrerna. The clipping in Fig. 5.4 is k than that
in Jig. !5.5, but ●t thecostof the symmetryof the solution.The lackof symmetry k
camed by the use of a computational velocity rather than ● physicalvelocityin the

Iiniter in Zaksak’s FCT. Despitethedimensionalconsistency,thischoia kadsto
incorrect,local propagationspeeds when the local gradients ue cksen in the limiter,
thuadutcoying the symmetry. The upwind bias is more evident in Zaksak’s FCT,
but is presentin both solution techniques. This is causal by thefirststepof thePCT
for Zaksak’s algqrithm, but in the new FCT,the useof the firststep mitigates● lack
of symmetry.

Figures 5.6 ●nd 5.7 showthe impactof the choice of n in the rnodifieddhurFCT
formulation(and for that ma!br other irnpl~ntutions of I%n!tem).The Imvm due
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cf n results in solutions that exhibit a great deal of dissipationand clippingof extrema.
Fo: then = 2, solution is of high quality with the clippingof extrema quite controlled.
This solution nearly equals that of the other FCT formulationsfor the square wave.
For the siue wave, despite some clipping, the overcompressionhas disappeared with
the characterof the original profileWCIIpreserved.

The symmetric TVD algorithm (second-orderin both time and space) produces
results similar to the new FCT, but with a lackof symmetry. This can be cured with
a predictive first step as with the FCT. As Fig. 5.8 shows, both exhibit a fair amount
of extmma clipping and lack of symmetry. These are similar to the results obtained
in Fig. 5.2 with Zalesak’sFCT, but are morediffused.

5.3.2 Burgers’ Equation

In all cases, the solutions obtained by using the high-resolutionalgorithmson Burgers’
equation are quite good in terms of quality. Little would be gained by simply viewing
their profdes(they are similar to the resultsin [110) for a TVD algorithm). By nature
these high-resolutionmethods produce results that arefirst-orderaccurate in the L=
norm and approach second-orderaccuracy in the LI norm. In the next four figures
discussed, figure (a) is for time equal to 0.2 when the solution remains smuth, and
(b) shows the errornorms (Ll, L2and L*) at time equal 1.0 after a shock has formed.
For the methods used, each is second-orderin time and space with the exception of
the fourth-orderFCT method, which is fourth-orderin space. Second-ordertemporal
accuracy is obtained by using a Lax-Wendrofft:”y formulation. These calculations
are all done with u held constant.

In Fig. 5.9 the solution for t = 0.2 convergesin the expected fashion, but at t = 1
problemsare present with the convergencein the L= norm. As the grid is refined,the
L= normerrorincrctses ratherthan decreasesas expected. As the gridsize is further
dccre~d convergenceresumes,but is quite slow (about order 1/4). Figure5.10 shows
tijat the convergencepropertiesof the fourth-orderantidiffusiveflux do not converge
at a iourth-orderrate and are in fact worse than those shown in the previous figure.
The nonconvergencein the l+- norm for intermediategrid sizes for the t = 1 case is
comparable. The new FCT algorithm shows slight improvementsover both of these
cases, but still has the same difficultiesafter a shock has formed in the solution. As
shown by Fig. 5.11, the solutions converge faster than Zalesak’s FCT, but are still
plaguedby some of the same problems. This behavioris also sharedby the symmetric
TVD’S results in Fig. 5.3.2. The symmetric TVD does not converge as well as the
new FCT method, but the nonconvergenceproblemis not as pronouncedalthough it
is clearly present.

The similarity of the solutions for the two FCT methods and the symmetric TVD
tigorithm, and the lack of such a problem in the rnodified=fluxTVD method points
to the form of the limiter as being the problem. The FCT and symmetric TVI? use
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cell-edged limiters rather than cell-centered lilniters. This difference requires that
each limiter has a wider spatial stencil than ihe cell-centeredlimiter, and as a result
tlie resulting algorithmis not as sensitive to the presenceof a discontinuity. This lack
of sensitivity results in a poorer handling of shocks and discontinuities. The FCT is
less diffusive than the symmetric TVD method, and this I.ackof diffusion incieases
the problem. The results for the fourth-orderspatial limiter point out two problems:
because the fourth-orderspatial differenceis more compressivethan the second-order
differencescheme, the convergencedifficulty in the La norm at a shock is increased
slightly. Experimentswith a second-orderRunge-Kutta time integrationschemeshow
improvementsin the 1.1convmgenccof the FCT.

5.3.3 Sod’s Shock Tube Problem

The third probleminvolves the solution of Sod’s test prob!emwhich tests the mettle
of each algorithm against a difi.cult physical problem. For the FCT methods [in
the modified-iiux p = l/2( la! – aa2)], the Lax-Wendroffflux is used to define the
antidiffusive flux. All results were producedfor At = 0.4Az and shown for t = 0.24.

Figure 5.13 shows that the results using Zalesak’s FCT are rcasonab!e, but are
polluted with a fair number of nonlinear instabilities. These instabilities are sig-
nificantly worse if the limiter is based on a second- order crntral differences with
numeroussmall expansion shocks present in the rarefactionfan. Even with the ex-
tra diffusion produced by the Lax- Wendroffflux, an expansion shock is prezat in
the rarefaction wave and oscillations are present in the preshock region of the flow.
The overallquality of this solution is quite poor. The new FCT formulationpmducea
qualitatively better results that appear to be due to greaterdissipation ii] the ~hel.ae.
The expansion shock is no longer present. The overall quality of this solution is not
high because of the considerablesmearing of the features Gfthe flow. In Fig. 5.14,
the results show that a great deal of smearing is present except at the shock wave
where the solution is very sharp. In both of three figures the pressure-relatedterms
in the momentumand ener~v equations are incorporateda source terms rather than
as convective fluxes, and arc central differenccd.

By computing the first step of the new I*CTwith Roe’s first-orderscheme, and
using an approximate Riemar;nsolver to compute the fiux correction, the results are
extremely good. As Fig. 5.15 shows, the sjnearingof a stand~rd FCT implementation
of the new FC.YI’is gone, with the dock being computed with the same crispness.
The rarefactk-mfan is smooth anc~in good agreement with the exact solution. The
resolution of the mntact discontimity is somewhat smeared but is acceptable.

The modified-flux FC1’ (Fig. 5.16) has slightly poorer resolution of the amtact
discontinuity, but computes the shock in a sharper fashion. The overall quality of
the solution is nearly identical to the preview case. In this case the value of n = 1.s
waAused cm all three fields. Better resolution o~ the contact discontinuity could be
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obtained with the n = 2 Iirnitcr.The final two figures arc shown for comparisonwith
the previousfigurus.The symmetricTVD methoti (Fig. 5.17), gives adequatesolution
although the amount of smearing exceeds that of the other methods incorporating
Roe’s approximate Riemann solver. The UNO method (implemented with a method
similar to the modified-fluxTVD algorithm) was used to compute the solution shown
in Fig. 5.18. This solution is of a quality similar to that found in Fig. 5.16 with
slightly better resolutionof each of the featuresof the flow.

5.4 Concluding Remarks

The modifications proposed in this work ou the FCT algorithmof Za]esakhave Pr[wcd
to be quite successful in terms of performanceand in terms of yielding a better under-
standing of 1he FCT algorithmin general. These modificationsgive an algori;hmthat
1s fh:: .‘!ysecond-orderin both time and space. Also, the extension of this method
to s:.stems of equations is a good deal moreeffective than the typical extension of the
FCT to systems. The notion that the FCT algorithm for certain cases may be TVD
(subject to certain restrictionson the CFL number)is quite gratifying. It is perhaps
more useful to consider the flexibility of the formulationof this FCT with resp~”t to
a wider range of high-orderfluxes. This gives the prospect of formulating solu~ions

that have higherordersof approximationthan previouslyattempted and also have a
reasonableextension to systems of equations.

FutIlrc work includesthe modificationof the FCT to includeMUSCL-typeschemes
as well A the appropriategeneralizationof Zalesak$smultidimensionallimiter to these
types of T :thods. As mentioned earlier, these methods, oricecast in the appropriate
form. cwi he used for implicit time integration where the necessary form is similar
to that fwu.d in TVD implicit formulations. Tests on simple test problems indicate
that these methods are unconditionallystable.

The initia’ motivation of this workwas to tie together in a more coherent fashion
the various modern high-resolution methods for numericallysolving hyperbolic con-

servation laws. This workshould be considereda start, with the advances mentioned
above, as progress towardthis goaL ●

The next chapterexplores the topic of this chapterfurther. The link between flux-
correctedtransport and high-orderGodunovschemesis shownandexpIoredfurther.
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A Generalized Flux-Corrected Thnsport
Algorithm: A Geometric Approach

It is written in the languageof n]athentaticsand its charactersarc triangles,
circles, and other geonwtricalfigures without which it is humanly impossible
to understand a single word of it; without tke, one is wandering about in a
dark labyrinth. CaifeoC’alilei

6.i Introduction

The workof Codunov [56] has M to many striking advances that have been made in
the numerical solution of (2.3a). in a series of papers, van Ixvr [120, 60] spearheaded
the modern development of 110{; algorithms. Godunov’s method and van Leer’s
extensions use polynomia) representations of the conserved variables in each grid
cell in the process of computing the solution. These pieccwisc polynomials c- be
discontinuousat grid cell interfacesand as such requiresome closureat these interfaces
to compute the numerical fluxes. Typically this closure uses the local solution to a
Riemann problem through either an “exact” or approximate [63] Riernannsolver.

Colella and Woodward [122] advanced the method dcvclopcd by van Leer with
their PPM. This method is still considered a premier methods for computing the
solutions to (2.3a) [129]. Several t!moreticaladvances have bcwnmade aYwell as the
more practical ones. Harten’s theory of ‘ND schemes [130, 6ij made great strides
toward understandingthe theoretical propertiesof methods Iikcvan Icer’s and those
discussed below. Although t!w.semethods were first formulatedas either purely La-
grangianor Eulcrianthrough a combinationof a Lagrangianstep plus a rcmap step,
these also can bc used in a purely Eulcriancontext [123]. The methods derived in
this chapteralso can be used in either of these forms, but the description found below
is presented in a purely Eulcriancontext.

Several different varieties of TVD methods have been introduced, such as the
modified flux formulationfrom Hartcn and ~vcral “symmetric”TVD schemes. Roc
introduced onc form of TVD scheme [131]. Davis [133] also presents a method of
the same general form. Swcby [132] and Roe [176] present a similar method, but
the limiters arc of an upwind-biasednature. Yee [134] christenmi these schemes as
symmetric TVD schemes. The general formof symmetricTVD schcmcscan be looked
at in severaldifferent ways: as an advancedform of artificial ciihusion, a Lax-Wendroff
method [.5$]with an additional digsipativcflux to m]surea I*VD solution, or a TVD



method that is symmetric in its strmcil whenever [IN, limiter is not present. Another
view taken in this chapter, nlore clnsely ties this formulation to that introduced by
van Leer. This viewpoint has berm usect in the derivation of TVD methods by severaf
authors. The TVD analog to van liner’s MUSCL scheme was discussed by Osher [179].

Gondman and LeVesque [135] took a geometric view was in deriving a TVD method.

Another modern advection algorithm also can b,, viewed along these lines. Perhaps
the first modern afgorithm I.(,recognise t.hc nvcesmty of nonlinearity in the difference
scheme was the method Of flux-corrected transport (F’CT) as introduced by Boris

and Book [59]. This method was developed wit h the recognition of the theorem
of (lodunov, which states t haL no algorithm can be both linear and second-order

accurate. This thsorem does not prccludc the possil)ility of producing a ‘monotone”
second-nrder scheme, but \inllJy states that such a method cannot be linear in nature.

Thus, the FCT was a nonlinear blending of hig,l,- and low-order numerical fluxes,
which ensures the Iaxk of dispersive ripples. III a series of papers [59, 140, 141, 142, 62],
this method has besn reviw,d and cxtcndcd. Tho author recognised that the FCT
and the symmetric TVD of Yee were very similar in terms of form and cnuld *ily
be unified into a single general algorithm developed in Chapter 5.

At this point it is useful to delineate the differmce between slope and flux limiters
more closely. This is done from the standpoim of a philosophical differentiation
rather than from a purely t.echnica] basis. Tho slope limiters can he thought of as
being used directly during in!.erpolation. FIIIXlimiting usually involves methods that

are classified as finite-difference types. Thus slope limiting applies to HOG schemes
and the flux limiting applies 10 TVD and ITT algorithms. One caveat can be placed
on this classification: it is not stringent. An example of this is the ENO schemes
from Shu and Osher [65, 66]. where flux limiters arc used. Previous work with ENO

schemes proceeded from the standpoint of slope ,imitms.

In extending the methods to systems of equations, the TVD and HOG type meth-
ods U* Riemann solvers, which have many exceptional theoretical and aesthetic ap-
peals. The extension of FC’I. on the other hand. is usually extended in what seems an
ad hoc formulation [142, 1441. In l,agrangian coordinates this might seem somewhat
less so, as the splitting betwemr sound waves and fluid motion is somewhat built in,

but the same principles applv ss with the Euler ~quations (see Appemdix B). [ss this
regard, 1 feel that there is no reason why the Ihernann solvers, which have been so

successful with TVD type methods, cannot be used with FCT.

With this in mind, the generalisation of i.hc FCT algorithm from a geometric

point of view is discussed Imlow. This discussion also holds for the symmetric type
of TVfl scheme and serve M an extension of this method. Through the use of ideas
of UNO schemes, these algorithms are cxtrmded to higher than first-order accuracy
in the maximum norm.

This rhapter is organised into four sections. The second section first reviews mod-

ern high resolution algorithms. The genmetric anabg to the symmetric TVI) scheme
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is then intloduccd. This method is also extended from a linear to a quadratic re-
construction scheme. Uniformlynonoscillatoryschemes arc also discussed. Following
this presentation, results for the schemes dewloped here are given for several test
problems: the scalar waveequation, Burgers’equation and the Eulerequations. The
fourth section gives closing remarksand conclusions.

6.2 Method Development

In this section, the unified description of the symmetric TVD and FCT methods is
reviewed. It should bc noted that this is in a finite difference form, rather than a
finite volume form. Followingthis briefreview, the finite volume methods as typified
by the Godunov and }{OG algorithms are described. A tie between these methods is
drawn along the same lines as the modified flux TVD schcmc of Harten is related to
the methods developed by van Leer. Several variantsof the geometric FCT is given
along with their description and mathematical properties.

6.2.1 Review of Modern Advection Algorithms

In previous work, J drew parallels between the symmetric TVD methods and the
various FCT methods [6]. Specific parallels between the symmetric TVD methods
and the extension of the FCT as given by Zalesak are concentrated on, with several
improvementssuggested for the FCT methods.

The specific form of the symmetric TVD schemes for (2.3a) is

where u = At/Ax, AZ = Zl+l - z>.!, At = t“+’- in,with

(6.la)

(6.lb)

being the numericalflux;also defiwd ~ezj+l = # (~j + Zj+l) and Zja} = ~ (Zj-l + St).
The term ~j+l is the numericaldissipation function, which is the key @ obttining
high-orderaccuracy without dispersive ripples.Forexample,the formfor this func-
tion for donor cell or upwind differencingis

(6.2)

where a the characteristic speed d~/8u, ~d Aj+Ju = uj+l - uj. If the meth~ is
used to solve a systcm of equations, then some modification in the definition of the
above terms is in order.

!):4



(6.3 \

where 4A is the limited differcncrbdwccn thr a high-orderflux and lhc donor cell
flux (or another appropriate monotone schcmc). This term is also known m the
antidiffusive flux. The symmetric TVI1 schcnw has its dissipation fllncti~ll statd

as [13’1]

$R’;f = [(laJ+k~’J;+MJ+}
wherc~Q,+$ is a function of a the ioca! gradients,

A,+ ~u

I IIAJ+y .- u,+; (6.4)

A)_iu, Al+ju, and A,+i It where

(6.5)
. ~,+ } J

The actual limiters used arc dcscribcd in detail in t!haptcr 8.
If the high-ordrrIIUXUSC(Iin the 1“*CTis a Lax-Wcndroffflux, these two mcthfds

are virtually identical. ‘roshow this rcquirmthat the flux limiter used in the FC”l he
changed slightly. ‘1’hcmultipliers w the local gradient terms need to be changedfrom
U-* to la] - uaa a9 suggcstml hjothe author in the previouschapter. In that chapter,
parallels bctwccn both symmetric ‘l’VI) and the modifiedflux TVI) schcmcs and the
FC’I’weredmcribcd. The redefinedFCT algorithmis shown to produceTVD results.

The modified TVD method is simply a finite diffcrcnccanalog to a second-order
Godunov method Iikcthat of van Lmr. For a scalaradvcction equation, the two meth-
ods arc identical if the slope limiter used in the HOGmethod is equivalent to the flux
Iimitcrused in the ‘ND schcmc. A HOG method is dcscribcd by Algorithm 1 with
the only differencebeing the orderof the interpolationused in the reconstructionstep
being higher than zero. As stated earlier, this algolithm can take the form of either
a totally Eulcrian algorithm, or a Lagrangiansolution (the local solution step) with
an Eulcrian rcmap (overall solution step). Higherorder schemes are produced with
higher order prescriptions (during the reconstruction step) for the function Pj (z),
such *%those produced by hfUSCL, PPM, IJFJOor ENO methods.

6.2.2 Geometric Symmetric TVD and FCT Schemes

‘1he Lax-Wcndroffmethod [58] is the canonical classical second-ordermethod. This
method produces second-ordersolutions, but with spurious oscillations near discon-
tinuitics, thus raising the possibility of producingnegative values of positive definite
valuessuch as density or pressure. With severalobservationsabout the Lax-Wcndroff
method and the symmetric TVD scheme (and its relationto FCT) a geometrically
based algorithm can
omctric depiction is

be found. From the standpoint of algorithmic description, gc-
particularly useful, Normally, the method of Lax-Wcndroffis

!)f



F’igure6.1:A geometric interpretation of the Lax-Wcndroffmethod is given. This
shows how this method consists of a simple linear averaging with an “upwind” cor-
rccticm to gi$-c time ccntcred flux functions.

descritw=das a finite-differencealgorithm:however,it also can be describedgeometri-
cally.

It is W~’Jlknown that the second-ordercentral differencescheme with forwardEu.
Im rime dit!<rencing is unconditionallyunstable. This can be easily verifiedwith Von
Neumann staLility analysis, but I proceed from a differentstandpoint. First, some
immcnclatufrneeds to be introduced. The flux functionsfordifferenceschemesof the
form arc functions of the dep~mdentvariablesand can be written in terms of interpo-
lating polynomials. Thus, giscn a piccewise polynomial, P, (z), that interpolates the
dependent variableu, the flux functions can be written

(6.6)

With this definition, the problem r(.duccs t~~approximating the dependent variables

on a grid and computing ttm vahw uf the intqolant at cell edges.
The I.ax”W’cndroffnwthod WMMinml in Chapter3. The symmetric TVD schcmc

is thought to be the Lax”\f’cdr(Jff S(hcnw plus some upwind-biased, nonlinear nu-
mericaldiffusion. The canonical upwindschcrrwis Godunov’smethod, which is based
on a geometric derivation. Combiningthis fact with the above discussion shows in a
heuristic sense that the symmetric TVD schcmr has a gmmetric analog. Now 1 will
be somewhatmore concrete in the derivation.

Lemma 1 Theqpmelric TVD method can he dejkf in l~rmuuJfhe mconstmcfivc
polynomial

< (z) =

{

u, + J,+j (z ‘ZJ) ‘ZE FJ*%+JI

11,+ i,. j (2 - ‘J)=c [%94 ‘

(6.7)

which is alu*aysL’l continuous, but not C* continuous unlcs~ jor In.itanct .iJ+] = .’]+).

!).-)



‘l”fll~ It/l& ll”t.*thilttilt l“tll t@ .<h)ll~; .:, * , bt thjirted by .stvmttlpptnpriatt slope limittr.
.

(6.9G)

(6.!M)

1,+)=
—

fiu;+ a (1 – ma)A,, ~IJ, (6.9f)

which can INSrvwritten as

j,+ \ = ; (u;+14;+1) -l@,+\u+ (l@@Afi% (6.9g)

w}lcrcA,J} u can bc writ{cn Q,+ ~A,+ ~u. This is simply the symmetric TVD =hc~
as givvn Ly (6.1 h) with (6.4) ad thus is also a geometricanalog to the K% algorithm.
u

Itt~131]. Itw rontlitioti~for the Aovc schcrnv to I)(*‘WI) arc=statd. Hy writing
.$,,~ as Q (r- . r+ i.$)+~ -- Q,+l, the*m-mditions arv modifhd to include tho cflccts

J A

!)(;



Figure 6.2: ‘i’he symmetric TVD schemes geometric analog is similar to the Lax-
Wemiroffmethod. with the major differenceking the limiting of the slopes. This
leaves the scheme with C’ continuity, but not C’”continuity.

of the time centering of the fluxes (0 = O,explicit scheme using forward Euler time
differencing)and are written M

Q)+} or %+1 < 2 - — 2
r- r+ -v(l -P) l-v’

and
v~l.

This assumes that both Q and Q/r are positive. Without
conditions above take a more complicated form, but allow a
functions.

(6.10a)

(6.10b)

(6.1OC)

these assumptions the
slightly Iargcrset of Q

Figure 6.2 showsthe pictorialrepreser’ationof this scheme. Forthe scalarwave
quation. this methodand the classicsymmetricTVt) areequivalent, but for nonlin-
ear problems the two methods are as differentas Marten’smodifd TVD is different
from the corresponding MIJSCL scheme.

6.2.3 Parabolic Symmetric TVD and FCT Schemes

If one proceedsalong this Iincof thought and considersa polynomial approximation,
it is notable that three conditions exist for each grid cell in the above scheme, and
that one degree of freedomis not fully utilized. These conditions are

!)7



= lb,

cofnplctenm9:

(6.1IC)

(6.1 Id)

This ;ml}”numia]describes what 1 call thr parabolic }“(’T when used with the convec-

titv: algorithm dcscrt~d by (6.8). It shmJhl he noted that the temporal integration
can he accon);)]ishcdby other means such as a multistage algorithm.

! rltJ~” set-k to prove!under W}Ji3t conditkms [his ●lgotithm produces TVD results.
I“hew conditims defirw the aJlowablevaluesof the cell edge AIF. ~,t; .

Theorem 6 Thr paraboltc symmetric TI”AVand FC”Tmc~hod dcrtced a60tv
under the follotmng condttton.s:

than or ajual to”14/31.

o
“. /j the SfO$KS

must be less

Prooj Forthe
some extent this study is
the T\’D conditions [180]

.
.*,tl are rtquid (O k of Ihe some Mgn. the /&nctionQ (r-, 1, r+)
than or equal to 8/3.

followingproof,only the spatially accurate caae is studied.thus to
limited to the semi.discrete versionof the quation. Thus
shown above are simplifiedto

ih
— = C)A,,IU - D,~)+u ,
at

(6.12a)

c). D, ~ 0. (6.12b)

}-or time integration typically a Lax.Wendroffor Cauchy-Kowdmki procedure is
applbf. which in some sense is characteri~tictracing. Runge.Kutta algorithms also
can L(”used, although for the corrmponding composite algorithm, the Rungc. Kutta



methods are not classical in form ~160]. In gencraI,careful analysis must be applied
to determine the stability rcquirementw

Examining the case where a >0, with the case where a <0 yielding equivalent
results. Given this characteristicspeed, (6.12a) with (6.1la) becomes

Setting C, = O and rewriting the above equation in a form amenable to analysis
produces

8U

[(

aQJ+~
- b )1iQ,-~ s

Tt = ‘a 1+ ii r- 4 ~-i - E # J-1 “
(6.14)

It should bc noted that all the three paramekr Iimitcrsthat would be used with the
above forll~ulati(mar(~a function of Aj } U, and L..u Q iiniters arc function conw ttive

~radients [132, 176]. Putting this form into the formuseful for analysis and using the
‘ND conditions discussed above

(6.15)

allows the proper conditions on Q(u) to be established fol TVD solutions. If 1 set
QJ-l/r+ = QJ-I as a bound and simplify accordingly,the above condition bccornea

(6.16)

This simplification seems a quite reasonablehouud
the flux/Ape limiters.

For the first of the two ciuics,the proof is

which gives the condition that IQ(u] I < : ~~s.‘l’his

“minbar”type that is defined by

in ]jgi .’, of the functiomd form of

1, (6.17)

where o is a constant that is O~ o ~ 4/3 to produce a TVD solution.

fjcforcgoing onto the second case, certain caveats shouldbe applied

99
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of Iimitcr. Although the ‘minbarw Iimitcr is a TVD Iimitcr in the sense of Ilartcn’s

definition of T\’1] schcnws, it is not a classic ‘monotonicitywIimitrr, similar to the
type derived by van Leer [120. 60], and thus has some fewer favorable geometric
properties. The act of not ncmssarily clipping at cxtrema yields construction of new
cxtrcma near cxtrcma, in the data, which arc not necessarily physical. ‘rhis may
not bc much of a problem if onc takes the ENO philosophy of simply scvking the
wnoothcst availabk”intmpolant within sornclocal support. Ncvcrthcless,care should
bc taken in applying this limiter M the rmults section shows.

‘1’h(~second raw proccwdsrwch in the same way and yields a class of limiters that
arc very similar to the “classic” l’V1) Iimitcrs. For the abuvc”statcdconditions for
positive definite values cf Q (u) changes the ftmn of (6.17) to

(6.19a)

and
~Q)+i < r- , (6.19b)

whichgives a Iimitcrsuch th~t O~ Q (u) ~ 8/3. In the same fiuhion as TVD limiters,
the comprmsionapplied by the limiter grows with the incrcwing value of the limiter
maximum. Thus the limiter ~sociatcd with the scalar, 8/3, would correspondto the
%uperbee”limiter defined by Roc [1761. O

A three-parameterIimitcrsof the form discussed earlier are within this class. In
addition, some general useful formsof this class of limiter would be

and

+ +-+r’)]QI =~[;,-,;,;,*Z
.

(6.20a)

(6.20b)

The orderof accuracyof the limiters discussedabove provides t),e parabolic FCT
algorithm. To do this, the methods described by Sweby [132] will be used. Without
difficulty it can be shown that the same regionof the limitercurves can be obtained
if the limiters discussed by Sweby are multiplied by 4/3.

A problcmwith this method common to all typical second-order(or higher) TVJ)
methods is that they are order one accuratein the L~ norm [M]. To overcome this
requiresthat the nwthodbe reformulated.

Using the upwind, two parameterlimiters in conjunction with this method would
violate the assumption made is simplifying (6.15) to (6.16). Froma heuristic stand=
point, this would imply the use of data at pointsdownwindof the limiter’sstencil,
which would Icad to instabilities.
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6.2.4 UNO Symmetric TVD and FCT Schemes

“[’ogive th(~IIwthod dcscribml in the previoussection, higherthan first-orderaccuracy
in the l.- norm, the symmetric and parabolicschemes arc rmhdinwiby changing the
formof ttw slope Iimitcrs.

The followinglcmma Ilit)tivatcsthe first of these proposedschcnws:

Lemma 2 The interpolant defined 69 (6. 7) interpolating In the interval x[ J-# fxJ+d
taa~ a IOCU1 rnazirnum or minimum in this interval if and only is /he slopes, ~1-~ and
.
‘J+ \ are opposite in sign.

RWOJ‘ro provethis, take the derivativeof the polynomial Mined by (6.7) giving

(6.21)

A monotone piccewisc intcrpolant has the same sign across the intervalit interpolates.
If the dcri~.ativcchangcs sign in the interval,an cxtrcmacxists in that interval. Simple
inspection indicates that to produce an interpolant with a cxtrcma requiresthat the
cell-edgedslopesdiffer in sign. This shows that i)+ ~d). ~ < 0 produces an cxtrcma
in the local intcrpolant. O

Corollary 1 (Lemma 2) Ij the dopes de/ining(6.7) arc of the same sign, fhc in-

[ P}*%+Jterpolant is monotone on the interual z

prooj ‘r. stat= that the inter~lant is not monotone on this interval would ~on-

tradict Lcmma2 and the definition of monotone interpolation (in a localsense). O

Lemma 3 The parabola dcjincd by (6. //a(6(d)//d) infcqzdafing in the Infcmal IX,-},Xl+!]
has a local maximum or minimum in thia interual iJand only ijthe dopes am oppoaik
in sign.

l%w~ To prove this take the derivative of the polynomialdefined by (6.lla)
giving

By setting the derivative to zero the local minima and maxima can be foundby

Az (i)+\ + iJ-
X“= z, + i)

2(i,-J - ij+~) “

By setting the conditions for a local cxtrema to lie in the interval

(6.22h)
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The \“alucsforthe slopes that satisfy this inquality can
giving

. >0, i,+} <0,
‘J- \ –

andby using symmetry this irnplicsthat

3)- ~ <0 and Aj+] Z O

be foundthroughsubstitution

(6.22c)

(6.22d)

also satisfies the inequalities. As with Lemma 2, this shows th~t ;J+$j,-} < 0
prodll~-csan cxtrcma in tbv local intcrpolant. In addition, this inequality shows that
if ttw signs of thr slopes ar(~the sameany localextrcma,lies outside the interpolated
intcrwd. (1

Corollary 2 (Lemma 3) // Ihc slopes defining (6. fla) arc of the same sign, the

[ J-#*xJ+}]-
pambola is monotone in the interval x

Prooj To state that the interpolant is not monotone in this interval would be a
contradiction of Lcmma 3 and the definition of monotone interpolation (in a local

sense). 0

This might cau.scone to assume that the minbar limiter would sufflcc here to
provide the correct slopes near minima or maxima in the data. But, one problcm is
that the thrm parameterform of the minbarlimiter also would allow extrema to be
found in CCIISwhere no such cxtremaexists in the data (to the left or the right of a
true cxtrcma)o

Definition 4 (Harten and Osher [136]) Afon-osciMory insolation is defined

by intcrpolafion P, (x) fhaf ha its number of cdrcma in an intcrualthaf is not ez-

cccdcd by fhc local cxtrcma in the data, u(z).

An UNO type schemecan be dk VMI‘oy~mnsideringa formulationthat is close the
original UNO scheme. These schemesare alsomotivated by the desireto have abetter
grasp on higher crder accuracy with the parabolic formulation. 1 begin by defining
second-orderaccuratecandidateslopes for the limiters. Considerthe determination
of j,+\, which rquires candidate slopes s,- , ~j+ ~d ~j+}. The candidate SIO~

P~J+ } is already second orderin its standard orm,

UJ+I- u)
‘J+ # = 2,+, * (6.23a)

- x$

bccausc it is a ccntcred approximation about zj+lt but the other SIOFS are not.
In order to make these approximations second-order at z,+}, a correctiveterm is
needed, By expanding the definition of sj+I in a Taylorseries about Z)- 4 ~d Z)+\,
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the following approximations are found:

~1+~ = .J-\+Azj::l,,-,+~(~r;) 9

and

(6.23b)

(6.23c)

Theorem 7 The mcthodfor polynomial reconstruction described by (6.7) or (6.lla)
am unifomdy non-oscillatory by Definition ~ ij the cell edge slopea am preacn”bedas

follows:

where s’ = dsjdz is defined in a consistent jaahion.

Prooj Forthis proof, as before, I must show that
PJ(x), coincide with the extrcma in the given data.

- s;+~Az,+,) , (6.24b)

the extrema in the polynomial,
As s~ated in Lemmas2 and 3,

an extrema can only occur if ij-13,+\ <0. A condition in the data of s,- }~j+} <0
also signals the presenceof an cxtrema in the data.

The consistent forms for S’consideredhere are

(=~2K-X “+J-“-s;+\ Ax ‘ Az 99 Orrn(s’+’::’+’* s’+’~:’-’) $
[6.254

with a similar function for s’ ~+}. The limited slope functions (6.24a)
J-1 ‘ 9:- }

and S’

ad (6.24b) can be written in a form similar to the Q functions introducedearlier:

and

These functions takeon the same sign as SJ-} and SJ+l, respectively,by the definition
of the minmod limiter. Thus an extrcma in the interpobnt exists in the intervalonly
if the cxtrema exists in the data by Lerncnas2 and 3. 0

Remark 21 Each oj the meihodadiacwaedabovecan be wed as an implicitalgo-
rtthm. The theory surrcundins the TVD methodi [130. 61] gives a )irm basis for
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implicit solutions and lhis basis follows to the application oj the methods presented
hem.

6.3 Results

The results section of this chapter shows the strengths am! weaknesses of the algo-
rithms dcscrikd ahovco The scalar waveequation should reveal the basic properties
of the solution sclwln.?sin a simple setting. These properties hold with the use of
the Incthod in tI]i)r* complicated situations. Burgers’ equation provides results for a
mmlincarequation as well as convergence results, which show the order of accuracy
obtainmi by the method. Finally, the Euler equations provide an indication of these
algorithms pcrfornmncc with problcms with systems of equations. For the remainder
of the discussion. the followingnomenclatureis used:

●

●

●

6

A

tlw standar’1 gt.mmctricanalog to the symmetric TVD scheme is denoted by the
name synmwtric,

the parabolic variant of this method is denoted by quadratic

the UNO modification of the symmetric method is denoted as the symmetric
L’NO,and

the L’NO mmli!ication of the quadratic method is denoted as the quadratic
[:No.

detailed atc{wnt of the test problcms used is given in Appendix A. Specific
dctaik of their U.W-is given Mow.

6.3.1 Scalar Wave Equation

To begin to assess the algorithms presented here, a simple standard test problemwas
solved. On a domain of 100equidistantly spaced cells, a squarewave 10 cells in width
is advccted at a unit velocity with periodic boundary conditions. The CFL number
is held at ~ and the solution proceedsfor 300 time steps.

The symmetric scheme performs with the lowest resolution of the schemes dis-
cussed here and has some symmetry problems as shown in Fig. 6.3. This sort on
unsymmetrical behavior was noted by Munz [181] in a study of solutions to tw~
dimensional problems by high-resolution methods. This lack of symmetry is some-
what alleviated by t}w use of the quadratic schcmc (see Fig. 6.4). The UNO-type
methods both give sig~lificantlybetter solutions in terms of preservationof maximum
values, but also give Ae to some controlled oscillations (see Figs. 6.5 and 6.6). The
quadratic method provides both better resolution than the symmetric scheme and
also Shows much Iwtter .sdution symmetry. IBartof this increase in rescdutioncan be
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Table 6.1:
tion when

attributed

Orderof accuracy in severalnormsfw the schemessolvingBurgers’equa-
the solutiol

Scheme

Symmetric

Quadratic

Symmetric UNO

Quadratic UNO

L, I L2

1
1.83 1.58

1.88 1.6!

1.94 1.65

1.97 1.60

.
La)

.—.

1.19

1.25

1.07

1.02

t. t,he Illore con)lmxsive form of the limiter used with this method (Q4/3

rather than QI and Qat3 rath(’rthan Qa). When the same limiter is

scheme, the solution is only slightly better with the quadratic schemq
quality of the results remains improvedwith respect to symmetry.

6.3.2 Burgerst Equation

used in each
however,the

The solution of Burgers’equation L. hese methods can provide more information
concerningthe behaviorof the algc ithms. By computing the erroras comparedwith
the exact solution an order of accuracy can be ohined.

When the solution is smooth, cwh of the solution methods is well behaved and
gives convergenceat expcctcd rates as shown in Table 6.1. The UNO solutions we
the most accurate and have the lowest error as well as the highest rates of conver-
gence (especially in the L2 norm). When a shock has formed, this situationchanges
in several respects. All the methods converge more slowly, but the UNO schemes
converge mow slowly than the simpler symmetric and quadratic schemes (see T*
blc 6.2). The L- norm also shows a “kntx.’ in each case. ~’his signals a slowing in
the rate of convergencebeyond a certain grid spacing. These results are summarized
by Figs. 6.7-6.10.

For times after t = 1.0 the UN() solutions resume their initially high rates of
convergence. The behavior shown near t = 1.0 seems to be temporary and limited
to a short period near the formation of the shock. The poorer convergence may
be related to the width of the iinitc difference stencil used in these schemes. This
behavior was noted in [6] and WWJnoticeable for schemes with three rather than
two parameter limiters. The e!fect of the three parameter limiters is to increasethe
supportof the interpolation at eacheel)edge. This increaseis not accompaniedby
a subsequentincreasein accuracyand because a minimum principleis usedwith the
limiters,the effect is to Iowcrorderof accuracydue to the limiterover a widersetof
grid points.
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Figure 6.3: The solution of the scalarwaveequationby the symmetric method using
both a noncompressive, Q1, and compressive limiter, Q2. The Ql (6.3a) limiter
produces a solution which is significantly better than a first-orderupwind solution,
but exhibits excessive smearing from difkion. The compressivelimiter (6.3b) shows
an improvementin the solution as aresult of reduceddiffusion. Both solutions exhibit
some lack of symmetry which is indicative of this method.
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Figure 6.4: The solution of the scalar wave equation by the quadraticmethodusing
both a noncompressive,Q4/3,andcompressivelimiter,Q@/3.Again,thenoncomp~
sive limiterproducesa solutionthat is diffusedby comparisonto thesolutionfbund
with the compressivelimiter(6.4b). Both solutionshave improvedsymmetrywhen
comparedwith the symmetricnwthod.
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the symmetricscheme.
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I’aldc6.2:Order O( accuracy in .smwralnorms for the sdwmcs solving Burgers’ equa-
tion whrn the solution . ck,

Scheme 1.,
—

Symmetric I.’18

Quadratic I.5:{

Symmctrir [TN() 1.50

Quadratic iiNO I.:M)

I.J

1.19

1006

O,!y)

OOIJ(J

— —

IVm

0.78

0.55

().39

0.36

6.3.3

‘rwot(wt

Euler Equations

problems arr used to test the methods on 1}w solution of s}.stmns of equa-
tions. In both cawsonly thr dmsity solutionsis gi~vn. ~’orthe shock tuhc prohlcmt

an exact solution exists and is usd for comparison. in the second case, a tht wave
prob]mn, no cxad solution cxis:s, thCrCf(JrC a convmgcd rmnwrica] solution is used

for comparison. This solution is computed osing a MI!SCI, scheme with a Supcrbce
Iirnitcr on the Iinrarly degcncratc field and van l-r’s limiter on the two nonlinear
fields (see {’haptm 8). Two thousand equidistantly spaced grid points arc usd with

a (,’FL numhcr of 0.!)5.

The results for these problems are given in Figs. 6.11 6.14. In general, the rc.

suits of the previous section hold up for t}ww j~roblcms. ‘Ih- symmctrlc ~hcme (SCC

Fig. 6.1 1) givm the low-t rcsdution rmults. while the quadratic [;NO schcmc (SCC

F“ig.6. 14) gives the best rcsdts. ‘I”)Icosymmetric UNO scheme gives good resolution,

i~ut also suffers from .sorrwnonlinear instability resulting in oscillations. These Osci).

Ia”ionsarc a...sociatcdwith the cnd of rar~faction wavcau shown by Fig. 6.13. Both
of the quadratic rncthodsgive bettm resolution of shocks and contact discontinuities
than their symmetric counterparts.

In the shock tube problem. thr solutions arc all very similar with the resolution
of the contact discontinuity being the primarydifkrcncc bctwccn the methods. The
quadratic L*.N()method also improvm the smearing of the rarcfacticmwave. In the
blast wave problcm, all the mcthoh rcproducc the left of the two density peaksand
all of them dCStrCJythe contact discontinuity10 the left of that peak. The primary

differences arc in the area of resolution of the right density peak and the dcgrccof
filling in of the rarefadirm bctwccn the peaks, In both cases, the quadratic VNO
Acme CXCCISby mnnpari.son.
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Figure 6.11: The solution of Sod’s shocktube problemby the symmetricscheme is
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6.4 Concluding Remarks
This chapter hiuipreaentedan extcrwionof the previously derived ~ymmetricTVD
methodsto a geometricanalogverysimilarto MUSCI-type methods dcvclopcd by
van Leer. This extension has also enabled the derivation of new methods involving
parabolic interpchtion and the ideas of uniformlynon-oscillatorymethods. Through
the symmetric TVD method’s mnnection to flux corrected transport methods, these
methods also tie that group of algorithms more closely to other modern algorithms.

These methods have been used to solve several test problems and have proved
successful behaving M expected. Each of these newly derived method representand
improvementover the symmetric TVI) method.

The topic of limiters to we with FCT methmis is concentrated on in the next
chapter.
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C!]iiljt(!l’7.
F~rr Limiters

A newwayto payold debts. PhillipAfmwingcr

The Iirni.crs used with F*CTalgorithms fall into two categories: the classic type
dcvclopcd hy Doris and hok and the gmwralizationof 2alesak. This study started
~Uall attetllpt to cxp]ain thr less t}]an stdlar Perforlnanccof the FCT schemes on a

variety of problemsand expanded in scopr from t.hmc.

7.I Classic FCT Limiters
The limiter usmi in the V’C’I’lm~thodsd~wlopcfi by floris and Book is nearly identical
to the minmod Iimitcrdisrusscd in tlhaptcr 8. The maindiffcrcnccis the natureof the
argumentsapplied to the limiter. ‘1’hcscargumentsarc the local gradients multiplied
by the imwr.scgrid ratio (&/N) and the antidiffusivc flux, This makes it a three
argumentlimiter with support identical to that found in the symmetric TVD scheme.
l’he classic FCT Iimitcris

( “amJ,+}*O.lA .
J- \“a‘lA,+{ti) . (7.1)

This limiter can be analyzed bj”assuming that ~~+} = \ IalAj+lu and factoring

~ lal out of the FCT Iimitcrand writing tho result in a ratio form

Q}”L7F’-+) =“’(’*2@-’-’r+) - (7.2)

In this equation r- = A,- ~U/Aj+ }Uand r+ = A,+; IJ/AJ+~U. This formis cqui~”a)ent

t(. the form used for thrcr argunwnt ‘WI] limiters ASwas discussmi in Section 8.3.3.
By impectiim. orw can wc for v # 1 this limiter is not TVI) bccausc its result
is larger than two and that the result grows infinitely large a.. v J O. Figure 7.1
shows the Iimitcr for two values of v. The limiter is not ‘ND for explicit time
diffcwncing. This does not account for the stabilizing influcnccof the diffusive step
in the solution algorithm. In !$cction8.3.S, the ULTIMATEIimitcr is discussed. It
has SCNnCsimilarity to the F“C.”f’limiter and as such the cxpericncc with the FCT can
carry over.

As discussed in Chapter 5, this can easily be modifiwl to rid the scheme of the
need for an an~idifhive step by changing ttw limiter to

(7,3a)



where
p = Ial , (7t3b)

or
y = Ial - va . (7.3C)

An entropy correctionas descrihed in [182]can be applied to these definitions. This
modification makes this scheme ‘I*VDand significantly improves its solutions espe-
cially for systems of equations. This formulationalso allows thr FCT to be used as
an implicit algorithm in a similar manneras other TVD algorithms.

A second formulationbased aroundthe modifiedfhx TVD schemes was also given
in Chapter !i,

minmod(a, b,n) = sign(a) max [ O,min (n la!, sign (a) 6),

min([al ,n sign (a) b)] , (7.4)

C) ivm ~hc ~upcr~ limiter dWCIOpCd by RW [~’76].TO get thewhich for n = . g
im.plcmentationcorrect in the sense of a FL*Tmethod this becomes

This schcmc is closer to the moditicdflux TVD formulationand produces a family of
Iimitcrsshown in Fig. 5.1.

7.2 Zalesalds Generalization
Zalesak [62: redefinedt}]e FCT Iimitcr to make it more gcnmal. The resulting linl-
itcr is nearly identical to the original NH’ limiter in one dimension, but has a tru~
multidimensionalform. ~.alesakalso made the prescriptionof the antidillusivc fluxes
more genera). with the definition being simply stated as the difhmmcebetween the
low- and high-orderfluxes, ~~+1 = ]~~1 - ~f+~. ‘f’k low-order flux, ~~ c~ld ~)+) ‘

any monotorwnumericalflux and the high=ordcwflux, /“,+ ~, could bc specified by any
high-orderflux.

Algorithm 3 /Zalcsak’.sJfuzKrnitcr(62)’

1. Sum al! antidiffusivc fluxm going into,A;, and oljt of, A;, a CCJI.In one
dimension this is expressed as

(7.fia)



(a)

,.

Q ,. .

(b)

Q-
,.,
u,

F’igure7.1: The classic FCT Iimitcris shown for v = 0.2.5in Fig. 7.la and u = 0.!5~rs
Fig. 7.lb. Both of these figuresshow that wherer~ < } the Iimitcris verycompmsmve,
tJIJtnot second order in nature.
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2.

3.

4.

5.

6.

and
+ = ~UC (];+},O)- minof.}Jo)● (7.6b)

Find the maximum, up, and minimum, u~n valuealocally, and define

( )
Al: = U-l up - tij , (7.6C)

and

( )M“ = Q-8 ij -u? . (706d)

Forexample up and up could be computed with the following rel~tions:

mu=
‘J max(fi)- I~fijt%+i) (7.6e)

and
An

% = min(tij-~, fijt~j+l) (7.6f)

Compute
$ = m(],jkf~/A~) , (7.6g)

and
R;= m(l,M~/A~) ● (7.6h)

At each cell edge, k, on the cell, j, compute

C, = min (*,4) , [7.6i)

if j: ~ 09otherwise compute

C’= min(~,~) . (7.6j)

Finally, ~ = C4~~.

‘Z&& also states some quality-enhancingcorrection based on previolu expe-
rience with the FCT

cfi\ = 0, (7.6k)

if

Pj+~ (Cfil - &j) <0,
(7.6))

and

P(
.

j+! ‘1 - i,-1 \ <0 - fi+l (~j+y - fij+t) <0 ● (7.6m)

The modlkations made in the previous section can be ●pplied to this limiter
rathereasily with by changing U-t in step 2 to u u defined in (7.3b) or (7.3c). This
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changt’also allows ttw diffusivefirststep to hc avoidedwithout negativeconsequences.
‘1’hcresulting algorithm is given Mow.

Algorithm 4 (Zaksak’s modijid j7ur limi/cr-/

1. Sum all antidiffusivefluxes going into, A;, and out of, A;, a cell.

2. Find the maximum, u~, and minimum, u~” values locally, and define

M: = p (UF - u;) , (?ol’a)

and
N,- = ~1(U; - uy’) . (?.?b)

3. Compute
i{; = ( )m 1,●,+ /A~ , (7.7C)

and
Ii; = In(1, M,-/A~) . (?.?d)

4. At each cell-edge, k, on the ccl], j, compute

C~ = min (1~, ~) , (7.7e)

if ]$ z O(the antidifbive flux ]/’ - ~f), otherwise compute

C, = min (~,lt~) . (7.7[)

6. [~se the qualit}”correctionssubstituting u, for fi,.

Lemma I For a aecond-ora”erapatiallptaccumkhigh=orderj?uz, the Zaleak’s modi-
JIedj?ux limiter produceaa scheme equiwalenfto a spmetric TVD acheme witha Q
fimction 0/

W+y ( )= m 2PA,-4U, pA,+lU,2pAJ+ #“ ● (7.8)

F+ooj Forp defined by (7.3b), the appropriatehigh=orderflux is the second-order
central difference flux. For p defined by (7.3c) it would he the Lax=WendrofTflux.
For both cases, .

i;+} = +,+)u * (7.9)



if the antidiffusive flux. When u, is a local mmtimumor minimum, then the limiter
produccaa value of zero. 1 proceed assuming that u is monotone and increMin~on
the interva! [X,-S,X)+3]. This intertal is also wed to determine u~ and u~. The
casewhere u is monotone decreasingis similar. Gnidering cell edge j + ~ ]. >0,a’ J+!

thus I must find ~+1 and Ilj. In this case A; = j;+l and A;+, = !;+l, (A; = A;+J.

Because u is monotone increasing,u~n = u~-l and ?4fi = U;+2;thus M~+t= Aj+ u
and MJ- = b, ;u. Fromthese relations and the formul~ for l?; and ~+,, it can L
seen that

(

M “ M:,
cJ+~

)

= min 1, ~, --- . (7.10a)
J )+1

Inspection shows that the terms in this Iimitcrare identical to those asserted if the
limiter is written in ratio form. When corvbincd with the conditions for a local
minimumor maximum, the minmod limiter is:

CJ+~= ~m ( )l,zr-, zr+ . (7.IOb)

By checking the form of the symmetric TVD schemes, it can be seen that this has
the form of an upwind flux plus some second.order centrally difference higlvorder
flux multiplied by a limiter (see Se&on 4.5). Subtracting the low-orderflux fromthe
symmetric TVD flux gives (for p = la! - aa2)

(7.1OC)

quating krms givea the desired result. A similar result is obtained with o = jai. O

Remark 22 For higher order spatially accurde j?uu, thequafit~faclors imposed
af the end o~the limiter &come important (#ee Algort”thm3). These factors make
sense in a heuristic way and definitelyimpmve the Iimjfcrs per~onnancc,6UI the

pnyw?ics of Iim:ter am mom di#kult to dekwnine in this caac, although it appears
to be TVD Jwrn experimentalevidence. For the ●econd=oder caae discwed in the
pwioun lemma, theselactoraare immatetiaf.

This scheme is TVD in one dimensionunderthe conditions stated in the following
theorem:

Theorem8 Zafeaa&5modijkd )hu limiter with a wand-order spatiaflp accumte
high-orderflus is TVD under the jbUowingconditions

1. The valuesoju~ and up P- takenJbm the #et ofpoid8 U?’t, u?, ad U;+l.

2. Fore definedb~ (7.95), Iuls ~.
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“Jt\‘Q,+! = IH(2r-. f,2r+) , (7.1 la)

where r* = ,VJ/.4A with .4 and ,V tldinwl hj”the n]tdilicd F’(”l’flIIx limiting algm
rithm. As given in [134], ttw conditions for this Iimitr; to assure a ‘I-VIIalgorithm
arc

4,+! 5 ~ ● (7.llb)

(:.1 Ic)

(7.1 Id;

IW.Wcoalitions should k compaml with thow givtw in !$cctions.3.% ‘1’}wcondition
(7.1lr) is easily met a.. is (7.1lb), regardlessof the definition of p. For p = Iul, the
conditions of (7.1Ic) and (7.11(!) result in a limiting (;F’Lnumberof v ~ ~. When
p = I(1I- va the right.hand sides of (7.llb)-(7.lld) arc divided by 1- v. For the
givtw limiter, th~~{.”}’l.conditionnow bccomcsv~ 1. Thiscomplctcsthc proof. O

Suitahlc generalizationscan be made for implicit ‘f’\:Il schemes. ‘1’hcscproofs do not
extend to multiplr dirmmions. but provide some insight to the schcm~~’sprobable
performance.

This method can also tm applied to HOC schcrnesby cxtmding the gcncwa]ization
made above to apply to the rcconsttuction step of (kdunov’s method. Low-order
monotone fluxm arc analogous to reconstructing u hy piccowiw constant (unctions
equal to u,. The antidiffusive fluxes could be made into ‘antidiffusivc” gradients or
the diffwcnce bctwen higherorderpolynomialreconstructionsand the low-orderone.
There is some amhiguity with the dcfiniticmof the comparisongradicn;s defined by
,V:, but this can k rcctifimlby smwralobservations. Thmc shouhl IN converted to
gradientsof similardefinition, hut in keepingwith the F“C’I’Iimitmsof the past, these
gradicnls should tw multiplied by two. ~~rcv~tl~F*CTIimilcrs had this effectively
done h)”the Iimitcr’sconstruction and is sn explanation for the highly compressive
nature of }“C”I’schemes. Low nm]tiplcs can be chown for this Iimitcr to achicvc
greater dissipation. ‘1’hcrcmaimhwof the HOC algorithm can p*occcdconceptually
without an)”changrs.



Algorithn~ s (Zalcsak’sMM’ .dopcIinlifctj

1.

2.

3.

4.

5.

6.

Define “antidiffusive”slops, s“, as S“ – SL.

Sum all “antidiffusivc”slop- going into, A:, and out of, A;, a cell.

Find the maximum, up, and minimum, u~ valuealocally, and define

(7.12a)

and
tia

MT = nuf - ‘JAzOAM‘ (7.f2b)

where 1 g n < 2 and with Ax- and Axti being the appropriatedistances

(gomputc
R; = m (l, Af:/A;) * (7.12c)

and
R; = m (], M,-/Aj) . (7.12d)

At each cell edge, k, on the cell, j, compute

C, = min (@, R;) , [7.12e)

ifs: ~ O,otherwise compute

C,= min (*,K) . (7.12f)

Theorem 9 Za!cmkk lfOC dope limiter imTVD under thefollowingconditions and
Ihe cafucs ofu~ and up am /a&en~m the set oj poinb u~.l, us, and U:+t.

Prooj The proof is nearly identical to that given in Theorem 8, but uses the
generalizationof symmetric TVD schemesto a HOG formulation(see Chapter 6). O

7.3 Results
This section presents results for some of the limiters described in the pervious sec-
tions The results arc limited to the scalar wave quation and Burgers’quation. No
attempt is made to preaentresults for all the limiters given ●bove, but the types of
limiters introduced here are discussed with regardto their perfbrrnance in rdation to
resolution and convergence. Tabk 7.1 shows a list of the limiters considered in the

results and the abbreviations used in referring;C them below.
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Tabk 7.1: Abbreviations for the methods used in this stud

I Limiter I Equation I Abbreviation
1

●

Cl-sic FCT [7.1) FCTC

IZalrsak’sFCT 1(7.6a)-(7.6rn)l E“CT2!

IModified FC’1 I (7.3a) I FCTM

I ModifiedZaksak’sFCT 1 (7.7a)-(7.7f) 1 FCTHN

7.3.1 The Scalar Wave Equation

Inthis wction using variouslimiters, the scalarwaveequation is solved by the methods
dc.writwdIn this chapter. Two initial conditions arc USA for the analysis: a square
watw with a width of 10 cells and a sinar wave (half of a period) of a width of 2S
cells. Both tests arc conducted for 500 time steps with a CFI. number of onc-ha!f.
IIICadbwctivcvelocity is taken to be unity.

For the F(;T type limiters, a Lax-Wendroffflux is used for the high-order flux
in each case. in general, the FCT schcrrm all compete quite well with the best of
the [hrce argument Iimitcr-bad solutions. The changes requiredto makeeither the
classic or ‘Zaksak’sIimitcr TVD ;mult in small drop in resolution, but it is hardly
noticcabk. It should be stated that each E“CTscheme is TVD for the cases shown.
(’h probkm that seems to plague all the three ●rgument limiter-based schemes is
the qualitative shape of the convcctcd profile(its lackof symmetry). The FCT-based
solutions scwmto aggravatethis problemsomewhat when comparedwith moreclassic
‘1*VDsolutions. Other remits arc given in Tables 7.2-7.4. The numerical viscoeity
resuits arc explained fully in the followingchapter.

A simple change to the FCT limiter can result in a large payoff. By making the
iirnitcrupwind biased, the performanceof the scheme improvesdramatically (this is
explored in rnme detail in the next chapter). St*ying with the Aar wave quation
with a >0 the ciassic FCT limiter would becorm

and Zadesak-typelimiter would only need modify the choice of Cb to

C, = R; ,

(7.13a)

(7.13b)

(7.13C)
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Table 7.2: L,
problem.

Table 7.3: Li
problem.

error norms with minimumand maximum values for the square wave

rLimiter

FCTC

K’rz.

L.

FCTM

FC’HN

Nmw
Fcnu
FCI’MU

FCTZNU

Minimum

0.000o
0.oOOo
0.0000
0.00(KJ
o.o@oo
-0.0522
O.owo
O.0000

.

Maximum

0.8376

0.8310

0.7923

0.7782

0.8377

0.8899

0.8090

.8090.—

L1 error

5.85 x 10-a
5.95 x 10-~
6.35 X 1O-a

6.42 x iO-2

5.85 x 10-~
5.75 x m-a

5.99 x 1O-a
5.99 x 10-2

ctror norms with minimum and maximum values for the sin’ z wwe

LimiWr I Minim~m I Maximum I L1 error

FCTC

FCrZ

FCTM

FCTZN

FCTCU

O.owo
O.0000
O.oom
O.omo

O.oow

0.9509

0.951I

0.9556

0.9523

0.9514

2,91 x 1O-a

2099x 10-y

2.93 X 10-2

3.00 x 10-2

2.92 x 10-~

I j“f “r~l.! I “0.0278 I 0.9716
I

3022x m-a

t 2(J
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Table 7.4: NumcricaJviscosity and total variation for both scalar wave quation
twobkns..

Limiter

FCTC

FCTZ

FCTM

E“CTZN

FCTCU

I“CTZU
FCTMU

FH%NU

~ r square

26.67

27.44

31.09

31.04

26.64

27.20

29.60

29.60

TV square

1.68

1.66

1.58

1.56

1.68

1.89

1.62

1.62

16.99

)7.81

18.52

18.31

16.97

19.14

18.16

18.16

TV sinz x

1.90

1.90

1.91

1.!HI

1.90

2.01

1.92

1.92

These schemes are denoted by the same nomenclatureas used above, but with a “U”
at the end of the acronym. For the classic FCT limiter the effect of this change is
minimal. For Zalesak’sIimitcr, the impact makes the solution oscillatory. For the
modified limiters there is an improvementfor the square wave problem, but the sina
problem the effectswash out. The tabul~xdata reflects this, as does Fig. 7.3.

7.3.2 Burgers9 Equation

This section of the chapter centers around the or&r of accuracyobtained with metho-
ds in conjunction with limiters and their subsequent solutions. To accomplish this,
a standard test problemusing Burgers’equation is used. The problemconsists of an
initial condition of sin (z), x 6 [0,2s]. At f = 0.2, the solution is smooth, and at
t = 1.0, ● shock has formed in the solution. It is ●t these times that the accuracy
of the solution is assessd. The problemis solved with 10 grid cells followedby IO@
grid cells.

The results for this testprobkrnaregivea in Tabk7.S and7.6. TheF(X limiters
seem to suffer from poor convergencecharacteristics.Ingeneral,the modifiedFCT
limiters are more efficientand provideresolutionon cmmsegrids.

7.4 Concluding Remarks
In this chapter ● numberof limiters have been tevicwed and their properties exam=
ined. In addition, several limiters have ken ir,imducedot reformulatedand analy~
within a common framework. ‘lshcimpact of Iimiws on high-resolution numerical
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Table 7.5: Orderof converl
when the solution is smoo

‘ricein severalerrornormsfor Burgers’equation at t = 0.2
b *
Limiter L1 La L*

FCTC 2.00 2.01 1.74

FCTZ 1.97 1.67 i.13

FCTM 1.87 1.58 1.12

FC’MN 1.91 1.58 1.08

Table 7.6: Orderof convergencein sevcraierrornormsfor Burgers’equation at t = 0.2
when the solution has ● sh

Limiter L1 ~ L-

KTC 1.42 0.89 0.33

FCTZ 1.46 0.91 0.33

FCTM 1.49 0.94 0.37

FCTZN 1.34 0.80 0.28
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solutions hu also been demonstrated. The importance of lirniicrson the solution
of the equations is undeniable. The quality of solutions is directly traceable to the
limiters because they are the heart of the numericalschemes.

Morestudy of limiters is warrantedin light of these rcmdts. As discussed earlier,
limiters can impact steady-state solution convergence. Some study of this phenomena
is mx-ied. Additionally,h~th TVBand generalizedaveragelimiters should studied in
orderto give moresystematic marmcrto choose the constants used with the limiters.

The next chapterexplores the topic of limiter moregenerally●nd in more detail.
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Chapter 8.

TVD and Nearly TVD Limiters

The mad to resolutionlies by doubt. #uncti Quarlcs

8.1 Background
Godunov gave the impetus for tht development of modern high-resolution methods
with his paper [56]. Boris and Book [59] realized that Godunov’s thrmremmeant
that a second-order“mor~otone”algorithm could be constructed if it were nonlinear
in nature. In deriving their FCT algorithm, they introduced limiters u ● meamto
assuring wcond-order accuracy with “monotone”rcaults.

8.2 Introduction
‘f’hisline of thought w- also followedby other pioneersin the field. Van Leerused ●

nonlinear limiters function in definingwhat haabecome knownaa the classic MUSCL
algorithm [119]. Nartcn and Zwas used a similar formalism in deriving the hybrid
method [146], aa did Narten with artificialcomprcasionmethod [163]. The methods
developedby van Leerand liarten took the formof switching functionsbetweenhigh=
and low-orderschemes. Thus the high.orderscheme would be uacdwheruthe solution
is wnooth, and the fow.ordersolution is umcdnear discontinuities to guard against
the formation of oscillations.

Van Leerextended this Iincof thought more directly to a high-ordere-tension of
bdunov’s method in [120, 60]. The limiters were used to define polynomial rccon-
fitructionsof the dependent variablesused to derivedifferenceapproximationsfor the
numericalfhxea. This general line of thought led to schemes knownas HOGschemes.
These schemes can be viewed similarly to the switching schemes discussed previously.
The Iimitcrsare used tc blend high. and low-order●pproximationsguarding against
oscillations. The major difference is the inclusion of the Riemann problem in the
solution achemc, thus embodying the uscnce of upwind weighted diflerencing.

The general formof limiters defined in the FCT sch~ and by van Leer’sHOG
schemeawereused to defineTVD schemes. Marten[136,61) introducedthe Coupt of
nonlinearTVD finitcdifferenceschcmcs. ‘IWsconcept was also wed by Roe [131, 176],
Sweby [1321,and Davis [133) to define a class of schemes based on TVDcorrections
to the Lax=Wendroff[56) scheme. This work was summarized by Yee [134] where
one member of this class of schemes was dubbed as the “symmetric TVD” scheme.
In recent years, several authors have made firmer connections betweenFLT utd
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TVi)/tlOC methods [184, 18S]. I htwe written about this relation in Chapters 6
and 5. In those chapters, the relation between the FCT method as statml by 2alesak
and ttw symmetric TVD schemes and subsequently the relation to the symmetric
T\rD ~chemet. ~io~ tyw methods are explored. This line of app.mch Cm benefit
all formsof high-rwolution solution of hyperbolicconservationlaws by adding a larger
degree of synurglsmIwtvwcnthese varmusforillulations.

Thig chapter haa been organized into four sections. The next wction describes a
wide variety of limiters used in the construction of high-resolutionalgorithms. This
exposition includes material applicable to TVD and TVII schcmcs as well as gen=
cralizations to limiters generally denoted by the label, “r\earlyTVD.” A numberof
limiters discussed in the third sections are used to soIve the scalar waveequation and
Durgcrs’equation. Theae results arc given and discussed in the fourth section. The
final section dismissesconclusions.

8.3 Description of Limiters
In my opinion, this subject has been given inadequate coverage in the literature
despite its relative importance to the derivationof nonosci~latoryhigh-resolutiondif=
fcrcnceschemes. Sweby [132, 186, 187)has given the most widely rcfmencedcoverage
of the subject. Roe [131, 176] also gave attention to the subject. A more detaikl
discussion of these referencesis given in the followingsections.

The work contained in [132] and [176] is limited to an upwind-biaaedlimiter
applied to a TVD Lax=Wendroffscheme [133, 5, 134]. Roe’s work given ir [131)
applies to a TVD Lax-Wendroffscheme where the limiter is not biased with the
wind, which haa ~ known as the symmetric TVD schemes. Because the )kter
is cck-ige centered this rquires the limiter to use three arguments rather than two
as in the upwind-biasedcase (also see [8, 6, 134]). This is significant in algorithmic
performanceas noted later in this chapter. Munz [1811surveyeda numberof limiters
with relation to a HOG scheme for a scalartw-dimensional quatkm using operatot
splitting (see Appendix F). In this workproblemswith both sy~try ~d resolut~
were noted with symmetric TVD schemes.

8.3.1 General Requirements
To begin the discussion of limiters, ● concise definition is presented.

Definition S (Limiters) 4 limiterb a mcchantimlhai imposesspecifiedcoutrainfs
on the computationaj the numericalj?uz producinghigher onfer accuracy, but &o
controllingoBcillatiomandmmetimeaimprom”ngthe resolutionof discontinuities adap
tiucly.

This definition fails to encompass the full rangeof limiters given in the )iterature. It
does give the gemral concept embodied by Iimitcrs. The constraints in many cases are
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taken to be the restriction to TVD discrctizationsof a scalar hyperbolic conservation
law. Often, as is the case with the FCT, the limiter is defined in a more somewhat
heuristic manner, namely to kcwpnew cxtrcma from being formed in the solution.

At this point, it is useful to delineate the differencebetwmn slope and flux limiters
moreclosely. This is done fromthe standpoint of a philosophicalMfcrentiation rather
than from a purely substantive basis. The slope limiters can be thought as being
used directly during interpolation. Flux limiting usually involvm methods that are
classified as finite-differencetypes. Thus slope limiting applies to HOC algorithms
and the flux limiting applies to TVD and
on this classification, it is not stringent.
due to Shu and Oshcr [65, 66, t88].

FCT algorithms. Onc caveat can be placed
An example of this are the ENO schemes

Remark 23 in generals!opclimiting relcrs to the reconstruction (projection) phase
of the solution process. Fluxli.niting injn”ngcson the solutionin the small (evolution)
porfion of fhe solu~ion. In ~147]. ran Leer admonisha this prccticc. The evolution
process can aid in the lin:~!ingpmct.~sthrough the dtlcrrnination oj the domain of
dcpcndrncc /or the Iimitcr. This prmcipk has been umd succes~[ulfpa“th upwind-
biascd cell-edge type 7*VL)Lax-Wcndroflschcmes or. for that ma/ter, linear schemea
fiucha~ thr &learn-Warming.Acmt.

Typically. a limiter is used to choose the smoother of several gradients with some
caveats imposed to improvethe quality. This can also be viewedas Aformof ●veraging
which is nonlinear rathe~ than linear in nature. The ●veraging can also have the
condition of setting its value to zero if the arguments differ in sign, This condition
with appropriatehits on the magnitudeof the resultantgr.ulientin relationto other
tocal gradients results in “monotone”solutions. Other )imi~ of the resultant Anne
can be applied to give something closer to an ENO type of philosophy.

The limiter functions have a general formgiven by the “m-mod” type

Q = m(a,6) , (8.la)

or
Q = m(a,b,c) , (8.lb)

where
m(o, b~= sgn (a)m~ IO,min(ial ,i~gn(a) b)) , (8.lc)

or
m(u, b,c) = sgn (a)max IO,min(lal ,sgn (ajb, sgn (a)c)] . (8.Id)

This definition can casi!y be extended to an arbitrarynumberof arguments. As one
can see, the minmod limiter returnsthe minimumof the arguments unless they differ
in sign. If they differ in sign, the result i? zero. As 1 show in Section 7.1, this form
was introduced with the FCT method of floris and nook [59].
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k’igurc8.1: The computational stencil of the main limiter types in one dimension.
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flux or cell-centered limiter is centered about grid point j, the symmetric limiter is
centered about cell=edgej - #, ~d the upwind.biased limiter for cehdge j - } is
centered about cell j - 1 for a >0. Fora <0 it would have the same stencil u the
cell-centeredIimitcr.

limiters are centered in some sense. They can be centered about a grid point,
cdl edge, or biased by the direction of the flow as shown by Fig. 8.1. The appropri-
atc definition of this centering is determined by the requirementsof the underlying
polynomial reconstruction. Thelimiters are defined at the points where a gradient of
some sort is needed in the scheme definition.

Roe [176]and Sweby [132]introduceds f~ulation of these limiters that is par-
ticularly useful foranalysis. Yee (134)also used this fmm in heranalysisof symmetric
TVD schemes. In this form, the function ~j+~ is rewritten in *MSd ratios dkd
gmdicnts denoted by r = &L/Aj+lU under this formulation. The rninmodIifim

haa a slightly modified form

m(a,6) = max IO,min(I, r)]a, (8.2)

with r = b/a, which has an similar functional form for three arguments.



Roe and Swcby also gave some desirable properties for Iimitcrs to have auch as
symmetry (applicahlc to two argument limitcrsj

Q(r) 1= Q(-) or Q (a, 4) ---Q (6,a) ,
r r“ o

(8.3a)

and homogmwity

QbJ*P~J=PQ(I,,) . (6.3b)

Although the homogeneitypropmtycanrosily k gmcralized, the symmetry property
is in need of propergeneralizationfor limiters using more than two arguments.

Another proptvty discus.scdby RN [176! is that of linear averaging. Quadratic
data could bc exactly advcctcd with ~hc usc O(a function of the form

Q(a,6) = pa + (1 - p)b , p E [0,1] , (8.3c)

because in quadraticdata the diffcrmwesin gradientsvarylinearly. Tl~ischaracteristic
cannot bc used with TVD limiters becausethis would producea Iirwaralgorithmand
produce oscillatory solutions by virtur of Thmrcm X Some of the characteristicsof
this property can be recoveredwhen the flow field is smooth and resolved.

Although this is not comnmnly stated, the Iimitcrs used in TVD schemes arc
convex Andconsistent avcragmof their local data’s gradients. This is cquivaIcnt to
stating that the schemes are sccond”ordcraccurate because the limited gradients and
the resulting schenws are convex averagesof a family of second-orderlinear schema.
Thus ● genersdformof limiters is

Q(at,a~,...,a~ ) = eta, + qa~ +... + ~an , (8.4a)

where

and

(8.4b)

p., = 1. (8.4C)
~9s

Consistency would dictati: that

Q(a,a,.., ,G) = a . (8.4d)

As discus..d in momdetail below (Sections 8.3.3 and 8.3.3), the commonly used TVD
limitershave this propertywhcmts some other limiters of similar design (such as the
FCT or ufmwn: Iimitcm)810not.

Onc key point in this entire discussion is that the limiters in conjunction with
upwind principbs attempt to !~alanc~resolution with the nmd for dissipation in the
algorithms. It is this trade off that is vital to the nucccssof schcmcs. It is explored
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in the next section.

8.3.2 Numerical Dissipation

Theview cim be takenthat the Iiu]itmis simidy a ‘fanry- formof artificialdissipation.

This is true to a certain extent wlwn considering thr chwical depiction of artificial
dissi~ation, but the difTercnccis that thr rhoic~of dissipation coeffkicnts is nonlinear.
To scc this, I recall the observation giwn in [30] that an upwind-difhmccd scheme
solves the following parabolicquation to second-orderaccuracy:

till au a%- !laj AX(} - V)~ ●

x + “Z -2
(8.5)

This equation can he dmivcd hy taking the eiifkncc between th~ numericalschemes
for upwind difiercncingand Lax-W(*ndroff’smct}md. Taking this approach a sort of
numcricaJviscous stress can be Mind as

(8.6)

Using the approachoutlined ahovcfor UOG.type algorithmsyield ● usefulmeasure
of a limiter’scfkct on the solution. These relations arc given for a scheme defined by
the following polynomial:

— (x - x,)
P, (x) = u, + A,u~ ,x E IX,-pl+) 1

J
(8.7)

where A~u = QjA,+}u. Using a l.ax-~vendroff-lyp~JNWdi~rcti=tion •~d ~l~t
mesh spacing gives for upwind diffcwncing

7L~.4~= : [(a- 1~1)(~+W2,+l-I)+ (a+ la])(~ - V)(I - Qj))Aj~4u ~ [8~$)

where Q is defined as —

Q,= * o
A)+~u

(8.9)

For Lax.Fricdrichs’diffcrcncingused as the undcr)ying!khernc @es

() la!
a-— () 110’ (I - v)(1 - Q,) A,+p .(1 + @(Q,+~ - 1)+ a + y

v
(8.10)

Remark24 !br genera! use in computingthe quanlif~rL/&Nthe diflercncebetween
the Lax-Wendroflj?uxand a cerfain high=orderjlux is wed.

.Severalobservations can be made by carefully analysing these functions. For an
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upwind-bad scheme, the visco~s stress is with the gr.dient A,+ ~u whcrmverthe
limiter gradient is taken to bc the minimum~radient or Icss; however, if the limited
gradient is Iargcrthan orwof the Iocfilgradients, then the stress can he against the
gradient or anti-diflusive. Ttw second of these two cases leads to compression in an
algorithm. Geometrically, thv orientation of ~hr cell averages becomm inverted at
the computed ccl!-edge values. If this persists for many time steps, it would lead to
a disa..trous instability, but the nonlinear nature of the limiters guards against this
occurrence.

This is of some consequcncr with the Lax-Friedrichs.bawd schcmc (or similarly
twcd schcmm such as a local I.ax-Fricdrichs[65, 66] or the liIJ.E solver []30, 128)).
In most cases, liJc difiusivc effect is enhanced by the incrcascd diffusion, but where
the limiter producesan antidiffusiveflux, the antidiffusivenature is enhanced by the
difTusion. This can lead to small oscillations. This behavior is exemplified by the
E“{*TIimitcrswhere the Iimitcrhas an antidiffusive Lax-Friedrichs-typesignal sped
[o-~ j.

8.3.3 TVD Limiters

Although this is not completely general, for the purposes of this study the limiters
uscd with TVD .schcmescan be divided into two categories: two argument and three
argument types. These limiters can also be used with IXX schemes as 1 have refor-
mulated thcm aml with }10(; algorithmscorrespondingto a given TVD schcrne.The
principalcontributions found in the followingsections are generalizationsof the ideas
of Swcby [132] and Roc [176] to more general numerical schemes. The●nalyses of
Swcby and be used with an upwind-biasedTVD Lax~Wendroffscheme applies very
WPIIto othm uses oi two argument limiters. The analysis of Roc [131] with rcgar&
to three argument limiters is Iimitcdto a small SC1of the limiters which arc a natural
outgrowth of the two argument Iimitcrs.

For gmwral second.order TVD schemes, several comlition must be rrwtfor the
Iimitcrs to provide a TVD solution. These are taken from the conditions for a TVD
scheme in a Semi-discrctc case, (~ Chapter 4). For cdkccntmd based Iimitcd
schcnws such as the modified flux TVD Anne in [4.22a), the conditions are for
a~O

Q - Q,+, ~ 2, (8.1IU)
r

and for a <0
% <2.Q,+I - ~ - (8.lib)

Fordl=edgc based limited Schm such as (6.4) or (6.7) the conditions arc for a ~ o

14I

(8.12a)



iillll f(Jr (1 < 0

Q ,.?c.i<~
J+, r’ -

and

(8.13a)

(8.13b)

wth analogoushmd.~lor u < 0.

Orw caveat applies to th(”strict IJ.SCof conditions such as (8.1 la)-(8.12b): the
T\’D C@M];tlfJrMshould h dcrival for each scheme from those stated in Thmrcrn 6.
An mamplr of this principleat v:orkis the activation of appropriateIimitcrsdefined
i:)f’!mpter6 for paraholic }“[“1’srht’mrs.The resultingconditions for the Iimitcrs●re
i(~m~ticalto those a}mw. hut th~ right.hand sidm of th~ inequalities arc multiplied by
4/3. A simpl~ ~xample of this is the minhar limiter. (~.17), wh;ch produces a TVD
schmtw, bIJtthe pr{x~fof this rcquirma slight modificationof the usual proofs (i.e.,
dropr~ingthe aw~lnl;]tionthat th~ Q functions arc poeitivc or cqua! to zero for all r).

TWO Argument Limiters

I{oe [176] and SWrby[[.32]dcfkd their schcmm (and Iimitem) to be upwind biased
in natlJrc. Th~ st(mcil for the Iimitcrs w- centered ●bout a ce)kdge and the cell-
mlge ~~pwindfrom that. The typical assumptions regardingthe Poeitivity of the Q
f~ln~titJn9leads to the TVD rcgkmMined by Swcby. The boundary of this region is
given hy

Q~VIJ= m(2,2r) . (8.14)

It is ho~Jndcdbelow by the x-axis. The TVD region using this assumption is shown
in E“ig.8.2a. V the awu:nption regarding Poeitivity is dropped then the region is
tmtJrlM by

%*O = m [ l,rj , and Q~vD = m (- 1, -r) . (8.15)

This rt”gionis shown in }’ig 8.2b. FlglJrc8.2b difbs from previous pwscntations in
its rw~qnitifm(Jflimiters that can difbr in sign (an cxamp!e of which is the minbar



QI:j-t” - mil.r) ,

van Leer’s!imitcr [119]

Q.,( 1,~)= ‘*[ .
the centered limiter [120]

Q, (1 ~ 1v(J+r)●.-“1=m:!-J-,,,
and Roe’s .supcrbcwlimitfv

QSH(l.~~ -10, IIUIf~..● I min(1. -

Another form of limiter is used wrm L}:r ‘‘;() 1:= ,cbe!l’*

(8.16A)

(8.16b)

(8.16c)

(8.164

4++ imnm is caned

the “minbar”limiter ●nd it retur~]:the mgsmenf with t]) ~Nest absolute value.
It can be written symbolically

{

a if iu~= rmnO(~ul,Ii
rn(a, b) =

b o!herwix
(8.17)

and in the ENO scherncsthe difiercnccstmcd ~“-k. IL :.IM!direction of the smal!cr
argument. Figure 8.3a shows the behavrm
f“~}~lt~xtOfa S4”COnfj-(Jrd4”rw) whmc. III

I1-!



2.5

2

1.5

I
Q

0.5

0

-0.5

2

1.5

I

0.s

Qo
4).s
-1
-1.s

●2

I(a) i /1

1 A ...—...—— ———-t

t

-1 4.5 u 0.5 I }.5 2 2.5 3

r

K--....L-J
9-- -1.5 -1 -().3 o 0.s 1 ].s 2

r

}“iglJr4!H.’i!:Tht”ff”(ot’f!(~r(icr‘T\’1)r~gionsarc shown in lhc shaded regions of lb
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Q = r for O < T < I and Q = I for r z I. The lines denoted by QMVmd QBW
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is shown as outlined by QI and Q9B. Figure 8.4b thows the behaviorof QCand Q@t
with respect to r.

For the initial presentationof this analysis, for example, the determination of the
limiter at cell-edge; + \ if the signal velocity a >0 then the gradient at j - ~ is
compared with the gradient at j + $, otherwise the gradient at j + ~ is used for
comparison. This scheme is (6.7) with

(8.18)

The question of accuracy of limited schemes of this nature was addressed by
Sweby in [132]. The schemesof this nature could be viewed as convex averagesof the
Lax-Wendroffand Beam-Warmingschemes. These schemes ●re defined by the use
of certain gradient ratios defined in ● linear manner. The aecond.orderTVD region
is a set of the regions bounded by these two schemes and the conditions defining
TVD schemes. A secondary eflect of this is that the limiters thus become convex
but nonlinear averages of the sample gradients. Two third-order upwind methods
can also be incorporatedinto this framework.One is based on cell ●verages and the
other is point value based [190] (see Chapter 9). These schemes are defined for the
upwind-biasedTVD schemes with gradients wtitten in ratio formas

for the point=value form and

8 3r
— = i+i’‘J+~

(8.19a)

(8.J9b)

for the cell-average form. Figure 8.3b shows the region defined by these limiters in
the second-orderTVD region.

The use of these identical limitershu not beenIimitedtoscherrwsof this type. The
HOG scheme described by Co&lla in [123] and Osher in [179)and the modified flux
TVD schemeof Hartea [130,61)successfullyusethesesame limiters. The polynomial
interpolation for this scheme u given by (8.7). The limiters are not biased with the
direction of the flow, and the limiters stencil is invariant. These srhemes determinea
vaiue for the gradientwhichu cell=centeredandisbasedonsampkgradients taken S4

the celledges. Anaiysisofcondibrts resulting in TVD Jimitersyields :&#lticaJresults
as the upwind-biused Iimitet applied to a TVD Lax”Wendroffsch..me as discusd
later. In fact,for ● scalar wavequalion thesetwo schemesgive identical results with
identical limiters. This does not generalize to nonlinearequations.

The accuracy of these schemes is second order in the L, norm, but the limiters
make the resultingscheme a convex averageof a Second.ordmupwindscheme and the
c(~rrrspt~nf!lllganti. upwind interpolatedscheme. “f’hcfirst schmncprodurm rmults of
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rc+stiveiygood quality. while thr sword scheme produces poor rmults (saved by the
Niemannsolvcr)t hut the Iimitcrprovidesexceptional results improvodin all respects.
The rclatitin of the Iincardiffcrcnccschcmcs to the }Iighwkr nmthod is akin to the
relation of Swcby and Roe’s scheme and Lax-M’vndroffor I]earn-Warmingsc!)cnws.

Before going further, several other two argument limiters should bc introduced.
The form used to ddinc the minmod and supcrbee limiters arc specific caws of a
family of schemes defined by

Q. = max IO,min(ri, r) ,min(l. n r)) ,1< u <2.-- (8.20)

Forn = 1 this rcduccs .Othe minmod limiter and for n = 2 it is ttw superbec limiter.
The above caveat also applies to this limiter because for some possible schemes the
above definition can bc extended. Figure 8.5a shows the behaviorof Q“ for n :: 1.s.

oshcr and Chakravarthy[180] introduceda limiter

Qvc= m (1, n r) or m (n, r) I ~ n ~ 2. (8.21)

which does not share the symmetry condition with the othm Iimitcrs (unless n = I)
and thus must bc ~sed with cautiol~. This can be seen in Fig. 8.5b for n = 2 and
each of th ~ two forms given abcrm. The first of these two choices makes sense from
the standpoint that in a upwind-biasedcell-dge limiter it would choose the centrally
differenccdgradient. The rmults presentedin [181, 132]show the effectsof this lackof
symmetry. This limitermay still be usd if appliedcarefullyin algorithmconstruction.
Nevertheless, these limiters find widespreaduse in a numberof schemes and produce
quality results in spite af their 1-s desirable qualities.

Uniformly nonoscillatory schemes [64] use a limited second derivative to correct
the firstderivativeestimate to give uniformseccmd~orderaccuracy in all crro( norms.
The price p~id is the loss of the TVD propsrty;however,these schemes ate deigned
not to meatc any new extrema not in the initial data (for linear problcrns). For the
polynomial form (8.7), the sample gradients used are cell-edge centered. The UNO
scheme makm an es?imateof thesecondderivative ●t the celkdges and corwt ‘he
value of the cell.edge first derivative to ttii cell center. I define

(8.22)

as the second &rivativecomputed fromthe fmt derivativesS,*I, andcwcpute an

estimate for dJ+} with

I17

(?!.23)

I
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I rorrcct the first dcrivatiw estimates

and

(8.24a)

and limit these modified gradients in a normal fashion. The performanceof this
schcmc on test problems is gcncraIlyexceptional. This approach worksfor the mod-
ified flux T\’D method and its related liOC counterpart. Suresh and Huynh have
studiml somv intmmting variantof the above UNO-type schemes [191].

The upwind-hi-i cehdge Iimitcr uses two argument limiters as well, but the
proptv definition of UNO requiressome modification. Discussion of this is deferred
to the next section,

‘I”hc’compressive limiters arc necessary for computing contact discontinuities be
cause of their tcmicncy to diffuse. Less compressive limiters are recommended for
shocks bccauscof a shock’s self.sharpening nature.

Q,l does not have the usual form, but checking its functionality shows what its
dlcct is. This canalsobe viewed as a modified harmonicmean. This connection u
explor~dat length in .Scction8.3.4.

Three Argument Limitem

As the discussion in the previoussection would indicate, the two argumentTVD limo
itcrs arc relatively simple to ana!yzeand take a numberof forms. The threeargument
limiters arc more di~cult to●nalyze,but I follow the same general methodology.

Several limiters of this class have ●lready been given in Chapter 7. To present
theae limiters in ae compact a form as possible, the nomenclatureused in Section 7.2
is used. Thus the followingvariablesare defined:

.-. w!, ,+=!!M’
‘J+~”

AJ+p “
(8.25)

and the function Q)~~ (~,-}, ‘J~)OsJ+~) can be rewritten as Qt+~ (~-, 1,~+) st~}.
The term s)+} has tt.e same definition as be!bre. Some of the limitersof thisclass
havebeenreportedby Roe[131]and Yee [134]. Some example of these limiters we

Qd~”’J*~+)‘+~’~~+)o (8.26a)

[
Q. (r-, I,r+)= m 2r-,2, ?r+, ;(?- +r+)] * (8.26b)

IS(J



alltl
4; (’-Jr’) =“+-*’) +“’(’*r+)- ‘ - (8.26c)

(),1 (r-. 1.r’) = I’;jy +lr;~;:+ -, , (8.26d)

and

~,b (r-. l.~+)= fl~ax[().mk(],~~-),fnifl (?.r-)]
+ rnaxIO,min (1.2r+) ,min (Z. r+)] -1. (8.26e)

Ifa funrtiml twing Iimitul is smooth and monotone mm rangeof thr thrw arguments
Iwing Iin]itd. no protdc:ntwcurs hccausc a monotone variation is iMsurncdhere.
Protdmns~)~curwhvnthrdata shows more str;lcture. This is evident through Fig. 6.;,
w’hirhshotvs that hoth of the ahovr limiters arc not TVI) although their behavior in
practicr may hc acccptabic on most initial data.

At this point. scvmal topics arc in ncmi of discussion. As before with the two
argument Iimitcrs, accuracy of the approximation is important, ●nd as before sorrw
criteria such a.. syrnmctrj* needs to bc met. These allow us to create ncw limiters
with drsirabk quaiitics.

‘l-hr topic of accuracy can be addressedquite simply, m part of the answer comes

from the j}rC\”i(JIManalysis of upwind-biased limiters for the TVD ls-Wcndrofi
schmnm. I“hc threwargument limiters (1 ●m considering those centered about ●

cell cdg~) ar~ a ronvrx avrrage of the Lax=Wcndroffand fkam. Warming methods,
IJlltalso include an anti.lkam.\\’arming-type schcrnewhere the stencil is taken to be
(JiJ~JSitCof Ilpwind, Although the resultof theiimitcris a convex averageof these
sche;ncs, it is .sccond.ordmaccurate. The stability of schemes such as }-CT or sym-
metric ‘r VI)show the powmof iimitcrs to ofkt the cifcctsof using anti-upwind data.
This statmnrntis somewhat mislmding as anti-upwind data is dangerous at cxtrema
and disnmtirmiticsand the iimitcrs discu.wxi hwc would choqe data fromelsewhere
in {hestcncii at tlwwpoints.

As notrdwith Fig. 8.2, the TVt) regions for th~ three argument limiters can be

visualized hy projecting the rcgiom shown in the plot in an additional coordinate

th- limiters mds to h: diffmmt than with the two
dirtatm that th~ Iimitcrshould Pwsymuwtric ●bout

I-)I
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F“igurc8.6: Three of the three aqpmwnt Iitnitcrs arr shown here. Thesearc the
minmod limiter (Ql), the ccntcd Iimitm(Q{), and a modifiedminmod limiter ((~8).
The modified minmod Iimitcr dom not giv~ “l’VI) rmults hccause of its form and
subsequent hehavior when r* <0. ‘l”h~other two limiter are TVD fhrsecond.order
symmetric type schemes.
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(a)

Q

~’igurc$.i; Both d lkc ]irnikrs IJ,W thr dv.+igi} phiiowphy of thv rm~!ifimirninmnd
scheme. Figure 8.7a uses van Imcr’slimiter ●nd Fig. 8.7b uses the superbee limiter.
Both are not TVD for r* <0, butalsouc notTVD shoutd r~ g~owtmffIcitxdy Iatgc

with both beinggreaterthan 1.



tlw mitral valw in tlw sttmcil. i.e..

Q (r-. Lr+)= Q (r+,l. r-) . (8.27)

Inspection reveals that this is infkcd the raw for tlw limilcn9givcn ahovv. l.ttr
propmty of honqcnriiy is also illlportant and is kept by t}w a}~nw Iimittws. “1.hc
same caveat concmning Iintitms an~i specific diffmmcc schcrrws mak in lhr previous

section applies to tlw three argunwnt limiters.

lh~forr moving cm. scvma] ]illlit~”rscan k introduced that m~et thr itbovc stated

critmia. onr Iimitm that quickly comes tomind is an extension of the minbar Iimitm,

(8.17).

1a if Ial = inf (Ial, Ihl,ic[)

m (u, b.c) = 6 if 161= inf(ial,lb~,lcl) .

I c othwwim

F’igure 8.8 shows this limiter behavior for different values of r- and r+. A gcnmal
class of limitms (Vxtcndingtwo argument Iimitcrsto three arguments can b writta.J)

03=- min IQz(I.r-) .QZ(I, r+)] . (8.029)

whmr <~acould hc any two argumcrtt limiters like those discussed in the previous

section. Two examples of this dcsigrtprinciplrarcgiww in }’ig.8.!I (using van Leer’s
and t}wrmttmcd two argument limiters). This Iimitcrdoes not sbarcsome of the poor
charactl”risticsof the separableIimitcrs shownabove. Inseveralcases. the results from
this Iim,ier rcducc to other limiters discussed above. For instance, the basic three
argummilminmod limiter can be found fromthe above combinationof two argument
minmod hmitcrs.

A serond group of Iimilcrs, which havrtheir basis on the abov~’statmlsymrne
try property, arr natural mltgrtm.th~ of w“~”~ralof the two argument T \ D liiniters.
Exarnphwof this design are

and

[(Q. = nlax O,min 2,2r-,2r+, ~ (1 + r-), ~ (1 + r~))l ,

Q~ = rrtaxIO,rnin(2, r-. r+) ,min (l,2r-,2r+)] ,

owl=
\r-l + \r+l+ r- + r+

2 + Ir-l + lr~j “

[Win)

(8.30b)

(8..3Oc)

The limiters satisfy the TVD rcquirmnerttsfor the symmetricTVDschemeandper=
form quite WCIIin practice. These are shown in Fig. 8.10, which dmnonstrates tlwir
ability f.oproduce symmetric TVf) limitms.

!.-)I
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Figure 8.8: The three argument analog to the minbar limiter is shown here.

“ “ discussed in Chaptm 6, ttw concept of (~NO schemes can bc generalized to,*
the three ●rgument limiters. This is done in the following manner. Thecell-edged
stenc;l for the limiters requires that gradients onc full cell distant from cell edge be

used in the limiting process. As with the two argument implementation of an UNO
scheme,thesegradients ●rc corrected. To do th~s,cell-edged estimates for the second
derivatives ●re needed, as defined by (8.23). The gradients used in the limiter are
then corrected with ● first”ordcrcorrection based on these scccmdderivat%es. The
cell-edge gradicat on the cell edge where the limiter is defirmdis already seumd~order
and needs noco@ction.These corrections●re

(8.31a)

and
‘;J+ ]

= s,+, - Asd,+l . (8.31h)

As noted in the previous section, the upvvind.bia.scdlimiters cannot use ttw UNO
dtwcrip!iongiven in he previoussection. The cell-edge-baseddefinition given in the
previous paragraphis the proper basisto begin from and the gcneralizaticmto tbe

upwind-biasedlimiters is naturaL

“rhemethods introduced a~ being symmetric TVD schemes ●rc diflereatiated by
their flux limiters which ●re centered in support about the CCII w!gcs. The othet
methods like thnse introduced by Sweby ●nd Roe are upwind biased in th~ stqqmrf
for their iimiters. Both methods however are C!OAYrvlatcd to !!w I.(IY\f’m4ruff
methw!. ‘i”hcsymtnetricschemes have bren favorahly vicwmth(!CalJW?,,1 IIWIF h,w,~t

I

operation f-cmntand an increasedconvergenceWe 1166).

in consideringttw performanceof thse schrmes, six tat problemsarc completml:
two for th~ sralar wave cqt:ation,onr for Burgerssequation, WI(Ithrrr for tht*Enlm

I
1—..—— . —.——..



(a)

,. .

Q -.
,

(b)

.

.!

c! P



(1°

(c)

.
b.

Q o

}“iguw %10: ‘f”h lilllih’r SdlCJWllher~U.Wlh~synmwlr)”properlydiscmsd in the text.
The limiter shown in F“ig.8.10a is analogous 10 the rentercd limiter while Fig. U.10b
is analqms to the superbec iimitcv, }kJh are .scwondorder and TVD. }“igur~8.M)c
givm a vanLwr type limiter. which is not TVl) hut worksqnite well i“,prartirc.
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Table t$.1: Ordm of accuracy in several norms for k schcnws solving Burgc*rs”equa-
tion. ,

Scheme /., 1.2 L-

Symnwtric (1 = 0.2) 1.83 1?58 1.19

Upwind (t = 0.2) 1.90 1.65 1.28

Symmetric (t = 1.0) 1.48 1.19 0.78

IIpwird (t = 1.0) 1.41 I.14 0.74

sqIIar4*wavr anfi of a ‘tcepcc- functionarrmsa p4*ri[Jdi(”domain. Earh test runs

for 300 timo stepswith a (“olJrailt-Fricdric}ls-bw-y [C}*L)numkr of \. “flo Burgers’

equation problem is simply a sin (x) initial conditionon a pmiudictiomainwith hrngth
of 2x. “h thr~ Eulm equation problemsare Sod”sprohlmn[41), Lax’sprohkm [551,
and a td~st wave probhvn [+t]. The combination of th- problems highlights the

strtmgthsand wraknmsm of thrsc algorithms. Both ●lgorithms always USC*the Iimitm

drnotcd b)oQa in the previous section for ●l) problcms~xcept the Burgers”quation

problem where ~1 is IJsd.

Figure 8.I I shows the solutions to the ualar wave equation. Thr symmetric

whmnr obviously providmlowerrmolution in both cases. The di!?crmrccis also fairly
grcat in terms of both peak preservationas WCIIas signal width. The symmetric
:chmnc alsoL:vsproblems with signal shape as it is somewhat distortml. A notable
featureof the upwind-biasedschcrneis that forthe scalarwaverquation the soiution
is identical to that obtained by the modified flux TVD schcnw if the sameIimitcrs
arc USA. This can bc explained by the support of tht limiter used and the resulting
interpolation on the upwind side of each cell interface. For nonlirmarproblems this
docmnot hold.

In Table8.1.theratesofconvergencearegivtnfoeBurgers”equation. When the
solution is smooth, the upwindmethod : evidently supe?iu: in every error norm.
After a shockforms, the symmetric scheme is slightly more convergent;howcvm, for
all test cases (up to IOOCgrid cells) the actual error is lower for the upwind schmne.
In addition, Astime progressesafter t = 1.0, the upwind scheme rccovcrsits initially
higher rate of convergence.

The solutions for the Euler equations echo the results with the previous thrrw
problems. Acrou the board, the resolutionaffordedby the upwindsc$crneis superior.
The major flow structure: shocks, rarefactions, and contact diSCCJntlnUitiC8arc all

noticeably better resolved with the upwind method. The resultsftom %1’s problem
ih“frt(ms trAlr thish I WJIrv (ivqrt.f., !!1f’”1~.~.~1~,~~ch {}fth!’ ff”.ltllrl”%.~r~”S}14rjJf”rW“lth
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III I:ig. ti.1~. tlw INM IAavi[Jur for t}w contact disnmtinuity and Awk arc clearly

S}NWI1. ~flso tw”idmt from this figure is t% symnwtry problmns t’xhihitcd b>”the

s}”mm44ric schww. ‘1’tw st:aiJccJfdw dcmity peak is more m)sistcnt with th(t csxart
s4Jutitm with IIJCulnvid-l)iascd nwthod.

“1-h4D Ihql waw4c @hIJ (xv Fig. 8. 14) dcccrJt~Jatc9eachof thcs~issues. “f’tJ;Sis

p,trticularly true with rmpm-t to the right dmsity prak whici; is significantly closer
tf~t}Jf”~onvmgcv!s(il~Jtionwith thr upwind nwthod. 1 wo other key fraturrs of the
s~dllti(marr th~~~!vgrcr~jf‘fill-in- tmtwmwthe pmsksand thr contart (Discontinuityto
t)w h~ft{Jftht”Irft dmsit)” pvak. The fill-in regionsarc”both snwarmlnearly equally,
IJIJtthe”shaiw of the upwind cornputd .sdulion is bdtcr. Ttw heft-most c(J:Jtact

diwumtinuity is much more wncarcdby the symnwtric schrlne.

‘l.h(-rrstJ!tsf~fthd-prmious paragraphsS}JOWconc!usiwly that the IJpwifJdscheme
tmdllcm rwwiltsof highrr rmolution when compared with the symmetric scheme.
This raisin the issur of cause. Thrsc schmnm ar~ scc~mrl-ordmaccurate whcr: the
solution ISsmooth. “1’lwlimiters arr hawl on minimum principles, and increasing
their support Icwm ‘hc vaiuc returnedIJJOthr function. Ttw subscqurnt ‘flattening”
{JftiJC”~hJp~is akin tf~irwrca..ingthr nllmericalviscosityof the SC}JCIIW thus lowering

ttw a4x-uracy.

Intcrprctcd on a more plJysiral hasis. the upwilJdscheme takes data from a more

physically meaningful location on ttm grid. The support for the Iimite..can be pcr-
crivrv{to affectthesolutionat that point. whcrms the symmetric limitersarc centered
by taking both tJpwindand antiupwind data. Dotharguments lead t~ a conclusion
that if resolution is of primary amcmrt, the limiter should have aa small ● support aa
pwwilk in order h) limit its induca{ viscosity.This of course shou!d he within the
limitations of providingphysicallymeaningfuloscillation-free (or nearly so) nmdts.

Appendix E provides the rrsu)ts of uskg both two and the •~gurrmt ]imiters

without limiting for each term.

Artificial Compression

often. it is impor~ant to chomc the limiter used by the nature of the problem. For
fidds that arc linrarly degerwratc,the problem of numericaldiffusionis severe. In

thesolution ofsystcntsofequations thismanifestsitselfasseveresmearingofcontact
discontinuities.,4 numberof whemes have been developed to &al with thisprob
Iem [IIK3,122, 110, 137, 192, 193]. one such schemeisartificialcompression,which
(.M ~Jf”appIimlhJ TVD Iimitcrs.The form is

O) = (I i d, O,j Q, , (/4.:!2,1)

\1,1)

—
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whcrt”the cliscontinuit~,detector, O, is defined as

(8.32b)

and the argument, UJ, is chosen to give the best results. Figure 8.3.3a shows how O
varies with r This applies compression to the method (makes the local slope steeper).

If the field is genuinely nonlinear, then the limiter should not be so compressive in
nature.

An effective forr for ~j in transient problems was introduced in [101], This
wa.. used with the superbee limiter under the stipulation that the resulting scheme

remained TVD after the application of artificial compassion. This application was
not second order in the sense of the definition given in the previous sections. With
tllc superbee limiter the form is

u, = min (Ivj ,1 – l~jl) . (8.33)

where v, is the local CFL number. A more general formcan be found that produces
TVD results (for common TVD schemes like those presented in Section 8.3.3). This
form is

@j = 2- ( + min(lvjl, 1 – Ivjl) , (8.34)

where ( = max [Q(r)] r E %

For the case of three argument limiters, artificial compression is generally not
applied. The same general form used above can be used after several modifications.
The discontinuity detector is applied to two sets of
maximum value is

and ti is computed at the cell-edges. The behavior

gradients when choosing the

(8.35)

of O for the cell-edged three
argumentcase is shown in Fig. 8.3.3b. The effectivenessof this approachis discussed
in Section 8.4.

A large degree of caution should be exercised when using artificial compression
or similar schemes. The type of limiter used and the compression involved appears
to affect solutiorissolved for long time periods on periodic domains [159]. The more
compressivealgorithms can give completely erroneousresultswhiIe less compressive
ones converge to the correct solution. In steady-state solutions the less compressive
limiters normally give more convergent solutions. This is the likely outcome of in-
creased dissipation present in the algorithms. In this example, the FCT method of
Boris and Book produced exceedingly poor results that can probably be attributed
to the amount of compressionin the algorithm.
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8.3.4 Nearly TVD Limiters

‘1’hcprm”iuussccticms concw]tratd cm limiters that meet ‘ND criteria for the com-
111OII1}’used TV 1) s(”ht’mm. By its nature, maintaining a TVD solution requiresthat
the solution rcd[,cc to first-orderaccuracy at extrcma. k’orlong transients oi” those

in~dt”ing a great null]bcrof time steps, the impact of this is profounci. In virtually
ct.cr~’common!y reported solution, peaks are clipped and the solution is di!Tused.
lt is not rcwmabk to expect this to change as these are intrinsic to numericalap
proximation, but the dcgrcc to which these errorsoccur should be improved. Where
the solution is not diffusedand the front remainsharp, often smooth transitions are
unphjsically sharpened b}”the action of the limiter. Thus the current.lyused limiter:.
iitt* I\ot a!ways equal to tho taA.

“1’uiittcmpt in)provmwnt on some of the above-mentioned problems it ma~pbe
uwful to relax the rcq~ir(mcllt that a scheme produce a TVD solution. One way of
doing this is to use a {1N{lent d(~fillitionfor variption control of the scher?lt’.‘1’his

(approachhas been taiet hy Shu [169] in the total variationbounded (TVIIJschsmes.
1 ha~t~also looked iItl.Ia more genmal view of limiters as a nonlinear averag(”of the
sample gradientsas a mannerof approachto this problem. Other approachesemploy
1;S0 t}pc distretizations and/or hxastsquawsmethods

TVB Limiters

Shu has developed T\’D schemes M a uniformly
schemes. The T\’B property simply requiresthat

w (u, t) ~ B

165].

-orderalternatisc to TVD

(8.36)

for .smw tinw t > 0. This requires that IAc ‘ND limiter be modified to take
adL“antagcof this Minition (TVD implks that a scheme is TVB). This modification
requiresthat sum mt imatt:of the second derivatiw’of the solution he made in aR a
priori mannm. High~*rorder deri~”iitiveshave to be estimated if higher than second-
order schemes arc needed. This quantity is defined by the symbol Af. This estimate
then mod~ticsthe gradients in the limiter that arenot centered about the point being
limited. The cfhvt of this is to bias the limiter into droosing the higher-ordercentered
gradient, l’his allows oscillations to form in the solution, but when they grow too
Iargc the nonlinearattion of the limiter stops the gmwih. Although this has not been
provM!,it is helie~”d that EN() schemes arc ‘f’VB~6s,66].

l’lle details vi implementation can h~:dit,i@~ into sever~ distinct groups based
on ,rw type of li~]]itcr b~’ingused. For two argument limite~gaentered on the grid
po;. ! Ihe limiter ‘must be di~”itiedinto IW(J pieces, each canteredon the cell edge.
*!-!II15t~,e !’nJ.i

&JTb’” - Q(I, ‘) J,-)u (8.37a)

I

I

I

I
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—
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becomes

1Aq’’TvB = ~ IQ(l, r + m) Aj_~u + Q(l,r + m) A,+}u] , (8.37b)

where m = M& fs)-i or ~1~ = ~~z/g)+} for the appropriate term in (8.37 b).

Examples of this Iiniiter are shown in Fig. 8.16 for two values of MAz. Here the
definition of the limiter function Q has not changed from that given in Section 8.3,3,
but its arguments have. The argument away from the cell edge where the limiter is
centered has MAz added to it, thus the limiter is in most cases biased towards ;he
selection of the argument it is centeredon. A proofof the TVB nature of this limiter
is given in [169]0

Several approaches can be taken to implementing this methodology with cell-
edgcd limiters. The method described above for cell-centered limiters can be used
with slight modification. The upwind-biasedcell-edge limiter is defined by

(8.38)

where m is defined as above and r is the ratio of the upwind gradient from cell-edge
j + ~ and s~+t. For the centered cell+dge limiters, lhc approachfollows the logical
extension of the upwind-biasedcase. In this cam a limiter is defined by

(8.39)

Figure 8.17 shows this limiterfortwovaluesof MAz. On the plateau of the figures,
the schemesare second-crderaccurateand, as shown,thesizesof the plateaus increase

with A4Az.

Theorem 10 The limiters given by (8.98) and (8.99) remdt in a TVB scheme ij(hese

limiters and the resulting numerical schemes am TVD with m = O. The resulting
schemes (those cowidered here) are unijormly second-onfer accumte.

Prooj The proof is similar to the proofgiven in [169]. If the underlyingnumerical
scheme is TVD, thenthe proofreducesto showingthat the total variation is bounded

by some constant at all time, t >0. Thisisaccomplishedthroughtheuseofa modified

flux

(8.40)

which i~ the SUIIIof a ‘1’VDflux and a constant. If it can be shown this constant
is bounded, then its sum is bounded, in turn leading to an upper bound on the

total variation. The accuracy argument involves showing that theconstant M in the
limiter creates a bias that results in the selection of the high-order accuracy gradient

centered at the limiters location. O

167



+ m 1- -t

Q

4

3

2

1

0

-5 0 5 10

r

F’igurc & 16: Two cases of the two argument TVB limiterarc given here. The line
that grows upward along the line Q = ~ ( 1+ r) past r = 3 uses MAz = 5 while the
other line uws mAr = 2. Both are always in the second-orderregionof the plane.

S–Limiters

One characteristic shared by the TVD limiters with the exception of the rninbar
Iimitcrs is setting the limited gradient to zero when the sign changes among the
Iimitcrs arguments. The minbar limiter simply returns the argument that has the
smaller absolute value, which may be opposite in sign to the function at that given
point. This leads to a loss of accuracy at these points. As Tadmor[194] showed,
the ~equircment for a scheme to be TVD (by Harten’sdefinition)extrcmamust be
clipp~’d.

The limitersgiven in this section were designed to correct this problem. The
essential feature of these schemes can be encapsulated in the followingdefinition:

Definition 6 (S-limiters) An $fimitcr returns a value equal to some nonlinear
avcruge oj its inpui arguments and has the same sign as the
same h“:ation as the limiter.

For example, in most cases this is some sort of gradient. The

argument defined at the

limited gradient has the
samesign as the gradientat the locationwherethe limiteris &fined. Forcelkdge-
basedalgorithms,the changesin the reconstructivepolynomialare minimal,but for
cell-ccntcred reconstructions some redefinition is required.

Sta:ting from the schcmcgivenby (8.7) and redefiningit to meet the above-stated
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(a)

Figure8.17: The three argumentTVB limiter is shown here for MAz = 2 and
MAz =5. The largervalueof MAx givesa larger ‘plateau” on the plot.



ddi IIitkm gives

I[crc the gradient, ~~u, is rddinml as

qll = .Y( 1, r) A,_: u or S (~, 1)Aj+~U ~

where the simplest example of the function S is

S, (1, r) = min (1, Irl) ;

another example wou]d bc the centered limiter

[
5“,(1, r) = min 2,2 Irl , ~ (1+ Irl)] . (8.41d)

These limitms arc shown in Fig. 8.18. The term S1 is a TVD limiter over its entire
range, hut S,. is not. The Iimitrrs can be logically extended to three arguments as be-
fore. One noteworthy point to raise with this reconstruction is that ceUaverageof the
reconstruction no longer equals the cell average iij if sign (Aj+~u) # sign (Aj-}~)e

(8.41b)

(8.41c)

This subject is the topic of the next chapter.
a-

In general, three limiters can be definedas above. They act as a multiplier on
ccl}-edgegradients modifying its magnitude but not its sign. This differs from
normal definition of limiters at points of extrema as noted above. The limiters

the
the
are

easily constructed from the definition of TVD limiters by removing the feature that
sets the:gradie:lt to zero if the signs differ, and changingthe reconstructionalgorithm
to one like the one shown above.

These limiters are not TVD unless the magnitude of S (1, r) ~ 1. Despite this,
limiters of this nature perform well in practice (see Section &4) and have some advam
tages over the limiters constr~ined to be TVD. In test problems, the total variation
w,a,,monitored and these limiters provide a TVD solution in practice. This may not

Al true for all initial data.

Generalized Average Limiters

As noted in several sections above (8.3.3 and 8.3.3), limiterscan be viewedasnonlinear
averages of their arguments. In this section, this subject is exploredfurther. As noted
in Section 8.3.3, van Leer’s limiter is a modified harmonic mean of its arguments.
Another limiter was introduced in [159, 158],which has an interesting interpretation.
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Figure 8.18: Two S-limiters are shown here. The upper of the two lines is for the
centered limiter SCwhile the lower is for S1. S1 is a TVD limiter.

This limiter is written

(8.42)

where 6 is a small positive bias. This bias is added to guard against clipping smooth
extrema in the soiution. Its role is similar to that of M in the TVB schemes. It
should be chosen to be ldu/dzl [195]or ldu/dz(3’2 [159] from the smooth regions of
the flew. Dropping J and converting this to the normal form for analysisgives

This limiter can be written in an interesting form

(b (Gb) = %+s:(a+b’] ●

(8.43)

(8.44)

In this form it has a nonlinear coefficient modifying the average of the input argu-
ments. In [196], another formof this family of limiter was given (dropping the bias,
6) as

2a2b+ 2aP
4ab P+b)] ●‘m-”’ (a’ b)= (la!+ lb!)’ = (Ial+ 161) 2

(8.45)
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‘1’iIisIi[:lit{’ris Ilmrc collll)rc~ssi~vttIaII Q,,l~ and looks a great deal Iilw the harn]onic
also Ix! writtfw in ratio form

(8.46)

r < 0 it behaves differently

IIMWI Iilllitm. t\s la/61 TN, Q,,,-, 1T2. This Iimitcr can

as
2r + 2r2

‘m-”’‘l’r)=(1+ Irl)z “

‘1’his Iin]itw bt~ha~wsexactly M QVIfor r > 0, but for
[hecausr it does not equal zero).

‘i’he notcworth)” point is that both this limiter and van Leer’s limiter can be
writtu] in a forln that cncompawes both of them as well as a much larger class of

or in a form suitable fo: analysis,

r + Irln
Q(l, r,n) = ~+ ,rl” .

(8.47)

(8.48)

Linliters obtained for two values of n arc given in Fig. 6.19a.
If OIIC takes the limit a-s n I 00, the minbar Iinlitcr is rccovercd, making it a

limiting form of this family. Ebr n # 1or n # c.athis limiter does not produce a TVD
schcmr in the ii:i:~]cricalcxpwimcnts, but the results are quite good. The comments
contained in [159]arc ai.soof some importance when considering this limiter.

For more than two arguments, one can look to the suitable extensions of the
definitions of harmonic mean and generalize to the power limiter above. For the
three argument case this is

~(a ~ ~,nl laqnc+ Iaclnb+ \&lna
9* = Iabln+ Iacln + pcln “

(8.49)

‘1’hislimiter is shown for n = 2 (in ratio form) in Fig. 8.19b.
It is also interesting to investigate the results obtained with other nonlinear av-

erages such as the gcomctrir mean. The results obtained with this scheme are not
TVD. but have some redeeming qualities.

8.3.5 The ULTIMATE Limiter
This limiter has received a great amount of attention in the literature recently.
Leonardand coworkers [81, 82, W] have presented this limiter in a series of papers.
In another recent paper, this limiter was compared with other methods on shock
tube problcms [197]. ‘1’heresclts showed that Leonard’slimiter probablysuffers from
ovcrcompression resulting in entropy violating solutions. In the followingparagraphs,
I discover where this characteristic arises in this method.

For this discussion, 1do not use the system of nomenclatureadopted by kmard,
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Figure 8.19: The generalizedaverage limiter is shown in these figures. Figure 8.19a
gives two examp!esof the two argument limiter for n = 2 and n = 3. Neither of th~
limiters is TVD. Figure 8.19b shows the n = 2 limiter for the three argument case.
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I

iml rathcrlliovv hhnotatioti ittttitltesystcm m.ihcrcdtoeariicr in this citaptcr. ‘Ms
sfloukl dlOW thk lilllittXtO ht!(”Wll\NWd on a “bd playillgfi~] d.”f;irSt, a!dmrt });tck-

ground is nccessaryoThis nwthod was (Icwclopc(i in rwq)onse to lloll-lrlorl(~tf)l]ic t]c-

havior Of I.(wnar(i’s QIllCii 1 111~’tho(iin the prvscnce of (iiscol]til]~liti~:s.‘1’hisnwdm(i

has hen used cxtmsivciy ill engincwring heat transfer type applications and rcprc-
smt.s the typical high-or(i(*rschmnc emp]oycxi in those simulations. III this rqpxi,
Ixxmard’s limiter is a great inlprtwcl]mnt, but its n-writsand shortmmings nwd Inore

attention.

The normaiizmi value ~iiagran] mc(i hy Locmartiis not rcvicwcvi (one can refer to
the almve rcfercnccs), and simply ~novc on to the presentation of the IJI;l’IMATK

limiter in ruy terms. Quite casiiy it can be shown that his iimitcr hiusthr foiiowing
form:

Q(r) = m(Arl”, C r,2, ) , (8.50)
wtlt”re flu” = Ii~’ - UL is akin to tbc anti[iiffusivc flux in the 1;C’I’Ilwthmi anti C
i> solne const;irtl >> 1. In his papers, Lmmard uscs C = 200. ‘1’ht~vaiw of Uif
is (Ictcrrnincd })y A linear high-order upwimi method (iikc QIJI{;K). Tliis Iimitm is
disl~layxxiin the usual fiwhion in Fig 8.20a. By inciuding the Ql;l(;k; (iiffcrrncing
(the thir(i-or(irr point value schcmc form %cticm 8.3.3) it can be saw th~t the region
ntw the origin is not TVD for expiicit tinw ciiffcrcncing.

$imr:le obsm;t!ion shows that the above limiter is not TVf) for expiicit ttmlporitl
“)and u“ can be guaranteed to be within the hounds of a ‘rVDcalculations unicss {‘ = -

limiter. W’hm ust”(l\~’it}lfuliy impiicit time differcncingor steady-stafc computations,
the limiter is ‘!”\’[). I;ur L’ >2, the limiter is no longer a convex avoragc of sccon{i-
~~r(icrschemrs anil ~“xtremelycompressive. This behavior is similar to that founti

.~;tll tile FCT IJJIjitt”r. l’hc saving grace is that the high-or(icr Ilpwind methods
I!L(o(J 1‘lCK arc well-hehaved approximations for hyperbolic consmt”ation iaws. it is
111O.I!y likely that if otlw: high-order ccntcred approximations wm(’Iwvi t})c iimitcrs
betlavior would be far w mm (much more cornprcssivc). In other wor(ls, the positive
fcatl,rcs of the underlying Iincar advcction scheme m~sk srmw of ttw problems with
the iimiter.

A recent paper by Leonard [84] (iiscusscs the UI;l’IMA’I’Eiimif (’r in transient
problems. lfc suggests that C = 2/v. This yicids a schcrrw which is rmariy idcnticai
to the ciassic FCT without the diffusive first step. His results show tilat usinp a I,ax-
Wendroff or Ilcam-Warming type fiux for the high-order flux with 1li;I’lMATi{yiohis
poorer results than the better TVi) iimitcrs. Only when the thir(i-or(icr high-order
flux is used arc they better (not by much). Considering that the T\’D schcmcs arc
essentially designed with Lax-Wendroff or Beam-Warming fiuxcs as the high-order
fluxes thosl results arc more applicable for limiter comparison.
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high-orderupwindflux. The basic limiter is not TVD forexplicit time discretizations
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8.4 Results
This scctitm presmts results for some of the’

tionso ‘1’twresults arc !inlitcd to ttw scalar

No attiw]pt is IIIA to prewnt results for all

limiters described i ,.(!rvious scc-

wave equation ami I$urt;crs’equation.

the limiters given idXJV(s, but the types
of liinitvrs introduced hcr(’ arc discussed with regard to their performance in rcla-

tiwl to resolution and convergence. ‘i’tw solution of the Euler rquations using these

Iilli;tms COUMalso yield useful infornlatiml about the Iirnitcr. This is ItOftfor Iatm
invcstigittions, \\’ith the cxcrption of thc I’CT limiters, the basic numerical schemes
US(XIin the rt~sults is (8.7) for the two argument Iimitcrs and (6.7) for the three ar-
gumcwt Iinlitcrs. ‘l’able &2 shows a list of the limiters considered in the results and
the abhrtwiations USC(Iin referring to thmn below.

‘1’twgmwral characteristics of the test problems arc given in Appmdix A.

8.4.1 The Scalar Wave Equation
li]this section using ~“ariouslifniters, the scalar waveequation is solved by the methods
described in this chapter. Two initial conditions are used for the analysis: a square
wa~v with a width of 10 ct:lls ad a sin2 x wave (half of a period) of width of 25

cells. Iloti, tests arc conducted for 500 time steps with a CFL num})er of one-half.
The adt”ccti~w\“clocity is taken to be unity.

“1’hcresults for the TVI) two and three argument limiters arc giwm in Figs. 8.21-
8.23. ‘l’he results for njost Iirniters are what can bc expected. The three argument

limiters make the resulting numerical scheme more diffusive, thus lowering the reso
Iution of the so)utions. One important point is the horrible performance of the SB3P
limitt’r, which is not TVD. The SB2 limiter is also interesting became it seems to
compress the sin2r wave into a square wave. This behavior is commonly seen with
this lirnitcr and warrants sorrw warnin?. It is primarily caused by the limiter not be-
ing able to differentiate bctwccn a diffused square wave and the smooth sinz r wave.
The limiter ‘recognizes“ it as diffusion and compresses it. Various results regarding
the rmohltion, accuracy, and numerical diffusion can be seen in Tahles 8.3-8.5. Fo;
the lin]itcrs of these categories, these tables show no surprises except in the case of
the SW lirnitcr. Dy the measure of numerical diffusion used here this Iimitcr actually
provides negative diffusion. This is not unstable because it is applied in a nonlinear
fashion. Where positive diffusion is needed, the limiter supplies it. For the sin2z
problcm, the CEX’1’2and VI.2 limiters are more accurate than SB2.

The results for artificial compression show that its effects are similar to that pro-
duced by the superbee limiters in both the two and three argument cases. Figure 8.24
shows that the artificial compression results in sharper profiles and increased resolu-
tion when cornpawxlwith the normalminmodlimiter. For the form of implementation
used here, the resulting solution is not as compressed as with the supcrbce lirnitcr.

‘1II(O“I”J”13wlljti~~ns arc shown in K’igs.8.25 altd 8.27. ‘[’he two argllmcnt ‘[’\’Ii li[n-
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Table 8.2: Abbreviations for the metho~

Limiter

Two Argument Minmod

Two Argument van Leer

Two Argument Centered

Two ArgumentSuperbee

Thre Argument Minmod

Three Argument Minmod Prime

Three Argument Superbee

Three Argument Superbee Prime

Three Argument van Leer

Three Argument Centered

Two Parameter Artificial CompressionMinrnod

Three Parameter Artificial Compression Minmod

Two Argument Minmod TVB

Three Argument Minmod TVB

Signed Two Argument Minmod

Signed TWOArgument Centered

Signed Three Argument Minmod

Signed Three ArgumentCentered

Two Argument van Albada

Three Argument van Albada

Two Argument van Albada withBias

ThreeArgument van Albada with Bias

used in thi

Equation

(8.16a)

(8.16b)

(8.16c)

(8.16(1)

(8.26a)

(8.26c)

(8.30h)

(8.26e)

(8.30c)

(8.261])

(8.32b)

(8.35)

(8.37b)

(8.51b)

(8.41c)

(8.41d)

(8.41c)

(8.41d)

(8.43)

(8.49)

(8.43)

(8.49)

study.

Abbreviation

MM2

VL2

CENT2

SB2

MM3

MM3P

SD3

SB3P

VL3

CENT3

MM2A

MM3A

MM2TVB

MM3TVB

SMM2

SCENT2

SMM3

SCENT3

VA2

VA3

VA2B

VA3B
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iter performs quite well, improving t.hc rtx~olution of the basic two argument limiter-
based solution at the cost of not bekrg ‘ND. ‘h. three argument TVB limiter dces

not fair as well. This can be attributed to the “local” nature of the resulting scheme,
which looks too much like Ihe Lax Wendrnfl schvmc. [n Fig. 8.25, the MM3TV B is

virtually identical to the corresponding Lsx- Wendroff solution. To combat this prob-
lem, two other forms of the three argument lim,t,,r are introduced, the MM3TV B’

()QTVB r-,1, [ ~ ( - +m. I + m.r+ +m. ~ (r- + r+))] , (8.51a)r+ = max O.mm r

and MM3TVB”

QTvB(r-,l,r+) = max ~,min (r +m,l + m.:+ +m,~ (1 +r+),~(r- + l))] .
2

(t151b)

As Fig. 8.27 shows, the results are improved. ‘Th(. tabular data akso reveal this.

Figure 8.28 shows the result.s obtained with S-limiters. For the two argument
case, the results are not significantly different t kan those obtained with standard
TVD two argument limiter.. The S-limiters haw a slight advantage in terms of the
quality of results with slightly lower numerical cldhuiion. As revcalod by looking at
the numerical data, the three argument case is reproved greatly by the use of the

S-limiters when compared with the corresponding ‘ND Iimitcr case. ‘r’his is most
likely due to some rsductiol} m lhc clipping of snwoth cxtrerna in the solution.

Van Albada’s limiter is used 1,0represent t II,. solution by a generalized average.
limiter (n = 2). 1 have already sear t.hc VaII Lcr:r or n = 1 Iirniter at work. The
results in Fig. 8.29 do not use bh in the schcmw. “rhe results arc quite comparable
with other two or three argument TVl) type s(.berm.s In fact, the solutions are
quite similar to those obtained with the VI.2 or VL3 limiters. By ariding bias to the

limiter, the resolution can he improved in a quali( ative sense. [n a qttantitative sense,
the results are worse. One Interesting remark is l.hat I.hc three argument limiters in
general seem to be more sensitive (aq seen in this C*Wor the TVB limiters)

8.4.2 Burgers’ Equation

This section of the chapter centers on the order of accuracy obtained with methods
in conjunction with limiters and their subsequent solutions. To accomplish this, a

standard teat problem using Burgers’ equation is used. The problem consists of an

initial condition of sin (z), J E [0,24. At t = 0.2, the solution is smooth, and at
t = 1.0, a shock hss formed in the solution. II IS at these times that the accuracy

of the solution is assessed. The problem is sulved with 10 grid cells followed by 1000
grid cells. The solution is ,Jhtairred with a Gndmrov numerical fluxes as described
in [158].

The results for this test problem are given In ‘1’ables8.6 and 8.7. In general. the
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Table8.3:L1error norms with minimum and maximum ~~aluesforthe square wave
problem.

I

Limiter

MM2

VL2

CENT2

SB2

MM3

MM3P

SB3

SB3P

VL3

CENT3

MM2A

MM3A

MM2TVB

MM3TVB

SMM2

SCENT2

SMM3

SCENT3

VA2

VA3

VA2B

VA3B

Minimum

0.0000
0.0000
0.0000
000000
0.000o

0.0000
0.000o

-0.4690

0.0000

0.0000

0.0000

0.0000

-0.0514

-0.0392

CMlooO

O.0000

0.0000

0.000f;

O.0000

0.0000

“0.0314

“0.1885

Maximum

0.7108

0.8784

0.9508

0.9927

0.6037

lL6005

0.7819

1.1875

0.6760

0.7632

0.9668

0.7174

1.0901

0.7616

0.7108

0.9516

0.6059

0.7758

0.8035

0.6801

1.0313

0.9275

L1error

7.41 x 10-~

4.59 x 10-~

3.65 X 1O-a

1.79x 10-2

9.41 x 10-~

9.47 x 10-2
6.36 X 10-2

9.71x 10-2

8.20 X 10-2

6.60 X 10-2

3.14x 10-2

7.55x 10-~

4.00x 10-2

7.77x 10-~

7.41x 10-~

3.65x 10-~

9.39x 10-2

6.52X 1O-a

5.63 X 10-a

7.95x 10-~

4.04x 10-~

7.78 X 10-a
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Table &4: f., error norms with minimum and maximum valuesfor the sin2x wave
problem.

Limiter

MM2

VL2

CENT2

SB2

MM3

MM3P

SB3

SB3P

VL3

CENT3

MM2A

MM3A

MM2TVB

MM3TvB

SMM2

SCENT2

SMM3

SCENT3

VA2

VA3

VA2B

VA3B

Minimum

0.0000

0.0000

0.000o

0.0000

0.000o

0.0000

O.om

-0.1801

0.0000

0.0000

0.0000

0.0000

-0.0321

-0.0266

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

-0.0319

=0.1086

Maximum

0.9197

0.9668

0.9794

0.!)893

0.8717

0.8708

0.9552

1.1847

0.9162

0.9571

0.9835

0.9385

0.9943

0.9538

0.9195

0.9791

0.8726

0.9606

0.9524

0.9217

0.9944

1.0564

L1error

3.74 x 10-~

2.26X 10-2

1.94x 10-~

2.43X 10-2

5.20 X 1O-a

5.24X 1O-a

2.98X 10-2

5.63X 1O-a

4.06 x 10-a

3.00 x 10-2
2.10x 1O-a

3.53x 10-~

2.08x 10-~

3.95x 10-2

3.74x 10-~

1.95x 10-2

5.20x 10-2

3.00x 10-2

2.59X 10-a

3.56 x 10-2

2.02 x 10-~

4.37x 1O-a
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Tabie 8.5: Numericalvi~co~ityandtotalVariationfor both ~calarwave
problen

Limiter

MM2

VL2

CENT2

SB2

MM3
MM3P

SW!
sBJp

CENT3

MM2A

MIW3A

MM2TVB

MM3TVB

SMM2

SCENT2

sMM3

SCENT3

VA2

VA3

VA2B

VA3B

40.67

17.65

10.74

3.00

60.59

61.19

30.57

“26.63 “

47.00

31.97

8.19

40.?3

7.90

39.71

40.47

10.63

60.09

30.83

25.70

44.75

9.11

12.11

TV aquare

1.42

1.76

1.90

).99
1.21

1.20

1.56

4.052

1.35

1.53

1.94

1.43

2.41

i.61

1.42

1.90

I,21

1.55

1.61

).36

2.20

2.37

——

Z7 sinzx

30.61

7.91

3.58

-8.49

53.15

53.62

17.52

-23.78

35.02

17.91

-1.38

29.39

3.36

29.39

30.55

3,53

5’2.94

17.53

~2172

39.82

3.3?

4.38

TV sinzx

1.84

1.93

1.96

1.98

1.74

1.74

1.91

3.1I

1.83

1.91

1.97

1.88

2.12

1.96

).84

1.96

1.75

1.92

1?90

1.$4

2.13

2.42

equation



Table8.6: Ord~: ofconwgenwinsewalmrornomsforBurgers”equat;mat I = 0.2

when the solutit t;. is smuo
Limiter L1 LzP —. —
MM2 2.12 2.15

VLz I‘21152.17

(. itNl”i! , 2.16 217

I2.15 2.17

2.08 1.86

2.08 1.87

2.15 1.85

1.!)1 1.63I2..1 1.8.5

M%I:M 2.12 1.81

‘ MM2TvB 1.73 1.73

MM3TVB 2.04 1.82

SMVL 212 2.14

I
SCEST2 2.16 2.15

L

SMM3 2.08 1.84

SCEXT3 2.08 1.81

VA2 2.16 2.18

VA3 2.13 1.86

VA2B 1.73 1.74

VA3B 2.02 1.80

c
1.84

1.84

1.9s

1.84

1.32

1.32

I.3)

1.08

I,.31

I 32

I.&?

1.31

1.63

1.28

i.8s

1.83

1.27

1.26

1.87

1.31

1.64

1.2s



Table %7. wdtv of conwr~~”p’~.II -em] errornorm for Burgers’quation at / = 0.2

1VL2

I
CI?NT2

‘S1.:

MM3

MM3P

SB3

SB3P

VL?

CENT3

MM2A

MM3A

MM2TVB

MM3TVB

SMM2

SCENT2

SMM3

SCENT3

VA2

VA3

VA2B

VA3B

&L1 L2
“,,.

1,.51

1.52

1.51

1.s7

1.57

1.68

1.28

1.65

1.s3

1,40

1.60

1.19

1.52

1.51

1.60

1.51

1.52

1..54

1.65

1.15

1.51

1.10

1.10

1.01

1.18

1.18

1,14

0.79

1.19

1.00

1,08

1.)0

oo&?

1.05

1.14

1.16

1.15

0.98

1.12

1.13

9.77

1.01

-1L.4

0.70

0.61

0.61

0.49

0.74

0.74

0.60
I

0.2s

0.69

0.47
I

0.58

0.54

0.36

0.s;

0.70

0.63

0.72

0.44

0.65

0.60

031

0.48



orckr of Lxm\I.rgeIN-4s for thr dutions is i)dtcr for the two urgument Iimitcr than the

thrm~argunl(~ilt lill~l[ms. ‘1’lw thm argumhl limiters dso rxpcrim”v a muchgreater

(Iiifercncc iII convvrgenrc from orw norm t4) a higher norm. ‘1’hcII(JII.“l”V 1) aIId k’(~’l’
Iimitcrs stw~~ to sf~fftlrfrom worsr 1“tmvcwg49ncrctlaractcristics than tht”other schcnws.

Additionally, ttw whemes usil~g some constant (’1’VB tJr VA211and VA3B) in h

]illlit~”rdKJwf~4J4Jr t“4AlVCr&’llCC”. The.w sdmnm do prrform far better whm) tht~Incsh
is t.<ms(., ami these Iifl]itcrs W*WI to producr excellentresultsin relationto other

limitws for thow CASK. /\ ftt*ra shock IIM formed, the two rtrgummt Iimitrrs SIIOWa
greater degradation in t-a~t”rqjenr(”.Again. this is especially true with t)w mm.TVD
limitrrs. ‘!’hcstatml conv(qywrr of th~ three argument]imitcrswhm n shockhas
formed is solnuwhat a fumtiwl c~fthv CSxC-c*CSdIiIglypoorresultsfouudon thecoarsest

grid. III the same veil). the poor ronvmgrmm of the ‘l-VU ml tbv hiawd VaII Allmda

Iimitm is sofnmdhd a result of the cxtrllmlt results rd}tainwl (JIItlw cuarstst gtid.

8.5 Concluding Remarks
In tl)Is chapter a numbrr of Iil)iltms have been reviewed and their propmtics cxanv

incd. In additicm, m(”ral Iintltcrs bave been introduced or reformulated and analyzed
within a common framework The impact of limiters on high”resolution numerical
soluj ions has also IMVIJdemonstrated. The importance of )hiturs w the solution
of the cquaLiof*s is undeniable. The quality 01 solutions is directly traceable to the

It:nitms becausr they are the heart of the numerical schemes.
More study of limiters is warranted in lightof these results. ASdiscussed earlier,

Iin)itcrs can impact steady-state dttion convergence. .Some study of this phenomena

is needed. Additionally, both TVi3 and generalized averagelimiters should studiedh
order to give more systematic manner to choosethe constants used with the limiters,

‘I’hefollowirigChapterexplores the e!kct of the constraints placed orBthe polyno=
mial intccpolation employed by high=order Godunov schemes.
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Ch~ptcr !).

Cell-Averages or PoiI~t-Values? On

Reconstruction Methods

V/e have found a strange footpri;lt on the shores of the unknown. We have
devid profound thmrivs, one after another, to account for its origin. At hl

wehave succeeded in reconstructing the creature that made the footprint, And
1O!it j~our ~wn. .Sir Arthur .WanclyEffd:ngton

!l.1 Introduction

one o, ihc primary mannms of constructing nmdern high-resolution tlpwind schemes

is tlw usc of the HO(; pt)ilo..ophy. This method II- smwral k(”) points in its favor:

the use uf con.wrvatiwlform, the C*JMCof use with systems of equations, the use of a
quality undmlying physical model, and rmluction of finite differences to polynomial
it~tcrpoiatiml. It is this final point on which I concentrate njy Worts.

The polynomial reconstruction determines the order of accuracy the scheme cart

attain. It a]SCJiutcracts strongly with tlic underlying physical mcdcl mentioned in
thr previous paragraph. This underlying model is typically a Riemavn solver of some

varirty [M)]. in flO(; methods, th~ polynomials used are constructed piecewiseso

that each control volume ha%one polynomial pm variab]c in it. At the boundaries of

Llw control volume, the polynomial distributions are not required to be continuous

and a discontinuity typically rtwulls. “1’hcRiemann solver acts a.. a sort of “referee”
determining what the correct nllmcriral flux should be at that cell boundary. I return

to the gcnmal ciescription of II(-JGmethods in the following section.

T}WSVnwth(~ll~gr(w UIIt of the work of Godunov [56, 57! whose ingenious method

tvnhodicd tlw wwvmw of upwind diffcrencing as givm.. hv CoUIam 19sacson,ad

Rem (5-L :\ I]. The work of (;odunov was importimt in two rega,ju- ~-ca{l= of

his USC*(Jf a Rirmann solverwithin the diffcrerw Idwme and h theormn regarding
diffcrcncc schmnrs.

In thr l!J70s. a number of researchers I;Ia(~c~t~~~ strid~.s imus n.qnolllill”*arAernes

in attaining monotone schemes of higher order acc~]racj. . u}tab~cAI ‘~t]gthese w~rks
is that of Boris and Ilmk [59] on the flux. corrcrted trau~pnl ~ficthvd aF,d ~lartenfs

artificial compressionmethod [1%3].The work of van Leer w= conrwwtedmore”cltiscly

to that of(;odurtov and in a .smimof papcm, }{0(; methods wemcldlnw it l!! !20. 6(J].

“fh kq to this d(gfinition WMlhv ddinition of IIl(JlltJb>flC advcclimt uwr.g %iohelwdet

~)()!>’Il(Jflli4ff!l”\(”r~jl~ion>(If [III 111111](.r;( ,Li fllJ.(



9.2 High-Order Godunov NIethods

; ,,



SolutionintheSfnall

Rmfcraging

r,
,.

Figure9.1: Thestepsofkiunov’s methodsare shownfor a higherorder polynomial
reconstruction. The so)ution in the small takes place with data that has been time
centeredover the domain of dependenceof he local characteristics.
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‘h question to ponder is $vlw~thcrit ih Jl~Owwaryfor the ce)l-itvcvagcs 10 IJ(’ IJsr(l

OcclIJsi tvly iII tht. difrcrtwct scbl JIJCS.mm conservation fclrmof tlw filJit4”differcwce
sclwnw cnsorvs ttlitt t}WA1-avmitgvs aw cwwrwd. Thr kry Ilumtion ~(’giid~ LIIC
accuracy anti efficiency of the approximation. At a mm” philosophical kvcl, the
~(’nt!ralityOf tht”(h”SigllprillClllh”COIIlt”Sto @Sy. hCi9uW th” pOint-dlJ(o @lihJSOp)ly

is more gcnmd it Itvldsitdf to rxttwsion ill flmltipk dinwnsions and (Jt)JCrtyprs of

probhvm with grratvr ts~wsttliLIJ thv more rmtrictiws Cc”i)-a\’t*ragcorc”(”t~iJslrlJclioI1.

l’hv formulation of (hJduIIo\o”snwthod inqdios the IISVof sonw d)-iit.t*titgc intc*r-
polation. Thr IIWof ttw diwrgmicr thtwrmn to transform the integrals to forlns more
amenable to nunwrical trcittt:wnt chaugrs ltw sitlJittion stmwwhitt. It is m:ct’ssary to

comptJtc the flIJx ftJnctions in or(im to rolnjmt~*cbangvs in the roll -itvcragm. ‘rhc

conservation is not dfcctcti hy this $.hangt-rrgarfih”ss of tht- nJrtimd IIscfi to com-
plJtC the fiuxcw (A$ kmg A$~,+! = j,+} irrqar(il.ws of what rrli is tming computed).

The IJpwinrii~rinciplt”scvnhodimi by Rimnann solvers anti ap\Jropriatr monotonicity
constraints on tilt”rc*constrlJction(:ns~Jrvtisat tlw filJxtv3are of d O~ualil)”nattJrc.

%int-vahms of thv function being advt”ctcdShfJIJidiJcrwxwJ~Jabh9rc~Jrcscntations

of the function in any given control volume A by tiw mew) \“ailJrtheorem should be

fairly close to tiw cell-avcragm. As notmi ill [i!J!l]. tiw wil iaveragrsaIJ(ipoint valtm
differ by 0 ~Ax2). These valws should ccrtainiy he ;wtcptablc for the conlpIJtationof

fluxes, bccalJscthe form of th~ (iiffcrencecquatiorrsconscrw~ the cc]i.averages. Most
chssica] diffcrcncc art! i)aud on point”%.a]wi;Itcrpolalion (or can }JC!thought of in

ttJisway).

The ccii”awragcha*is makm gooti thwJrl*ticalan~i iogicai sense. Given a finite

\.O]IJnICodiscrctizatior ,II:(i taki!lg illh) acrwlnt a f;ibbs.type twrorwtJ~Jhiimpiy that
}“CJIJcolJh~Or]y klJowtiw Cell-avtvagcs, ‘rhtep(JintOf inlportancc is how tCJn.mlrud
a \JitW?wi!it!‘t’COl13trlJrtiOn[Or thepurposrs (JfCOIIl\JIIliIlgflUXCS.

9.3 Description of Polynomial Reconstructions



9.3.1 Cell-Average Reco~st~uction

This section of the chapter concerns the construction of piecewise polynomials of the
cell-average type,

The canonical cell-average reconstruction is used in Godunov’s method, i.e.,

(9.1)

This method has first-Grderaccuracy and trivially has the cell-averagereconstruction

property.

A second-order method widely used for HOG type algorithms [123, 179] is ddined
by thereconstructive polynomial

(9.2)

The SIOpC,&U/Aj U, is a limited estirnateof du/dz at t$e cell center, Z). The

limiters used were discussed in Chapter 8. Integration over the cell confirms that
this reconstruction h- the cell-average property. This scheme is compared with a
point-value type of reconstructionin Section 9.Ao

The third form of cell-averagereconstruction is the MUSCLreconstruction[120,
147, 45]. This form is particularlyuseful because it has a parametric form and thus
is actually a familyof schemes. Th~ polynomial is based on Imgendrepolynomials,
and thus has the desired cell-average reconstructionproperty. The basicform of the
scheme’s reconstructionis

I!crr .;,-! = Q(l, ~)sj+l where Q(I, r) is a limiterands,-~ = A,-\U/Aj-~X. l’a-
hlc!).I gives the types of schemes that arise for different values of x. Care must be
taken in AC use of limiters with this scheme, as was discussed previously (Section 8).

One problemwith this scheme is the definitionof the stencil used for ttw limiters.
If the stencil is not chosencorrectly,the scheme,althoughstable, is not TVD, and thus
be oscillatory. Ingeneral,upwindbiasedIimitersusedwith this schemedo not produce
TVf.) results because the upwindbiased gradients used in defining the reconstruction
apply their information throughout the cell, thus violating the assumptions made with

an upwind biased stencil. This problemcan be cured through centeringthe stencil in
some manner. One option is to center the limiters, but this has a detrimental impact
on the schmnc’s resolution.

f3cffirr mrn-ing rmtfipint.vduc



Tablr !).!: The ty”peof schcmc producedfor variousvaluesof x with the MUSCL
reconstruction.

I ‘

.-.
}; Scheme
.-
“: O1l(’-Sidd. SCCIJIld-(Jr4h’r

,0 upwind, smmd-o:d(v

1

i/3 upwind. third -(Jrdm

I ccntmd,Sccofld”odcr

madeconcmning K:.%() tj”pe schmws. ‘rhC pOWC”rflll~’p~f llWthOdi%}Ja.Wd 01) C(!l!”

average reconstruction. This schcmc uses a quadraiir wll-tivmagcrmmstructien.
Another concept usmi with this scheme is a primitive function that is used [fJ dcflnc
values of u at the cc]] interfaces. ‘rhc!pIil,liti~”rfunction of u is ddind IJ}”

(“(x) = /’ IL (1)3/ . (!).4)
- -a.

This concept is put to gre~ktcrust* in tht* dcri~”ation ENO SCIIMIICS[M]. ‘1’)Iractual

reconstruction takes plain with the primitisw function. This rCcOllStrlJCtitJ1l is then

differentiated to giv~ the :tronstruction to u [x). By inspection, this schenw has the

cell-avvraged reconstrlJrti~m propcrtj.. ont” important caveat is that tlJis does not

generalize to multiple t!~n;vnsions OXC+ through dimensional splitting. ‘r]JiS is duc

to thelackofa gcncraii~iititmof ttwprimitivvfunctionconceptto ll]lllt~[litllcllsional
Cw.

Totestthe Cell-aVCrag~r~COnStrUCtitJll1IJscdtwo test proh]cms: orm with a smooth

nearly discontinuous form, and a second with a smooth local extrema. The first
problemwasusedtotestthePPN [1’22.27] method,andhasthefunctional form

f(x) = tanh(x) ,

thescconriproblcm is a (hmsiandistributionwitha standard deviation Az = 3

ffz)=eJW[-(X2)/2AXl .
Botharcplottedovertherar,gcx E [- 10,8].

The resultsfor thesefun~:tionswith(;odunov’smethodare shown in }’ig. 9.2.
The largejumpsrmultin a kgc amount of diffusion in the solution ~ givenhy the
theory shownin(;haptcr8. f~ygoingto a second.order algorithm. the results illlprt)v~”.

Fig!lr4~ 93 Af~w* !}t~ b%qir wrond-or~rr !!()(’; algorithm with t k rnimmd li~lit~~r

‘.y)f)



The diffusion has been decre=ed because the jumps havediminished in magnitude.
Byusing the central limiter these results improve, and by using the superbee Iimitcr

the results improve again. This is shown in Figs. 9.4 and 9.5. With the Gaussian
distribution, the superbee has overcompressed one location, which is typically the

beginning of forming a false discontinuity. The use of cell-averages is diffusive, (in
fact TVD see [64])and results in the immediate clipping of an extrema in the solution.

Figure 9.6 shows the reconstructionusing the MVSCL intcrpolant with K = 1/3,
The use of three argument limitersmakes this a TVD scheme, but as noted in Chap-

ter 8 the three argument limiters are more diffusive than the two argument limiters.
The tanh (z) grid is too coarse to capture the discontinuity with these limiters.

The methods for reconstruction given aboveareecontrasted with themethodg
discussed in the following section for form and complexity.

9.3.2 Point-Value Reconstruction

In this section, 1 introduce the genera]concept in point-value based reconstruction
and compare some specific examples with the cell-average formulation in Section 9.4.

[f, for instance, the cell-averages are not used to derive the fluxes, the scheme
still mai~tains its conservation. The canonical example of this is the Lax-Wendroff
method. This method is conservative, but its HOGanalog described in Chapter 6
docs not use a reconstruction,which is of ~ cell-averagevariety.

The integral a~”erageof the Lax-Wena.uti polynomial over a cell z E [zj-\$zJ+} 1
Yields

J ‘)Z(%+4-%+)*“+4P, (Z) dz = U, + —‘J-i (9.5)

the symmetric HOG

biased or centered in

which does not equal U, unless s)- ~ = s ~.)+~
W’ith the inclusion of slope limiters, this scheme becomes

method (see Chanter 6). These limiters can either be upwind
their support (see Chapter 8) . These schema are definedby ‘hangingSjf} + ~jk}

in (~.]za). Here J,* I are defined with appropriatelimiters [132, 134].

In Chapter 6, the scheme above was extendedto includea quadraticinterpo-
lation bad on the same available data (one degree of freedom is not used in the

above schemes). Although not s;ated in Chapter 6, this scheme is the analog to the
.MI!SCLreconstruction using TaylorratherthanLegendrepolynomials. This scheme

is describmi by the reconstruction

P (xj 1 (z - X,)2= u,-+ -
2

(3,- } + .;, +$)(z - X))+IC(.;)+! - .;,-}) ~z , z E [2)+}, z)+]] .

(9.6)

The lower operation count in the above equation is evident by comparing the two

forms. “1’hcfamily of schemes produced for differingva]umof K is described by
‘f’able 9.5?. In t}w f~~!lowingsection, the limiters Itsed with theseschrmrs arc diw-usscd.
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TableWY: The typeof schcmcproducedfur various valuwiof Kwith t)w quadratic
HOG reconstruction.

s Scheme

-1 one-sided, sccomi”ordcr

o upwind, second-order

1/2 upwind,third-order

1 ccwtcrmi,second-ordm
*

Another interesting cell-average form can he found through imposing the con-
straint on the symmctri: }(OG schc?Jwof giving a cell-average re~construction. The
schcmrthat results is

f~aution must be usedwith this scheme with regard to retaining TVD properties.

in gmwral upwind limiters do not produce a TVD schemebecausetheinformation
fromtlw upwindlimiteris passed downwindvia thecorrectionterm that assures
the cell- avcragr property, M a three argument centered limiter does not have these

difficulties.

As I did in the cell-averagesection, thr point”va)uc intcrpolants arc tested. In
both cases shown below, threeargumentcenteredlimitersarc used. In Fig. 9.7

the symntctric HOG methnd is shownand in Fig. !).8, the quadratic }1OC(JC=
1/2) method isshown.The threeargumentlimitersaretoodiffuse10 capture the

discontinuity in the tad (x) (u~ctjon. ‘I’he figures also showhowtheinterpolants are

(“1 continuous at the cell edges.Both are roughlyequivalent to the MUSCL method
in accuracy.

9.4 Results

This section presents resultsosirtgmethodsdescribedintheprevioussections.Results
cover the rmolution, accuracy,economy,and general qualityof thesolutions. ltI order

to do this, three types of problems are examined: the scalar wave equation, Burgers’
t“{!IIat itjfI. ,tlIti th<.Euh”r rqllal ion. ThL* tmt J)rohh?flls itrf” al I (1iscIlssf”(1 III ;\ iIjIrr I(iix ~\.
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at t = 2.5(J.O. -— —.
Scheme —.
(:{.]%) llfJWIIldl}ia.W’4!

{!1.7) ltpwifd hiawd

(1{.12A) s}”mnwtrir

(V.i)symmt’tri(”

(~.fi) K = l/21ninrt~~l

(!).:1) x = l/3nlirtm0d

(!).{;) K = ‘/2 rr,ltrr~ll

(!).:{) N = !/3 cowtvrml

(!).6) x = 1/2 Ml:s(’1.
(!).:!)x= 1/3311°s(’[,.——

Sine Squared
— —

:MJ.?J4

31.3(i

.%1.67

53.83

S{.%i

3:j.7!)

13.ti5

12.97

:~o.25

30.52

9.4.1 Scalar Wave Equatbn

!n w!tiition~0a comparisonof the qualitative apprarancf- fJf lhtg rmuhs, scvmal

quantitative mrasuros of a)~orithmic i}crformance arr used: thr p~ak valurs in the

S4JllJtions, thv t(Jt#d $-ariationof the solution at the cnd of th~ tmt and a ;rmasur~

of nunwrical t’isc[fiit}”. The measure of rmmcrical viscosityis madehy a tochniqw
dcscrihm! in a genera!scn.scin [30j. This ideawasexpandedon ]Jy thr authorin
{Iaptc”r X. Thr gist ~~fthr twhniqtle is to com,~am the nlJmcriral fhJxm of a high.
order trchniqlw with that of the !.ax.\Vendroff nwthod and denote the diffmence as

nummical viscosit~”.“1’hrrrsults for variousmethodsusingthisapproacharcshown
in “rdJh” !).3. f’”(Jrthe .schmnm thatareTW’Dfor bothconstructionttwhniqum.the
cell.akvwagcrC!CIJIIStrUC[kXJ carries kss numt?ricalviscosity, butwhentheschcmcsarc
mA“1”~’[~.cell.avcragc~rmJnstruction is moreviscous. Thisgeneralconclusionisborn
(Juthy (Jth(”r drpict:ons of thedata.

‘rhr rcsdtsS}KJW”II in ~“atd~f).”tshow that, in general, ttw two methods of rc-

r~mstrurtitJnywld similar rrs~Jhsf(Jr similar schrmrs.&:xccptfor thr upwind.hi&wd
I.ax ”\\%nr{rofft}”~JC.schcmr, t}vw rrsultsarrcortsistcntwiththemeasureof nunwrical
teiscmitje, }“igurc!).!)shnwsthe cXCCh’ntrmults (Jbhhd withtheU~Wifd.lJiiMd b%.

\hldr(Jff TVD schcnw. !tlakingthisschmncace]l.averagereconstructiondmtrtiysits
“]”\’)) jJrO\M?ft}”and makm th~ rrsults(dJtJWl} in }’ig. !).I(J)quitr poordth(mghthr
?Y:aY?W:::::.:,ti!:p.~~f-A;w’f-f!



“1’A1(*!).4: }faxin]un] profilr values for the scalar wavr rquation test problcms at
I = 2.50.0.

Scheme

(3.12a) upwind hiawvl

(9.7) upwind hiiwed

(3. 12a) symmetric

(9.7) symmetric

(9.6) x = 1/’2 minmod

(!-M) 6 = 1/3 minnwd

(!-M) K = l/2 ccntmml

(9.3) & = 1/3 WI1[(*WI

(!).6) u = 1/2 MU!X’L

(!).3) u = 1/3 M{M.9L

Sine Squared
—

0.9197

0.s717

0.8689

0.86!)0

0.8689
~.!fy)z

0.93!)1

0.933.1

Square

0.7108
0.7.598

0.6037

0.6030
0.6032

0.6031

0.77!)5

0.77!)!)

0.7519

0.7487

In t}w CM” (Jf the symmetric1{0(; schcm~*,themcthmlrcmainsTVD afterits
[ransformat,iontoacell-avmagc.”econstruction.k“igurm!).1I and 9. i2 show the rrsults

ohtainmi with these methods.“1’h~point-vahwreconstructiongivmslightly~.gher
rmolution and )c.ss viscosity. but the cell-average reconstruction results in a solucion

with better symmetry properties.

As shown in }“igs. 9.13-9.16 these results carryoverto thequadraticreconstruc-
tions using thr minmodlirnit~r,butnotto theccntcrcdlimiter,whichslightlyfavors
Ih~ocdl.avmagereconstructionfromeveryperspective.This includedthequalitative
appc*aranroof the solutions, The classic-MUSCL (nonTVD) solutionsare similar,
hti~th~”rcdts do 110[favor thr cc]havcragereconstruction for the square wave. In

this CaWS thr (~scil!ationsare worW.

9.4.2 Burgers’ Equation

‘1’hi~section of thechapterdisc~Jsscsthe order of accuracyof the reconstructions and
their subsquent solutiol;s.

‘[.JStJk !l.5 shows thera?mof convc;genccohtainedwithsomeof thesemethods
when;hcsolutionissmooth.In every case, the rates of convcrgcnccobtained with

the ~4Jint-VahJf? reconstruction aresuperior, in some casesby quitea margin.Thisis
qtjally tru{” f(Jr theS(J]Ilth)flS aftera shockhas formed. Tab!c !).6 shows this quite

I I ~m=o:::PF,z~m?h~ rlitparit~ in perfr~r;nmrr is qvitr prriffi~lfid.~!~’a?,%“arv. ,,, .

y! :
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‘i”atdc!).~: “J’htswdt”rof convcrgcnct”ill st?vcridnormsfor variousSC}ICIIWSfor fhrgers’
rquation al I = ().2 WhtsllthL’S (k S

Scheme {

( z

( 12a) upwindbimcd 2.1(;

(:{.12a) synmwtric ?. I3

(3.l~a) syumwt~ic 1.87

(w(i) s = 1/2 I“vl) 2.1 I

(9.:{) x = l/:\ Tvl) 2.02
(!M)K= 1/2M1:S(:L 2.095
(9.3)K= 1/3 MIJS(’L 1.,s8

?

2 i

1.WJ

1.60

low

I.74

1.72

1

L

1

1

1.

1

I.

1.22

1.15

1.11

I T 9 The tmlcrof mmmrgenccin s normsfor variousschcrncsf B
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‘l’itlr!k”9.7:LInormsfor drnsity and velocityin Sod’s protdtvn,includingtimesfor

K IVH
Scheme Density Velocity Times

(9.2) 5.81X 10-3 1.13x I(J-J 0.37

(3.12a)upwin{ibia..d .5.86X : 1.15x 10-’ o.94

( upwindbiased 8.1s x 1 1 x 10-2 0

( 12a) symmetric 6.50X 10-3 1.02x 1 1

( s 6.40 X ]()-3!).!)9H 10-3 1.14

(9.6) TVD a = 1/2 6.44 X 10-J 1.01x 10-2 1.18

(9.3] TVD K= 1/3 6.44 X 1O-s 1.01x 10-2 1034

I

9.4.3 E E

This wctionAows the performanceof someof the m discussedin thisc
m a systemof conservat”wnlaws. is c p the Mm equations●re

solvedt~cca[mof theirgreatpracticalinterest. It shoulddemonstratea ‘true- picture

of eachm~thodscapabilities.For eachof t methodsusedbelow,the {knsity ●nd

velocityprdilm a s a t n t solutionsa given.

The solutionsarcshownat I = 2 ‘ solutionsshownbelowuseR approx-

imate{”Ricmannsolvera a chzractcristicvariahlcbasedreconstruction[63, 200].

The “WI) sch~mrsusingthe threeargumentlimitersemploythe m I for
th~ nonlint~arwavesin quations and a supcrbw limiter for the lincar]yd
w }’or those methodsusingtwoargument]Aiters, the nonlinearw I a v
l.m~rIimitcro

As shownin Figs.9.19-!).2.S,the rmultsobtainedwith thesemethodsfor s
of mluationsarcallquitegood. F%chsolutionwith theexceptionof theupwind”biascd

Lax-Wcndrofltype h- a Immp in the velocitysolutionat the end of the rarvfaction

wave. ‘I”bcsolutionAtaincd for th~ shockwavew t m is slightly b
( C wideratherthan three).Table!).7showst m normsfordensity
and velocity. In general,the resultsa similarhereas welL For the upwind.bi~d

L W T methods,thec formis noticeablyinferiorwhermst
d .symmetric }IOG method is supctiot the corrqorwling point-value

r~~r(jr}strlirtit)t].In general,thediffcrcncmcmmot.~yof usearc inconsqucntialcxccpt
f~,:!}:Pc!,~q+~r-\f!.S(”1,?.~rnt!frformu]atifin.

‘J~:\
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9.5 Concluding Remarks
The results in the above section show that the method of reconstruction used in

HOG schemes is of some importance to the quality of the results. For cases where

the solution remain ‘TVD. the cell-average solutions are of higher quality, but as

the Burgers’ equation solutions show, are of !ower rates of convergence. Where the

schemes are not TVD, the point-value reconstructions are superior and result in less

oscillatory results. For systems of equations. the picture is less clear. The solutions

obtained with all the methods show that the solutions are acceptable and quite good.

The major difference between the two approaches is one of ease of implementation.

For one-dimensional problems, the differences are hardly consequential, but the edge

is with the point-value pnlynonliak. For multi-dimensional reconstructions, the point-

value reconstruction is clearly easier and should be considered for this purpose despite

certain philosophical inadequacies.
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O a S cationarethefirstst 1, tow .ird t mast~”rv ( a suhjert.

T Mann
Lifeistheartofdrawingsuffkientconclusionsfrmninsuffirimtpremises..
I r

In thischapter,overallconclusionsaremadeconcmningtheprecedingwork. The-
sesconclusionsactasa summaryof the resulisof thiswork. Followingthisa number

of rccolrllrlerl(iationsarc madr concerningfuturr dire.ctiansfor research.

1 Conclusions
The }*CTmethodis shownto k similarto symnwtricTVD rrwthodsunder certain
conditions.This similarity is cxploitmiin i’nproving the performanceof F(~T. This

imptovrnwntis particularlyowidcntin the solutionof systemsof cquatiorw.
With the relationshiphctwccnF and T rrwthodsfirmly established,both

of thsc methodsweredirectlyconncctmlto high.orderCodunov m This is

accomplishedthrough Mining a non-upwindbiasrd geometricversionof the Lax

\ vmethod. f3ccauscthr Lax-N’mdroff methodis the basisof the symmetric

‘ND method, the generalizationis straightforward.From this. a schcmcbasedorJ
parabolicinterpolationis derived. Furtlwr improvementsarc madethroug!tthe use

of uniformlynon.oscillatoryrcmmstruct!onmethods.

The topicof limitersis thenexploredin consi(imablcdepth. This beginswith a
rwiew of the FCT limiters. In this sectionof thr work,Z l m
in a similarfashionto the classicF(7 limiter.

T l a t g p a d a mannerthat is more

gencraithan found in the literature. Thrrr argumentIimitcrsarc reviseda e
tendedwith the C c I p T t of twoparameter]imitcrs

iscomparedwith threeparamctmIimitcrs.It is shownthat threeparameterlimiters

inducea significantamountof nummicaldiffusionin a soluttonwhencompatcd

the analogoustwoparameterlimiter. In addition,a generalclasscf :imitcrsrcfcrrcd

to asncar\y-TVD aredimmed. TheseincludeTVII l b ●l n c
l suchasg ca t a S The U l

a d i
F t t r eh C m c

i This topic is precipitatedby the work on high-order GOAIJOVanalogsto

FC’T/s}”mrrwtrirTVD nwthods. ‘rtl(osdchigt].t~r~l~r{ I I I I A



Figure 10.I: The significanceof thisworkisshownin relationto the roughgerwdogy
givenin (’hahtm 2.

reconstructionstep that rq}ires th~!interpoiantto havean averagevaluein a grid

cellequalta theAl averageit] that grid cell. This propertyisdisc:wsed,and proper-

tiesof th~ solutionsusinghoth ~tandardand ncwhigh=order CMunov methodsare

examined.The lackO( the , AI”wwagcpropertyis demonstrated10not havesigrtifi=

cantncgati~’ccon.wquencescand ?orcertainsituationsto havepositiveconsequences.

The principleadvancesmfi in this workcanbeteengraphicallyin Fig. 10.1.

Thmc conclusionscanbe summarizedas follows:

FCT wasimproved●nd shownto he part of ● moregeneralfamilyof methods.

Combined F“CTand SymmetricTVD methodswereextendedinto the ){0(;

falnil} of t;wtivds.



● A generalprOccdurcfor improvingF(:T

● ~\ m g thrwry on Iimikrs has

limiters.

1 Recommendations
With theseconchlsicmsin mind a nulnhcrof r ~ sf f u r can

he ma&. Thcw do 1 w t r of n work,hut rcprcscmtSOIIICSimportant

newlsfromonc pcrspcctivc.

I light of tht~rmultsof t rmt*arrhanti ttwIitcraturvtparabolicIIWIMS arc
worth rxpluring in nmch nwrr tktail. ‘[’h~”Mhhd dt”gWCt)f flt’t-tk)lllbPyOIMj

linearintcrpo]alionalhvs thr algorithlnto br morefh?xitdethan sccond”ordcr

methods.(gurrcntly,tht*PPM nwthodis ttwprmnimschrmcforsolvingconser-
vation laws. A larg~nundwrof pott”nlia!phrahohcschcmcsexist,and shouhl

bc Afi(]icd in morr detail. Ttw I of pitriabdkschcmcsis JJd of as.wssrmmt

cspccia!lyin tlm lightof ttwrmults prmcntcdin Appendix F.

one of the krys to the PPN algorithmis the I o a discontinuitydetection

algorithm[1’22].This algorithmWJMtlwinspirationforthesuperhm)imitcr[132,

176].“rhcI of fuzzylogic(201,202]shouldproveusefulin designingthissortof

algorithm. \fore genrwally,fuzzy Iimitcrsc h a moregeneralapplication

perhapsmaking Iimitcrsthat workequallywell in smoothand discontinuous

regionsof the flow.

HO rncthodsshouldbcbroadenedto includepoint-valueschemesaswellasthe

cc;l-averagevariety. In addition,other measuresof reconstructionsmoothness

shouldb~ invmtigatwlperhapsusinggcncrakzcdaveragelimitersissomesense.

This is particularlyimportantin the lightof rcccntwork[203].

Smoothparticlehydrodynamic (Sf}l{) [2040205,206]mayprofitfromnonlinear

limiters. TtJ- methodstypica)lyusca v computes
‘rhrough the I of biad graditmtcomputations●t discontinuitimin the flow,
(perhaps~~~-type dgorilhrns) theI ofartificialviscositycouhibedoneaway

with. The resolutionat theseportionsof the flowshouldalsoimprove.

Implicit numerical.wdutionswith high rrwlution methods[196, 198,207, 195,
15. 1.ft~art”i ti a ra i~ J \“lSC(JSi~}”

::{~



m 1 ‘ arethe p c The u t methods n to

h m m n to compete.Researchinto multigrid a tJfh

r i u mrthodsisa clwwand presentIIA. t’~!s0conjllgal(~gradifmt
tj”pem th S j [ The workof }’tv”a o [ o

I ld }C P S U i n

● “rhc~roleo Ricmanrrsoiwrs ill algorithn]dissipationis in nmvlof clarificalion.

~{~k’rt~ [~1]] sht~wsthat ~h~’~{i~’ll]allll~ok’r CallCalls(’O f S
m shockscwcnw U with ( rrwthod. ‘!’hc solutionis to u
a morr dissipativeRicmannsolver. This is important in light of tfw I
z flatteningalgorithm,whichis usedto deal with s c T al~prars
to I i p]acc wtwro fuzzy ]ogic couhl hc uscfu].

● “!’}wr of high-resolutionupwin(falgorithmsin turhuhww rmcarrh II(WVISto
IN*(.stiddishm{.TIw w o h [77] is controvms~alwith t)w Iargr rvldv

simulation(I,F;S) community. others haveuwvl thcsr nwthcdsin turtmhwcr

rmrarch with success[78,212, 213, 7!)]. The resultsre!mrtd in [7!;1SCYOIIIto
showthat high-rwwdutionmethodsIikcthe PPM givr ;mults indicat~vr(J wvy

high Ibynolds numbers.Tlw impactof the&sign of nwthodson this US~Dm+

furtherwWVJSInOnt.

● i {front-trackiugalgoritl.mswhichare conserva[iw=hawoproww to IMO
usrfuj [12!),214.~!ifi].T)IHS coupledwith adaptivemeshgcm-ration[12!~,i 17)

and high.ordtv high.rmdution lncthodsarc powerfulsohltionnwthods. (~ou.

pling thrw IIIrthodsto thr d of new high rcscdutirmmethodsW b~

highly profitahh”.(Mm adaptivemeshalgorithm [216,2)7, 21ti]showpromise.

In additiontrchniqursU.SAin [219]may proveuseful.

● ‘1’hruscof thesemethodsin radiationtransportmay Iw applirAlr. I discrc~tc

ordinatm methods~02’U),221)diamonddifkncing is typirall}’ usd, although

lirward kmcthndz.~boa u Both t m C p
from modernupwind mcthm~sin irwurcposilivity of solutions.‘I”hclineardis.
C O lmethodh~shrrr IN d for high rcsdution fluid kw .sdutions[’~].

● !bfultiph~wf prcsrntsa rmmhcrofchallenges t u of thissor!of method.

Typically.t a u f t t f a w [ 2
% vt d iarein needof dcvclopmcntand %V(JUh] hr use

fu] in ( applications[~~]whcrr probkrtu a U in smrwmanntw.hfu)ti.
phaw flowcana hc ill.posedi t } t r d
w R .

)“{ -,-.



mayp usefuli d l l lI “ I of KIN()schemes
i l l ] li p r[ I I t i i i its i

● \ l l ll{im]ant~s m w \ c s p

w I I a n monotonr (kwml on a wave analogy [228]). I{tvwnt

w o f i ui severaldimcnsi(Jns[22!)]may p w u i a
nuintwr I)f r a r f d

( r i also exciting,The UMCof high-resolutionupwind methodswith

inccmqmssildcflowcomputations,wcathmsimulationsand othm applications[188,
2;](JIshowsconsiderablepromise.
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A.2 S Wave Equation
Inthis s ethr testprohlmnsUSA (or the scalarwavvcquatiortarc dt~rrihml.

E“ourinitial conditiom ar~ usd for the analysis:a squarr wav~with a c hlth of 10
ceils,a s w o ( f p w mwidth of 20 CCI]S,a sinr sqsarctiwavp

(half of a period) of a width of 2 CCIIS●mi ● t f w a w 1
‘ a velocityis takento be u E t t p d i

F A T e d f t ~ w e is givenhy

?1(r. f ) - !: , fr —t?f) , f f .J;

: !:



w I i t a dvelocity and U ( i t i c

T w a po . o t f i m T t f
I o s ( i s The c natvrc of the plots rmu~tsfrom the low

r{wluti~mof the.discrvtizittiott.

A.3 Burgers’ Equation
‘ t p rC (O . ~ ~S C O a d X ~ [
T i c oi s ( t = 0 and I = 1.0the s is comparedwith

thee solution. At t = 0.2 thesolutioniss h I = 1.0thesolution

h d ta shock.The CFL numberis = 0.4. The s a t t t

a s i F A The exacts i p u a f f [
whichis

a

II

9
u ( f = — maz o . [x y)]IJO(X)dX+ ;f - 2 , (A.3)

w t d da t s M f t s w e

E E

The E q ua u a a e o t s p o a s
rquations. Thr };ulcr e ● p t m c a t
m discussedin this work.
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Thr p u

P
. ( t a n m f s t equations
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t p c t s es s a t = O a t I a
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with ~ = 1.4. The domaii) is discretized into 100 cells of equal Iengtbs (Az = 1.0)

and the CFL number is set to O.1 The solutirnls are shown in Fig. A.3 at t = 20.

The exact solutions can be seen in Fig. A.3. These solutions are computed with the

method described in Appendix B for the exact s,)lution to a shock tube prnblrml.

A.4.2 Lax’s Problem

Lax’s problem is a shock tube problem similar to Sod’s, but with one of the two

semi-infinite states used as initial conditions not being at rest. The initial condition

for this problem consists of two semi-infinite states separated at t = O, the left and

right states are set to the fullc,wing conditions

for X <,50.0,

11!1

7L 2.24”

UL = O.OW ,

pL :3,52*

1111

TR 2.0

‘R = 0.0 ,

PR 0.57

with ~ = 1.4. The domailj is discretized into 1(IO cells of equal lengths (Az = 1.0)

and the CFL number is set to 0.9. The solutiu,ls am shown in Fig. A.4 at t = 15.

The exact solution can be seen in Fig. A.4.

and for X z 50.0,

A.5 The Vacuum Problem

The vacuum problem is a shock tube problem where two identical states are moving

away from each other at t = 0. The states are kinetic energy rich, which causes

problems for the finite difference schemes. The initial condition for this problem

consists of two semi-infinite states separated at t = O, the left and right states are set

to the following conditions

for X <50.0,

PL HI
1.0

rLL = —2.(’ ,

PL 1 ()
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collide.The r o t i a compbx setof shockand rarcfactionw = w
c d i sin a s r o s T interactionsarccxcemlingly

d it m o a f f g w p k t s
that the grid can be locallyrefined(certainadaptivemeshingp;occduresc~n avoi(f
t n f ● p k t s T “ solutioncan hc seenin
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Appmlix

d Zmqrtxwble
R S

B.1 htroducth-m
\ d cs t . ~ w ‘ \Iationsof c M f t c

p ri t s t e i A L lw~tmframeof refcrcmcc.For c c

p ra L ao L afollowedby a transition back Eulerian

franwmethodshasadvantages.

Much of the developmentof currenthigh-resolutionnumericalmethodsfor the
.scdutionof t E q w t p o j suchalgorithms,although

dcvclopmcnth~ concentrated i E s in recentyears.Godurmv”s

m [ i the basisof van Imer’swork [60). These mcth(Jdsfind the solution
to a Lag;angian flow systemand then remaps to ● fixed (or m i
grid. “rhismethodologyc a be thoughtof as o s [ b on
c oa s w Thr piecewiscparabolicmethod [122]extendedvan

Lcwr’smethod. Codunov and coworkersalso introduceda purely E v
of Godunov”smethod (57],whichcan be thoughtof - the basisof current purely

Eulerianmethods.

In modernhigh.rrsoiutionEukrian ●lgorithms,it is commonto useapproximate

Riemarmsolversof somesort to computecorrectwavepropagation,bccdu.scexact

Ricmannsolvers[60, 41] ●re expensive. As ● solution to this prohlcm,scvera}re-

searchershavedeveloped●pproximateR s E t s i
p d ea u ●n M f t a s t a
explored:

1. a naiveRiemanns

2. the Lax.}”riedrichsRicmannsolver(SS),

3. thr localLax-Friedrichs( R s 165,66],

+. the simpleRiemannsolverintrodttcd in [30)and refinedin [1$%,231],known

as the }ILLE(Hartcn, Lax, van b a E R n d

b a pR s ( c [

6 the ]{iemarmS4J]VCf of Engquistand Oshc; [

——.
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The nextsectiondiscusesthe flowsolutiona and derivcms approx;”

mateRicmannsolvers.

The Equations of Compressible Flow

T Eulerequationsrepresenttheconservationof mm, momentum,and energyin a
fixedcoordina?csystemand in onedimensiona

and

:

(B.la)

(

(

} p i the k m i the momentum ( = p w u l f v
a E is the total energy.The other variablesare relatedto the prmsurcp t

e s

p = J . (

w = E a F i t e s p= (E - ! ( - 1
w ? b t r s h T s h a h t
a cvelocities u - c, u, ●nd u + c, where c is the sound speed. For an i&al
gas

C2= f .
P

F d t s c b c a s e c
v f for a c s m ●t t f v T i ●

c c of t variablez to f where( is t m c d

( ‘ ~ = p .

T s e t

h au
r @ (

(

2



a %e apua ” (n.i?c)

I t e qs r = I ●n c = r E This systema h t c

S p– a w C = 7 i t L s s I for a
ideal gas, The idealgas equationof s i t o t L v i

~ r e qt w f w t e c I rmappcd

t a E g [ i d i t n section)and producea solutionthat
is equivaknt to the solutionof the firstequationset. T threermnape a

a

h ,
- z ‘

(

(

(MC)

S A
in thissection,{;odunov’s methodis describedwith specifica being givento
the Lagrangianformulationwith an Eulerianremap.This is fol]owd a discussion

of eachof the approximateRicrnannsolversusedin thisstudy.

B E S R P
T c ot e s t g R p f t
a lg h S paper[41]w i s in [60. ]77]. Thw

improvementsccmstitutea Newton.type iterationto solvethe nonlineargovmning
equationsfor th~ Riemann problem M suggestedb v k I h r

t s d ethe a u to find t;w exactsolutionto th~ Rimnaran

problem. Followingthis, the~xactsolutionto the particular RimnannprfJb]mnwhich

s n us f t p v t
T s d b u s r theshockand r r

tions●t a rarefaction.The R s u L [ u shockrelations

for b t w T r ● m s s F a d l ●t
t R p t r p M ● P @

T algorithmthat followsbeginsfrom initial &ta whichis Mined in twostatm

r a l w a s g i F B 1 T b a
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This algorithmWASusedto producethe S s i A A These

s t c ho the e s t ● R probiemfor an Idea]gas

w b s o t i
d i

B A p

c a ●t W d t d a pressureare

R S

The b a pR solvers i d i [ F a f .
c ot f r s h assumingr c l

e

I

r w( + + - [D.4a)
-r

T r c b r give

r
#V ((?4 = rul + Ft - F/, , (Mb)

and

(

T r ec b m at g v ●p Rimnann solvers.

For i c r = I g t L as a ~ = m (
g t R o t L F s

I t s s a pR s f t e i L
c oa g T s w t a g t “ i t
s L ac o

T s t s a M f a l m d
b ●x f t d

A l7 / i / S

2s7
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2

3

F e g c e j + ~ c t r a l v v f
t r ep oU ( = P ( H f G m
Pj (X) = U t U = U a L = IJj+l .

C t s U ( o a t t R p
w i s U a U

U U t c t f f F a t i j + ~

B.3.3 Approximate Riemann Solvers for the Scalar
and Burgers’ Equation

T s w e q( i t s e t
w s a the s t t l R p i

s F a c

L - +(”l+!.r-uj+#91)●
fj+$ = ~ (Uj+,,l (B.5)

H t c e v a g b t l i p a

‘ = ‘ i (

a
u = P ( $ (

w Z = Zj+l,l = Zj+}.

I [ v L g t l R s t B e G i
t n oo t a t s r i

(B.?)

B.3.4 Naive Riemann S

T m o c t e i i b i i s f d
d a n o d eT s i c t b a s o u
e qa t t a c o I a t a t a t
v as a d i t m c oe o e i t e
e qi i u d iI i i a t s a t p g
i t m e o t w t ( ou i t e e i i
c ed i

F t L ae s a s d a c d
T i j ub s w t i b d f a i a
t e i n c T i t m i w t f c t

2



a la i m[143$4]. ,4s the magnitude

errorsb l r i u s

B L aR Solver

o t j i t

T s R s i t L e s [ T s i t
m d iof the solversdiscwed i t a I c t G
m o a s g ( a h a s f T o r
t t C c ob s T f o t f f i

F = ;
[

+ - ;(U, -u,)] . (

B.3.6 Local Lax-FYiedrichs Riemtmn Solver
R e[ 6 1 t L as h b r T m
i a k m c la R m [ 1 I h b c
t a f k a t l L a( I t f i i l d

t t classical f o t L am b s h t a
s at e e T f o t f s d o t m
( av w l a t f i g b

w q H=S A . F t L f e t

q = m ( C .

B.3.7 HLLE Riemann Solver
I t p [ H L a v L d s

(B.9a)

i e t

(

a R
s i at hc O o t s i d f a s c
t M a r i s p o i s E [ t t
t b a s h t t c c b u a a p
a pR s W o t m h a b d b D [
T m h s d p i s e o i
a s ao e i n

T g f of a f f w t s i

(

w b = m ( b a b = (m O ~ . T s s 6 a b a u
a l b o t s v r R [ m t

2



s uf t c wo b a 6 ‘ f a

& = )m ( ,a , (

a
6;, = “ )m ( (a , (

w m ~. d m r t t m a m c s a t
r eiv ‘ ) i T v U f c c f R I i t i d
below.

F t L af e t l t a s ta T
L ac i nf c h w

~,r = C ( C
C (u, - u,) ,

cl. + cl, – cl, + cl,
(

w s it

F = ~ [ F + F - C (Ur - Ut)] t (

w b i e ( I b r b C/r,t l s sp=d, and b; being

r eb – t s - s

B.3.8 Roe’s Riemann Solver

R p rt s i [ a t d g b g t s
r eT m d ii t t f g h i u i t d
o t f s p
t f f t
t in g

s R a pR s u t J o
d a c hd eo t s o e

(B.lla)

w A = i i t J m I I d t d a

A = R ,

A i a d m w t e io A o t d R i t m o
r e i( ca R i t m l e ( C
t ee qa t d a

2

(



wherea = R-ll’. T e c be solved
p hc p ro i f
w

with upwind biased methods to get
d a w e s

F a s w e t e f a u b f c b w
a

(

w L a R r t t s t t l a r o t c i j + ~ F
R R s a a s o e t f c b e a

w r i t k r e ia

0, = I “ u, .

Roe d t J t b u in this numerical
property

F – = A ( – U

a

(

t h t

(

for averagingt v t f A F t E e t a p
i s om c ot s a b f t f c i
L ac os a s T t f r
a u

p,,= : (n +Pr) , (B.12a)

Tj,= ; (7/+ 7,) , (

and
(

W A c c s o s m o t a n
w f n oe a s a s b Y [ a e f
i i mf t d od iw m t u of t a
v i d od io a c hs b

y)(z) =

{

p i 1 ~ c
(

(22 + C2)/2C if 1:1C ~ ‘

i o i d w a l e s c = O T p ( i d b

2



t f oe [

t [ 1s m 0 aj+ - aj, flj+i - a ●

T a vf t E e r t a p b d b

D = ( ?

w i i : u M t f c e

, + - % + u,
J D +

a

D + /
/ =

Dj+} + 1 ‘

(B.14a)

values:

w
— ! a

H = ( : + 2

F t E e qt e io t f J a

(~ ~ a =
* u - C u + c .

The right e if a m

~ = ( r # =

a b u

111

u -c u U

H - $42 H + w

U
; ( - 12 = -

(

(

(B.14d)

(B.14e)

(

(B.15b)
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the left eigenvectorsform a matrix

For the L af e ( Bt f J i

A

o – o

– – ( – 1)/7 (~ - 1

(

9 (

using a i g e o s A s b L m h t e
of –C, 0, a C a t c or c a

‘=lu~~-p(

t l e ia

‘ m M t d o t f f a e ( l g t
r f s oR [ n t t a i f t c i

s os b o t g a o c o t a t a
multiplied o T f v g t s i

F S

f

u

P

p

= = . (

; i nf t t d i t t e w d
IJj 1{i,tltllljwr M Morton [31, jMg(5 312-31.5]* a I v o G
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l i‘ l w r t t w o C I i f ( i

o t d a d a h t m a C o w
: is slIown Mow, the right cigcnwctws iltl’us(”flll i t d f s

f t (’({(litti~l]s. T f matricm also may be uwful ill visualizingthe extension
of this nl(’thod to r g w m general equations of state.

B.3.9 Engquist-Osher Solver
‘1’IIcE l lR s [ h a n o u p I i
s o( f t t o p h T s t i a
t d o s p a t s e c I i b u t
k nt t a f n o j t s w c b d
b t c hd e( i o the p G t
j ui w ap o i nC h d f a s

The f f t f [ i

= j - /“” /
U

m ( ( O d + m a ( Od , (
W U

w u is a r s a a ( i t c hs a a f o
p oi p s It i g w t c u t b o o t s a
t c e L t d eo t c hd u f R
s t f f a s c b w

,=,(04’+)-’F:”= F(U,) + ~ /“’ (

[ t f t f ut t r o F o h t b e i t
s o ~ b n e( ia c o d i t u

T c c h d a o t j d b t R i
B t c io t L f e d n c s p
L e o t s a n p w c t R R s
F a i a p ut r o w t s a n i

t t o bw R s T i p a s a
n ud it t s n f w R s

B.3.1O Flux Splitting

T t a pR s u i t p o f s [ T
m h b w u for the Euler equations. For the Euler equations, the
p o f s ph s d ib t c hc c
s a s p ( m v L w ( o f s m
I forrirlg thIO tmsis of tht, algoritllrll to tdw this twlla~.ior into acrollr)t. This also



c c d iin m c r ir ( i p f f s

f t I e qP o t I o t L e i t e
c tt d n c s t t s i t s f w g p

t r dt symmetry of ttw systclll that Id to all the citncdlation in the
t r o t s d cR n

U d ii i I h f i t b o f s [ g
l a f

- f * (

(IM9C)

f+ = m o) , a ~ = I ( O) . (

T g c c b e t s o e b t t o &
p od ci t p s G t e o t s t
d t d io t f f a s o c hv a f s c
b d F t p t c a s a

A = A + A ,

a t f J i s a ca

A = A + A , (

w e m c ot t a e d T m
t c b c ou t c t

F = A (B.19e)

t
F = A , a = A . (

T d t f s u h 1d o a o r i [ t
t f s pc b f t t r e o t f J
U t r of t p s t f e s c b c

1

c !+A*/?~

11(7– p

1 1–c=–U – p

–

P

u

, (B.20a)
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This equation set can be solvedto yield the appropriate flux splitting.
T r ef s i

a

=

~ ( –

\*(&-u,)(u,c,,-pr)

- @ w )
*( + d

w t +
*

(

(

w G i t R a s s C i o t a e
r t t e f i e c i s t R s i t l = - u

S c i nr t t f s is in fact identical to Roe’ssolver.

R 2 T u o t H o L s p t s e t

i m po L ’t s w R s T i e

t f c s o e qo f i a / m a
m iw ac b j t b u a e p ( m s

c ow i l e ( c o e m b u i c

s tl ia p s c b j T o p o t a i
t t s oj w t a pc b s ir d t

R > a l( s i t f s

B.4 Results
I t s et r o t t u o t a d a
i g a d i.Severaltest p t f t l a u S
p [ S L p [ a a b w p [ I e c o

t s ofor density is given for brevity. T s n p t m o a
d eb t d profile in each problem captures the essenceof each
m es ta w eF L a S p a e s
i t t p a a c o t r F t l w p
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no e solutionexists; thus, foran absolutecomparison,a convergedhigh-resolution
s es i u

F b t e xo t s p i d u t d
p o bT d i a e m o a p
b ei c oa t p s i t o n

r a ra c d i s

f (

B.4.1 Sod% Problem

F B s t s o t t u o t n R s
w G om T m n f o t p i t o
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i i s s eL n i t s o a o t r
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I F B a B t s f w R a E R

m s a g T s a nearly identical with Engquist-Osher’s
Riemannsolver,but have slightly moresmearing. The s i a f c w
i b c b i s s w Roe’sm T c d
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t b p t ht d f b m I s b n t
E n gR s i m e t R R s
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B.4.2 Lax$s Problem
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Figure B.2: continued

an (’.,IM!L.loi) shock in the rarefaction wave. Figure B.3a shows these results. Tlie

n~gi.t]\.t’ features in the solution are gradl~ally removed from the flow as the CFL

numl I IS reduced.
“1’heRoe and the Engquist-Osher Riemann solvers again produce nearly identical

solutions with the only difference being the slight increase in numerical dissipation

for Engqllist-Osher’s Riemann solver. The shock is smeared to be quite wide as ISthe

contact d; ontinuity. Figures D.3h and B.3c show that in both cases the rarefaction

is smeared. In addition, both solutions slightly clip the square peak in the density

profile.

Figures B.3d and B.3e show the HLLE and LLF Riemann solvers respectively.
As before, the shock is crisper with the HLLE Riemann solver than either the Roe
or Engquist-Osher Riemann solvers, but the clipping of the densit;~peak is more
pronouncedand the smearing in both the rarefactionwave and contact discontinuity
is more severe. The LLF Riemann solver shows the same characteristics but does
not have a crispershock wave, and the smearingis more severe than that found with
the HLLERiernannsolver.

B.4.3 Blast Wave Problem

Figure B.4a shows the results using the naive Riemann solver. The smooth portion
of the flow on the left is severely polluted with
.Y x 64. Other smaller oscillations can be secII

27(J

instabilities as is the shock wave at

past the shock at X = ~5 and next
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Figure B.3: The solution for Lax’s shock tube problem at t = IS is obtained with
each of the methods discussed in this appendix. The exact solution is denoted by the
solid line in each plot, and the solution obtained with Godunov’s method is shown
by the circles. Figure B.3a shows the solution obtained with the naive Riemannsolve
followed by Roe’s Riemann solver (B.3b), Engquist-Osher’sRiemann solver (B.3c),
the HLLERiemann solver (B.3d), and the LLF Riemann solver(B.3e).
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Figure B.3: continued

to the right wall. Although the solution captures some of the essence of the flow, the
characteristicsof this solution do not indicate that this procedureis robust. Reducing
the CFL as before improvesthe SUlts; however,the improvementis rtotas quick as
with the simpler shock tube- type problems.

Figures B.4b and B.4c show the results obtained with the Roe and Engquist-
Osher Riemann solvers. As before, these are nearly identical, but Engquist-Oshcr’s
Riemann solver degrades the solution peaks slightly more than Roe’s. In general,
all features of the solution are smeared considerablyby the solution procedure. The
contact discontinuities at X = 60 and X = 80 are both smeared considerably with
the first one being totally obscured. The “dip” between the peaks associated with a
rarefactionwave is filled it to a large degree.

The results obtained with the HLLE and LLF Riemann solvers are even more
diffusive as one might expect. The peaks are clipped to a larger degree and the
“dip” between them is filled in to a greater degree. Again the LLF Riemann solver
exhibits moredissipation than the HLLE soiver, although their performance is nearly

indistinguishable. The HLLE Riemann solver also produces a slightly sharper shock
at X x 88 than the other methods (except the naive Riemann solver), although this
result is barely perceptible from the figures (Figs. B.4d and B.4c).
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soIver(B.4c,
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Remarks
This appendix has given lhc formof variousapproximateRiemannsolvers that may he
wwf!llin producing quality results with Codunov’s method in Lagrangiancoordinates
with or without an Eulerian remap. In addition, the resultsshowsome of the problems
with taking the naive Ricmann solver approach. The three test problcms show that
the other types of Ricmann solvers produc~ physical results (and importantly at a
Iowcr cost than %xact” Ricmann solvers).

The Roe and Engquist-Osher Riemann solvers both cmploy a great deal of knowl-
edge of the wave structure of the equation set and as such produce relatively good
results. If the wavestructure is not as WCIIdefinedor known, the HLLEand LI,F-Rie-
mann solvers providea simple alternative providedgood mtimatcs of the wavespeeds
present arc available. The latter two so!vcrs also arc less computationally intensive
and generally simpler. and thus offersome saving in that regard.

With the useofhigher order “monotone”interpo)atiGnprincipleswith the methods
given in this appendix, the results for atl methods improve.

The exknsion of high-order methods to systems of equations is explored in the
followingappendix.

2 ;“tJ



.~p~)~’l~~lixc.
Extension of High Resolution Schemes to
Systems of Conservation Laws

C.1 Introduction

IIIrecent years, there hiMIMVIJIWIahumlamwof work deriving t;igh-rmolution schemes
for h}”\) CdJOlk conmrvation laws. \f{)st of the dmdopnmnt is IIIade with scalar cqua-

tions ;LII(Igcmvalizd in somv fit!;hiOIlto nonlinear equations or s}.stcslnsof equations.

‘!’ypica]l}’.th~”~sxttoll>i~’?!to s.vsttsllwof equations takes on gre~t impurtancr as is the
t-aw~wit)] tllt~solution of thv llu]vr rquations of con]pressi}}k flow. h!uch of the deve]-

O~[IK’11((Jf)li~h- r(”d\ltit Jll fll(’thd IS d~vOhd tO th! SOllllh Of S)fShl I IS of (’(/UatiOII!J

as t )l:*ir primary practical USC.

This apprndix is divided into fiw sections. The followingsection introduces the
mt”thods used for a scalar wave equation. In the third section, each of these methods

is e“xtendudto systems of mpations. The fourth swtiun presents and discusses results

found using these methods for the Euler equations Fiually, concluding remarksare
iound in the last section. An appendix describes the characteristic
both conserved and primitive variables.

decomposition for

C.2 Preliminaries
In this appeudix, I concentrate my efforts on one specific method and its e~t~nsion
to systems of equations, This method is a standard second-order HOC methou aug-

mented with T“dIl limiters [Chapter8 and [132]). As noted in [64, 147], the processd
solving a problem with a Godunov”typemethod can be divided into two b=ic steps:
reconstruction or projection and evolution. The evolution step involves the usc of
some sort of exact or approximate Riemann solvers (see for example Appendix B
or [30]). The issue at hand here is the method of projection for systems of cquati.ms.

The projection step requires that a piecewisc polynomial (or some full tim t; .

rescntat.ion)h Mined fcr each cd of the system to reconsti , L~nc ~..iil~bl(.~ dl~-
tritmtion in space to some Icve)of desired accuracy. In thi~ appendix, the foUowing
form is used for this polynomial



wM (’

L!iiu=Q ( 1, l“)A,- ~u ,

with

A,- }U = u, – u,-, .

(C.lb)

(Cole)

(‘1’hrmmh spacing is AI = Zj+} –x,_;. X, = X,+} + x,-; ),h(l, =A,+@A,_~I~.

‘1*}1(-function Q (1, r) is a limitm.
“lsht*Iin)itcrs ustid in ~his appmdix art.dist-usscdin {%aptm 8.

‘1’hto polynomial is then Iuwd to ddk Ivft d right states of the variitblvs at each
cdl rdgr. ILI and u,. These quantitiw arc ttm used to dekrlninc a cell-edge nunmicd
flux fl, \-ia a Rirmann solwr. In tlw ciws (4sxccp: ow *S explained in Smtion (:.4.3)

considered in this appendix, lioc’s approximate Rirmann solver [63] is used. This
givwi an overall consmvatikw ntlmmical schtvlw of

n+lu, = U; —u(i,+~olr- i,-},,.),

L+,.lr=+J+A’f(U(x,+,r)p.
For vxtvnsitm to systcrns not using a characteristic decomposition
(Jth(”r ii\)prOxilllitt(’ ~kmann SdvCr!J will be Ijd.

C.2. I Lax-Wendroff-~pe Differencing

Another issue c=ily addrcssui with simple mtxicl prohirnls is time

((~.2a)

(C.2b)

it is Iikcly that

accuracy. For a
second-order accurate sctwnw spatialiy, it is often important to attain second-order
accuracy tcrnporally. A common practice is to use a Lax-Wcndroff approachto time
accuracy. Fromone point of view this reducesto characteristictracingat the cell edges
to get a time-centeredestimate of the cell-edge state. For this numericalscheme this
yieids the foliowingform for celi edge states:

and

n+\
u = u, + ;A;u ( 1- qt.) *

J+ ~,1

n+}
u ‘A-= UJ+I —-

J+ be? 2 ‘+luj+l (] + ?Jb),

(C.3a)

(c.3b)

= (J, ~~,i~can aiW he view~ ag ev;kiuatingin the integral in (~’~2b) bY a

1! ,1. . , ..i~ comparisonis shownin Fig. 4.8.

C.2.2 Two-Step Formulation

‘1’hi~ jJr6dllre becomes more (iifficuh when systems of equations arc considmrd.
“1{J~{JIII!I,L1t)lis (iifliclllt}’, a i)rfJf”t”d~lrf” ifl ttlt. spirit of the Lw.(Jstt”p i.ax. J\’:”lldrofT



scheme [114, 113J, has been used ~159, 158J. The Ieft and right states are computed

from the projective polynomial and then used to produce time-centeredestimates for
the cell-edge states. Given the cell-edge states, Un)+\,/and u;+ ~or,computed with a

high-order method, the time-centered estimates are

and

n+~
‘]+4,1= q+},,- ; [f(u; +},,)+7+,)] ~ (C.4a)

(C.4b)

This gives second-order temporal accuracy and is equivahmt to the Lax-Wcndroff type
procedure for scalar equations.

Remark 27 Davis [189] prcqcnts an alternate two-step method that is simifar. In
that method, k first step i9

and a second step of

and
n+!

‘J+b = UJ+l + !A—~ J+~u ●

(C.5a)

(C.5b)

(C.5C)

C.2.3 Component-Wise Extension

A third approach is also available. This approach involves the separate limiting of
the flux vector and the solution variable. It has been u:, L by [200]with a high-order
Lax-Friedrichs
that

solver. This solver makes use of the identity, \ = au, which implies

af= au
82 az‘

which gives an equivalent form to that used above with
Specificallythis can be written

(C.6)

a Lax-Wendroffapproach.

and
n+~ I

u = UJ+l (- ~ A~lu - UA~lj) ,
J+~,r

(C.7b)



Sill\ ilitr to thv approach taken with the interpolation of the dqwndmt variabks,
r = J 1\/ A,_ ~j anfi A,_ ~\ = J, —f,- 1. Again for the sca~arwave equation, this

J+ ~

is t~quivalmt to thr Lax-Wcndroff type of tilnc differcncing.

C.3 Method for Extension to Systems
“1’hi:sectim concerns itself with the subjmt of extending the Inethods described in

tht~previous section to s}’stcms of equations. I deal with the spmific case of the Euler
rquations for the comsmvation of mass, momentum, and tot a! energy.

“l’h~”tih(JVt” S)”Stt’lll Of KIUatiOIM~all !}(’ Writtt’fl iS a SO-tdk!d prilllitiVt! Vihhk!

form. It h~ htwn suggested that this system of variable should be used to determine
cell-mlgc states [234, 122]. In the above form the variables arc conserved quanti-

tit”s (p, rn, L.’)‘, hut in the form gi~wn Iwiow ttw variablrs arc (p, u, c)~, the density,

velocity, and internal

Appendix B. This set

and

energy. This follows the description of Roe’s solver given in
of equations is

au h 1ap-—
z + “z + pax = 0 ‘

(C.8a)

(C.8b)

((NC)

The equations in primitive form give it ;nlachsimpler system than the Eulerequa-
tions. The flux Jacobian is

A =

1 O$u

Again, the cigenvaluesof this matrix are

.

( )(A’, U,A3 = u - C,u,u + c) .

The right eigenvectors form a matrix

I

1 I 1

~ = (+V) = -$ () #

$*$

@))()

(C.9a)

(C.9b)

(C.9C)



and by using

and

the left eigenvectors form a matrix

I1’

R-’ = la

13

z, = (y – l)p~ ,

z~ = 27p ,

. (C.9d)

Of the methods availableforextending the schemeoutlined in the previoussection,
the characteristic decomposition due to Roc [53] is the most common. in this method,
a similarity transformtakes the variablefromthe conservativeformto a characteristic
form. Each variablecan then he computed at the cell edges fro~J its characteristic
contributions. This methodology can also be applied to the primitive variables in a
similar manner. The basic theory of Roe’s method is given in Appendix B.

Thus, each characteristic is limited separately in defining the new cell-edge value
of U. For this purpose, 1define

(C.lo)

where
d~a = Q (I, r) Aj-~o (C.11)

for each component of U where r = A1+@A1_~a.

The characteristicapproach must also be integrated into the attainment of temp-
oral accuracy. Each wave in the above decomposition travels at differentspeeds and
they can also travel in differentdirections. For this rcamn, the eel)-edge quantities
are computed from the following formulax

and

(C.12a)

(C.12b)

here qk = J&o. Cole]la [2.34]reports a more robust characteristicdecomposition that
is dcscribcd and tested in Appendix D.

This method is aesthetically pleasing because the coupled nonlinear system is

‘Ml



lwidlj” rductd to a s(’t of dwoupltd s(”itliMquaticms. Ikausc of this, tlm tlwory

Awlopcd and applied to sin@’r modvl pruhlms carries ovm without intldrrulcc
to systems. on the other hand, the vxpmlse ~ssociattd with procedure ((wpccially
when I:]t]lti(iill]c’[lsiollalor nmrr complt’x systcnls arc considmtd ) Il]iikt’s tlwn less

attractive than othm alttmativcw. A nmdilicatitm of this method that is touted iu~
incrciusing the robustness of the reconstruction is givm in [234]. This method takes

into account thv direction of witw’carrying infmnatiun and only allows physically
nwaningfu] reconstructions to occur.

‘1’hvother options described in Smtion (:.2 are somewhat more straightforward
to inqdcmcnt for systcms of equations. The two-step method is simply applied in a
vector fashion, i.e.,

and

(C.13a)

(Coi3b)

Similarly the component-wise extension method can be extended by using limited
values of the flux function for rach of a system’s equations. Thus, the method can be
written

and

(C.14a)

(C.14b)

For both of these methods, the computation of the cell-edge value could be done

in either conservative, primitive, or charactt’ristic variables. The advantage of the
two-step or the component-wi.se extension methods can only bc obtained if the in-
terpolation is done in either the conservative or prin”itivevariables bccausc of the
relative simplicity of each formulation.

Another issue of some importance is the application of Iimitcrs in computing
the piccewise polynomials. It is common practice to use a compressive limiter such
zs superk on the field that producm the contact discontinuity. The comprmsion
given by the limiter maintains the sharprmssof the interface. The same limiter when
applied to shocks or rarefacticmscan produce entropy violating solutions. For the
characteristic decomposition the implementation of this is quite clear. For other
mcthmis not involving characteristicdecomposition it is usual practice to apply the
compressiveIimitm to the computation of the density profile []22].



‘ ~le C,1: Abbreviationsfor the methods used in this study,

Scheme

Characteristic-conservativevariables

Characteristic-primitive variables

Two-Step-conservative variables

Two-Step-primitive variables

Component-wise-conservativevariables

Component-wise-pri mit ive t“ariables

Abbreviation

cc

Pc

CR

PR

CF

PF
J

C.4 Comparison of Methods
In the following section, 1 compare the performanceof the methods for several scan-
dard test problemsfor the Euler equations in one space dimension. The results of this

discussion should provide guidance for more complex systems of equations as well as
guidance in a route to take in extending these methods to multidimensional prob~erns.
Table C.1 list the abbreviations used in this section to describe the methods.

C.4.1 Sod’s Problem

The solutions to Sod’s problem can be seen in Figs. C.1-C.6. In general, the solutions
are quite good and exhibit the qualities one would expect with a high-resolution

numerical solution.

The solutions found with the CC method are seen in Fig. C.1. They are qualita-
tively quite good, with the only problem being the glitch in the velocity at the end

of the rarefaction wave. With the PC method the velocity glitch is gone, but a small

rise is before to the shock. As can be seen in Fig. C.2, the deusity profile is nearly
identical to that found with the CC method.

With the twmstep formulation,the solutions are again quite good as can be seen
in Figs. C.3 and C.4. The major problemscan be seen with the velocity profileswhere
small problems exist with at the end of the rarefaction wave and in the post shock
region of the flow. These problems are not major in nature. Major features of the
flow field such M the shock, contact discontinuity and rarefaction wave arc resoived

well.

The component-*#ise extension of the schemes has a few more problems. In

Figs. C.5 and C.6 the solutions are shown. The shock wave is exceptionally sharp,
improved over the other methods, but in both the conservative and primitive variable

formulation there arc a number of small oscillations in the velocity solution between
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Figure Cl: Sod’s problem computed with the characteristic formulation with con-
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the circles denote the approximate numericalsolution.
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tive variables.
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Figure C.3: Sod’s problemcomputed withthe twmtep formulationwith conservative
variables.
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l“able C“.2:The L, error rwrms fur each scherm ~,i, Sd’S problem.—
Schcmc I)twit ~i 1’(!10( ,

I
. —

cc .5.86 x 10-’ 1.13 x :0-’2
“1

H“ 4.!W x to-~ 6.]# A 10-3 ~

CR 5.26 x 10-3 727 ~ jfp 1

L_

1’R $.45 x I(J 3 7.W x 10-}
CF 5.34 x 10-3 9.s{ A 10-‘

1-

!
PF 6.20 x l~J-3 i 22 x LOII

——

the rart.iaction and shock waves. In this CW. the.w ow~~tio~~s arc not desttuctivr.
but detract fr~,l; t}w (Jvmallquality of the solut~on”

C.4.2 Lax’s Problem

The solutions to tk problem by the methods discussed in this appendix are shown
in Figs. C.7-C.12. Ayain th~ solutions arc quite good acre the bead. but probkms
wJththe methods show more strongly in the density prcdibs. TtJeregiou hetwm the

,hock wave and the rontart discontinuity is sensitive to th~ Iirnib? IIscd,ad m the
non ckmcte%istic methods, problemsshow up.

FiguresC.7 and C.8 show the CC and PC solutions to Lax’sprobkn, respectively.
The only problcmwith timse sohitions is evident in the PC velocity soiu{tiD where●

small dip in t!w velocity is present coincident with the contact discon~inuity.‘l’his is
an artifact of the comprm!~ivcsupcrbee limiter used on the linearly degenrratc wave.

Fq., cs C.9-C. 12 show the solutions found with other methods. Three solutions
all s:,are common characteristics. The contact discontinuity causes oscillations in
the solutions as evident in both the density and velocity profiles. These mcillations
arc more severe in the primitive variable formulations. Three oscillations can be
controlled through another choice of is Iimitcrto apply ~CJ the density interpolation.

In terms of L1error(seeTable C.3J, the conclusionsthat ar~drawn are somewhat
difierent to those found with !$od’sproblcm. Thr vciocity crrfxs are very close in
magnitude and no real conclusions carJbe drawn from thmn. The density errors

‘)).?

— .— —— —
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Table C.3: The L1errornormsforeach scheme on Lax’sproblem
Scheme Density Velocity

cc 1046 X 10-2 1.LI x 10-2

Pc 1.92 X 1O-i I 1.42 X 10-2

CR I1.30x 10-2 1.53x 10-2
I

PR 1.52 X 10-a 1.61 X 1O-a

CF 1.29x 10-2 1.54 x 10-2

PF I 1.44 x 10-~ 1.62 X 10-2

seem to favor the conservative mrmulations, but for the two-step or component-wise

formulations thedifferences arc l~ot profound.

C.4.3 Vacuum Problem

As noted in Section C.2, one ~Me in this study does not use Roe’s approximate
Riemannsolver. The case of I?,Jvacuumproblemconsideredbelow cannot use Roe’s
solver as explained in [231].i“orthis case, a more difiusive scheme is used to maintain

physical solutions. This is the HLLERicmannsolver [30,231, 128](see Appendix B).
This methoJ has several desirable properties: its simplicity, ease of implementa-

tion, and satisfaction of entropy inequalities. Reference [231] makes the suggestion
for the computation of 6[, and ~,. The formulasare

b:, = max (a,,~=, afr,~ar)

and

? (C.15a~

/);,= “ )1.111] ((l/,mln, (l/r,mOn , (C.!5b)

where max and min refer to the maximum and minimum characteristic speeds at
the respective locations. The values for al, come from the Roe linearization that is
discussed below.

The solutions found with the CC, PC, PR, and PF (Figs. C.13, C.14, C.16
and C.18) methods are not worth much discussion. All of them are quite good and
appear to be nearly identical in terms of resolution. Table C.4 shows this as well.

The solutions found with the CR and CF methoas do warrantsome discussion.
The CR solution is shown in Fig. C.15 and the CF solution in Fig. C.17. Both
solutions are of exceedingly poor quality. in
prevent this, the computer code should have

fact if meamre had not been taken to
blown IIpcariy in the solution process.



1.2

1

0.8

P 0.6

0.4

0.2

0

3

2

1

Uo

-1

-2

-3

, 1 , ,

: (a)

,

P

o 20 40 60 80 100

x

o 20 40 60 80 la)
x

FigureC.13: The vacuumproblemcomputed with the characteristicformulationwith
consewative variabka.

298



1.2

1

0.8

P().6

0.4

0.2

0

3

2

1

Uo

-1

(a)

o

20 40

x

60

-2
I

100

0 20 40 60 80 la)
x

FigureC.14: The vacuumproblemcomputedwith the characteristic formulationwitb
primitive variab)es.



1.2

1

0.8

P 0.6

0.4

0.2

0

3

2

1

Uo

-1

-2
t

o 20 40 60 80 l(x)
x

MN-)

I
o 20 40 60 80 la)

x

Figure C.IS: The vacuum problcm computed with the tw-step formulationwith
conservativevariables. The use of conservativevariableswith this flowis disastrous.
The total energyhas becomenegativein the regionaroundX = 50.



1.2

1

0.8

P 0.6

0.4

0.2

0
0

(a)

* v 1
20 40

x
80

2

1

Uo
I

-1 ;

-2

100

0 20 40 60 80
x

Figure C.M The vacuum problem computed with the t-step
primitive variables.

100

formuhtion



1.2

1

0.8

p 0.6

0.4

0.2

0

-b ,1 &
,

; (a)

I

I

,

I
●

o 20 40 a) ao 1(XI
x

3: 1
; (b)

2

1

Uo

“2

-3 .
0 20 40 60 00 la)

x

Figure C.17: The vacuum problem computed witb the component-wiseformulation
with wnservativevariables. The conservativevariableshave not guaranteed that
positivedefhik quantiti~ (total energy)stay positivedefinite.



1.2

1

0.8

P 0.6

0.4

0.2

0
0 20 40 60 80 100

x

34 , , , , &

; 00
)

2“:

1

U(I

-1“;
b

,

-34
0 20 40 60 80 l(x)

x

.

Figure C.18: The vawum problemmmputed with the component=wiseformulation
with consewative wwkbles.

:\[J:\



Table C.4t: ‘rhe La errorn
&—

Schcw)e
~~

Pc

CR

PR

CF

PF

ms for each——

Density

1.27 x 10-2
]o~~~ J()-~

2.72 X 10-2

1020x 10-2

2.81 X 10-2

1.20 x 10-2

:hcmeon the-..
Velocity

.——
2.63 X 10-Z

2.83 x 1O-a

1.00 x 10-1

2.39 x 10-2

5.85 x 10-~

2.40 x )0-2—

Vacuum prob)em

This is because thr tota! energy in the soluticmsbecomesnegative in the vicinity of the
vacuum in the solution. The use of the conservativevaiables in a non characteristic
method when the sofution is kinetic cmergyrich causes Lheproblem. This is akin to
the problems with the Roe linearization s~udied in [231]. The interpolation of the
variables crcatcs nonphysicalstates in the total energy. Loweringthe compression
of the limiters alleviates this prob!cm M does movingto primitive or characteristic
variablesfor the interpolation.

C.4.4 Blast Wave Problem

The solutions are in general all quite good. The major featuresof this complexflow
field are all depicted in the plotted density profiles (Figs. C.19-C.24). The major

differencescan be seen in the resolutionof the contactdiscontinuityat .Ys 60, the
“well”at X s 75, and the peak at X s 80.

h Fig. C.19, the CC method’smajorproblemis the clippingof the second peak
in ‘Thesolution. Other features are wellresolvedin comparisonto the other methods.

The PC method (Fig. C.20) smears all the features of the flow considerably more
than the CC method. The CR method is generally like the CC method with the
except.kmo! the contact discontinuityat X z 60, which is smeared much more that
by the CC method. The solution is somewhat “noisier” with over/undershoots in
severallocations. These characteristics●re duplicated in largepart by the CF method
(compare Figs. C.21 and C.M),

The PR and PF methods producenearly same results. Bothsolutionsare remark=
ably crisp and each feature in the flowfieldis sharply defined. FiguresC.22 and C.24
also show the major detriment to these solution. The second peak (X = 80) sig-
nificantlyovershoots the “exact” solution. Neverthelessthe solution found by these
methods is quite good in all other respects.
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Figure C.19: The blast waveproblem computedwitb the characteristic formulation
with conservativevariables. The first peak is -ptured very well, but the secondis
clippedsawely. Witb th~ blast wavesolution, the ‘exacta solution is marked by the
dashed lineand the approximatenumeskalsolutionby the solidline.
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Figure C.22: The blast waveprobk.n computed with the twmstepformulationwith
primitive variables. This solution is higbly resolvedand is of high qualitywith the
-ception of the overshootof the secondpeak.
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FigureC.23:Theblastwaveproblemmnputed withtbecompormt-wiseformulation
with conservativevariables. This solutionis fairly well resolved, but is somewhat
“noisier”than other solutions.
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ch method

of that tinw taken bj. the reconstruction of the cell.edge values t. In terms of c*conomy,

Ihc” PI{ and Pf’” Illrth(lds haw” Ch”a: advantages. Taking this into account with the
rmult~ in mind wwmalC{JfIClW4h)IlS ran k drawn. Three conclusions arc summarized
})#”l(JW”:

All Ihe nwthum dcwribmi in the appendix produce qua!ity rmults.

\\”hw a 11011 characteristic extension is used care ?i~’JS~ be taken in applying
~ilnitcrs(10 hot ovt=r.comprm the density).

}“ornon characteristicextensions. the primitive variablesformulationshould be
11A.

Stm rharartrristic formulationsusing t’ r primitive variablesare lowerin coet.

Anoth(.r ~MJIlllIMA cmphmisd hmc h~s been extension ‘o multiple dimensional
~rotdmns. t~llof thin- methods ran .%tJ.sed with ● dimensional~p]itting~lh~, ~t
thr tw(rstep rrwthod has clear applicability to ● purely multidimensionalmethods
without splitting. This is clearly ?.n advantageous feature. In mm, both of tjje

characteristic approaches [CL’and PC) are reliable and product exceknt results in
all caws. “rhctwc~wepprimstivcvariablemethod (PR) with ●ppropriateselection of
limiters is both economicaland has applicabilityto a multidimensionalaJgorithm.
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A More Robust Characteristic
Reconstruction

D.1 Methodology
III[w], (’della discusstwa more robust means to accomplishcharacteristic recon-
struction. In this appendix, 1 show this method and explore its use.

Brwf?y~ttatccl,this is a modificationof the methodologygiven earlier. Forconstant
coefficientproblems these steps lead to identical val~ for U,+ },1/,, but M C~JelJa
comments leads to a more robust algorithm in the case of highly nonlinearproblems.
This method requiresthat we defineleft anil right referencestates, U -t+}~ ‘d ‘J+},~~

respectively. These states arc definul as

(D.la)

and I
u,+\., = u, - ; ))A;U.(1 - min (Aj+l, O (D.lb)

}Icre, the cigenva!u=. A6, have been arranged in increasing order frem A’● ocAK.
These referencestates are then used in defining the cekige valuesas

(Il?k)

and

ANthe aboveterms where defined in Chapter C. One would expect this method
to be slightly more diffusive than the usual reconstruction because of the lack of
extrapolation of the linear profilefor eigenvduesthat do not propagate toward the
CC*I1Age.

D.2 Results
1compare the abovedescribedmethod with the morestraightfoiwardalgorithmused
throughout this research. To do this I uae the same four test problems described in
(YhapterA. To simplify comparisonon the derwityand velocity profilesare studied.

310



For Sod’s problem, the more robust algorithms sole improvementseems to he in
the t-elocity profilewhere the “bump”experienced with the usual algorithm t)ear the
end of the rarefaction wave has disappeared. This is shown in Fig. D.1. The L1error
for density is alsoslightly better.

With Lax’s problem, the differenceis barely perceptible. Figure D.2 shows that
the two solutions are nearly identical. The LI error norm for density is slightly worse
for the robust reconstruction.

Again for the vacuum problem = with Lax’s problem, the two WIUions are not
greatly different, although the robust reconstruction appears to be more diffusive.
As Fig. D.3 shows, near the vacuum in the soIution, the robust reconstructionshows
more artificialdiffusion.

Figure D.4 shows the solutions for the two methods on the blast wave problem.
The solutions were ccmputed with 500 grid points. Only the region of wave interac-
tions is shown. Again, a.. shown in this figure, the solutions are very sim~lar.

While the robust reconstruction does not have any detriment! effects on the

sc!ution (save a little artificial diffusion), except in the case of Sod’s protlmn, it
does not improve the solution. It is also somewhat more expenwve than the usual
reconstruction, although this cost is not particularly high.
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AppmdixE.
Neo-Classical Upwind Type Methods

Here 1 briefly explore the typesof solutions that ariw from the solution of modified
!iux and symmetric TVD schcmcs without limiters. The schrrncs can tm derived

from thocwscherncsby considcvingwhat the fluxm would k f~mthe various samph”
gradients used in the Iimitcrs. This gives three separate schemes for the modified

flux type of method: upwind, antiupwimi and centered for averag~”of the other two).

For the symmetric method, four schemes arise: upwind (Beam Warming). ccnttwd
( Lax- U’cndroff), antiupwind and avmagc.

The results for these methods on the sralar advection of a square wave for iOO

time steps at v = 0.5 can be seen in Figs. E.] and E.2. Each of the soiutions is

second-order accurate ●nd shows distinct dispersive effects. For the modified flux

type of scheme,the upwind and antiupwind errc;s are opposite in orientation and the
centeredsolution issuperior. For the symmetricscheme,surprisingly,the antiupwmd
method foliowedby the ●vemge method stern to he superior in terms of oscillation

control.
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.~l]~)t~r~flix ~.

Extension of High Resolution Schemes to
Multiple Dimensions

F.1 Introduction
kh!th(k (OrfJUIllC!hdly ink’gratkg C(Jn.S(?r$”atiOfIbib% ah’ hV5t UfJdt!rSkOd if) [)11(!

dinwnsicm. Bcrausc of this, schmnes ar~ most OftmldcvclOpm!and thorougttly tcslcd

in onr dimension. High-resolution srhmnrs are no exception tc thiq ruh”. lit somv

~iU@%a gOOdO1l~-diln@n~lOIlalm~lh(Jd ranllOt hr gJ’n(*rahZt”]tO Illldtiph” dIIIICflSIWJ!i

because of asstJmptions madr in their (Ivrivation. FortlJnat4dy,1}l;s is nut islwa).s trIJr,

although the ollc”(lirl~cnsitJ1~alnwtlmds arc always somewhat limited when used in

rnultiplwspacc=dimensions.

‘rhr more straightforward nwthods ftJr lhr lli!l!tidilll(”tlsiollaladvcrtion algorithms
isrrdtgt.ckqmdin j~h}”sically{Jr bgkidly wc tangu}arcudinau”s. }“initcchvncntmcth.
tJdS and IIlt)rf” #W*rd fililh \dlJIJM’ Il)f”t hOd9 [J\.~, ~\~J] Can b dt”fid f~~rmore gt’n.

~CraIgm~mrtrics. The prohirm with thm nmti}ocis is that the” theor~tical support

i;] l:liJlti(iirllc:]si(J;lsis somrwhat larking. A perfect cxamplr of this (difficulty is

w.iti] Rirmann sol~.rrs. %llllticiitl]e:]siot]ai Ricmann soivcrs arc an aclivc topic of rc-

.search[2’M023S. 236.237. 229], but in CJIWdimrnsion, Rimnann solvers arc well dcvcl”

opmi. .i”ypicaliy, Rimnann solvms art”usmi in an operatur splitting fa..hivj~ [i W] where

at each cell intcrfacc thr muitidimmnional problem is reducmi to A one-dimensional

problcm. These arc then picccd togethm to give a multidimensional aigorithm [234).

As is (iiscusscd s}mrtiy. the advent of Itlllltitlilllcnsional Ricmann soivers do not cure

ali the prohiems associatedwith the soi~Jtionof rrmltidimensionai prob!ems with high-

rrscdulion upwind rn~thmis.

A common iB~JpWifh UJ achkvkg high”re%o]utiun methods is the usc of fhx or

s}opc Iimitcrs. For one space dimension, limiters are well developed. but for more
than rmc dimension, their dmwlopmcnt is somewhat icss. one aspect to mu}tidi”
rncnsionalIimitcrs is that they require the usc of more .%mplrgradients than their

onc.dimensional counterparts. As discussml in L’baptcr8, the more argumentsgiven
to a limiter, the lower its r=JhlthJ simply because of the minimum principic used.

Sluiti#iimcnsional iimiters ha~”~hccn given by [238, i39, 239].

III this appendix, J attemvt to scc what some of these limitations arc and what

methodology is best suited to the task. Thtappendix is organized into nine sections:
an introduction, a description of the first-order methods, the tmt ~Jrobicms, and

~‘J~.~;r”.[t)rdf”r rt.~!llt%. .I’!ll\ 1%ft~!!tl%%”l.l!}J~?’ d $hfrlp~hl CJfth~”}A%Si~”high rM(dlltilJtl



method and its extension to multiple dimensions. After this, the resu!tsof th~ high”

resolutionmethods in two space dimensions is given. Following that discussion is a
briefdescriptionof the impact of limiter selection on the results. Finally, some closing

remarks are made.

F.2 First-OrderMethods in Multiple SpatialDi-
mensions

In this appendix I am interested in solving the following equation,

(F.1)

where \ (u) = au and g (u) = kg, A conservativedifkncing of this cquatkm is

Um+l = “n
84 D.J- us (L+j.,J, - 1,.+$.)-u“(90.,+p’ - 9,.,J v (F.2)

where u= = dt/Az and OV= At/A~.
In each of the methodsdiscussedin this ●ppendix, the cell-edge flux at celledge

i + ~.j are defined by the following approximate Riemann ZKJW for ~ca~arwave
equations

(F.3)

where a is the velocity in the z-direction at the cell edge and the subscript 1 refers
to the value to the 1A of the cell edge, r to the right and k is the interface value.

Simitarly, the flux is the y-direction ●t cell edge :, j + ~ is

(F.4)

where 6 idthe velocity in the y-direction at the cell edge and the subscript b refersto

the value ●t the bottom of the cell edge, # to the top, and M is the interface value.
By&fining tht cekdge values,1then define the scheme.

For the first-order schemes,the value at the cell edges are given by the valueof
the variable in each cell for instance

%+ #J$ = u~J9 (F.5a)

31!)



frotil t)lt. (Sonstvtntitm form, ( 1-’.2).

/\ll(JthL’r commonform usesdlmmimd splitting [156]usl~i~l!j-iliiph”montcdwith
Str.sllh splitting [240. 2411. This IIMSthOd;)icces together one-dimensional solutions
inh) a Il]lllti(lill]c’llsil)l)alsolution. ForIWOdimmim, I can order ttw solution in two

u:J = L, (U;J),

* (F”.tia)

. (F.6b)

in two steps, the first heing

(F.7a)

itlld th~ SCsC(JIIdht?ill~

with L“yC=(u;,) Mind.

u::’ = c’ (u:,), (F.7b)

()
$in a similar mannm. The function Z, u,,, is defined as

L, (u:J)= U:j ($
- ‘~ ‘SJ+ \ ,bf- )‘,0J-4;bt “

(F.tk)

(F.8b)

Strang [240]showed that if the order of evaluation is alternated, errors cancel 10
smond.order in timr (also we lmVequr[40, Chapter 18]) thus the implementedordrr
of evaluation for two time steps is

(F.9)

‘I$hruse >fthis wit}) Codunov’s rrwthoddefines the split Godunov method.’

Colclla dcfirwsa third choice for multiriimensiortalextensions of one-dirrvmsionaI
nwthods. He calls these corner transported upwind (CTU) methods, a term I use
hcr~. Thr kic geometric idea is shown in Fi~ F.1. This is ● tw-step method tbat
ddinm timecentered values for the cell edges and uses theseto compute the advance
time (v:llwentcrcdvalues. The first step of the metbod computes ● time centered
value for a cdl migc had on the characteristicstraced from the cornersof that ce]l
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i-1 J-1

Figure F.]: A diagram showing the trace of characteristics back from the cell comer
of cell (i, j) with both velocities behrg positi W.

edge. For the z-directiou cell edge, this gives

and for the y-direction cell edge

(F.10a)

(F.10b)

The fluxes are computed by some means, in this case a Godunov flux as described

above. The final timeadvanced solution is computed from

which uses the CTU-time-centered values to define the Godunov ihrxea.

Before continuing, some comments concerning stability should be made. Classical

stability analysis applies tn the above schemes. For the split and CTI 1 Godunov

schernea the stability Iimlt IS

max(v=. v”) < I , (F.lla)
i,j

and for the unsplit Godu nov scheme

U=+uu< , (F.llb)

where V== Ial u. and v, = Iblu,.
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F.3 Test Cases and Problem Setup

I wtwrv
a (IJ)= -d(y – y.) , (F.12b)

I and

6(Z) = Q(X - x.) , (F.12c)

I

with *O= 0,1, r , = .50 and y. = so. At t = 20x lhc field h- rotated once. The
()\”{”ra!!th)l:laifl b [~o, .Pn] )( [~o, ~n] = [0,100]x [0,100].This probimnsetup follows
Zidcsaii [62] aml llunz [181). I use A tinw step siz~”of 20x/628 so that the profile
rtwol~-t’scmccoin 62S time steps.

‘1’hcfirst prohlmnis defined hy %nolarki~wicz[242] JUthe cone problem. The
initial conditions am! ~xart .sdution arr shown in Fig. F.?. The cormiz centered at
(50. 7-5)~-i~ha hf*ightOfunity Anda radiusof 15. This problcmshould show how the
s4JllJtit)nS Illait}taill hit] rxtrrma and shapr during adwction. For the corwand the
sh~ttvdc“}”linkr~mMvns. ~hc figurmim only shown a 50 x .50portion of the grid in
(Jrdcrco conccntra;oon th(’solution.

TIN.w-or,d problemis t}w slotted cylinder prohlcmintrwiuccd by Zalesakin [62].
‘i’hisproblmnha..hem uwl by a numhmof rc~archers [181. 93, 242] to testmultidi-
mvnsi(maiadvmtion schenws l“twcyiindcr is ccntercd St (.50,75) and has a height of
unity and a radius of 1S. A dot is rut out of the cyiinder at its lower center leaving
a ‘bridge” with a maximum width of % This prddem highlights the performanceof
thr nwhds on mmtactdisccmtinuitiesshowing their numericaldifhssion. Figure F.3
shows tht=initiai condition for the Siotted cyiinder.

F.4 First Order-Results
in this swtion I discuss the resuits of using the first-ordermethods on the rot~ting
cone anti si(~tted cyiinder problems ●fter one rotation. In general, the soiutions all
have simiiar properties and results. Graphically speaking, the solutions are nearly
identical. This is shown by looking ●t Figs.F.4, F.6, and F.8 !br the coae problemand
Figs. k“.:,F.7, ad F.!) for the slotted cylinder. All these solutions show exc~ingly
poor rmolution of the solution ●nd the original profileis nearly indistinguishable.

The results for all the methods discussed in this appendix are given in wed
htJh”X. “rahk i“.1 shows the compu!er time used in producing each solution. h
is ll~~tatk that the (Vfl ic(khmov method uses half ●gain M much time u the spiit



@

o

Figure F.2: Ioitial condition and exact solution after n ro&tiorMfocthecone Dmbb.
The spikein the upper right handcomet d the upper figureis set qual to i ~d the

spike in the loweT lefthandcomer equa! :.v-~.
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(ii)

Figure P.% Initial condition and exact solution after n rotations for tbe slotted
cy~inderprobl~.
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Figure FA: The split CodunoV method solution for the rotating cone shows the
excessive diffusionof this method.
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Figure F.5: The split Codunov method sdulion for the rotating dotted cylinder
shows the excessive difksion of this nwthod.



o

Figure F.6: The un9plitCodunov method aolutionfor the rotating aae shows the

exaive difkion of this method.



.

Figure F.7: The unsplit (’bdunov me$hod dutioa fw the rotating dotted cylimk
sh%s the excessive dikion of this method.
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Figure F4: Tk CI’lJ=CkAJnovmethod solution for the rotating cone shows lhe
excessive diffusionof his method.
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Figure F.9. The CTU=Godunovmethod solution (or the rotating slotted
shows the excessive diffwion of this method.

cylinder



T’ableF*.1:Computer time used for the solution of a problem usingeach method
throughsix rotations (CFT 1.14on a CrayX-MP4/16 with a CTSS operating system).

Scheme

Split Godunov

Unsplit Godunov

CTU Godunov

Lax”Wcndroff

Split HOG

Unsplit HOC

CTU HOG/Codunov

CTU HOG

Runge-Kiltta HOG

Hancock-vanLeer HOG
.—

CPU Time (s)

27.975

27.640

42.455

39.043

49.913

48.943

73.487

63.,542

70.885

58.656

Total Time (s)
—- - —

41.372

40.905

60.256

55.545

71.6d4

70.346

‘34.891

124.737

101.848

117.215

Godunov mctkad to achievenearlythe same result. The times forthe split and unsplit
Codiinov so?~tions are nearly equal. Table F.2 gives the solution minimums and
maximumsfor all methods ●fter one rotationof the cone. The split Godunov solution
is slightly better than the other schtions, and all three methods ●re monotonic.
Table F.3 shows that the slotted cylinder results yield similar conclusions.

F.S High-F?esolutionMethods
This section explorrs ri~ethmlsused to improvethe above results while staying within
the basis of one-di.~ersionai methods as ● basic building block. Below I show the
basic scheme used in the st~dy ●nd introduce the methods of extension to multipk
dimensions.

F.5.1 The Basic One-Dimensional High-Resolution Method
To set the high=orderGodunw (HOG) methods tested in this appendix cm equal
footing, all methodu use the same basic orwdirnensional method as ● basis. This
method is asimplesecond”otder method definedby the followingpiecewisepolynomial
function in the x-dirett,lon

}’,.,(z) =
— z - Z,J

?J,J + ii, u
AI ‘

[F.13a)

—— ———



IIl!’llwtllods. — —.— — ———

Scheme

Split (Mmov

IInsplit Godunov

(m G()(I1llIOV

l.ax-Wcvn!roff

Split HOC

{!nsplit }IOG

mu t{o[;/(hhnO~
C’11’HOG
Runge-liutla JIOG

tfancock-van Lax IIOG

Minimum

0,0000
0.0000

OOoooo

-0.7970

ILOOOO

O.0000

.0.0120

-0.01!)0

0.000o

-MJ062

Maximum———
0.3300
0.3247

0.:s2!)!1

0.U’M6

O.?wol

0.8638

0.H575

0.8589

0.8697

0.8s29

“1’abkE“.%Minimumand n}aximumvahws afttv one rotation of the slotM cylinder
using all the methods.

Scheme
,
Split Codunov

Unsplit Codunov

CXU Gohnov

Lax”WcI,dKJfl

Split ;IOC

Iinsplit IIOG

CTl; HOG/( Munmr

mu Hoc

Runge-Kuua HOC

Hanccwk”vanl-r }iOG

Minimum

O.0000

0.0000

0.0000

-0.7!J4.5

O.0000

-0.000S

=0.0ss!5

“0.0s8!5

O.0000

“fkfm2

Maximum

0..5883

0.57!)”:

0.5882

1.2627

0.!3993

0.9996

1.0625

1.07.36

0.9999

0.9985



and in the y=direction
- ~ - h.J

P,,, (y) = u.., + ANT “ (F.13b)

‘I’heterms A~u and &J arc defined by limiters (W Chapter 8).

From the above methods 1 may grt ~mond-ordertime accuracy by defining the
time-centered, cell-edge values u

and

m+} 1 —.
u u:, + ~ (1 - q,) A,u ,1+#J;l = (F.14a)

(F.14b)

where q= = aAt/Az. The terms ?I,and q~ are signed versions Of V=and V&.Similu

definitions are used for the ccl} edges in the ydircction.

NOWI
siotm

F.5.2

The first

explore how I extend theseone=dimensionalmethods to two space dirnen=

High-Resolution Methods in Multiple Spatial Dimen-
sions

three ways to extend schemes to multipk spatia! dimensions are simply
extensions of the methods used for the first-order Godunov ~chemes. The operator
split nnd unsplit methods are extremely straightforward, but the CTU scheme is
worth eltplvrklg.

To get second-ordm
cell-edge value

and

expansion for each time-centered

AZ3U
TX ‘

(F.15a)

(F.15b) ~

I can replace ~u/~t with -8~/& - ag/@ in s manner similar to the derivation of
the Lax-Wendroffmethod. This gives

and

(F.16a)

(F.16b)



}Irwllw

( t’.l7a)

()-’.17}))

III[1.5!).15s]. an alterna~:-mcth~~dfor ~xtmding 110(; methods to wvond”ordcr
tlnw accuracy wa.. prrsentmi. “1’hism~thod was devdopcd in onc dimcrtsion●nd
is similar i:l flaw~r[o the two-step Lax.\\’cndroff method. Using the above dated

dc!ri~.ation I can cxtcm! this method to two (or nwr) dinwnsiorm 1 substitute nu-
mcriridapproximationsdire,-tlyinto (F. 16a) and (F. i6b). This gives rxprcssions for
ltw tinw-cmlterwlcell-edge valum of

{’{;



(F.1OC) is used to update the grid values. This is referred toss the Hancock-van Leer

HOG method. Unlike the CTU schemes, the ( !FL limit for this scheme is given by

V=+ UV51

This is because cell-to-cell interactions are ignored in the prechctor step.

The next method I study here is a TVD Runge-Kutta method introduced by

Shu [169, 65, 66]. These methods were shown to be TVD when the coefficients of the
time discretization meet certain conditions. These multistage algorithms are written

in the foflowing form

“* = ~ [aiku’ + ~i, AtL (Uk)] , (F.20a)
k=o

where the semi-discrete differential operator is defined by

&k
X= L(U’‘ (F.20b)

and aik and flik are coefficients. The criteria for this to produce TVD results given

an appropriate spatial operator is a CFL condition

(F.20c)

where

V=+vy<

If flik is negative, the spatial operator must be antiupwind [65, 160]. A number of

schemes can be defined with the second- and third-order methods being particularly

useful. The second-order method turns out to be the classic modified Euler or Heun

scheme

U:J = u:~ + At L(um) , (F:21a)

and

““+’ = uij + $ [L(II”) + L (u’)] ,~.J (F.21b)

with a CFL cmdtion of u < 1. It is notable that Rhnarrn solvers are needed at each

step of the multistep integration.

For convenience, the CFL limits for the schemes studied in this appendix are given

in Table F.4

F.6 Resulis for the Second-Order Methods
This section shows and discusses solutions to the teat problems by the second-order

methods described above. Before continuing 10 this, 1 show the results that a classic
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I
I

Hancock-vanI,ocr1{0(;

III.-.11IIIC”Uof:-type mcthmls shown h~re,the supcrbm limiter is used to give the
L)giw rtdl.titin pos~ibk. Other lintitcrsarc brieflydiscussed Iatcrin the appcrdix.
‘rhraplil 1(0(; nwthwl giws exrcllent mulls in tctnw of rdution ●nd solution
s}”mnrtry (H Fig. }’.12). ‘1’twhridge in thr dottrd cylinti,r is onfy slightty eroded
* shuwn b} }’lg. }“.1%

:!:!1;



Figure F.1O: The Luc”Wendroffmethod ooluhn fm the rotating cone shows the
excessive dispersion errorsof this method.



Figure F.!4: ?lIc Lax=Wendro!l method xolubn for the totating slotted
shows the cxccssive dispersim etrors of this method.

cylinder
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F’igureF.Iz: The split HOG method solution for the rotating cone show Wc high
quality of this method.
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F“igumF.13: The split MI(; method solutio,l for the rotatingslotted cylindershow
the !:- flc+a;ityof thi< rt--tM

.
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Table F.5: Minimumand maximumvalues after one rotation of the cone forvarious
limiters using he Rung~”KuttaHOG method.

Limiter IM inimum

hiinmod Omooo
van kr O.0000
Centrat O.0000

Superb-

I
O.0000

GeneralizedAveragen=2 -0.0277

Maximum

0.6703

0.7754

0.8154

0.8697

0.8439 .

that the crcmderivativeterms (ii%/d@) are ignored. This problemhas beennoted
by Smolarkiewicz[242].

The solutions mrnputcdwith the CTU Godunov/HOG and (.”TIJHOG rrwthods
do not share this problem. Both methods have excellent symmetry qualiti- u Shown

by Figs. F.16 and F.18. ‘i’heresolutionis ●lso quite high as can be seen in Figs. F.17
and F.19. These figuremako S!IOWtbat the solutions are not monotone and a!so
producea great deal of high frequencyhut tow amplitude noise. The solutions do no:
differgreatly as evidenced by the figur- and the data in Tables F.2 and F.3, but the
CTU HOG method is slightly noisim and less monotonic.

The Hancock-vanLeer HOG rnethd has many of the same ch~racteristicsas the
C’W algorithm, but the oscillations aresmallerand the actual resolutionis improved.
These two features are evident in Figs. F.20 and F.21. This method produces the
best reproductionof the “bridge”in the slotted cylinder problem.

The Runge.Kutta I1OC rrwttmdimprovm on ●ll these methods. As Figs. F.22
and F.23 dernonstrat~,th~ problemswith the ●bove methods ●recured.The solutions
is of slightly better qua!ity than the split VOG method.

F.7 Test of VariousLimiters
This srction briefly disciw.. the performanceof the HOG methods for different
choicmof flux limiters.Tables ?.5 and F.6 show the minimum and maximum values
for cacb of tbe Iimitcr for the test problems. In all c=, the Runge-Kutta }IOG
method is used

The figures that follow show !hat the choice of limitercanhave a profoundinflu=
encc on the quality of the solution. The minmodlimiter providesthe lowestresolution
second-ordersolution as is shown IJyFigs. F.24 and F.2S. The l’an Leer and center
limiters are somewhat better in resolution. hut are still noticeably less resolved than
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Figure F.14: The unsplit }IOG methodsolution for the rotatingconeAows & lack
of symmetry of this method.



IP’igurcF’.l5:The unsplitHOGmethod solution for the rotating slotted cylindcrshows
the lack of wmhtion of this method.
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Figure F.16: The CTU (bdunov/}lO(; method solntion for the rotating cone shows
the msolut~on●nd noise of this method.
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Figure F.17: The CTLJCiklunov/llOC method solution for the rotatingslottedcy)iu=
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Figure F.M: The CTU HOG method dution for the rotating cone shows ti~er-
Iution and noise of this method.
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FigureF.20: ‘J’},Phmoek=van IAW WIG mcshod solutiortfor thcrotating ameshows
the rr-sdutioz;and rcduccdnoke of this mthod
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Figure F.21: The Hancoek=vanLeer HOG method solution for the rotating slotted
cylinder showsthe rcsohtim ●nd reducednoiseof this method.
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Figwe F.!22:The Runge-Kotla }(OG method solution for the rotating cane shows
the rewlutionand the lack of noiseof this method.



a
Figure F,23: The Runge-Kutta}{OC methodaohationfmtherotating dotted cylinder
showsthe resolut”mnand the lack of noiseof this method.



the supmhcwlimiter. ‘W centerIimitm solutions arc gh”cnin i“~g~.}“.26 and F.27

and thr van Lem limiter solutions in #“igs. F.WIand }“.’29. The gmwralizedaverage
limitergives a morpmsolvmlsolution. !wt at the cost of symmetry and monotonirity.
These arc sh~wr.in Figs. ~“.:Mland F.31. The supcwk limiter solutions were shown
in Figs. F.22 an.i F.Z?.

\ -,:

—.- ———
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Figure F.24: The Runge-KuttaHOG method with the minmodlimitersolu%n f~r
the rotatingcon~ shows the pow resolutionof this limiter.
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Figure F.25: The Runge-Kutta HOG method with the minmod limiter solution for
the rotating slotted cylinder shows the poor resolutionof this limiter.

:L5’1



I?.8 Closing Remarks
Of the met!lodsdiscussedin this chapter, the split HOGand Runge-Kutta HOGmeth-
ods are the clear winners in terms of overall performance. The Runge-Kutta HOG
methods areespecially appealingbecausethey can be extended to higherthan second-
order accuracy. This makes them important for consideration with ENO schemes or
such schemes w the PPM [122]. The Hancock-vanLeer method is an improvement
in terms of performanceand economy met the CTU-type methods. If a largertime
step is desired, the split ~cher,les seeI~J[o be quite effective. For systems of equa-
tions, this topic is in need of additional research. Split methods seem to have some
intrinsic problems with systems [243;. Perhaps this swings the balance in favor of
Runge-Kutta-type methods, but the performanceof CTU-type methods also needs
critical evaluation for systems.
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Figure F.26: The Runge-Kutta HOG method with the central limiter solution for the
rotating cone shows the resolution of this limiter is nearly on par with the superbee
limiter.
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Figure F.27: The Runge-Kutta HOG method with the ccntrd limiter solution fix the
rotating slotted cylindershow the resolutionof this limiter is nearly on par wit!: the
sflperbee limiter.

3.57
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Figure F.28: The Runge-Kutta HOG method with the van Leer limiter solution for
the rotating cone shows the better redution of this limitet.



Figure F.29: The Runge-Kutta HOG method with the van Leer limiter solution
the rotating slotted cylinder shows the better resolution of this limiter.

for



.

\

Figure F.30: The Runge-Kutta HOG method with the generalized average limiter
n = 2 solution for the rotating cone shows the better resolution of this limiter, but
the non-monotonic behavior.
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Figure F.31: The Runge-Kutta HOG method with the generalized average limiter—
n = 2 solution for the rotating slotted cylinder shows the better resolution of this
limiter, but the non-monotonic behavior.
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