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Shock-Capturing Methods

by -
William Jackson Rider

Abstract

The design and construction of high-resolution upwind shock-capturing methods
is an effective 1eans of solvi:ng couservation laws of physics numerically. In the past,
the design of such methods was generally categorized into several distinet methods.

- This work shows how these incthods can te viewed in a unified manner. Thus, the

~ various types of methods can more easily take ideas from one another to improve
. their design.

A generalized flux-corrected trausport (FCT) algorithni is shown to be total vari-
ation diminishing (TVD) under some conditions. The new algorithm has improved
properties from the standpoint of use and analysis. Results show that the new FCT
algorithm performs better than the older FCT algorithms and is comparable with
other modern methods. This is shown to be especially important for systems of
equations. The new forniulation aliows Riemann solvers to be used effectively with
FCT methods. This directly leads to a geometric analog to symmetric TVD and
FCT methods that is developed and expanded upon. This unities these methods with
- high-order Godunov (HOG) methods. Two new variants of this method are derived,
and shown to be uniformly non-oscillatory.

Limiters 1re an eflective means of designing these types of methods. Earlier work
by Sweby concentrated on a small set of limiters in relation to one specific difference
- scheme. In this research, more general classes of limniters are discussed with extensiors
- to a wider class of schemes. In addition, flux-corrected transport and total variation
bounded (TVB) limiters are discussed, modified, aud expanded. Two new classes
- of limiters are described: s-limiters and generalized average limiters. The recently
defined ULTIMATE limiter is analyzed within the framework of the other limiters.
- Some insight on the properties of this limiter is shown. The benefits of relaxing
* stric! constraints on the liniiters such as TVD requirements are also discussed. For
coatse grids, limiters such as the TVB and the generalized average with bias improve

resolution considerably. This advantage does not hold as grids are refined, because
" TVD-type limiters have an advantage in terins of convergence.

Lastly, the question of whether the polynontial reconstruction technique used in

a HOG methnd should be based on cell-averages or point-values is studied. Despite

vil



strong theoretical support of the cell-average based method, point-value reconstruc-
tion does work quite well in practice. This question is considered from two stand-
points: the efficiency or economy of the reconstruction, and the accuracy and quality
of the sulution. The general behavior of the cell-average reconstruction is slightly more .
effective than point-value reconstruction if the schemne is TVD. When the scheme is
not TVD, point-value reconstructions have some advantage in performaunce.

From the basis of the work given here, the design of high-resolution upwind shock-
capturing methods can be advanced in a more unified manner. This should yield
henefits for all of the methods falling into this general category.
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Preface

The path which led me to this point is worth exploriug beforc goiug further. My
iuterest inn uumerical methods for fluid flow began as a prerequisite for the effective
modeling of heat pipes. | began by studying the work of S. V. Pataukar [1] as
suggested by Dr. D. V. Rao. Over time, | becae somewhat displeased with the
nature of the methods, their results, and limitations. By this time, { had become
interested iu the nuinerical methods for fluid flow as things unto themselves. This
time cuincided with my beginning employinent at Los Alamos National Laboratory.
Shortly before arriving to work at the iab, { begai: to be interested in the work of
Dennis Liles [2] for modeling two-phase flows. This work is based in large part on the
carlier work of Harlow and Amsden on the ICE. uethiods [3). |
' Wihile investigating these methods, § came across a book by Oran and Boris (4).

The viewpoint expressed there was diffcrent than auything {1 had looked into before
and { found the methodology intriguing to say the least. lnitiajly, § was very impressed
by the flux-corrected transport nsethods described by Oran and Boris wheis compared
to the classical methods | was nsed to. When { tried to use these methods on a more
complex, systens of equations problens, I saw a nuniber of problenss with the solutions.
These observation formed the gencesis of the rescarch that followed.

Soon, | begau to read and attenpt to understand total variation diminishing
schemes and later high-order Godunov snethods. Both of these method types were
similar to the flux-corrected transport, but their performance on systems of equations
is siguificantly better. They seented to have a much njore appealing mathematical
basis. It was seeking the auswer to the questions: how can flux-corrected Sransport
be improved? and how are flux-corrected transport, total variation disninishing and
high-order Godustov methods related? that produced Chapters 5, € and 7. |

Further work presented here primarily centered about answering several questions
about the use of high-order Godnnov inethods. The ties inade inn Chapter 6 makes this
applicable to the other nmethod categories mentiosied here. Chapters 7 and 8 expand
the line of thought taken with the flux-corrected transport incthods and look at the
problem of designing limiters for second-order high resolution schemes. Limiters are at
the core of the construction of this type of numerical method and understanding them
is essential. The last two chapters of the dissertation clean up loose ends. Chapter 9
addresses some questions in reconstruction methods for high-order Godunov methods.
~ This dissertation can be viewed as a skewed reflection of my own evolution in

the understanding of these methods. | started by looking at FCT methods and
ended up relying on HOG methods for algotithm design. The reason for this is that
. the Godunov-type methods are more physically and mathematically (philosophically)
~appealing to me. This is a matter of personal taste, but | do believe that they
reptesent an effective basis for futute development along a number of fronts.

The work fc-:ud in [5] has been accepted for publication in Communications in

X



Applicd Numerical Mcthods. "This work forms part of Chapter 8.

Finally, the bulk of the work presented iu this dissertation has been submitted in
the form of papers to several professional journals. References to these can be found
in the bibliography [6, 7, 8, 9, 10, 11].



Notation

The notation used in this work requires a shost explanation.

References are denoted by square brackets. Thercfore the third reference would
be seen as [3]. The references are listed in order of their use. When nore than one
refetence is given, the first reference is the recommended one.

Equations are denoted by regular parenthesis. The fourth cquation in the sixth
chapter is referenced by (6.4).

Theoreins and sinsilar structures will be referenced if their proofs exist in the
literature. Those proven by myself will not contain a reference with their labels.
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6.9

The solution of the scalar wave equation by the syminetric method
using both a noncompressive, @Q,, anl conspressive limiter, Q7. The
) (6.3a) limiter produces a solution which is significantly better than
a first-urder upwind solutjon, hut exhibits excessive sumcaring fron dif-
fusion. The compressive limiter (6.3b) shows an iinprovement in the
solution as a result of reduced diffusion. Both solutions exhibit some
Jack of synuuetry which is indicative of this method. . . . . . . . .. .

The solution of the scalar wave equation by the quadratic mecthod us-
ing both a noncompressive, Q),J. aind compressive limiter, Qs/3- Again,
the noncompressive limmiter produces a solution that is diffused by com-
parison to the solution found with the compressive limiter (6.4b). Both
sointions have improved symmctry whicis compared with the syimmetric
method. . . o oo L Lo o e e e e e e e

The sy:mnetric UNO solution shows a marked increase in the preserva-
tion of the waximung wabie; however, the effects of a lack of symmnietry
are also evident. Both solutions exhibit a leading phase error greater
than that present with the symmetsic scheme. . . . .. ... ... ..

The quadratic UNO sclienie gives iaxinum values slightly greater than
the smaxinum value of the initial distribution: The leading phase error
present in the symnietric scheme is improved somewhat. The compres-
sive lintiter gives tlie lcast additional resolution i this case. . . . ..

The syminetric sclienie gives good, well-behaved convergence when the
solution is smooth (¢ = 0.2), but when a shock forms (¢ = 1.0), the
error grows by about an order of inagnitude and the L., norm's curve
has a “kunee” in it indicating a reduction in the order of convergence.

The quardratic scheme bas better accuracy in geucral than the sym-
metric scheuse, but after the ﬁhock forms the “knee,” the asolution is
sontewhat more severe in nature. For a sinall range of Az's the solution
actually diverges. . . ... ... ... .. e | e

The symuetric UNO schenie has better accuracy than cither of the
previous methods. The convergence after the shock inn the Lo, norm is
worse, llowever. . . . . ... .. e e e

6.10 This scheme is the most accurate of the schemes shown here. but the

behavior associated with the L, norm at t = 1.0 is worse. Despite

this, the solution was more accurate in every norm than any of the
other methods. . . ., ... .. e
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6.11
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6.13

The sohition of Sod’s shock tube problem by the symmetric scheme
15 gnite good except for some snicazing near the contact discontinu-
ity. The solution to the blast wave vroblemn shows several imnportant
features also related to the sinearing of contact discontinuities leading
to the clipping of the right peak and the nearly comnplete loss of the
discontinnity at X = 60. The filling iv of the gap between the peaks
results froms simearing in rarefaction waves. . . . ., . . .. ... ...

I'he oveiall results using the quadratic scheme are very similar to the
symmetnre schewe. The resolution of the solntion is enhanced in both
cases. Tlis 1s especially noticeable at the shock in Sod’s problem and
in the left peak and rarefaction wave between the peaks in the blast
waveproblem. . . . . . ... L

The sy:metric UNO schene gives nich better resolution of contact
discontinnities as shown by both figures. The price is several oscilla-
tions. One can be seen te the left of the contact discontinuity in Sod’s
probleni. The results for the blas, wave problem are quite inipressive

~except for the dip to the left of the left-most contact discontinuity. . .

6.14

The quadratic UNO scheme seems to have the good aspects of the

. symmetric UNO scheme without the oscillations. For both problcms.

7.1
7.2
7.3

8.1

the resnlution is enhanced. . . . .. .. ... e e

‘The classic FCT limiter is shown for v = 0.25 in Fig. 7.la and v = 0.5
in Fig. 7.1b. Both of these figures slow that where r < 1 the limiter
is very compressive, but not second order in nature. . . ... ... ..

The scalar square and sin® z wave solutions using several FCT limiters
with a Lax-Wendroff high-order flux. ... ... .............

The scalar square and siu® z wave solutions using several FCT limiters

with a Lax-Wendroff high-order flux and upwind 'iasing. . . . . . . .

The coniputational stencil of the main limiter types in one dimension.
Brackets indicate which points are used in evaluating local gradients.

.The modified flux or cell-centered limiter is centered about grid point
J. the symmetric limiter is centered about cell-edge j — 1, and the

npwind-biased limiter for cell-edge j — 1 is centered about cell j — | for
a > 0. For a < 0 it would have the same stencil as the cell-centered
Baiter. . . o e e e e
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8.2

8.3

8.5

8.6

8.7

8.8

. 8.9
_ The resulting limiters are TVD and do not suffer from the same diffs-

The second-order TVD regions are showss in the shaded regions of these
figures. The olther lines show the limits of the TVD region for an ex-
plicit time differencing. Figure 8.2b gives the TVD regions assunting Q
is positive definite. This agrees with the presentation given by Sweby.
Figure 8.2a shows the TVD region assuniing Q is not positive definite.
The sccond-order TVD region includes the lines Q =rfor0 < r <}
and Q = | for r > . The lines denoted by Q.w and Qgw correspond
to the Lax-Wendroff and Beam-Warining methods. The regious lying
between these curves are second-order accurate. The other “thin” lines
outline the TVD regions. In Fig. 8.2a this is the r-axis for r > 0. For
Fig. 8.2b thisis the lineQ = -rfor0<r<land Q=1 forr > I.

This shows the minbar linsiter. it is interesting to note that fur an
upwind-Liased cell-edge scheme this limiter gives a Beani-Warming
schenic for |r] < | and a Lax-Wendroff method for |r| > 1. Figure 8.3b
shows the third-order region of the plape. . . . . . . . ... ... ..

Figure 8.4a shows the mininod and superbee limiters. The minmod
limiter gives the lower boundary aud the superbee limiter gives the
upper boundary of the second-order TVD region. lu Fig. 5.4b, van
Leer's and the ceutered limiter aregiven. . . . . .. . . ... ... .

Figure 8.5a shows the limiter, Q,, for n = 1.5. The plot shown by
Fig. 8.5b looks siusilar to Fig. 8.3a, the diffcrence is that the upper
boundary of the second-order TVD region is given by one of the two
limiters (Qoc = m(1,2r))for r < | and by the othcr (Qoc = m(2, r))
forr>t. . ........ e e e e e e e e e e e e e e e e

Three of the three argument limiters are shown nere. These are the
minnmod limiter (), the centered limiter (Q.), and a modified min-
mod linsiter ((Q}). The modified minmod limiter does not give TVD
results because of its form and subsequent behavior when r* < 0. The
other two limiter are TVD for second-order syinmetric type schemes.

Botli of these limiters use the design philosophy of the modified niin-
niod scheme. Figure 8.7a uses van Leer's limiter and Fig. 8.7b uses the
superbee limiter. Both are not TVD for r¥ < 0, but also are not TVD
should r* grow sufficiently large with both being greater than 1. . . .

The three argument analog to the minbar limiter is shown here. . . .

Hete a different methodology is used to create three argument liniters.

culties as the modified minbar type of limiter. The two base limiters
used here are van Leer’s and the centered limiters. In practice any
TVD two argnent limiter can be used in this context. . . . . . . ..
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The limiters showu here use the syminetry property discussed in the
text. The limiter shown i Fig. 8.10a is analogous to the ceutered
himiter while Fig. 8.10b is analogous to the superbee limiter. Both
are second order and TVD. Figure 8.10c gives a van Leer type liniter,
which is not TVD but works quite well in practice. . . .. .. .. ..
The solution of the scalar wave equation by both these methods is
shown for two test problems. in both cases, the upwind nethod pro-
vides superior performance. . ... ... L e e e e e e e e
The solution to Lax's problem highlights the resolution of both shocks
and contact discoutinuities as well as the symmctry properties of the
solution methods. . . . . . ..., .. e e e e e e e e e

3 The solution to Sod’s problem by both methods sliows the improved

resolution given by the ypwind-biased scheme. . . . .. . ... .. ..
in the blast wave problem, the deficiencies of both uiethods are most
clearly shown. The difficulty of the problent is due to the large amount
of structure coufined to a small physical space. . . . . ... ... ...
Here the behavior of the discontinuity detector in the artificial com-
pression algoritlin is shown for use with both two and three argument
limiters. . . . ...
Two cases of the two argument TVB lusiter are given here. The line
that grows upward along the line Q = } (I + r) past r = Juses MAz =
5 while the other line uses mAr = 2. Both are always iu the second-
order regionof theplane. . . . . . ... ... ..............
The three argument TVB lintiter is shown here for MAzr = 2 aud
MAz = 5. The larger value of MAz gives a larger “plateau” on the
Plot. . . e
Two S-limiters ate shown here. The upper of the two lines is for the

~ centered limiter S, while the lower is for S;. S; is a TVD limiter.

519

The generalized average limiter is shown in these figures. Figure 8.19a
gives two examples of the two argument limiter for n = 2 and n = 3.
Neither of these limiters is TVD. Figure 8.19b shows the n = 2 limiter

. for the three argument case. . . .. ... ................
8. "0 The ULTIMATE limiter is shown in this figure without thc benefit of

8.21

the high-order upwind flux. The basic limiter is not TVD for explicit
rime T <cretizations unless C = 2. The QUICK differencing is included
o ne re + rar the origin gives non-TVD results for explicit
schevaes. Lo e e
The scalar square and sin? z wave solutions using several two argument
TVD linsiters. Note that the SB2 limiter compresses the sin? z profile
iNtoasquare Wave. . . . . . ... ... e e
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The exact solutions to the test problems used in the scalar wave equa-
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The exact solutions to the test problems used in the Burgers' equation
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The exact solution for Sod's Riemann problem. Note the appearance
of the rarefaction wave running from about z = 30 to z = 50, which
is a smooth transition. The contact discontinuity is at about z = 65
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The solution for Sod’s shock tube problem at ¢ = 20 is obtained with
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is denoted by the solid line in each plot, and the solution obtained
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The solution for Lax's shock tube problens at { = 15 is obtained with
each of the methods discussed in this appendix. The exact solution
is denoted by the solid line in each plot, and the solution obtained
with Godunuv's niethod is shown by the circles. Figure B.3a shows
the solution obtained with the naive Riemann solve followed by Roe's
Riemanu solver (B.3b), Eugquist-Osher’s Riemann solver (B.3c), the
HLLE Riensann solver (B.3d), and the LLF Riemann solver(B.3e). . .
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line shows the solution obtained with the approxiniate Riemann solvers
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the solutjon obtained with the naive Riemann solve followed by Roe's
Riemaun solver (B.4b), the Eugquist-Osher's Riemann solver (B.dc),

the HLLE Rieinann solver (B.4d), and the LLF Rieman#n solver(B.4e).
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solution, whereas the circles denote the approximate numerical solution.284
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(.23 The blast wave probleni computed with 1he contpouent.wise fornfa-

tion with conservative variables. “T'his solution is fairly wefl resojved,
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Chapter 1.
Overview

Although a meal can be enjoyed without understanding the process of digestion,
numerical methods should be both understood and enjoyed. This requirement
is not merely the whim of a tidy inind, for a inethod once understoud can often
be improved with little effort. J. J. Monaghan [12]

The topic of this disscrtation is the design of high-resolution upwind shock cap-
turing methods. By high-resolution | mean that the method is capable of resolving
various fine detail features of the solution field without resorting to an cxcessively
fine grid. Upwind makes reference to the method’s use of the mathematical/physical
structure of the solution ficld, and the governing equations in constructing the nu-
merical mcthod. Finally, the adjective shock-capturing clarifics the type of method
developed. Some micthods track discontinuities or shocks in the solutjou ficld and
cssentially use these tracked features as internal boundaries. Shock-capturing meth-
ods do not do this, and “capture” discontinuities without modification of the method
used throughout the solution field. .

The next three chapters give a brief introduction to these topics. The first of
these three chapters gives background and motivational information regarding the
study of this topic. Classical shock-capturing methods are the topic of the second
of these chapters. These classical methods provide the foundation for the work that
follows. The third and final introductory chapter gives an introduction to modern
high-tesolution shock-capturing methods, and the categories they fall into.

Following this introduction, ! introduce the topic of method design. This be-
gins with the mcthod known as flux-corrected tra-.sport (FCT). The FCT method is
known to have certain pathological problems, and this chapter addresses this mat-
ter in a systematic fashion. ‘Through this analysis it becomes clear that the FCT
is more intiinately related to other modern methods, most notably syinmetric total
variation diminishing (TVD) methods. This relation is expanded upon and exploited
in improving the FCT incthod’s performance. In the chapter that follows, the com-
bined FCT/Symmetric 1'V1) methods are related more closely to high-order Godunov
(HOG) methods. The I1OG methods are a philosophically satisfying means of defin-
ing high- resolution upwind shock-capturing methods because the process is divided
into two parts: reconstruction (interpolation) and evolution (upwinding). This de-
coupling of the method development allows one to concentrate on onc or the other
feature. From this, unity of the methods is demonstrated, and new, improved meth-
ods can be derived.

The two chapters following this unification of the methods discuss the constenetion

1



of limiters. Limiters are the means through which modern methods are differentiated
frons classical methods. Their construction is the most important portion of method
design, and has a profound impact on a method's performance. Past studies of
“limiters have been narrowly focused, and these chapters ate aimed at broadening this
view. Finally, a chapter on some basics of the reconstruction step are discussed with
a critical view taken of cuttent practices. ,

In the appendices a number of more practical aspects of extending these methods
to systers of equations are discussed.

~



Chapter 2.
Introduction

Of a good beginning conteth a good end. John Heywood

2.1 Background and Motivation

Recently, scveral articles have appeared highlighting the importance of numerical
approximation of conservation laws from both a theoretical and practical stand-
point {13, 11]. High quality numerical approxiinations to conservation laws arc nec-
cssary i a unugher of endeavors as noted at the end of (his chapter. Numerical work
is also beconing increasingly important for theuretical studies. In a very real scuse,
numerical experimentation is becoising a third major thrust of science along side
experiniental and theoretical work.

This chapter gives an introuu- tion to the subject of nunerical approxiinations ¢t~
hyperbolic conservation laws (H(C'Ls). It covers the basis and motiv..tion for the stud:
of the subject and provide a brief introduction to some of the important theorctical
concepts in Section 2.2. Also, the basic philosophy us.-d 1. developing wumerical
algorithms to solve these sorts of equations is presented in Section 2.3. A number of
applications of the accurate solution to HCLs is presented in Section 2.4. ['his serve
to underlire the importance of this subject to a wide sange of : ~ientific pursuits.

The primary motivation for pursuing any subject is to sV understanding. In a
number of diverse fields, a similar process is responsible for a rich variety of physical
(or mathematical) behavior. ‘T he role of transport of some guaatity like inass, energy,
particles, sound, wave packets etc.) can be thoughs of te ne at the heart of most
physical processes (the last section of this chapter contains a longer .uore detailed
list). These physical systems can all be charactcetized at a simple level by the same
model equation,

du If(u)

I dr
where u is the transported quantity and f(u) is the flux iunction fo. this quantyy.
In mathematical terms, this is a hyperbolic equation if 95 /Ju » = real sumbe:. This
equation describes the transport and conservation of u in the £ — { planie. In gc_:ncral;
this equation can represent a system of equations as well, In thet case, u and f(u)
are vectors. Section 2.2.1 covers this subject in more detail. Thus, (2.1) tcprescuts
the basic for of a HCL. |

The solution of the above equation exists in closed form for only a few simple,
idealized cases thus sonie approximations must be made to solve it in the genezal case.

0. (2.1)

.
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If the approximations ate sufficiently detailed and accurate, the solutions found can
exhibit, the wide range of nonlinear behavior and rich phenomena found in nature.
As is discussed later, good approximations can also lead to the discovery and/or
claritication of physical phencmeua (15, 16).

A number of detailed references on these subjects exist in the literature. On the
basics of HCLs some of the recomniended references are Lax [17, 18], Smoller [19),
Landau and Lifshitz (20], Mihalas aud Mihalas (21], Duderstadt and Martin (22],
Chorin and Marsden [23), Aunderson [21] and Couraut and Friedrichs [25]. These
references present the imaterial in a readable informative manner, although they vary
in emphasis and difficulty. All of these references are biased in the direction of fluid
flow (except Duderstadt and Martin), but considering that that is the most common
application, this is understandable.

From the presentations found in both Mihalas and Mihalas and Duderstadt and
Martiu it can be scen that fluid cquations can be viewed as continuum extensions
of the Boltzinaun trausport eqnation (via a Chapman- Enskog expansion or similar
procednre). The Boltzmuann transport cquation has a form that is very similar to
(2.1) [26. 27)

‘;_{ $u-9f =S, (22)

where [ is a time dependent distribution function, f (r,u.t), in position and velocity
space. S..u is a scattering keruel that { ignore. in fact, with S, set to zero, the
equation is the nmltidiiensional equivalent to (2.1) with constant velocity by setting
p = f. Additionally, the diffusive terms in the full set of equations (Navier-Stokes) can
be viewed similarly. This “transport™ viewpoint has been an active area of research
1a hyperbolic heat conduction (28, 29]. Siniilar lines of thought can be found in
radiation transport in the passage froms a transport to diffusive approximation to the
Boltzinann transport cquation [22). |

Remark 1 The solution collisionless to the Boltzmann equation is explored in some
depth by Harten, lLar and van Leer [30] with relation lo the general solution ¢f HCLs.
This has specific application to a method known as fluz splilling which is covered in
some detail in Appendiz B.

The numerical solution of equations of this sort (for continuum approximations)
cant be fo :nd in a number of soutces as well. The most basic and perhaps elegant
source is Richtmyer and Morton's book [31] which contains much 5f the basic theory
to support classical methods of solution. The history of computational fluid dynamics
(CFD) is presented in Roaclie (32], Potter [33] as well as Anderson, Tannehill and
Pletcher [34). Roache contains a complete account of the early development of CFD
and a Jarge number of references. More recent developments are covered in several
texts: Oran and Boris (4], Hirsch [35, 36} and Fletcher {37, 38]. The text by Oran and

Beris is especially recommended as an introduction to the entire subject of numerical
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solution of complex physical problems as well as HCLs. A book by Sod (39] contains a
good deal of mathematical theory. Recently, LeVeque has releasced some lecture notes
in the form of 4 monograph [10]. This work is highly tecommended as an introduction
to conservation laws from both a immathematical and numerical perspective. In addition
to these books, a number of survey papers have appeared in tecent years; these
include {41, 42, 43, 44, 15, 46, 47, 48]. An interesting survey of inethods has been
done in relation to nonlincar acoustics of rocket engines [49) as an extension of the
review by Baum and Levine [50]. This sutvey undetlines the point that fewer and
fewer approximations are necessary in the analysis of physical systems because of the
power of modern hardware and algorith.ms.

Figure 2.1 shows the rough family tree for the development of upwind (explained
later) approximations to (2.1). Beginning with the work of Richardson [51} on the
soiution for stress in dams and moving on to the paper on partial differential equation
by Courant, Friedrichs and Lewy [52] this subject had its genesis Von Neumann
and Richtmyer (53] introduced artificial viscosity which was followed shortly by two
methods that did not introduce numerical dissipation artificially [54, 55|, but did
through the nature of the finite difference equations. The beginnings of mote powerful
methods for solving HCLs can be found in several papers by Godunov (56, 57] and
Lax and Wendroff's famous paper [58]. These papers lead to several seminal works by
Boris and Book [59] and van Leer [60] who were the first to revognize the importance
of nonlinearity in diffcrence schemes. These two papers were at the root of a large set
of work in the last twelve years highlighted by the work of Harten (61}, Zalesak [62],
Roc [63] and a group of tescarchers at UCLA [64, 65, 66] where the earlicr work was
clarified and extended. It is the construction of these approximations that is the
subject this research topic. ¥

2.2 A Mathematical Introduction

Consider the same equation as above

8u+8](u)=0

an oz ’

which is a first.order hyperbolic transport equation for u and as before f is the flux
of u. Equation (2.3a) can be written as

(2.3a)

Ou  Ou
'57"‘05; =0, (2.3b)

where the flux Jacobian is defined by
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If the characteristic speed, a, is constant for all z, then an exact solution exists for
(2.3b). This solution is

u(z,t) = u,(z - at) , (2.4)

" where u, (z) = u(z,0) is the initial condition. This defines the scalar wave (Kriess)
equation. For a more general prescription of f a closed form solution does not exist.

2.2.1 Systems of Hyperbolic Conservation Laws

A system of m conservation hyperbolic laws can be similarly defined; however, the
behavior which it describes is considerably more complex. Consider

u + dF (U)

Bt I 0, (2.5a)

which is a set of hyperboiic conservation laws where U is a column vector (u’, u?,...,u™ )T
of conserved quantities and F is a column vector ( J A LA ["')T of fluxes of U.
l-.quatzon (2.5a) can be written as '

ou U : ,
| -8_t-+A-é;=o' (2-5b)'
where .
at|out ... af'fou™
PO
=35 =

oot ... o foum

The matrix A is the flux Jacobian for the system defined by {2.5b).

In general, equations of the type considered above can develop discontinuous so-
lutions even when the initial data is smooth. Because of this, the solutions are not
urique. To rectify this, the admissible solutions must satisfy an entropy condition (for
details on this see (17, 18, 19, 40] see [67] for a simple introduction). It is the formation -
of discontinuities in the solution that causes the difficulties for finite-differcr.ce solu-
tions of (2.3b). At these discontinuities, the function ceases to be smooth, and the
usual assumptions made in constructing finite. difference apbroximations collapse.
As a tesult, more physical information needs to be incorporated into the solution
procedure. :

The system of equations is classified as hyperbolic if all the eigenvalues of A are
- real [30). These cigenvalues Ay can be arranged in the order of increasing magnitude,
- thus

M<M...€ <. ... 01 €A .
Lax [18] has defined catropy conditions for hyperbolic ecjuations and systems. Given
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Figure 2;2: The lcft and right states have m waves associated with them (4) in this
casc and m — | constant states between them for ¢ > 0. ;

two states ug and ug at ¢ = 0 (in one spatial dimension), which exist to the right
“and left of a discontinuity tespectively, the admissible speed of the discontinuity must

satisfy this inequality |
Aug) > s> Aup) , : -~ (2.6a)

whete s is the speed of the discontinuity. For systems this condition is
M(ue) >8> M(ug) , (2.6b)

with

Ap-y (uL) < 8 < Mgy (ur) - . (2.6¢c)
These conditions form an enttopy'condition for systems. Stated in other terms, this
means that the entropy must either remain constant or increase in a system. An
increase in entropy occurs across discontinuities. These conditions must be met for a
solution to the system to be physical in nature. Menikoff and Plohr [68] explore more
general cases. In some cases especially near phase transitions, the isentropes of the
system fail to be convex thu:s causing physical solutions to violate Lax’s conditions.

Lax also states that for a system of m equations, 72 — | constart states exist
between the left and right states at ¢ > 0 (sce Fig. 2.2). These states can be sep-
arated by rarefaction or shock waves or contact discontinuities. A rarefaction is a
snjooth expansive transition, while a shock is a sharp sudden change where the flow
is discontinuous. A contact discontinuity is like a shock, but some quantities may be
continuous across it. '

An additional manner of characterizing systems (or equations) of HCLs is to
- analyze the structure of the eigenvalues. Lax [69, 17, 18] defines an eigenvalue as
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being linearly degenerate if

o\ .

-56 Py = 0 ' (2.78)
and as genuinely noulinear if

Ok '

-a—ij' 1 o # 0 . (27b)
where r, is the k™ right cigenvector. Au example of a linearly degenerate eigenvalue
is the characteristic speed in the scalar wave equation (A = a, 9a/Ju = 0, and

r; = |). A genuinely noulincas cigenvalue can be found in H3urger’s equation (A =
u, du/du = 1, and ry = 1). Thesc equations cau thus scrve as models for the
behavior of these types of waves in more complex equation(s). tu the Euler equations
(discussed iu detail in Appendix B) the cigenvalues associated with sonud waves are
genuinely nonlinear while the cigenvalue(s) associated with fluid wotion is lincarly
degenerate. A shock is associated with genuinely nonlinear eigenvalues while a contact
discontinuity is associated with lincarly degencrate cigenvalues. A shock in this sort
of systemt is referred to as a k-shock and a rarefaction as a k-rarcfaction. For contact
discontinuities, the above relations nmust be modified to read

Mug) = s=A(ug) ., (2.8)

thus the flow speed remaius constant across the contact discontinuity.

Remark 2 Systems of conservation laws which are not strictly hyperbolic [70] has
been the subjec. of inlense research lately. This is a topic of theoretical and practical
interest which has direct application to three-phase flow in porous incdia which form a
two equation system of conservation laws in one dimension. The numerical solution
of such systems is following suit and benefiting greatly from the recent increase in
theoretical understanding. Another related area that could benefit from some theorrti-
cal/numerical work is two-phase flow [71, 72]. The application of numerical methods
fo two-phase flow has a number of striking similaritics to mulliphase flow in porous
media.

These cquations admit discontinuous solutions thus requiring that the solution
convetge in a weak rather than a strong sense. By a weak solution | mean that
solutions satisfy (2.1) iu the sense of distributions {30, 19), i.e.,

f/_: [%?u-{-g% ]dzdu/_:.»(x.o)uo(z)dz:o (2.9)

for all ('™ test functions ¢ (z,t) with compact support.

The above statement can be reformnlated to give a forin useful for the constenetion
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of diffcrence schemes. integrating (2.1) over the rectangle (zo,z,) x (o, ¢;) gives

/" u(x.:.)d:-/" u(z.:.,)dn/"' /(..(:..:))d:-[' f(u(zont))dt = 0. (2.10)

Thus where the solutior is smooth, (2.1) holds, but across curves of discontinuity, the
Rankine-Hugoniot condition holds as

s(up—ur) = f(up) = f(ur) , (2.11)

where s is the speed of the discontinuity and ug and uj, are the states to the left
and right of the discontinuity, respectively. For numerical work the above statement
is quite profound. The solutions are conserved cell-averages rather than point-values
and the fluxes are time averages of the flux at the cell boundaries. These definitions
are convenient for use with finite volume discretizations.
it is well known that the weak solutions to (2.1) are not unique. To find the

correct sojutions, an additional condition must be met. This type of condition is
kitown as an entropy condition after the physical quantity of the same name (17, 18].
in [73], it was shown that entropy satisfying solutions of (2.1) are limiting solutions
to a parabolic equation

Ou  9f(u) Pu

at e T
with ¢ > 0 and the !imit being taken as ¢ | 0. This connection is explored at some
length in Chapter 8. |

(2.12)

2.2.2 The Rankine-Hugoniot Conditions

The Rankine-Hugoniot conditions are especially important to the theory of conset-
vation laws whe:1 solutions are discontinuous. Several elegant proofs are available in
the literature. One is found in [18]. Referring to Fig. 2.3 and defining

U(l)=/.u(z,l)dz=/'u(z.l)dz+/.u(z.t)dz. (2.13a)

difierentiating v’ith respect to time, and using the governing equation (2.1) one gets

du v Ou b 9u -

=L -dez +uLs+ /.Et-dz + ups, ~ (2.13b)
where u;, and ug are the states to the left and right of the curve of discontinuity
r = y(t) and s = dy/dt. Using Qu/Ot = —8f/0z and :arrying out the integration

one gets

dU

=l fetuws—fit fr—uns. (2.13¢)

10



X

Figure 2.3: A pictorial representation of the domain used in the proof of the Rankine-
Hugoniot condition (adapted from [18].)

with the conservation law stating that

'dzl"j' = jo = j. | o (2'13(’)
then ' , -
sfu] =1/ . - (2.13e)

where [u] = ug — ug, and [f) = fa — f1. In [23] another proof is given

2.3 General Numerical Philosophy

This section covers the basic philosophy used in the numerical approximation of HCLs.
The methods discussed hete can all be classified as finite difference or finite volume
type methods [74). Because of Lax and Wendroff's theorem (58] concerning the nature
of solutions to HCLs, the equations are always differenced in conservation form.

Theorem 1 (Lax and Wendroff [58]) If a difference equation is in conservalion
Jorm and is consistent with the original conservation law as well as slable, it converges
to a weak solution of thal conservation law.

With this form, the solutions converge to solutions which satisfy the Rankine-Hugoniot
conditions. Conservation form implies that quantities are conserved numerically, as
they are physically, thus when a domain is subdivided into a set of subdomains
(control volumes), the amount of material exiting one subdomain exactly enters the
subdomain adjacent through a common interface.
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Figure 2.4: The spacetime grid is shown with the grid interfaces denoted by the
dotted lines and the computational nodes by the datk circles.

These schemes can be exptessed in the following form,

' =u} —o(fay - f4) =0, (2.14a)

in one dimension where o = At/Ar, or mote generally

u"” = ll - < il‘.]g =0, l (2.l4b)
) A

)

for a homogeneous governing equation. Here j refers to the index of a control volume,
n to the time level (see Fig. 2.4), and f is the numerical flux. In the general c:se
V, is the cell volume, A, is the atea of a face of that volume with a total of N faces
(sides) to a volume. The above cquations can also be written in a semi-discrete form

P

1 & |
= —VigA = (2-14‘)

The determmatlon of the numerical fluxes, f is at the hun of the subject 'l’o
msuu that the solutions are consistent then :

f(u,u,....u) = f(u). | (2.15)

Given this condition with the stability of the overall solution procedute implies the
convergence of the scheme by the Lax equivalence theorem 31, 67).

Theorem 2 (Lax equivalence theorem) Given a well-posed initial value problem |
and a corresponding numerical approzimation thal is consistent, then stabilily is a
necessary and sufficient condition for (equivalent o) convargence.
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Unfortunately, this theotem can only be applied to the linear types of schemes like
those described in Chapter 3. Nevertheless, this theorem is important and can be used
to analyze linear methods that are the building blocks of more advanced methods.

As a measure of the accuracy of the solution, 1 use the Taylor series to act as a
measure. This meanr that if a method is stated to be r'* order accurate, the leading
term in the truncatios. error is O (Az"*'). Later, the problems associated with this are
discussed. In general, the general Taylor series driven difference approximations are
used in favor of a polynomial approximation driven approximations (although Taylor
seties are often used to measure the polynomial's accuracy). This is inotivated by the
course of recent developineuts in numerical algorithms for solving HCLs. One caveat
with the use of Taylor series based measures of accuracy is that discontinuities make
the concept of accuracy somewhat meaningless at those points.

The accuracy of sojutions can also be measured in terms of norms. The three
' most commonly used norms are the L;, L; and L., (also known as the maximum)

norms. These are defined by :

2?:'-‘;7' | C (216)
b

N .2

z,j-l(,-) | (2.16b)

= sup (le;]) , (2.16¢)

where

— Je20c) __ grapprox.

given an exact solution. Although this gives a quantitative measure of algorithm
performance, the qualitative measute of performance is also generously used. These
two means of measure should provide a complementary means of determining solution
qualities.

2.4 Applicability to Other Disciplines

The successful solution HCLs is vital to a large number of endcavors. This general
problem is present in any system where fluid flow is present (with the exception of
Stokes flow or subsonic potential flow, but these represent simplifications of the ac-
tual physical :=stem). Thus the range of applicability is quite large. The methods
discussed in the next chapter have heen found to be uscful in the solution of acrody-
namic flows [43, 45, 36, 75) where they are currently widely used. These methods (the
modern advection solution algorithms) are also finding use in turbulence modeling.
The process of latge-eddy sirnulation [76] involves the solution of fluid equations with
only the laige (kinetic encrgy carrying) structures being resolved. Recently, it has
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been proposed that modern advection algorithms (sce Chapter 1) conld setve as a
turbuleuce model (77, 78, 79).

Mecthods of a modern type are also finding use in the solution of incompressible
flows (the flows above are primarily compressible). The solution of this type of prob-
letn is largely dominated by first-order schemes [1). but recently second and thied
order wmethods have hecome niore widely used [80). Leonard (81, 82, 83, 84] has de-
veloped a scheme based on his QUICK! scheine, which has a great deal in comnnon
with souse other 1:1odern algorithnis. This method or one like it has the prowise of
greatly improving codes cutrently used to compute a variety of industrial flows. Other
workers have also applied other modern methods to more classical incompressible flow
solvers [R5, 86, 87).

‘I'he solution of these equations is also very useful in astrophysical flnid dynam-
ics [88. 89, 78, 90, 91, 92]. The plysical systems in astrophysics place severe demnands
on mnmerical methods [27), and the methods musat be carcfully designed to compute
solutions with needed accuracy. Other flows of a geophiysical nature are amenable to
moderi approaches to solving advection (46, 93, 94].

‘I'he solution of wave cquations is important in applications which usc a fully
l.agrangian formulation [95]. In these methods, the grid flows with the fluid thus
Jeaving only sound waves explicitly in the equation set. The solution of this sort of
system is amenable to similar methodology as other wave equations. The Lagrangian
formulation often rids the problem of the linearly degenerate eigenvalue(s) (they go
to zero), but still leaves genuinely nonlinear eigenvalues in the set. Thus the primary
approximation problem still exists.

As mentioned earlier, the hyperbolic heat conduction problem is open to numerical
solution by methods applicable to HCLs. The quality of the solution is significantly
enhanced through the usc of modern algorithms (96]. Also mentioned earlier was the
work of Brio and Wu [15], which solved the MHD equations. Using modetn algorithms
new phenomena were discovered, which may have been validated by observations [16).
Also along these lines is the solution of problems in clectromaguetism by tnethods
developed for compressible acrodynamics [97, 98] with promising results.

Several uses in nuclear engineering applications requiring thermal hydraulic anal-
ysis can be found in [99, 100, 101]. These methods are also showing a great deal of use
in the modeling of solid dynamics under severe physical conditions [102] where the
solid behaves in a fluid-like manner. Additional applications can be found in reservoir
modeling {103, 104, 105]) with implications to petroleum tecovery.

In the next chapter I explore some of the classical numerical methods for solving
conscrvation laws and the problems associated with them.

I'The QUICK scheme uses a third-order (spatially) upwind algorithm based on a finite difference
stencil containing the one downwind point and two upwind points. It can also be derived by means
nf qaadratye polynopials
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Chapter 3.
Classical Methods for Conservation Laws

The present contains nothing more than the past and what is found in the effect
was already in the cause. Henri Bergson

3.1 Introduction

in this chapter, several of the most important classical methods for solving }HCLs is
covered. These incthods although outdated by modern standards still comprise the
backbone of most modern methods, and contain some of the essential concepts for the
successful design of numerical schemes. This chapter discusses the basic construction
of these methods, their stability and other pertinent properties.

Error< in the numerical solution of hypetbolic problems are generally classified as
being of either a damping or a dispersive variety. As is scen below, a useful numerical
scheme must contain some minimal amount of dissipation to remain stablc and pro-
duce physical solutions. This dissipation damps out etror which would otherwise grow
in an unbonnded fashion, but it also destroys many features of the flow field. Lack of
sufficient damping results in dispersive errors that can cause unphysical maxima and
nminima to be created in the sojution by the numerical scheme.

Phase crrors result in information being transported at a numerical velocity below
or above the true velocity of this information. These crrors are depicted in Fig. 3.1.
Typically, VonNcumann stability analysis {31, 4, 35, 37) is used to analyze these
errors. The process consists of replacing the dependent variables by Fourier series,
¢™ drfining the new time valie of the variable to be equal to Fourier scries at the
old time multiplicd by a function A or the amplification factor, in general

utl=g (u u.") =A™ =g (c"""' Ac"”"') (3.1)

Generally, the expression of A is a8 combination of teal and imaginary trigonometric
terms and is transformed to extract useful information. This is accomplished by
separating the functional form of A into two picces: an amplification factor and a
phase angle,

A(k0) = |G|, (3.2)

whete G is the magnitude of A and & = tan~! I (A) /Re(A) is the phase angle. For
stability, (7 must be less than or equal to one for all k@, but this implies damping.
Small values of G imply excessice damping. For the scalar wave equation, the exact
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Dispersion Artificial Dissipation

Lagging Leading

Figure 3.1: Here the three main typces of errots in the solution hyperbolic initial
value problems arc shown: artificial dissipation, dispersion, lcading and lagging phase
crrors. (The exact solution is in the lightes pen and the tepresentation of the numetical
solution is in the darker pen.)

phasc speed is known! so that the ratio of this to the numerical phase speed czn be
taken. 1If this quantity is less that one the error is lagging, if it is greater than one
the error is leading (see Fig. 3.1). These errors have a spectrum of values which can
have a large range of values.

All the methods discussed in this chapter are expllcn in nature and are thus limited
by a stability condition (some multiple of the Courant-Friedtichs-Lewy (CFL) [52]
number). This number, v = |a| At/Az, is a dimensionless value which describes the
proportion of the domain of dependénce covered during a time step (see Fig. 3.2).
These inethods are: the central difference method with or without artificial diffusion,
upwind differencing, the Lax-Friedrichs method, the Lax-Wendroff method, and the
Beam- Warming scheme or second-order upwind differencing.

3.2 Central Differencing and Artificial Diffusion

The simplest type of numerical scheme seems to be a very natural manner to deal with
~ the hyperbolic equation. This method deals with approximating the first derivative of
the flux function with a centered spatial difference which has second-order accuracy
and marching explicitly in time and is known as the forward time-centered space
(FTCS) scheme. This method can be written

W = uf --(f*., - ) . (33)

Ve exact wavespeed 13 0 where v s the CEL nuinber
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Figure 3.2: An inteipretation of the CFL limit shetched in the z — t planc for point
j. For an explicit calculation, information shoul. not be transported more than one
mesh interval from its origin or in othes words the adjacent grid points must lie on
or outside the domain of dependence (Az > aAt). If waves from two different grid
points are not allowed to interact, the restriction becomes twice as severe.

where 0 = At/dz for uniform grid spacing. ‘I his is cquivalent to saying that the
cell edged fluxes are the aritliinctic mean of the neighboring grid points or taking
the fluxes to be a linear interpolation of the initial data. Thus the numetical flux
functions are

fy = %(]," + ) - (3.4)

Unfortinately, this method can be shown to be unconditionally unstable, with
crrors growing in an unbounded manner. This behavior can be seen in Fig. 3.3
plotted after 20 time steps showirg the impending disaster.

Through the addition of artificial dissipation (53, 31] this solution method can
be resurrected to some degree. This requires the addition of a term on the right
hand side of the equation which arts in the same fashion as physical dissipation. The
cocflicient is somewhat arbitrary, but too little dissipation results in a more stable,
but low quality solution. Too much diffusion? can either result in destroying some or
all of the fea  ures of the solution or causing a ncw instability because of the stability
testriction implied by the explicit diffusion equation. Results uzing the FTCS scheme
with artificial dissipation arc shown in Fig. 3.4. The dissipation hus largely cured
the instability, but now the solution exhibits a large leading phase error. Smarter
forms of artificial viscosity are used (see Jameson [106] for example) with acceptable
performance, but the methods are always somewhat ad hoc in natute [107]. '

2The terms difflusion and dissipation ar. used inmzllang.ésb!y in the text. They shoald bé ticated
as synonyshs
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Figure 3.3: The results found using the FTCS scheme show the growth of instabilities
and their unbounded growth. (The exact solution is in the solid pen and the numerical
solution is denoted by the citcles.)
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Figute 3.4: The results found using the FTCS scheme with an artificial Jiuipation .
coefficient of 0.} (a = | and v = 0.5).
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3.3 Upwind Differencing Type Methods

The behavior discussed in the last section is clearly unacceptable although useful
computations can be performed using artificial diffusion because it does converge
to the correct solution (108). In [51] a new more physically based approximation is
described. This :nethod forins the basis for a large class of modern numerical inethods
in Chapter 4 (see Fig. 2.1).

This method is first-order accuirate in both time and space, and takes the direction
of the wave propagation in the problem into account when computing the cell-edge
fluxes. There are scveral ways to derive this approximation, which ali have relative
advantages. Typically, thir scheme can be derived with a first-order Taylor series
approximation which is biased by the direction of the flow locally. This results in a
difference scheme for (2.1) like

nedl
u,

=u)-oa(u) -u},), (3.5)
where a > 0, this can also be written i:) conservation form by stating

| f»} = au} .

Another way to write the cell-edge fluxes is (109)

jn} = % [.";n +;- l“l( Ujey — )] ’ (3.6})

where ]" = au}. This form is advantageous because it shows the magnitude of the
diffusion uaocuted with the spatial differencing. For the upwind differencing, the
numerical diffusion coefficient is

™ = | 5 (3.7a)
The effective induced viscosity is
7 = "" 13z, ), (3.7b)

which reflects the fact that the upwind diﬂ’mncin; recovers the exact solution to the
scalar wave equation if v = } [30]. This term can be determined from the compatison
of upwind differencing with the FCTS scheme assuming the Lax- Wendroff scheme
has zero diffusion (not a particularly good assumption).

Remerk 3 The first term for the numerical diffusion is related to the form of the
diffusion operalor presenl in the delerminalion of a cell edge numerical flux. It is
Jormally defined as the difference between the a second-order central difference ap-
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Figure 3.5: The solution for first-order upwind differencing shows the large amonnt
of diffusion present with this algorithin (a = | and v = 0.5).

prozimation and the numerical fluz in a given scheme. The effective induced viscosity
1s from the numerical error of the acheme and is the coefficient on the second order
spatial term.

Remark 4 Another way to derive this schense is to assume that each comoutational
cell is \nterpolated by a psecewise constant profile with the numerical fluzes bring based
on this reconstruction. Where u is changing, the profile is discontinuous at the cell
edges and a solution can be found by solving a local Riemann problem [56]. This is
the basic concept in (Godunov's method. For the scalar wave .;ualion this resulls in a
~schemnce identical 1o the one presented above.

Figure 3.5 shows the results of using first-order upwinding. The solution’s peak
is severely clipped and the profile is diffused both in front of and in back of the
exact solution. t shonld also be noted that the solution remains positive definite
thronghout the computational domain. '

3.4 The Lax-Friedrichs Method

The Lax-Friedrichs [55] (sometimes Lax’'s) method was derived as an answer to the
instability of the forward-time centered-space (FTCS) algorithim. It has the following
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form, l | ,
u;ﬂ =3 (u;-'_, + u;',,) -oa (u}‘,, - u;'_,) , (3.8)

which can be rewritten in conservation {rm as,

l . .
j"’ = % [];‘,, +/; - o (u;',, - u;')] . (3.9)

Looking at the forms of Lax’s method and upwinding one can see that the diffusion

pottion of the fiux is always greater than or equal to that found in upwinding. Thus

~ this method has a larger amount of diffusion associated with it than the upwind
differenced method. The numerical diffusion is

Az : ' .
dtf = o (3.10a)

and again the effective induced viscosity is

d¥f = %’i(l -v), (3.10b)
because this method also produces an exact solution for » = | (see Remark 3).
Figure 3.6 shows the solution obtained with this method, although the solution
is positive definite, there are several disturbing features to the solution. One is the
terracing of the solution, which gives way to a sawtooth-like structure at the peak of
the solution. This is due to the algorithms form which does not require the partici-
pation of the information for the j'* cell at time step n for the solution of the n + |
time step of that cell.

Remark 8 /nterpretcd geometrically, the Laz- Friedrichs method is a sort of an “ultra-
upwind” method because the solution is over biased (a cocfficiznt grater than one) in
the spwind direction. In recent years, the Laz-Friedrichs method has been used with
. a slight variation. The magnitude of the dissipation in the fluz is set to the absolute
value of the largest local characleristic speed. For a scalar wave equation, this is iden-
tical to the upwind method, but for systems of equations this is much different (this
is discussed in more detail in Appendiz B).

3.5 Lax-Wendroff Type Methcds

The Lax. Wendroff method [58] is the canonical classical second-order method. This
method produces second-order solutions, but with spurious oscillations near discon-
‘tinuities, thus raising the possibility of producing negative values of positive definite
values such as density or pressire. From the standpoint of algorithmic description,
geometric depiction is particulatly useful. Normally, the method of Lax-Wendroff is
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Figure 3.6: The solution for the Lax-Friedrichs method shows the extreme amount
of diffusion present with this algorithm. Also notjceable is the tetracmg and the
sawtooth stricture in the solution (a = 1 and v = 0.5).

described as a finite-difference algorithin; however, it also can be described geometri.
cally. Figure 3.7 gives a gunalitative description of the method.

It is well known that the second-order central difference scheme with forward
Euler time differencing is unconditionally unstable. This can be casily vertified with
VonNeumann stability analysis, but | proceed from a different standpoint. This is
motivated by the desite to have a more heuristic explanation for this well-known
phenomenon. First, some nomenclature needs to be introduced. The flux functions
for difference schemes are functions of the dependent variables and can be written in
terms of interpolating polynomials. Thus, given a piecewise polynomial, P, (z), the
flux functions can be written

J,(w)=S[P,(2)] . (3.11)

With this definition, the problem reduces to approximating the dependent variables
on a grid and computing the value of the interpolant at cell edges.

Returning to the second-order central difference, it can be writlen as a piecewise
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Figure 3.7: The Lax-Wendroff method can be viewed geometrically as a linear inter-
polation of the initial data with a time centered correction (o tine averaged) to the
cell edged state. If one thinks of the form of the exact solutinn to the scalar wave
cquation, u(z,t) = u, (z — aAt), th:: form makes -ense.

, polynomial on the interval I, 12y, *] and has the form

4

uy+3,,4 (z—-2z;) ;z€ lz,.z,,;]

Py (z) = X : (3.122)
‘ u,+s,_§(z-z,~) ‘2 € lz,_*.z,] '
where ‘. —u " "
s 1=2—21 apnd s, =211"1J 3.12b
a )= X, a4 L1 -1, ( )

This functional form is both C° and C' continuous. Evaluating the flux function at
I,.1 and z, N the second-order central difference scheme is recovered. This func-
tional form takes absolutely no consideration of the disection of the flow in the problem
in finding the numerical flux furctions. Perhaps this is a more paiatable physically
based explanation for the unconditional instability. The method produces spurious
oscillations because the solutiuns computed with these flux functions can lie outside
the given values of u.

By considering the fluid moiion and in a Lagrangian scmc computing the timre-
centered cell edge positions, which is for the right hand side cell edge

allt

2r.)=1’,‘}——2—'. (3.13a)
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and for the left hand side cell edge

alt
L1 = :,_1 - —2-— . (3.|3b)
Iuserting these exnressions into the second-order central difference polynomials gives
the Lax-Wendroff scheme (for a scalar equation). This method is stable for Aa <
1. but still produces spurious oscillations. This stability is solely the result of an
“upwiud” centered app-oximation, which now is dependent on the flow direction

rather than comnpletely centered in a spatial sense.

Remark € This differs from the account of the Laz-Wendroff method given by LeV-
eque [{0] that reguires the direction of the flow to be known in order to define the
interpolation.

The original Lax-Wendroff inethod [58] uses a second-order accurate Taylor series
approximation in tiine to stabilize the FTCS method. The original derivation was
based around the following ideas: given a second-order Taylor seties in time

(')u

u(t+ 80 =u(t)+ 5 Ou

+ o), +o(ar), (3.14a)

and making substitutions for the time derivatives defines the method. Using the
iollowing relations

Ou af
F il (3.14b)
and
Pu 8u_8(8{_8( 0u_8(8u_8 of
W"E(ﬁ?)"ﬁ "'a?)‘ﬁ _ab_)-E_ _°37) 9z _)
(3.14c¢)
gives the final form
u(t+4At) = u(l)- 8/ + 5—( gl)l +0(Al’) (3.14d)
or ) 2
u(t + At)=u(t) - j z), + = 7% ( ’5;) ' +O(At’) . (3.14¢)

The detivatives are all approximated with central diffetences. The numerical flux
functions can be written {110

jn; = % [(IJ +f0) - "“l("ul - U,)l . (3.15)
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Figute 3.8: Lax-Wendroff's method shows a sharp capture of the discantinuity, but
the solution is polluted with dispersive ripples (a = 1 and v = 0.5).

which shows that the numerical diffusion coefficient associated with this method is

Lw_UC’Az
v = 2208

(3.16a)

or an effective induced viscosity of
¥ =0. (3.16b)

Again, as with the past two methods, the Lax- Wendroff method reproduces the exact
solution when used on the scalar wave equation and v = | (ser Remark 3). These
results do not suggest that this is always possible in the general case; however, they do
suggest that the CFL number should be maximized to the extent possible for quality
solutions. '

The solution found with this algotithm is shown in Fig. 3.8. It shows a sharp
location of the discontinuity, but the solution shows a great amount of dispersion and
negative values. These values may not be physical as discussed earlier and are aes-
thetically unappealing. Thete is also a faitly significant amount of numerical diffusion
associated with the fronts. Typically, the Lax-Wendrofl method is augmented with
artificial diffusion to combat ripples {111, 112].
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3.5.1 The Two-Step Lax-Wendroff Method

The Lax-Wendroff method has been reformulated as a two step incthod, first by
Richtinyer (1 13] and then by Burstein [l [4]. it can be written as follows,

n | 1
wey = s (w0 +un) = g0 (W ), (3.17a)
and a second step
u;‘#l = u;' - aa (u::: - u:f;) . (3.17h)

This forus is alecady in conservation form. This method is equivalent to the original
Lax-Weundroff method for a scalar equation (proven through simple backsubstitu-
tim). This fornmlation has been useful in simplifying the implementation of the
Lax-Wendroff incthod on systems of equations. It may be useful to consider this
forin (or something sinsilar) in future method development.

3.5.2 MacCormack’s Method

MacCormack’s method [115] is another detivative of Lax-Wendroff's method and
ptoduces similar results. The form of the solution algorithm is as follows,

iy = u} = Aa(u},, —u}) , (3.18a)
and a second step .
wp* = g [uf + i, = da(a, - i,-)] - (3.18b)

In this form, the Lax-Wendrofl method appears to be a predictor-corrector method.
This mecthod has been particularly important in aerodynamic application where it
has found widespread nse.

3.6 Second-Order Upwind (Beam-Warming Method)

One classical cute for the problems of the Lax-Wendroff method is to make a second-
order scheme with an upwind biased stencil®. Using the form (3.12a), this scheme
can be defined by setting

= —L———‘,——u — 5
Wil -2, (1o
if 0 and
ifa>0an T e Yy} (3.19b)
)” Zye1 — 2, ’ .

¥The term stencil refess Lo the gridpaints snssd by & scheme.
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. Figure 3.9: The Beam-Warming method shows a sharp capture of the discontinuity,
but the solution is polluted with dispcrsive ripples, but the orientation of the ripples
is different than the Lax-Wendroff solution (a = 1 and » = 0.5).

if a < 0. With time-centered differencing this is the Beam-Warming scheime [116).
The solution of the test problem is shown in Fig. 3.9.

The methods discussed in this chapter do not cover all “classical™ CFD methods,
but represent the most commonly used. The concepts presented above also represent
the basic means through which modern methods are based. The methods discussed in
this znapt.r are linear. Linea:ity is expressed in the application of the finite difference
stencil to the governing differential equations. In all the classical methods, the stencil
it identical for all grid points. The importance of this will become clear shortly.

In the following chapter 1 describe the basics of high resolution upwind methods

- for conservation laws. Rather than a fixed finite difference stencil, the methods in-
troduc~d in the next chapter use adaptive stescils that change as the flow changes.
The methods of this chapter are laid as the fosndation for what follows.



Chapter 4. |
An Introduction to High-Resolution

Upwind Shock-Capturing Methods

Linearity brecds contempt. Peler Laz

4.1 Motivation

To start the discnssion of high-order nethods in CFD for solving HCLs, | thought
a quick motivational introduction is nceded. The first modern method discussed in
detail here is that of Godunov (56, 57], which is at the root of nost recent methods
(see Fig. 2.1). Onc might believe that using a high quality method like Godunov’s
would do the job (if inore detail is needed, use more grid points). To illustrate why
higher order miethods are worth exploring, | make usc of a test problem used by
Woodward and Colella [44). This is an interacting blast wave problem described in
more detail in Appendix A.

In a one-dimensional domain, the density is set to unity everywhere with the fluid
at rest, the left most ten percent of domain has pressure set to 1000, the right most
10 percent has a pressure of 100, and the rest of the domain set to 0.0l with v = | .4.
Two very strong shocks form and eventually interact forming a combination of shock
waves, contact discontinuities and rarcfactions. This turns out to be a very stringent
test of a numerical metho,d and it is very difficult to resolve all the phenomena
involved.

Figures 4.1 and 4.2 show thc results for density using Godunov's method (Sec-
tion 4.3) and a second-order Godunov (Section 4.4) method respectively. The first
otder Godunov's method uses 5 times the computer memory and 35 times the cem-
puter time to solve the problem yet the second.order solution is of much better quality
and is closer to the --onverged solution’. This point has been raised in [89), in a simu-
fation of hydrodyn-mic phenomena in the 1987A supernova. The cost and complexity
of the partial parabolic method (PPM) they used allowed the resolution of phenom-
ena in their simulation. With other methods the solutions could not be attempted
because of limitations on computer memory. It should be pointed out that as the
dimensionality of the problem increases, the advantage of high resolution methods

IThis is in line with the remarks found in [80). There it was stated that high resolution second-
order (or higher) methods were 15 to 30 times higher in resolution than Godunov's method for
contart diseantinnitics
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increases. Things like adaptive griding could also improve matters considerably al-
though a combination of adaptivity and high resolution appears to work best [117].

Remark 7 The use of 10 times as many grd points 1.:;plies through the action of
the CFL stability criterion that 10 times as many time si.ps be used for a given
calculation. This equals 100 times as many yrid points times tiine sieps, which in furn
indicates that the high order method is abont three times as ezpensive as Godunov’s
method on a per grid point per time step basis. From the perspective of performance,
at 15 times the resolutior. ihe high resoletion mcthod is 5 times cheaper per grid point
per time step. If these rzsul's are applied to mullidimensicial problems, the differences
become more profound. B

4.2 Introduction

The work of Godunov [56] has led to many strikiug advances in the numerical solution
of (2.1). The unique nature of Godunov's work was recognized by van Leer (118). in a
serins of papers, he (119, 120, 60] spearheaded the modern developinent of HOG algo-
rithms. Godunov's method and van Leer's extensions use polynomial representations
of the conserved variables in each grid cel! in the process of computing the solution.
These piccewise polynomials can be discontinuous at g:id cell interfaces and as such
requite some closure relations at these interfaces to compute the numerical fluxes.
This closure uses the local solution to a Riemann problem (Appendix B) though ei-
ther an “exact” [41, 60, 121, 122, 123, 124] or an apptoximnate (125, 126, 63, 127, 128}
Riemann solver.

Colella and Woodward [122] advanced the method developed by van Leer in their
PPM. This method is still considered a premier niethod for computing the solutions to
(2.1) [129]. Several theoretical advances have been made as well as the more practical
ones. Harten's theoty of TVD schemes (130, 61) (Section 4.5) made great strides
toward undetstanding the theoretical propertics of methods like van Leet’s and those
discussed bsjow.

Several different varieties of TVD methods have been developed: the modified flux
formulation due to Harten and severii symmetric TVD schemes. Roe introduced the
symimetric form of TVD scheme [131). Sweby [132] and Davis [133] also presented
methods of the same general form. These were all derived as a Lax-Wendroff method
augiented with a nonlineat upwind biased dissipation term. Yee [134] christened
these schemes as symmetric TVD schemes in her paper. The general form of sym-
metric TVD schemes can be viewed in different ways: as an advanced form of artificial
diffusion, and as a Lax-Wendroff [58] with ar additional dissipative flux to ensure a
TVD solution. Along other lines, Goodman and leVesque [135] took a geometric
view siuilar to vau Leer's work in deriving a ‘TV]) method.
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Figure 4.1: The density computed with Godunov's method using 10,000 grid points
shows the general structure of the solution; however, the solution also shows significant
smearing behind :he contact discontinuity at z = 0.6. The peaks at z = 0.65 and
z = 0.80 are clipped. (Az = 0.01,v = 0.99,¢ = 3.80.)

7 $ + + $
61 N
54’ o
' 4+ ]
P
30 3
20 <+
'o 4
0 + \ g 4 —
0 20 40 60 -80 100
X

F igbtc 4.2: The density computed with a second-otder Godunov method using 1000
grid points shows a nearly converged solution. Much of the smearing and clipping
i sent in the first-order solution is gone. (See Woodward and Colella 1984 for the

roneerged sohition. )
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A limitation of these mecthods is that they are limited to first-order accuracy in
the maxiumum error norm. This is due to the action of the flux or slope limiter used
in arauring the TVD juality of the solutions. To increase the accuracy of this sort
of niethod. more elaborate numerical algorithms have been developed in the past few
years. Among these are the uniformly non-oscillatory (UNO) scheme of Ilarten and
Osher [136], which is second- order accurate in all norms. Essentially non-oscillatory
{ENO) methods arc described in a series of papers {64, 137, 65, 66], where these jdcas
have been extended to arbitrarily high order of accuracy (Section 4.4.2). These ideas
are also making their way into multidimensional algorithms [138, 139).

Another modern advection algorithm also can be viewed along these lines. Perhaps
the fiest modern algorithm to recognize the necessity of nonlincarity in the difference
scheme was the FCT method as introduced by Boris and Book [59] (Section 4.6).
This method was develcped with the recognition of the theorem of Godunov,

Theorem 3 (Godunov [56]) No monolone numerical algorithm for solving (2.1)
can be both linear and second-order accurate.

‘T'his does not preclude the possibility of producing a “monotone” second-order scheme,
but simply state that such a method cannot be linear in nature. Thus the FCT is
designed as a nonlinear biending of high- and low-order numerical fluxes, which en-
sures the lack of dispersive ripples. In a series of papers (59, 140, 141, 142, 62] this
inethod has been revised and extended.

Digressing slightly, there appears to be a schism in the literature between the TVD,
HOG and ENO type methods and the FCT methods. Authors doing tesearch on each
method usually mention the other methods, but the synergism ends there. It is often
stated in the FCT literature that the TVD type methods tequire Riemann solvers and
as such are horrendously complex in comparison to FCT. It is my contention that
this is simply not true. Underlying cach method is a scheme for scalar advection,
which is at the gencsis of more complex development. In extending the methods
to systems of equations, the TVD type methorls use Riemann solvers, which have
many exceptional theoretical and aes:hetic appeals. The extension of FCT, on-the-
other-hand, is usually extended in what seemns an ad hoc or naive (see Section B.3.4)
fornmlation [143, 144).

Borrowing from [45] one can sort of “sec” how various schemes are related pic-
torially. This is done in Fig. 4.3. If onc imagines some sort of space of schemes
with monotone schemes, Sy being the most restrictive and the space of all transport
schemes, St encompassing all methods. The various methods can be seen as a set of
overlapping spaces. The space of all TVD methods is Syvp U Sy and ENO schemes
arc tne union of the TVD space and that labeled Sgno.

Recently, | have thought a lot about the philosophy related to the design of high

resolution schemes and | believe these philosophies can be classified as follows:

31



Figurc -1.3: In this diagram a rough classification of modern numerical schemes is
shown. Sy is the space of upwind methods and Sc is the space of centered schemes,
the other terms are explained in the text. (adapted from (45, 145].)

I. Artificial Viscosity: There ate those that believe that the high-order scheracs
arc simply fancy artificial diffusion prescriptions. This is largely a product of
the TVD-Lax-Wendroff [133, 131, 132} and the symmetric TVD [134] methods.

2. Hybridization: The FCT [59, 140, 141, 142, 62] and Hybrid [146] mcthods ate
most easily classified as combinations of first- and higher-order classic schemes.

3. Mathematical Theory: Harten [130, 61] and Harten et. al [64] have produced
a mathematical framework which is useful in producing rigorous proofs and
bounds on the behavior of these schemes (TVD) and a vague generalization to
less restrictive schemes (ENO).

4. Interpolation and Advection: This was given by van Leer {120, 147] (based on
the work of Godunov) and ihen extended in PPM. The method scems some-
what heuristic in nature, although it works well. TVD theoty aids and expands
this train of thought, which works well for conceptualization of the schemes.
The ENO algorithms extend tLis view to a broader class of methods, but at
this point do not include the breadth of possible methods. In a recent paper,
Harten brings the: arguments of semi-Lagrangian rethod [112] into the arena of
high-resolution methods. This should be clarified by the fact that unlike those
incthods used in metcorological {148, 149) flow by » < |. Despite this kind of
diffetent viewpoint, the results are generally similar, although the meteorolog:
ical schemes are not conservative in nature. Thus they are not appealing for
computations of discontinitous solutions.

At some point, these various approaches shiould be equivalent, which would result in
an increased synergism between methods and case of analysis.

Remark 8 /n [149] it was noled that van Leer began Inoking at semi.Lagrangian
mcthods early \n his studirs, but dropped them [rom considciation because of their
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Monoione

Not Monoione

Figure 4.4: The initial data is denoted by the solid line while the dotted line shows
the solution at some advanced time on a periodic domain. The upper figure’s solution
is monotone because the cxtrema in the advanced time solution are bounded above
and below by the initial data. The lower fignre's solution is not monotone because

new extrema exist in the solution.
lack of conservation.

A key concept in this entire discussion is that of monotone convection®. This
means that the solution is a physical solution for physical initial data and that it

does not create new extrema in the solution. I'lus is depicted graphically in Fig. 4.4.

Definition 1 (Monotone Numerical Advection [151]) Monotone numerical ad-
vection is defined by a scheme which is a combination of coefficients of the local data
which are all positive. Consistency requires 'hat some conservation principle be en-
forced i.e. the coefficients sum to one. This ulso means that the numerical scheme

docs not introduce new cxtrema inta the soluiton.

For the remainder of the presentation, the tollowing nomenclature is used: Aj_._%u =
u;41 — u;. A conservative finite difference solution to (2.1) using a simple forward

Luler time discretization s

?,L;l*i:u;‘——a(fr*%—-f;_%) . (41)

ZDefined rigorously, monotune convection pmplies that the finite difference scheme is first or-
der [73). Also some work shows that as currently definesd no scheme can be TVD in more than one
dimension [150].
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The temporal spaciug is M and Az is the spatial mesh spacing. The superscript n
refers to time, ¢, n + | refers to the timc t + At, and the subscript j refers to space
with j being a rell center and j £ ! being the cell edges. The construction of the
nuinerical fluxes f ;24 is at the heart of this subject. The cell edge flux can be defined
as

Il‘bl = (I) + j) P') + é,*% ’ (“.25)

where ¢ is a namerical dissipation terin. For a system of equations the flux is written
. 1
For=5(F,+Fu)+9,y, (4.2b)

where F and ® are vectors, but are defined similatly to the single equation case. For
instance, the first-order domnor-cell flux can be written

u; (/) + ful ,a,,}lA"’u) | (4.3)

thus
rc

l
g = =g lagl Bgu-

Remark 9 When numerical schemes become nonlinear in nature and/or are applied
to nonlinear probleins, standard means of analysis are not typically valid. New ap-
proaches to method analysis have been developed, butl are nol as mature as classical
methods. LeVeque [§0] gives an overview of this topic. Much of the modern analysis
is based on “compensated compactness” as used by DiPerna [152, 153] in his proofs
of conrergence. Nonlincar dynamics may also yield uscful means of analysis [154).

4.3 Godunov’s Method

I have already visited Godunov's micthod in the Section 3.3. For a single scalar
~ equation this is simply the npwind method described there. For nonlincar problems
this is not so straightforward. The key point in constructing a Godunov method is
to use some sort of Riemann solver. Another consideration is entropy satisfaction
of the solution [155]. This gencrally means that the solution must contain sufficient
numerical viscosity to insure physical solutions.

The following algorithm gives a general outline for Godunov type methods.

Algorithm 1 [Godunov’s Method) |
1. (Initialization Step) Average the initial distribution over the computational cells

1 5,40,5/3
o - e——
=3 x/:,-a,zn u(r)ds. ‘ (4.4a)
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. (Reconstruction step) Reconstruct the injtial distribution as piecewise polyno-
mials over the computational cells

u,(2)= P, (s) , (4.4b)

whete P, (z), z € [z, — Az,/2.2, + Az,/[2] is a polynomial in cell j.

. (Solution in the Small Step) Solve the initial value problem at each cell interface
where discontinuities can exist

u(z,t) = E(z,t - ") - u(z,t®) , (4.4¢)

where E (z,t — t*) symbolically represents the evolution opcntor given by the
solution to the Riemann problem.

. (Averaging Step) Reaverage the solution over the grid cells given the solution
opetator in the previous step.

u;'" = _Al_x /tﬁh'l’u (z' ‘.n) dz . (‘.‘d)
¥ I3

% Go back to the reconstruction step.

This process is shown schematically in Fig. 4.5.

Remark 10 Osher [155] defined a Godunov fluz for scalar equations as

(a) if u, < u,yy then fC, = min(u),u € [uj,u;4)

1} . (4.5a)
(6) if u, > u,y then ]ﬁ‘ = max (u),u € [u;, ujs;)

and the inequalily for an entropy satisfying fluz is

(‘) ',u, < U,y then f,” < I,O

(4.5b)
(b) ifu, > uj4y then [0 2 I,-‘i,

For the scalar equation, this Godunov fluz is the least diffusive enlropy salisfying
Jluz. Thus for the case of scalar equations one can show what the appropriale entropy
inequalities are. This inequality can be wrillen :

sign (uy0s = U,) {03 = £ (w)] S 0,0 € uy504] - (4.5¢)

Osher defined schemes which meet the entropy requirements as “E-schemes”™. This
concepl has proven lo be imporiant in the development of higher arder schemes which
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RVAVS i
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Figure 'l;.':: The following steps are shown: averaging and reconstruction, solution in
the small, and reaveraging in this schematic representation of Godunov'’s method
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produce physical solutions. It is common prartice to develop the higher order schemen
with an E-scheme as a buslding block.

This algorithm can be formulated in several ways: in a fixed or Eulerian coordi-
nate system or in a moving or Lagrangian coordinate system. With the Lagrangian
formulation, the common practice is to sct the coordinate frames speed equal to that
of the flow. Another common practice is to compute soliutions in the Lagrangian
frame and map the results back to an Fulerian grid. For the Eulerian algotithm, the
solution in the small is done in a fixed coordinate frame so the averaging step is a
simple one step process. In the Lagrangian algorithm, the averaging step takes place
in two steps: first an average in the Lagrangian frame and then a remap to the fixed
Fulerian grid.

The averaging step can be simplified with the divergence theorem that allows the

" integral
| 2,44z,/3

uptt = Az, Ju,-ou u (z.l"")dx .
to be transformed to '
Wyt =) = A (fay - fy) . (4.6)
where A = At/Az and
. T
hev =5 ) J(z,4y.t)dt . (4.7)

This formulation is just like the norinal finite difference equations for a differential
cquation in conservation form. For the solution in Lagrangian cootrdinates, the spatjal
variable z in the above equations is replaced with £, the mass variable. The remap
step of the Lagrangian Godunov also can be expressed in these terms. In this step,
the solition in the Lagrangian cocidinates is mapped onto an Eulerian grid. This can
be expressed as the advection of the conserved quantities through the cell boundaries.

This reaveraging step (see Appendix B equations (B.J3a)-(B.3c)) can be derived
from the concept of operator splitting [156). The Lagrangian step is the solution for
the Euler equations for the sound wave related transport and the remap is the solution
for the advection related transport. This concept is at the genesis of the Arbitrary
l.agrangiau-Eulerian algorithms [157]. but these differences are morc philosophical
than substantive.

The temapping procedute must deal with several specific possibilities, as shown
in Fig. 4.6. Carrying oul the summations over the Eulerian grid cells reveals that the
nsc of a simple upwind difference formula suffices to carry out the remapping. From
the solution of the Lagrangian equations the cell edge velocitics are known, thus the
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Figure 4.6: The cases which n. t be cor.;:dered by a remap algorithm.

temapping is uniguely deterntined. 'The formula is coustructed as follows

y, Ar. Ay, ..
¢;‘4 = .A_:él-'a;[j(¢)+§)-j(¢)-})] ' (4.8a)

with
.- 1. .. 1. . .

/ (éi’i) = 2l (é, + ¢”') - EI“H‘}I (¢H‘l = é)) ' (4.8b)
where all quantitics with a “tilde” are new time Lagrangian frame variables except
u, which is time centered.

The formulation above has several stability limits. For the solution step to make
sense (30] requires that the waves not interact which leads to the restriction

Ar '
t<inf| —L .
atsin (ﬂa.l) ' (49)

where a, is the maximum wavespced present in each cell. This means that waves
cannot pass through more than half a grid cell in a time step. The stability restriction
is the more familiar Coutant-Friedrichs-Lewy (CFL) condition :

At < it}f (%) ' (4.10)

vshich is the restriction u:ually teken for methods of this type. For the purely Eulerian
calculations with the Fuler cquations. see (B.1a)-(B.1c),

Alsinf( Az, A4z, )

) \|u, - ‘)'. Ju, + ¢;l

whete ¢; is the Eulerian sound speed. For the Lagrangian computations with the
remap step, see (B.2a)-(B.3c), there are three testrictions to consider:

AlSiI,If (AE, Az, Azl) ’

C, ' ly) ' A,u

where C, = pc, the Lagrangian sound speed and the sound speed restriction refers
to the Lagrangian atep. the advective velocity is for the remap step, and the zone
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tangling limit.
4.4 High-Order Godunov Methods

For Godunov's method, the reconstruction stej: consists of setting
Pi(z) =4 .

or piecewise constant. The Eulerian Godunov uses the Eulerian equation set for
ihe sofution siep, whiie the Lagrangian wiih remap Godunov uses ithe Lagrangian
equations with an averaging done in the moving coordinate frame followed by the
remap step back to the Eulerian grid (see Apprudix B).

Remark 11 The primery (and ofien the only) difference between Godunov'’s method,
which is first order accurate, and higher order methods (see Section {.4) tike MUSCL [60]
and PPM [128] is the order of the polynomial iscd wn the reconsiruction step.

Further developments on this topic were achieved by van Leer [60] jn his higher or-
der extensions of Godunov’s method oflen referred to as monotone upstream-centered
scheme for conservation laws (MUSCL). Recently, researchers have extended the ideas
of van Leer to arbitrarily high-order spatially or emporally and christened these meth-
ods as uniformly [136) or essentially [64) non-o~cillatory (UNO or ENO) schemes.

BBl VAU OWL AJPT SUNIGLIICD

The second-order methods developed by van l.eer essentially replaced the constant
piecewise profile used in Godunov’s method with a linear profile. This profile is
“bimited” (Section 4.7 and Chapter 8) in order to prevent non-monotone behavior
in the solution procedurc Van Leer’s criteria was somewhat heauristic in nature,
although it turns out to be fairly rigorous after Harten's work on the theory of TVD
schemes (130, 61). The vriteria states that th-- interpolation in a given cell should
not {ie outside the range of values defined by the cell average and the neighboring
values of the variable being interpolated [120. 7). This is shown in Fig. 4.7. Stated
mathematically this is

“Ex,ig'uzsl’jlz)s "I“I_'I’l'xs'u:. (4.1)
Woodward states that this can be relaxed slightly to the averages of the advected
quantity within a cell and that which remains in its original cell must lie within the
range of the original cell average and its neighbors. A scheme typical of those used
here is

P(z)=u; +4u ‘—A";;‘_J-’ . (4.12)
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Monotone

Not Monotoné

Figure 4.7: A graphical depiction of van Leer’s heuristic monotonicity constraint.
For the second constraint given by Woodward the interpolation is monotone for some
time step sizes.

where S:u is a limited approximation to du[dx|,' Ajz.

With a second-order algorithm, the question of time accuracy must be ..ddressed.
This is usually done through a Lax-Wendroff like procedure like that described in the
previous chapter. This can proceed from two viewpoints: the first being that 1 am
moving with the fluid to the point in time which is the average of the old and new
time steps and evaluating the polynomial reconstruction there, the second is tiat of
averag:ing the polynomial over the domain of dependence for the time step [122). These
two vicws are equivalent if the integral time average is evaluated with a midpoint tule.
This process is depicted in Fig. 4.8.

Van Leer [158, 159] reports another approach to finding a second-order accurate
temporal solution. Defining u;; as the value at the left cell edge of cell j and u;, as
the value at the right hand cell edge of j, the second-order time accurate values of
u;s and u;, are computed from

-wl . [/ (u,,) f(u”)] (4.133)

and
- un - % [7 (w3,) - £ (u3)] - (4.13b)

This form of the algorithm bears great rcsemblance to the two-step Lax- Wendroff
scheine presented in Sectic 3.5.1. Similar sorts of ideas are also expressed in a series

10




e Xioin

Figire 4.8: Two views of time accurate computation of cell edge values.

of papers (65, 160, 66] where a TVD Runge-Kutta time discretization is introduced
and implemented.

Remark 12 The TVD Runge-Kulle temporal discretizalion provides the means through
which high-order temporal »z;uracy can be achieved withoul significurd implementa-

tion difficulties. This is especially true in mullidimensional problems .+ with systems
of HCLs. These mullistage algorithms can be wrilten in the follownng form

u' = )3 [enut + BaeL (u)] , (4.14a)
A=O

where the discrete differential operator is denoted by

=L, (4.14b)

and a;; and B, are cocfficients. The criteria for this to prodvce TVD resulls (see
Section §.5) jiven an appropriale spalial operalor is a CPL condilion

Q4

vs m . (‘.MC)

If 3, is negative. the spatial operator must be anliupuind [65. 160]. In those references



a number of schemcs are defined.

4.4.2 ENO Type Schemes

Harten and Osher (136] defined a new class of schemes as being uniformly non-
oscillatory. This class of methad is part of and predecessor to the ENO schemes.
Oue particularly distinguishing fact about this scheme is that it is sccond-order ac-
curate in all its norins. This gives it some strong advantages over other second-order
high resolution scheines, which degenerate to first-order accuracy in the maximum
noru).

Definition 2 (Harten and Osher [136)) Non-oscillatory interpolation is defined
by interpolation, I')(r) that has its number of cztrcina in an interval that is not
cxceeded by the local extrema in the data, u(z).

The cor struction of ENO schemes has extended the concept of high-order Godu-
nov 1cthods to a inuch wider range of potential schemes [161] (this class of methods
included other Goduaov type algorithms). The basic concept of the ENO scheines is
to compute a interpolating polynomial using the data from the smoothest part of the
grid locally [162]. To do this a limiter is used to choose which direction to go for the
smoothest reconstriction. Thus the stencil used for the finite difference formulas is
adaptive in nature and the accuracy of the scheme is limited only by its implementa-
tion and the properties of the data. One problem is that despite the relatively simple
concept, the ENO schemes [64] as originally formulated ate horribly complex. This
ptoblem is even more severe in multi-dimensional implementations (161, 64). Shu
and Osher [65, 66] have cased this burden somewhat and if more recent work is any
indication [139] this should ease more. For ENO schemes, in general, most properties
such as convergence, boundedness of solutions etc. have yet to be proven.

Definition 3 (Harten, Osher, Engquist and Chakravarthy [64]) Essentially non-

oscillatory interpolation is defined by interpolation, P;(z) that is the smoothest ap-
proximation lo the dala in some sense.

An ENO algorithm for polynomial reconstruction is outlined below. This is known
a reconstruction by a primitive function. This ENO formulation is based on the
interpolation of a function defined by '

Qzng) = [ uds, (4.150)
thus p
u,(r) = —Qj}L{-) ) (1.15b)
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By virtue of the previous two equations, the interpolation can be integrated to the
cell average of cell j, but also every cell the steucil for cell .

Before showing the algorithm, some tcrms need to be defined
= Q [1’:';.."" oo 'I:':nl."; ’ (4.'6!)

Q[ )mm—l' z:,:u'og ’ (4.‘6!))

where the brackets denote the k'™ divided difference [163] which can be defined
recursively® The algorithm computes a polynomial for Q (1, ,%), which once differ-
entiated can serve as the polynomial approximation in the ;' cell.

Algorithm 2 [ENO Reconstruction via Primitive Function [64]]

1. Initialize k = 0, 22, = 29,.,, = 2,

2. 1i [a*] > [#*] then

& =0, (4.17a)
| (jomin)**! = (j,min)* -1, (jomaz)'*! = (j,maz). . (4.17b)
3 la"l < Ib‘l then

& =aqt, (4.17¢)

(j,min)**! = (j,imin)* , (j,maz)** = (j, maz)* + 1. (4.17d)

4. k=k+1
5. Return to step 2 until desired accuracy is achieved (k=n).
6. Define the following polynomial

)maz®

P(z)sza H (z—-1z) . (4.17¢)

Ame '.,'”'..

Remark 13 The consideration of yoint valses versus cell averages is of paramount
importance in a theoretical sense. (odunov’s method is predicated on the concept that
the grid point values are averages wver a control volume. The spatial determination
of the values is only set in the averaged sense, bul the point values are not defined
clearly as to where they should reside in space. This is a sort of grid uncertainty prob-
lem or Gibb's error. Because most ENO implementations are hased on interpolaling

A divided Wifference 1s defined a0 Q2),.. .. 2,]) = (Q[23. ... 24) - Q[21,....20-1)) /(20 — 2}).



Q (r) this problem docs not arise. From the standpoint of conservalion the interpo-
lation methodology is not crucial. It is precisely this point on which the problem of
mnplementation of ENQ schemes hinges. See Chapter 9 for further discussion of this
topic.

Remark 14 /1 Shu and Osher’s papers on the easy implementation of ENQ schemes,
a formula was prosented without much explanation. Their numerical fluz is defined

by
71

. m d -
fray = fyy +§,a,. (5;,!;)"* + Oh™*Y

where az = 22';'- and aq = i’ﬁ Where does this come froin? From earlier ENO work

. dQ
j,’; B :i; )0} '

where

Quy= [ finde.

From Ilildebrand’s numerical analysis text [163), the cocflicients in the above equa-
tion are from the Euler -MacClaurin cquation for errors in integration with a slight
modification to take the funclion to approzimale ]."} rather than ].,-_ j o8 the equa-
tion in the text would indicate. This corresponds to adding j, oy lo the equation and
recersing the signs of the error terms. This raises the question of whether or not the
Q funclion is correct in the sense that this implies. The definition of the point values
as cell averages would support this, but il raises questions of the correct derivation of
these concepls in multidimensions especially on non-orthogonal grids or unstructured

grids [16].

''o close out this section, the results on the same test problem used for the classical
miethods is used with a high-order Godurov method. The results shown in Fig. 4.9 are
miuch bettrr than those foind by any of the classical method, with the discontinuities
resnaining sharp and with little smearing and no creation of oscillations.

Remark 18 One problem with this sort of method is thal it is ezpensive lo use in
some cases. Some promising work has appeared recently which only applied to more
‘compler methods described above al a few grid locations (where oscillations -would
orcur with classical methods). These method use a fillering technigue o choose where
to apply the HOG-type methods (164, 165].

4.5 Total Variation Diminishing Methods

The effort to put the new modern algorithms on firmer theoretical footing resulted in
the concept of total variation diminishing (TVD) methods (130, which have a number
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Figure 4.9: Computation of a square wave by the scalasr wave equation using a HOG
algotithm (o = I, and v = 0.5).

of desirable properties. To be total variation diminishing, a scheme must satisfy the
following inequalities,
TV (u**) < TV (u") ,

where

TV(u)= Y Juyei—ul.
Jm-0o
While these methods include classic monotone schemes (such as upwind differencing or
).ax-Fricdrichs), they can also be extended to include methods that 2se second-otder in
the L, norm. By construction, these methods arc still first-order a* points of extrema
(in the L. norm). A second properiy of TVD schemes, which is both useful and
satisfying, is that they can be extended to include implicit temporal differencing [110).
‘This generality is quite desicable as it allows a more general use of TVD algorithms fos
a wide range of problems and applications. It should be noted that MUSCL schemes
have also been extended to include implicit temporal differencing.
The basic proof of the TVD property proceeds as follows:

Theorem 4 (Harten [130)) Given a scalar wave equalion and a conservalive ny-
merical scheme wrillen as :

u;" - u: + C:”A,’;ll' - C,-_’A,_,u. ’ (4"8‘)
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where

20,C},) 20, (4.18b)

u}
and

i+6"’ 1, (4.18¢)
then the scheme is TVD.

I’roof. Start by subtracting the equations at j + | from j giving

B,u =048, qudt (1= =€ ) 8,0pu+ €80 4u. (1190)

Because | am assuiiing the condition stated in the theorem, all the terms on the right
hand side are positive, thus by the triangle inequality

IAI’P‘I < C;-} IAI‘P‘I + ( C)-ﬂ u}) IA *“‘I +C;, 1+} IAJ"“! (4.19b)

-~ Summing over all j (—00 < j < oo) gives the necessary conditions as the above
cquation must hold for all j. This takes the conservation principle into account
resulting 1n the cancellation of most terms in the equations. C

Remark 18 The theory of TVD schemes has also lead to implicit scheines based
on these principles [110]. These have been used lo produce steady-state profiles for
acrodynamic designs in a variely of flow regimes [166). In addition, the HOG and
ENO (167] algorithms have also been extended to implicit time differencing. By taking
~ the semi-discrete form of these equalions

a + _
8': ) B,44u- ,-;A,-;“ ' (4.20a)

with the conditions for a TVD approzimation being
’ >0 and C ’ (4.20b)

One can sce that the set of linearly equations resulling from this scheme in the case
of an implicit differencing is diagonally dominant and tAus stable for solution by a
variely of means.

Janieson and Lax [168] have provided a more general definition of a TVD scheme.
This theorem provides conditions by which a scheme can have much larger support
and be TVD. Shu [169] reports that Engquist and Osher had developed very high

otder TVD schemes along these lines.
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Theorem 5 (Jameson and Lax (168)) Given a asri drs:4ote o chesji:

du =

FTika Corh, A R (4

is TVD if the following conditions are satisfird ‘or il i
Ca(k=-1)2C,1(k=2)2...2C.;«= " 2% (4.21b)

and
-Co(k)2Cy(k+1)2...2Cs. - . -121 (4.21¢c)

Remark 17 This theorem when inlerpreted sirams, means that the support for an
interpolation within a given cell must decrease vt astaxc- from that point.

Remark 18 The questions relating to the sabike:. .snd accuracy of a T VD approz-
imation must be addressed separately from tie guewzon of its nature with regard to
being TVD. It is ofien the case thal when a scheme fals to prowde TVD solutions,
it also is essentially unstable.

For instance, to prove a polynomial representamsan «f 2 function is TVD (in one
dimension), a general procedute can be defined. Tuxing the polynomial, P, (9) where

0=1"2

.."}I
u’xd then taking the case where Aa > 0. awer defiren
P(e=2#(®- .

with the function 8 € l-%, }] The fornitertihr 1 caserzauon law :.:proofs of TVD
algorithms (explicit) is

u:" =u,+ C;’A”%,,j'r_, ‘(‘“.*A ;:u' .
setting C)’ﬂ = 0 then,

Cry=2a(1+Q,(0) - Gps . ,.

whete P (o
| Q0 =G
Thg conditions to be TVD are
0<(C, <1,
)=
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thus the following conditions can be brought to bear on the Q functions such that

Q-1 (0-Q,(0) <1,

and '
Q,(0)-Q,-,(0) < o 1.

then the overall scheme is TVD while these are satisfied.
I'here are twir usajor types of TVD schemes: the niodified flux form [130) and <he
cwwmznetric type [134). The modified flux fornulation is equivalent to a MUSCL type

schieme ol o - wave equation.

4.5.1 Modified Flux TVD Schcmes
The modified nux TVD scheme has its dissipation function defined by

0;:; = [g) + 9,01 — 'd,” + 7)0"A,§’u] ’ (“.228)
whete
") }'\)-}“ “n}An} ) (4.22L)
K—‘L" ifA u#0
Ne} = g (4.22¢)
otherwise

and . |

r=5 (lui ~ Xa’) . (4.22d)

4.5.2 Symmetric TVD Schemes

The symmetric TVD scheme has its dissipation function stated as

°ff§' = [(l“;+}' - A“:ﬂ) Qep— I"jo}“ B,44u, (4.23)

whete Q, .. is a functicn of £, .1, A,,iu and A, ,yu. The advantage of the sym-
metric TVD scheine is its luwn' cest in terms of arithmetic operations.

4.6 Flux-Corrected Transport

The finx-corrected tranaport scheme was the first algorithm developed that rec ‘gnized
the importance of Godinov's theorem. Some of the flux limiters (notably the minmod
limiter) scem to have their genesis in the FCT method. Yet despite this, the other
sethods have floutished while the FCT methods have languished by comparison.
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The original FCT was defined in a series of papers which gave analysis and results
of using the scheme. The best recent reference is the book by Oran and Boris [4].
‘This method blends a high oider flux with a lo~ order monotone flux is such a way 2s
to prevent the creation of new extrema. Althoigh it s an improvement over classical
methods, the FCT has not done well in tests against other modern algorithms (170, 44)
and remains a pariah of sorts. The primary uses of the FCT have primarily been
confined to turbulence [77), MHD [171] and reactive flow problems [172].

Zalesak [62] redefined the FCT in such a way as to make it more general. A
standard low-order solution, similar to that obtained by donor-cell differencing, is
used to define a monotonic solution. This solution is then used to lisnit an antidiffusive
flux, which is defined as the difference between a high-order and low-order flux. As
with the earlier versions of the FCT, the limiter is designed to give no antidiffusive
flux when an extrema or a discontinuity is reached. This prescription of the FCT can
allow the user to specify a wide range of low-order fluxcs as well as a large variety of
high-order fluxes. These have included central differencing of second- or higher-order,
Lax-Wendroff, and spectral fluxes [173].

Recently, several researchers [174] have introduced an implicit FCT algorithm;
however, this algorithm is limited to small multiples of the CFL number. This is
because the low-order solution is produced by multiple sub-cycles with an explicit
donor-cell (or other monotonic) solution and an implicit high-order solution. The
high-order solution is only stable for srall multiples of the CFL number, thus limiting
the applicability of this algorithm. The FCT has also been extended for use with a
finite-clement solution method with great success [144)*.

One problem that plagues the FCT method is extension of the method to sys-
tems. Some schemes have used an equation-by-equation synchronization of flux lim-
iters [144]. but the results are not altogether pleasing. To my knowledge no one has
published results of a Riemann solver being used to extend a FCT method to systems.

The flux-corrected transport algorithms can be written as follows:

I. find low-order monotonic cell-edge fluxes, i,'; b

2. find the diffused solution, g,,

3. find a high order flux fﬁ’.
4. define an antidiffisive Jux, f;‘:, = f;’:’ - ]}j",
5. limit the antidiffusive flux to fﬁ;. and

6. apply the corrected antidiffusive flux to the diffused solution to find u}*!.

“The use of adaplive unstructured grids has heen a key part of the success of this work.
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‘The Boris and Book algorithrt and Zalesak’s algorsthm differ only in a few steps. The
Boris and Book algorithm uses a monotonic flux defined by

N AN
fﬁ% = %tf, + fiv1)— (E + iu‘) (041 —u;) . (4.24)

In Zalesak's algorithm, a siinple donor-cell flux may be used (or any other monotone
mediod) as the Jow-order flux. Tu the Boris and Book algorithm, the antidiffusive

flux is defined by
. | 2\ . . ;
fhy= (A 2a?) (8,05 - 85) . (4.25)

1+
and in Zalesak's algorithm 11 could be a Lax-We-droff flux or another higher order

llux minns the monotone flux.

Remark 19 The formalism adopled abow: 1s freom Zalesak's generalization. Boris
and Book's original I'CT «was struclured shightly diffevently, although the end result
is equivalent. Their algorithm provieds as follws f§, 175]: Compute a iransported

solution

u;_r=u_"' —A(ff_'_% . f‘{%) . (1.26a)
This solution is unstable and enusi be siabilized with a diffusion step
ufp = u;" “ Pyl (n}:,_l - n_'f') US! (u;’ - uf'_,) . (4.26b)

This solution can then b corrected with an ontid: fJusion step, but this step +» fillered
with « flux Emiler Lo avoid oscillalory ~olntions

n+l ™ TH - IJD) . U{' N (N.TD _ uTD) , (4.260)

o
u;m o= . l/'H%(Il_,-,'_l -3 o)

where v 1s an antidiffusion voefficrent nol the CFL number,

Remark 20 The main problem with the FOCT -s its lack of theoretical basis in the
light of other modern methuds. Were this present this method could move back toward
the mainstream of numcerival analysis.

Before moving on, the results of the square wave test problem are given in Fig. 4.10.
[t should be noted that these results are very similar to those produced from the HOG
algorithm (see Fig. 4.9). The results is somewhat less aesthetically pleasing due to a
lack of symmetry. A simifar test with a sine wa»e prodices a “squaring” of the sine
wave because of over compression

) explore FCT methods 11 a great deal of de+ail in (hapter 5.6 and 7.

r

50



<+

A A A
1.2 t ¥ —+

1t r +
0.8 <+ ] C ‘T
061 t

U
0‘4 -+ <&
0.2 *:' 1 r 1
-0.2 + + +
0 20 40 60 80 100
X

Figure 4.10: Cumputation of a square wave by the scalar wave equation using a FCT
(Zalesak) algorithm.

4.7 The Role of Limiters

Flux. slope or gradient limiters play a pivotal role in the construction of modern
methods for solving HCLs. The source of the nonlinearity necessary to produce high-
order 1:on-oscillatory algorithms is in these limiters. Despite their importance, the
amonnt of work done toward understanding their behavior is relatively small [132, 176)
and limited to a sniall class of schemes. A notable problem is that the analysis was
confined to the same class of schemes, which are not necessarily tepresentative of
all the modern algorithms. This lapse in the collective understanding of limiters
is important because limiters ate a means through which a large class of modern
nnmerical algorithms can be unified theotetically. ,

The FCT liniter has remained largely unstudied; the only majcr development is
that of Zalesak [62]. The reasoning behind the form and function of the FCT limiter
is unknown beycnd the purely obvicus. 1t is high!y likely that both the FCT and
other modern algorithims could benefit greatly from a greater understanding of their
respective limiters.

At this point, it is useful to delincate the differetice between slope and flux limiters
more closely. This is done from the standpoint of a philosophical diffesentiation
tather than from a purely technical basis. The slope limiters can be thought s being
nsed directly during interpolation. Flux limiting usually involves me.hods that are
classified as finite difference types. Thus slope limiting applirs to HOG ajgorithms
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and the flux limiting applies to TVD and FCT algorithins. One caveat can be placed
on this classification; it is not stringent, an exainple of this are the ENO scheines due

to Shu and Osher (65, 66).

A more complete description of limiters is given in Chapters 7 and 8.

4.8 The Role of Riemann Solvers

The role of Riemanu solvers in modern miethods for solving ! C'Ls is ot always clear.
At one level, these inethod can be thought of as an essential ingredient for a successful
algorithim. but at another level they appear to be a closure relation nsed to improve
accnracy, or an extravagant featnee which is not necessary.

The issue of Ricinann solvers is critical to these types of methods. The philosoph-
ical basis of these mcthods is that the computational domain has been et up into a
number of discrete subdomains with the distinct possibility of discontinuities at the
snbdomain boundaries. The Riecmann solvers resolve the behavior of the interaction
of the subdomains. The Rienain solvers are integral parts of the schemes, but so
is the fundamiental differencing scheme. The prescription of the state of the fluid at
the computational domain is as important (for high accuracy) as the solution for the
cusuing fluid behavior. The Riemann solver however must ensure the physical nature
(satisfaction of an entropy condition) of the solution.

Appendix B develops Riemann solvers in significantly mote detail.

In the next chapter | begin the study of the design of high-resolution upwind
shock-capturing methods through looking at the FCT method critcally.



Chapter 5.

An Improved Flux Corrected Transport
Algorithm: A Finite Difference
Formulation

Iron rusts from disuse, stagnant water loses its purity, and in cold weather
becomes frozen; even so does inaction sap the vigors of the mind. Leonardo Da
Vinei

5.1 Introduction

As discussed before, Godunov [56] showed that the monotonic solution of first-order
hyperbolic conservation laws is at most first-order accurate for linear differencing
" schemtes. The first algorithm to successfully address this difficulty was the FCT
algoritlisn of Boris, Book, and Hain [59, 140, 14}, 142). This algotithm performed
quite well on linear advection problems and paved the way for future developments i1
the field. It essentially consisted of consputing a solution with a nondiffusive transport
. method followed by a stabilizing diffusive step. This monotone solution is then used
- to aid in the construction of an antidiffusive step in which the solution from the
- first part of the algorithm is locally sampied and cortections are “patched” to it.
* This is accomplished with a flux limiter that only applies the flux corrections in the
smooth part of the flow. As a result, the solution will be of a high-otder in smooth
parts of the convected profile, but first-order near discontinuities and steep gradients.
Extension of the FCT algorithm to systems of conservation laws, however, has proved
leess sicressful.

Further developments on this topic were achicved by van Leer [60] in his higher
order extensions of Godunov’s method often teferred to as MUSCL. The prescription
~ of slope-limiting used by van Leer has great similatity to the flux-limiting used in
the original FCT. The difficilties associated with FCT with systems equations is not
shared by MUSCL becausc an exact solution to the local Riemann problem is used
to construct the convective fluxes. While this approach adds complexity and cost to
the solution procedure, the corresponding quality of the solution is greatly improved.

Zalrsak [62) redefined the FCT in such a way as to make it morc general. A
standard Jow-order solutjon. similar to that obtained by doner-cell differencing, is used
to definc a monotonic solution. This solution is then used to limit an antidiffusive flux,
which is defined as the difference between a high-order and low-order flux. As with the
carlicr versious of the FCT, the limiter (s designed to give no antidifusive flux when an
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extrema or a discoptinnity i - reached. This presctiption of the FCT can allow the nser
1o specify = wide range of low-order fluxes as well as a large varicty of high-order fluxes.
These have included central differencing of second or higher order, Lax- Wendroff, and
spectral fluxes [173). Recently, several researchers [[74] have introduced an implicit
FC'I' algorithm; however, this algorithm is liniited to small multiples of the CFL
uumber. This is because the low-order solution is produced by mmltiple sub-cycles
with an explicit donor-cell (or ather monotonic) solution and an implicit high-ord:r
solution. The high-order solution is only stable for small multiples of the CFI. number,
thus linsiting the applicability of this algorithm. The FCT has also been extended for
use with a finite-clement solution method with great tuccess [144).

The petformance of the explicit FCT algorithns is the subject of this chapter. Sev-
cral investigators [170] [44] have noted for the older FCT algorithin that a lower CFL
limit is required for stability. The FCT algorithin also suffers froimn being overcoin:
pressive (as is shown in Section 5.3). This was shown in a test of the FCT on a shock
thbe problem [143), whete even at a CFi. number of 0.1, the solution was of relatively
poor quality. This probably is due to the handling of the ptessure-related terms in
the momentum and energy equations. This work aims to address these problems, first
through making several improvements to the FCT and then by showing the extension
of this wodified FCT to systems of equations. In accomplishing this, | make extensive
nse of approximate Riemann solvers of the type introduced by Roe (63).

This chapter is organized into four sections. The following section provides an
overview of the numerical solution of hyperbolic conservation laws. Later in that
section, the FCT method according to Zalesak is introdiced. This method is analyzed
and suggestions for improvements are made including the extension of FCT (o systems
of equations. Iu the third section, results are presented for the methods discussed in
this chapter. These results are for a scalar wave equation, Burgers’ equation and a
shock tube problem for the Euler equations. Finally, some closing remarks are made.

5.2 Method Development

The development of improved methods follows a short description of current FCT
inethods.

5.2.1 Zalesak’s FCT Algorithm

Zalesak’s FC has been classified as a hybrid method that is applied in two steps. By
being hybrid, the algorithm is based on the blending of high. and low-osder difference
schemes together. Step one is accomplished with a {first-order monotonic solution sich
as donor-cell plus some additional diffusion (the entropy fix discussed in the previous
section adds such dissipation). This conld be acconplished with other first-order
algorithme such as Gadunov's 1561 or Fngaquist and Osher’s [127). These fluxes are

54



used to pruduce a transported diffused solution i as follows:
= u) —a([d [D‘i) (5.1)

‘A high-order flux, f¥, is defined in some way and then the low-order flux is subtracted
from the high-order flux to define the antidiffusive flux as

FAD _ iH L

14} T /)l -]H} .
The antidiffusive flux is then limited with respect to the local gradients of the con-
'scrved variable computed with the transported and diffused solution. Zalesak defined

his limiter as a prelude to a tri:ly multidimensional liniter, but also defined an equiv-
alent litniter as

j’(’i = 5,,4 max {O.min [S";a"A,_}ia.|f;"",' ,.S'”;a"A’ﬁ]} . (5.2)

where S, 1 = A, vt/ |:.\, ,;n’l! is the sign of the conserved variable’s gradient spa-
tially. T'his limiter is identical to the lintiter defined by Boris and Book [59], but with
a different definition of f42. The final cell-edge numerical diffusion is defined by

)0} I'o} + én} (5.3)
The FCT generally cartics a stability limit on its time step of

v<l.

Before going further, several critical comments need to be made concerning this
algorithi. Despite the striking generality, which is driven by the prescription of
the antidiffusive fluxes, the algorithm has some deficiencies. By its formulation as
a two-step incthod it has some disadvantages in terms of analytical analysis and
cfliciency of implementation. By the use of the inverse grid ratio o=! in the flux
limiter, the algorithin is effectively limited to explicit time discretization (as is shown
in the following section). The use of a diffused solution in the limiiter is important
in stabilizing the solution, which could yield oscillatory solutions without this step.
Under closcr examination, the use of a diffused solution acts as an upwind weighted
artificial diffusion term. This sort of definition could lexd to a fairly complex one-
step FCT algorithm, which has, at first glance, similasity to UINO-type schemes.
The diffusive terms in the FCT algorithm's limiter are upwing weighted rather than
centered as with UNO based algorithms. Additionally, numerical experiments with
a scalar advection equation show that the total variation for the FCT solution can
incrcase with time for a CFL number lcss than one.

The use of higher order antidiffusive fuxes with this prescription of the FCT also
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raises sauge questions ab. vt the acteal or der of the approximation. The antidiffusive
thux is of the higher ordet, but the local gradients in the limiter are only accurate to
sccond-order. This suggests that the solution may actually be of only second-otder
spatially (in the L) norm). ‘This also holds for temporal order as the local gradient
terms are only firs.-order in space, thus an antidiffusive flux based on a J.ax- Wendroff

flux usay actually yield a first-ordet accurate tensporal approximation. Thus the form
of the local gradients nsed in the limiter may also need to be modified to accomplish
the goal of teue higher order accuracy.

5.2.2 A New FCT Algorithm

The first and simplest change is to rewrite the flux limiter as

f,c,} = 5,4} max {0. min[S,,,ﬂ,,’A,,;&.lj,ﬁlil..‘)’,,}ﬁ,_’A)_iﬁ]} y  (54a)

where
'.‘109 =y ('.'H}) ’ (5.4b)
or
ey = 0 (ay04) —0dly (5.4¢)
and S, ,1 has the same definition as before. See Section 13.3.8 for the definition of .

‘T he second choice for fi sl gives second-otder accuracy in both time and space if ];1”;

is of similar or higher accuracy (61]. This rclatively small change has a significant
intpact on the FCT algorithm, the solution is better behaved, and with some minor
modifications can be stated as a stable implicit algorithm. This form is also a great
deal closer to the definition of limiters used in TVD algorithms. However. this still
leaves a two-step method which poses some problems from the standpoint of efficiency
and cxtension to systems of conservation laws.

The similarities of this modification of the FCT with symmetric TVD schemes [134)
are quite strong. The necessary chang~ to convert this scheme into one equivalent
to the one described by Yee are simple. 11is consists of dividing the local gradient
terms in the limiter by two and removing the first step of the FCT. Yee writes the
numerical flux for the symmettic TVD method as

. I '
jn} =2 [“n} (uy + uy4) - d’(ﬂ,,’) A"’u + Q"’l . (5.5)
An example of the Q44 function would be
Q,s} = 5,4 max {0, min[S,ﬂ(: (a,,,) Bjyyu. ¥ (a,,’) 8440,

) Eanertinlly © is & smoothed definition of sbeolute value. The function is identical to the absofute
walius foor miAt valums, Lut is sioothed aear The origin
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S,44¥(a,-3) 8,-4u]} . (5.6)

which strikes a strong resen,  nce with (5.4a) for an antidiffusive flus: defined with a
sccond-order central differen... For ease of analysis, this method is rewritten in the
following form:

jl’! = % [“i*l (4 + 4y00) = ¥ (“H)) (' B Q,,’) A;‘ﬂ"] J (5.7)
where
Q,+} = minmod (l,r;”,r;”) ,

with r,”} = 3,,3u/d,,4u and et = A,.4u/A,,4u. The minmod limiter used
with symniettic TVD schenies is defined by Yee, but has the same effect as (5.6).
‘The minmeod function of two arguments has che usual definition given in [45], which
gives the same effect as the FCT iimiter for three arguments. In words, the miinmod
limiter returns the minimum argument if the arguments are of the same sign and zero
if the signs differ.

- The FCT cell-edge flux can be written in the same way as the flux for a symmetric
TVD scheme by defining

: ]
Sy = §|“MIQ:+;A»§“- (58)
if Q,,’ is based on ( 5.4b)
Q,+} = minmod (l.2r‘-’.2f‘) .
and if Q,,, is based on | 5 1c)
Q= (l - ala,,}l) minmod (l.2i-’.2i‘) .
and .
P
A”’u

o A,_'u )
‘ Ahl“

In [134] the inequalities that need to be satisfied in order for a flux of the form given
in (5.5) to be TVD are
Q<2 (5.9a)
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and

Q)#} 2
< -2, 5.9b
",*4} ol -0)‘a,,’| ( )
v< Té‘é ’ (5.9(:)

where 8 is an implicitness parameter, such that 0 = 0 is fully explicit and 0 = | is fully
implicit. The FCT limiter given in (5.4a) satisfies the first and last of these relations,
but satisfaction of the other relation (5.9b) in a rigorons manner has proved to be
more difficult. To establish souie bounds on the properties of the F(:T solutios. the
first step of the FCT is ignored for the time being. Given this, the worst cases fur Lhe
limiter are Q = 2r® or 2(1 — v)r*. Comparing the first of these cases with (5.9b)
gives

2
< o(1-0)]|al B

l
2(1-9)°

For the second of the two cases (only considered for 6 = 0),

2 2,

or
v <

2
; 2(|—v)<;—2.

(4] 4
v<].

‘Thus. even withom the first step, the new FCT algorithm is TVD under some condi-
tions. It is also unconditionally stable for fully implicit temporal discretization. The
first step adds more dissipation into the algorithm, which should result in higher CFL
limits for the first nse. Numerical experiments confirm this and show that the new
. FCT is TVD for ali CFL numbers less than one.

Talenak's FCT can be subjected to a similar test after a reformulation of its limiter.
(iiven the same definition as before ! /"**

Pod Po-
Q,’} = (Lfi__ﬁr_) ,

v v

(5.10)

whete 72 are defined as before. Using (5.9b), and again neglecting the fitst step, one
can show that
v<

— (5.11)

Thus, for a fully explicit approximation withcut the firs® step, Zalesak’s FCT is never
TVD. Howevet, as the degree of implicitness increascs, the algorithm becomes TVD
‘or some CFL umiebers and eventually becomes unconditionally TVD at 8 = 1. i one
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looks at the form of the limiter as the CFL number increases, the effective antidiffusive
flux reduces in an inversely proportional fashion. Therefore, at large CFL numbers,
Zalesak’'s FC'T is largely ineffective as a high-order implicit algorithm. Numerical
cxperiments have shown that with the first step, Zalesak's FCT produces resuits that
diminish in total variation up to a CFL number of about 0.95. Because the algorithm
described above does not meet all my goals, further improvements are sought.

5.2.3 A Modified-Flux FCT Algorithm

To attain these goals, the FCT is recast in the form of Harten's modified- lux TVD
scheme 161). From this basis several FCT limiters can be shown to be TVD by the
critetia given by [132), and the FCT can be written as a one-step method and extended
to use as an implicit algorithm in the same way as TVD methords are (I 10]. This will
be examined in 1the future.

The modified-flux TVD inethod is defined by computing cell-centered modified
fluxes and rmaking the overall flux upwind with respect to both the “physical® and
modified fluxes. Formally. the modified-flux formulation has a dissipation term,

°u} 2 [9) +9,0 - ( 9,4 + ‘7,,}) A,,;U] ' (5.12a)
Whete
g = minmod (u,_*A,_}u,p”’A”*u) ’ (5.125)
and
E—L" if & (]
Nep = L N, # . ‘5.'2‘)
otherwise

A mote general form of the minmod function is

minmod (a, b,n) = sign{a) max [ 0, min (n |a].sign (a) b},
min (ja] , n sign (a)8)] , (5.13)

which for n = 2 gives the Superbee limiter developed by Roe [176]. The function
#,+} can have several forms, including
I, .
Brop = -2-g-(a"’) . : (5 14al

or _ I . ,
[‘,’* = ,2 il,' (a”,) - aa"i] . » (5"‘b)

For 1 5.14a). the stability limnit depenvds on the forin of the limiter, for instance the
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general minmod limiter yields a stability Jimit. of
2
P
v = 2+n)(1 -0

for n < 2. The use of ( 5.J4h1 gives a stability Jimil of

vr<l1

for all values of n < 2. L'he second definition has heen recommended for explicit,
time-accurate solutions [61] [110)].

To formulate the FCT iu a siuilar forms, simply change the specification of the
limiter. The traditional limiter used with the FCT is effectively a cell-edged flux
rather than a cell-centered hix as needed for 1he modified-flux formulation. The
definilion of the antidiffusive flux must also be changed to a form more amenable to
this formulation. This requires a more thoughtful statement of the antidiffusive flux,
which can be easily incorporated with the type of formulation desired. For instance,
the second.order centra) diffcrence antidiffusive flux is

i %,1. (4,01) 3,1 (5.15a)
or a l.ax-Wendroff flux
= % [ (a544) “’“f+§lA:+i" . (5-15b)
or a fourth.order central differcnce
= l‘l’ la,4) Ajypu+ % (8,.4/ = 8;31) « (5:15¢)

which can be written
pap _ 1o ooy b
Fivy = 2w\aj+” a6+ = (2,-40, gu—6;,38;,3uj .

These forms can be incorporated with a new Jimiter that has the desired properties.
This limiter has the foflowing form:

Y S
TR\ R,y g

where Bivk is defined by (5.)4a) or (5.14b).
Analysis of this imiter for the second-order central-difference-based antidiffusive
flux fo§lows that of Sweby [132]. For the values of 0 < n < 2 in (5.16), the resulting
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Figute 5.1: The characteristics of the FCT limiters for the modified-flux formulation.

~limiter is in the TVD tegion of the curves shown in Fig. 5.1. For the value of n = 2,
the resulting limiter is identical to Roe's Superbee limiter [176]. Shown in this figure
ate the plots for n = | and n = L.5; the plot for n = 2 is identical to the upper
boundary of the second-order TVD region. The boundaries of the second-order TVD
“tegion are shown by the thick lines on the plot. These limitess are second-otder for
all n for r < 1/2 and also second-otder for r > 2/n. The only limiter of this class that
is always second-order is the n = 2 limiter. The definition of r follows from Sweby's

work.

5.2.4 Extension of FCT to Systems of Equations

The extension of the previously described methods to systems of hyperbolic conser-
vation laws is no siniple niatter. The FCT currently is extended to systems in the
simplest fashion. Traditional implementations of the FCT take the pressure terms
in F as source terms a:id are handled with central differences. This Icads to a pocr
reptesentation of the wave interactions and the tesults that follow are often less than
satisfactory. 4

The use of exact and approximate Riemann solvers offers a way through which
mote of the physical nature of the solution can be integrated into the solution p: >
cedure. To the authors’ knowledge no attempt has been made to iacorporate F..2-
mann solvers with any of the previous FCT algorithms. Using van Leer's Riem«nn
solver [60] [177), with Godunov's fitst-order method [56] [41] as the low-order method
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with the first modification of the FCT, is my first attempt to incorporate a Riemann
solver with FCT. While the results are better than the standard FCT implementation,
they are worse than the Godunov method alcne. To provide a more accurate and
tobust method, an approximate Riemann solver of the type introduced by Roe (63}

is used.

The implementation of these Riemann solvers relies on the following transforma-
tions:

A,,}u’ = ;':’50:4 , (5.17a)
where
4 = 2 ORY- SR (5.17b)
§) .
The numerical dissipation terms are then written as
o = 22 oy (@5eg) ady © (5.18a)
)0} = Zru’ ( 0} + .u}) (5.18b)
and
=22 1+ [9) ""9)0! "(ﬂ,” +‘7,”) ”] (5]&)
where '
g} = minmod (u)_ya}_y. 45, 4043) » (5.18d)
and A gt
-;.J—” if a4 #0
Py={ T VT (5.18¢)
0 otherwise

Given these expressions for the numerical dissipation, the flux limiters used in the ‘
modified FCT (and for that matter classical FCT) Fqs. (5.2),(5.42), and (5.16) are
rewritten to take advantage of these forms. When a monotone first step is required
with the FCT, Roe's first-order method (63] plus the entropy correction is used for
the low-order method. The antidiffusive fluxes for the k** wave are rewritien as

]
133 = 39 (asy) alay (5.198)
ot a Lax-Wendroff flux
1725 = 3 v hg) o (@) oty (5.19b)
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or a fourth-order central difference

1
= o )by + oty ehyeta) . 0199
For the classic FCT method, the flux limiter becomes

15y = S,pymax [0,min (|A3], 5,0 40700y S,ep0™lalyy)] - (5.200)
The new FCT limiter becomes

SEY = 5,0y max [0, min ([FAG]. S0 4304604 S,04ilsq8004)] 50 (5:200)
where
‘.‘:’5 = ‘b('.':o})
or
iy = () - o (ahy) -
The modified-flux FCT method beconies

minmod (n) = S,,’ max (0. min (%n l[,“’"’l .nS,,’p,_ ’o:_’) '
min (ny,,’ I°:+§|‘%“si*l,f-li)] y  (5.20c)

where

]
“:ﬂ =39 (“:09)

| 2

“:ﬂ = '2'[" (‘:ﬂ) -0 (":d) ] y
Again the FCT corresponding to the symmetric TVD schemes would require that
(5.20b) be divided by two and the fizst step of the FCT removed frtom the algorithm.
In the next section, the effects of these changes in the FO'T is pracnted and compared
with other standard methols.

It has come to my attention thai Harten hu developed similar ideas in [178).
These ideas are directly related to Harten's modified flux algorithm.

or

5.3 Results

To gauge the capability of the methods discussed in the previous sections, three test
problems were solved with the FCT methods and several other high-resolution finite-
difference methods. The other methods used are not described in detail here. The
first test problem solves a scalar advection equation, on a uniform grid. Two problems
are considered: a square wave and a sine wave over a complete period. Both waves
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have an amplitude of one. The second problem is the inviscid Burgers’ equation with
initial data of a sinc wave on a periodic domain with an amplitude of one. This
solution is compared with the exact solution and thc corresponding error norms are
used to show convergence and otder of approximation in these nurms for the various
mcthods. Finally, the shock tube problein used by Sod [41] is used as a vehicle for
comparison of these methods for their use with systems of hyperbolic conservation
laws.

The test problems are discussed in more detail in Appendix A. Specific differences
in the usc of the probloms is given in the discussion.

5.3.1 Scalar Advection Ejuation

For thie scalar advection of a squarc wave with a uniform velocity, the FCT performs
quite wel! with very little numerical diffusion present in the solution. These solutions
are obtained for a CFL number held constant at 1/2 after 80 time steps.

As shown in Fig. 5.2 (a), the square wave is captui~d quite well by the difference
scheric, however, there is a distinct lack of symmetry in the solution. ‘This lack of
symmetry is evident in this version of the FCT drsaite the choice of th: CFL number
(which should lead to symmetric tesults. ideally). This can be attributed to the use
of anti-upwind data by the limiter. This is mote evident in Fig. 5.2 (b), but also
»vident is the overcompressive nature of the scheme. The sine wave is in the process

" heing compressed into two square waves. This behavior is clearly unacceptabie
«- - wise the character of the waves is largely destroyed by this algorithm. Figure 5.3
.. =ws that the new FCT algorithm is somewhat more diffusive (less compressive) and
wee e mote of the expected symmetry in the solution. Figure 5.3 (b) still shows
kL .z this algorithm remains too compressive despite being TVD. One negative aspect
of 1tus calculation is the clipping of the extrema with respect to the previous figure,
al:tough overall this solution is superior in most respects to Zalesak's FC1.

By using the Lax-Wendroff fluxcs as the base for- the antidiffusive fluxes, the
povhlem of overcompression is eliminated from both algorithms. This is at the cost
af some clipping of the solution’s extrema. The clipping in Fig 5.4 is less than that
in £ig. 5.9, but at the cost of the symmetry of the soluticn. The lack of symmetry is
=aased by the use of a computational velocity rather than a physical velocity in the
liniter in Zalesak's FCT. Despite the dimensional consistency, this choice leads to
incorrec'. local propagation speeds when the local gradients aze chosen in the limiter,
thus destcoying the symmetry. The upwind bias is more evident in Zalesak's FCT,
but is present in both svlution techniques. This is caused by the first step of the FCT
for Zalesak’s algorithm, but in the new FCT, the use of the first step mitigates a lack
of symmetry. |

Figures 5.6 and 5.7 show the impact of the choize of n in the modified-flux FCT
formulation (and for that matter nther implementstions of Emiters). The lower value
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Figure 8.2: Solution of the scalar advecticn equation with Zalesak’s FCT with the
high-order flux defined by second-order central differencing.
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Figure 5.3: Solution of the scalar advection equation with the new FCT with the
high-order flux defined Defined by second-order central differencing.
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Figure 5.4: Solution of the scalar advection equation with Zalesak's FCT with the
high-order flux defined defined by Lax-Wendroff diflerencing.
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Figure 5.5: Solution of the scalar advection equation with the new FCT with the
high-order flux defined by Lax- Wendroff differencing.
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Figure 5.6: Solution of the scalar advection equation with the modifiéd-lyx FCT
(n =1 limiter). '
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of n results in solutions that exhibit a great deal of dissipation and clipping of extrema.
Fo: the n = 2, solution is of high quality with the clipping of extrema quite controlled.
Thizs solution nearly equals that of the other FCT forinulations for the square wave.
For the siue wave, despite some clipping, the overcompression has disappeared with
the character of the original profile well preserved.

The symmetric TVD algorithm (second-order in both time and space) produces
results similar to the new FCT, but with a lack of symmetry. This can be cured with
a predictive first step as with the FCT. As Fig. 5.8 shows, both exhibit a fair amount
of extremna clipping and lack of symmetry. These are similar to the results obtained
in Fig. 5.2 with Zalesak's FCT, but are more diffused.

5.3.2 Burgers’ Equation

1n all cases, the solutions obtained by using the high-resolution algorithms on Burgers’
equation are quite good in terms of quality. Little would be gained by simply viewing
their profiles (they are similar to the results in [110] for a TVD algorithm). By nature
these high-resolution methods produce results that are first-order accurate in the L,
norm and approach second-order accuracy in the Ly norm. In the next four figures
discussed, figure (a) is for time equal to 0.2 when the solution remains smocth, and
(b) shows the error norms (L;, L; and L) at time equal 1.0 after a shock has formed.
For the methods used, each is second-order in time and space with the exception of
the fourth-order FCT method, which is fourth-order in space. Second-order temporal
accutacy is obtained by using a Lax-Wendroff t:'pe formulation. These calculations
are all done with o held constant.

In Fig. 5.9 the solution for t = 0.2 converges ia the expected fashion, but at { = 1
problems are present with the convergence in the L., norm. As the grid is tefined, the
L, norm error increases rather than decreases as expected. As the grid size is further
decreased convergence resumes, but is quite slow (about order 1/4). Figure 5.10 shows
tirat the convergence properties of the fourth-order antidiffusive flux do not converge
at & fourth-order rate and are in fact worse than those shown in the previous figure.
The nonconvergence in the L., norm for intermediate grid sizes for the t = 1 case is
comparable. The new FCT algorithm shows slight improvements over both of these
cases, but still has the same difficulties after a shock has formed in the solution. As
stown by Fig. 5.11, the solutions convetge faster than Zalesak’s FCT, but are still
plagied by some of the same problems. This behavior is also shared by the symmetric
TVD's results in Fig. 5.3.2. The symmetric TVD does not converge as well as the
new FCT method, but the nonconvergence problem is not as pronounced although it
is clearly present.

The similarity of the solutjons for the two FCT methods and the symmetric TVD
algorithm, and the lack of such a problem in the modified-flux TVD method points
to the form of the limiter as being the problem. The FCT and symmetric TVD use
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Figure 5.9: Convergence of error norms for Burgers’ equation for Zalesak's FCT with
the high-order flux defined by Lax- Wendroff differencing.
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Figure 5.10: Convergence of error norms for Burgers’ equation for Zalesak’s FCT with
the high-order flux defined by fourth-order central differencing.
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Figure 5.11: Convergence of error norms for Burgers’ equation for the new FCT with
the high-order flux defined by Lax-Wendroff differencing.

15



0.1

(a)

Figure 5.12: Convergence of error norms for Burgers’ equation for a symmetric TVD

algorithm.

76



cell-edged lintiters rather than cell-centered limiters. This difference requires that
cach limiter lias a wider spatial stencil than ihe cell-ccutered limiter, and as a result
the resulting algotithni is not as scnsitive to the presence of a discoutinuity. This lack
of sensitivity results iu a poorer handling of shocks aud discontinuities. The FCT is
less diffusive than the syminetric TVD method, aud this lack of diffuston incicases
the problem. The resuits for the fourth-order spatial limiter point out two problems:
because the fourth-order spatial difference is more compressive than the second-order
difference scheme, the convergence difficulty in the Lo, norm at a shock is increased
slightly. Experiments with a second-order Runge-Kutta time integration scheme show
intprovements in the L; convergence of the FCT.

5.3.3 Sod’s Shock Tube Problem

The third problem involves the solution of Sod's test problem which tests the mettle
of each algorithm against a difficult physical problem. For the FCT methods [in
the modified-flux u = 1/2(|a! — 0a?))], the Lax-Wendroff flux is used to define the
antidiffusive flux. All results were produced for At = 0.4Ax and shown for { = 0.24.

Figure 5.13 shows that the results using Zalesak’'s FCT are rcasonabl:, but are
polluted with a fair number of nonlincar instabilities. These instabilities are sig:
nificantly worse if the limiter is based on a sccond- order central differences with
numerous small expansion shocks present in the rarefaction fan. Even with the ex-
tra diffusion produced by the Lax- Wendroff flux, an expansion shock is pregert in
the rarefaction wave and oscillations are present in the preshock region of the flow.
The overall quality of this solution is quite poor. The new FCT formulation produces
qualitatively better results that appear to be due to greater dissipation 31 the sches.e.
The expansion shock is no longer present. The overall quality of this solution is not
high because of the considerable smearing of the features cf the flow. In Fig. 5.14,
the results show that a great deal of smearing is present except st the shock wave
where the solution is very sharp. In both of these figures the prevsure-erlated terms
in the momentum and energy equations are incorporated as source terms rather than
as convective fluxes, and are central differenced.

By computing the first step of the new FCT with Roe's first-order scheme, and
using an approximate Riemann solver to compnt« the fux correction, the results are
extremely good. As Fig. 5.15 shows, the snearing of a standard FCT implementation
of the new FCT is gone, with the shock being computed with the same crispness.
The rarefaction fan is smooth and in good agreement witi: the exact solution. The
resolution of the contact discontisiuity is somewhat smeared but is azceptable.

The modifizd-lux FCT (Fig. 5.16) has slightly poorer resoluticn of the contact
discontinuity, but computes the shock in a sharper fashion. The ovetall quality of
the solution is nearly identical to the previous case. In this case the value of n = 1.5
was used on all three fields. Better resolution oi the contact discontinuity conld be
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obtainted with the n = 2 limiter. The final two figures are showit for comparison with
the previous figures. The symmetric TVD method (Fig. 5.17), gives adequate solution
although the amount of smearing exceeds that of the other niethods iacorporating
Roe's approxintate Riemann solver. The UNO miethod (implemented with a method
similar to the modified-flux TVD algorithin) was used to conipute the solution shown
in Fig. 5.18. This solution is of a quality similar to that found in Fig. 5.16 with
slightly better resolution of each of the features of the flow.

5.4 Concluding Remarks

The modifications proposed in this work ou the FCT algorithm of Zalesak have pr«.ved
to be quite successful in teris of performaiice and in terins of yielding a hetter under-
standing of Lthe FCT algorithm in general. These niodifications give an algorichm that
1s fo:: 'ly second-order it both tiigte and space. Also, the extension of this method
to sstems of equations is a good deal miore effective than the typical extension of the
FCT to systems. The notion that the FCT aigorithim for certain cases may be TVD
(subject to certain restrictions on the CFL number) is quite gratifying. It is perhaps
more useful to consider the flexibility of the formulation of this FCT with resp--t. to
a wider range of high-order fluxes. This gives the prospect of formulating solutions
that have higher orders of approximation than previously attempted and also have a
reasonable extension to systems of equations.

Future work includes the modification of the FCT to include MUSCL-type schemes
as well ..» the appropriate generalization of Zalesak’s multidimensional limiter to these
types of ™ :thods. As mentioned earlier, these methods, orce cast in the appropriate
form. can he used for implicit time integration where the necessary form is similar
to that foui.d in TVD implicit formulations. Tests on simple test problems indicate
that these mathods are unconditionally stable.

The initia’ motivation of this work was to tie together in a more coherent fashion
the various modern high-resolution methods for numerically solving hyperbolic con-
servation laws. This work should be considered a start, with the advances mentioned
above, as progress toward this goal.

The next chapter explores the topic of this chapter further. The link between flux-
corrected transport and high-order Godunov schemes is shown and explored further.
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Figure 5.13: Solution of Sod’s shock tube problem with Zalesak’s FCT.
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Figure 5.13: continued.
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Figure 5.14: Solution of Sod's shock tube problem with the new FCT.
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Figure 5.15: Solution of Sod's shock tabe problemn with new FCT with Roe’s approx-
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Figure 5.16: Solution of Sod’s shock tube ptoblem with the modifi. i.lux FCi and
n = 1.5 limiters on all fields.
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Figure 5.17: Solution of Sod’s shock tube problem with a symmetric TVD algorithm.
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Figure 5.18: Solution of Sod’s shock tube problem with a UNO limiter and a modified-
flux TVD algorithm.
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Chapter 6.
A Generalized Flux-Corrected Transport
Algorithm: A Geometric Approach

It is written in the language of mathenatics and jts characters are triangles,
circles, and other geowetrical figures without which it is hunianly impossible
to understand a single word of it; without these, one is wandering about in a
dark labyrinth. Gaileo Galilei

6.1 Introduction

The work of Godunov [56] has led to nany strikiug advances that have been made in
the nuinerical solution of (2.3a). In a series of papers, van Leer [120, 60) spearheaded
the modern developntent of 310G algorithmis. Godunov's mcthod and van Lecr's
extensions use polynomial representations of the conserved variables in cach grid
cell in the process of computing the solution. These piecewise polynoiials can be
discontinuous at grid cell interfaces and as such require some closurc at these interfaces
to compute the numerical fluxes. I'ypically this closure uses the local solution to a
Riemann problem through either an “exact” or approxiiate [63] Riemann solver.

Colella and Woodward (122] advanced the method developed by van Leer with
their PPM. This method is still considered a premier 1methods for computing the
solutions to (2.3a) [129]. Several theorctical advances have been made as well as the
more practical ones. Harten's theory of TVD schemes [130, 51) made great strides
toward understanding the theoretical properties of methods like van leer's and those
discussed below. Although these nicthods were first formulated as cither purely La-
grangian or Eulerian through a combination of a l.agrangian step plus a remap step,
these also can be used in a purely Eulerian context [123]. The niethods derived in
this chapter also can be used in cither of these forms, but the description found below
is presented in a purely Eulerian context.

Several different varieties of TVD methods have been introduced, such as the
modified flux formulation from Harten and several “syminetric” TVD schemes. Roe
introduced one form of TVD scheme [I131]. Davis [133] also presents a method of
the same general form. Sweby (132] and Roe [176] present a sisnilar method, but
the limiters are of an upwind.biased nature. Yee (134) christened these schemes as
symmetric TVD schemes. The general form of symmetric TVD schemes can be looked
at in several different ways: as an advanced form of artificial difiusion, a Lax-Wendroff
method [58] with an additional dissipative flux to eusure a TV1) solution, or a TVD
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method that is symmetric in its stencil whenever (ic limiter is not present. Another
view taken in this chapter, more closely ties this formulation to that introduced by
van Leer. This viewpoint has been used in the derivation of TVD methods by several
authors. The TVD analog to van Leer’s MUSCL, schieime was discussed by Osher (179)].

Goodman and LeVesque [135] took a geometric view was in deriving a TVD method.
sn am hoous cnund al.nna thaoa linraa parlmpho

Anovher modern advectisi algoritha alse cas b viewed along these lines. Perha
the first modern algorithm t« recognize the necessity of nonlinearity in the d:ﬂ'erence
scheme was the method of tlux.corrected transport (FCT) as introduced by Boris
and Book [59]. This method was developed with the recognition of the theorem
of Godunov, which states thal n¢ algorithm can be both linear and second-order
accurate. This theorem does not preclude the possibility of producing a “monotone”
second-order scheme, but siniply states that such a method cannot be linear in nature.
Thus, the FCT was a nonlinear blending of high- and low-order numerical fluxes,
which ensures the lack of disjrersive ripples. In a series of papers [59, 140, 141, 142, 62],
this method has been revisud and extended. The author recognized that the FCT
and the symmetric TVD of Yee were very similar it terms of form and could easily
be unified into a single general algorithm developc-d in Chapter 5.

At this point it is useful 1o delineate the difference between slope and flux limiters
more closely. This is done from the standpoint of a philosophical differentiation
rather than from a purely technical basis. “The slope limiters can be thought of as
being used directly during mierpolation. Flux limiting usually involves methods that
are classified as finite difference types. Thus slope limiting applies to HOG schemes
and the flux limiting applies 10 TVD and FCT aigorithms. One caveat can be placed
on this classification: it is not stringent. An cxample of this is the ENO schemes
from Shu and Osher [65, 66]. where fiux limiters are used. Previous work with ENO
schemes proceeded from the standpoint of slope .imiters.

In extending the methods to systems of equations, the TVD and HOG type meth.
ods use Riemann solvers. which bave many exceptional theoretical and aesthetic ap-
peals. The extension of FC'T. on the other hand. is usually extended in what seems an
ad hoc formulation [143, 144]. In Lagrangian coordinates this might seem somewhat
less so, as the splitting between sound waves and Buid motion is somewhat built in,
but the same principles apply as with the Euler »rquations (see Appendix B). In this
regard, i feel that there is no reason why ihe Riemann soivers, which have been so
successful with TVD type methods, cannot be used with FCT.

With this in mind, the generalization of the FCT algorithm from a geometric
point, of view is discussed bielow. This discussion alse holds for the symmetric type
of TVD scheme and serve as an extension of this method. Through the use of ideas
of UNO schemes, these algorithms are exiended to higher than first-order accuracy
in the maximum norm.

This chapter is organized into four sections. 7he second section first reviews mod-
ern high resolution algorithms. The geometric analog to the symmetric TVD scheme
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is then intioduced. This method is also extended from a linear to a quadratic re-
constrnction scheme. Uniformly nonoscillatory schemes are also discussed. Following
this presentation, results for the schemes de''cloped here are given for several test
problens: the scalar wave equation, Burgers' equation and the Euler equations. The
fourth section gives closing remarks and conclusions.

6.2 Method Development

In this section, the unified description of the symmetric TVD and FCT methods is
reviewed. [t should be noted that this is in a finite difference form, rather than a
finite volunie form. Following this brief teview, the finite volume methods as typified
by the Godunov and HOG algorithms are described. A tic between these methods is
drawn along the same lines as the modified flux TVD scheme of Harten is related to
the methods developed by van Leer. Several variants of the geometric FCT is given
along with their description and mathematical properties.

6.2.1 Review of Modern Advection Algorithms

in previous work, ] drew parallels between the symmetric TVD methods and the
various FCT methods [6). Specific parallels between the symmetric TVD methods
and the extension of the FCT as given by Zalesak ate concentrated on, with several
improvements suggested for the FCT methods.

The specific form of the symmettic TVD schemes for (2.3a) is

W =u] -0 (fiey - fy) - (6.1a)
where o = At/Az, Az = Ty0p =~ T, h At = " —(*, with

ij.’-; = %(I) +I)0|)+¢,0; ' (6.1b)

being the numerical flux; also defined are 2,4 = 1(z; 4+ z,44) and 7.} = 1(zj-1 + 1)
The term ¢:’+§ is the numerical dissipation function, which is the key to obtaining
high-order accuracy without dispersive ripples. For example, the form for this func-
tion for donor cell or upwind differencing is

|
4001 = 3 loing] Binyu. (62)

where a the characteristic speed 3//du, and A;,3u = ujyy — u,. If the method is
used to solve a system of equations, then some modification in the definition of the
above terms is in order.
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For the FCT, the overall dissipation function is defined by

FCT _ LDC A .

G4y = ¢’,+‘; + Ot (6.3

where ¢4 is the liniited difference between the a high-order flux and the donor cell

flux (or another appropriate monotone scheme). This term is also kuowny as the

antidiffusive flux. The symnmetric TV]) scheme has its dissipation function stated
as [131]

SYM _ 2 _ ,
¢:+§ - I(I“H%I - aa";) QH% I“u}l] 4, L (6.1)

where Q”% is a function of a the local gradients, A,_gu. A"%u. and A),g u where

A ,iu
il b (6.5)

r
1+l

The actual limiters used are described in detail in Chapter 8.

If the high-order flux used in the FCT is a Lax-Wendroff flux, these two methods
are virtually identical. To show this requires that the flux limiter used in the FCT be
changed slightly. 'he multipliers on the local gradient terms need to be changed froin
o' to |a] — a? as suggested by the anthor in the previous chapter. in that chapter,
parallels between both symnietric T'VD and the modified lux TVD schemes and the
FCT were described. ‘The redefined +*CT algorithm is shown to produce TVD results.

The modified TVD method is simply a finite difference analog to a second-order
Godnnov method like that of van Leer. For a scalar advection equation, the two meth-
ods arc identical if the slope limiter used in the HOG micthod is cquivalent to the flux
limiter used in the TVD scheme. A HOG method is described by Algorithm | with
the only difference being the order of the interpolation used in the reconstruction step
being higher than zcro. As stated earlier, this algoiithin can take the form of either
a totally Eulerian algorithm, or a lLagrangian solution (the local solution step) with
an Eulerian remap (overall solution step). Higher order schemes are produced with
higher order prescriptions (during the reconstruction step) for the function P;(z),
such as those produced by MUSC).. PPM, UNO or ENO mecthods.

6.2.2 Geometric Symmetric TVD and FCT Schemes

‘The 1.ax- Wendroff method [58] is the canonical classical second-order method. This
method produces second-order solutions, bt with spurious oscillations near discon-
tinuities, thus raising the possibility of producing negative values of positive definite
values such as density or pressure. With several observations about the L.ax- Wendroff
method and the symmetric TVD scheme (and its telation to FCT) a geometrically
based algorithm can be found. From the standpoint of algorithmic description, ge-
ometric depiction is particularly useful. Normally, the method of Lax.-Wendroff is
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Figure 6.1: A geonictric interpretation of the {.ax-Wendroff method is given. This
shows how this method consists of a simple linear averaging with an “upwind” cor-
rection to give time centered flux functions.

described as a finite-difference algorithm; however, it also can be described geometri-
cally.

It is well known that the second-order central difference scheme with forward Eu-
ler time ditf. rencing is unconditionally unstable. This can be casily verified with Von
Neumann stability analysis, but | proceed fromn a different standpoint. First, some
nomenclatuie needs to be introdiced. The flux functions for difference schemes of the
form are functions of the dep-ndent variables and can be written in terms of interpo-
lating polynomials. ‘Thus, given a piccewise polynomial, P, (z), that interpolates the
dependent variable u, the flux functions can be written

f, () = [[P(2)] . (6.6)

With this definition, the problem reduces to apnroximating the dependent variables
on a grid and computiug the value of the interpolant at cell edges.

The 1.ax-Wendroff in-thod was defined in Chapter 3. The symmetsic TV{) scheme
is thought to be the Lax-Wendrofl schicnie plus some upwind-biased, nonlinear nu-
nerical diffusion. The canonical upwind scheme is Godunov's method, which is based
on a geometric derivation. Combining this fact with the above discussion shows in a
heuristic sensc that the symmetric TVD) scheme has a grometric analog. Now | will
be somewhat more concrete in the derivation.

Lemma 1 The symmetric TVD method can be defined in terins of the reconstructive
polynomial

u, +3,,4(z-1,) i€ [z,.:"}]

P,(z) = . (6.7)

", +5,_; (z—1z,) ;z€ [z,_},z,]

which is always C' continuous, but not C° continuous unless for mstance .i,,; = %04
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Thes rquires that the edl cdge slope i 3 : be e fined by som« appropriate slope limiler.

Proof  For the scalar adve tion law, f (1) = au. the scheme derived from the
polynomal shown above can be vritten

i = {18 ) b ()] [P () (D]} e

The decision about whicl polynonnal to use at cach flux interface reguires the invoca-
tion of 1he <olution to thse Riemanny problens, which is simiply the upwinding principle
for the <alar case. Taking @ > 0 (the case where a < 0 1s analogous), (6.8) beconices

wy =y o a{s (0 (M) - s ()]} (6.9a)
and substituting the above definitions of :;' and .r,“. (3.13a) and (3.13b), gives
T ('-’3‘ R _ aA‘
r‘_I,’;——z—‘,J',_|—I,_ ——2—". (6.9b)
whicl in turn gives
, B ] / alt \
’,(J';‘) = |l,+.1,’§ \"’i—T-I’) ’ (6.9¢)

with I',’i, defined analogously. This equation can be simplified to

) Az, alt
I, (I,") =n + el (—2,- - *-,2—) . (6.9(’)
defining A;Eu = 4,433, and setting Ar, = Az,_y. These cquations can be written
as

u-'ul = l,;‘ - oa (u" u;'. l) + oa (l - '—,;-) (A:;u - A:*u) . (6.9¢)

J

Wring the cell edge flux for the above scheme gives
].,,; =an; +a(l - na)A:;u . (6.9f)
which can be rewritten as
j,.g = 3 (ll;' + u;',.) - lalA,,,u + (Ial - aa’) A::;u , (6.9g)

where .\,:} u can be written Q"%A” pu. This is simply the symmetric TVD scheme
as given by (6.1h) with (6.4) and thus is also a geometric analog to the FCT algorithm.
]

In {134], the conditions for the above scheme to be TV are stated. By writing
Sep as QUrourt s,y Q. the conditions are modified to include the effects
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Figure 6.2: 'The symuetric TVD schemes geonietric analog is similar to the Lax-
Wendroff mecthod, with the major difference being the limiting of the slopes. This
leaves the scheme with C'! continuity, but not ("° continuity.

of the time centering of the fluxes (8 = 0, explicit scheme using forward Euler time
differencing) and are written as

Q4 < 13y' (6.10a)
Q)#i Q)O’ 2 2
p- or —+ SV(I—V)-I—V' (6.10b)
and
v<l. . (6.10c)

This assumes that both Q and Q/r are positive. Without these assusuptions the
conditions above take a more complicated form, but allow a slightly larger set of Q
functions.

Figure 6.2 shows the pictorial represeration of this scheme. For the scalar wave
equation, this inethod and the classic symmetric TVD are equivalent, but for nonlin-
car problems the two methods are as different as Harten's modified TVD is different
from the corresponding MUSCL scheme.

6.2.3 Parabolic Symmmetric TVD and FCT Schemes

If one proceeds along this line of thought and considers a polynosuial approximation,
it is notable that three conditions exist for each grid cell in the above scheme, and
that one degree of freedom is not fully utilized. These conditions are

dp, . dP, .
e =090 (1,4) = ey 0 ) =y
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thus & unique parabola cai be fit in cach cell. “Tabing the form
l',(G):A,(:—:,)’-ﬁ»ll,(z—:,)+(.',. (6.11a)

the coefficients are defined

L
4, = A3 LS | iG.11k)

23z, )

s + 3,
B, = ’_':2_’1' (6.11c)
aml
(,=u,. (6.11d)

Thus. the interpolant can be written for completeness:

S+ s -5 _
P,(O):u,+(’—‘-—,z—’1i)(:—x,)+( ”231’ )(x-x,)’.
: J

This polynomial describes what [ call the parabolic FCT when used with the convec-
tive algorithin described by (6.8). It should be noted that the teinporal integration
can he accomplished by other means such as a multistage algorithmn.

| now seck to prove under what conditions this algorithm produces TVD) results.
These conditions define the allowable values of the cell edge slapes. 5, L

Theorem 6 The parabolic symmetric TVD and FC('T method dericed above 19 TV

under the follouang conditions:

1. If the slopes .6,*; can be of opposite sign, the funcltion Q(r° . 1,r*) must be less
than or equal to |4/3].

2. If the slopes .i,q are required to be of the same sign. the function Q(r~,1,r*)
must be less than or equal to 8/3.

Proof. For the followirg proof, only the spatially accurate case is studied. thus to
some cxtent this study is limited to the semi-discrete version of the equation. Thus
the TVD conditions [180] shown above are simplified to

Ou .
5‘- = («,A,,’u - D,A,_}u . (6.123)

¢, D, 20. (6.12b)
For time integration typically a l.ax.Wendroff or Cauchy:-Kowsaleski procedure is
applird. which in some sense is characieristic tracing. Runge-Kutta algorithms also
can e used, althongh for the cortesponding composite algorithm, the Runge-Kutta
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methods are not classical in form [160]. ln general, careful analysis must be applied
to deterniine the stability requirements.

Exaniining the case where a > 0, with the case where a < 0 yiclding equivalent
results. Given this characteristic spced, (6.)2a) with (6.11a) becomes

3 = a5 =) =a[(gher +ghr) - (o1 +50r)] - 6

Setting C, = 0 and rewriting the above equation in a form amenable to analysis

produces Q Q

It should be noted that all the three parametcr limiters that would be used with the
above forinulation are a function of 3, T, and t..c Q nnuters are function conser itive
gradients [132, 176]. Putting this form isto the form uselul for analysis and using the
TVD conditions discussed above

= [+ (522t -0,y - §351)| 20, (6.15)

8 rt

allows the proper conditions on Q (u) to be established for TVD solutions. If I set
Q,_’ Jrt = Q,_’ as a bound and simplify accordingly, the above condition becomes

3Q,sp 3
a [1 + (g—ir_ -39 )] »0. (6.16)
This simplification seems a quite rcasonable bound in lig: - of the functiona! form of
the flux/slope limiters.

For the fitst of the two cases, the proof is

3 Q)+ ‘ ”
- (Q,_* - _;,—i/ S, (6.17)

which gives the condition that |Q (u)] < */3. This corrcaponds to the limiter of the
“minbar” type that is defined by

f

aa |a| = inf (la). |8, D)
Mo =4 ab |8 =inf(la], 8. ) - (6.18)

ac otherwise
l

whete a is a constant that is 0 < a < 4/3 to produce a TVD solution.

Before going onto the second case, certain caveats should be applied to this class
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of limiter. Although the “iniubar™ limiter is a TVD limiter in the sense of Harten's
definition of TVD schemes, it is not a classic “monotonicity” limiter, similar to the
type derived by van lLeer [120, 60], and thus has soine fewer favorable geomietric
properties. The act of not necessarily clipping at extrema yields constriction of new
extrenta ncar extrerua, in the data, which are not necessarily physical. This may
not be much of a problem if one takes the ENO philosophy of simply secking the
smoothest available interpolant within some local support. Nevertheless, care should
be taken in applying this lintiter as the results section shows.

The second case proceeds rimch in the same way and yields a class of liiters that
arc very similar to the “classic™ TV lintiters. For the abuve-stated conditions for
positive definite values cf Q (u) changes the forin of (6.17) to

Q.1 <1 (6.19a)

and

8 "%Sr'. (6.19b)

which gives a limiter such that 0 < Q(u) < 8/3. in the same fashion as TVD limiters,
the conpression applicd by the limiter grows with the increasing value of the limiter

maxintum. Thus the limiter associated with the scalar, 8/3, would correspond to the
“superbee” limiter defined by Roe [176). O

A three-paramcter limiters of the form discussed carlier are within this class. In
addition, some general useful forms of this class of limiter would be

Q =m [1 '3'3 -r - (r + r’)] (6.20a)
and
Q¢ =m [3 :3- g % (r + r’)] : (6.20b)

The order of accuracy of the limiters discussed above provides tl.c parabolic FCT
algorithm. To do this, the methods described by Sweby [132] will be used. Without
difficulty it can be shown that the same region of the limiter curves can be obtained
if the limiters discussed by Sweby are multiplied by 4/3.

A problem with this method common to all typical second-otrder (or higher) TVD
methods is that they are order one accurate in the L, norm [64). To overcome this
requires that the method be reformulated.

Using the upwind, two parameter limiters in conjunction with this method would
violate the assumption made is simplifying (6.15) to (6.16). From a heuristic stand-
point, this would imply the use of data at points downwind of the limiter's stencil,
which would lead to instabilities.
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6.2.4 UNO Symmetric TVD and FCT Schemes

To give the method described in the previous section, higher than first-order accuracy
in the 1. norm, the symmetric and parabolic schemes are redefined by changing the
forin of the slope lintiters.

The following leunia motivates the first of these proposed schemes:

Lemma 2 The interpolant defined by (6.7) intcrpolating in the interval [1,_;,1"}]
has a local mazimum or minimum in this interval if and only is the slopes, 5,_% and
.i,” are opposilc in sign.

Proof. 'To prove this, take the derivative of the polynomial defined by (6.7) giving

dP(z) _ | iy 2 €z, pn)]

dx 3,01 ze[z,.z,,%] .

(6.21)

A monotone pieccwise interpolant has the same sign across the interval it interpolates.
If the derivative changes sign in the interval, an extrema cxists in that interval. Simple
inspection indicates that to produce an interpolant with a extrema requires that the
cell-edged slopes differ in sign. This shows that 5,,;3’,_; < 0 produces an extrema
in the local interpolant. 0

Corollary 1 (Lemma 2) If the slopes defining (6.7) are of the same sign, the in-
terpolant is monotone on the interval z,_,.z,,;].

Proof. To state that the interpolant is not monotone on this interval would con-
tradict Letmna 2 and the definition of monotone interpolation (in a local sense). O

Lemma 3 The parabola defined by (6.11a)-1(6.11d) interpolaling in the interval [:,_ 12,4 %]
has a local mazimuin or minimum in this inlerval if and only if the slopes are opposile
in sign.

Proof. ‘Tu prove this take the derivative of the polynomial defined by (6.11a)

giving . . . .
dP(z) _ (s,.; - s,-i) (r—z;) 4 22b 5t (6.22a)
2

dz Az

By sctting the derivative to zero the local minima and maxima can be found by
Az (3,44 +3,-1)
2(3)-4 = 3504)

By setting the ronditions for a local extrema to lie in the interval

.
I —1,"‘

1’,,;51'5.«;,’§. (6.22b)
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‘I'he values for the slopes that satisfy this inequality can be found through substitution
giving
5,_; >0, 5,,; <0, (6.22c)

and by using synunetry this iniplies that
.i,_% <0and .i,,; >0 (6.22d)

also satisfics the inequalities. As with Lemma 2, this shows that 5"53,_3 <0
prodnr-es an extrema in the local interpolant. In addition, this inequality shows that
if the signs of the slopes arc the same any local extrema, lies outside the interpolated
interval. O

Corollary 2 (Lemma 3) If the slopes defining (6.11a) are of the same sign, the
parabola is monolone in the interval I, 15

Proof. ‘o state that the interpolant is not monotone in this interval would be a
contradiction of Lemma 3 and the definition of monotone interpolation (in a local
sense). O

This niight cause one to assume that the minbar limiter would suffice here to
provide the correct slopes near minima or maxima in the data. But, one problem is
that the three paranteter form of the minbar limiter also would allow extrema to be
found in cells where no such extrema exists in the data (to the left or the right of a
true extremna).

Definition 4 (Harten and Osher [138]) Non-oscillatory interpolation is defined
by interpolation P, () that has its number of eztrema in an interval that is not ez-
ceeded by the local cxtrema in the data, u(z).

An UNO type scheme can be drrive-d oy considering a formulation that is close the
original UNO scheme. These scheines are also motivated by the desire to have a better
grasp on higher «rder accuracy with the parabolic formulation. { begin by defining
second-order accurate candidate slopes for the limiters. Consider the determination
of 3,010 which requires candidate slopes s;_;, 8} and 3s4 The candidate slope
3,01 is already second otder in its standard form,

Uyyy — U

3,4 = 2 —2, (6.23a)
because it is a centered approximation about Zis} but the other slopes are not.
In order to make these app-oximations sccond-order at z,, jr @ corrective term is

needed. 3y expanding the definition of 3,44 in a Taylor series about z,.} and e
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the following approximations are found:

ey =94+ Az, g: +0 (A:}) . (6.23b)
x,_’
and y
s
ey == Onm -l 40 (az3,,) . (6.23¢)
£10d

where Az, = I, — %,

Theorem T The method for polynomial reconstruction described by (6.7) or (6.11a)
are uniformly non-oscillatory by Definition § if the cell edge slopes are prescribed as
Jollows:

5,_; =m (s,_; + .1;_%Ax,_|,s,_§,s"§ - s;’iA:r,) , (6.24a)
and

5,’% =m (8,_% + 8;_%AI,.8,’*,8,+* - J;’*Alrn) ' (624b)
where s' = ds/dz is defined in a consistent fashion.

Proof. For this proof, as before, § must show that the extrema in the polynomial,
P, (z), coincide with the extrema in the given data. As stated in Lemiras 2 and 3,
an extiema can only occur if 5,_13.,.1 < 0. A condition in the dataof s,_1s..1 <0
-4+ 1-1954 4
also signals the presence of an extrema in the data.
The consistent forms for s’ considered here ate

. S)et ~ ek e —9,-) . [2i4] T el 3,44 T 3-1
| -m( Ar ' Ar orm Az ' Ar ‘

(6.25a)
with a similar function for ’;‘5' 93_; and ’;ﬁ' The limited slope functions (6.24a)
and (6.24b) can be written in a form similar to the Q functions introduced eatlier:

j,_¥ =m (r' + .’_’;{Azi_"hr’ - ’,—’iAI,) 3,_% ’ (6.25b)
3,-4 3,-}

and
s s
.i“,'_ =m (r' + :’-:—:Az,, 1,r* - ﬁ’Az,,,) N (6.25c¢)
) j

These functions take on the same sign as 3,-} and LAY respectively, by the definition
of the minmod limiter. Thus an extrema in the interpolant exists in the interval only
if the extrema exists in the data by Lemmas 2and 3. O

Remark 21 Each of the methods discussed above can be used as an implicit algo-
rithm. The theory surrcunding the TVD methods [130. 61] gives a firm basis for
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implicit solutions and this basis follows to the application of the mcthods presented
here.

6.3 Results

The results section of this chapter shows the strengths and weakucsses of the algo-
rithms described above. The scalar wave equation should reveal the basic properties
of the solution scheunss in a simple setting. These properties hold with the use of
the method in mor. complicated situations. Burgers' equation provides results for a
nonlinear equation as well as convergence results, which show the order of accuracy
obtaiucd by the method. Finally, the Euler equations provide an indication of these
algorithms performance with problems with systems of equations. For the remainder
of the discussion, the following nomenclature is used:

o the standard gcometric analog to the symmetric TVD scheme is denoted by the
name sys:mnetric,

o the parabolic variant of this method is denoted by quadratic

o the UNO modification of the symmetric method is denoted as the symmetric
UNO, and

e the UNO mndification of the quadratic method is denoted as the quadratic
UNO.

A detailed account of the test problemis used is given in Appendix A. Specific
details of their use is given helow.

6.3.1 Scalar Wave Equation

To begin to assess tlie algorithms presented here, a simple standard test problem was
solved. On a domain of 100 equidistantly spaced cells, a squate wave 10 cells in width
is advected at a unit velocity with periodic boundary conditions. The CFL number
is held at 1 and the solution proceeds for 300 time steps.

The symmetric scheme performs with the lowest resolution of the schemes dis-
cusscd here and has some symmetry problems as shown in Fig. 6.3. This sort on
unsymmetrical behavior was noted by Munz [181] in a study of solutions to two-
dimensional problerns by high-resolution methods. This lack of symmetry is some-
what alleviated by the use of the quadratic scheme (sce Fig. 6.4). The UNO-type
methods both give significantly better solutions in terms of preservation of maximum
values, but also give rise to some controlled oscillations (see Figs. 6.5 and 6.6). The
quadratic method provides both better resolution than the symmetric scheme and
also shows innch better solution syrimetry. art of this incecase in resclution can be
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Table 6.1: Order of accuracy in several norms for the schemes solving Burgers' equa-
tion when the solution jis smooth.

Scheme Ly | L | i
Symmetric 1.83 1 1.53] (.19
Quadratic 1.88 1 1.61 } 1.25

Symmetric UNO | 1.94 § 1.65 | 1.07
Quadratic UNO | 1.97 | 1.60 | 1.02

attributed to the iore compressive forin of the limiter used with this method (Q4/s
rather than Q, and Q3 rather than Q;). When the sanic limiter is used in each
scheme, the solution is only slightly better with the quadratic scheme; however, the
quality of the results remains iinproved with respect to symmetry.

6.3.2 Burgers’ Equation

The solution of Burgers® equation .. hese methods can provide more information
concerning the behavior of the alge ithims. By zomputing the error as compared with
the exact solution an order of accuracy can be obtained.

When the solution is smooth, cach of the solution methods is well behaved and
gives convergence at expected rates as shown in Table 6.1. The UNO solutions ace
the most accurate and have the lowest error as well as the highest rates of conver-
gence (especially in the L; norm). When a shock has formed, this situation changes
in several respects. All the methods converge more slowly, but the UNO schemes
converge mor~ slowly than the simpler symmettic and quadratic schenies (see Ta-
ble 6.2). The L, norm also shows a “kne.” in each case. This signals a slowing in
the rate of convergence beyond a certain grid spacing. These results are summarized
by Figs. 6.7-6.10.

For times after t = 1.0 the UNO solutions resume their initially high rates of
convergence. The behavior shown near ¢ == 1.0 seems to be temporary and limited
to a short period near the formation of the shock. The poorer convergence may
be related to the width of the finite difference stencil used in these schemes. This
behavior was noted in [6] and was noticeable for schemes with three rather than
two parameter limiters. The effect of the three parameter limiters is to increase the
support of the interpolation at each cell edge. This increase is nol accompanied by
a subsequent increase in accuracy and because a minimum principle is used with the
limiters, the effect is to lower otder of accuracy due to the limiter over a wider set of
grid points.
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Figure 6.3: The solution of the scalar wave equation by the symmetric niethod using
both a noncompressive, Q;, and compressive limiter, Q,. The Q; (6.3a) limiter
produces a solution which is significantly better than a first-order upwind solution,
but exhibits excessive smearing from diffusion. The compressive limiter (6.3b) shows
an improvement in the solution as a result of reduced diffusion. Both solutions exhibit
some Jack of symmetry which is indicative of this method.
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Figure 6.4: The solution of the scalar wave equation by the quadratic method using
both a noncompressive, Qq/3, and compressive limiter, Qs/3. Again, the noncompres-
sive limiter produces a solution that is diffused by comparison to the solution found
with the compressive limiter (6.4b). Both solutions have improved symmetry when
compared with the symmetric method.
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Figure 6.5: The symmetsic UNO solution shows a marked increase in the preser-
vation of the maximum value; however, the effects of a lack of symmetry are also
evident. Both solutions exhibit a leading phase error greater than that present with
the symmetric scheme.
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Figure 6.6: The quadratic UNO scheme gives maximum values slightly greater than
the maximum value of the initial distribution. The leading phase error present in
the symmetric scheme is improved somewhat. The compressive limiter gives the least

additional resolution in this case.
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Figure 6.7: The symmetric scheme gives good, well-behaved convergence when the
solution is smooth (¢ = 0.2), but when a shock forms (¢ = 1.0), the error grows by
about an order of magnitude and the L., norm’s curve has a “knee” in it indicating
a reductjon in the order of convergence.
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Figure 6.8: The quadratic scheme has better accuracy in general than the symmetrsic
scheme, but after the rhock forms the “*knee,” the solution is somewhat more severe
in nature. For a small range of Az's the solution actually diverges.
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Figure 6.9: The symmetric UNO scheme has better accuracy than either of the pre-
vious methods. The convergence after the shock in the L, norm is worse, however.
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Figure 6.10: This scheme is the most accurate of the schemes shown here, but the
t#havior associated with the Lo, norm at ¢ = 1.0 is worse. Despite this, the solution
vas more accurate in every tzstm than any of the other methods.
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Table 6.2: Order of accuracy in several norins for the schemes solving Burgers' equa-

tion when the solution contains a shock.

Scheme l.| ’.-) l o
Symmetric 1.48 { 1,191 0.78
Quadratic 1.53 | 1.06 | 0.55

Symmetric UNO | 1.50 | 0.99 | 0.39
Quadratic UNO | 1.39 | 0.89 | 0.36

6.3.3 Euler Equations

Two test probleins are used to test the inethods on the solution of systems of equa-
tions. In hoth cases only the density solutions is given. For the shock tube problem,
an exact solution cxists and is used for comparison. In the second case, a blast wave
problen, no exact solution exists, thercfore a converged nusucrical solution is used
for comparison. This solution is computed nsing a MUSCL. schenic with a Superbee
limiter on t e lincar y degencrate ficld and van lLeer's limiter on the two nonlincar
ficlds (sce Chapter 8). Two thousand equidistantly spaced grid points are used with
a CFi. number of 0.95.

The results for these problems are given in Figs. 6.11 6.14. In gencral, the re-
sults of the previous section hold up for these problems. The symmetric scheime (see
Fig. 6.11) gives the lowest resolution results, while the quadratic UNO schieme (sec
Fig. 6.14) gives the hest results. The syminetric UNO scheme: gives good resolution,
»ut also suffers fron some nonlincar instability resulting in oscillations. These oscil-
lations are associated with the end of rarcfaction waves as shown by Fig. 6.13. Both
of the quadratic methods give better resolution of shocks and contact discontinuities
than their symmetric counterparts.

in the shock tube problem, the solutions are all very similar with the resolution
of the contact discontinuity heing the primary difference between the methods. The
quadratic UNO micthod also improves the sniearing of the rarefaction wave. In the
blast wave problein, all the methods teproduce the left of the two density peaks and
all of them destroy the contact discontinuity to the left of that peak. The primary
differences arc in the atea of tesolution of the right density peak and the degree of
filling in of the rarefaction between the peaks. In both cases, the quadratic UINO
scheme excels by comparison.
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Figure 6.11: The solution of Sod's shock tube problem by the symmetric scheme is
quite good except for some smearing near the contact discontinuity. The solution to
the blast wave problem shows several important features also related to the smearing
of contact discontinuities leading to the clipping of the right peak and the nearly
ccmplete loss of the discontinuity at X = 60. The filling in of the gap between the
peaks results from smearing in rarefaction waves.
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especially noticeable at the shock in Sod’s problem and in the left peak and rarefaction
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be seen 1o the left of the contact discontinuity in Sod’s problem. The results for the
blast wave problem are quite impressive except for the dip to the left of the left-most

contact discontinuity.
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6.4 Concluding Remarks

This chapter has presented an extension of the previously derived symmettic TVD
methods to a geometric analog very similar to MUSCL type methods developed by
van Leer. This extension has also enabled the derivation of new mecthods involving
patabolic interpolation and the ideas of uniformly non-oscillatory methods. Through
the symmetric TVD method’s connection to flux corrected transport methods, these
methods also tie that group of algorithms more closely to other modern algorithms.

These methods have been used to solve several test problems and have proved
successful behaving as expected. Each of these newly derived method represent and
improvement over the symmetric TVD method.

The topic of limiters to use with FCT methods is concentrated on in the next
chapter.
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Chapter 7.
FCT Limiters

A new way to pay old debts. Phillip Masiinger

The limi. ers used with FCT algorithius fall into two categories: the classic type
developed by Boris and Book and the generalization of Zalesak. ‘I'his study started
as an attempt to explain the less than stellar perforinance of the FCT schemes on a
varicty of problems and expanded in scope from there.

7.1 Classic FCT Limiters

‘The limiter used in the FCT methods developed by Boris and Book is nearly identical
to the miamod liniiter discussed in Chapter 8. The inain difference is the nature of the
arguments applied to the limiter. These argnments are the local gradients multjplied
by the inverse grid ratio (Ar/At) and the antidiffusive flux. This snakes it a three
argument limiter with support identical to that fonnd in the symnmetric TVD scheine.
The classic FCT limiter is

m(fiyy 07D, qia™ B, 0) . (7.0

This limiter can be analyzed by assuming that j:*§ = 1la| A, pu and factoting
) la| out of the FCT limiter and writiug the result in a ratio form

QreT (,-", I.r’) =1m (I.2v‘ r',2v"r‘) . (1.2)

in this equationr~ = A,_;ll/A,,%ll andrt = A,,glllA,,%u. This forni is equivalent
te. the form used for three arginuent TV1) liiiters as was discissed in Section 8.3.3.
By iuspection. one can see for v # | this limiter is not TVD because its result
is larger than two and that the resnlt grows infinitely large as v | 0. Figure 7.1
shows the limiter for two values of v. The limiter is not TVD for explicit time
differencing. This does not account for the stabilizing influence of the diffusive step
in the solution algorithm. in Section 8.3.5, the ULTIMATE limiter is discussed. It
has some similarity to the FCT lintiter and as such the experience with the FCT can
carry over.

As discussed in Chapter 5, this can casily be modified to tid the scheme of the
need for an antidiffusive step by changing the limiter to

LTV R WEUNTRRT: WeT) I (7.3a)
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where

p=lal, (7.3b)

or

= la| - va. (7.3c)

An entropy correction as described in [182] can be applied to these definitions. This
modification makes this scheine TVD and significantly improves its solutions espe-
cially for systems of equatious. This formulation also allows the FCT to be used as
an implicit algorithm in a siinilar inanner as other TVD algorith:ns.

A sccond formulation based aronnd the modified flux TV1) scheines was also given
in Chapter 5,

mintmod (a, b,n) = sign (a) max | 0, min (n |a|,sign (a)b),
min (|a|,n sign (a)d)] , (7.4)

which for n = 2 gives the superbee limiter developed by Roe [176]. To get the
implementation correct in the sense of a FCT micthod this becomes

minmod (n) =sign (ﬂﬂ) max [ 0, min (%n I/)""’;I , NSIgn (j,',’) o _;A,_’u) ,
min (na"% IA#}“I : %nsign( 0}) ]"D) ] (7.5)

This scheme is closer to the moditied flux TVD formulation and produces a family of
limiters shown in Fig. 5.1.

7.2 Zalesak’s Generalization

Zalesak (62 redefined the FCT limiter to make it more general. The resulting lim-
iter is nearly identical to the original FCT limuiter in onc dimension, but has a true
multidimensional form. Zalesak also made the prescription of the antidiffusive fluxes
more general, with the definition bcmg simply stated as the difference between the
low- and high-order fluxes, f” = j o j"’ The low-order flux, j" AT could be

any monotone numerical flux and the high-otder flux, f# )+} could he specified by any
high-order flux.

Algorithm 3 [Zalesak’s fluz limiter [62]]

1. Sum all antidiffusive fluxes going into, AY, and out of, 47, a cell. In onec
dimension this is expressed as

/I;' = fnax (fg‘,;.O) - nun (f;%.ﬂ) . (7.6a)
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Figure 7.1: The classic FCT limiter is shown for v = 0.25 in Fig. 7.1a and v = 0.5 1n
Fig. 7.1b. Both of these figires show that where r* < | the limiter is very compressive,
but not second otder in nature.



and
A; = max (f#,4,0) - min (fs_,,0) . (7.6b)

2. Find the maximum, u™*, and minimum, u™* values locally, and define

M} =07t (U - 4;) , (7.6¢c)

)

and

M-

)

=0} (t’c,- - u"'"') . (7.6d)

g

For example u™* and uf™® could be conipnted with the following relations:

u™t = max (§,-y, 4;,;41) (7.6¢)
and
u;"‘" = min(fc,_,, l:l,', l.l,",) (7.6‘)
3. Compute
Rt =m(1, M} /A}) (7.6g)
and
R; =m (1, M} /4;) . (7.6h)

4. At each cell edge, k, on the cell, j, compute
C: = min (R}, Ry) , (7.6i)
if f,‘ 2 0, otierwise compute

C: = min (R,’ R ) . (7.6))

5. Finally, f€ = C\fA.
6. Zalesak also states some quality-enhancing corrections based on previous expe-

rience with the FCT
Ciey =0, (7.6k)
if
ii.o} (Bjes — G;) <0, (7.61)
and
Jouy (8= 8,201 <0 or f3,y (Bjsa=Gyer) <0, (7.6m)

The mociiy:ations made in the previous section can be applied to this limiter
rather easily with by changing 0! in step 2 to o as defined in (7.3b) or (7.3c). This
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change also allows the diffusive first step to be avoided withont negative consequences.
T'he resnlting algorithsn is given below.

Algorithm 4 [Zalesak's modified flur limiter]

-

;o acell.

I. Sum all antidiffusive fluxes going into, A}, and out of, A

2. Find the maximum, u7**, and mininmng, u;""' values locally, and dcfine

M} o= p(um - ) . (7.7a)
and
My =g (u) —u") (7.7b)
3. Compute
1 =m(16MAY) (7.7¢)
and
B =m(1.M/A]) . (7.7d)

4. At each cell-edge, k, on the cell, j, conipute
Cy = min (I}, R7) , (7.7¢)
if f# > 0 (the antidiffusive flux f} — f£), otherwise compute

Co = min (R}, K;) . (7.7)

5. Finally, f€ = C.f8.

6. Use the quality cotrections substituting u, for 0, .

Lemma 1 For a second-order spatially accurale high-order fluz, the Zalesak's modi-
fied fluz timiter produces a scheme equivalent to a symmetric TVD scheme with a Q
Junction of

fo{ = m(2uA,_’u.uA”’u.2uA”'u) . (7.8)

Proof. For p defined by (7.3b), the appropriate high-order flux is the second-order
central difference flux. For u defined by (7.3c) it would be the Lax-Wendroff flux.

For both cases,

j;’% = “EA"*“ N (79)
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if the antidiffusive flux. When u, is a local maximum or minimum, then the limiter
produces a value of zero. | proceed assuming that u is monotone and increasing on

the interval [z,_1,2,43). This inter:al is also used to determine uT" and u™*. The
case where u is monotone decreasiig is similar. Cuzsidering cell edge j + 1, ])" R 0,
thus | must find R}, and R;. In this case A] = ]:"’ and A}, = .;*}’ (A; = A},).
Because u is monotone increasing, ™™ = u}_, and uTyy = ul,,; thus M), = A, hu
and M; = A, - u. From these telations and the formulas for A" and R}yy, it can L
seen that

. M- M}
C"; = min (1'7?'71-?:_:-) . (7.10a)

Inspection shows that the terms in this limiter are identical to those asserted if the
limiter is written in ratio form. When coribined with the conditions for a local
minimum ot maximum, the minmod limiter is:

Cc

)

s} = %m (l,2r',2r’) . (7.10b)

By checking the form of the symmetric TVD schemes, it can be seen that this has
the form of an upwind flux plus some second-order centrally diffetenced high-order
flux multiplied by a limiter (see Section 4.5). Subtracting the low-order flux from the
symmetric TVD flux gives (fur u = |a] — 0a?)

:;?'D = [(I“J*}I - ”“}0)) Cn}] Au}“ ’ (7.10c)

equating terms gives the desired result. A similar result is obtained with o = |a]. O

Remark 22 For higher order spatially accurate fluzes, the qualily factors imposed
at the end of the limiler become important (see Algorithm 3). These faclors make
sense in a heuristic way and definitely improve the limiters performance, but the
properties of limiter are more difficull to determine in this case, although it appears
to be TVD from ezperimental evidence. For the second-order case discussed in the
previous lemma, these faclors are immaterial.

This scheme is TVD in one dimension under the conditions stated in the following
theorem:

Theorem 8 Zalesak's modified fluz limitler with @ second-order spatially accurate
high-order fluz is TVD under the following conditlions

1. The values of uP** and uj™ rre taken from the set of points u}.,, u}, and uy,,.
2. For o defined by (1.95), Jv| < L.
3. For o defined by (7.3¢), |v] < 1.

125



Proof. “the conditions for a scheme to he TVD are given in Theorem 6. Using
the resnlts from Lennna |, the proof can proceed from the standpoint of proving that
a given limiter produces a TVD scheme. “To ease the analysis, Zalesak's liniter is
written in the form cquivalent to a syupuetric TV schee (see Lemma 4):

Crop = Q1 =m(2r . 1,200, (7.11a)

where r¥ = M2 /A2 with A and M defined by the moditied FCT flux limiting algo-
rithim. As given in [131], the conditions for this limiter to assure a TV algorithm
are

Q1 < 2. (7.11b)

-2, (<.llc)

<Tlts

L‘?‘
- V
A
RitS

-2, (701d;

and
v<l. (7.14c)

These conditions should he compared with those given in Section 8.3.3. The condition
(7.11e) is casily met as is (7.11b), regardless of the definition of p. For o = ||, the
conditions of (7.1Ic) and (7.11d) result in a limiting CFi. number of v < 1. When
p = |o| = va the right-hand sides of (7.11b)-(7.11d) are divided by | —v. For the
given limiter, the CFL, condition now becomes v < 1. This completes the proof. O

Suitable generalizations can be made for implicit TVD schemes. These proofs do not
extend to multiple dimensions. but provide soie insight to the schen«'s probable
performance.

‘'his method can also be applied to HOG schemes by extending the generalization
made above to appiy to the reconstruction step of Godunov’s mecthod. Low-order
monotone fluxes are analogous to reconstructing u by piccewise constant fusnctions
equal to u,. The antidiffusive fluxes could be made into “antidiffusive™ gradients or
the difference hetween higher order polynomial reconstructions and the low-order one.
There is some ambiguity with the definition of the compartison gradients defined by
ME., but this can be rectified by several observations. These siould be converted to
gradieuts of similar definition, but in keeping with the FCV limiters of the past, these
gradicuts shonld be mltiplied by two. Previous FCT limiters had this effectively
done by the lintiter's construction and is an explanation for the highly compressive
nature of FCT schemes. Low mltiples can be chosen for this limiter to achieve
greater dissipation. The remainder of the HOG algorithm can proceed conceptually
without any changes.
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Algorithm 8 [Zalesak's HOG slope limiter|

1. Defiue “antidiffusive” slopes, s, as s¥ — sL.

;o acell.

2. Sum all “antidiffusive” slopes going into, A}, and out of, A
3. Find the maximum, u}***, and minimum, u;"‘" values locally, and define

umen _

ﬁ'f = n-LS-;'—_.—'L ’ (7‘2&)
and n min
M} = n%—:-}‘“.-;— , (7.12b)

where 1 < n < 2 and with Az™* and Ar™" being the appropriate distances
from r, to z™* and 7", respectively.

4. Compute
R} =wm(1,M}/A}) (7.12¢)

and
R; =m(1,M;/A;) . (7.12d)
5. At each cell edge, k, on the cell, j, compute
Ci = min (R} A7) (7.12¢)
if s2 > 0, otherwisec compute

Ci =min(R? . R;) . (7.121)

6. Finally, s$ = Cysf.

Theorem 9 Zalesak's HOG slope limiter is TVD wunder the following conditions and
the values of up* and u;"i" are taken fcm the set of points u}_,, u}, and u},,.

Proof. The proof is nearly identical to that given in Theorem 8, but uses the
generalization of symmetric TVD schemes to a HOG formulation (see Chapter 6). O

7.3 Results

This section presents results for some of the limiters described in the pervious sec-
tions. The results are limited to the scalar wave equation and Burgers’ equation. No
attempt is made to present results for all the limiters given above, but the types of
limiters introduced here are discussed with regard to their performance in relation to
resolution and convergence. Table 7.1 shows a list of the limiters considered in the
tesults and the abbreviations used in referring i them below.
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Table 7.1: Abbreviations for the methods used in this study.

Limiter Equation | Abbreviation
Classic FCT (7.1) FCTC
Zalesak's FCT (7.6a)-(7.6m) FCTZ
Modified FC'T (7.3a) FCTM
Modified Zalesak's FCT | (7.7a)-(7.7f) FCTZN

7.3.1 The Scalar Wave Equation

In this scction using various limjters, the scalar wave equation is solved by the methods
deseribed 1n this chapter. Two initial conditions are used for the analysis: a square
wave with a width of 10 cells and a sin? 2 wave (half of a period) of a width of 25
cells. Both tests are conducted for 500 time steps with a CFL number of one-half.
The advective velocity is taken to be unity.

For the FCT type limiters, a Lax-Wendroff flux is used for the high-order flux
in cach case. In general, the FCT schemes all compete quite well with the best of
the three argument limiter-based solitions. The changes requited to make either the
classic or Zalesak's limiter TVD result in small deop in resolution, but it is hardly
noticeable. It shonld be stated that cach FCT scheme is TVD for the cases shown.
One problem that scems to plague all the three argument limiter-based schemes is
the gqunalitative shape of the convected profile (its lack of symmetry). The FCT-based
solutions seem to aggravate this problem somewhat when compared with more classic
TV solutions. Other resuits are given in Tables 7.2-7.4. The numerical viscosity
results are explained fully in the following chapter.

A simple change to the FCT limiter can result in a large payoff. By making the
limiter upwind biased, the performance of the scheme improves dramatically {this is
explored in more detail in the next chapter). Staying with the scalar wave equation
with a > 0 the classic FCT limiter would become

m(f,4.07'8,48) . (7.13a)
and Zalesak-type limiter would only need modify the choice of C, to
Cg = Rl- . (7.‘3b)

if f > 0 and otherwise
Cy= It (7.13¢)
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Table 7.2: L; etror norms with minimum and maximuin valucs for the square wave
problem.

Limiter | Minimum | Maximum | L; error
FCTC 0.0000 0.8376 5.85 x 102
FCTZ 0.0000 0.8310 5.95 x 10~?
| FCTM 0.0000 0.7923 | 6.35 x 10-?
FCTZN 0.0000 0.7782 6.42 x i0~?
FCTCU 0.0000 0.8377 5.85 x 10~?
FCTZU -0.0522 0.8899 5.75 x 10~2
FCIMU 0.0000 0.8096 5.99 x 102
FCTINU 0.0000 8090 5.99 x 16-2

Table 7.3: L; error norms with minimum and maximum values for the sin? z wave
problem.

Limiter | Minimum | Maximum | L; error

FCTC 0.0000 0.9509 2.91 x 1072
FCTZ 0.0000 0.9511 2.99 x 10-2
FCTM 0.0000 0.9356 2.93 x 10-?

FCTZN | 00000 | 09523 |3.00x 102
FCTCU | 00000 | 09514 [2%2x10-?
FOTZU | 00218 | 09716 | 3.22x 1072
FCIM( ' 00000 | 09587 |3.02x10-3
FCTINU | 444k | 09887 |3.02x 102
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Figute 7.2: The scalar square and sin? z wave solutions using several FCT limiters
with a Lax-Wendroff high-order flux.
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Table 7.4: Numerical viscosity and total varsiation for both scalar wave equation
problems.

Limiter | Y r square | TV square | L7 sin®x | TV sin?x
FCTC 26.67 1.68 16.99 1.90
FCTZ 27.44 1.66 17.81 1.90
FCTM 31.09 1.58 18.52 1.91
FCTZN 31.04 1.56 18.31 1.90
FCTCU 26.64 1.68 16.97 1.90
FCTZU 27.20 1.89 19.14 2.0
FCTMU 29.60 1.62 18.16 1.92
FCTZNU 29.60 1.62 18.16 1.92

These schemes are denoted by the same nomenclature as used above, but with a “U”
at the end of the acronym. For the classic FCT limiter the effect of this change is
minimal. For Zalesak’s limiter, the impact makes the solution oscillatory. For the
modified limiters there is an improvement for the square wave problem, but the sin?
problem the effects wash out. The tabular data reflects this, as does Fig. 7.3.

7.3.2 Burgers’ Equation

This section of the chapter centers around the order of accuracy obtained with meth-
ods in conjunction with limiters and their subsequent solutions. To accomplish this,
a standard test problem using Burgers’ equation is used. The problem consists of an
initial condition of sin(z), z € [0,2x]. At ¢ = 0.2, the solution is smooth, and at
t = 1.0, a shock has formed in the solution. It is at these times that the accuracy
of the solution is assessed. The problem is solved with 10 grid cells followed by 1000
grid cells.

The results for this test problem are given in Tables 7.5 and 7.6. The FPCT limiters
seem to suffer from poor convergence characteristics. In general, the modified FCT
limiters are more efficient and provide resolution on conrse grids.

7.4 Concluding Remarks

In this chapter a number of limiters have been revicwed and their properties exam-
ined. In addition, several limiters have been it.iraduced ot reformulated and analyzed

within a comnmon framework. The impact of limiters on high-resolution numerical
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Figure 7.3: The scalar square and sin? z wave solutions using several FCT limiters
with a Lax-Wendroff high-order flux and upwind biasing.
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Table 7.5: Order of convergence in several ertor norms for Burgers' equation at ¢ = 0.2
when the solution is sricoth,

Limiter| Ly | L3 | Lo
FCTC 2.00 | 2.0t | 1.74
FCTZ 1.97 { 1.67 | i.13
FCTM [.87 § 1.58 | I.12
FCTZN }1.91 }1.58 | 1.08

Table 7.6: Order of convergence in several esror norms for Burgers’ equation at ¢ = 0.2

when the solution has a shock in it,

FCTC 1.42 (089} 0.33
FCTZ 1.46 | 0.91 | 0.33
FCTM |1.49]0.94 | 0.37
FCTZN |1.34]0.80 | 0.28
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solutions he. also been demonstrated. The importance of limiiers on the solution
of the cquations is undeniable. The quality of solutions is directly traceable to the
limiters because they are the heart of the numerical schemes.

More study of limiters is wartanted in light of these results. As discussed carlier,
limiters can impact steady-state solution convergence. Some study of this phenomena
is needed. Additionally, both TVB and generalized average limiters should studied in
order to give more systematic manncs to choose the constants used with *he limiters.

The next chapter explores the topic of limiter more generally and in more detail.
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Chanter 8.
TVD and Nearly TVD Limiters

Tke road to resolution lies by doubt. Francis Quaries

8.1 Background

Godunov gave the impetus for the development of modern high-resolution methods
with his paper [56]. Boris and Book [59] realized that Godunov's theorem meant
that a second-order “monotone™ algorithm could be constructed if it were nonlinear
in nature. in deriving their FCT algorithm, they introduced limiters as a means to
assuring second-order accuracy with “monotone” tesults.

8.2 Introduction

This line of thought was also followed by other pioneers in the field. Van Leer used a
nonlinear limiters function in defining what has become known as the classic MUSCL
algorithm [119]. Harten and Zwas used a similar formalism in deriving the hybrid
method (146], as did Harten with artificial comptession method (183). The methods
developed by van Leer and Harten took the form of switching functions between high-
and low-order schemes. Thus the high-order scheme would be used whete the solution
is smooth, and the low-order solution is used near discontinuities to guard against
the formation of oscillations.

Van Leer extended this line of thought more diretly to a high-otder cxtension of
Godunov's method in [120, 60). The limiters were used to define polynomial recon-
structions of the dependent variables used to derive difference approximations for the
numerical fluxes. This general line of thought led to schemes known as HOG schemes.
These schemes can be viewed similarly to the switching schemes discussed previously.
The limiters are used to blend high- and low-order approximations guarding against
oscillations. The major difference is the inclusion of the Riemann problem in the
solution scheme, thus embodying the essence of upwind weighted differencing.

The gencral form of limiters defined in the FCT schemes and by van Leer's HOG
schemes were used to define TVD schemes. liarten (130, 61} introduced the concept of
nonlinear TVD finite difference schemes. This concept was also used by Roe [131, 176),
Sweby [132], and Davis [133] to define a class of schemes based on TVD corrections
to the Lax-Wendroff (58] scheme. This wotk was summarized by Yee [134) where
oric member of this class of schemes was dubbed as the “symmetric TVD" scheme.
In recent years, several authors have made firmer connections between FCT and
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TV /110G methods {184, 185). | have written about this relation in Chapters 6
and 5. In those chapters, the relation between the FCT method as stated by Zalesak
and the symmetric TVD schemes and subsequently the relation to the symmetric
TVD scheme to HOG type methods are explored. This line of app:rach can benefit
all forms of high-resolution solution of hyperbolic conscrvation laws by adding a larger
degree of syncigism between these various formmlations.

‘This chapter has been organized into four sections. The next section describes a
wide variety of limiters used in the construction of high-resolution algorithms. This
exposition includes material applicable to TVD and TVB schemes as well as gen-
cralizations to limiters generally denoted by the label, “r.early TVD." A number of
limiters discussed in the third sections ate used to solve the scalar wave equation and
Buigers' equation. These results arc given and discussed in the fourth section. The
final section discusses conclusions.

8.3 Description of Limiters

in my opinion, this subject has been given inadequate coverage in the literature
despite its relative importance to the derivation of nonoscillatory high-resolution dif-
ference schemes. Sweby [132, 186, 187] has given the most widely teferenced coverage
of the subject. Roe {131, 176] also gave attention to the subject. A more detailed
discussion of these references is given in the following sections.

The work contained in [132] and [176] is limited to an upwind-diased limiter
applied to a TVD Lax-Wendroff scheme {133, 5, 134]. Roe's work given is- (131}
applies to a TVD Lax-Wendroff scheme whete the limiter is not biased with the
wind, which has become known as the symmetric TVD schemes. Because the Linuter
is cell-edge centered this requires the limiter to use three arguments rather than two
as in the upwind-biased case (also see |8, 6, 134]). This is significant in algorithmic
performance as noted later in this chapter. Munz [18%] surveyed a number of liraiters
with relation to a HOG scheme for a scalar two-dimensional equation using operator
splitting (see Appendix F). In this work problems with both symmetry and resolution
were noted with symmetric TVD schemes.

8.3.1 General Requirements
To begin the discussion of limiters, a concise definition is presented.

Definition 5 (Limiters) A limiler is a mechanism that imposes specified constraints
on the compulation >f the numerical fluz producing higher order accuracy, but also
controlling oscillations and sometimes improving the resolution of discontinuilies adap-
tively.

This definition fails to encompass the full range of limiters given in the literature. It
docs give the ger.sral concept embodied by limiters. The constraints in many cases are
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taken to be the testriction to TVD discretizations of a scalar hyperbolic conservatinn
law. Often, as is the case with the FCT, the limiter is defined in a more somewhat
heutistic manner, namely to keep new extrema from being formed in the solution.

At this point, it is useful to delineate the difference between slope and flux lisniters
more closely. This is done from the standpoint of a philosophical differentiation rather
than from a purely substantive basis. The slope limiters can be thought as being
used directly during interpolation. Flux limiting usually involves methods that are
classified as finite-difference types. Thus slope limiting applies to HOG algorithms
and the flux limiting applies to TVD and FCT algorithms. One caveat can be placed
on this classification, it is not stringent. An example of this are the ENO schemes
due to Shu and Osher [65. 66, I88].

Remark 23 In general slope limiting refers to the reconstruction (projection) phase
of the solution process. Fluz li niting infringes on the solution in the small (evolution)
portion of the solution. In [147]. van Leer admonishes this prectice. The evolution
process can aid in the lin:sl:ng poocess through the determination of the domain of
dependence for the limiter. This principle has been used successfully with upwind-
biased cell-edge type TVD Laz-Wendroff schemes or, for that maiter, linear schemes
such as the Beam-Warming scheme.

Typically. a limiter is used to choose the sinoother of several gradients with some
caveats imposed to improve the quality. This can also be viewed as a form of averaging
which is nonlinear rathe than linear in nature. The averaging can also have the
condition of setting its value to zero if the arguments differ in sign. This condition
with aprropriate ['mits on the magnitude of the resultant gr.adient in relation t: other
local gradients results in “monotone” solutions. Other li'ni s of the resultant icheme
can be applicd to give something closer to an ENO type of philosophy.

The limiter functions have a general form given by the “m nmod” type

Q =m(a,b) , (8.1a)
ot
Q =m(a,b,¢c) , (8.1b)
where
m{a,b) = sgn (a) max [0, min (ja|,ign (a) )] , (8.1¢)
or
m(a, b, <) = sgn (a) max [0, min (]a] ,sgn (a) b,sgn (a) c)] . (8.1d)

This definition can casily be extended to an arbitrary number of arguments. As one
can sce, the minmod limiter retuens the minimum of the argurments unless they differ
in sign. If they differ in sign, the result i3 zero. As | show in Section 7.1, this form
was introduced with the FCT method of $oris and Book [59].
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Figure 8.1: The computational stencil of the main limiter types in one dimension.
Brackets indicate which points are used in evaluating local gradients. The modified
flux or cell-centered limiter is centered about grid point j, the symmetric limiter is
centered about cell-edge j — 1, and the upwind-biased limiter for cell-edge j — 1 is
centered about cell j — 1 for @ > 0. For a < 0 it would have the same stencil as the
cell-centered limiter.

Limiters are centered in some sense. They can be centered about a grid point,
cell edge, or biased by the direction of the flow as shown by Fig. 8.1. The appropri-
ate definition of this centering is determined by the requirements of the underlying
polynomial reconstruction. The limiters are defined at the points whete a gradient of
some sort is nceded in the scheme definition.

Roe [176] and Sweby [132] introduced a formulation of these limiters that is pas-
ticularly useful for analysis. Yee [134] also used this form in her analysis of symmetric
TVD schemes. In this form, the function Q;, 4 is rewritten in terms of ratios of local
gradients denoted by r = A.u/A,-qu under this formulation. The minmod limiter
has a slightly modified form

m(a,d) = max [0, min (1,r)]a, (8.2)
with r = b/a, which has an similar functional form for three arguments.
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Roe and Sweby also gave soine desirable properties for limiters to have such as
symmetry (applicable to two arguinent limiters,)

Q(r)

r

Q(;) . o QA =Qsa), (8.3a)

and homogencity
Q(p,pr) =puQ(1,r) . (8.3b)

Although the homogeneity propesty cau rasily be generalized, the symmetry property
is in need of proper generalization for limiters using more than two arguments.

Another property discussed by Roe [I76) is that of lincar averaging. Quadratic
data could be exactly advected with the use of a function of the form

Q(a.b)=pa+(l -p)b, pe€fo,1], (8.3¢)

because in quadratic data the differences in gradients vary linearly. This characteristic
cannot be used with TVD limiters because this would produce a linzar algorithm and
produce oscillatory solutions by virtue of Theoremn 3. Some of the characteristics of
this property can be recovered when the flow ficld is smooth and resolved.

Although this is not commonly stated, the limiters used in TVD schemes are
convex and consistent averages of their local data's gradients. This is equivalent to
stating that the schemes are second-order accurate because the limited gradients and
the tesulting schemes are convex averages of a family of second-order linear schemes.
Thus a general form of limiters is

Q(a5,83,...,8.) =C18) + 283+ ... 4 €aGp , (8.4a)
where .
20, €l,n], (8.4b)
and .
Ye=1. (8.4¢c)
1=}

Consistency would dictats: that
Q(a,a,...,a)=a. (8.4d)

As discussed in more detail below (Sections 8.3.3 and 8.3.3), the commonly used TVD
limiters have this property wheicas some other liiniters of similar design (such as the
FCT or ULTIMATE limiters) do not.

One key point in this entire discussion is that the limiters in conjunction with
upwind principles attempt to Lalance tesolution with the need for dissipation in the
algorithms. it is this trade off that is vital to the success of schemes. It is explored
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in the pext section.

8.3.2 Numerical Dissipation

The view can be taken that the limiter is simply a “faucy”™ forsu of artificial dissipation.
This is true to a certain extent when considering the classical depiction of artificial
dissip.ation, but the difference is that the choice of dissipation coefficients is nonlinear.
To sce this, 1 recall the obscrvation given in [30) that an upwind-differenced scheme
solves the following parabolic equation to second-order accuracy:

Ju du
-(7-!+a¢')-—: -| Az} —u)a
This cquation can be derived by taking the difference between the numerical schemes
for upwind differencing and Lax-Wendroff's method. Taking this approach a sort of

numetical viscous stress can be defined as

- (8.5)

v =IH - Ith- (8.6)

Using the approach outlined above for HOG-type algorithins yicld a uscful measure
of a limitet's effect on the solution. These relations are given for a scheme defined by
the following polynomial:

P, () = u, + SuE ) A} ) zels [£,-1- 204 (8.7)

whete S,-u =Q,4,, ju. Using a l.ax-Wendroff-type time disctetization and ccastant
mesh spacing gives for upwind differencing '

TLAN = % [(a—=lal)(V+ #)(Q,01 = 1) + (a +]al) (1 = ¥) (1 - Q)] By 4u, (8.8)

whete Q is defined as _
A,u

Q,=—. (8.9
J A,,;u )
For Lax:Friedrichs’ differencing uscd as the undetlying E-scheme gjives
a
= 3 ( - '-“—') (14 0)( Qi = 1) + ( '—:—')u (1 -Q,)] B,44u.

(8.10)

Remark 24 For general use in computing the quantity ripn the difference between
the Lax-Wendroff flux and a certain high-order fluz is used.

Several observations can be made by catefully analysing these functions. For an
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upwind-based scheine, the vizcous stress is with the gradient 4,414 whenever the
limiter gradient is taken to be the minimum gradient or less; however, if the limited
gracient is larger than one of the locs! gradients, then the stress can be against the
gradicnt or anti-diffusive. The second of these two cases leads to compression in an
algorithin. Geometrically, the orientation of the cell averages becomes inverted at
the computed cell-edge values. if this persists for many time steps, it would lead to
a disastrons instability, but the nonlinear nature of the limiters ginards against this
occirrence.

This is of sonie consequence with the Lax-Friedrichs-based scheme (or similarly
based scheines such as a Jocal Lax-Friedrichs [65, 66 or the 1LLE solver (130, 128)).
In most cases, tue diffusive effect is enhanced by the increased diffusion. but where
the liniiter produces an antidiffusive flux, the antidiffusive uature is enhanced by the
diffusion. This can lead to small oscillations. This behavior is exemplified by the
FCT limiters where the limiter has an antidiffusive Lax-Friedrichs-type signal speed

(7.

8.3.3 TVD Limiters

Although this is not coniplctely general, for the purposes of this study the limiters
used with 1'VD schemes can be divided into two categories: two argument and three
argumient types. ‘These limiters can also be used with FCT schemes as | have refor-
mulated them and with HOG algorithms: corresponding to a given TVD scheme. The
principal contributions found in the following sections are generalizations of the ideas
of Sweby [132] and Roe [176] to more general numerical schemes. The analyses of
Sweby and I%oe used with an upwind-biased TVD Lax. Wendroff scheme applies very
well to other uses of two argument limiters. The analysis of Roe [131] with regards
to three argument limiters is limited to a smalf set of the limiters which are a natural
outgrowth of the two argument limiters.

For general second-order TVD schemes, several condition must be met for the
limiters to provide a TVD) solution. These are taken from the conditions for a TVD
scheme in a scmi-disctete case, (sce Chapter 4). For cell-centered based limited
scheines such as the modified flux TVD scheme in (4.22a), the conditions are for
a>0

Qrz_qmsz, (8.11a)

and fora <0
Q41 - % <2. (8.1ib)

For cell-edge based limited schemes such as (6.4) or (6.7) the conditions are for a > 0
Q- - —-1 <2, (8.12a)
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and for a < 0
Q-1

Q= ~HE <2 (8.12h)
When the fully discrete case s considered (using hackward Eoler time differencing),
the cell-edge based hiiters conforin to the same restrictions as the cell-centered types,
but the semi-discrete form given above does have yimplications for some limiters dis-
cussed later in the chapter. Later some conditions are given with regard to certain
fully discrete cases.

Remark 23 Daris [I189] discnsses less restrictive limiters based on lLar-Wendroff
type ime centering. These limits are atated fora > 0

2
Q<. (8.13a)

and 9
@2 (8.13b)

r | —aa’
with analogous hmnits for u < 0.

Onc caveat applies to the strict use of conditions such as (8.11a)-(8.12b): the
TV conditions should be derived for cach scheme from those stated in ‘Theorem 6.
An example of this principle at viork is the desivation of appropriate limiters defined
11 Chapter 6 for parabolic FCF schemes. The resulting conditions for the limiters are
identical to those above, but the right-hand sides of the inequalities are multiplied by
1/3. A simple exatple of this is the minbar limiter, (3.17), which produces a TVD
schemie, but the proof of this requires a slight modification of the usual proofs (i.e.,
dropuing the assmuption that the Q functions are positive or equal to zero for all r).

Two Argument Limiters

Roe [176] and Sweby [132] defined their schenes (and limiters) to be upwind biased
in natnure. The stencil for the limiters was centered about a cell-edge and the cell-
" cdge upwind from that. The typical assumptions regarding the positivity of the Q
functions leads to the TVD) region defined by Sweby. The boundary of this region is
given by

Qrvo =m(2.2r) . (8.14)

It is bounded below by the x-axis. The TVD tegion using this assumption is shown
in Fig. 8.2a. If the assumption regarding positivity is dropped then the region is
bonnded by

Qrvp =m(l,r) . and Q}yp=m(-1,-r). (8.15)

‘This region is shown in Fig. 8.2b. Figure 8.2b differs from previous presentations in
its recogmition of limiters that can differ in sign (an example of which is the minbar
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limiter).

As discussed in detai bodow, the himtera peod 0 2 e e = e f g B
they make the scheme a conver o rige af two (or more) .« secod opder e s,
For a ypwind biased cell-ed. ' littnte.. ' 1ocans the limited < . ne . e

of the Beau-Warming (Quw) aud Lax-Wenare" 1 Q) 3. 3emes. b i mg-orde
region of the plane for positive definite lirviic . g1 v+ the regior ioeende x
the minmod and superbee limiters tsce vedons  “or 1 o cogeceral €0 -0 limpiee
given in Fig. %.2, the second-order regon is tar  oper Sous . - shaed pegr - or
r > 0 and the entirc shaded regicn fr r v

For cell-cdge limiters applied to secong-¢:. - e w2 Lipe disere iz
tions (forward Fuler or forward Euker wi t . vendra! ;- . rrection), ae -
gioas given in Fig. 8.2 also apply. ¢ fulv :chen.» vased around the sanw
mmethodology, the TVD regior meet the . «wa... zut the i cond crder region of the
plane rensains the sanie, thus for practi:. urpen-s yielding tiie same sort of ‘im-
iters. This point becomes significart wae - anmuering the ULTIMATE limiter i
Section 8.3.5.

Sevetal of the mote common limuters ar-~ the basic “minmod” limiter {124]

@:l.r = nill.r), (8.16a)
van Leer's limiter [119)
Guit= 2 (8-16b)
the centered limiter {120}
Q. (1. ~1=1n f:z. ¥, “ (s r)] . (8.16¢)
and Roe's superbee limiter
Qsp(l.r)  masillvnn(e - min(). = (8.16d)

Another form of limiter is used wrunthe () 1 pe scher« i mmmey is called
the “minbat” limiter and it retuc: the usmemert with tir - mallest absolute value.
It can be written symbolically

m(ad)={ " i joy == mm O(ja] M (8.17)

b otherwise

and in the ENO schemes the difference stencil gran. 1< ye divection of the smaller
argument. Figure 8.3a shows the behavior of tiree ‘roa- 1 the ratio form in the
context of a second-order TVD acheme. In g - v 10 iis i oeder TV region
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Figure 8.2: The seconod order TV]) regions ate shown in the shaded regions of these
higures. Ll -abes lines sacn e limits of the TVD tegion for an explicit time
differencing. Figuse 3. 2h gives the TVD regions assuming @ is positive definite. This
agre=s with the presentation given by Sweby. Figure 8.2a shows the TVD region
assuining @ is not positive definite. The second.order TVD region includes the lines
Q=rlor0<r<]landQ=1"forr > Thelines denoted by Q.w and Qpw
correspond to the Lax-Wendroff and Beam-Warming methods. 'he regions lying
between these curves are second-order accurate. The other “thin” lines outline the
TVD regions. In Fig. 8.2a this is the r-axis for r > 0. For Fig. 8.2b this is the line
Q= rfw-rlandQ=1forr>|.
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is shown as outlined by @, and Qsg. Figure 8.4t shows the behavior of Q. and Q..
with respect to r.

For the initial presentation of this analysis, for example, the determination of the
limiter at cell-edge ; + 1 if the signal velocity a > 0 then the gradient at j — 1 is
compared with the gradient at j + 1, otherwise the gradient at j + 2 is used for
comparison. This scheme is (6.7) with

; ot g
dak = . .
24} Q"’A"F (8.18)
The question of accuracy of limited schemes of this nature was addressed by
Sweby in [132]. The schemes of this natute could be viewed as convex averages of the
Lax-Wendroff and Beam-Warming schemes. These schemes are defined by the use
of certain gradient ratios defined in a linear mauner. The second-order TVD region
is a set of the regions bounded by these two schemes and the conditions defining
TVD schemes. A secondary effect of this is that the limiters thus become convex
but nonlinear averages of the sample gradients. Two third-otder upwind methods
can also be incorporated into this framework. One is based on cell averages and the
other is point value based {190] (see Chapter 9). These schemes are defined for the
upwind-biased TVD schemes with gradients written in ratio form as

s 3 r
;;:-’-=z+z. (8.19a)
for the point-value form and
22, (8.19h)
344 33 '

for the cell-average form. Figure 8.3b shows the region defined by these limiters in
the second-order TVD region.

The use of these identical limiters has not been limited to schemes of this type. The
HOG scheme described by Colella in [123] and Osher in [179] and the modified flux
TVD scheme of Hasten (130, 61) successfully use these same limiters. The polynomial
interpolation for this scheme is given by (8.7). The limiters are not biased with the
direction of the flow, and the limiters stencil is invariant. These schemes deterrnine a
value for the gradient which is cell-centered and is based on sample gradients takesn st
the cell edges. Analysis of conditions resulting in TVD limiters yields :dentical results
as the upwind-biased limiter applied to a TVD Lax-Wendroff sch..ne as discussed
later. In fact, for a scalar wave equation these two schemes give identical results with
identical limiters. This does not generalize to nonlinear cquations.

The accuracy of these schemes is second order in the L; norm, but the limiters
make the resulting scheme a convex average of a second-otdcr upwind scheme and the
correspondimg anti-npwind interpolated scheme. The first scheme produces results of
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relatively good quality, while the sccond scheme produces poor results (saved by the
Riemann solver). but the liniiter provides exceptional results inproved in all respects.
The relation of the lincar difference schemes to the high order method is akiu to the
relation of Sweby and Roe's scheme and Lax-Wendroff or Beamn- Warming scheimnes.

Before going further, several other two argnment limiters should be introduced.
The form used to define the minmod and superbee limiters are specific cases of a
family of schemes defined by

Q. = max[0.min(n,r).min(l.nr)] ,1 <n<2. (8.20)

For n = | this reduces .o the ininmod limiter and for n = 2 it is the superbee limiter.
The above caveat also applies to this limiter because for some possible schemes the
above definition can be extended. Figure 8.5a shows the behavior of Q, for n == I.5.

Osher and Chakravarthy [180] introduced a limiter
Qoc =m(l.nr) ot m(n,r) 1<n<2, (8.21)

which does not share the symmetry condition witk the other limiters (unless n = 1)
and thus must be used with caution. This can be scen in Fig. 8.50 for n = 2 and
each of th: two forns given above. The first of these two choices makes sense from
the standpoint that in a upwind-biased cell-~dge limiter it would choose the centrally
differenced gradient. The resuits presented in (181, 132] show tke effects of this lack of
symmetry. This limiter may still be used if applicd carefully in algorithm construction.
Nevertheless, these limiters find widespread use in a number of schem.es and produce
quality results in spite of their less desirable qualities.

Uniformly nonoscillatory schemes (64] use a limited second derivative to correct
the first derivative estimate to give uniform second-order accuracy in all error norins.
The price gaid is the loss of the TVD prop=rty; however, these schemes are designed
not to create any new extrema not in the initjal dats (for linear problems). For the
polynomial form (8.7), the sample gradients used are cell-edge centered. The UNO
scheme makes an estimate of the second detivative at the ccli-edges and corsect *he
value of the cell-edge first derivative to the cell center. | define

3 -3,
d, = pthd St hd | (8.22)

Az

as the second derivative computed from the first derivatives 8,4 and cotrputs an
estimate for d“’ with

¢1’¥ =m(¢1..,¢"|) or lllhI,.c,,.} . (h.'.ﬂ)
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Figurc 8.4: Figure 8.4a shows the minmod and supesbee limiters. The minmod limiter

gives the lower boundary and the superbee limiter gives the upper boundasy of the
second-order TVD region. In Fig. 8.4b, van Leet's and the centered limiter are given.
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Figure 8.5: Figure 8.5a shows the limiter, Q,, for n = 1.5. The plot shown by
Fig. 8.5b looks similar to Fig. 8.3a, the difference is that the upper boundary of the
second-order TVD region is given by one of the two limiters (Qoc = m(1,2r))or
r < | and by the other (Qoc = m(2,r)) for r > |.
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J correct the fies) derivative estimates

Sy = 8,my + %d,_i (8.24a)
and

. Ar

$0L =841 - -2—d"% . (3.24b)

and linit these modified gradients in a normal fashion. The performance of this
scheie on test problems is generally exceptional. This approach works for the mod-
ificd flux TVD metnod and its related HOG counterpart. Suresh and Huynh have
stiudied some interesting variant of the above UNO-type schemes [191].

The upwind-biased cell-edge limiter uses two atgument limiters as well, but the
proper definition of UNO requires some modification. Discussion of this is deferred
to the next section.

The compressive limiters are necessaty for computing contact discontinuities be
causc of their tendency to diffuse. Less compressive limiters are recommended for
shocks becanse of a shock's self-sharpening nature.

Q.; does not have the usual form, but checking its functionality shows what its
effect is. This can also be vicwed as a modified harmonic mean. This connection is
explored at length in Section 8.3.4.

Three Argument Limiters

As the discussion in the previous section would indicate, the two argument TVD lim-
iters are relatively simple to analyze and take a number of forms. The three argument
limiters are more diificult to analyze, but ] follow the same general methodology.

Several limiters of this class have alteady been given in Chapter 7. To present

these limiters in as compact a form as possible, the nomenclature used in Section 7.2
is used. Thus the following variables are defined:

,—=ﬂ,p=9’_’!_“' (8.25)
A,,ju A"lu

and the function Q,, 4 (s,_}.s,,’,s”l) can be rewritten as Q,,4 (r~,1,r%) ;4.

The term s, has tl.e same definition as before. Some of the limiters of this class
have been reported by Roe [131] and Yee [134]. Some example of these limiters are

Q (. hr*)=m(r,0r%) (8.26a)
Q. (r'. l.r’) =m [2r'.2. 2r*, % (r' + r’)] . (8.26b)
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and

Qi (r.trt)=m(r- 1) +m(1r*) 1. (8.26¢)

Figure 8.6 shows these limiters. Limiters of the forin of Q) are not reconnnended
hecanse of their behavior near discontinnities and extrema. Roe (131] noted this
hetiavior by defining this type of fiunction as a “scparable Q function.™ This represents
a simple wamer of extending two argument limiters to the three argmnment case.
Examples of this philosophy are extensions of the superhee and van Leer's limiter

_ =) +r |t +rt
+ — -—
Qur .l.r)_ Tt T I, (8.26d)

and

Q. (r'. l. r’) = fijax {O.min (l.2r') min (’.!.r‘)]
+ max [0. min (I.'Zr’) L tin (2.1-’)] -1 (8.26¢)

I a function being limited is sinooth and monotone over range of the three arguments
heing limited, no problesn cccnrs becanse a nionotone variation is assumed here.
I’roblemis occur when the diia shows niore stracture. This is cevident through Fig. 8.7
which shows that both of the above liiters are not TV1) although their behavior in
practice may be acceptable on most initial data.

At this point, several topics are in need of discussion. As before with the two
argnment limiters, accuracy of the approximation is important, and as before some
criteria such as synnnetry needs to be met. These allow us to create new limiters
with desirable qualities.

The topic of accuracy can be addressed quite simply, as part of the answer cornes
from the previous analysis of upwind-biased limiters for the TVD Lax-Wendroff
scheines.  The theee argument limitees (1 an considering those centered about a
cell edgr) are a convex average of the Lax-Wendroff and Beam-VWarming methods,
bt also include an anti-Beam-Warining-ty pe scheme where the stencil is taken to be
opposite of npwind. Althongh the result of the limiter is a convex average of these
schemes, it is second-order accurate. ‘Fhe stability of schemes such as FCT or sym-
metric TV show the power of limiters to ofiset the effects of using anti-upwind data.
This statenient is somewhat mislcading as anti-npwind data is dangerous at extrema
and discontinuitics and the limiters discussed here would choose data from elsewhere
in the stencil at these points.

As noted with Fig. 8.2, the TVD regions for the three argument lisniters can be
visualized by projecting the tegions shown in the plot in an additional coordinate
direction.

The concept of symmetry in these limiters needs to be different than with the two
argumnent case. Common seuse dictates that the limiter shonld be symsneteic about
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Figure 8.6: Three of the three argminent lisiters are shown hete. These are the
minmod limiter (Q,). the centered limiter (Q. ), and a modified minmod limites ((Q3)
The modificd minmod limiter dors not give TVI) results because of its form and
subsequent behavior when r2 < 0. The other two limiter are TVD for second-order

symimetric type schemes.
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Figure 8.7: Both of these linniters nse the design philusophy of the modified minmed
scheme. Figure 8.7a uses van Leer's limiter and Fig. 8.7b uses the superbee limiter.
Both are not TVD for r£ < 0, but also are not TVD) should r* grow sufficiently large

with both being greater than 1.
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the central value iy the stencil. i.e..

Q(r.tr*)y=Q(r* 1) . (8.27)

Inspection reveals that this is indeed the case for the limiters given above.  The
property of homogeneity is also important and is kept by the above linuters. The
samme caveat conceruing liiters and specific difference schemes made in the previons
section applies to the three arguent liniters.

Before moving on. several limiters can be introduced that inet the above stated
criteria. One limiter that guickly conies to mind is an extension of 1the minbar limiter,
(8.17).

[
o if |a| =inf(la],|b],jc])
m(a.bcy =1 b if |b] =inf(jal.|b).])c)) - V8.28)

¢ otherwise

Figure 8.8 shows this lisuiter behavior for different values of r= aud r*. A general
class of limiters extending two argusnent limiters to three arguments can be writtea

Q' = min [Q'z (I.r") .Q? (I.r’)] . (8.29)

where ¢ could be any two argument limiters like thuse discussed in the previous
section. Two examples of this design principle are given in Fig. 8.9 (using van Leer's
and the entered two argument limiters). This limiter does not share some of the poot
charactrristics of the scparabie limiters shown above. In scveral cascs. the results from
this lim.ter rediice to other limiters discussed above. For instance, the basic three
argument minmod limiter can be found from the above combination of two argument
minmod Limiters.

A second group of limiters, which have their basis on the above-stated symene-
try propesty, are natural nutgroviths of several of the two argument TV D linsiters.
Examples of this design are

Q. = max {0, min (2. 2r- .2r*.% (l + r") ,;3 (I + r’))] , (8.30a)

Q. = max [0. min (2. r‘.r’) , min (l.2r‘.2r’)] . (8.30b)
and
Qu = Ir=|+ rtj4r +r*
T 24 4
The limiters satisfv the TVD requirements for the symmetric TVD scheme and per-
form quite well in practice. These are shown in Fig. 8.10, which demonstrates their
ability 1o produce symmetric TVD limiters.

(8.30¢)
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Figure 8.8: The three argument aualog to the minbar lintiter is shown here.

* discussed in Chapter 6, the concept of UNO schemes can be generalized to
the three argument limiters. This is done in the following manner. The cell-edged
stenc.! for the liiniters requires that gradients onc full cell distant frons cell edge be
used in the liniting process. As with the ‘wo argument implementation of an UNO
scheme, thesc gradients ate corrected. To do this, cell-edged estimates for the second
derivatives ate needed, as defined by (8.23). The gradients used in the limiter are
then corrected with a first-order correction based on these second derivat'ves. The
cell-edge gradient on the cell edge where the limiter is defined is already second-order
and needs no corréction. These cotrections are

5,_* =3, + Atd,_’ (8.31a)

and
.i,,‘ =844 Ald,,‘ . (8.31b)

As noted in the previous section, the npwind-biased limiters cannot use the UNO
description given in the previous section. The cell.edge-based definition given in the
ptevious paragraph is the proper basis to begin fromi and the generalizaticn to the
upwind-biased limiters is natural.

The methods introduced as being symmetric TVD schemes are differentiated by
their flux lisniters which are centered in support about the cell edges. The other
methods like those inttoduced by Sweby and Roe ate upwind biased in the cupport
for their limiters. Both methods however are closely related to the Lay Windroff
methcd. The symmettic schemes have been favorably viewed becanse of thewr lowes
operation rount and an increased convergence rate [166).

in considering the performance of these schemes, six teat problems are completed:
two for the scalar wave cquation. one for Burgers' equation, and three for the Euler



Figroee > Here s Liigent methodology is used to create three arguiment liniters.
T he 1emniting limiters ate ‘TVD and do not suffer from the sanic difficulties as the
modiiie] minbag type of limiter. The two base lirsiters used here are van Leet's and
the centered limiters. In practice any TP two asgument limiter can be used in this

context,



()

Fignre 8.10: The limiters shown hiere nse the synmietry property discnssed in the text.
The limiter shown in Fig. 8.10a is analogons to the centeted limiter while Fig. 8.10b
is analogous to the supetbee limiter. Botl ate second otder and TVD. Figure 8.10¢
gives a van Leer type lisiter, which is not TVD bt works quite well i-, ptactice.



Table 8.1: Order of accuracy in several norms for the schemes solving Burgers' cqua-
tion.

Scheme Ly | Ly | L.
Symmetric (¢ =0.2) | 1.83 | 1.58 | .19
Upwind (¢t = 0.2) 1.90 { 1.65 | |.28
Symmetric (¢ = 1.0) { 1.48 | 1.19 | 0.78
Upwind (¢ = 1.0) 141} 1.14]0.74

cqnations. The two problemns for the scalar wave cquation are the advection of a
square wave ana of a “teepee” function across a periodic domain. Each test runs
for 300 time steps with a Conrant-Friedrichs-Lewy (CFL) nmnber of i The Burgers'
cquation problems is simply a sin (2) initial coudition on a perivdic dosmain with length
of 22. The three Euler equation probleins are Sod’s problens [41], Lax's problem [55).
and a blast wave problem [44]). The combination of these problems highlights the
strengths and weaknesses of these algorithnmis. Both algorithmis always use the limiter
denoted by Q; in the previous section for all problems except the Burgers' equation
probleiny wheer Q) is nsed.

Figure 8.11 shows the solutions to the scalar wave equation. The symmetric
schenie obvionsly provides lower resolution in both cases. The difference is also fairly
graat in terms of both peak preservation as well as signal width. The syminetric
=cheme also has problems with signal shape as it is somewhat distorted. A notable
feature of the upwind-biased schense is that for the scalar wave eqnation the solution
is identical to that obtained by the modified flux TVD schenic if the same limiters
ate used. This can be explained by the support of the limiter used and the resulting
interpolation on the upwind side of each cell interface. For nonlincar problems this
does not hold.

In Table 8.1, the rates of convergence are given for Burgers’ equation. When the
solution is smooth, the upwind method * evidently superiv: in every error norm.
AMter a shock forms, the symmetric scheme is slightly mote convergent; however, for
all test cases (up to (00C grid cells) the actual error ic Jower for the upwind scheme.
In addition, as tinie progresses after ¢ = 1.0, the upwind scheme tecovers its initially
higher rate of convergence.

The solutions for the Euler equations echo the results with the previous threc
problems. Across the board, the resolition afforded by the upwind scliemc is superior.
The major flow structures: shocks, rarefactions, and contact discontinuities are all
noticeably better resolved with the upwind inethod. The results from Sod’s problem
deymonsteate this to some degree. In Fig. 8,13, cach of the featyres are sharper with
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Figure 8.11: The solution of the scalar wave equation by both these methods is
shown for two test problems. In both cases, the upwind method provides superior
performance.



the upewppul ethad. This s probably imost noticeable al the contact discontingity.
lu Fig. 812, the nated behavione for the contact discontinuity and shack ate clearly
shown.  Also evident from this fignre is the symnictry problens exhibited by the
svunmetric scheme. The skape of the density peak is mote consistent with the exact
solntion with the npwicd-hiased method.

The blast wave problemn (see Fig. 8.14) acceutnates cach of these issues. This is
particnlarly true with respect to the right deusity peak whicii is significantly closer
to the converged sclntion with the npwind method. Two other key featuses of the
solition are the degree of “fill-in”™ between the peaks and the contact discontinuity to
the lefy of the left density peak. The fill-in regions are both smeared ucarly equally,
bt the shape of the npwind compnted solution is better. The left-most contact
discontinnity is nmcl inore smeared by the syunneteic scheme.

The results of the previons paragraphs show conclusively that the upwind scheme
vroduces results of higher resolintion when conspared with the synimetric scheme.
This raises the issne of cause. These schentes are second-order accurate wher: the
solution 1s smooth. The limiters arc based on minisnum principles. and increasing
their support lewers “he value retuened by the function. The subsequent “flattening”
of the slope is akin to increasing the nuuterical viscosity of the scheme thus loweting
the accnracy.

luterpreted ou a more physical basis, the upwind scheme takes data from a more
physically mecaningful location ou the grid. The support for the limite: can be per-
ccived to affect the solution at that point. whereas the symmetric limitets ate centered
by taking both upwind and antiupwind data. Both arguments lead tc a zonclusion
that if resolution is of prisnary concern, the limiter should have as small a support as
pussible in order to limit its induced viscosity. This of coutse should be within the
lissitations of providing physically meaningful oscillation-free (or nearly so) results.

Appendix E provides the results of nsing both two and three a:gament limiters
without limiting for cachi term.

Artificial Compression

Often. it is important to choose the limiter used by the nature of the problem. For
ficlds that are lincarly degencrate, the problem of numerical diffusion is severe. In
the solution of systems of equations this manifests itself as severe smearing of contact

discontinuities. A nuinber of schemes have been developed to deal with this prob-
lem [183, 122, 110, 137, 192, 193). One such scheme is artificial compression, which
can be applied to TVD limiters. The forsn is

0) = (1 ‘J:a;)Q; . (8.320)

L,y
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Figure 8.12: The solution to Lax’s problem highiights the resolution of both shocks
and contact discontinuities as well as the symmetry properties of the solutios: meth-
ods.
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Figure 8.13: The solution to Sod’s problem by both methods shows the improved
resolution given by the upwind-biased scheme.
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Figure 8.14: In the blast wave problem, the deficiencies of both methods are most
clearly shown. The difficulty of the problem is due to the large amount of structure
confined to a small physical space.
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where the discontinuity detector, 8, is defined as

_[Ayu-a, ] o
Sl P PR TR e (8:925)

and the argument, w;, is chosen to give the best results. Figure 8.3.3a shows how 0
varies with r This applies compression to the method (makes the local slope steeper).
If the field is genuinely nonlinear, then the limiter should not be so compressive in
natyre.

An effective forr for w; in transient problems was introduced in [104). This
was used with the superbee limiter under the stipulation that the resulting scheme
remained TVD after the application of artificial compression. T™his application was
not second order in the sense of the definition given in the previous sections. With
the superbee limiter the form is

w; = min(ly;| .1 = |y;]) (8.33)

where v; is the local CFL number. A more general form cau be found that produces
TVD results (for common TVD schemes like those presented in Section 8.3.3). This
form is

wij =2=€+min(ly;], 1 = |y)), (8.34)

where £ = max[Q(r)] r € R.

For the case of three argument limiters, artificial compression is generally not
applied. The same general form used above can be used after several modifications.
The discontinuity detector is applied to two sets of gradients when choosing the
maximum value is

0 _’_1,, = max (0,',0,'.”) ’ (835)

J

and w is computed at the cell-edges. The behavior of 6 for the cell-edged three
argument case is shown in Fig. 8.3.3b. The effectiveness of this approach is discussed
in Section 8.4.

A large degree of caution should be exetcised when using artificial compression
or similar schemes. The type of limiter used and the compression involved appears
to affect solutiors solved for long time periods on periodic domains [159]. The more
compressive algorithms can give completely erroneous results while less compressive
ones converge to the correct solution. In steady-state solutions the less compressive
limiters normally give more convergent solutions. This is the likely outcome of in-
creased dissipation present in the algorithms. In this example, the FCT method of
Boris and Book produced exceedingly poor results that can probably be attributed
to the amount of compression in the algorithm.
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sion algorithm is shown for use with both two and three argument limiters.
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8.3.4 Nearly TVD Limiters

The previous sections conceutrated on limiters that imeet TVD criteria for the comn-
monly used TVD schemes. By its nature, maintainiug a TVD solution requires that
the solution reduce to first-order accuracy at extrema. For loug trausients o: those
involving a great number of tinie steps, the impact of this is profound. Iu virtually
every commonly reported solution, peaks are clipped and the solution is diffused.
It is not reasonable to expect this to change as these are intrinsic to numerical ap-
proximation, but the degree to which these errors occur should be improved. Where
the solution is not diffused and the front remain shatp. often smooth transitions are
wiphysically sharpened by the action of the limiter. Thus the currently used limiter:.
are ot always equal to the task.

To attempt inprovensent on some of the above-nientioned probleins it may be
useful to relax the requircment that a schense produce a TVD solution. One way of
doing this is to use a * ¥orent definition for variation control of the scher. This
approach has been take: by Shu [169] in the total variation bounded (TVB) schiviues.
1 have also looked iut.. a more general view of limiters as a nonlinear average of the
sample gradients as a manner of approach to this problem. Other approaches employ
ENO tyvpe discretizations and for least squares methods [165].

TVB Limiters

Shu has developed TVB schemes as a uniformly high-order alternative to TVD
schemes. The 1T\'B property simply requires that

TV (u) < B (8.36)

for some time t > 0. This requires that basic TVD limiter be miadified to take
advantage of this definition (TVD iinplies that a scheme is TVB). This modification
requires that suitic estimate of the second detivative of the solution be made in an a
priori manner. Higher order derivatives have to be estimated if higher than second.
order schemes are needed. This quantity is defined by the symbol Af. This estimate
then modilies the gradicnts in the limiter that are not centered about the point being
limited. The effect of this is to bias the limiter into choosing the higher-order centered
gradient. This allows oscillatious to forns in the solution, but when they grow too
large the nonlinear action of the limiter stops the growth. Although this has not been
proved, it is believed that ENQ schemes are TVB [65, 66].

'he details i implemientation can he divided into several distinct groups based
on ne type of limiter being used. For two argument limiters centered on the grid
pi ¢ the limiter must be divided into two pieces, each centered on the cell edge.
Thus tte Vo o

Su S Q) yu (8.37a)
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becomes

A—FJTVB = % [Q(l,r +m)A;_u+t Q(l,r+ m)A”%u] , (8.37b)

where m = MAx/s,_% of m = Muz/s,-,,% for the appropriate term in (8.37b).
Examples of this limiter are shown in Fig. 8.16 for two values of MAz. Hecre the
definition of the limiter function Q has not changed from that given in Section 8.3.3,
but its arguments have. The argurmient away from the cell edge where the limiter is
centered has M Az added to it, thus the limiter is in most cases biased towards ‘he
selection of the argument it is centered on. A proof of the TVB nature of this limiter
is given in [169).

Several approaches can be taken to implementing this methodology with cell-
edged limiters. The method described above for cell-centered limiters can he used
with slight modification. The upwind-biased cell-edge limiter is defined by

Sep =Q(Lr+m)sjyy, (8.38)

where m is defined as above and r is the ratio of the upwind gradient from cell-edge
j+ 3 and 3,44 For the centered cell-edge limiters, the approach follows the logical
extension of the upwind-biased casc. lis this case a limiter is defined by

é;r:’f =Q (r’ +m,l,r* + m) Sjs} - (8.39)

Figure 8.17 shows this {imiter for two values of MAz. On the plateau of the figures,
the schemes are second-c rder accurate and, as shown, the sizes of the plateaus increase

with MAz.

Theorem 10 The limiters given by (8.38) and (8.39) result sn a TVB scheme if these
limiters and the resulting numerical schemes are TVD with m = 0. The resulting
schemes (those considered here) are uniformly second-order accurate.

Proof. The proof is similar to the proof given in [169). If the underlying numerical
scheme is TVD, then the proof reduces to showing that the total variation is bounded
by some constant at all time, ¢ > 0. This is accomplished through the use of a modified
flux

=+ (8.40)
which is the sum of a TVD flux and a constant. If it can be shown this constant
is bounded, then its sum is bounded, in turn leading to an upper bound on the
total variation. The accuracy argument involves showing that the constant M in the
limiter creates a bias that results in the selection of the high-order accuracy gradient
centered at the limiters location. O
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Figure 3.16: I'wo cases of the two argutnent TVB limiter are given here. The line
that grows upward along the line Q = 1 (1 +r) past r = 3 uses MAz = 5 while the
other line uses mAzr = 2. Both are always in the second-order region of the plane.

S-Limiters

One characteristic shared by the TVD liniiters with the exception of the minbar
limiters is setting the limited gradient to zero when the sign changes among the
limiters arguments. The minbar limiter simply returns the argument that has the
smaller absolute value, which may be opposite in sign to the function at that given
point. This leads to a loss of accuracy at these points. As Tadmor [194] showed,
the 1equirement for a scheme to be TVD (by Harten's definition) extrema must be
clippcd.

The limiters given in this section were designed to correct this problem. The
essential feature of these schemes can be encapsulated in the following definition:

Definition 6 (S—limiters) An S-limiter returns a value equal to some nonlinear
average of its inpul arguments and has the same sign as the argument defined at (e
same le:ation as the limiter.

For example, in most cases this is some sort of gradient. The limited gradient has the
same sign as the gradient at the location where the limiter is defined. For cell-edge-
based algorithms, the changes in the reconstructive polynomial are minimal, but for
cell-centered reconstructions some redefinition is required.

Sta-ting from the scheme given by (8.7) and redefining it to meet the above-stated
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Figure 8.17: The threc argument TVB limiter is shown here for MAz = 2 and
MAz = 5. The larger value of MAr gives a larger “plateau” o the plot.
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definition gives

o (3,00 15| 22 2 € om0

Y (s =1 .
P(z)=n,+ ign (A,_%u) I.Sul QZ—,—:JJ e [z,_g,zj] (8.41a)
Here the gradient, A, n, is redefined as
Aju=5S(Lr)d, tuor S(r,1)A,,u. (8.41b)
wherec thie simplest example of the function S is
Sy(t,r) = min(L,|r]) ; (8.41¢)
another example would be the centered limiter
S.(L,r) = min [2,2]r]. %(I + lrl)] . (8.41d)

These limiters are shown in Fig. 8.18. The term S, is a TVD limiter over its entite
range, but S, is not. The limiters can be logically extended to three arguments as be-
forc. One noteworthy point to raise with this reconstruction is that cell average of the
recoustruction no longer cquals the cell average 4; if sign (A,, %u) # sign (Aj_%u).
This subject is the topic of the next chapter.

i general, these limiters can be defined as above. They act as a multiplier on the
cell-edge gradients modifying its magnitude but not its sign. This differs from the
nortnal definition of limiters at points of extrema as noted above. The limiters are
easily constructed from the definition of TVD limiters by removing the feature that
sets the gradicut to zero if the signs differ, and changing the reconstriction algorithm
to one like the one shown above.

These limniters are not TVD unless the magnitude of S(1,r) < I. Despite this,
limiters of this nature perform well in practice (see Section 8.4) and have some advan-
tages over the limiters constriined to be TVD. In test problems, the total variation
was monitored and these limiters provide a TVD solution in practice. This may not
. »ld true for all initial data.

Generalized Average Limiters

As noted in several sections above (8.3.3 and 8.3.3), limiters can be viewed as nonlinear
averages of their arguments. in this section, this subject is explored further. As noted
in Section 8.3.3, van Leer's limiter is a modified harmonic mean of its arguments.
Another limiter was introduced in [159, 58], which has an interesting intetpretation.
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Figure 8.18: Two S-limiters are shown here. The upper of the two lines is for the
centered limiter S. while the lower is for S;. S; is a TVD limiter.

This limiter is written

(8 + 6% a + (a® + 8%)b

Qan (a,b) = a? + b3 + 263 '

(8.42)

where § is a small positive bias. This bias is added to guard against clipping smooth
extrema in the soiution. Its role is similar to that of M in the TVB schemes. It
should be chosen to be |du/dz| {195) or |du/dz|** [159] from the smooth regions of
the flow. Dropping & and converting this to the normal form for analysis gives

r’4r

Q.u(l,r) = -l_-'i-;’- . ‘8.43)
This limiter car: be written in an interesting form
2ab |1
Quv(@8) = s [ (0 + )] - (8.4

In this form it has a nonlinear coefficient modifying the average of the input argu-
ments. In [196], another form of this family of limiter was given (dropping the bias,
) as
2a?b + 2ab 4ab [l

= ~(a+ b)] .
(lal + (6)  (lal + [8])° L2

Qm-u(a,b) = (8.45)
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This limiter s more compressive than Q. and looks a great deal like the hannonic
mean limiter. As |ofb] T o<, Q- T 2. This limiter can also be written in ratio form

as
2r + 2r?

(1 +1r)*
I'his simiter behaves exactly as Qu for r > 0, but for r < 0 it behaves differently
(becanse it does not cqual zero).

Qm—ul“or) = (846)

‘Ihe nwoteworthy point is that both this limiter and van Leer's limiter can be
written in a forin that encommpasses both of thems as well as a much larger class of

limiter. This form is n n
jaf" 5+ 1o a

Q(“'b' ") = !"I" + Ibln A (8‘47)
ot in a form suitable for analysis,
m=
QULrm = (8.48)

Limiters obtained for two values of n are given in Fig. 5.19a.

If one takes the Jimit as n T oo, the minbar limiter is recovored, making it a
linsiting forns of this fanily. For n # 1 or n # ¢o this limiter does not produce a TVD
scheme in the erical experintents, but the results are quite good. The comments
contained in [159] are aiso of souse importance when considering this limiter.

For more than two argunients, onc can look to the suitable extensions of the
dcfinitions of harmonic mcan and generalize to the power limiter above. For the
three argument case this is :

{ab]” c + |ac|” b + |bc|" a

Q(ﬂ,b,c,n) = labln + lacln + lbcln

(8.49)

This limiiter is shown for n = 2 (in ratjo form) in Fig. 8.19b.

it is also interesting to investigate the results obtained with other nonlinear av-
erages such as the geometric mean. The results obtained with this scheme are not
TVD. but have somne redeeming qualities.

8.3.5 The ULTIMATE Limiter

This limiter has received a great amount of attention in the literature recently.
Leonard and coworkers 81, 82, 83] have presented this limiter in a series of papers.
in another recent paper, this limiter was compared with other methods on shock
tube problems [197]. The res::its showed that Leonard’s limiter probably suffers from
overcompression resulting in entropy violating solutions. in the following paragraphs,
I discover where this characteristic arises in this method.

For this discussion, I do not use the systeni of nomenclature adopted by Leonard,
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Figute 8.19: The generalized average limiter is shown in these figures. Figute 8.19a
gives two examples of the two argument limiter for n = 2 and n = 3. Neither of these
limiters is TVD. Figure 8.19b shows the n = 2 limiter for the three argument case.
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but rather move his notation into the systein adhered to carlicr 1 this chapter. ‘This
should allow this limiter to be coyapared on a "level playing ficld.” First, a short bick-
ground is necessary. This method was developed in response to non-monotonic be-
havior of J.eonard’s QUICK! method iu the presence of discontinuities. “Vhis method
has been used extensively in engincering heat transfer type applicatious and repre-
seuts the typical high-order schente entployed in those simulations. lu this regard,
Leonard’s lingiter is a great ingprovement, but its inerits and shortcomings need more
attention.

‘The normalized value diagram used by Leonard is not reviewed (one can refer to
the above references), and simply mmove on to the presentatiou of the ULTIMATE
limiter in my terms. Quite casily it can be shown that his limiter has the following
form:

Q(r)=m(An*,Cr,2,), (8.50)

whire Auw' = /' - ul is akin to the antidiffusive flux in the FCT method and C
is somne constara > L. In his papers, Leonard uses €' = 200. ‘Fhe valne of uf
is determined by a linear high-order upwind method (like QUICK). This limiter is
displayed in the nsual fashion in Fig 8.20a. By inclnding the QUICE differencing
(the third-order poiut valuc scheme form Section 8.3.3) it can be seen that the region
near the origin is not TVD for explicit time differencing.

Simple observition shiows that the above limiter is not TVD for explicit temporal
calculations uuless ¢ * = 2 and u® can be guaranteed to be within the hounds of a TVD
limiter. When used with fully implicit time differencing or steady-state computations,
the limiter is TVD. For C > 2, the limiter is no longer a convex average of second-
arder schenes aud  extremely compressive. This behavior is similar to that found
sith the FCT lmiiter.  The saving grace is that the high-order upwind methods
hive QUICK ate well-hehaved approximations for hyperbolic conservation laws. 1t is
i ly likely that if other high-order centered approximations were used the limiters
behavior would be far w'.rse (much more compressive). In other words, the positive
feati.res of the underlying linear advection scheme mask somie of the problems with
the limiter.

A recent paper by Leonard [84] discusses the ULTIMATE limiter in transient
problems. He suggests that C = 2/v. This yiclds a scheme which is nearly identical
to the classic FCT without the diffusive first step. His results show that using a Lax-
Wendroff or Beam-Warming type flux for the high-order flux with ULTIMATE yiclds
poorer results than the better TVD limiters. Only when the third-order high-order
flux is used are they better (not by much). Considering that the TV1{) scheines are
essentially designed with Lax-Wendroff or Beam-Warming fluxes as the high-order
fluxes thos: results are more applicable for limiter comparison.

YIhe QUICK method s a quadratic polynomialbased gpwipel method of sthirel arider aceuracy.

174



N
W
-+
s
4
1b

(b)

Figure 8.20: The ULTIMATE limiter is shown in this figure without the benefit of the
high-order upwind flux. The basic limiter is not TVD for explicit time discretizations
unless C = 2. The QUICK differencing is included in 8.20b. The region near the
origin gives non-TVD results for explicit schemes.
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8.4 Results

This section presents results for some of the limiters described . .ervious sec-
tions. The results are Jinited to the scalar wave equation and burgers’ equation.
No attempt is made to present results for all the limiters given above, but the types
of limiters introduced here are discussed with regard to their perforinauce in rela-
tion to resalution and convergence. The solution of the Euler equations using these
liiters could also yield useful information about the lintiter. This is left for later
investigations. With the exception of the FCT limiters, the basic numerical schemes
used in the results is (8.7) for the two argument limiters and (6.7) for the three ar-
gument limiters. ‘Fable 8.2 shows a list of the limiters considered in the results and
the abbreviations used in referring to thens below.
‘The general characteristics of the test problems are given in Appendix A.

8.4.1 The Scalar Wave Equation

i this section nsing various limiters, the scalar wave equation is solved by the methods
described in this chapter. ‘I'wo initial conditions are used for the analysis: a square
wave with a width of 10 cclls and a sin? r wave (half of a period) of width of 25
cells. Boti: tests are conducted for 500 time steps with a CF). nuniber of one-half.
The advective velocity is taken to be unity.

The results for the TVD two and three argument limiters are given in Figs. 8.21-
8.23. The results for njost limiters arc what can be expected. The three argiment
limiters make the resulting numerical scheine more diffusive, thus lowering the reso-
lution of the solutions. One important point is the horrible performance of the SB3P
limiter, which is not TVD. The SB2 limiter is also interesting because it seems to
coutpress the sin’ r wave into a square wave. This behavior is commonly seen with
this liiniter and warrants sonte warnine. It is primarily caused by the limiter not be-
ing able to differentiate between a diffused square wave and the smooth sin? = wave.
The limiter “recognizes” it as diffusion and compresses it. Various results regarding
the resolution, accuracy, and numerical diffusion can be seen in Tables 8.3- 8.5. For
the limiters of these categories, these tables show no surprises except in the case of
the SE2 limiter. By the measure of numerical diffusion used here this limiter actually
provides negative diffusion. This is not unstable because it is applied in a nonlincar
fashion. Where positive diffusion is needed, the limiter supplies it. For the sin’z
problem, the CEN'1'2 and V1.2 limiters are more accurate than SB2.

The results for artificial compression show that its eflects are similar to that pro-
duced by the superbee limiters in both the two and three argument cases. Figure 8.24
shows that the artificial compression results in sharper profiles and increased resolu-
tion when coinpared with the normal minmod limiter. For the form of implementation
uscd here, the resulting solution is not as compressed as with the superbee limiter.

The TVB solntious are shown in Figs. 8.25 anud 8.27. "T'he two arginnent TV lim-
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Table 8.2: Abbreviations for the methods used in this study.

Limiter Equation | Abbreviation
Two Argument Minmod (8.16a) MM2
Two Argument van Leer (8.16b) VL2
Two Argument Centered (8.16¢) CENT?2
Two Argument Supetrbee (8.16d) SB2
Three Argument Minmod (8.26a) MM3
Three Argument Minmod Prime (8.26¢) MM3pP
Three Argument Superbee (8.30b) SB3
Three Argument Superbee Prime (8.26¢) SB3P
Three Argument van Leer (8.30¢) VL3
Three Argument Centered (8.26h) CENT3
Two Parameter Artificial Compression Minmod (8.32b) MM2A
Three Parameter Artificial Compression Minmod |  (8.35) MM3A
Two Argument Minmod TVB (8.37b) MM2TVB
Three Argument Minmod TVB (8.51b) MM3TVB
Signed Two Argument Minmod (8.41¢) SMM2
Signed Two Argument Centered (8.41d) SCENT?2
Signed Three Argument Minmod (8.41c) SMM3
Signed Three Argument Centered (8.41d) SCENT3
Two Argument van Albada (8.43) VA2
Three Atgument van Albada (8.49) VA3
Two Argument van Albada with Bias (8.43) VA2B
Three Argument van Albada with Bias (8.49) VA3B
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(a)

Figure 8.2): The scalar squar~ and sin? 7 wave solutions using ‘+veral two argument
‘TVD limiters. Note that the SB2 limiter compresses the sin® 2 profile into a squiare

wave.



Figure 8.22: The scalar square and sin? r wave solutions using several three argument
TVD limiters.
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Figure 8.23: The scalar square and sin? z wave solutions using several three argument
“prime” limiters. Note the decidedly non-TVD behavior of the SB3P limiter.
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Figure 8.24: The scalar square and sin® z wave solutions using artificial compressior
It is notable that the solution with the two argument limiters (MM2A) compresses
the sin? z profile in a similar manner to the SB2 limiter.
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iter performs quite well, improving the resolution of the basic two argument limiter-
based solution at the cost of not being TVD. The three argument TVB limiter does
ot fair as we)j. This can be attributed to the “jocaj” nature of the resuiting scheme,
which looks too much fike the bax Wendrofl scheme. In Fig. 8.25, the MM3TVB is
virtually identical to the corresponding Lax- Weudroff solution. To combat this prob-
Jem, two other forms of the three argument limiter are introduced, the MM3TVB®

QTvY (r',l,r"') = max
and MM3TVB”

QTVe (r'.l,r"’) = max [O,min ( +m,l+m:* +m, ; (1 +r+) .-12- (r' + l))]
(8.51b)
As Fig. 8.27 shows, the resuits arc improved. The tabular data also reveal this.

Figure 8.28 shows the 1rsufts obtained with S-Jimiters. For the two argument
case, the results are not significantly different than those obtained with standard
TVD two argument limilers. The S-limiters have a dight advantage in terms of the
quality of results with slighily lower numerical diffusion. As revealed by looking at
the numerical data, the threc argument case is -mproved greatly by the use of the
S-limiters when compared wilh the corresponding ‘T'VD limiter case. This is most
likely due to some reductiou in the clipping of snwoth extrema in the solution.

Van Albada’s limiter is nsed to represent (h:: solution by a generalized average
limiter (n = 2). I have alrcady scen the van Leer or n = | limiter at work. The
resufts in Fig. 8.29 do not use bias in the schenies. The results are quite comparable
with other two or three argument TV)) type s-hemes. In fact, the solutions are
quite similar to those obtained with the V1.2 o1 VL3 limiters. By adding bias to the
limiter, the resolution can be improved in a qualifative sense. In a quantitative sense,
the results are worse. One teresting remark is that she three argnment limiters in
gencrad seem to be more seusitive (as secu in this case or the TVB limiters)

0. mio (r' +m. )+t + m.% (r' + r+))] . (8.5]a)

8.4.2 Burgers’ Equatjon

This section of the chapter centers on the order of accuracy obtained with methods
in conjunction with limiters and their subsequent solutions. To accomplish this, a
standard test problem using Burgers’ equation i- used. The problem consists of an
initial condition of sin(z), r € [0,27r]. At ¢ = 1.2, the solution is smooth, and at

e Gimm oan Pl Ahe anmsemmmss

L= 19 a shock has formed in Lhe solution. 1% s at Jhese times Lhat the aciuvaly
of the solution is assessed. The problem is solved with 10 grid cells followed by 1000
grid cells. The solution is »btained with a Godunov nnmerical fluxes as described
in [158].

The results for this test Jsroblem are given :n Tables 8.6 and 8.7. In general. the
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Figure 8.25: The scalar square and sin’ ¢ wave solutions using TVB limiters. The
three argument TVB limiter prodiices a results nearly identical to the Lax-Wendroff
method.
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Figure 8.27: The scalar square and sin? z wave solutions using modified three ar-
gument TVB limiters. These improve the performance of the three argument TVB
limiters.
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Figurc 8.28: The scalar square and sin? z wave solutions using two and three argument
S-lirniters.
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Figure 8.29: The scalar square and sin? z wave solutions using the generalized average
limiters with n = 2.
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Figure 8.30: The scalar square and sin® z wave solutions using the generalized average
limiters with n = 2 with a bias added as suggested in [198).
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Table 8.3: L, error norms with minimum and maximum values for the square wave
problem.

Limiter | Minimum | Maximum | L; error
MM2 0.0000 0.7108 7.41 x 1073
VL2 0.0000 0.8784 | 4.59 x 10~2
CENT2 0.0000 0.9508 | 3.65 x 10~2
SB2 0.0000 09927 |1.79 x 102
MM3 0.0000 0.6037 | 9.41 x [0~?
MM3P 0.0000 0.6005 9.47 x 1072
SB3 0.0000 0.7819 | 6.36 x 10~3
SB3P -0.1690 1.1875 9.71 x 102
VL3 0.0000 0.6760 | 8.20 x 10-?
CENT3 0.0000 0.7632 | 6.60 x 10~?
MM2A 0.0000 0.9668 | 3.14 x 102
MM3A 0.0000 0.7174 | 7.55 x 10-?
MM2TVB | -0.0514 1.0901 4.00 x 102
MM3TVB | -0.0392 0.7616 | 7.77 x 10~2
SMM2 0.0000 0.7108 | 7.41 x {03
SCENT2 0.0000 09516 |3.65x 1072
SMM3 0.0000 0.6059 |9.39 x 10-?
SCENT3 0.000¢; 0.7758 | 6.52 x 102
VA2 0.0000 0.8035 5.63 x 10-3
VA3 0.0000 0.6801 | 7.95x 102
VA2B -0.0314 1.0313 4.04 x 10-?
VA3B -0.1885 0.9275 7.78 x 102
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Table 8.4: L, error notms with minimum and maximum values for the sin’ ¢ wave
problem.

Limiter | Minimum | Maximum | L; error
MM2 0.0000 0.9197 3.74 x 1072
V12 0.0000 0.9668 | 2.26 x 10-?
CENT?2 0.0000 0.9794 1.94 x 10-2
SB2 0.0000 0.9893 243 x 102
MM3 0.0000 0.8717 | 5.20 x 10-?
MM3pP 0.0000 0.8708 5.24 x 10~?
SB3 0.0070 0.9552 2.98 x 102
SB3P -0.1801 1.1847 5.63 x 102
VL3 0.0000 09162 | 4.06 x 102
CENT3 0.0000 0.9571 3.00 x 1072
MM2A 0.0000 0.9835 2.10 x 1073
MM3A 0.0000 0.9385 3.53 x 102
MM2TVB | .0.032! 0.9943 2.08 x 10-?
MM3TVB | .0.0266 0.9538 3.95 x 10-3
SMM2 0.0000 0.9195 3.74 x 10-3
SCENT2 0.0000 0.9791 1.95 x 102
SMM3 0.0000 0.8726 5.20 x 102
SCENT3 0.0000 0.9606 3.00 x 10-3
VA2 0.0000 0.9524 2.59 x 102
VA3 0.0000 0.9217 3.56 x 10-3
VA2B -0.0319 0.9944 2.02 x 10-2
VA3B -0.1086 1.0564 4.37 %1072
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Table 8.5: Numerical viscosity and total variation for both scalar wave equation

problems.
Limiter | ¥ r square | TV square | 7 sin®x | TV sin®x
MM2 40.67 1.42 30.61 1.84
VL2 17.65 1.76 7.91 1.93
CENT2 10.74 1.90 3.58 .96
SB2 3.00 1.99 -8.49 1.98
MM3 60.59 1.21 53.15 1.74
MM3P 61.19 1.20 53.62 1.74
SB3 30.57 1.56 17.52 1.9t
sBip 26.63 4.052 -23.78 XRY)
V963 47.00 .35 35.02 .83
CENT3 3.97 1.53 17.91 1.91
MM2A 8.19 1.94 -1.38 1.97
MM3A 40.73 1.43 29.39 1.88
MM2TVB 7.90 241 3.36 2.12
MM3TVB 39.71 1.61 29.39 1.96
SMM2 40.37 1.42 30.55 1.84
SCENT? 10.63 .90 3.53 1.96
SMM3 60.09 1.21 52.94 1.75
SCENT3 30.83 1.55 17.53 1.92
VA2 25.70 1.6] 12.72 1.90
VA3 44.75 1.36 39.82 1.84
VA2B 9.11 2.20 3.37 2.13
VA3B 12.11 2.37 4.38 2.42
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Table 8.6: Orde: of convergenre in several eeror norms for Buegers' equatiig at # = 0.2
when the solutii.. is smuoth,

Limiter Ly | L2 | Lo
(MM2 | 212|215 | 1.84
VL2 215 (217184
CENT2 216|217 | 1.95
SB2 2.8 {217 1.84
AMM3 2.08 | 1.86 | 1.32
MMip 208 | 1.87]1.32
' $B3 2.15 | 1.85 | 1.3)
| SB3P 191 { 1.63 ] 1.08
VL3 2.2'1.85]1.31

CENT3 213|186 1 132
MM2A 2.14 1216 | 1.83
MM3A 2.12 | 1.4 | 1.3
MM2TVB | 1.7311.73 | 1.63
MM3TVB | 2.04 | 1.82 | 1.28
SMM2 2121214} 1.85
SCENT2 [2.1612.15|1.83
SMM3 2.08 | 1.84 | 1.27
SCENT3 |[2.08|1.81|1.26
VA2 2.16 | 2.18 | 1.87
VA3 2.13 | 1.86 | 1.3
VA2B 1.73 { 1.74 | 1.64
VA3B 2.02{1.80}1.25
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Table 3.7. urder of conversr:c .1 several ertor norins tor Burgers' equation at ¢ = 0.2
when the solution has o st i .
Limiter L1 | Lz | L.

lumz [ 147102 070
| vz 151 110 | 0.61
CENT2 |1.52]1.10]0.61
51 1.51 | 1.01 | 0.49
MM3 1.57 { 1.18 | 0.74
MM3IP | 1.57 [ 1.18 [0.74
SB 1.68 | 1.14 | 0.60
SB3P | 1.28|0.79 | 0.25
VL3 165 | 1.19 | 0.69

CENT3 1.53 | 1.00 | 0.47
MM2A 1.49 1 1.08 | 0.58
MM3A 1.60 | 1.10 | 0.54
MM2TVB | 1.1910.83 | 0.36
MM3TVB | 1.52 | 1.05 | 0.5}
SMM2 1.50 | 1.14 1 0.70
SCENT2 |1.60|1.16}0.63
SMM3 1.5) | 1.15 ] 0.72
SCENT3 11.5210.98{0.44
VA2 1.54 | 1.12 1 0.65
VA3 1.65 | 1.13 | 0.60
VA2B 1.1510.77 | 0.31
VA3B 1.51 | 1.01 | 0.48
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order of convergence for the solutions jis hetter for the two argnntent limiter than the
three argument linnters. The three arguiment limiters also experienee a nmch greater
difference in convergence from one norm to a higher norm. The non-1TVD and FCT
limiters scein to suffer from worse convergence chiaracteristics than the other scheimes.
Additionally, the schemes using some constant ('TVB or VA2B and VA3B) in the
timiter show poor convergence. These schemes do perforin far better when the inesh
is coarse, and these limiters seem to produce excellent results in relation to other
limiters for those cases. After a shock has forined, the two argument liniters show a
greater degradation in convergence. Again, this is especially true with the non-TVD
limiters. The stated convergence of the three argument limiters when a shock has
formed is somewhat a function of the exceedingly poor results found on the coarsest
grid. {u the same veiu, the poor couvergence of the TVB and the biused vay Alhada
limiters is somewhiat a result of the exeellent results obtained on the cvarsest grid.

8.5 Concluding Remarks

In this chapter a number of liniters have been reviewed and their properties exam-
med. In addition. several linmiters have been introduced or reformulated and analyzed
within a common framework The impact of linsiters on high-resolution numerical
solutions has also been denonstrated. The importance of limiters on the solution
of the equatiors is undeniable. The quality of solutions is directly traceable to the
lnniters because they are the heart of the numetical schemes.

More study of limiters is warranted in light of these results. As discussed carlier,
limiters can impact stcady-state solution convergence. Some study of this phenomena
is needed. Additionally, both TVB and generalized average limiters should studied in
order to give more systematic manner to choose the constants used with the limiters.

The following chapter explores the effect of the constraints placed on the polyno-
mial interpolation employed by high-order Godunov schemes.
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Chapter 9.
Cell-Averages or Point-Values? On
Reconstruction Methods

V/e have found a strange footprint on the shores of the unknown. We have
devised profonnd theories, one after another, to acconut for its origin. At last
we have succeeded in reconstructing the creature that made the footprint. And
lo! it is our own. Sir Arthur Stancly Eddington

9.1 Introduction

One o) ihe primary manuers of constencting modern high-resolution npwind schemes
is the use of the HOG philosophy. This method has several key points in its favor:
the use of conservation form, the case of use with systesus of equations, the use of a
quality uuderlying physical niodel, and reduction of finite differences to polynomial
interpolation. It is this fial point on which | concentrate my efforts.

The polynomial reconstriction determines the order of accuracy the scheme can
attain. It also interacts strongly with thic underlying physical medel inentioned in
the previons parageaph. This underlying model is typically a Riemanay solver of some
variety [30). In HOG methods, the polynomials used arc constructed piecewise so
that cach control volume has one polynomial per variable in it. At the boundaries of
the control volumne, the polynomial distributions are not required to be contintious
and a discontinuity typically results. The Riemann solver acts as a sort of “referee”
determining what the cotrect nmimerical flux shonld be at that cell boundary. | return
to the gencral description of HOG ethods in the following section.

These wethods grew vut of the work of Godunov (56, 577 whae ingenions method
cmbodied the essence of npwind differencing as giver. by Couiam  [ssacson, and
Reen {54, 31). The work of Godunov was important in two regariz- because of
his use of a Riewmann solver within the differener scheme and 1s theorem regarding
diffcrence schemes.

in the 1970s, 2 mnber of rescarchers e grear steides jo ue ng novlin-ar schemes
in attaining mouotone schicines of higher order accuracy. .sotabic a1 -ng these works
is that of Boris and Book (59] on the flux-cortected tranispom acthed as.d Harten's
artificial compression method [183). The work of van Leet wa: conner:ted more clusely
to that of Godunov and in a series of papers. HOG methods were «flind {114 120, 60).
The key to this definition was the definition of monotone advection usis.g Yigher vrder
;m!yunmi..f lf('v'l’i;r'hnln of e namerio af e
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Van Leer's work on HOG methouds was extended i o impnber of efforts in the 1980y,
The PI°M {l'.f‘_'. 271 s netablde Lecanse of its continmed precimnence i the ficld [l'.?.‘l,
SOl This ethad was ariginally conceived e Lagrangian coordinates canpled with
ab Enlerian remage bot s equalls at home wr purely Enlerian coordinates {123). A
signilicant advinee i HOG imethods wiss made with ENO methads {6165, 66). These
methods extended the HOC methold to an arbiteary high ofder of acenracy.

Perbiaps of equal importauce to the developiment ol HOG methad has been the
advent of TVD (130, 61]) and TVH [169] methods, The eriteria detimng methods to
be either TVD or TV .‘lllply to HOG micthads. The class of TVH (-‘Iucl ('uus«'qll(‘llll)’
EVB) methads s quite Targe and it is nsually nat diflicalt to show a direct corre
spomlence hetween these methods apt the JHOG uethodalogy. “This idea is key to
the analysis that follaws,

This chapter is divided into five sections. The second section gives a basie in-
tradyctjon to HOG methods. The fallowing section deseribes basic cell-average and
prant valne algonthis considesed here. This is followed by o presentation and discus-
sion of the performance of the methods. The fifth section has conclusions and Josing
bein- ks,

9.2 High-Order Godunov Methods

As noted above, the HOG naethods nse o nonlinear piccewise polynomial intespolation
to define their nmpeical flnxes in conjunetion with a Ricmann solver.,

The schematic representistion of o second-order method is shown in Fig. 9.1. As
can he seen by camparing this with Fig. 1.5, the only diffesence hetween them is in
the reconstrnetion step, which in tury impiscts the solntion i the simall.

A mmerical flux is determined by the two stages meeting at auy given cell edge
and the Riemann solver. Iy Godnnov’'s methad., the cell-edge valnes are equal to
the cell-average tor cell center) valnes. Thus, a zeroth order polynomial describes
the vanables distribntion in any given cell.  Au i tegration of the tecoustructive
polynomial over the cell trivially recovers the eoll-average.

At this point in the exposition, it is helpful to coneretely state what is meant by
o cell-average ar point-value-hased interpolation.

Definition 7 (cell.average reconstruction) 4 picce wise polynomial reconstruction
1s cell-arerage based 1f the average of the reconstructon over the cell ia equal to the
cell-average.

Definitica 8 (point-valuc reconstruction) Pont-valur interpolation is mord loosely
defined. The preccwrse polynnmmal reconstruchon 15 a polynomial of some accuracy
snterpolating the dato vathin a qiren cell.

Thr' |m|y||nllliil| mn lh(' |ouilll‘\'.‘||||(° ll‘l'ﬂll\lllll'lillll " al) nlw}‘ Ay llllllllwr of pu.wilplv

sepstoitn Vel e nelang derivaior. st st} 'il.li'lf'. factes selated e



Initial|Data

Achfing and Reconstsuction

Solution in the Small

Reavenaging

Figure 9.1: The steps of Godunov'’s methods are shown for a higher order polynomial
teconstruction. The solution in the small takes place with data that has been time
centered over the domain of dependence of the local characteristics.
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the data. In a sense, the cell-average recoustinetion is a subset of the point-value
reconstruction based on the restriction to an mtegral copstraint based on a cell-
Average.

At this point. a deeper meaning shonld be gleaned from the above presentation of
Godimov’s wethod. Goduov's method hias as its basis the idea of cell-averages. The
cell-averages of the dependent variables are conserved by the schewe. [ the above
algoritlin, the cell-averages represent the quantities used in the method derivation.
The use of cell-averages fits nicely into the theory of weak solntions given in Chapter 2.

The question to ponder is whether it is wecessary for the cell-averages to be used
exclusively in the difference schames. The conseevation fenn of the finite difference
scheme ensires that the rell-averages are conserved. The key qnestion segards the
accuracy and cfliciency of the approximnation. At a more philosophical tevel, the
generality of the desigu principle comes to play. Because the point-value philosophy
is more general it lends itself to extension in multiple dimcnsions and other types of
probleinus with greater case than the more restrictive cell-average reconstructjon.

The formulation of Godunov's method implies the use of some cell-average inter-
polation. The use of the divergence theorem to transforin the integrals to forims inore
amenable to nmerical treatient changes the sitnation somewhat. 1t is necessary to
compute the flux functions in order to compute chanuges in the cell-averages. The
conservation is not cffected by this chauge regardless of the method nsed to com-
pute the fluxes (as long as j,,; = ;,; irregardless of what cell is being computed).
The upwind principles embodied by Riemann solvers and appropriate inonotonicity
coustraints on the reconstenction ensnre that the fluxes are of + onality nature.

Point-values of the function being advected should be reasonable representations
of the function iu any given control volusiie and by the mean valne theoren shonld be
fairly close to the cell-averages. As noted in [199). the cell averages and point values
differ by O{Az?). These values should certaiuly be wcceptable for the compntation of
fluxes, because the form of the difference cqnations conserves the cell-averages. Most
classical difference are based on point-valu- vicerpolation (or can be thought of in
this way).

The cell-average basis makes good theoretical and logical sense. Given a finite
volume discretizatior «ad taking into acconut a Gibbs-type error wonld imply that
vou could orly know the cell-averages. The poiut of inportance is how to constenct
a piccewise econstriction for the putposes of computing fluxes.

9.3 Description of Polynomial Reconstructions

As noted in the previons section, | examine two approaches to reconsteaction in HOG
wmethods. The cell-average formula‘ion is more theoretically pleasing, but the paint.
valie farmulation is simplet and seems more pataral W finsd giace o
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9.3.1 Cell-Average Reconstruction

This section of the chapter concerns the constructjon of piecewise polynomials of the
cell-average type.

The canonical cell-average reconstruction is used in Godunov's method, i.e.,

P(z)=u,, z€ l:"*,z"}] . (9.1)

This inethod has first-crder accuracy and trivially has the cell-average recoustruction
property.

A second-order method widely used for HOG type algorithms (123, 179] is defined
by the reconstructive polynomial

(r-1z,)
it re g (02

P(z)=u,+4A,u,

The slope, ATu/A,u. is a limited estinjate of du/dz at the cell center, z,. The
limiters used were discussed in Chapter 8. Integration over the cell confirms that
this reconstruction has the cell-average property. This scheme is compared with a
point-valite type of reconstruction in Section 9.4.

The third form of cell-average reconstruction is the MUSCL reconstruction {120,
147, 45). This form is particularly useful because it has a parametric form and thus
is actually a family of schemes. The polynomial is based on Legendre polynomials,
and thus has the desired cell-average reconstruction property. The basic form of the
scheme's reconstruction is

P(z)=u, + ! (5,_% + 5"!) (z—1z,)

- A ?
3“ 'i) = ‘)) l;] $ € [x“;.x"%] - (93)

Here .i,_% = Q(I.r)s,,; where Q(1,r) is a limiter and 3,4 = A,_;u/A,_;x. Ta.
ble 9.1 gives the types of schemes that arise for different values of x. Care must be
taken in the use of limiters with this scheme, as was discussed previously (S~ction 8).

Onc problem with this scheme is the definition of the stencil used for the limiters.
if the stencil is not chosen correctly, the scheme, although stable, is not TVD, and thus
be oscillatory. in general, upwind biased limiters used with this scheme do not produce
TVD results because the upwind biased gradients used in defining the reconstruction
apply their information throughout the cell, thus violating the assumptions made with
an upwind biased stencil. This problem can be cured through centering the stencil in
some manner. One option is to center the limiters, but this has a detrimental impact
on the schieme’s resolution.

Befare maving onto point-value based reconstructions, some cominents mnst be
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Table 9.1: The type of scheme produced for various values of & with the MUSCL
reconstructjoun.

—

" Scheme

: ~-sided, second-orde

i} one-sjqed, secong-orger
10 upwind, sccond-o:der

1/3 npwind, third-order

l centered, second-order

made concerninug ENO type schemes. The powerful PPM method is based on cell-
average reconstruction. This scheme uses a quadratic cell-average tecoustruction.
Another concept used with this scheine is a primitive function that is wsed to define
values of u at the cell interfaces. The primitive function of u is defined by

l'(.t):/ftll(.r).lr. (9.1)

This concept is put to greater use in the derivation ENO schemes [61). The actnal
reconstruction takes plac: with the primitive fiumction. This recoustruction is then
differentiated to give the reconstruction to n(z). By inspection, this scheine has the
cell-averaged reconstenction property. Oue jmuportant caveat is that this does not
generalize to nmltiple dunensions except throngh diincnsional splitting. This is due
to the lack of a generalizistion of the primitive function concept to mmltiditmensional
cases.

To test the cell-average reconstruction | uscd two test problems: onc with a sinooth
nearly discontinuous form, and a sccond with a smooth local extrema. The first
problem was used to test the PPM [122, 27] method, and has the functional form

f(z) =tanh (1) ,
the second problem is a Ganssian distribution with a standard deviation Az = 3
f(z)=exp l— (:’) /'ZA:] .

Both are plotted over the range r € [~ 10, 8].

The tesults for these funitions with Godunov's method are shown in Fig. 9.2,
The large jumps result in a large amount of diffusion in the solution as given by the
theory shown in Chapter 8. By going to a sccond-otder algorithm, the results inprove.
Figure 9.3 chows the basic second.order BOG algorithin with the minmed Emiter
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The diffusion has been decreased because the jumps have diminished in magnitude.
By using thie central limiter these results improve, and by using the superbee limites
the results improve again. This is shown in Figs. 9.4 and 9.5. With the Gaussian
distribution, the superbee has overcompressed one location, which is typically the
beginning of forming a false discontinuity. The use of cell-averages is diffusive, (in
fact TVD see [64]) and results in the ininiediate clipping of an extrema in the solution.

Figure 9.6 shows the reconstruction using the MUSCL interpolant with x = 1/3,
The use of tliree argument lintiters makes this a TVD scheme, but as noted in Chap-
ter 8 the three argument limiters are more diffusive than the two arguinent limiters.
The tanh () grid is too coarse to capture the discontinuity with these limiters.

The methods for reconstruction given above aree contrasted with the methods
discussed 11 the following section for form and complexity.

9.3.2 Point-Value Reconstruction

In this section, I introduce the general concept in point-value based reconstruction
and compare sonie specific examples with the cell-average formulation in Section 9.4,
if, for instance, the cell-averages are not used to derive the fluxes, the scheme
still mairtains its conservation. The caionical example of this is the Lax-Wendroff
method. This method is conservative, but its HOG analog described in Chapter 6
does not use a reconstruction, which is of 2 cell-average variety.
The integral average of the Lax-Wenn.uff polynomial over a cell z € [zj_*,z"‘]
yields
2

/‘ ;0: P, (z)dz =u,~+98£(s"§ —.1,_;) , (9.5)
ye

which does not equal «, unless $,.1 = 8,41

With the inclusion of slope limiters, this scheme becomes the symmetric HOG
niethod (see Chanter 6). These limiters can either be upwind biased or centered in
their support (see Chapter 8) . These schemes are defined by changing s, 1 s,ﬂ
in (3.12a). Here 5, are defined with appropriate limiters (132, 134).

In Chapter 6, the scheme above was extended to include a quadratic interpo-
lation based on the same availabie data (one degree of freedom is not used in the
above schemes). Although not stated in Chapter 6, this schem= is the analog to the
MUSCL reconstruction using Taylor rather than Legendre polynomials. This scheme
is described by the reconstruction

2
P—A—:L)‘ € [50002,0) -

(9.6)
The lower operation count in the above cquation is evident by comparing the two
forrns.  The family of schemes produced for differing values of x is described by
Table 9.2. In the following sectjon. the limiters nsed with these schemes are discussed.

Piz)= u,+% (5,_% + 3“,%) (z—1z,)+x (5,’% - 5,_*)
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Table 9.2: The type of scheme produced for various values of & with the quadratic
HOG reconstruction.

K Scheme

-t | oue-sided, second-order
0 npwind, second-order
1/2| upwind, third-order

1 centered, second-order

Another interesting cell-average form can be found through imposing the con-
straint on the syinmetri: HOG scheme of giving a cell-average reconstruction. The
scheme that results is

( )0} 3,- }) ‘;n}(‘ -1,) i2€ [‘n’n*]
5,_;(:—:,) 1L € [:,_g.:,]

P(z)=u, - (9.7)

C'antion must be used with this scheme with regard to retaining TVD propertics.
lu general upwind limiters do not produce a TVD scheme because the information
froni the npwind limiter is passed downwind via the correction terin that assures
ihe cell-average property, bit a three argument centered limiter does not have these
difficulties.

As 1 did in the cell-average section, the point.value interpolauts are tested. In
both cases shown below, three argmnent centered limiters are used. In Fig. 9.7
the symmetric HOG method is shown and in Fig. 9.8, the quadratic HOG (s =
1/2) method is shown. The three argument limiters are too diffuse to capture the
discontinuity in the tanh (z) function. The figures also show how the interpolants are
(' continuous at the cell edges. Both are roughly equivalent to the MUSCL method

in accuracy.

9.4 Results

This section presents results nusing inethods described in the previous sections. Results
cover the resolution, accuracy, economy, and general quality of the solutions. In order
to do this, three types of problems are examined: the scalar wave equation, Burgers'
canation. and the Faler equation. The test problems are all discussed i Appemdix A
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Table 9.3: Swmin of mnnerical viscons flux for the scalar wave cquation test problems
at ¢ = 250.0.

Scheme Sine Squnte(T —Squat—e
(3.12a4) upwind hiased 30.84 10.95
(9.7) npwind biased 3136 13.27
(3.12a) synnnetrpe .67 61.80
(9.7) syinnetric 53.83 G0).81
(9.6) & = 1/2 minmod 53.98 60.96
(9.3) & = 1/3 minmod h3.79 60.79
(9.6) & =1 [2 centered 13.65 24.69
(9.3) & = /3 centesed 12.97 2%.29
(9.6) x = 1/2 MUSC), 30.25 39.51
(9.3) 5 = 1/3 MUSCL, 30.52 40.06

9.4.1 Scalar Wave Equation

In addition to a comparison of the qualitative appearance of the resnlts, several
quantitative wcasnres of algorithmic perforinance are used: the peak valiues in the
solntions, the total variation of the solution at the end of the test and a ineasure
of numerical viscosity. ‘The measure of numerical viscosity is mnade by a technique
described in a geueral sense in [30). This idea was expanded on by the anthor in
Chapter 8. The gist of the technigne is to comgare the nuinerical fluxes of a high-
order technigne with that of the Lax- Wendroff mcthod and denote the difference as
numerical viscosity. The results for various methods using this approach are shown
in Table 9.3. For the schenies that are TVD for both construction techniques, the
cell-average reconstruction carries less niinerical viscosity, but when the schicmes are
not TV, cell-average reconstruction is more viscous. This general conclusion is born
ont by other depictions of the data.

The results shown in Table 9.4 show that, in general, the two mcthods of re
construction yield similar results for similar schemes. Except for the upwind.biased
L.ax-Wendroff type schemne, these resnlts are consistent with the micasure of numerical
viscosity. Figure 9.9 shows the excellent results obtained with the upwind-biased Lax-
Wendroff TVD schenie. Making this schemie a ccll-average reconstruction destroys its
TVD property and miakes the resnlts (shown in Fig. 9.10) quite poor although the

szeavizsinnre: values are onpieetmd
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Table 9.4: Maxinuns profile values for the scalar wave cquation test problems at
t = 250.0.

Scheme Sine Squared | Square
(3.12a) npwind biased 0.9197 0.7108
(9.7) upwind biased 0.9481 0.7598
(3.12a) symmetric 0.5717 0.6037
(9.7) symmetric 0.8689 0.6030
(9-6) x = 1/2 minmod 0.8690 0.6032
(9.3) x = 1/3 mimmnod 0.8689 0.6031
(9.6) x = 1/2 centered 0.9602 0.7795
(9.3) & = 1/3 centered 0.9603 0.7799
(9.6) x = 1/2 MUSCL 0.9394 0.7519
(9.3) x = 1/3 MUSCL 0.9334 0.7487

I the case of the symmetric HOG schense. the method reinains TVD after its
transforination to a cell-average ‘econstruction. Figures 9.11 and 9.12 show the results
obtained with these methods. The point-value teconstruction gives slightly ! -gher
resolution and less viscosity. but the cell-average reconstrnction results in a solution
with better symnietry propertics.

As shown in Figs. 9.13-9.16 these results carry over to the quadratic reconstruc
tions nsing the minmod limiter, but not to the centered lisniter, which slightly favors
the cell-average reconstruction from cvery perspective. This included the qualitative
appearance of the solutions. The classic: MUSCL (nonTVD) solutions arc similar,
but the resnlts co not favor the cell-average reconstruction for the square wave. In
this case the oscillations are worse.

9.4.2 Burgers’ Equation

This section of the chapter discisses the otder of accuracy of the reconstructions and
their subsequent solutios;s.

‘Table 9.5 shows the raies of conve.gence obtained with some of these methods
when the solution is sinooth. In every case, the rates of convergence obtained with
the point.valuc reconstruction are supetior, in some cases by quite a margin. This is
cqnally trne for the solutions after a shock has formed. Table 9.6 shows this quite
clearhs and in enme cases the disparity in performance is quite profonnd.
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Table 9.5: The order of convergence in several norms for varions scheies for Burgers'
cquation at t = 0.2 whey the solution is smooth.

Scheme Ly | Lz | L.
(9.2) 2,16 [ 2.1711.95
(3.12a) upwind bjased | 2.16 { 2.17 | 1.95
(3.12a) synnnetric 2031 1.86 | 1.32
(3.12a) syunuet:ic 1.87 1 1.60 | 1.23

(9.6) s = 1/2TVD {200 | 1.83 | 1.28
(9.3) x = 1/3TVD | 202|174 1.22
(9.6) & = 1/2 MUSC), | 2.05 [ 172 ] 1.15
(9.3) x = 1/3 MUSCL | 188 | 157 | 1.1

Table 9.6: The order of convergence in several norns for various schemes for Burgers'
equation at ¢ = 1.0 when the solution has a shock.

Scheme Ly | Lz | L.
(9.2) 1.52 | 1.10 | 0.61
(3.12a) upwind biased | 1.52 | 1.10 | 0.51
(3.12a) symmetric 1.53 | 1.00 | 0.47
(9.7) symimetric 0.71 1 0.58 | 0.36

(9.6) TVD s =1/2 | 1.61 | 1.05 | 0.53
(9.3) TVD x =1/3 | 1.60 { 1.07 [ 0.56
(9.6) MUSCL. & = 1/2 | 1.43 | 1.02 | 0.54
(9.3) MUSCL = 1/3 | 0.98 [ 0.78 | 0.53

-
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Tab! 9.7: L, norms for deusity and velocity in Sod’s problem, including times for

rcconstruction for each solution.
Scheme Density Velocity | Times
(9.2) 581 x 10°? | 1.13x 107 | 097
(3.12a) npwind biased | 5.86 x !0=2 | [.15x 107 | 0.94
(9.7) upwind biased | 8.15x 1072 | .18 x 1072 | 0.93
(3.12a) syminetric 6.50 x 1072 | 1.02x 102 | .08
(9.7) symmietric 6.40 x 10°* 1999 x 10~ | 1.14
(9.6) TVD x = | /2 644 x 1072 | 1.OI x 10"% | [.18
(9.3) TVD x = 1/3 6.44 x 1072 | 1.0l x 1072 | 1.34

9.4.3 The Euler Equations

‘This section shows the performance of some of the methods discussed in this chapter
on a systens of conservation laws. As is common practice, the Fuler cquations are
solved becanse of their great practical interest. Jt should demionstrate a “true” picture
of cach mcthods capabilitics. For each of the methods used below, the density and
velocity profiles are shown and the L, norms of these solutions are given.

The solutions arc shown at ¢ = 20. The solutions shown below use Roe's approx-
imate Ricmann solver and a chezracteristic variable based reconstriction [63, 200).
The TVD schemes using the three arguinent limiters employ the centered limiter for
the noulincar waves in cquations and a superbee limiter for the lincarly degenerate
wave. For those methods using two argumnent linsiters, the ronlinear waves use a van
L.cer limiter.

As shown in Figs. 9.19-9.25, the resilts obtained with these methods for systems
of cquations are all quite good. Each solution with the exception of the upwind-hiased
}.ax-Wendroff type has a buinp in the velocity solution at the end of the rarefaction
wave. The solution obtained for the shock wave with this method is slightly better
(two cclls wide rather than three). Table 9.7 shows the tuethods’ L, norms for density
and velocity. In general, the results are similar here as well. For the upwind-biased
Lax-Wendroff TVD methods, the cell-average form is noticeably inferior wheteas the
cell-average symmettic HOG methad is supeticr to the corresponding point.value
recopstenction. In general, the differences econot.ay of nise are inconsequential except
foor the Flaseie-MUSCL - Legrndre forinnlation.
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Figur: 9.19: Th~ density and velocity solutions to Sod’s problem with a cell- average
second-order HOG method.



(a)

Figure 920: The density -« 4 vrlucity solutions to Sod’s problem with an upwind-
biased Lax- Wendroff TVD e - )



Figure 9.21: The density and velocity solutions to Sod's problem with an upwind-
biased Lax-Wendroff TVD method with a cell-average correction.
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Figure 9.22: The density and velocity solutions to Sod’s problem with a symmetric
HOG method.



Figute 9.23: The density and velocity solutions to Sod’s problem witl: a symmetric
HOG method with a cell-average correction.
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Figute 9.24: The density and velocity solutions to Sod’s problem by a quadratic
Taylor polynomial based HOG niethod.




Figure 9.25: The density and velocity solutions to Sod’s problem by a quadratic
Legendre polynomial based HOG method.
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9.5 Concluding Remarks

The results in the above section show that the method of reconstruction used in
HOG schemes is of some importance to the quality of the results. For cases where
the solution remain TVD, the cell-average solutions are of higher quality, but as
the Burgers’ equation solutions show. are of lower rates of convergence. Where the
schemes are not TVD, the point-value reconstructions are superior and result in less
oscillatory results. For systems of cqnations. the picture is less clear. The solutions
obtained with all the methods show that the solutions are acceptable and quite good.

The major difference between the two approaches is oue of ease of implementation.
For one-dimensional problems, the differences are hardly consequential, but the edge
is with the point-value polyuomials. For multi-dimensional reconstructions, the point-
value reconstruction is clearly easier and shonid be considered for this purpose despite

certain philosophical imadequacies.
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Chapter 10).

Conclusions and Recommendations

Order and Simpl. cation are the first st-. towarnl the masiiiy of a subject.
Thomas Mann

Life is the art of drawing sufficient conclusions from insufficient premises. Samuel
Butler

In this chapter, overall conclusions are made concerniug the preceding work. The-
ses conclusions act as a sumniary of the results of this work. Following this a number
of recoimuendations are made concerning fisture ditcctions for research.

10.1 Conclusions

The FCT niethod is shown to be similar to syunuetric TVD methods under certain
conditions. This similarity is exploited in 1mproving the perforinauce of FCT. This
improvengent is particnlarly evident in the solution of systems of equations.

With the relationship between FCT aud TVD methods firmly established, both
of tiicse methods were directly connected to high-order Godunov methods. This is
accomplished through defining a non-upwind biased geometric version of the Lax-
Wendroff method. Because the Lax-Wendroff method is the basis of the sysnsetric
TVD method, the gencralization is straightforward. From this, a scheme based on
parabolic interpolation is derived. Further improvements are made through the use
of uniformly non-oscillatory reconstruction methods.

The topic of limiters is then explored in considerable depth. This begins with a
review of the FCT limiters. In this section of the work, Zalesak's limiter is modified
in a similar fashion to the classic FCT linsiter.

TVD limiters and their general properties are discussed in a manner that is more
general than found in the literature. Three atgument limiters are revised and ex.
tended with the use of certain limiter properties. The use of two parameter limiters
is compared with three parameter linsiters. 1t is shown that three patameter limiters
induce a significant amount of sunserical diffusion in a solution when compared to
the analogous two paraincter limiter. In addition, a gencral class f limiters referred
to as nearly-TVD are discussed. These include TVB limiters, but also new classes of
limiters such as generalizea average limiters and S-Limiters. The ULTIMATE limsiter
is also discussed.

Finally, the topic of reconstruction in high-order Godunov methods is cxam-
ined. This topic is precipitated by the work on high-otder Godunov analogs to
FOT /symmetric TVD methods. These high-order Godunov methads do ot ase 4
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Figure 10.1: The significance of this work is shown in telation to the rough genealogy
given in Cha~ter 2.

reconstriict.on step that requires the interpoiant to have an average value in a grid

cell cqual ta the cell average in that grid cell. This property is discussed, and propes-

ties of the solutions using heoth standard and new high-order Godunov inethods are

cxamined. The lack of the . «ll-average property is demonstrated to not have signifi-

cant negative consequences, and or certain sitiations to hate positive consequences.
The principle advances made in this wotk can be seen graphically in Fig. 10.1.
These conclusions can be summarized as follows:

e FCT was improved and shown to be part of a more general family of methods.

o Combined FCT and Syminetric TVD methods were extended into the 110G
family of methods.
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e A general procedure for improving FCT lingiters has been described.

o A mote general theory ou limiters has been developed and used define new
limiters.

o The difference between cell-average and point.value HOG schemes has been
defined and explored. ‘The point-value HOG schetues provide reliable solutions
and improve on the cell-average HOG schemes when the scheme is not TVD.

10.2 Recommendations

With these conclusions in itind a manber of reconnnendatious for fiture research can
be made. These do not cover the range of needed work, bt represent somne imnportant

needs from one perspective.

o lu light of the results of this research aud the litesature, parabolic methods are
worth exploring in winch wmore detail. The added degree of freedom beyond
linear interpolation allows the algorithiu to be more flexible thau second-order
methods. Currently, the PPM wethod is the premicr scheme for solving conser-
vation laws. A large nutnber of potential parabolic schemes exist, and should
be studied in more detail. The use of parabolic scheines is need of assessmient
especially in the ight of the results presented in Appendix F.

o Onc of the keys to the PPM algorithm is the use of a discontinuity detection
algorithm [122]. This algorithi was the inspitation for the superbee lisuiter [132,
176). The use of fuzzy logic (201, 202] should prove useful in designing this sort of
algorithri. More generally, fuzzy limiters could have a more general application
perhaps makiug limiters that work cqually well in smooth and discontinuous
regions of thie flow.

o ENO micthods should be broadened to include point.valise schenies as well as the
ccil-average varicty. In addition, other measntes of reconstruction smoothness
should be investigated perhaps using generalized average limitees is some sense.
This is particularly important in the light of recent work [203].

e Smooth particle hydrodynamics (SPH) (204, 205, 206) :nay profit froin nonlinear
Juniters. These methods typically use artificial viscosity to compute shocks.
Through the use of biased gradient computations at discontinuities in the flow,
(perhaps ENO-type algorithms) the use of artificial viscosity conld be donc away
with. The tesolution at these portions of the flow should also improve.

o lnplicit numerical solutions with high resolution incthods [196, 198, 207, 195,
175, 145] are important in arrospace applications. Corrently artificial viscosity
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mecthods {208, 209] are the preferred choice. The upwind type miethods need to
be more cconcinical to compete. Research into mmltigrid acceleration of high-
resolution upwind methods is a clear and present need. Slso conjugate gradient
type methods hold some prowise [210]. The work of Yee and others [154] on
uoplincar dynamics conld provide some usefnl improvenients.

The yole of Riemaun solvers in algorithi dissipation is in need of clargification.
Raberts [211] shaws that the Riciwann solver can cause oscillations for slow
moving shocks even when used with Godunov's mictiiod. "he solution is to use
a more dissipative Riemnann solver. This is imnortant in light of the PPM’s
zone flattening algorithn, which is used to deal with such cases. This appears
to be another place where fuzzy logic could be usefnl.

The role of high-resolution upwind algorithms in turhulence sescarch needs to
be established.  The work of Boris [77] is coutroversial with the large eddy
simnlation (LES) compnmnity. Others have used these methods in tuehnlence
rescarch with snecess (78, 212, 213, 79). The results revorted in [79, seem to
show that high-resolution methods like the PPM give sesults indicat.ve of very
high Reyuolds nustbers. The impact of the design of suethods on this use needs
fuether assessment.

Recently, front-tracking algorithins which are conservative have proven to be
nseful [129, 214, 715]). These coupled with adaptive inesh generation [129, 117)
and high-order high-resolution 1acthods ate powerfisl solution sethods. (lou-
pling these methods to the design of new high resolution nethods wonld be
highly profitable. Other adaptive mesh algorithms [216, 217, 218] show promise.
In addition techniques used in [219] may prove useful.

The use of these methods in radiation transport may be applicable. lu discrete
ordinates mcethods (220, 221] diamond differencing is typically nsed, although
lincar discontinuous incthad-. +'so are usecd. Both of these methods could profit
from modern npwind mcthods in insure positivity of solutions. The lincar dis-
continuous method has heer used for high resolution fluid flow solutions [222).

Multiphase flow presents a rintber of challenges to the use of this sort, of method.
Typically, the algorithins cacd for this type of flow are semi-inuplicit [3, 2, 223}
Semi-isuplicit tinge discretizations ase in need of developnient and would be use:
ful in other applications (93] whete problems ate stiff in some manner. Multi-
phase flow can also be ill-posed in the sense of Hatamard, thus creating difficnlty
with Ricmann solvers.

Multidimensional schemes are 21: active topic of research. The role of limiters

and their farm is an oprh q1||’°s!ini|, The methods of Akima fT.". R 1Y RAYY
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wiay prove useful in defining mmltidimeusional limiters. The use of ENO schemies
in nnltidimensions is proceeding (139, 199, 138], bt it is in its infaney.

o Multidimensional Ricmann solvers need work. Most current schemes show poor
results hecause they are ot monotone (based on a wave analogy (228]). Recent
work on flux-splitting in several dimucnsions [229] may prove very nseful in a
umber of regards and nceds firthee developiuent.

Other research is also exciting. The use of high-resolution npwind methods with
incompressible flow computations, weather simulations and other applications 188,
230} shows considerable promise.
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Appendix A.
Test Problems

A.1 Introduction

The methods described in this rescarch are nsed to solve three test problems: the
scalar wave cqnation

o Ou
TR P 0, (A.1a)
inviscid Burgers’ equation
ou () ,) N
5[-+('—);('j" =0, (A.1b)

and the Eule: equations (see Appendix B for a more complete disciission) for an ideal

- JU  OF
2wt =0 (A.lc)
where _ (
p "
U=fm]| . F=| mip+p
3 (m(E+p)/p

For the Euler rquations the variables ate defined m = pu where u is the fluid
veloety, density, p. and Yhe pressure, p, ate roated Yo the energy, Y., by an cqnaium
of state (for an ideal gas),

P':"e("-')o

where 2 = E/p — 1/2u? and v is the ratjo of specific heats for the gas in question.

A.2 Scalar Wave Equation

lu this section, the test problems used for the scalar wave equation ate described.
Four initial conditions are used for the analysis: a square wave with a < idth of [0
cells, a sine wave over one full period with a width of 20 cells, a sine sqanted wave
(half of a period) of a width of 25 cells and a triangle function with a width of 10.
The advective velocity is taken to be unity. Each of these test problems is shown in
Fig. A.1. The exact solution fo: the scalar wave equation is given by

wlr Y=o (r —at) . Ly e
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where a is the advective velocity and u, (2) is the initial condition.

The conrse appearance of several of the figures is misleading. The two funetions
hased on sin(r) are siwouth. The course natire of the plots sesuits from the low
resolution of the discictization.

A.3 Burgers’ Equation

The test problem consists of N equidistantly spaced cells on a domain r € [0,2x).
The initial condition is sin(x). At ¢ = 0.2 and ¢ = |.0 the solution is compared with
the exact solution. At = 0.2 the solution is smooth; however. at ¢ = 1.0 the solution
has developed a shock. The CFL number is = 0.4. The solutions at these two tines
are shown in Fig. A.2. The exact solution is produced using a forinula found in (67),
which is

u(r,t)= -a—minl/'u (£)dz + -l-~(:—y)’] (A.3)

' ar v o ° 2 ' ’

whete the definitions are the same as for the scalar wave equation.

A.4 The Euler Equations

The Euler equations are used as an example of the solution process on a systein of
cquations. The FEuler cquations ate perhaps the most common application of the
methods discussed in this work.

A.4.1 Sod’s Problem

The problens used by Sod [41] to test a number of methods for solving the cquations
of compressible flow has become a standard test problem. The initial condition for
this problem consists of two semi-infinite states separated at { = 0, and the left and
right states ate set to the following conditions:

for X < 50.0,

TL 1.0
us 1 =1 0.0 '
PL 1.0
and for X 2 50.0
p 1 p 1
TR 8.0
ug | =10.0
PR 0.1

234






Figure A.1: continued.
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Figure A.2: The exact solutions to the test problems used in the Burgers’ equation
tests. The figures are shewn at ¢ = 0.2 in (a) and ¢ = 1.0 in (b).
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with 4 = 1.4. The domain is discretized into 100 cells of equal lengths (Az = 1.0)
and the CFL number is set to 0.9. The solutious are shown in Fig. A.3 at ¢ = 20.
The exact solutions can be seen in Fig. A.3. These solutions are computed with the
method described in Appeudix B for the exact sulution to a shock tube problem.

A.4.2 Lax’s Problem

Lax’s probfem is a shock tube problem similar to Sod's, but with one of the two
semi-infinite states used as initial conditions nat being at rest. The initial condition
for this problem consists of two semi-infinite states separated at t = 0, the left and

right states are set to the following conditions:

for X < 500, ) ) -
TL 224’
Uy, = 0(‘)9?‘
L pL J i 3.628 J
and for X > 50.0, 3 . ) -
T 2.0
UupR - 0.0 y
pe | 057

with v = 1.4, The domain is discretized into 100 cells of equal lengths (Az = 1.0)
and the CFL number is set tn 0.9. The solutioms are shown in Fig. A.4 at t = 1.
The exact solution can be seen in Fig. A.4.

A.5 The Vacuum Problem

The vacuum problem is a shock tube problem where two identical states are moving

away from each other at ¢t = 0. The states are kinetic energy rich, which causes

[ T O N T LS LY s i L I A Y RN [ O R g o) ML S f—
PIrowtICeiig 1ur e e dpneronoee sCnelncs. PHC riIvial CUNTUvIvi U willd pPruihell
consists of two semi-infinite states separated at t == 0, the left and right states are set

to the following conditions
for X < 50.0,

(PL“ ’-1.01

ur - —4L. [J

L 1.0

L B L .
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Figure A.3: The exact solution for Sod’s Riemann problem. Note the appearance
of the rarefaction wave tunning from about z = 30 to z = 50, which is a smooth
transition. The contact discontinuity is at about z =5 65 and the shock is at r = #5.
Note that the transitions between states for these two structures are sharp. The
density and energy profiles show more structure than the velocity or pressure profiles
becanse of the contact discontinuity.
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Figute A.4: The exact solution for Lax's Riemann problem. Note the appearance
of the rarefaction wave running from about z =5 10 to r == 25, which is a smooth
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and for X > 50.0,

- 5 - X
PR 1.0
Un = 2.0 '
| pef | 1O

with y = 1.4. The domain is discretized into 100 cells of ecual leugths (Ar = 1.0)
and the CFL number is set to 0.9. The solutions are shown at t = 10. An additional
caveat is that the computation of the stability criteria also involves the condition
based on a condition similar to the “tangling” or “emptying” conditions in Lagrangian

computations, i.e.,

At € ¢ —OF (A.4)

l":*l - “l'&l '

where (* € [0, I). The exact solution can be seen in Fig. A5.

A.5.1 Blast Wave Problem

This blast wave problem was used hy Woodward and Colella [44] to test a variety
of high-resolution methods. This test turns out to te an extremely stringent test of
numerical methuds for solving hyperbolic conservation laws. The initial conditions
consist of the following:

for X < 10.0,

[ L ﬂ [ 1.0
u, |=] 00 '
] | 1000.0 |
for 10.0 > X > 90.0, Sy ;
L 1.0
ue =100 |},
] | 0.01 J
and for X 2 90.0 ) : f .
TR 1.0
ug [ =] 0.0 '
] | 100.0 ‘

with 4 = 1.4. The boundary conditions play an important role in this problem and
are refective at both the left (X = 0) and right (X = 100) walls. The solitions are
shown in Fig. A 6 at £ == 38). The solution develops into two strong shock #.aves that
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Figure A.5: The exact solution for the vacuum Riemann problem. Note the appear-
ance of the rarefaction waves running both directions from the initial discontinuity.
The internal energy plot (c) shows error near the vacuum because of round off errors.
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collide. The result of this is a complex set of shock and rarcfaction waves as well as
contact discontinuities in a sinall region of space. These interactions are exceedingly
difficult to resolve on a fixed Fulerian grid without prior knowledge of the solution so
that the grid can be locally refined (certain adaptive mneshing p:ocedures can avoid
the need for a priori knowledge of the sohition). The “exact™ solution can be seen in
Fig. A.6. This “exact” solution was computed with 2000 grid cells at a CFL. number
of 0.95 using a cell-centered second-order HOG inethod. The superbee limiter was
used on the lineatly degenerate field and van Leet’s limiter was used on the nonlincar
fields (see Chapter 8 for a complete discussion of the limiters).

The solution of Riemann problems botk exactly and approximately is discussed
in the next appendix.
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Figure A.6: The “exact” solution for the blast wave problem. Note the large amount
of solution structure between z = 60 and r = 85. The two strong blast waves are
interacting and are in the process of passing through one another. The interartion
region is richly populated with contact discontinuities and shock waves.
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Appendix B.
The Equations of Zeoxipressible Flow and
Riemann Solvers

B.1 Introductinn

When developing solution techin .+ == - uations of compressible flo'v, the common
practice is to solve the equation it 4 £ i<-1an frame of reference. For certain classes of
problems, a Lagrangian or Lagrangian followed by a transiation back to an Eulerian
frame methods has advantages.

Much of the developinent of current high-resolution numerical methods for the
solution of the Euler equations was the product of just such algorithms, although
development has concentrated on purely Eulerian scheines in recent years. Godunov's
method [56] is the basis of van Leer's work [60]. These methods find the solution
to a Lagrangian flow systens and then remaps it to a fixed (or moving) Eulerian
grid. This methodology can also be thought of as operator splitting [156] based on
convective and sound waves. The piecewise parabolic method [122] extended van
l.cer's method. Godunov and coworkers also introduced a purely Enlerian variant
of Godunov's method [57], which can be thought of as the basis of currert nurely
Eulerian nicthods.

In modern high-resolntion Eu.crian algorithms, it is common to use approxiinate
Riemann solvers of some sort to compute correct wave propagation, because exact
Riemann solvers [60, 41] atc expensive. As a solution to this problem, several te-
scarchers have developed approximate Riemann solvers. Each of these has seen its
primaty development and use in an Fulerian frame. In this appendix, seven types are
explored:

l. a naive Riemann solver,
2. the Lax-Friedrichs Riemann solver [55),
3. the local Lax-Friedrichs (LLF) Riemann solver {65, 66],

4. the simple Riemaun solver introduced in (30] and refined in [128, 231}, known
as the HLLE (lHarten, Lax, van Leer and Einfeldt) Riemann solver,

5. Roe's approximate Rieniann solver [63], discussed in {232},
6. the Riemanp solver of Engquist and Osher [127],
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7. and flux splitting like that of Steger amd Warming [125).

The uext section discusses the flow solution algorithms and derives several approx..
mate Riemann solvers.

B.2 The Equations of Compressible Flow

The Euler equations tepresent the conservation of mass, momentum, and encrgy in a
fixed coordinate system and in onc dimension are

dp dm _
;,)—‘ :F =0 ' (Bll)
dm  d [}
—-'(," +;,)—:'('p—+p)=0. (B.1b)
and 2E 3
g (m _ . _

Here p is the density, m is the momentum (m = pu, where u is the flow velocity),
and E is the total cnergy. The other variables are related to the pressure p through
an equation of state

p=/J(pi) . (B.1d)

wherei = E/p~1Lu®. For an ideal gas, the equation of state is p = (E - %m’/p) (y=-1)
with 7 being the tatic of specific heats. This system is hyperbolic and has three chas-
actetistic velocities u — ¢, u, and u + ¢, where ¢ is the sound speed. For an ideal
gas
o=
P

Faitly directly, this systetn can be converted to a system of equations in conser-
vation form for a coordinate system moving at the flow velocity. This introduces a
change of coordinates from the variable z to § where £ is the mass coordinate defined
by

= / pdz , ot df = pdx .

The system of equations is then

dr Ou

-5-;--62-:0. (B.2a)
éu dp _

5'- ] (."-{'—o' (Bo2b)




and

e  dpu _ ,
T + T, =0. (B.2c)

In this equation set 7 = | /p and ¢ = rE. This system also has three characteristic
speeds: —C, 0, and C, whete C? = qp/r is the Lagrangian sound spr- | for an
ideal gas. The ideal gas equation of state in terms of the Lagrangian variables is
p=(c - §u) (2 - 1) /.

With remap equations the solutions found with these equations cau be resnapped
to an Eulerian grid (as is discussed in the next section) and produce a solution that
is equivalent to the solution of the first equation set. The three remap cquations are

dp dp _

o Hugt =0, (B.3a)

dm om

'5‘" +u5x— —o' ([’.8b)
and E  OE

W"‘I‘E;- =0. (B.3c)

B.3 Solution Algorithims

In this section, Godunov's methed is described with specific attention being given to
the Lagrangian formulation with an Eulerian remap. This is followed by a discussion
of each of the approximate Riemann solvers used in this study.

B.3.1 Exact Solution of the Riemann Problem

The construction of the exact solution to the given Riemann problem follows the
algorithm given ;n Sod's paper [41] with improvements suggested in [60, 177). These
improvements ccnstitute a Newton-type iteration to solve the nonlincar governing
equations for the Riemann problem as suggested by van Leer. 1he retnainder of
this section desctibes the algorithm used to find tise exact solution to the Ricmann
ptoblem. Following this, the #xact solution to the patticular Ricinann probleis which
is to be solved numerically i3 shown for the primitive variables.’

This solver described blow uses shock relations at the shock and rarefaction tela.
tions at a rarefaction. The Riemann solver used by Colella [121] uses shuck relations
for both types of waves. This results in a much simpler solver. For a detailed Jook at
the Riecmann problem sce the review paper by Menikoff and Plohr {68).

The algorithm that follows begins from initial data which is defined in two states
tight, r, and left, !, which are shown graphically in Fig. B.1. The basic algotithm is

' The primitive vaniables a-e the density, p. the velocity. u, the internal enregy. ¢. and the pressure.
p.
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Figure B.1: A representation of the initial conditions for the Riemann Problem.

given below.

Algorithm 8 [Ezact Riemenn Solutior. for a Shock Tube]

initial condition, (p;. u,, CI.PI)T- (Pn“n‘n}’r)r

po= Yo+ + hfLRERNEI R () 4y
begin
Do While not converged
begin
begin
if p. > p then

My = imm | T B 4 Tt
. (M!)’+1ﬁg
(“10) == 2(&") .
else
M= lf.,_'m (l - %’-)
-]

(ulo)' = -_lzzjh
Y i 3

endif
if p. > p, then

3
(un)' = - M'z(:")‘

else
M. = 2t 1 - §)
)
endif



u.-"“-—uz—g'-x-r&

' [}

o ey = Byl
’

7] U
P =P ) = (wre)
end
check convezgence
end

v = (e + u,)

This algorithm was used to produce the sclut’'ons shown in Appendix A These
show the characteristics of the exact solution to a Riemann probiem for an idcal gas
when both sides of the initial condition are at vest and the density and pressure are
discontinuous.

B.3.2 Approximate Riemann Solvers

The basis of approximate Riemann solvers is discussed in (40). Fo: a Riemann solver
to be consesvative, the following relation should hold assuming I' is chosen to be large
enough

r
/rW(g)dg=r(U.+u,)+r.-r,. (B.4a)
This telation can be rewritten to give
/:W(()d{ =TU,+F,-F,, ‘B.‘"))
and r
L W(§)df =TU, + F, - F, . (B.4¢)

These telations can be manipulaied to give various approximat.. Riemann solvers.
For instance choosing I' = 1/o give the Lax-Friedrichs scheme and [ = inax, (A")
gives the Rusanov or Local Lax-Friedrichs scheme.

In this section, six approximate Riemann solutions for the equations in Lagrangian
coordinates ate given. The solution using these algorithms gives the “sojution in the
small” in Lagrangian coordinates.

The solution in the smail algerithm is isdentical for all three methods descriled
below except for the details.

Algorithm 7 [Solution in the Small]
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I. For cach grid ccll edge, j + 1. compute the right and left variable values from
the reconstruction polynomial, U;(z) = P;(z). Here for Godunov’s method
P,’ (I) = U,‘, thus U[ = U,’ ad U, = 'J“.].

2. Comtpute the solution, Uy, (exact or approximate) to the Riemann problem
with iuitial states U; aud U,.

3. Use U;, to compute the flux functions, Fy,, at the interface ; + %

B.3.3 Approximate Riemann Solvers for the Scalar Wave
and Burgers’ Equation

The scalar wave equation, (A.la), is thie siniplest equation to solve. For a constant
wave speed, a, the solution to the local Riemann problem is

a |a]
Jiss =3 (“ug,: + “,'+g.r) i (“ng.r - “M,:) . (B.5)

Here the cell edge values are given by the local interpolating polynomials as
tyeys = Pi,s) (B.6a)

and
Ujplr = Hh (Z414) (B.6b)

where z;, = 2414 = ZTipd-
In [158] van Leer gives the local Riemann solution to Burgers’ equation. Given in
the nomenclature of this appendix this solution restated is

Ji+y = max [% max (u”“,O)2 . %min (uj,h.O):] . (B.7)

B.3.4 Naive Riemann Solver

This method of closing the equations is included because it is so frequently done
despite a number of deficiencies. The system is considered to be a set of uncoupled
equations and the terms are considered one-by-one. If a term appears to advect the
variable, such as density in the mass conservation equation or energy in the energy
equation, it is upwind differenced. If it is another term, such as the pressure gradieat
in the momentum equation or the work term (pV - u) in the energy equation, it is
centrally differenced.

For the Lagrangian equation set all spatial derivatives are centrally differenced.
This is justified because sound waves travel in both directions from an interface, and
the effect is nearly correct. This is the manner in which the flux corrected transport
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algorithms are implemented [143, 4]. As the magnitude of the jump increases, the
errors become larger resulting in unpliysical solutions.

B.3.5 Lax-Friedrichs Riemann Solver

The simplest Riemann solver is the Lax-T:iedrichs solver [55). This solver is the
most diffusjve of the solvers discussed in tiis appendix. It corresponds to Godunov's
method over a staggered grid [200] and has a simple form. The only requirement is
that the CFL condition be satisfied. The forni of the flux function is

F, = % [F, +F, - 5(0, - U,)] . (B.8)

B.3.6 Local Lax-Friedrichs Riemann Solver

Recently [65, 66, 169), the Lax-Friedrichs scheme has been resurrected. This method
is also known more classically as Rusanov's method [233, 189]. It has been changed
to a form known as the local Lax-Friedrichs (LLF). in this form, it is less diffusive
than the classical form of the Lax-Friedrichs method, but still has the advantage of
satisfying the entropy equality. The form of the flux simply depends on the maximum
(absolute value) wavespeed locally and the form is given by

1
Flr = '2' (Fl + Fr = N (Ur - Ul)] ’ (8093)

where 7, = sup, Af,l For the Lagrangian flow equation, this is equal to

Ny = Max (Ch Cr) . (P.gb)

B.3.7 HLLE Riemann Solver

In their paper [30], Harten, Lax, and van Leer discuss several approximate Riemann
solvers in a theoretical context. One of these solvers is derived for a solution containing
the left and right initial state plus one intermediate state. Finfeldt [128] then took
this basis and showed how this theoretical construct could be used as a practical
approximate Riemann solver. Work on this method has also been done by Davis [189).
This method has several desirable properties: its simplicity, ease of implementation,
and salisfaction of entropy inequalities.
The general form of a flux function with this solver is

ir ir ir ir

where b} = max (0, 8],) and b;, = min (0. bf,) The signal speeds b}, and b}, are upper
and lower bounds on the signal velocities, respectively. Reference [231] makes the
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suggestion for the computation of b, and b,. ‘I'hc fornulas are
bl'r = max (“R,ma:' aLR,mar) ’ (BlOb)

and
b’r = min (aL.min'aLR,min) » (B.IOC)

where ma - .. d min refer to the maximuni and ntinimum characteristic speeds at the
respective "acations. The values for a5, come from Roe's linearization that is discussed
below.

For the Lagraugian flow equations, this leads to a straightforward algorithm. The
Lagrangian cell interface fluxes can be written

_CoF(U)+CyF(U,) Ci,Cy,
- Ci + Ci, Ci, + Ci»

) (U,-4uy), (B.10d)

which simplifies to

Flr= 2

(F(U)+F(U,)-C,(U,-U,), (B.10e)
with b} in eq. (B.10a) being replaced by Cj,, the largest signal speed, and b;, being
replaced by —Ci,, the smallest -ignal speed.

B.3.8 Roe’s Riemann Solver

Roe presented this solver in [232] and the derivation given below gives the same
results. The main difference is that the form given here is useful in the derivation
of the flux splitting scheme. Roe's approximate Riemann solver uses the Jacobian of
the flux function to derive a characteristic decomposition of the system of equations:
thus in general

ou JF ou ou :
3{"‘&—0:}3‘-4'/15"-—0- (B.11a)

where A = 9F/0U is the Jacobian matrix. If | define the decomposition as
A= RAR™',

A is a diagonal matrix with the eigenvalues of A on the diagonal, R is the matrix of
right eigenvectors (columns), and R~! is the matrix left eigenvectors (rows). Charac-
teristic equations are then defined as

da da
5£+A5x--0' (B.11b)
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where a = R™'U'. These equatijons can be solved with upwind biased methods to get
physically correct propagation of information for data associated with each separate
wave.

For a scalar wave equation, the expression for an upwind biased flux can be written
u'

Sir = %[(II + £) = law| (u, — w)] , (B.l1c)

where L and R refer to the states to the left and right of the cell interface j + 1. For
Roe's Riemann solver and a system of equations, the flux can be expressed as

k
a,

F,, = % (Fi+F,)- er, (a, — a,)] , (B.11d)
k

where r* is the k** right eigenvector and

k
O"-:‘,,’U,.

Roe defined the Jacobian to be used in this numerical approximation to have the

property
F.-F=A(U, -U)) (B.l1e)

for averaging the values to find A. For the Euler equations, the averaging procedure
is somewhat more complicated than simple averaging, but for the fluid equationt in
Lagrangian coordinates simple averaging suffices. Therefore, the following relations

are used:

|
Pir = -2'(P1 +p) (B.12a)
1
Ty = -2-(71 + T,) ' (B.'Zb)
and
Ch = —-?" : (B.12%¢)
[{4

When A* can change sign, one slight modification of the above methodology is
used for nonlinear equations and systems; as suggested by Yee [134] an entropy fix
is implemented for the donor-cell differencing, which modifies the use of the absolute
value in donor-cell differencing of a characteristic speed, by

I2| if 2] > e
¥(z) = , (B.13)
(224 €) /2 if|z] < ¢

if one is dealing with a linear equation set ¢ = 0. The parametcr ¢ is deterinined by
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the following equation [30],

€ = max [O,a“_* — 8,84y — “)'ﬂ'] ’

This averaging for the Euler equations tequires that a parameter be defined by

Djry = (psn /)", (B.14a)
which is tn :urn used to define the tollowing cell edge values:

DH-*“H-I +yu,

ll,‘g = D,*% " 1 ' (B.|4b)
D;+{H)+l + H,
H,,y = ey (B.14c)
and » o2
Gy = Jr =1 By - 3uiy)] (B.14d)
where - {
= ——— 4 =u’, .
H 7=Dr + Y {B.l4e)
For the Euler equations, the eigenvalites of the flux Jacobian are
(a'.a’.a") =(u-c,uu+c). (B.15a)

The right eigenvectors form a matnix

[ ! | 1
R= ("‘."2."3) = u-—c¢ u u+c ’ (B.15b)

H - ue %u’ H + uc

and by using




the left eigenvectors form a matrix

o] [hErt) e d) b
R'=|p|= | [ 22 -2
Vf, _uwY _1(.._ 1} 1.
e g(a-t) —3(au-g) 9|
For the Lagrangian flow equs. (B.2a)-(B.2c), the flux Jacobian is
0 -1 0
A= -C%~y ~u(y=-1)/r (v=-n/r |
f-D/r o u(y=0/

—uC?*ly rC¥y-u

(B.15c)

(B.16a)

nsing an idcal gas equation of state. As stated beforc the matrix has the eigenvalues

of —C, 0, and C, and the correspondiug right eigenvectors are

|
C

the left eigenvectors are

R—l

| uC=p p/(v=1) —uC-p |

| |
0 -C ;

-1 | —

2c +* Tip Tp
“'7 . '7P|
-?U-"u" _2."'_‘1

(B.16b)

(B.16c)

These matrices and the definition of the flux functions above eq. (B.11d) give the
method for solution. Roe [232] noted that the actual implementation for this case is
somewhat sintpler because of the great amount of cancelation of terms as they are

multiplied out. The flux vector gives the simplification

-

F .
h u,
F=1f]|= p.
i fs ] Pe.U.

[
Yuwi+u)=1(p. = p)/Ch 1

Y+ p) =30 —uw)C

P.u-

J

(B.16d)

An interesting footuote to this discussion is that these expressions were developed
by Richtmyer and Mortou [31, pages 342.315] as a lincarized version of Godunov's
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method. This method was related to the work of Courant, Issacson, and Rees [54] in
order to draw a direct analogy between that method aud Coduuov’s original work.

As is shown below, the right cigenvectors are nseful in the derivation flux splittings
for these cquations. The full niatrices also may he nscful in visnalizing the extension
of this method to real gases with njore general equations of state.

B.3.9 The Engquist-Osher Solver

The Engquist-Osher Riemann solver [127] has a uumnber of useful properties. It is
somewhat different than the others presented here. The scheme takes into account
the offects of sonic points and thus satisfies entropy coustraints. It is built upon the
kuowledge that there are a finite nunber of juinps to states, which can be determined
by the characteristic deconiposition (Riemanu invariants) of the problein. Given these
jumps, a well-defined path of integration cau be defined for a systens.

The forn for the fluxes [104) is

llfo:f(u.)"/u

Y)

. max (a(s),0) ds + /u' mina(s),0dr, (B.17)

where a. s a reference state and a(s) is the characteristic speed as a function of
position in phase space. It is generally wise to choose u. to be one of the states at
the cell edge. Using the definitions of the charactesistic decoinposition used for Roe's
solver, the fluxes for a system can be written

N at
FEC=F(U)+ Y (/ min (A“,O) da) k. (B.18)
k=1 o

fu this forni, the functions to the right of F(U;) only have to be evaluated if the
sign of A, becontes negative (indicatiug a change of direction in the upwinding).
This change can happen during any of the jumps defined by the Rientann invariants.
Because the cigenvalues of the Lagrangian flov equations do not contain sonic points,
the effects of this solver are not profound when compared to Roe's Riemann solver).
For all intents and purposes, the results obtained with this solver are nearly identical
to thosc obtained with Roe's solver. The integration procedure adds some additional
nuncrical dissipation to the solver not found with Roe’s soiver.

B.3.10 Flux Splitting

The third approxiniate Rieinann solver used is the process of flux splitting [125]. This
ncthod has been widely used for the Euler equations. For the Euler equations, the
process of flux splitting has some difficulties because the characteristics can change
sign at sonic points (which niotivated van Leer's work [126] on flux splitting inethods),
thus foreing the basis of the algorithm to take this behavior into acconnt. This also
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can create difficulty in mceting entropy requirements (also o problem for Roc’s solver
for the Fuler equations). Part of the hieauty of the Lagrangian equations is that cach
characteristic does not change sign:. thms the scheme is the same for every grid point,
thereby reflecting the syminetry of the system that led 1o all the cancellation in the
final result of the section describing Roe's nethod.

Upwind differencing in its most basic foru is the basis of flux splitting. In general,
upwind differencing can be defined for a scalar advection law as follows:

upt! = uf - *( T /,’_%) - A (/',‘,% - f,‘_%) : (B.19a)

where

St = wmax(£1,0) , and f~ = min{f..0) . (B.19b)

‘T'his general concept can be extended to systeins of equations by the type of decom-
positiun described in the previous section. Given the eigenvalues of the systen: that
define the direction of the flow for a set of characteristic variables, a flux splitting can
be defined. For this purpose, the cigenvalues are split as

= A" + A, (B.19¢)
and the flux Jacobian is split accordingly as
A=A+ A, (B.1ed)

with each matrix corresponding to the appropriate eigenvalue direction. These ma-
trices can be constructed under the condition that

F=AU; (B.19¢)

thus,
F; = A-U, , and F}, = A*U,. (B.19f)

To derive the flux splitting used here, | draw on an observation reported in [35] that
the flux splittings can be found through the right eigenvectors of the flux Jacobian.
Using the resnlts of the previous section, the following equation set can be constructed

: : : : . o
| l | -u
MBy C + A% 0 + M -C =| p |, (B.20a)
| wC -] P/ =1) | —uC=r ] [ w ]



whiere

This equation set can be solved to yield the appropriate flux splitting.
The cesulting flux splitting is

§ (& - w)

F; = Y (p - wCly) (B.20b)
l
I i (g;"' - “r) (“rClr - Pr) ]
and
( —?1} (ﬁ: + lll)
Fj = %(Pl + w(yy) ' (B.20c)

i % (&‘: + “l) (wiCh, + p1) )

where Cy, is the Roe averaged sound speed. Close inspection of the above expressions
reveals that the energy flux in each casc is similar to Roe’s solver in that F3 = —p,u,.
Still closer inspection reveals that this flux splitting is in fact identical to Roe's solver.

Remark 26 The use of the HLLE o1 LLF solvers promises to significantly ease the
implementation of Godunov type schemes with Riemann solvers. This is especially
true for compler systems of equations or for implicit algorithms. If mazximum and/or
minimum wavespeeds cannot be found, then by using an estimate plus (or minus) some
constent, which is large cnough (this constant or estimate must be used in computing
stability limits), a physical solution can be found. The one problem of this approach is
that the solutions found with these approaches can be significantly mnore diffused than
Roe s algorithm (as shown in the following section).

B.4 Results

In this section, the results obtained through the use of the algorithms described above
is given and discussed. Several test problems taken from the literature are used: Sod's
problem [41), Lax’s problem [53], and a blast wave problem [44]. In each case, only
the solution for density is given for brevity. This should 1ot present too much of a
detriment because the density profile in each problem captures the essence of each
method’s strengths and weaknesses. For Lax's and Sod's problem, an exact solution
is used to provide and absolute comparison of the results. For the blast wave problem,
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1o exact solution exists; thus, for an absolute compatison, a converged high- resolution
second-order solution is used.?

For brevity, the examination of the solution's properties is done using the density
profilc obtained. The density is an effective measure of algorithusic performance
because it contains all the pertinent structures in the one-dimensional flow (shocks,
rarefactious, and contact discontinuities).

B.4.1 Sod’s Problem

Figurc B.2a shows the solution obtained through the use of the naive Riemann solver
with Godunov's method. The most noticcable feature of this plot is the oscillations
behind the shock (X = 85). The shock is relatively sharp, but the contact discontinu-
ity is smeared severely. Less notable is the small osciilation ahcad of the rarefaction
wave as well as what appears to be a sniall expansion shock in the rarefaction wave
(X = 30). These oscillations can be reduced significanutly by reducing the timme step
used in the calculations (which increases the inherent dissipation in the solution). In
general, the solution by this method is unsatisfactory.

In Figs. B.2b and B.2c the solutions found with Roe’s and Engquist-Osher's Rie-
imaun solver are given. These solutions are nearly identical with Engquist-Osher’s
Riemann solver, but have slightly more sisearing. The shock is about four cells wide
in both cases, but is slightly sharper with Roe's method. The contact discontinuity
and the rarefaction wave arc both smeared significantly, but the solution appears
to be physical throughout the domain for both methods. it should be noted that
Engquist-Osher's Riemann solver is more expensive than Roe's Riemann solver

Figure B.2d shows the results for the HLLE Riensann solver and Fig. B.2e shows
those for the LLF Rientann solver. Both of these solutions show a great deal more
numerical diffusion in the rarefaction wave through the contact discontinuity. The
HLLE Ricmann solver gives a crisp shock wave across approximately two cells. The
LLF Riemann solver shows about the same resolution of the shock as Roe's and
Engquist-Osher’s Riemann solvers. Another notable feature of these solvers is their
cost. Both are somewhat cheaper than the more complex Riemann solvers like Roe’s
and the Engquist-Osher. As with the previous two solvers, the solution is physical in
nature.

B.4.2 Lax’s Problem

The naive Riemann solver again produces less than satisfactory results. The oscil-
lations behind the shock are present again, but large oscillations are also present
between the rarefaction and contact discontinuity. Again there is some semblance of

2This is a second.order Godunov method using Roe's superbee [176] flux limiter to enhance the
tesolutjon of contact discontinuities and high-resolution limiters for the genujnely nonlinear fields.
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Figure B.2: The solution for Sod's shock tube problem at ¢t = 20 is obtained with
each of the methods discussed in this appendix. The exact solution is denoted by the
solid line in each plot, and the solution obtained with Godunov's method is shown by
the circles. Figute B.2a shows the solution obtained with the naive Riemann solver
followed by Roe’s Riemann solver (B.2b), Engquist-Oshet’s Riemann solver (B.2c),
the HLLE Riemann solver (B.2d) and the LLF Riemann solver (B.2e).
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Figure B.2: continued

269



{2 + t $ }
(e)

Figure B.2: continued

aun crpatision shock in the rarefaction wave. Figure B.3a shows these results. Tle
negitive fcatures in the solution are gradially removed from the flow as the CFL
numlb. s reduced.

The Rue and the Engquist-Osher Riemann solvers again produce ncarly identical
solutions with the only difference being the slight increase in numerical dissipation
for Engquist-Osher's Riemann solver. The shock is smeared to be quite wide as is the
contact d. ontinuity. Figuses B.3b and B.3c show that in both cases the rarefaction
is smeared. In addition, both solutions slightly clip the square peak in the density
profile.

Figures B.3d and B.3e show the HLLE and LLF Rieinann solvers respectively.
As before, the shock is crisper with the HLLE Riemann solver than either the Roe
or Engquist-Osher Riemann solvers, but the clipping of the densit: peak is more
pronounced and the smearing in both the rarefaction wave and contact discontinuity
is more severe. The LLF Riemann solver shows the same characteristics, but does
not have a crisper shock wave, and the smearing is more severe than that found with
the HLLE Riemann solver.

B.4.3 Blast Wave Problem

Figure B.4a shows the results using the naive Riemann solver. The smooth portion
of the flow on the left is severely polluted with instabilities as is the shock wave at
X = 64. Other smaller oscillations can be seens past the shock at X = R5 and next
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Figure B.3: The solution for Lax's shock tube problem at ¢ = I5 is obtained with
each of the methods discussed in this appendix. The exact solution is denoted by the
solid line in each plot, and the solution obtained with Godunov's method is shown
by the circles. Figure B.3a shows the solution obtained with the naive Riemann solve
followed by Roe’s Riemann solver (B.3b), Engquist-Osher’s Riemann solver (B.3c),
the HLLE Riemann solver (B.3d), and the LLF Riemann solver(B.3e).
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Figure B.3: continued

to the right wall. Although the solution captures some of the essence of the flow, the
characteristics of this solution do not indicate that this procedure is robust. Reducing
the CFL as before improves the =sults; however, the improvement is not as quick as
with the simpler shock tube- type problems.

Figures B.4b and B.4c show the results obtained with the Roe and Engquist-
Osher Riemann solvers. As before, these are nearly identical, but Engquist-Osher's
Riemann solver degrades the solution peaks slightly more than Roe's. In gencral,
all features of the solution are smeared considerably by the solution procedure. The
contact discontinuities at X = 60 and X = 80 are both smeared considerably with
the first one being totally obscured. The “dip” between the peaks associated with a
rarefaction wave is filled i1 to a large degree.

The results obtained with the HLLE and LLF Riemann solvers are even more
diffusive as one might expect. The peaks are clipped to a larger degree and the
“dip” between them is filled in to a greater degree. Again the LLF Rieinann solver
exhibits more dissipation than the HLLE soiver, although their petformance is nearly
indistinguishable. The HLLE Riemann solver also produces a slightly sharper shock
at X = 88 than the other methods (except the naive Ricmann solver), although this
result is barely perceptible from the figures (Figs. B.4d and B.4e).
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(a)

Figure B.4: The «lutions to the blast wave problen st t = 3.5' are shown. The
converged nume:ica! solution is shown by the dashed line aud the solid line shows
the solution obtaiued with the approximate Riemaan solvers in ¢ juaction with
a first-order G dunov method. Figure B.4a shows the solutivn «it.uned with the
naive Riemaun solve followed by Roe’s Riemanu solver (B.4b), :he | ogquist-Osher's
Riemann solver (B.4¢), the HLLE Riema:.n solver (B.4d), and the L.LI' Riemann

wlver(B.d(‘:a
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B.5 Concluding Remarks

This appendix has given the forin of various approxiniate Riemann solvers that may be
nseful in producing quality results with Godunov's method in Lagrangian coordinates
with or without an Eulerian remap. in addition, the results show some of the problems
with taking the naive Riemann solver approach. The three test probleins show that
the other types of Riemann solvers produc: physical results (and importantly at a
lower cost than “exact” Riemann solvers).

The Roe and Engquist-Osher Riemann solvers both employ a great deal of kinowl-
edge of the wave structure of the equation set and as such produce relatively good
results. If the wave structure is not as well defined or known, the HLLE and LLF Rie-
imann solvers provide a simple alternative provided good estimates of the wavespeeds
present are available. The latter two solvers also are less computationally intensive
and generally simpler, and thus offer some saving in that regard.

With the use of higher order “monotone” interpolaticn principles with the methods
given in this appendix, the results for all methods improve.

The extension of high-order methods to systems of equations is explored in the
following appendix.



Appendix C.
Exteunsion of High Resolution Schemes to
Systems of Conservation Laws

C.1 Introduction

{u recent years, there has beeu an abundance of work deriviug liigh-resolution schemes
for hypurbolic conservation laws. Muast of the developient is made with scalar equa-
tions and generalized in some fashion to nonlinear equations or systeis of equations.
Typically, the extensior to svstems of equations takes on great importance as is the
case with the solntion of the Fuler equations of compressible flow. Much of the devel-
opment of high-resolution methods is devoted to the solution of systeins of equations
as their prinary practical use.

Thss appendix is divided into five sections. The following section introduces the
ntethods used for a scalar wave cijuation. In the third section, cach of these methods
is extended to systems of cquations. The fourth section presents and discusses results
found using these methods for the Euler equations. Finally, concluding remarks are
found iu the last section. Au appendix describes the characteristic decomposition for
both conserved and primitive variables.

C.2 Preliminaries

In this appeudix, | concentrate my cfforts on one specific method and its ¢xtension
to systemns of equations. This method is a standard second-order HOG methou aug-
mented with TVD limiters (Chapter 8 and [132]). As noted in [64, 147], the process of
solving a problem with a Godunov-type method can be divided into two basic steps:
reconstrisction or projection and evolution. The evolution step involves the use of
some sort of exact or approximate Ricmann solvers (see for cxample Appendix B
or [30]). The issue at hand here is the method of projection for systems of equati-ns.

The projection step requires that a piecewise polynomial (or some fui. tior .
tesentation) be defined for each cell of the system to reconst. . t tne vanables dis.
tribution in space to some level of desired accuracy. In this appendix, the following
form is used for this polynomial

(x - z,)

Pilry=n,+An KW’

crefn . (C.1a)

2
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A =Q(hr)d, yu, (C.1b)
with
A, pu=m, - u, . (C.1c)

The mesh spacing is Ar = Ipf =T34y = (:”% + 1,_%) [2andr = A”;u/A)_%u.
The function Q (1,r) is a limiter.

The limiters used in this appendix are discussed in Chapter 8.

The polynonsial is then used to define left and right states of the variables at cach
cell edge. uy and u,. These quantities are then used to determine a cell-edge numerical
finx fi, via a Riemann solver. In the cases (excep? one as explained in Section (©.4.3)
cousidered iu this appendix, Roe's approximate Riemann solver [63] is used. This
gives an overall conservative mnuerical scheme of

u;‘“ = ";‘ -0 (jJO‘;Jr - j -%.lr) ' (('28)
with . | ean
/)O%Jr = E/‘ j(" (I,Q%'f)) dr . (C?b)

For extension to systems not using a characteristic decomposition it is likely that
other approximate Riemanu solvers will be used.

C.2.1 Lax-Wendroff-Type Differencing

Another issuc casily addressed with simple model problems is time accuracy. For a
second-order accurate scheuse spatially, it is often important to attain second-order
accnracy temporally. A common practice is to use a Lax-Wendroff approach to time
accuracy. Froin one point of view this reduces to characteristic tracing at the cell edges
to get a time-centered estimate of the cell-edge state. For this numerical scheme this
yields the following form for cell edge states:

n | < .
Wrds =+ g Aull = m) (C.3a)
and . '
u::;" =ty = 58,5, (V4 m0) (C.3b)
= a7+ This can also be viewed as evaluating in the integral in (C.2b) by a
I ue. . ..s comnparison is shown in Fig. 4.8.

C.2.2 Two-Step Formulation

This procedure becomes more difficult when systems of cquations are considered.
To combat this difficulty, a procedure i the spint of the two step Lax-Wendroff
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schente [114, 113], has been used [159, 158). The left and right states are computed

from the projective polynomial and then used to produce time-centered estimates for
ll.le cell-edge states. Giv?n the cell-edge .states, u;“'“ and u;"%", computed with a
high-order method, the time-centered estimates are

“::;.l = “;'0;-.1 - % [/ (“:og.l) -f (“;-'_h,)] ' (C.4a)
and el .
wnt, =g, = 5 [ (5erd) = 7 (3)] - (C.4b)

This gives second-order temporal accuracy and is equivalent to the Lax-Wendroff type
procedure for scalar equations.

Remark 27 Davis [189] pirsents an allernate two-step method that is similar. In
that method, the first step is

n n g n n ’
“J’* =u, = 'é’( Y Y f,-%,) ’ (C.5a)
and a second slep of :
uppa=uwt 428, (C.5b)
and
u =u'ti 4 1A~ u (C.5¢)
1+ 41 T oSml . ‘

C.2.3 Component-Wise Extension

A third approach is also available. This approach involves the separate limiting of
the flux vector and the solution variable. It has been us. < by {200} with a high-order
Lax-Friedrichs solver. This solver makes use of the identity, f = au, which implies
that

9 N (C.6)

which gives an equivalent form to that used above with a Lax-Wendroff approach.
Specifically this can be written

“:::.n =u, + % (3u-04,f), (C.7a)
and " o _
“:ﬂ.v =We =3 (A:M“ - "A:‘nf) ) (C.7b)
where

——

AT = QUi 4. (C.7¢)
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Similar to the approach taken with the iuterpolation of the dependent variables,
roes A”%f/.&,_gj and A,_%/ = f, = J,-1- Again for the scalar wave equation, this
is vquivalent to the Lax-Wendroff type of time differencing.

C.3 Method for Extension to Systems

This section coucerns itself with the subject of extending the methods described in
the previous section to systeius of cquations. 1 deal with the specific case of the Euler
cquations for the conservation of mass, momentuny, and total energy.

The above systemn of equations can be written is a so-called primitive variable
formn. It has been suggested that this system of variable should be uscd to determine
cell-edge states [234, 122]. in the above forin the variables are conscrved quanti-
ties (poon. E)T. but in the formi given bejow the variables are (p.u.e)7, the density,
velocity, and internal energy. This follows the description of Roe's solver given in
Appendix B. This sct of equations is

dp  dpn _
ator~
at " Mor pdzr

0, (C.8a)

0, (C.8b)

and d 7] d
¢ d¢  pdu .
_ —_ -—=0. C.
at + " or + pOr 0 (€.8c)

The equations in primitive forus give a inuch sinipler system than the Euler equa-
tions. The flux Jacobian is

[ u p 0
A= 51:17-_‘) w v—11. (C.9a)
0 5 u |

Again, the eigenvalues of this matrix are
(A2 0) = (u-cuute). (C.9b)

The right eigenvectors form a matrix

| ! l .
R= (r'.r’.r“') = -5 0 % . (C.9¢)
! ;1’7 (-1 p? ;{’



and by using

and
n=27p,
the left eigenvectors form a matrix
BREEEE
R'=|p|=1-2y o ~Za | (C.9d)

Of the methods available for extending the scheme outlined in the previous section,
the characteristic decomposition due to Roe [53] is the imost cominon. {n this method,
a sintilarity transform takes the variable frons the conservative forin to a characteristic
form. Each variable can then be computed at the cell edges fron: its characteristic
contributions. This methodology can also be applicd to the primitive variables in a
similar manner. The basic theory of Roe's method is given in Appendix B.

Thus, cach characteristic is lintited separately in defining the new cell-edge value
of U. For this purpose, | define

3
Su=Y rba, (C.10)
k=l
where
Aa= Q(l.r)A,._%a (C.11)

for each component of U where r = A, §o/A,_ ja.

The characteristic approach must also be integrated into the attainment of tem-
poral accuracy. Each wave in the above decomposition travels at different speeds and
they can also travel in different directions. For this rcason, the cell-edge quantities
are computed from the following formulas:

13 s
Uispu=U; + 5?:' rr(1-2")4a , (C.12a)
and ,
l - ]
Upr = Ujn - 5.):‘" (1+7*)ana’, (C.12b)

here n* = A*a. Colella [234] reports a more robust characteritic decomposition that
is described and tested in Appendix D.

This method is aesthetically pleasing because the coupled nonlinear system is
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locally reduced to a set of decoupled scalar eqnations. Because of this, the theory
developed and applied to simpler model problems carries over withont interference
to systems. On the other hand, the expense associated with procedure (especially
when multidimensional or more complex systems are considered) makes them less
attractive than other alternatives. A modification of this method that is touted as
inereasing the robustiess of the reconstenetion is given in [234). This incthod takes
intg account the direction of wave carrying inforiation and only allows physically
mcaningful reconstructions to occur.

‘'he other options described in Section (°.2 are somewhat more straightforward
to impleinent for systems of equations. The two-step method is simply applied in a
vector fashion, i.c.,

U::;.l = ;‘4}.1 - (7;: [F( :4}.1) -F (U;'_%,,)] ' (C.13a)
and ot ,
ULt = Uy, =5 [F(Un) - F (U] - (C.13b)

Sinilarly the component-wise extension uethod can be extended by using limited
values of the flux function for cach of a systems’s equatious. Thus, the method can be
written

n |~ — ,
Ul =, 45 (8u- &) (C.14a)

and | _
U;‘:;, =V, -5 (anu-a,01) . (C.14b)

For both of these nmicthods, the computation of the cell-edge value could be done
in cither conservative, primitive, or characteristic variables. The advantage of the
two-step or the compoitent-wise extension ncthods can only be obtained if the in-
terpolation is doste in cither the conservative or prinritive variables because of the
relative simplicity of each fornulation.

Another issue of some importasce is the application of limiters in computing
the piccewise polynoniials. It is connmon practice to use a compressive limiter such
as superbee on the field that produces the contact discontinuity. The compression
given by the limiter maintains the sharpness of the interface. The same limiter when
applied to shocks or rarefactions can produce entropy violating solutions. For the
characteristic decomposition the inisplementation of this is quite clear. For other
methods not. involving characteristic decomposition it is usual practice to apply the
compressive limiter to the computation of the density profile [122].
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Table C.1: Abbreviations for the methods used in this study.

Scheme Abbrevijation
Characteristic-conservative variables CC
Characteristic-primitive variables PC
Two-Step-conservative variables CR
Two-Step-primitive variables PR
Component-wise-conservative variables CF
Component-wise-primitive variables PF |

C.4 Comparison of Methods

In the following section, § compare the performance of the methods for several stan-
dard test problems for tne Euler equations in one space dimension. The results of this
discussion should provide guidance for more complex systems of equations as wel| as
guidance in a route to take in extending these methods to multidimensional problems.
Table C.1 list the abbreviations used in this section to describe the metliods.

C.4.1 Sod’s Problem

The solutions to Sod's problem can be seen in Figs. C.1-C.6. in general, the solutions
are quite good and exhibit the qualities one would expect with a high-resolution
numerical solution.

The solutions found with the CC method are seeun in Fig. C.I. They are qualita-
tively quite good, with the only problem being the glitch in the velocity at the end
of the rarefaction wave. With the PC method the velocity glitch is gone, but a siaall
rise is before to the shock. As can be seen in Fig. C.2, the dessity profile is nearly
identical to that found with the CC method.

With the two-step formulation, the solitions are again quite good as can be seen
in Figs. C.3 and C.4. The major problems can be seen with the velocity profiles where
small problems exist with at the end of the rarefaction wave and in the post shock
region of the flow. These problems are not major in nature. Major features of the
flow field such as the shock, contact discontinuity and ratefaction wave are resoived
well.

The component-wise extension of the schemes has a few more problems. In
Figs. C.5 and C.6 the solutions are shown. The shock wave is cxceptionally sharp,
improved over the other methods, but in both the conservative and primitive vatiable
formulation there are a number of small oscillations in the velocity solution between
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(a)

Figure C.}: Sod's problem computed with the characteristic formulation with con-
servative variables. In these figures, the solid line denotes the exact solution, whereas
the citcles denote the approximate numerical solution.
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Figure C.2: Sod’s problem computed with the characteristic formulation with primi.
tive varjables.
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Figure C.3: Sod’s problem computed with the two-step formulation with conservative
variables.
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Figure C.4: Sod's problem computed with the two-step formulation with primitive
variables. Note the small spikes at the end of the rarefaction waves and the post-shock
spike in the velocity solution.
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Table (".2: The Ly eeror norms for cach scheme i Sod's problem

Scheme | Densits Veloo . |
cC 5.86 x lO';‘ 1.19 -n _110:;-
pC 4.90 x 1077 | 6.14 < 1673
CR 5.26 x 107 | 7.27 x in~?
PR 545410 | 758 x 10-°
CF 534 x 1072 | 9.33 £ 10~ ,
| PF 6.20 x 10°° [ i 22110:1_‘;

the rai-faction and shock waves. in this case. these ascdiations are not destenctive.
but detract fro.: the overall quality of the solution:

In Table C.2, the L, norm csrots using these ncthods et Siown. In these terins
the best solution is the PC method with both of the two step methods of slightly
Jower quaiity. The PF method is the worst, with the CC forsmsistion slightly better.
However. the better qualitative appearance of the :(° makes 1t mueh supetior o> the
PF method.

C.4.2 Lax’s Problem

Th= solutions to tlus problem by the methods discussed in this appendix are shown
in Figs. C.7-C.12. Again the solutions are quite good acruss the board. but problems
v ith the methods show more strongly in the density profiles. The region hetween the
>huck wave and the contact discontinnity is sensitive to the limiter nsed, and in the
non characte:istic methods, problems show up.

Figures C.7 and C.8 show the CC and P(C solutions to Lax's problem. respectively.
‘The only problem with these solutions is evident inn the PC velocity solution where a
small dip in the velocity is present coincident with the contact discontinnity. Fhis is
an artifact of the compresive superbee limiter used on the linearly degenerate wave.

[Mgr.es C.9-C.12 shov. the solutions found with other methods. These solutions
all s".are common characteristics. The contact discontinuity causes oscillations in
the solutions as evident in both the density and velocity profiles. These oscillations
are mote scvete in the primitive varjable formulations. These oscillations can be
controlled through another choice of a limiter to apply to the density interpolation.

In terms of L, error (see Table C.3), the conclusions that arc drawn are somewhat
different to those found with Sod’s problem. The velocity cerors are very close in
magnitude and no real conclusions can be drawn from thein. The density errors
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Figure C.5: Sod's problem computed with tke component-wise formulation with con-
servative variables. Note the small oscillations in the velocity solution between the
rarefaction and shock waves.
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Figure C.6: Sod’s problem computed with the component-wise formulation with prim-
itive variables. Note the small oscillations in the velocity solution between the rat-
efaction and shock waves.
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Figure C.7: Lax's problem computed with the chasctetistic toriulation with con-
servative variables. With the exception of this solution, all the svlniions to Lax’s
problem have small spikes or oscillations associated with the centact discontinuity.
This is indicative of the overcompressive nature of the linmter placea on the density.

The conservative characteristic forinulation guards against this preblens.
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Figure C.8: Lax's problem computed with the characteristic formulation with primi-
tive variables. Despite using a characteristic formulation, a small oscillation is present
with the contact discontinuity.
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Figure C.9: Lax’s problem computed with the two-step formulation with conservative
variables.
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Figure C.10: Lax's problem computed with the two-step formulation with primitive
variables.
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Figure C.11: Lax's problem computed with the component-wise formulaticn with
conservative variables.
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Figure C.12: Lax's problem computed witk the component-wise formulation with
cor:servative variables.
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Table C.3: The L ertor norms for each scheme on Lax's problem

Schene Density Velocity
CC 1.46 x 1072 [ 1.6{ x 1072
PC 1.92 x 10~% | 1.42 x 10-2
CR 1.30 x 10-? | 1.53 x 102
PR 1.52 x 1072 | 1.61 x 10~2
CF 1.29 x 10~? | 1.54 x 10~2
PF 1.44 x 1072 | 1.62 x 1072

seem to favor the conservative surmulations, but for the two-step or colaponent-wise
formulations the differences are 1ot profound.

C.4.3 Vacuum Problem

As roted in Section C.2, onc rosc in this study does not use Roe's approximate
Riemann solver. The case of 1%.: vacuum problem considered below cannot use Roe's
solver as explained in [231]. ior this case, a njore diffusive scheme is used to maintain
physical solutions. This is the HLLE Riemann solver [30, 231, 128] (sec Appendix B).

This method has several desirable properties: its simplicity, ease of implementa-
tion, and satisfaction of entropy inequalities. Reference (231} makes the suggestion
for the computation of b, and ¥,. The formulas are

(C.15a)

r
iy = INAX (ar,muo alr.mot) '

and

(C.15b)

b:r = yain (Gl.min' alr.mm) '

where max and min refer to the maximum and minimum characteristic speeds at
the respective locations. The values for a;, come from the Roe linearization that is
discussed below.

The solutions found with the CC, PC, PR, and PF (Figs. C.13, C.14, C.16
and C.18) methods are not worth niuch discussion. All of them are quite good and
appear to be neatly identical in terms of resolution. Table C.4 shows this as well.

The solutions found with the CR and CF methoas do warrant some discussion.
The CR solution is shown in Fig. C.15 and the CF solution in Fig. C.17. Both
solutions are of exceedingly poor quality. in fact if meazure had not been taken to
prevent this, the computer code should have blown up cariy in the solution process.
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Figure C.13: The vacuum problem computed with the characteristic formulation with
conservatjve variables.
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Figure C.14: The vacuum problem computed with the characteristic formulation with
primitive variables.
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(b)

Figure C.15: The vacusm problem compited with the two-step formulation with
conservative varisbles. The use of conservative variables with this flow is disastrous.
The total energy has become negative in the region around X = 50.
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Figure C.16: The vacuum problem computed with the two-step formulation with

ptimitive variables.
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Figure C.17: The vacuum problem computed with the component-wise formulation
with conservative variables. The conservative vasiables have not guaranteed that
positive definite quantiti=s (total enetgy) stay positive definite.



Figure C.18: The vacuum problem computed with the component-wise formulation
with conservative v:riables.
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Table C.4: The L, error norms for cach scheme on the Vacuuni problem

Scheme | Density Velocity
CcC 1.27 x 10-? | 2.63 x 10~?
PC 1.24 x 1077 [ 2.85x 10?
CR 2.72 x 1072 | 1.00 x (0!
PR 1.20 x 1072 | 2.39 x 102
CF 2.81 x 10"? | 5.85 x 10~2
PF 1.20 % 10~? | 2.40 x lO‘L

This is because the total energy in the solutions becomes negative in the vicinity of the
vacuum in the solution. The use of the conscrvative variables in a non characteristic
method when the solition is kinetic cnergy tich causes che problem. This is akin to
the problems with the Roe linearization siudied in {231]. The interpolation of the
variables creates nonphysical states in the total energy. Lowering the compression
of the limiters alleviates this problem as does moving to primitive or characteristic
variables for the interpolation.

C.4.4 Blast Wave Problemn

The solutions are in general all quite good. The major features of this complex flow
field are all depicted in the plotted density profiles (Figs. C.19-C.24). The major
differences can be seen in the resolution of the contact discontinuity at X = 60, the
“well” at X 2 75, and the peak at X = 80.

In Fig. C.19, the CC method’s major problem is the clipping of the second peak
in the solution. Other features are well resolved in comparison to the other methods.
The PC method (Fig. C.20) smears all the features of the flow considerably more
than the CC method. The CR method is generally like the CC method with the
exception of the contact. discontinuity at X = 60, which is smeared much more that
by the CC method. The solution is somewhat “noisier” with over/undershoots in
several locations. These characteristics are duplicated in large part by the CF method
(compare Figs. C.21 and C.23).

The PR and PF methods produce nearly same results. Both solutions are remark-
ably crisp and each feature in the flow field is sharply defined. Figures C.22 and C.24
also show the major detriment to these solution. The second peak (X = 80) sig-
nificantly overshoots the “exact” solution. Nevertheless the solution found by these
incthods is quite good in all other respects.
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Figuse C.19: The blast wave problem computed with the characteristic formulation
with conservative variables. The first peak is caplured very well, but the second is
clipped severely. With thz blast wave solution, the “exact” solution is marked by the
dashed line and the approximate numerical solution by the solid line.
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Figure C.20: The blast wave problein computed with the characteristic formulation
with primitive variables. Both peaks are clipped and the contact discontinuity at
X = 60 is snicared.
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Figute C.21: The blast wave problern coinpited with the two-step formulation with
conscrvative vatiables. This is sisilar to Fig. C.19, but the contact discontinuity at
X = 6 1< smeared cignificantly more
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Figure C.22: The blast wave probl=.n computed with the two-step formulation with
primitive variables. This solution is higbly resolved and is of high quality with the
exception of the overshoot of the second peak.
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Figure C.23: The blast wave problem computed with the component-wise formulation
with conservative variables. This solution is faitly well resolved, but is somewhat
“noisier” than other solutions.
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Table C.5: The times for the blast wave solution coniputation using each method

Scheme | “Total Time (s) | Percentage in Reconstenction
T o

pC 79.4] 19.55

CR N2.49 13.12

PR 72.01 12.57
' CF K4 22 40.44
( I'F { 64.07 40.54

C.5 Concluding Remarks

Table (.5 shows the total time taken for the blast wave solutic-s an-' the perce:itage
of that time taken by the reconstruction of the cell-edge values'. In terms of economy,
the PR and PF methads have clear advantages. Taking this into account with the
resnlts i mind several conelnsions can be drawn. These conclusions are summarized
below:

o All the methoas described in the appendix prodice quality results.

o When a non characteristic extension is used care 1,13t be taken in applying
limiters (Lo not over-compress the density).

e For non charactetistic extensions, the primitive vatiables formulation should be
nsed.

o Non characteristic formulations nsing t' » primitive variables are lower in cost.
g P

Another point not emphasised here has been extension *o multiple dimensional
problems. All of thess methods can he used with a dimensional splitting method, but
the two-step method has clear applicability to a purely multidimensional methods
without splitting. This is clearly ~n advantageous feature. In sumi, both of the
characteristic approaches (CC and PC) are reliable and produce excellent results in
all cases. The two-step primitive variable methed (PR) with appropriate selection of
limiters is both economical and has applicability to a multidimensional algorithm.

Fhe tinungs were done on 8 SPAR( Station 2 running Sun0S 4 ) 1h
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Figure C.24: The blast wave problem computed with the component-wise formulation
with conservative variables. This solution is very similar to Fig. C.22.
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Appendix D.
A More Robust Characteristic
Reconstruction

D.1 Methodology

In [34], Colella discusses a mote robust means to accomplish characteristic recon-
struction. in this appendix, | show this method and explore its nsc.

Bricfly tated, this is a modification of the methodology given carlier. For constant
cocfficient problenis these steps lead to identical values for U,,} ;/,, but as Colella
cominents leads to a more robust algorithin in the case of highly nonlinear problems.
This method trequires that we define left and right reference states, l.J” b4 and U e
tespectively. These states are defined as

U,.=U,+ ; (1 - max (AF,0)) 4,1, (D.1a)
and ) | _
Uy, =U, -3 (1 - min (3},,,0)) 4,1 U. (D.1b)

Here, the eigenvalues, )*, have been arranged in incieasing order frem A'-.. 2K,

These teference states are then used in defining the cell-edge values as

- 1 . —~
Upnp=Usp +; T (N -a)ae, (C.2a)
k:A2>0
and ) | _
U;o}.r = U,,’, + ihgor' ()}“ - A:,,) A0t (D.2b)
AR

All the above terms where defined in Chapter C. One would expect this method
to be slightly more diffusive than the usual reconstruction because of the lack of
cxtrapolation of the linear profile for eigenvalues that do not propagate toward the
cell edge.

D.2 Results

I compare the above described method with the more straight foiward algorithm used
throughout this research. To do this | use the same four test probleins described in
Chapter A. To simplify compatison on the dentity and velocity profiles are studied.
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For Sod's problem, the more robust algorithms sole improvensent seeis to ke in
the velocity profile whete the “bump” experienced with the usual algorithn siear the
cnd of the rarefaction wave has disappeared. This is shown in Fig. D.I. The L, error
for density is also slightly better.

With Lax's problem, the difference is barely perceptible. Figure D.2 shows that
the two solutions are nearly identical. The L, error norin for density is slightly worse
for the robust reconstruction.

Again for the vacuum problem as with Lax’s problem, the two solu ions are uot
greatly different, although the rcbust reconstruction appears to be more diffusive.
As Fig. D.3 shows, near the vacuum in the solution, the robust reconstruction shows
mmore artificial diffusion.

Figure D.4 shows the solutions for the two methods on the blast wave problem.
The solutions were ccmputed with 500 grid points. Only the region of wave interac-
tions is shown. Again, as shown in this figure, the solutions are very similar.

While the robust reconstruction does not have any detrimenta! effects on the
sclution (save a little artificial diffusion), except in the case of Sod's problem, it
does not improve the solution. It is also somewhat more expensive thay the usual
reconstruction, although this cost is not particularly high.
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Figure D |: The density and velocity solutions to Sod’s problem using both the usual
and robust reconstruction methods.
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Figure D.2: The density and velocity solutions to the vacuum problem using both

the usual and robust reconstruction methods.
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Figure D.3: The density and velocity solutions to the vacuum problem using both
the usual and robust reconstruction methods.
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Figure D.4: The density and velocity solutions to the blast wave problem using both
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Appendix E.
Neo-Classical Upwind Type Methods

Here | briefly explore the types of solutions that arise from the solution of modified
Qux and symmetric TVD schemes without limiters. The schemes can be derived
from those schemes by considering what the fluxes would be for the varions sample
gradicnts used in the limiters. This gives three separate schemes for the modified
flux type of method: upwind, antiupwind and centered (or average of the other two).
For the symmetric method, four schemes arise: upwind (Beam Warming). centeted
(Lax-\Wendroff), antiupwind and average.

The results for these methods on the scalar advection of a square wave for 100
time steps at v = 0.5 can be seen in Figs. E.| and E.2. Each of the solutions is
sccond-order accurate and shows distinct dispersive effects. For the inodified flux
type of scheme, the upwind and antiupwind errces are opposite in orientation and the
centered solution is superior. For the syinmetric scheme, sutprisingly, the antiupwind
method followed by the average method seem to be superior in terms of oscillation
control.
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Figure E.1: The solutions for the neo-classical modified flux upwind schemes on the
scalar advection of a square wave (a = | and v = 0.5).
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Figure E.2: The solutions for the neo-classical symmetric upwind schemes on the
scalar advection of a squase wave (a = | and v = 0.5).
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Appendix F.
Extension of High Resolution Schemes to
Multiple Dimensions

F.1 Introduction

Methods for numerically integrating conscevation laws are best understood in one
dimension. Berause of this, scheines are most often developed and thoroughly tested
in one dimension. High-tesolntion schemes are no exception te this rule. la some
cases. a good onc-dimnensional method cannot be generalized to nmltiple dimensions
because of assumnptions made in their derivation. Fortunately, thes is yot always tene:,
although the one-dimensional methods are always somewhat limited when used in
multiple-space dimensions.

The more straightforward methods for the inaltidimensional advection algorithins
are developed in physically or logically rectangilar coordinates. Finite clement sneth-
ads and more general finite volmue methods (35, 36] can be defined for more gen-
cral geometries. The problemn with these methods is that the theoretical support
in mmltidimensions is somewhat lacking. A perfeet example of this difficulty is
with Ricmann solvers. Multidimensional Ricinann solvers are an active topic of re-
search {228, 235, 236, 237, 229). but in one disnension, Riemann solvers are well devel-
oped. Typically, Riciann solvers are used in ain operator splitting fashion {156] where
at cach cell interface the multidiimensional problem is redieed to o one-dimensional
probless. These are then pieced together to give a multidimensional algorithm [234].
As is discussed shortly. the advent of mnltidimensional Rieinann solvers do not cure
all the problems associated with the solution of multidiinensional problems with high.
resolution npwind methods.

A comnton approach to achieving high-resolution methods is the use of flux or
slope limiters. For one space dimicnsion, limiters are well developed. but for more
than oue dimension, their development is somewhat less. One aspect to muitidi.
niensional limitcts is that they require the use of mote rample gradients than their
one-dimensional counterparts. As discussed in Chapter 8, the mote atguments given
to a limiter, the lower its resolution simply because of the minimum principle nsed.
Multirlimensional limiters hav~ been given by (238, 139, 239).

In this appendix, | atten:pt to see what some of these limitations are and what
methodology is best suited to the task. The appendix is organized into nine sections:
an introduction, a description of the first-order methods, the test problems, and
o Sieat order resalts. Ths as fullowed ip:.' a 'lt‘.\friplinll of the basic )ligil-rvsnillliml
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method and its extension to multiple dimensions. After this, the results of the high-
resolution methods in two space dimensions is given. Following that discussion is a
brief desctiption of the impact of limiter selection on the results. Finally, some closing

remarks are made.

F.2 First-Order Methods in Multiple Spatial Di-
mensions

In this appendix | am intercsted in solving the following equation,

du 9f(u) dg(u) _
ot o Tay =0 (F.1)

where f (u) = au and g(u) = bu. A conservative differencing of this equation is

“:;” = ":'.; — O (L#}.)Jr - L-}Jdr) — Oy (9v.)+§~)l - gn.;-};‘l) ' (F2)

where 0, = At/Az and o, = At/Ay.

In each of the methods discussed in this appendix, the cell-edge flux at cell edge
i + 1,j are defined by the following approximate Riemann solver for scalar wave
equations

Jisygr = % [8 (g o + iagior) = ol (W0 y e = iay )] (F.3)

where a is the velocity in the z-direction at the cell edge and the subscript | refers
to the value to the loft of the cell edge, r to the right and Ir is the interface value.
Similarly, the flux is the y-direction at cell edge i,j + L is

Soefh = % [b (u'JO}'.D + uw#i;l) ol (u'JO};I = Uy e };l)] ' (F.4)

where b i3 the velocity in the y-ditection at the cell edge and the subscript b refers to
the value at the bottom of the cell edge, ¢ to the top, and bt is the interface value.
By defining the cell-edge values, | then define the scheme.

For the first-order schemes, the value at the cell edges are given by the value of
the variable in each cell for instance

Uig hgt ™ Ui » (F.53)

and
ul’i.)',' = Uipty (l".5b)

anl other cell-edge values defined in a simitar fashion. The simplest scheme is then
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from the conservation form, (1°.2).

Anothier common forn: nses dunensional splitting [156] usually inplemented with
Strang splitting (210, 241}. This miethod pieces together one.dimensional solutions
into a multidisensional solution. For two disiensions, | can order the solution in two
ways as cither

iyt = C.C, (u],) (F.6a)
or
upy! = £,L, (ur,) - (F.6b)
Here the operator £,L, (u,,;) wonld be carried out in two steps, the first being
up, =L, (n7,) . (F.7a)
and the second being
=L, (u' ) . (F.7b)

with £, C, (ll,,) defined iu a siuilar manner. The function £, ( ) is defined as

Co(ut) = ul = oe (S0 =0y e) + (F.8a)

and C, ( ) is defined as

L, (“n..;) = “-..; = oy (g:”“' - 9:,_;,,) . (F.8b)

Strang [240) showed that if the order of evaluation is altetnated, errors cancel to
second-order in time (also see LeVeque (40, Chapter 18]) thus the implemented otder
of evaluation for two time steps is

upt? = £,L,L.C, (u),) - (F.9)

The use >f this with Godunov's method defines the split Godunov method.!

Colella defines a third choice for multidimensional extensions of one-dim~nsional
nicthods. He calls these corner transported upwind (CTU) methods, a term | use
hete. The basic geomietric idea is shown in Fig. F.1. This is a two-step method that
defines time-centered values for the cell edges and uses these to compute the advance
time cell-centered values. The first step of the method computes a time- centered
value for a cell edge based on the characteristics traced from the corners of that cell

"The use of Stiang sphitting s n--: sic-cesary with first-order methods, but is teally needed for
re o, { -I""I lll"i'l'rl!!
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Figure F.1: A diagram showing the trace of characteristics back from the cell corner
of cell (2, j) with both velocities being positive

edge. For the z.direction cell edge, this gives

n+§ n

Ty ([ n
Uprhou = Uiy ‘% (9’.'.14.5;“ - 9’,-4-”.) ' (F.10a)

and for the y-direction cell edge

R i n a’

oyt = U0 = 5 (Fgw = fily,

The fluxes are computed by some means, in Lthic case a Codunov flux ae described

I gevs dp AR = SR M eV Y S eee™ srevimiily

above. The final time-advanced solution is comnputed from

(F.10b)

uif! = - "r( Tf.,.tr g.,.t-) (9-.1+§.b- ::*g.ac) ' (F.10c)

which uses the CTU-time-centered values to define the Godunov fluxes.

Before continuing, some comments concerning stability should be made. Classical
etahilitw analuveie annliac t6s tha ahrva echames Far tha chlﬂ' ant‘l f"l"” nﬁjll!nf\!.l

OWEaLF Ly J LT JG“ “PP..W e ViLL SN L Rietetals A We VAL I' b m A T T d

schemes the stability limit 1s
m.gx(v,.v,) <1, (F.11a)

A L oL ______ 4% £v_ 1 . .
I1G 10T L€ uUnspliiv ‘Oaunuy suIcniee

v+, <, (F.11b})
where v, = |a| o, and v, = |bjo,.
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I['.3 Test Cases and Problem Setup

In this appendix, 1 consider three test problems as isiitial conditions to the multidi-
mensional scalar wave equation. The eqnation | solve is

du,  Dlaly)u)  d(b(2)n) _

a‘l + P Ty 0 (F.12a)
where
a(y) = -wly-V) ., (F.12b)
and
b(r) =w(s-7r,). (F.12c)

with o = 0.1, r. = 50 and y, = 50. At t = 20» the fickd has rotated once. The
overall doptain is |1, #,) % [y,.y.] = [0.100] x [0, 100]. This problemn setup follows
Zalesak [62) aud Munz [I81]. | use a time step size of 207 /628 so that the profile
revolves once in 623 time steps.

The first probles is defined hy Smolarkiewicz [242] as the cone problem. The
initial conditions and exact solution are shown in Fig. F.2. The cone ic centered at
(50. 75) with a height of unity and a radius of 15. This problem should show how the
solutions waintain local extrema and shape during advection. For the cone and the
slotted evhinder problems. the figures are only shown a 59 x 50 portion of the grid in
order to concentrate on the solution.

The second problem is the slotted cylinder problem introduced by Zalesak in [62].
This problen has been used by a number of researchers (181, 93, 242] to test multidi-
mensional advection schenes The cylinder is centered at (50, 75) and has a height of
unity and a radins of 15. A slot is cut out of the cylinder at its lower center leaving
a “bridge™ with a maximum width of 5. This problem highlights the performance of
the imethods on contact discontinuities showing their numerical diffusion. Figure F.3
shows the initial condition for the slotted cylinder.

F.4 First Order-Results

In this section 1 discuss the results of using the first-order methods on the rotating
cone and slotted cylinder problems after one rotation. In general, the solutions all
have similar properties and results. Graphically speaking, the solutions are nearly
identical. This is shown by looking at Figs. F.4, F.6, and F.8 for the cone problem and
Figs. F.3, F.7, and F.9 for the slotted cylinder. All these solutions show exceedingly
poor resolution of the solution and the original profile is nearly indistinguishable.
The results for all the methods discussed in this appendix are given in several
tables. Table F.1 shows the compner time used in producing each solution. It
is notable that the CTU.Godunov miethod uses half again as much time as the split
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Figure F.2: Initial condition and exact solution after n rotations for the cone problem.

The spike in the upper right hand corner of the upper figuze is set equal to | and the
spike in the lower left hand corner equal o - ).
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Figure F.3: Initial condition and exact solution after n rotations for the slotted
cylinder problem.
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The split Godunov method solution for the rotating cone shows the
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The split Godunov method solution for the rotating slotted cylinder

sliows the excessive diffusion of this mcthod.

Figute F.5
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for the rotating coue shows the

The unsplit Godunov method solut

diffusion of this method.

excessive

Figure F.6
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The unsplit Godunov method solution for the rotating slotted cylinder

shows the excessive diffusion of this method.

Figure F.7

328



The CTU-Godunov :nethod solution for the rotating cone shows the

Figure F.8

diffusion of this method.

excessive
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Figure F.9. The CTU-Godunov method solution for the rotating slotted cylinder

shows the excessive diffusion of this method.
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Table F.i1: Computer time used for the solution of a problem using each method
through six rotations (CFT 1.14 on a Cray X-MP4/16 with a CTSS operating system).

Scheme CPU Time (s) | Total Time (s)
Split Godunov 27.975 4I.:_!72
Unsplit Godunov 27.640 40.905
CTU Godunov 42.455 60.256
Lax-Wendroff 39.043 55.545
Split HOG 49.913 71.684
Unsplit HOG 48.943 70.346
CTU HOG/Godunov 73.487 ' 34.891
CTU HOG 63.542 124.737
Runge-Kutta HOG 70.885 101.848
Hancock-van Leer HOG 58.656 117.215

CGodunov mett od to achieve neatly the same result. The times for the split and unsplit
Godunov solations are neatly equal. Table F.2 gives the solution minimums and
maximums for all methods after one rotation of the cone. The split Godunov solution
is slightly better than the other sclutions, and all three methods are monotonic.
Table F.3 shows that the sjotted cylinder results yield similar conclusions.

F.5 High-Fesolution Methods

This section explotes riethads used to improve the above results while staying within
the basis of one-di nersional methods as a basic building block. Below | show the
basic scheme used in the stvdy and introduce the methods of extension to multiple
dimensions.

F.5.1 The Basic One-Dimensional High-Resolution Method

To set the high-order Godunov (HOG) inethods tested in this appendix on equal
footing, all methods use the same basic on-dimensional method as a basis. This
method is a simple second-order method defined by the following piecewise polynomial
function in the z-direction

-2

Ar

Py (2) = 1y, + Aju—2 (F.13a)
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Table F.2: Minimum and maximum values after one rotation of vhe cone using all
the mcthods.

- — e ———————e e s

Scheme Minimum | Maximum
Sphit Godunov 0.0000 0.3360— B
i Unsplit Godunov 0.0000 0.3247
CTU Gadunov 0.0000 0.5299
Lax. Wendroff -0.7970 0.8436
Split HOG 0.0000 0.560%
Uusplit HOG 0.0000 0.8638
CTU HOG/Godunov -0.0120 0.8575
CTU HOG -0.0190 0.8589
Riunge-Kutta HOG 0.0000 0.8697
Hancock-van Leer HOG | -6.0062 0.8529

Table F.3: Minimum and maxinum values after one rotation of the slotted cylinders
nsing all the methods.

Scheme Minimum | Maximum
Split Godunov 0.0000 0.5883
Unsplit Godunov 0.0000 0.5794
CTU Gordunov 0.0000 0.5882
Lax-Wendsoff -0.7945 1.2627
Split 110G 0.0000 0.9993
Lusplit HOG -0.0005 0.9996
CTU HOG/Godunov -0.0555 1.0625
CTy HOG -0.0585 1.0736
Runge-Kntta HOG 0.0000 0.9999
Hancock-van Leer HOG | -0.0332 0.9985
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and in the y-direction
Yy=-bh,

”‘y)_u,,+Au Ay

(F.13b)

The terms A,u and A‘:u are defined by limiters (see Chapter 8).

From the above methods | may get s~cond-order time accuracy by defining the
time-centered, cell-edge values as

n 1 —_—
l:g.)l-“:‘.)-’.é(l-"l’)dlu' (F.Ma)

and | _
w2, = - 5040 B, (F.14b)

where n, = aAt/Az. The terms 3, and 5, are signed versions of v, and v,. Similar
definitions are used for the cell cdges in the y-dircction.

Now | explore how | extend these one-dimensional methods to two space dimen-
sions.

F.5.2 High-Resolution Methods in Multiple Spatial Dimen-
sions

The first three ways to extend schemes to multiple spatia! dimensions are simply
extensions of the methods used for the first-order Godunov schemes. The operator
split and unsplit methods are extremely straightforward, but the CTU scheme is
worth =xploriag.

To get second-order accuracy | use a Taylor expansion for each time-centered

cell-edge value

oY e QO Ao
Upghga = Y + 2 Bt + 2 32 (F.15a)

d
. wh o, Btdu By

Yorpp =Yt TH T Y dy

I can replace du/dt with ~3f/0z — dg/dy in a manner similas to the derivation of
the Lax-Wendroff method. This gives

(F.15b)

oy (0 9)  Azdu
and af 0o Ay d
n+} " 9\, Syou
wh, =, (8:+8x)+ 5 (F.16b)

{ ise these expressions later in developing another method. Rewembiering that f = au
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and g = bu. then gathering like tenmns realts i

'.0} - ('hl A‘l"y .

Uit = ‘AJ— u);'—l'—'?m. (F.17a)
and w Ao

" w4 (Ay =D Y -

Mo ea = (_\y Ath) o 2 s (F.17h)

Evaluated nuerically the above expressions become

* 1 A 1] ag " " . ‘
RIS (_u = Ma) 3= = (i = 0 yw) (F.18a)
clllll
Au o, :
"}1A= (AJ—A”') Al:‘—;-( el fﬂl,lv) : ('“lsb)

Tire original CYU micthod presented above nsed the last terins in cach of the last two
expressions in definiug the time-centered cell-edge valnes used in (F.10¢). Applying
the HOG polyuomial reconstinetion given in the previons section provides valnes for
the new teems in the expansions. Two separate metheds arise from this derivation:
I get second-order acensacy with Gadunov flixes being used as with the first-order
CT1" method or | may use second-order hixes in the place of the first- order flixes.
The first of these two methods | eall the C4 1 HOG/Godine.. 22215220 and the second
CTU/HOG.

in [159. 158]. an alternat: method for extending HOG methods to second-order
Ume accuracy was preseuted. This inethod was developed in one dimension and
i similar in flavor to the two-step Lax-Wendroff method. Using the above stated
derivation | can extend this method o two (or more) dimensions. | substitute nu-
merical approximations directly into (F.16a) and (F.16b). This gives cxpressions for
the time-centered cell-edge values of

ll:‘:;.,.‘ = “?,’,,,l - % (/".’QJ-‘ = f:‘_*_,.,) = % (I:JO};‘ - ]:,-’.') ' (Flgl)

"-"-’g*.,.-= '-i)'-”'(whl f";u)‘ﬁ(.lo;rf.'l.-;..)- (F.19b)

“:'.:}l.s = u:‘.)";. = '?' (I:‘Q;JJ - ].... ;J,) - 5" (j:),’.. - I:;-}.l) ' (Fl!k)

and
[ 0‘ 'Y g . A Y .
;‘w-;}.l = u be ™ ( ek’ jo-},,;') - .Z_' ,,,; y .J_;.') . (’lgd)

These estymales diffor from previoys schemnes by nnt requiring Riemann salvers. Then
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(F.J0c) is used to update the grid values. This is referred to as the Hancock-van Leer
HOG method. Unlike the CTU schemes, the €!FL limit for this scheme is given by

vy + 0, < 0.

This #s because cell-to-cell interactions are ignored in the predictor step.

The next method I study here is a TVD Runge-Kutta method introduced by
Shu [169, 65, 66]). These methods were shown to be TVD when the coeflicients of the
time discretization meet certain conditions. These multistage algorithms are written

in the following form
-1

Z[a.,u +BaAtL (u*)] (F.20a)

I

where the semi-discrete differential operator i« defined by

du

— = .20b
T L{uw , (F.20b)
and a;; and F;; are coefficients. The criteria for this to produce TVD results given
an appropriate spatial operator is a CFL condition

v < I%fi : (F.20c)

where
sty <

¥

If B is negative, the spatial operator must be antiupwind [65, 160). A number of
schemes can be defined with the second- and third-order methods being particularly
useful. The second-order method turns out to be the classic modified Euler or Heun

scheme

ul, =ul, + Atl (u") . (F.21a)
and
! = g + %—f [L(n") +L (v, (F.21b)

with a CFL condition of v < }. It is notable that Riemann solvers are needed at each
step of the multistep integration.

For convenience, the CFL limits for the schemes studied in this appendix are given
in Table F.4

F.6 Results for the Second-Order Methods

This section shows and discusses solutions to the test problems by the second-order
methods described above. Before continuing to this, | show the results that a classic
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Table Fote CFL limits for all the method
§cheme - Limit ]
Spht Godunov s (i) < |
Unsplit Godnnov v+, < 1
CTU Godnnov max (v,,v,) < |
L.ax- Wendroff max (v, 1) < |
Sptst NOG max (#,,1,) < 1
Insplit HOG ve +v, <1
CTU HOG/Godunos max (v,,v,) <
Cr o6 max (v,.14) < |
Runge-Kutta HOG v, + v, < |
Hancack-van Leer HOG ) v, + v, < |

second-order inethod produces. Figures F 10 and F.11 show the operator split Lax-
Wendroff solutions to the test problans. Baoth of th -se solutions are nnacceptable.
The large crror near the lower bonudary is the consequence of bonndary conditions.
The bosndaries are set to a symnetrical condition which does not damp ont errors at
the bonndary. Fventually, the solution undergoes honndiess growth becanse of this.
if the sobitions are set to zero at the honndary (errogs flow out of the domain), the
solutions remain bounded. Therefore. the haundaty conditions used here represent a
worse case analogons to reflective Loundary conditions in fluid flow sinulation:

Table F.1 shows the econony of cach scheme. All are moie e«pensive than the
Lax-WendroT method, vith the split and unsplit BOG methods being the least ex-
pensive followed by the Rnuge:-Kutta HOG inethod. The CTU and Hancock-van Leer
methods are all very expensive. The bulk of this cxpense seems to be related to mem-
ory aceess titne, which favors the Runge-Kutta type mcthod. In terms of cconomy,
the inere classe ol <plit iethod appears to be the winner.

Iy b the HOG -ty pe ethods shown hete, the superbee limiter is used to give the
laghest resolition pussible. Other linitets ate briefly discussed later in the appendix.
The split HOG method gives excellent tesults in terms of resolution and solution
symmetry (see Fig. F.12). The bridge in the slotted cylindg..r is only slightly eroded
as shown by Fig. F.13,

The unsplit HOG micthod gives poot results in teqins of solntion symimetry and
resolntion as shown in Figs. F.14 and F.15. The problemn witk the nnsplit method is
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Figure F.10: The Lax-Wendroff method solution for the rotating cone shows the
excessive dispersion ertors of this method.
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Figure F.11: The Lax-Wendrofl method solution for the rotating slotted cylinder
shows the excessive dispersion errors of this inethod.
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Figute F.12: The split HOG method solution for the rotating cone shows the high
quality of this taethod.
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Figure ¥.13: The split HOG nethod soluting for the rotating slotted cylinder shows
th~ Yir% quatity of thic n~thod



Table F.5: Minimum and maximum values after une rotation of the cone for various
limiters using the Rungz-Kutta HOG method.

Limiter Minimum | Maximum
Minmod 0.0000 0.6703
van Leer 0.0000 0.7754
Central 0.0000 0.8154
Superbee 0.0000 0.8697
Generalized Average n=2| -0.0277 0.8439

that the cross derivative terms (9’u/dxdy) are ignored. This problem has been noted
by Sinolarkiewicz [242].

The solutions computed with the CTU Godunov/HOG and CTU HOG methods
do not share this problem. Both methods have excellent symmetry qualities as shown
by Figs. F.16 and F.18. The tesolution is also quite high as can be seen in Figs. F.17
and F.19. These figures also shiow that the solutions are not monotone and also
ptoduce a great deal of high frequency but low amplitude noise. The solutions do not
differ greatly as evidenced by the figures and the data in Tables F.2 and F.3, but the
CTU BOG method is slightly noisies and less monotonic.

The Hancock-van Leer HOG meth-d has many of the same characteristics as the
CTU algorithm, but the oscillatiors are smaller and the actual resolution is improved.
These two features are evident in Figs. F.20 and F.21. This method produces the
best reproduction of the “bridge” in the slotted cylinder problem.

The Runge-Kutta 110G nethod improves on all these methods. As Figs. F.22
and F.23 demonsteate, the problems with the above methods ate cured. The solutions
is of slightly better quality than the split HOG method.

F.7T Test of Various Limiters

This section briefly discusses the performance of the HOG methods for differeat
choices of flux limiters. Tables ¥.5 and F.6 show the minimum and maximum values
for cach of the limiter for the test problems. In all cases, the Runge-Kutta HOG
method is used.

The figutes that follow show that the choice of limiter can have a profound influ-
ence on the quality of the solution. The minmaod limiter provides the lowest resolution
sccond-otder solution as is shown by Figs. F.24 and F.25. The van Leer and center
limiters are sornewhat better in resolution, bt are still noticeably less resolved than
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Figure F.14: The unsplit HOG method solution for the rotating cone shows the lack
of symmetry of this method.
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Figure F.15: The unsplit HOG method solution for the rotating slotted cylinder shows
the lack of tesolution of this method.
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Figute F.16: The CTU Godunov/HOG method solution for the rotating cone shows
the tesolution and noise of this method.



Figure F.17: The CTU Godunov/HOG methad solution for the rotating slotted cylin-
der shows the resolution and noise of this method.
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Figure F.18: The CTU HOG method solution for the rotating cone shows tiie reso-
lution and nvise of this method.
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Figure F.19: The CTU HOG method solution for the rotating slotted cylinder shaws
the resolution and noise of this method.
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Figure F.20: Tl Hancock-van Leer HOG method solution for the rotating cone shows
the resolution and reduced noise of this method
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Figute F.21: The Hancock-van Leer HOG method solution for the rotating slotted
cylinder shows the resoluticn and reduced noise of this method.
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Figure F.22: The Runge-Kutta HOG method solution for the rotating cone shows
the resolution and the lack of noise of this niethod.
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Figure F.23: The Runge-Kutta HOG method solution for the rotating slotted cylinder
shows the resolution and the lack of noise of this method.



Table F.6: Minimuim and maxiinnn values after one rotation of the slotted cylinder
for varions limiters using the Runge-hutta HOG method.
T

Limiter Minitnum | Maximum
Minmod i 0.0000 0.7635
van lect 0.0000 0.9237
Central 0.0000 0.9797
Superbee 0.0000 0.9999
Generalized Average n=2] -0.0759 1.0440

the superbee liniter. The center liniter solutions ate given in Figs. F.26 and F.27
and the van Leer limiter solutions in Figs. F.28 and F.29. The generalized average
limiter gives a mote resolved solution. Lt at the cost of symmetry and monotonicity.
These are shews. in Figs. F.30 and F.31. The supetbee limniter solutions were shown
in Figs. F.22 ani F.23.
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Figute F.24: The Runge-Kutta HOG method with the minmod limiter solu’ion for
the rotating conc shows the pour resolution of this limiter.
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Figure F.25: The Runge-Kutta HOG method with the minmod limiter solution for
the rotating slotted cylinder shows the poor resolution of this limiter.
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F.8 Closing Remarks

Of the methods discussed in this chapter, the split HOG and Runge-Kutta HOG meth-.
ods are the clear winners in terms of overall performance. The Runge-Kutta HOG
methods are especially appealing because they can be extended to higher than second-
order accuracy. This makes them important for consideration with ENO schemes or
such schemes as the PPM (122]. The Hancock-van Leer method is an imptrovement
in terms of performance and economy o' er the CTU-type methods. if a larger time
step is desired, the split scherjes seer» 0 be quite effective. For systems of equa-
tions, this topic is iy need of additionar research. Split methods seem to have some
intrinsic problems with systems [243;. Perhaps this swings the balance in favor of
Runge-Kutta-type methods, but the performance of CTU-type methods also needs
critical evaluation for systems.
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Figure F.26: The Runge-Kutta HOG method with the central limiter solution for the
rotating cone shows the resolution of this limiter is neatly on par with the superbee
limiter.
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Figure F.27: The Runge-Kutta HOG method with the central limiter solution for the
rotating slotted cylinder shows the resolution of this limiter is nearly on par wit’: the
superbee limiter.



Figure F.28: The Runge-Kutta HOG method with the van Leer limiter solution for
the rotating cone shows the better resolution of this limiter.
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Figure F.29: The Runge-Kutta HOG method with the van Leer limiter solutjon for
the rotating slotted cylinder shows the better resolution of this limiter.



Figure F.30: The Runge-Kutta HOG method with the generalized average limiter
n = 2 solution for the rotating cone shows the better resolution of this limiter, but
the non-monotonic behavior.

360



N
i
&N

v
" / ///,
)
T
R i

Figure F.31: The Runge-Kutta HOG method with the generalized average limiter
n = 2 solution for the rotating slotted cylinder shows the better resolution of this
limiter, but the non-monotonic behavior.
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