

The Design of High-Resolution Upwind Shock-Capturing Methods

 staff.

An Affirmative Action/F.qual Opporfunily Employer

[^0]
The Design of High-Resolution Upwind Shock-Capturing Methods

William Jackson Rider

Acknowledgements

Work such as this is never done in a vacuum. I wish to thank those who have heiped, inspired, guided, entertained and otherwise assisted the completion of this research. I cannot name every person who had all impact on this work, but 1 will trv.

While at Los Alamos National Laboratory, thave been blessed with the support of my superiors. The support of both Michael Cappiello, my section leader and and John lreland my group leader have made the tinely completion of this work possible. Others have also conntributed, Drs. John Turner and Mike Hall have provided patient and excellent advice from time to time when I have managed to utterly confuse myself. They also introduced me to LATEX, which has proved invaluable to me in the past several years. Dr. Susan Woodruff has provided some very educational advice along the course of our work together on several complex projects.

Through the years several teachers have given ine something extra. Their efforts have enriched my life and shown me the value of education. My second grade teacher, Mrs. Glore, showed me the joy of learning and striving to rearh one's potential. In the seventh grade one of iny teachers, Mr. Preuss, showed enough concern to provide me with some extra tutoring to improve iny awful spelling. My spelling is by no means wonderful, but I sinutter to thilsk what it might be without his efforts. Finally, my high school wrestling coacll, Scott Evans showed me what hard work and integrity could give a person. His values proved that someone could be a winner without compromising their principles.

Some credit for this work belongs to Dr. Mohammed S. EJ-Genk. It was his teaching that convinced me to go to graduate school. As my master's thesis advisor, his efforts eventually pushed me to get interested in numerical methods for fluid flow.

I would like to thank the members of my committee for their patience. For reading this horrendously long dissertation and for making as many comments as they did. A number of their suggestions bave made invaluable in improving the final form of this document. Dr. Norman Roderick, as chairman, was essential in helping me navigate the bureaucratic jungle that is UNM. Dr. Dennis Liles as my primary advisor gave me guidance whenever I asked for it and was always argreat somolime board for my ideas.

The Design of High-Resolution Upwind Shock-Capturing Methods

by
William Jackson Rider

Abstract

The design and construction of higli-resolution upwind shock-capturing methods is an effective means of solvi:ıg conservation laws of physics numerically. In the past, the design of such methods was generally categorized into several distinct methods. This work shows how these incthods canl te viewed in a unified manner. Thus, the various types of methods can more easily take ideas froll one another to improve their design.

A generalized flux-corrected trausport (FCT) algorit/ins is shown to be total variation diminishing (TVD) under some conditions. The new algorithm has improved properties from the standpoint of use and allalysis. Results show that the new FCT algorithm performs better than the older FC ('T algorithms and is comparable with other modern methods. This is shown to be especially important for systems of equations. The new fornulation allows Riemann solvers to be used effectively with FCT methods. This directly leads to a geometric antalog to symmetric TVD and FCT methods that is developed and expanded upon. This unities these methods with high-order Godunov (HOG) methods. Two new variants of this method are derived, and shown to be uniformly non-oscillatory.

Limiters are an effective mears of designing these types of methods. Earlier work by Sweby concentrated on a small set of limiters in relation to one specific difference scheme. In this research, more general classes of limniters are discussed with extensiors to a wider class of schemes. In addition, flux-corrected transport and total variation bounded (TVB) liniters are discussed, modified, aud expanded. Two new classes of limiters are described: s-limiters and generalized average limiters. The recently defined ULTIMATE limiter is analyzed within the framework of the other limiters. Some insight on the properties of this limiter is shown. The benefits of relaxing stric! constraints on the linsiters such as TVD requirements are also discussed. For coarme grids, limiters such as the TVB and the generalized average with bias improve resolution considerably. This advantage does not hold as grids are refined, because TVD-type limiters have an advantage in terms of convergence.

Lastly, the question of whether the polynonsial reconstruction technique used in

strong theoretical support of the cell-average based method, point-value reconstruction does work quite well ill pactice. This quest:ont is considered from two standpoints: the efficiency or econony of the reconstruction, and the accuracy and quality of the solution. The general behavior of the cell-average reconstruction is slightly more effective than poilt-value reconstruction if the scheme is TVD. When the scheme is not TVD, point-value reconstructions have some advantage in performance.

From the basis of the work given here, the design of high-resolution upwind shockcapturing methods can be advanced in a more unified manner. This should yield benefits for all of the methods falling into this general category.

Preface

The path which led me to this point is worth exploring before going further. My interest in umerical methods for fluid flow began as a prerefu:site for the effective modeling of heat pipes. I began by studying the work of S. V. Patankar [1] as suggested by Dr. D. V. Rao. Over time, I becaune somewhat displeased with the uature of the methods, their results, and limitations. By this time, 1 had become interested in the numerical methods for fluid flow as things unto themselves. This time cuincided with ny beginning employment at Los Alamos National Laboratory. Shortly before arriving to work at the lab. I begar: to be interested in the work of Dennis Liles [2] for modeling two-plase flows. This work is based in large part on the carlier work of Harlow and Amsden on the IC'P. inethods [3].

While investigating these methods, I canse across a book by Oran and Boris (4). The viewpoint expressed there was different than auything $\$$ had looked into before and I found the methodology intriguing to say the least. linitiaily, I was very impressed by the flux-corrected transport methods described by Oranl and Boris when compared to the classical methods I was insed to. When I tried to use these metnods on a more complex, system of equations problem. I saw a number of problems with the solutions. These observation forned the genesis of the rescarch that followed.

Soon, I began to read and attenupt to understand total variation diuminishing schemes and later high-order (iodunov methods. Both of these method types were similar to the flux-corrected transport, but their performance on systems of equations is significantly better. They sermed to have a much more appealing mathematical basis. It was seeking the auswer to the guestions: how can flux-corrected iransport be inproved? and how are flux-corrected transport, total variation diminishing and high-order Godunov methods related? that produced Chapters 5, 6 and 7.

Further work presented herr primarily centered about answering several questions about the use of high-order Godnov inethods. The ties made in Chapter 6 makes this applicab!e to the other nethod categories inentioned here. Chapters 7 and 8 expand the line of thouglit taken with the flux-corrected transport inethods and look at the problem of designing limiters for second-order high resolution schemes. Limiterz are at the core of the construction of this type of numerical method and understanuing them is essential. The last two chapters of the dissertation clean up loose ends. Chapter 9 addresses some questions in reconstruction methods for high-order Godunov methods.

This dissertation can be viewed as a skewed reflection of my own evolution in the understanding of these methods. I started by looking at FCT methods and ended up relying on HOG methods for algorithm design. The reason for this is that the Godunov-type methods are more physically and mathematically (philosophically) appealing to me. This is a matter of personal taste, but I do believe that tiney represent an effective basis for future development along a number of fronts.

The work $\mathfrak{f c : : ! a l}$ in $[5]$ has liecn accepted for publication in Communications in

Applied Numericai Methods. This work forms patt of Chaptar 8.
Fiually, the bulk of the work presented iu this dissertation has been suburitted ius the form of papers to several professional journals. References to these can be found int the bibliography $[6,7,8,9,10,11]$.

Notation

The notation used in this work regnires a short explanation.
References are denoted by square brackets. Thercfore the third reference would be seen as [3]. The references are listed in order of their use. Wisen inore than one reference is given, the first reference is the recommended one.

Equations are denoted by regular parenthesis. The fourth equation ill the sixth chapter is referenced by (6.4).

Theorems and sinilar structures will be referenced if their proofs exist in the literature. Those proven by myself will not contain a reference with their labels.

Table of Contents

Page
Acknowledgements v
Abstract vii
Preface ix
Notation xi
List of Figures xviii
List of Tables xxxiii

1. Overview 1
2. Introduction 3
2.1 Background and Motivation 3
2.2 A Mathentatical Introduction 5
2.2.1 Systenss of Hyperbolic Conservation Laws 7
2.2.2 The Rankine-Hugoniot Conditions 10
2.3 General Nunterical Philosophy 11
2.4 Applicability to Other Disciplines 13
3. Classical Methods for Conservation Laws 15
3.1 Introduction 15
3.2 Central Differencing and Artificia: Diffusion 16
3.3 Upwind Differencing Type Methods 19
3.4 The Lax-Friedrichs Mathod 20
3.5 Lax-Wendroff Type Methods 21
3.5.1 The Two-Step Lax-Wendroff Method 26
3.5.2 MacCormack's Method 26
3.6 Second-Order Upwind (Beam-Warming Method) 26
4. An Introduction to High-Resolution Upwind Shock-Capturing Meth- ods 28
4.1 Motivation 28
4.2 Introduction 29
4.3 Godunov's Method 34
4.4 High-Order Godunov Methods 39
4.4.1 MUSCL Type Schemes 39
4.4.2 ENO Type Schemes 42
1.5 T'utal Viariation Dinininshing Methods 14
1.5.1 Morlified Flux TVD Sclacuses 18
4.5.2 Symmetric 'JVI Schemes 48
4.6 Flux-Corrccted Transsport 18
4.7 The Stole of Limiters 51
4.8 'Ilae Role of Kientanas Solvars 52
5. Alt Insproved Flix Corrected Transport Algorithm: A Finite Differ- ence Formulation 53
5.1 Iutroduction 53
5.2 Mechod Developmacut 54
5.2.1 Zalesak's F'C'I Algorithm 54
5.2.2 A N', F F': Algorithu 56
5.2.3 A Modifacd-Flux F(:l' Algorithm 30
․2.4 Extension of F^{\prime} ("I' to Systoms of Eifuations 61
6. 3 Results. 63
5.3.1 Scalar Advection Equation 64
5.3.2 Burgers' Eepation 72
:.3.3 Sull's Shock Tube Problen! 77
5.1 (Coucluding Remarks 78
7. A Generalized Flux-Cotrected Transport Algorithm: A Geometric Approach 91
6.1 lintroduction 91
6.2 Method Developisciut 93
6.2.1 Review of Modern Advection Aggoritlums 93
6.2.2 Ceometric Symuctric I'VD and FC'T' Schemes 94
6.2.3 Parabolic Synumetric TVD and FCT Schemes 97
6.2.4 ViN() Symunctric TVD and FC'T Schemes 101
6.3 Results 104
6.3.1 Scalar Wave Equation 104
6.3.2 Burgers' Equation 105
6.3.3 Fiuler Fipuations 114
6.1 Conclueling Reruarks 119
8. FCT Limiters 120
7.1. Classic FCT linniters 120
7.2 Zalesak's Cicucralization 121
7.3 Results 127
7.3.1: The Scalar Wave Equation 128
7.3.2 Burgers' Ejpuation 131
7.4 Concluding Remaris 131
9. TVD and Nearly TVD Liniters 135
B. 1 Background 135
10. 2 lutroduction 13.1
8.3 Description of Lintiters 136
2.3.1 Ciencral Requirements $1: 36$
8.3.2 Nuuserical Dissipation 140
8.3.3 TVD Limiters 141
8.3.4 Nearly TVD Limiters 166
8.3.5 Ther Ul.TIMATE Linsiter 172
8.4 Results 176
8.11 The Scalar Wave Equation I7fi
8.I.2 Eurgers' Fupation 182
8.j (:ourludiug Remarks 194
11. Cell-Averages or Point. Values? On Reconstruction Methods 195
9.1 Introduction 195
9.2 High.Order Ciodunov Mrthods 196
9.3 Description of Polynomial Recomstructions 198
9.3.1 Ceil-Average Recoustruction 199
9.3.2 Point.Valuc Reconstruction 201
9.4 Results 207
9.4.1 Scalar Wave Equation 210
9.4.2 Burgers' Eguatiou 211
9.4.3 The Eisler Efuations 223
9.5 Concluding Rentarks 231
12. Conclusions and Recommendations 232
10.1 Conclusions 232
10.2 Kecommendations 234
A. Test Problems 237
A.i lutrodurison 237
A. 2 Sca!ar Wave Equation 2.37
A. 3 Burgers' Éguation 238
A. 4 The Euler Equations 238
A.4.I Sod's Problem 238
A.4.2 Lax's Problen 242
A. 5 The Vacuum Pioblem 242
A.5.1 Blast Wiave Problem 247
B. The Equations of Compressible Flow ard Riemann Solvers 253
[3.1 Int oduction 253
B.2 The Equations of Conupressible Flow 254
B. 3 Solution Algorithus 255
B.3.1 Exact Solution of the Riemann Problens 255
B.3.2 Approxinsate Riemann Solvers 257
B.3.3 A;proximate Riemann Solvers for the Scalar Wave and Burgers' Eq:ation 258
B.3.4 Naive Riculanus Solver 258
B.3.5 Lax-Friedriclis Riemanan Solver 259
B.3.6 Local Lax-liriedrichs Riemann Solver 259
B.3.7 IILI.E Riemann Solver 259
B.3.8 Roe's Rientanlı Solver 260
B.3.9 The Eugquist-Osher Solver 264
B.3.10 Flux Splitting 264
B. 4 Resible. 266
B.4.I God's Problem 267
B.4.? I.ax's Problemı 267
B.4.3 Blast Wave Problem 270
B.5 Concludiug Remarks 276
C. Extension of High Resolution Schemes to Systems of Conservation 277
C. 1 Jutroduction 277
C. 2 Preliminarios 277
(:.2.1 Lax- Wiendroff-Type Differencing 278
C.2.2 Two.Strp Fornulation 278
C.2.3 C:onnm" :nt-Wise Extension 279
(:.:) Method for Extension to Systems 280
(.. 4 Comparisous of ${ }^{\text {'ethods }}$ 283
C.4.1 Sod's Problem 283
C.4.2 Lax's Problem 288
C.4.3 Vacuum Problem 297
C.4.4 Blast Wave Problem 304
C. 5 Concluding Remarks 308
D. A More Robust Characteristic Reconstruction 310
D. 1 Mc chodology 310
D. 2 Results 310
E. Neo.Classical Upwind Type Methods 316
F. Extension ó: High Resolution Schemes to Multiple Dimensions 318
F! Introduction 318
F. 2 First.Oriler Methods in Multiple Spatial Dimensious 319
F. 3 Test Cases and Problem Setup 322
F. 4 First Order-Results 322
F. 5 High1-Resolutiou Methods 331
F.5.1 The Basic Oue-Dinnensional High-Resolution Method 331
F.5.2 High-Resolution Methods in Multiple Spatial Dineusious 333
F. 6 Results for the Secund-Order Methods 335
F. 7 Test of Various Liniters 341
F. 8 Closing Remarks 355
References 362
Curriculum Vita 379
How This Document Was Prepared 380

List of Figures

2.1 This shows a rough grumalogy for romputational finid lynantics using 川pwinel discretization methods. 6
2.2 The left and right states have m waves associated with then (4) in this 8
2.3 A pictorial representation of the domain used in the proof of the Rankine. Hugonjot condition (adapted from [18].) 11
2.4 The spacrinue grid is shown with the grid interfaces denoted by the doted lines and the computational nodes by tho: dark circles. 12
3.1 Here the three main types of errors in the solution hyperbolic initial valuc prolilems are shown: arlificial dissipation, dispersion, leading and lagging plase errors. (The exact solution is in the lighter pen and the representation of the numerical solution is in the darker prou.) 16
3.2 An interpretation of the CFL linnit sketched in the $x-\ell$ plane i point j. For an explicit calculation, information slionld not be transported more than one usesli interval front its origin of in other worls the adjaceut grid points must lie on or outside the domain of dependence ($\Delta x \geq 1 \Delta \ell)$. If waves front two different grid points are not allowed to interact, the restriction becomes twice as severe. 17
3.3 The results found using the FTCS scheme show the growth of instabil- ities and their unbounded growth. (The exact solution is in the solid pen and the numerical solution is denoted by the circles.) 18
3.4 The results found using the FTCS scheme with an artificial dissipation coefficient of 0.1 ($a=1$ and $\nu=0.5)$. 18
3.5 The solution for first-order upwind differencing shows the large amount of diffusion present with this algorithm ($a=1$ and $\nu=0.5$). 20
3.6 The solution fc. the Lax-Frierlrichs method shows the extreme amount of diffusion present with this algorithm. Also noticeable is the terracing and the sawtooth structure in the solution ($a=1$ and $\nu=0.5$). 22
3.7 The Lax-Wendroff method can be viewed geometrically as a linear interpolation of the initial data with a time centered correction (rr time averaged) to the cell edged state. If one thinks of the form of the exact solution to the scalar wave equation, $u(x, t)=u_{0}(x-a \Delta t)$, this form inakes sense. 23
3.8 Lax. Wemalrofi's method shows a sharp capture of the discontinuity, but the solntion is polluted with dispersive ripples ($a=1$ and $\nu=0.5$). 25
3.9 The Beam-Warming method shows a sharp capture of the discontinu- ity, but the solution is polluted with dispersive ripples, but the oriels- tation of the ripples is different than the Lax. Wendroff solution ($a=1$ and $\nu=0.5$). 27
4.1 The density computed witl Godunov's method using 10,000 grid points shows the general structure of the solution; however, the solution also shows significant smearing behind the contact discontiutity at $x \approx 0.6$. The peaks at $x \approx 0.65$ and $x \approx 0.80$ are clipped. $(\Delta x=0.01, \nu=$ $0.99, t=3.80$.) 30
4.2 The density computed with a second-order Codunov method using 1000 grid points shows a nearly converged solution. Much of the smear- ing and :lipping present in the first-order solution is gous. (See Wood- ward and Colella 1984 for the converged solution.) 30
4.3 In this diagram a rough classification of modern uumerical schemes is showir. S_{U} is the space of upwind methods and S_{C} is the space of centered schemes, the other terms are explained in the text. (adapted from (45, |45].) 32
4.4 The initial data is denoted by the solid line while the doted line shows the solution at some advanced time oll a periodic domain. The upper figure's solution is monotoue because the extrenia in the advanced time solution are bounded above and below by the instial data. The lower figure's solution is not monotone because new extrema exist in the solution. 33
4.5 The following steps are slown: averaging and reconstruction, solution in the small, and reaveragiug in this schematic representation of God- unov's method 36
4.6 The cases which must be considered by a remap algorithon. 38
4.7 A graphical depiction of van Leer's heuristic monotonicity constraint. For the second constraint given by Woodward the interpolation is nonotone for some time step sizes. 40
4.8 Two views of time accurate computation of cell edge values. 41
4.9 Computation of a square wave by the scalar wave equation using a HOG algorithm ($a=1$, and $\nu=0.5$). 45
4.10 Computation of a square wave by the scalar wave equation using a FCT (Zalesak) algorithm. 51
5.1 The characteristics of the FCT limiters for the modified-flux formulation. 61
5.2 Solution of the scalar advection equation with Zalesak's F('T with the high-order flux defined by second-order central differeluring. (8,
5.3 Solution of the scalar advection equation with the new FC'T with the high-order thux defined Defined by second-order central differencing. 66
5.J Solution of the scalar advection equation with Zalesak's FC'T with the lighh-order flux defined defined by Lax-Wendroff differencing. 67
5.5 Solution of the scalar advection reph...iven with the new FCT with the high-order flux defined by Lax-Weudroff differencing. 68
5.6 Solution of the scalar advection rgluation with the modified•flux FC'T ($n=1$ limiter). 69
5.7 Solution of the scalar advection equation with the modified-flux FCT ($n=2$ limiter). 70
5.8 Solution of the scalar advection equation with a symunetric TVD scheme. 71
5. 9 ('onvergence of error uorms for Burgers' equation for Zalesak's F(:'s with the high-order flux defined by Lax-Weudroff lifferencing. $7: 3$
5. 10 Cunverg'uce of error norms for Burgers' equation for Kalesak'z FCT with the high-order flux defined by fourth-order central differencing. 74
5.11 Convergence of error norms for Burgers' cypation for the new FC:T with the high-ordar flıx definel by Lax-Wendroff differenciag. 7.5
3.12 Convergence of 'rror norms for Burgers' equation for a synumetrir TVD algorithur. 76
5.13 Solution of Sod's shock tubr problem with Zalesak's F('T. 79
5.13 continued. 80
5.14 Solution of Sod's slock tube probleull with the new F('T 81
5.14 continued. 82
5.15 Solution of Sod's shock tube problenn with new HC 'I' with Roe's ap- proxiniate Rientanu solver used to define both low- and high-order fluxes. 83
5.15 continued. 84
5.16 Solution of Sod's shock tube problem with the modified-flux FCT and $n=1.5$ limiters on all fields. 85
5. 16 continued. 86
5.17 Solution of Sod's shock tube problem with a symmetric TVD algorithm. 87
5.17 continued. 88
5.18 Solution of Sod's shock tube problem with a UNO limiter and a modified- flux TVD algorithm. 89
5.18 continucel. 90
6.1 A geontetric interpretation of the Lax-Wendroff method is given. This shows how this method consists of a simple linear averaging with an "upwins" correction to give time centered flux functions. 95
6.2 The symmetric TVD schenres geonsetric analog is similar to the Lax- Wendroff ucthod, with the major difference being the limiting of the slopres. This leaves the scheme with (${ }^{\prime \prime}$ comidnuity, but not (${ }^{\circ}$ continuity. 97

Abstract

6.3 The sol:ation of the sealar wave equation by the symusetric uethod tising both a noncompressive, Q_{1}, and conspressive limiter, Q_{2}. I'lise Q_{1} (6.3a) limiter produces a solution whichs is siguificantly better than a first-urder upwind solntion, but exlibits excessive sumearing froul diffusion. The cumpressive limiter (6.3 b) shows all jnfrovement in the solution as a result of redisced diffusion. Bot? solutionss exlisit some lack of symunetry which is indicative of this inethoel.

6.4 The solution of the scalar wave equation hy the quadratic nesthod us. ing both a noncompressi:c, $Q_{4 / 3}$, and compressive linitter. $Q_{8 / 3}$. Again, the noncompressive limiter produces a solution that is dilfuscel liy coms. parison to the solution found with the compressive linnitar (6.4 b). Both solıtions have improved symmetry wheil compared with ille syınuluetric nuethod.

6.5 The sy:dumetric UNO solution shows a marked increase in the preserva.
tion of the maximunis aluc: lowever, the effects of a lack of symmetry
are also evidejut. Both solutious exlibit a leading phase error greater
than that present with the syunhetric scheme. 108

6.6 The quadratic UNO sclienie gives maxiusum values slightly greater than,
the unaximum value of the initial distribution. The learling phase erfor
present in the symntetric scheme is improved somewhat. The compres
sive linfiter gives tlie least additional resolution in this case. 109
6.7 The symmetric srlienie gives good, well-behaved convergence when the solution is smooth ($t=0.2$), but when a shock forms $(t=1.0)$, the ersor grows by about an order of magnitude and the L.a norin's rurve has a "kuee" in it iudicating a reduction ill the order of convergence.

6.8 The quarlratic scheme tas better accuracy in genseral than the sym
metric scheute, but after the shock forms the "knee," the wolution is
sombewhat more severe in nature. Por a stnall range of Δx 's the solution
actually diverges.
6.9 The symuctric UNO schenc has better accuracy than cither of the previous methods. The ronvergence after the shock in the L_{∞} Horm is worse, however.
6.10 This scheme is the most accurate of the schemes shown here. but the behavior associated with the L_{∞} norm at $\ell=1.0$ is worse. Despitur this. the solution was unore accurate in every norm than any of the uthers mellouels.
6.11 The sohution of Sod's shock tube problem by the symumetric schense is gnite good except for sonne snoca:ing near the contart discontinu- ity. The solution to the blast wave problein shows several innportaut features also related to the soneariug uf contart discontinuities leacling to the clipping of the riglit preak and the searly complete loss of the discontinnity at $X \approx 60$. The filling in of the gap between the: peaks results frums snearing ill rarefaction waves. 115
6.1" The overiall results using the quadratic schense are very sinilap to the symuluetric selienie. The resolution of the solntion is euhancerl in both cases. This is capecially noticrable at the shork in Sod's problens and in the left peak and rarefaction wave betweent the peaks in the blast wave problem 116
6.13 The sy:unsetric UNO sclucuse gives unch better resolution of contact disconsinnities as shown by both figures. The price is several oscilla- tions. Onc rall lee seen te the lef! of the contact discontinuity in Sod's problent. The resuits for the blas, wave problem are quite inipressive except for the dip to the left of the left-most contact discontinuity. 117
6.14 'The quarlratic UNO scheme seems to have the good aspects of the symmetric UNO scheme without the oscillations. For both problems, the resplution is enliaured. 118
7.1 The classic FC'T limiter is shown for $\nu=0.25$ in Fig. 7.1 la and $\nu=0.5$ in Fig. 7.1b. Both of these figures sliow that where $r^{ \pm}<1$ the limiter is very compressive, but not serond order in nature. 122
7.2 The scalar square and $\sin ^{2} x$ wave solutions using several FCT limiters with a Lax-Wendroff high-order flux. 130
7.3 The scalar square and $\sin ^{2} x$ wave solutions using several FCT limiters with a Lax-Wendroff high-order flux and upwind ${ }^{\text {i }}$ iasing. 132
8.1 The consputational stencil of the main limiter types in one dimension. Brackets indicate which points are used in evaluating local gradients. The modified flux or cell-centered limiter is centered about grid point j, the symmetric limiter is centered about cell.edge $j-\frac{1}{2}$, and the upwind-biased limiter for cell-edge $j-\frac{1}{2}$ is centered about cell $j-1$ for $a>0$. For $a<0$ it would have the same stencil as the cell.centered limitar. 138
8.2 The second-order TVD regions are shown in the shaded regions of these figures. The other lines show the limits of the TVD region for an explicit time differencing. Figure 8.2 b gives the TVD regions assunuing Q is positive definite. This agrees with the presentation given by Sweby. Figure 8.2a shows the TVD region assunning Q is not positive definite. The second-order TVD region includes the lines $Q=r$ for $0 \leq r \leq 1$ and $Q=1$ for $r \geq 1$. The lises denoted by $Q_{L W}$ and $Q_{B W}$ correspond to the Lax-Weudroff and Beam-Warıning methods. The regious lying between these curves are second-order accurate. The other "thin" lines outlite the TVD regions. Ill Fig. 8.2a this is the r-axis for $r>0$. For Fig. 8.2b this is the line $Q=-r$ for $0<r<1$ and $Q=1$ for $r>1$. .
8.3 This shows the minbar linuter. It is interesting to note that fur an
upwind-hiased cell-edge scheme this limiter gives a Beam Warinilng
scluente for $|r| \leq 1$ and a Lax-Wendroff method for $|r| \geq 1$. Figure 8.3 h
shows the thirl-order region of the plane.
8.4 Figure x.4a shows the minmod and superbee limiters. The minuod limiter gives the lower boundary and the superbee limiter gives the upper boundary of the second-order TVD region. In Fig. i.4b, van Leer's and the centered limiter are given.148

8.5 Figure 8.5a shows the liniter, Q_{n}, for $n=1.5$. The plot shown by
Fig. 8.5b looks siusilar to Fig. 8.3a, the difference is that the upper
boundary of the second-order TVD region is given by one of the two
limiters $\left(Q_{o c}=m(1,2 r)\right)$ for $r<1$ and by the other $\left(Q_{o c}=m(2, r)\right)$
for $r>1$. 149

8.6 Three of the three argument limiters are shown iicre. These are the
mismod limiter $\left(Q_{3}\right)$, the centered limiter $\left(Q_{c}\right)$, and a modified min
mod linjiter $\left(\left(Q_{1}^{\prime}\right)\right.$. The modified minmod limiter does not give TVD
results because of its form and subsequent behavior when $r^{ \pm}<0$. The
other two limiter are TVD for second-order symmetric type schemes.

8.7 Botll of these limiters use the design philosophy of the modified min
nod scheme. Figure 8.7a uses van Leer's limiter and Fig. 8.7b uses the
superbee limiter. Both are not TVD for $r^{ \pm}<0$, but also are not TVD
should $r^{ \pm}$grow sufficiently large with both being greater than I. 153
8.8 The three argument analog to the minbar limiter is shown here. 155
8.9 Here a different methodology is used to create three argument limiters. The resulting limiters ase TVD and do not suffer from the sanfe diffr- culties as the modified minbar type of limiter. The two base limiters used here are van Leer'a and the centered limiters. In practice any TVI) ewo arguurut linniter can be used in this context. 156
8.10 The limiters sliowis bere use the symanetry property discussed in the text. The linniter shown in Fig. 8.10a is analogous to the rentered limiter while Fig. 8.10b is analogous to the superbee limiter. Both are second order and TVD. Figure 8.10c giveṣ a van Leer type lintiter, which is sot TVD but works quite well in practice. 1.57
8.11 The solutions of the scalar wave equation by both these methods is shown for two test problems. In both cases, the upwind inethod pro- vides superior performance. 159
8.12 The solution to Lax's problem highlights the resolution of both shocks and contact discontinuities as well as the symmetry properties of the solution methods. 161
8.1:3 The solution to Sod's problem by both methods sliows the inproved resolution given $\mathrm{b}_{\text {; the unwind-biased scheme. }}$ 162
8.14 In the blast wave problenn, the deficiencies of both uretinols are most clearly shown. The difficulty of the problens is due to the large amount of structure coufined to a sniall physical space. 163
8.1; Here the loelatior of the discontisulity detector is the artificial com- pression algoritlun is shown for rase with both two and three argument limiters. 165
8.16 Two cases of the two argument TVB linsiter are given here. The line that grows upward along the line $Q=\frac{!}{2}(1+r)$ past $r=3$ uses $M \Delta x=$ 5 while the other line uses $m \Delta x=2$. Both are always in the second- order region of the plane. 168
8.17 The three argument TVB linsiter is shown here for $M \Delta x=2$ and $M \Delta x=5$. The larger value of $M \Delta x$ gives a larger "plateau" on the plot. 169
8.18 Two S-limiters are shown here. The upper of the two lines is for the centered limiter S_{c} while the lower is for $S_{1} . S_{1}$ is a TVD limiter. 171
8.19 The generalized average limiter is shown in these figures. Figure 8.19a gives two examples of the two argument limiter for $n=2$ and $n=3$. Neither of these limiters is TVD. Figure 8.19 b shows the $\mathrm{n}=2$ limiter for the three argument case. 173
8.20 The ULTIMATE limiter is shown in this figure without the benefit of the high-order upwind flux. The basic limiter is not TVD for explicit : me reptizations unless $C=2$. The QUICK differencing is included 1. - ur ri - rar the origin gives non-TVD results for explicit shletas. 17.5
8.21 The scalar square and $\sin ^{2} x$ wave solutions using several two argument TVD liniters. Note that the $\operatorname{SB2}$ limiter compresses the $\sin ^{2} x$ profile into a square wave. 178
8.22 The scalar square and $\sin ^{2} x$ wave solutions using several three argu- ment TVD limiters. 179
8.23 The scalar squart and $\sin ^{2} x$ wave solutions usiug several three argu- meint "prime" liniters. Note the decidedly nour-TVD belavior of the SB3P limiter. 180
8.24 The scalar square and $\sin ^{2} x$ wave solutions using artificial compression. It is notable that the solution with the two argurnent linuiters (MM2A) compresses the $\sin ^{2} x$ profile in a similar manser to the $S B 2$ 'imiter. 181
8.25 The scalar square and $\sin ^{2} x$ wave solutions using TVB linuiters. The three argument TVB limiter produces a results nearly identical to the Lax-Wendroff inethod. 183
8.26 The nod:fied three argument TVB lintiter is shown here for $M \Delta x=5$. MM3TVB' is slown in Fig. 8.26a. MM3TVB" is shown in Fig. 8.26b. 184
8.27 The scalar spluare and $\sin ^{2} x$ wave solutions using modifird three ar- gunent TVB linniters. These insprove the performanct of the three argunent TVB limiters. 185
8.28 The scalar square and $\sin ^{2} x$ wave solutions using two and three argn- neme S-limiters. 186
8.29 The scalar square and $\sin ^{2} x$ wave solutions using the generalized av- erage linniters with $n=2$. 187
8.30 The scalar square and $\sin ^{2} x$ wave solutions using the generalized av- erage limiters with $n=\mathbf{2}$ with a bias arlded as suggested in (198]. 188
9.1 The steps of Godunov's methods are shown for a highe; order polyno- mial reconstruction. The solution in the small takes place with cata that has been time centered over the doniain of dependel. $:$ of the local characteristics. 197
9.2 The reconstruction of the test functions by Godunov's method. The exact functions are given by the dashed lines. The grid on the plot denotes the computational grid. 202
9.3 The recoustruction of the test functions by a second-order HOG method with the minmod limiter. 203
9.4 The reconstruction of the test functions by a second-order HOG; method with the centered limiter. 204
9.5 The reconstruction of the test functions by a second-order HOG unetlod with the superbee limiter. 20.5
9.6 The reconstruction of the test functions by a MUSCL method with the three argument centered limiter. 206
9.7 The reconstruction of the test functions by a symmetric HOC; method with the three argument centered limiter 208
9.8 The reconstruction of the test functions by a quadratic HOC; incthod with t!e threc argument centered limiter. 209
9.9 The solntion to the scalar wave rquation by ans 』ןwisd-biased Lax- Wendroff TVD metliod. 212
9.10 The solution to the scalar wave efuation by all upwind-biased Lax- Weudrofi TVD nethod with a cell-average correction. 213
9.11 The solution to the scalai wave celuation by a symunetric HOC; method. 214
9.12 The solution to the scalar wave equation by a symmetric HOG inethod with a cell-average correction. 215
9.13 The solution to the scalar wave equation by a guadratic Taylor poly. uomial basel HOG method with a minmod limiter. 216
9.14 The solution to the scalar wave equation by a quadratic Legendre poly- nomial based HOG inethod with a minmod limiter. 217
9.15 The solution to the scalar wave equation by a guadratic Taylor poly- uonnial hased HOC; unethod with a centered linniter. 218
9.16 The solution to the scalar wave equation by a quadratic Legendre poly- nonsial based HOGi method with a centered limiter. 219
9.17 The solution to the scalar wave equation by a Taylor polynomial based classic MUSCL scheine. 220
9.18 The solution to the scalar wave equation by a Legendre polynomial based classic MUSCL scheme. 221
9.19 The density and velocity solutions to Sod's problem with a cell- average second-order HOG method. 224
9.20 The density and velority solutions to Sod's problem with an upwind- biased Lax-Wendroff TVD method. 225
9.21 The density and velocity solutions to Sod's problem with an upwind- biased Lax-Wendroff TVD method with a cell-average correction. 226
9.22 The density and velocity solutions to Sod's problem with a symmetric HOG method. 227
9.23 The density and velocity solutions to Sod's problem with a symmetric IIOG method with \& cell-average correction. 228
9.24 The density and velocity solutions to Sod's problem by a quadratic Taylor polynomial based HOC; method. 229
9.25 The density and velocity solutions to Sod's problem by a quadratic Legendre polynomial based HOC method. 230
10.1 The significance of this work is showir in relation to the rough genealozy given in Chapler 2. 253
A. 1 The exact solutions to the test problems used in the scalar wave equa- tion tests. These are the square wave, sine wave, sine squared wave and the triangle wave. 239
A. 1 continued. 240
A. 2 The exact solutions to the test problems used in the Burgers' equation tests. The figures are shown at $t=0.2$ in (a) and $t=1.0$ in (b). 241
A. 3 The exact solution for Sod's Riemann problem. Note the appearance of the rarefaction wave running from about $x \approx 30$ to $x \approx 50$, which is a smooth transition. The contact discontinuity is at about $x \approx 65$ and the shock is at $x \approx 85$. Note that the transitions between states for these two structures are sharp. The density and energy profiles show more structure than the velocity or pressure profiles because of the contact discontisuity. 243
A. 3 continued. 244
A. 4 The exact solution for Lax's Riemann problens. Note the appearance of the rarefaction wave running from about $x \approx 10$ to $x \approx 25$, which is a smooth transition. The contact discontinuity is at about $x \approx 75$ and the shock is at $\boldsymbol{x} \approx \mathbf{9 0}$. 245
A. 4 continued. 246
A. 5 The exact solution for the vacuum Riemann problent. Note the ap- pearance of the rarefaction waves running both directions from the initial discontinuity. The internal energy plot (c) shows error near the vacuum because of round off errors. 248
A. 5 continued 249
A. 6 The "exact" solution for the blast wave problem. Note the large amount of solution structure between $x \approx 60$ and $x \approx 85$. The two strong blast waves are interacting and are in the process of passing through one another. The interaction region is richly populated with contact discontinuities and shock waves. 251
A. 6 continued. 252
B. 1 A representation of the initial conditions for the Riemann Problem. 256
B. 2 The solution for Sod's sloock tube problem at $t=20$ is oblained with each of the methods discussed in this appendix. The exact solution is denoted by the solid line in each plot, and the solution obtained with Godunov's method is shown by the circles. Figure B.2a shows the solution oblained with the naive Riemann solver followed by Roe's Riemann solver (B.2b), Engquist-Osher's Riemann solver (B.2c), the HLLE Riemann solver (B.2d) and the LLF Riemann solver (B.2e). 268
B. 2 continued 269
B. 2 continated 270
B. 3 The solution for Lax's shock tube problent at $t=15$ is obtained with each of the methods discussed ill this appendix. The exact solution is denoted by the solid line in each plot, and the solution obtained with Codunuv's method is shown by the circles. Figure B.3a shows the solution obtained with the naive Riemann solve followed by Roe's Kiemanu solver (B.3b), Eugquist-Osher's Riemann solver (B.3c), the HLLE Rientanu solver (B.3d), and the LLF Riemann solver(B.3e). 271
B. 3 continued 272
B. 3 continued 273
B.4 The solutions to the blast wave problenf at $t=3.80$ are shown. The converged unnerical solution is shown by the dashed line and the solid line shows the solution obtained with the approximate Riemann solvers in conjunction with a first-order (iodunov method. Figure B.4a sloows the solutjous obtained witls the naive Riemnaun solve followed by Roe's Rieniaun solver (B.4b), the Eugquist-Osher's Riemanıs solver (B.ic), the HLLE Riemanı solver (B.Al), and the LLF Riemann solver(B.4e). 274
B. 1 continued 275
B.I contimbel 276
C.I Sod's problem computed with the claracteristic formulation with con- servative variables. In these figures, the solid line denotes the exact solution, whereas the circles denote the approximate numerical solution. 284
C. 2 Sod's problent consputed with the characteristic formulation with prim- itive variables. 285
C. 3 Sod's problem coniputed with the two-step formulation with conserva- tive variables. 286
C. 4 Sod's problenn coniputed with the two-step formulation with primitive variables. Note the sntall spikes at the end of the rarefaction waves and the post-shock spike in the velocity solution. 287
C. 5 Sod's problein computed with the component-wise formulation with conservative variables. Note the small oscillations in the velocity solu- tion between the rarefaction and shock waves. 289
C. 6 Sod's problenn computed with the componeut-wise formulation with primitive variables. Note the small oscillations in the velocity solution between the rarefaction and shock waves. 290
C. 7 Lax's problem computed with the characteristic formulation with con- servative variables. Wiith the exception of this solution. all the solutions to Lax's problem have small spikes or oscillations associated with the contact discontinuity. This is indicative of the overcompressive nature of the limiter placed on the density. The conservative characteristic formulation guards against this problem. 291
C. 8 Lax's problem computed with the characteristic formulation with prins- itive variables. Despite using a characteristic formulation, a sumall os- cillation is present with the contact discontinuity. 292
C. 9 Lax's problem computed with the two-step formulation with conserva- tive varjables. 293
C. 10 Lax's problem computed with the two-step formulation with prinnitive varjables. 294
C.II Lax's problem computed with the componcont-wise fornulation with conservative variables. 295
C. 12 Lax's problen complited with the component-wise formulaticu with conservative variables. 296
C. 13 The vacuunf problent computed witi, the characteristic formulation with conservative variables. 298
C. 14 The vacunnt problemf romputed with the claaracteristic formulation with primitive variahles. 299
C. 15 The vacuunn problem connputed with the two-step formulation with conservative variables. Tiue use of conservative variables with this flow is disastrous. The total energy has beconie negative inthe region around $X=50$. 300
C. 16 Tlie vacuun problens computed with the two-step formulation with prinitive variables. 301
C. 17 The vacuuns problens complited with the component-wise formulation witls conservative variables. The conservative variables have not guar- allteed that positive definite quantities (total ensergy) stay positive def- inite. 302
C. 18 The vacuum problein consputed with the component-wise formulation with conservative variables. 303
C. 19 The blast wave problem conspisted with the characteristic formula- tjoll witlı conservative variables. The first peak is captured very well, but the second is clipped severely. With the blast wave solution, the "exact" solution is marked by the dashed line and the approximate nunterical solution by the solid line. 05
C. 20 The blast wave problem computed with the characteristic formalation with primstive variables. Botls peaks are clipped and the contact dis- contisuity at $X \approx 60$ is sineared. 306
C. 21 The blast wave problem computed with the two-step formulatic if with conservative variables. This is similar to Fig. C.19, but the :ontact discontinuity at $X \approx 60$ is smeared significantly more. 306
C. 22 The blast wave problem computed with the two-step formulation with primitive variables. This solution is highly resolved and is of high gliality with the: :-xreption of the: overshoot of the seromel prak. 307
(..23 The blast wave prol)len computed with ilie contponent wise formula- tion with conservative variables. This solution is fairly wrll resolved. but is somewhat "ncisier" than other solutions. 307
(:.24 The blast wave problem computed with the component-wise fonnula- tion with conservative variables. This solution is very stmilar to Fig. (${ }^{\circ} .22 .309$
D. 1 The density and velority solutions to Siod's probsion using both the usual and robust reconstruction methorls 312
0). 2 The density and velocity solntions tor the vacutulu problem nsing both the usual and robust reconstruction unellads. 313
1). 3 The density and velocity solutions tor the vacuinn problem using both the usual and robust reconstruction inellads. 314
D. 4 Ohe density and velocity solutions i.c t.be blast wave problem using both the usual aud robost reconstrution inthords. 315
H., 1 The solutions for alle ner-classical monlitied llux upwind schemes on the scajar advection of a square wave ($n=1$ and $\rho=0.5$). 317
F. 2 The solntions for the ner-classical symuetric upwind schenes on thu- scalar advection of a square wave $1 a=11101 ; \cdot=: 0.5)$. 317
F. 1 A diagram showing the trace of chararteristios bark from the cell cormer of cell (i, j) with bath velocities Jpeing poritive. 321
F. 2 Initial condition alul exact solution afte, rotations for the cone prob. iem. The spike int the upper rigit haud corncr of the upper ngure is set equal to 1 and the spike in the bwor efl hand corner equal to $-\frac{1}{2}$. 323
F. 3 luitial condition anod exat solntion afic" 1 rotations for the slotted cylinder probleit. 324
F. 1 The split Godunor method solition fir the rotating cone shows the excessive diffusion "f this methund. 325
F.5 The split (iodunov uethod solution for the rotating slotted cyfinder shows the excessive liffusion of this melliod. 326
F.f The unsplit Gudinuv method solution fo: the rotating cone shows the excessive diffisiou of this urethod. 327
F. 7 The unsplit Goduncu method soluticul io alie rotating slotted cylinder shows the exressive diffusion of this met.onl. 328
F. 8 The CTU.Godunov unethod solution $f(t 1$ the rotating cone shows the excessive eljffesio: of elajs nsethor. 329
F.! The ("TU. (iodunov metliod solution for the rotating slotted cylinder shows the excessive diffusion of this met "ont. 330
F. 10 The Lax. Wendroff method solntion for the rotating cone shows the excessive disfucrsion errors of this methur: 337
F.ll The Lax-Wendrof inethod solution for the rotating slottel cylinder shows the excessive dispersion errors of this method. 338
F. 12 The split HOG method solution for the rotating cone shows the high quality of this method. 339
F. 13 The split HOC; method solution for the rotating slotted cylinder sliows the high quality of this method. 340
F. 14 The unsplit 110 (; method solution for the rotating colne shows the lack of synumetry of this method. 342
F. 15 The unsplit 11OG method solution for the rotating slotted cylinder shows the lack of resolution of this method. 343
F. 16 The CTU Ciodninov/HOC; inctiod solntion for the rotating conce shows the resolution and noise of this method. 344
F. 17 The CTU (Godunov/HOG method solution for the rotating slotted cylinder shows the resolution and noise of this method. 34.5
F. 18 The CTU HOG inethod solution for the rotating cone shows the reso- lution and noise of this method. 346
F. 19 The CTU HOG nethod solution for the rotating slotted cylinder shows the resolution and noise of this method. 347
F. 20 The Hancock-van Leer $\|$ OG method solution for the potatiug cone slows the resolution and reduced noise of this method 348
F. 21 The Hancock-van Leer HOC; inethod solution for the rotating slotted cylinder shows the resolution and reduced noise of this method. 349
F. 22 The Runge-Kutta IIOC; nethod solution for the rotating cone shows the resolution and the lack of noise of this method. 350
F. 23 The Runge-Kutta IIOG inethod solution for the rotating slotted cylin- der shows the resolution and the lack of noise of this unethod. 3.51
F. 24 The Runge-Kutia $H O C$ method with the minmod liniter solution for the rotating cone shows the poor resolution of this limiter. 353
F. 25 The Runge. Kutta HOC; method with the minnod limiter solution for the rotating slotted cylinder shows the poor resolution of this limiter. 354
F. 26 The Runge-Kutta HOG method with the central limiter solution for the rotating cone shows the resolution of this limiter is nearly oll par with the superbce liniter. 356
F. 27 The Runge-Kutta HOG method with the central limiter solution for the rotating slotted cylinder shows the resolution of this linuiter is nearly on par with the superbee liniter. 357
F. 28 The Runge.Kuta HOG method with the van Leer limiter solution ior the rotating cone shows the better resolution of this limiter. 358
F. 29 The Runge-Kutta HOC; method with the van Leer limiter solution for the rotating slotted cylinder shows the better resolution of this limiter. 3.5
F. 30 The Runge-Kutta HOG method with the generalized average limiter I = $\mathbf{2}$ solution for the rotating cour shows the better resolution of this limiter, but the non-monotonic belavior.360F. 31 The Runge-Kutta HOG method with the gencralized average limiter$n=2$ solution for the rotating slotted cylinder shows the better reso-lution of this limiter, but the non-monotonic behavior. 361

List of Tables

6.1 Order of accuracy in several norms for the schemes solving Burgers' equation when the solution is smooth. 105
6.2 Order of accuracy in several norms for the schemes solving Burgers' equation when the solution contains a shock 114
7.1 Abbreviations for the methods used in this study. 128
7.2 L_{1} error norms with ininimum and maximum values for the square wave problem. 129
$7.3 L_{1}$ error norms with mininuman and maxinsum values for the $\sin ^{2} 2$ wave problem. 129
7.4 Numerical viscosity aud total variation for both scalar wave equation probleuss. 131
7.5 Order of convergence in several error hornis for Burgers' equation at $t=0.2$ when the solution is sinooth. 133
7.6 Order of convergence in several error norms for Burgers' equation at $t=0.2$ when the solution lias a shock in it 133
8. ()rior of an ruracy in several norms for the schemes solving Burg.rs' equation. 158
8.2 Itbreviatious for the methords used in this study. 177
$8.3 l_{1}$ error norins with minimuin and maximum values for the square wave problenn. 189
8.4 L_{1} error norms with ininimum and maximum values for the sinl ${ }^{2}$ wave problem. 190
8.5 Nunterical viscosity and total variation for both scalar wave equation problenis. 191
8.6 Order of convergence is several error norms for Burgers' equation at $t=0.2$ whens the solution is surocth. 192
8.7 Order of convergence its several error norms for Burgers' equation at $t=0.2$ when the solution has a shock in it. 193
9.1 The type of scheme produced for various values of κ with the MISCL recolustruction. 200
9.2 The type of scheme produced for various values of κ with, the quiadratir. HOK ; reconstruction. 207
9.3 Sum of nurierical viscous flux for the scalar wave rquation test prails- lems at $\ell=250.0$. 210
9.4 Maximum profile values for the scalar wave equation test prohleuns at $t=250.0$. -11
9.5 Tl - order ot . .nvergence in several norms for various schemes for Burg- ers equation at $t=0.2$ when the solution is sunooth. 222
9.6 The onder of onvergence in reveral norns for various schemes for Burg. ers' equation at $t=1.0$ when the solution has a shock. 222
9.7 L_{1} nurtis fol density and velocity in Sod's problem, including times for recoustristiun for each solution. 223
C. 1 Abbreviations for the methods used in this study. 283
C. 2 The i_{1} error noriss for earli scheme ou Sod's problein 288
C. 3 The L_{1} crror norms for eacla scheme on Lax's problem 297
C. 4 The L_{1} error norms for each scheme on the Vacuum problem 304
C. 5 The times for the blast wave solution computation using each method 308
F. 1 Computer time used for the solution of a problem using each method through six rotations (C:FT I. 14 oll a Cray X-MP4/16 with a CTSS operating systern). 331
F. 2 Minimum and maximum values after one rotation of the cone using all the methods. 332
F. 3 Mi, insum and maxinum values after one rotation of the slotted cylin- der using all the methods. 332
F. 4 CFL limits for all the methods. 336
F. 5 Minimun. al.d maximum values after one rotation of the cone for var- ious limiters using the Runge-Kutia HOC method. 341
F. 6 Minimum and maximum values after one rotation of the slotted cylin- der for various limiters using the Runge-Kutta HOC method. 3.2

Chapter 1.

Overview

> Although a meal call be enjoyed without understanding the process of digestion, numerical methods should be both understood and enjoyed. This requirement is not merely the whim of a tidy inind, for a inethod once understoud cat often be improved with litte effort. J. J. Monaghan [12]

The topic of this dissertation is the design of high-resolution upwind shock capturing methods. By high-resolution I mean that the method is capable of resolving various fine detail features of the solution field without resorting to an excessively fine grid. Hpwind makes refcrence to the method's use of the mathematical/physical structure of the solution field, and the governing equations in constructing the numerical inethod. Finally, the adjective shock-capturing clarifies the type of method developed. Some methods track discontinuities or shocks in the solutions ficld and essentially use these tracked features as internal boundaries. Shock-capturing methods do not do this, and "capture" discontinuities without modification of the method used throughout the solution field.

The next three chapters give a brief introduction to these topics. The first of these three chapters gives background and motivational information regarding the study of this topic. Classical shock-capturing methods are the topic of the second of these chapters. These classical methods provide the foundation for the work that follows. The third and final introductory chapter gives an introduction to modern high.resolution shock-capturing methods, and the categories they fall into.

Following this introduction, 1 introduce the topic of method design. This begins with the method known as flux-corrected tra .sport (FCT). The FCT method is known to have cettain pathological problems, and this chapter addresses this matter in a systematic fashion. Through this analysis it becomes clear that the FCT is more intinately related to other modern methods, most notably syinmetric total variation disninishing ('TVD) methods. This relation is expanded upon and exploited in improving the FCT method's performance. In the chapter that follows, the combined FCT/Symmetric 'IV1) methods are related more closely to high-order Ciodunov (HOG) methods. The IIOG methods are a philosophically satisfying means of defining high- resolution upwind shock-capturing methods because the process is divided into two parts: reconstruction (interpolation) and evolution (upwinding). This decoupling of the method development allows one to concentrate on one or the other feature. From this, unity of the methods is demonstrated, and new, improved methods can be derived.

The two rhapters following this unification of the methods disruss the construction
of limiters. Limiters are the means through which modern methods are differentiated front classical methods. Their construction is the most important portion of method design, and has a profound impact on a method's performance. Pait studies of limiters have been narrowly focused, and these chapters are aimed at broadening this view. Finally, a chapter on some basics of the reconstruction step are discussed with a critical view takell of current practices.

In the appendices a number of more practical asperts of extending these methods to systerns of equations are discussed.

Chapter 2.
 Introduction

Uf a good beginning concth a good end. John Heywood

2.1 Background and Motivation

Recently, several articles have appeared highlighting the importance of nuinerical approximation of conservation laws frous both a theoretical and practical stand. point [|3. 11]. High quality numerical approxinations to conservation laws are neccossary in a muntber of colleavors as noted at the emil of his chapter. Numerical work is also becouning increasingly important for theuretical studies. In a very real scnse, uumerical experimentation is becouning a third major thrust of science along side experimental and theoretical work.

This chapter gives an introsue:ion to the subject of inmerical approximations t: hyperbolic conservation laws (H(I...s). It covers the basis and motiv.ition for the stud;' of the subject and provide a brief introduction to some of the important theoretical concepts in Section 2.2. Also, the basic philosophy us. \boldsymbol{d} is developing uumerical algorithms to solve these sorts of equations is presented in Section 2.3. A number of applications of the accurate solution to IICLs is presented in Section 2.4. I'his serve to underline the importance of this subject to a wide sange of :-ientific pursuits.
'The primary motivation for pursuing any subject is to aerl: understanding. In a number of diverse fields, a similar process is responsible for a rich variety of physicial (or mathematical) behavior. The role of transport of some quantidy like maes, energy, particles. sound, wave packets etc.) can be thoughts of to twe at the heart of most physical processes (the last section of this chapter containy a bonger aure detailed list). These physical systems can all be charactetined at a simple level by the same. model efuation,

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0 \tag{2.1}
\end{equation*}
$$

where u is the transported quantity and $f(u)$ is the flux dunction lu: this quantaly. In mathematical terms, this is a hyperbolic equation if $\delta / / a \mathrm{y} u=$ real numbe:. This equation describes the transport and conservation of u in the $x-t$ plasic. In gesueral, this equation can represent a system of equations as well. In that cave, u and $f(u)$ are vectors. Section 2.2 .1 covers this subject in more detail. Thus, (2.1) sepresents the basic for of a HCL.

The solution of the above equation exists in closed form for only a few simple, idealized rasess thus sorner approximations must be misale to solve it in the gerneral casse.

If the approxinations are sulficjently detailed and accurate, the solutions found can exhilit, the wide range of nonliusorr behavior and rich phenomena found in nature. As is discussed later, good approximations ran also lead to the discovery and/or claritication of plysijcal plyencincuia [15. 16].

A uumber of detailed references oll these subjects exist in the literature. On the basics of IIC: sis somue of the rccommended references are Lax [17, 18], Smoller [19], Lanlan aud Lifshist [20], Mihalas aml Mihalas [21], 1)uderstade and Martin [22], Chorin and Marselen [23], Anderson [2:1] and Courant and Friedrichs [25]. These refepences present the inaterial in a readable informative manner, although they vary ill empliasis and difficulty: All of these references are biased in the direction of fluid flow (except Duderstadt alll Martits). but consideriug that that is the most common application, this is understaudable.

From the prescutations fomul in both Mihalas and Mihalas and Duderstade and Martin it call be scou that fluid cguations can be viewed as continuum extensions of the Boltzınaun trausport ecpuation (via a Chapman. Einskog expansion or similas procedure). The Boltzmann trausport expuation has a form that is very similar to (2.1) [26. 27]

$$
\begin{equation*}
\frac{\partial) f}{\partial t}+u \cdot \nabla f=S_{\text {coll }} \tag{2.2}
\end{equation*}
$$

where f is a time dependent distrilution function, $f(\mathrm{r}, \mathrm{u}, \ell)$, in position and velocity space. $S_{\text {coll }}$ is a scatteriug keruel that 1 ignore. In fact, with $S_{\text {coll }}$ set to zero, the equation is the multidiumensional equivalent to (2.1) with constant velocity by setting $\rho=f$. Additionally, the diffusive terins in the full set of equations (Navier-Stokes) can be viewed similarly. This "transjort" viewpoint has been an active area of research in hyprerbolic heat conduction [28, 29]. Silnilar lines of thought can be found in radiation transport in the passage from a transport to diffusive approximation to the Boltrimann transport equation [22].

Remark 1 The solution collisionless to the Boltzmann equation is explored in some depth by Harten, lax and van Leer [90] with relation to the general solution ef HCLs. This has specific application to a method known as fluz splitting which is covered in sonic detail in Appendiz B.

The numerical solution of equations of this sort (for continuum approximations) call be fo :nd ift a number of sources as well. The most basic and perhaps elegant source is Richtmyer and Morton's book [31] which contains much of the basic theory to support classical methods of solution. The history of computational fluid dynamics (C'F'D) is presented in Roactic [32], Potter [33] as well as Anderson, Tannebill and Pletcher [34]. Roache contains a complete account of the early development of CPD and a large number of references. More recent developments are covered in several texts: Oran and Boris [4], Hirsch [35, 36] and Fletcher [37, 38]. The text by Oran and Burin in cespurially reronumended as an introduction to the entire subject of numerical
solution of complex physical problems as well as HCLs. A book by Sod [39] contains a good deal of mathematical theory. Recently, LeVeque has released some lecture notes in the form of imonograph [40]. This work is highly recommended as an introduction to conservation laws from both a liathematical and numerical perspective. In addition to these books. a number of survey papers have appeared in recent years; these include [41. 42, 43, 44, 45. 46. 47, 48]. An interesting survey of methods has been done in relation to nonlincar acoustics of rocket engines [49] as an extension of the review by Baum and Levine [50]. This survey underlines the point that fewer and fewer approximations are necessary in the analysis of physical systems because of the power of modern hardware and algorit!:ms.

Figure 2.1 shows the rough family tree for the development of upwind (explained later) approximations to (2.1). Beginning with the work of Richardson [51] on the soiution for stress in dams and moving on to the paper on partial differential equation by Courant. Friedrichs and Lewy (52] this subject had its genesis Von Neumann and Richtmyer [53] introduced artificial viscosity which was followed shortly by two methods that did not introduce numerical dissipation artificially [54, 55], but did through the nature of the finite difference equations. The beginuings of more powerful methods for solving HCLs can be found in several papers by Godunov [56, 57] and Lax and Wendroff's famous paper [58]. These papers lead to several seminal works by Boris and Book (59) and van Leer (60) who were the first to rerognize the importance of nonlinearity in difference schemes. These two papers were at the root of a large set of work in the last twelve years highlighted by the work of Harten [61], Zaleakk [62], Roc $[63]$ and a group of researchers at UCLA $[6-1,65,66]$ where the earlicr work was clarified and extended. It is the construction of these approximations that is the subject this research topic.

2.2 A Mathematical Introduction

Consiker the same equation as above

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0 \tag{2.3a}
\end{equation*}
$$

which is a first-order hyperbolic transport equation for u and as before f is the flux of u. Equation (2.3a) can be written as

$$
\begin{equation*}
\frac{\partial u}{\partial l}+a \frac{\partial u}{\partial x}=0 \tag{2.3b}
\end{equation*}
$$

where the flux Jacobian is defined by

$$
a=\frac{\partial f}{\partial u} .
$$

Figure 2.1: This shows a rough genealogy for computational Aluid dynamice using upwind discretization methods.

If the characteristic speed, a, is constant for all x, then an exact solution exists for (2.3b). This solution is

$$
\begin{equation*}
u(x, t)=u_{0}(x-a l), \tag{2.4}
\end{equation*}
$$

where $u_{0}(x)=u(x, 0)$ is the initial condition. This defines the scalar wave (Kriess) equation. For a more general prescription of f a closed form solution does not exist.

2.2.1 Systems of Hyperbolic Conservation Laws

A system of m conservation hyperbolic laws can be similasly defined; however, the behavior which it describes is considerably more complex. Consider

$$
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F(U)}{\partial x}=0, \tag{2.5a}
\end{equation*}
$$

which is a set of hyperboiic conservation laws where U is a column vector $\left(u^{1}, u^{2}, \ldots, u^{m}\right)^{T}$ of conserved quantities and F is a column vector $\left(f^{1}, \Omega^{2}, \ldots, f^{m}\right)^{T}$ of fluxes of U. Equation (2.5a) can be written as

$$
\begin{equation*}
\frac{\partial U}{\partial t}+A \frac{\partial U}{\partial x}=0 . \tag{2.5b}
\end{equation*}
$$

where

$$
A=\frac{\partial F}{\partial U}=\left[\begin{array}{ccc}
\partial f^{\prime} / \partial u^{l} & \ldots & \partial f^{\prime} / \partial u^{m} \\
\vdots & \ddots & \vdots \\
\partial f^{m} / \partial u^{l} & \ldots & \partial f^{m} / \partial u^{m}
\end{array}\right]
$$

The matrix A is the flux Jacobian for the system defined by (2.5b).
In general, equations of the type considered above can develop discontinuous solutions evell when the initial data is smooth. Because of this, the solutions ase not urique. To rectify this, the admissible solutions must satisfy an entropy condition (for details on this see [17,18, 19, 40) see [67) for a simple introduction). It is the formation of discontinuities in the solution that causes the difficulties for finite-difference solutions of (2.3b). At these discontinuities, the function ceases to be smooth, and the usual assumptions made in constructing finite. difference approximations collapse. As a result, more physical information needs to be incorporated into the solution procedure.

The system of equations is classified as hyperbolic if all the eigenvalues of A are real [30]. Thesere cigenvalues λ_{k} can be arranged in the order of increasing magnitude, thus

$$
\lambda_{1}<\lambda_{2} \ldots<\lambda_{k}<\ldots \lambda_{m-1}<\lambda_{m} .
$$

Lax [18] has defined entropy conditions for hyperbolic equations and systerms. Given

Figure 2.2: The left and right states have m waves associated with them (4) in this case and $m-1$ constant states between them for $t>0$.
two states u_{R} and u_{L} at $\ell:=0$ (in one spatial dimension), which exist to the right and left of a discontinuity respectively, the admissible speed of the discontinuity must atisfy this inequality

$$
\begin{equation*}
\lambda\left(u_{L}\right)>s>\lambda\left(u_{R}\right), \tag{2.6a}
\end{equation*}
$$

where s is the speed of the disrontinuity. For systems this condition is

$$
\begin{equation*}
\lambda_{k}\left(u_{L}\right)>s>\lambda_{k}\left(u_{R}\right) \tag{2.6b}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{k-1}\left(u_{L}\right)<s<\lambda_{k+1}\left(u_{R}\right) . \tag{2.6c}
\end{equation*}
$$

These conditions form an entropy condition for systems. Stated in other terms, this means that the entropy must either remain constant or increase in a system. An increase in entropy occurs across discontinuities. These conditions must be met for a solution to the system to be physical in nature. Menikoff and Plohr [68] explore more genoral cases. In some cases especially near phase transitions, the isentropes of the system fail to be convex thu: causing physical solutions to violate Lax's conditions.

Lax also states that for a system of m equations, m - 1 constar t states exist between the left and right states at $1>0$ (sce Fig. 2.2). These states can be separated by rasefaction or shock waves or contact discontinuities. A rarefaction is a smocth expansive transition, while a shock is a sharp sudden change where the flow is discontinuous. A contact discontinuity is like a shock, but some quantities may be continuous across it.

An additional manner of characterizing systems (or equations) of HCLs is to analyze the structure of the eigenvalues. Lax $[69,17,18]$ defines an eigenvalue as
being linearly degenerate if

$$
\begin{equation*}
\frac{\partial \lambda_{k}}{\partial U} \cdot \mathbf{r}_{k}=0 \tag{2.7a}
\end{equation*}
$$

and as gemuiuely nouliuear if

$$
\begin{equation*}
\frac{\partial \lambda_{k}}{\partial U} \cdot r_{k} \neq 0 \tag{2.7b}
\end{equation*}
$$

where r_{k} is the $k^{\text {th }}$ right eigenvector. An exanple of a linearly degenerate eigenvalue is the characteristic speed in the scalar wave equation $\left(\lambda_{1}=a, \partial a / \partial u=0\right.$, and $r_{1}=1$). A genuincly noulineal cigeuvalue can be found in Burger's equation ($\lambda_{1}=$ $u, \partial u / \partial u=1$, and $r_{1}=1$). These equations call thus serve as inodels for the behavior of these types of waves in more complex equation(s). In the Eul-r equations (discussed in detail in Appendix B) the cigenvalues associated with somud waves are genuinely monlinear while the cigenvalue(s) associated with fluid motion is lincarly degenerate. A shock is associated with genuinely nonlinear eigenvalues while a contact discontinuity is associated with linearly degenerate eigenvalues. A shork in this sort of systent is referred to as a k-shock and a rarefaction as a k-rarefaction. For contact discontinuities, the above relations nust be modified to read

$$
\begin{equation*}
\lambda\left(u_{L}\right)=s=\lambda\left(u_{R}\right) . \tag{2.8}
\end{equation*}
$$

thus the flow speed remains constant across the contact discontinuity.

Remark 2 .Systems of conservation laws which are not strictly hyperbolic (70) has been the subjec. of intense research lately. This is a topic of theorelical and practical interest which has direct application to three-phase flow in porous incdia which form a twa equation system of conservation lawe in one dimension. The numerical solution of such systems is following suit and benefiting greatly from the recent increase in theoretical understanding. Another related area that could benefit from some theorrtical/numerical work is two-phase flow (71, 72). The application of numerical methods so two-phase flow has a number of striking similarities to mulliphase flow in porous media.

These equations admit discontinuous solutions thus requiring that the solution converge in a weak rather than a strong sense. By a weak solution I mean that solutions satisfy (2.1) in the sense of distributions [30, 19], i.e.,

$$
\begin{equation*}
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[\frac{\partial \phi}{\partial t} u+\frac{\partial \phi}{\partial x} u\right] d x d t+\int_{-\infty}^{\infty} \phi(x, 0) u_{0}(x) d x=0 \tag{2.9}
\end{equation*}
$$

for all ('x test functions $\phi(x, t)$ with compact support.
Thie alove statement can be reformulated to give as form useful for the cunstruction
of difference schemes. Integrating (2.1) over the rectangle $\left(x_{0}, x_{1}\right) \times\left(t_{0}, t_{1}\right)$ gives

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} u\left(x, t_{1}\right) d x-\int_{x_{0}}^{x_{1}} u\left(x, t_{0}\right) d x+\int_{t_{0}}^{1_{1}} f\left(11\left(x_{1}, t\right)\right) d t-\int_{t_{0}}^{1_{1}} f\left(u\left(x_{0}, t\right)\right) d t=0 . \tag{2.10}
\end{equation*}
$$

Thus where the solutior is smooth, (2.1) holds, but across curves of discontinuity, the Rallkise-Hugoniot condition holds as

$$
\begin{equation*}
s\left(u_{R}-u_{L}\right)=f\left(u_{R}\right)-f\left(u_{L}\right) \tag{2.11}
\end{equation*}
$$

where s is the speed of the discontinuity and u_{R} and u_{L} are the states to the left and right of the discontinuity, respectively. For numerical work the above statement is quite profound. The solutions are conserved cell-averages rather than point-values and thu fluxes are time averages of ilse flux at the cell boundaries. These definitions are convenient for use with finite volume discretizations.

It is well known that the weak solutions to (2.1) are not unique. To find the correct solutions, an additional condition must be met. This type of condition is ksowis as an entropy condition after the physical quantity of the same name [17, 18]. IfI [73], it was shown that entropy satisfying solutions of (2.1) are limiting solutions to a parabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=\epsilon \frac{\partial^{2} u}{\partial x^{2}} \tag{2.12}
\end{equation*}
$$

with $e>0$ and the limit being taken as $e \downarrow 0$. This connection is explored at some length in Chapter 8.

2.2.2 The Rankine-Hugoniot Conditions

The Rankinc.-Hugoniot conditions are eapecially important to the theory of conservation laws whe:I solutions are discontinuous. Several elegant proofs are available in the literature. One is found in [18]. Referring to Fig. 2.3 and defining

$$
\begin{equation*}
U(t)=\int_{0}^{t} u(x, t) d x=\int_{0}^{v} u(x, t) d x+\int_{v}^{t} u(x, t) d x, \tag{2.13a}
\end{equation*}
$$

differentiating with respect to time, and using the governing equation (2.1) one gets

$$
\begin{equation*}
\frac{d U}{d t}=\int_{0}^{y} \frac{\partial u}{\partial t} d x+u_{L} s+\int_{v}^{b} \frac{\partial u}{\partial t} d x+u_{R} s \tag{2.13b}
\end{equation*}
$$

where u_{L} and u_{R} are the states to the left and right of the curve of discontinuity $x=y(l)$ and $s=d y / d t$. Using $\partial u / \partial t=-\partial f / \partial x$ and arrying out the integration one gets

$$
\begin{equation*}
\frac{d U}{d t}=f_{0}-f_{L}+u_{L} s-f_{\Delta}+f_{R}-u_{R} s \tag{2.13r}
\end{equation*}
$$

Figure 2.3: A pictorial representation of the domain used in the proof of the RankineHugoniol condition (adapted from [18].)
with the conservation law stating that

$$
\begin{equation*}
\frac{d U}{d t}=f_{0}-f_{0}, \tag{2.13d}
\end{equation*}
$$

then

$$
\begin{equation*}
s[u]=[\Omega] \tag{2.13e}
\end{equation*}
$$

where $[u]=u_{R}-u_{L}$ and $[J]=\int_{R}-\int_{L}$. In [23] another proof is given

2.3 General Numerical Philosophy

This section covers the basic philosophy used in the numerical approximation of HULas. The methods discussed here can all be classified as finite difference or finite volume type methods (74]. Because of Lax and Wendrofi's theorem [58] concerning the nature of solutions to HOls, the equations are always difference in conservation form.

Theorem 1 (Lax and Wendrofi (58]) If a difference equation is in conservation form and is consistent with the original conservation lav as well as stable, it converges to a weak solution of that conservation law.

With this form, the solutions converge to solutions which satisfy the Rankine- Ilugoniot conditions. Conservation form implies that quantities are conserved numerically, as they are physically, thus when a domain is subdivided into a set of subdomains (control volumes), the amount of material exiting one subdomain exactly enters the subdomain adjacent through a common interface.

Figurc 2.1: The spacetime grid is shown with the grid interfaces denoted by the dotted lines and the computational nodes by the dark circles.

These schemes call be expressed in the following form,

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\sigma\left(f_{,+1}-j_{,-\frac{1}{}}\right)=0, \tag{2.14a}
\end{equation*}
$$

in one dimension where $\sigma=\Delta l / \Delta x$, or more generally

$$
\begin{equation*}
u_{j}^{n+1}=1_{j}^{n}-\frac{\Delta t}{V,} \sum_{k}^{N} A_{k} f_{k}=0 . \tag{2.14b}
\end{equation*}
$$

for a homogeneous governing equation. Here j refers to the index of a control volume, n to the time level (see Fig. 2.4), and \dot{f} is the numerical flux. In the general c:se V, is the cell volume, A_{k} is the area of a face of that volume with a total of N faces (sides) to a volume. The above equations can also be written in a semi-discrete form

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{1}{V,} \sum_{k}^{N} A_{k} f_{k}=0 \tag{2.14c}
\end{equation*}
$$

The determination of the numerical fluxes, f is at the heart of the subject. To insure that the solutions are consistent then

$$
\begin{equation*}
\dot{f}(u, u, \ldots, u)=f(u) \tag{2.15}
\end{equation*}
$$

Given this condition with the stability of the overall solution procedure implies the convergence of the scheme by the Lax equivalence theorem [31, 67].

Theorem 2 (Lax equivalence theorem) Given a well-posed initial value problem and a corresponding numerical approximation that is consistent, then stability is a neressary and suffirient condition for (equivalent to) convengence.

Unfortunately, this theorem can only be applied to the linear types of schemes like those described in Chapter 3. Nevertheless, this throrem is important and can be used to analyze linear methods that are the building blocks of more advanced methods.

As a measure of the accuracy of the solution, 1 use the Taylor series to act as a measure. This meang that if a method is stated to be $r^{1 h}$ order accurate, the leading term in the truncatiol. error is $\mathcal{O}\left(\Delta x^{r+1}\right)$. Later, the problems associated with this are discussed. In general, the general Taylor series driven difference approximations are used in favor oi a polynomial approximation driven approximations (although Taylor series are often used to measure the polynomial's accuracy). This is inotivated by the course of recent developineuts in numerical algorithms for solving HCLs. One caveat with the use of Taylor series based measures of accuracy is that discontinuities make the concept of accuracy somewhat meaningless at those points.

The accuracy of solutions can also be measured in terms of norms. The three most commonly used norms are the L_{1}, L_{2} and L_{∞} (also known as the maximum) norms. These are defined by

$$
\begin{gather*}
L_{1}=\sum_{j}^{N} \frac{\left|e_{j}\right|}{N}, \tag{2.16a}\\
L_{2}=\left(\sum_{j}^{N} \frac{e_{j}^{2}}{N}\right)^{\frac{1}{2}}, \tag{2.16b}\\
L_{\infty}=\sup \left(\left|e_{j}\right|\right), \tag{2.16c}
\end{gather*}
$$

where

$$
e_{,}=U_{x}^{\text {crect }}-U_{j}^{\text {appoos. }},
$$

given an exact solution. Although this gives a quantitative measure of algorithm performance, the qualitative measure of performance is also generously wed. These two means of measure should provide a complementary means of determining solution qualities.

2.4 Applicability to Other Disciplines

The successful solution HCLs is vital to a large number of endeavors. This general problem is present in any system where fluid flow is present (with the exception of Stokes flow or subsonic potential flow, but these represent simplifications of the actual physical :-stem). Thus the range of applicability is quite large. The methods discussed in the next chapter have heen found to be useful in the solution of acrodynamic flows $[43,45,36,75$) where they are currently widely used. These methods (the modern advection solution algorithms) are also finding use in turbulence modeling. The process of large.eddy simulation [76] involves the solution of fluid equations with only the laige (kinctir energy carrying) structures lecing reanded. Recruty, it has
been proposed that modern advection algorithms (sec ('hapter li) could setve as a turbulener model [77, 78, 79)].

Methorls of a modern type are also finding use in the solution of inconupressible flows (the flows aloove ure primarily rompressible). Tlie solutioll of this typer of problem is largely dominated by first-order schemes [1]. bint recrutly second and third order uethods have leecome nore widely used [80]. leronard [81, 82, 83. . 8.1] has developed a scheme hascil on his QUlC' k ' sclimene, which has a great deal in common with sonse other tiodern algorithnis. This method or one like it has the: pronise of greatly improving codes currently used to colupute a varicty of industrial flows. (Dther workers have also applied other modern methods to more classical incompressible flow solvers [$85.86,87$].
'The solution of these equations is also very useful in astrophysical fluid dynamsics [88, 89, 78, 90, 91, 92]. The plysical systems in astrophysics place severe deluands olt munerical methods [27], and the methods must be carefully designed to compute solutions with needed accuracy. Oiher flows of a geophysical nature are ainenable to morlern approaches to solving alvection (46, 93. 94).

I'se solution of wave equations is important in applications which use a fully l.agrangian formulation [95]. In these methods, the grid flows with the fluid thus leaving only sound waves explicitly in the equation set. The solution of this sort of system is amenable to similar methodology as other wave equations. The Lagrangian formulation often rids the problem of the linearly degenerate eigenvalue(s) (they go to zero), but still leaves genuinely nonlinear eigenvalues in the set. Thus the primary approxination problem still exists.

As inentioned earlier, the hyperbolic heat conduction problem is open to numerical solution by methods applicable to IICLs. The quality of the solution is significantly enhanced through the use of modern algorithms [96]. Also mentioned earlier was the work of Brio and Wu [15], which solved the MIID equations. Using modern algorithms new phenomena were discovered, which may have been validated by observations [16]. Also along these lines is the solution of problems in electromagnetism by methods developud for compressible acrodynamics [97, 98] with promising results.

Several uses in nuclear engineering applications requiring thermal hydraulic analysis can be found in $[99,100,101]$. These methods are also showing a great deal of use in the modeling of solid dynamics under severe physical conditions [102] where the solid behaves in a fluid-like manner. Additional applications can be found in reservoir modeling $\{103,104,105]$ with implications to petroleum recovery.

In the next chapter I explore some of the clacsical numerical methods for solving conservation laws and the problems associated with them.

[^1]
Chapter 3.

Classical Methods for Conservation Laws

Abstract

The present contains nothing more than the past and what is found in the effect was already in the cause. Hrnri Bergeon

3.1 Introduction

In this chapter, several of the most important classical methods for solving IICLs is covered. These incthods although outdated by modern standards still comprise the backbone of most modern methods, and contain some of the essential concepts for the successful design of numerical schemes. This chapter discusses the basic construction of these methods. their stability and other pertinent properties.

Erroro in the numerical solution of hyperbolic problems are generally classified as being of either a damping or a dispersive variety. As is seen below, a useful numerical scheme must contain some minimal amount of dissipation to remain stable and produce physical solutions. This dissipation damps out error which would otherwise grow in an unbounded fashion, but it also devtroys many features of the flow field. Lack of sufficient damping results in dispersive errors that can cause unphysical maxima and nuinima to be created in the sojution by the numerical scheme.

Phase errors result in information being transported at a numerical velocity below or above the true velocity of this information. These errors are depicted in Fig. 3.1. Typically, VonNeumann stability analysis $[31,4,35,37]$ is used to analyze these errors. The process consists of replacing the dependent variables by fourier series, $e^{i j m 0}$, defining the new time value of the variable to be equal to Fourier scries at the old time multiplied by a function A or the amplification factor, in general

$$
\begin{equation*}
u_{j}^{n+1}=g\left(u_{k}^{n}, u_{k}^{n+1}\right) \Rightarrow A e^{i J m \theta}=g\left(e^{i k m \theta}, A e^{i k m \theta}\right) . \tag{3.1}
\end{equation*}
$$

Generally, the expression of A is a combination of real and imaginary trigonometric terms and is transformed to extract useful information. This is accomplished by separating the functional form of \boldsymbol{A} into two pieces: an amplification factor and a phase angle.

$$
\begin{equation*}
A(k 0)=|G| c^{c \phi} \tag{3.2}
\end{equation*}
$$

where G is the magnitude of A and $\phi=\tan ^{-1} \ln (A) / \operatorname{Re}(A)$ is the phase angle. For stability, ($;$ inust be less than or ergual to one for all $k \theta$, but this implies damping. Small valyos of rimply excessi.e damping. For the scalar wave remation. the rexart

Figure 3.1: Here the three main types of errors in the solution hyperbolic initial valur problems arc shown: artificial dissipation, dispersion, leading and lagging phase errors. (The exact solution is in the lighte: pen and the representation of the numerical solution is in the darker pen.)
plase speed is known' so that the ratio of this to the numerical phase speed can be takro. If this quautity is less that one the error is lagging, if it is greater than one the efror is leading (see Fig. 3.1). These errors have a spectrum of values which can have a large range of values.

All the methods discussed in this chapter are explicit in nature and are thus limited by a stability condition (some multiple of the Courant-Friedrichs-Lewy (CFL) [52] number). This number, $\nu=|a| \Delta t / \Delta x$, is a dimensionless value which describes the proportion of the domain of dependence covered during a time step (see Fig. 3.2). These methods are: the central difference method with or without artificial diffusion, upwind differencing, the Lax-Friedrichs method, the Lax-Wendroff method, and the Brail. Warming scheme or second-order upwind diferencing.

3.2 Central Differencing and Artificial Diffusion

The simplest type of numerical scheme seems to be a very natural manner to deal with the hyperbolic equation. This method deals with approximating the first derivative of the flux function with a centered spatial difference which has second-order accuracy and marching explicitly in time and is known as the forward time-centered space (FTCS) scheme. This method can be written

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\frac{\sigma}{2}\left(f_{j+1}^{n}-f_{j-1}^{n}\right) . \tag{3.3}
\end{equation*}
$$

[^2]

Figure 3.2: An intel pretation of the CFL limit sh:etched in the $x-\ell$ plane for point j. For an explicit calculation, information shoulc not be transported more than one mesh interval from its origin or in other words the adjacent grid points must lie on or outside the domain of dependence $(\Delta x \geq a \Delta l)$. If waves from two different grid points are not allowed to interact, the restriction becomes twice as severe.
where $\sigma=\Delta t / d x$ for uniform grid spacing. I his is equivalent to saying that the cell edged fluxes are the aritlunctic mean of the neighboring grid points or taking the fluxes to be a linear interpolation of the initial data. Thus the numerical flux functions are

$$
\begin{equation*}
\dot{f}_{j+\frac{1}{2}}^{n}=\frac{1}{2}\left(f_{1}^{n}+\int_{j+1}^{n}\right) \tag{3.4}
\end{equation*}
$$

Unfortunately, this method can be shown to be unconditionally unstable, with errors growing in an urbounded manner. This behavior can be seen in Fig. 3.3 plotted after 20 time steps showirg the impending disaster.

Through the addition of artificial dissipation [53, 31] this solution method can be resurrected to some degrec. This requires the addition of a term on the right hand side of the equation which arts in the same fashion as physical dissipation. The coefficient is somewhat arbitrary, but too little dissipation results in a more stable, but low quality solution. Too much diffusion ${ }^{2}$ can either result in destroying some or all of the fea ures of the solution or causing a new instability because of the stability restriction implied by the explicit diffusion equation. Results using the PTCS scheme with artificial dissipation are shown in Fig. 3.4. The dissipation has largely cured the instability, hut now the solution exhibits a large leading phase error. Smarter forms of artificial viscosity are used (see Jameson [106] for example) with acceptable performance, but the methords are always somewhat ad hoc in nature [107].

[^3]

Figure 3.3: The results found using the FTTCS schenve slow the growth of instabilities and their unbounded growth. (The exact solution is in the solid pen and the numerical solution is denoted by the circles.)

Figure 3.4: The results found using the FTCS scheme with an artificial dissipation rueffricult of 0.1 ($a=1$ and $\nu=0.5$).

3.3 Upwind Differencing Type Methods

The behavior discussed in the last sertion is clearly unacceptable although useful computations can be performed using artificial diffusion brcause it does converge to the correct solution [108]. In [54] a new more physically based approximation is described. This :nethod forins the basis for a large class of modern numerical Inethods in Chapter 4 (see Fig. 2.1).

This method is first-order accurate in both time and space, and takes the direction of the wave propagation in the problem into account when computing the cell-edge fluxes. There are several ways to derive this approximation, which all have relative advantages. Typically, thir scheme can be derived with a first-order Taylor series approximation which is biased by the direction of the flow locally. This results in a difference scheme for (2.1) like

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\sigma a\left(u_{j}^{n}-u_{j-1}^{n}\right), \tag{3.5}
\end{equation*}
$$

where $a>0$, this can also be written i:s conservation form by stating

$$
\dot{f}_{j+\frac{1}{j}}=a u_{j}^{n} .
$$

Another way to write the cell.edge fluxes is (109)

$$
\begin{equation*}
j_{j+1}=\frac{1}{2}\left[f_{j+1}^{n}+f_{j}^{n}-|a|\left(u_{j+1}^{n}-u_{j}^{n}\right)\right], \tag{3.6}
\end{equation*}
$$

where $j_{j}^{n}=a u_{j}^{n}$. This form is advantageous because it shows the magnitude of the diffusion associated with the spatial differencing. For the upwind differencing, the numerical diffusion coefficient is

$$
\begin{equation*}
\text { dovind }=|a| \frac{\Delta x}{2} . \tag{3.7a}
\end{equation*}
$$

The effective induced viscosity is

$$
\begin{equation*}
d^{p r o v e d}=\frac{|a| \Delta x}{2}(1-\nu), \tag{3.7b}
\end{equation*}
$$

which reflects the fact that the upwind differencing recovers the exact solution to the scalar wave equation if $\nu=1$ (30). This term can be determined from the comparison of upwind differencing with the FCTS scherne agsuming the Lax. Wendroff scheme has zero diffusion (not a particularly good asumption).

Remark 3 The first term for the numerical diffusion is related to the form of the diffusion operator present in the determination of a cell edge numerical flur. It is formally defined as the difference between the a second-order central difference ap.

Figurc 3.5: The solution for first-order upwind differenciug shows the large ankunst of diffusion present with this algorithon ($a=1$ and $\nu=0.5$).
prozimation and the numerical fluz in a giten scheme. The effective induced viscosily 1.s from the numerical error of the scheme and is the coefficient on the serond onder spatial term.

Remark 4 inother way to derive this schenic is to assume that each computational cell is inlerpolated by a pierewise constant prafile with the numerical fluses being based on thas reconstruction. Where u is rhanging, the profile is discontinuous at the cell edges and a solution can be found by solving a local Riemann problem (56). This is the basic concept in Ciodunov's method. For the scalar wave inuation this resulte in a scheme identical to the one presented above.

Figure 3.5 shows the results of using first-order upwinding. The solution's peak is severely rlipperl and the profile is diffused both in front of and in back of the exact solution. It should also be noted that the solution remains positive definite throughont the computational domain.

3.4 The Lax-Friedrichs Method

The l.ax.Friedrichs [5.5] (sometimes Lax's) method was derived as an answer to the ilistability of the: forward-time centered-space (F'TCS) algorithin. It has the following
form,

$$
\begin{equation*}
u_{j}^{n+1}=\frac{1}{2}\left(u_{j-1}^{n}+u_{j+1}^{n}\right)-\sigma a\left(u_{j+1}^{n}-u_{j-1}^{n}\right) . \tag{3.8}
\end{equation*}
$$

which can be rewritten in conservation form as,

$$
\begin{equation*}
\dot{f}_{j+\frac{1}{2}}=\frac{1}{2}\left[f_{j+1}^{n}+f_{j}^{n}-\frac{1}{\sigma}\left(u_{j+1}^{n}-u_{j}^{n}\right)\right] . \tag{3.9}
\end{equation*}
$$

Looking at the forms of Lax's method and upwinding one can see that the diffusion portion of the fiux is always greater than or equal to that found in upwinding. Thus this method has a larger amount of diffusion associated with it than the upwind differenced method. The numerical diffusion is

$$
\begin{equation*}
d^{L F}=\frac{\Delta x}{2 \sigma} \tag{3.10a}
\end{equation*}
$$

and again the effective induced viscoaity is

$$
\begin{equation*}
d^{L F}=\frac{\Delta x}{2 \sigma}(1-\nu) . \tag{3.10b}
\end{equation*}
$$

because this method also produces an exact solution for $\nu=1$ (see Remark 3).
Figure 3.6 shows the solution obtained with this method, although the solution is positive definite, there are several disturbing features to the solution. One is the terracing of the solution, which gives way to a sawtooth-like structure at the peak of the solution. This is due to the algorithms form which does not require the participation of the information for the $j^{\text {th }}$ cell at time step n for the solution of the $n+1$ time step of that cell.

Remark 5 Interpreted geometrically, the Las. Friedrichs method is a sort of an "ultraupvind" method because the solution is over buased (a coefficient grater than one) in the upwind direction. In recent years, the Las-Friedrichs method has been wsed with a slight variation. The magnitude of the discipation in the finx is set to the absolute value of the largest local characteristic speed. For a scalar wave equation, this is identical to the upwind method, but for systems of equations this is much different (this is discussed in more detail in Appendis B).

3.5 Lax-Wendroff Type Methcds

The Lax-Wendrof: method [58] is the canonical classical second-order method. This method produces second-order solutions, but with spurious oscillations near discontinuities, thus raising the possibility of producing negative values of positive definite values such as density or pressure. From the standpoint of algorithmic description, geometric depiction is particularly useful. Normally, the method of Lax. Wendroff is

Figure 3.6: The solution for the Lax-Friedrichs method shows the extreme amount of diffision present with this algorithm. Also noticeable is the terracing and the sawtooth structure in the solution ($a=1$ and $\nu=0.5$).
desrribed as a finite-difference algorithm; however, it also can be described geometrically. Figure 3.7 gives a qualitative description of the method.

It is well known that the second-order central difference scheme with forward Euler time differeucing is unconditionally unstable. This can be easily verified with VonNeumann stability analysis, but I procced from a different standpoint. This is motivated by the desire to have a more heuristic explanation for this well-known phenomenon. First, some nomenclature needs to be introduced. The flux functions for difference schemes are functions of the dependent variables and can be written in terms of interpolating polynomials. Thus, given a piecewise polynomial, $P,(x)$, the flux functions can be written

$$
\begin{equation*}
f_{1}(u)=f\left[P_{j}(x)\right] \tag{3.11}
\end{equation*}
$$

With this definition, the problem reduces to approximating the dependent variables on a grid and computing the value of the interpolant at cell edges.

Returning to the second-order central difference, it can be written as a piecewise

Figure 3.7: The Lax. Wendroff method can be viewed geometrically as a linear interpolation of the initial data with a time centered correction (oi time averaged) to the cell edged state. If one thinks of the form of the exact solution to the scalar wave equation, $u(x, l)=u_{0}(x-a \Delta l)$, th: form makes rense.
polynomial on the interval $\left\{x,-\frac{1}{y}, x,+\frac{1}{2}\right]$ and has the form
where

$$
\begin{equation*}
s_{,-\frac{1}{2}}=\frac{u_{j}-u_{j-1}}{x_{j}-x_{j-1}} \text { and } s_{j+\frac{1}{2}}=\frac{u_{j+1}-u_{j}}{x_{j+1}-x_{j}} \tag{3.12b}
\end{equation*}
$$

This functional form is both C^{0} and C^{1} continuous. Evaluating the flux function at $r_{,-\frac{1}{2}}$ and $x_{1+\frac{1}{2}}$, the second-order central difference scheme is recovered. This functional form takes absolutely no consideration of the disection of the flow in the problem in finding the numerical flux furctions. Perhaps this is a more paiatable physically based explanation for the unconditional instahility. The method produces spirious oscillations because the solutions computed with these flux functions can lie outside the given values of u.

By considering the fluid metion and in a Lagrangian sense computing the tirrecentered cell edge positions, which is for the right hand side cell edge

$$
\begin{equation*}
x_{r, j}=x_{j+\frac{1}{2}}-\frac{a \Delta t}{2} . \tag{3.13n}
\end{equation*}
$$

and for the left hand side cell edge

$$
\begin{equation*}
x_{l, j}=x_{,-\frac{1}{2}}-\frac{a \Delta t}{2} . \tag{3.13b}
\end{equation*}
$$

luserting these eximessions into the second-order central difference polynomials gives the Lax- Wendroff scheme (for a scalar equation). This method is stable for $\lambda a \leq$ 1. but still produces spurious oscillations. This stability is solely the result of an "upwiud" centered apt -oximation, which now is dependent on the flow direction rather than completely centered in a spatial sense.

Remark e This differs from the aicount of the Lax-Wendroff method given by LerV. eque (40) that requires the direction of the fow to br known in order to define the interpolation.

The original Lax-Wendrof inethod [58] uses a second-order accurate Taylor series approximation in tine to stabilize the FTCS method. The original derivation was based around the following ideas: given a second-order Taylor series in time

$$
\begin{equation*}
u(t+\Delta t)=u(l)+\left.\frac{\partial u}{\partial t}\right|_{1}+\left.\frac{\partial^{2} u}{\partial t^{2}}\right|_{1}+\mathcal{O}\left(\Delta t^{3}\right) \tag{3.14a}
\end{equation*}
$$

and making substitutions for the time derivatives defines the method. Using the iollowing relations

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{\partial f}{\partial x} . \tag{3.14b}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\frac{\partial}{\partial t}\left(-\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial t}\left(-a \frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(-a \frac{\partial u}{\partial t}\right)=\frac{\partial}{\partial x}\left(a \frac{\partial f}{\partial x}\right), \tag{3.14c}
\end{equation*}
$$

gives the final form

$$
\begin{equation*}
u(l+\Delta l)=u(l)-\left.\frac{\partial f}{\partial x}\right|_{1}+\left.\frac{\partial}{\partial x}\left(a \frac{\partial f}{\partial x}\right)\right|_{:}+\mathcal{O}\left(\Delta t^{3}\right) \tag{3.14d}
\end{equation*}
$$

or

$$
\begin{equation*}
u(t+\Delta t)=u(t)-\left.\frac{\partial f}{\partial x}\right|_{1}+\left.\frac{\partial}{\partial x}\left(a^{2} \frac{\partial u}{\partial x}\right)\right|_{t}+O\left(\Delta t^{3}\right) . \tag{3.14e}
\end{equation*}
$$

The derivatives are all approximated with central differences. The numerical flux functions can be writteri (110)

$$
\begin{equation*}
\dot{f}_{+\frac{1}{2}}=\frac{1}{2}\left[\left(f_{\rho}+f_{,+1}\right)-\sigma a^{2}\left(u_{j+1}-u,\right)\right] . \tag{3.1:1}
\end{equation*}
$$

Figure 3.8: Lax-Wendrofi's method shows a sharp caplure of the discontinuity, but the solution is polluted with dispersive ripples ($a=1$ and $\nu=0.5$).
which shows that the numerical diffusion coefficient ascociated with this method is

$$
\begin{equation*}
d^{L W}=\frac{\sigma a^{2} \Delta x}{2} \tag{3.16a}
\end{equation*}
$$

or an effective induced viscosity of

$$
\begin{equation*}
d^{L W}=0 . \tag{3.16b}
\end{equation*}
$$

Again. as with the past two methods, the Lax. Wendroff method reproduces the exact solution when used on the scalar wave equation and $\nu=1$ (ser Remark 3). These results do not suggest that this is always possible in the general case; however, they do suggest that the CFL number should be maximized to the extent possible for quality solutions.

The solution found with this algorithm is shown in Fig. 3.8. It shows a sharp location of the discontinuity, but the solution shows a great amount of diapersion and negative values. These values may not be physical as discussed easlier and are aesthetically unappealing. There is also a fairly significant amount of numerical diffusion associated with the fronts. Typically, the Lax-Wersdroff method is augmented with artificial diffusion to combat ripples (111. 112).

3.5.1 The Two-Step Lax-Wendroff Method

The Lax-Wendroff method has been reformulated as a two step incthod, first by Richturyer [113] and then by Burstein [114). It can be written as follows,

$$
\begin{equation*}
u_{j+\frac{1}{2}}^{n+\frac{1}{2}}=\frac{1}{2}\left(u_{j}^{n}+u_{j+1}^{n}\right)-\frac{1}{2} \sigma a\left(u_{j+1}^{n}-u_{j}^{n}\right), \tag{3.17a}
\end{equation*}
$$

and a second step

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\sigma a\left(u_{j+\frac{1}{2}}^{n+\frac{1}{2}}-u_{j-\frac{1}{2}}^{n+\frac{k}{2}}\right) . \tag{3.17b}
\end{equation*}
$$

This form is already in conservation form. This method is equivalent to the original l.ax. Wirudroff method for a scalar equation (proven through simple backsubstitutiont). This fornulation has been useful in simplifying the implementation of the Lax. Hienilroff method on systems of equations. It may be useful to consider this form (or soniething sinilar) in future method development.

3.5.2 MacCormack's Method

MarCormack's method [115] is another derivative of Lax-Wendroff's method and produces similar results. The form of the solution algorithm is as follows,

$$
\begin{equation*}
\dot{u}_{j}=u_{j}^{n}-\lambda a\left(u_{j+1}^{n}-u_{j}^{n}\right), \tag{3.18a}
\end{equation*}
$$

and a second step

$$
\begin{equation*}
u_{j}^{n+1}=\frac{1}{2}\left[u_{j}^{n}+\dot{u}_{j}-\lambda a\left(\dot{u}_{j}-\hat{u}_{j-1}\right)\right] . \tag{3.18b}
\end{equation*}
$$

In this form, the Lax. Wendroff method appears to ber a predictor.corrector method. This inethod has been particulatly important in aerodynamic application where it has found widespread isse.

3.6 Second-Order Upwind (Beam-Warming Method)

One clasgical cure for the problems of the Lax. Wendroff method is to make a secondorder scheme with an upwind bianed stencill. Using the form (3.12a), this scheme can be defined by selting

$$
\begin{equation*}
s_{j+\xi}=\frac{u_{j}-u_{j-1}}{x_{j+1}-x_{j}}, \tag{3.19a}
\end{equation*}
$$

if $a>0$ and

$$
\begin{equation*}
s_{\jmath+\frac{1}{2}}=\frac{u_{j+2}-u_{\jmath+1}}{x_{j+1}-x_{j}}, \tag{3.19b}
\end{equation*}
$$

[^4]

Figure 3.9: The Beam-Warming method shows a sharp capture of the discontinuity, but the solution is polluted with dispersive ripples, but the orientation of the ripples is different than the Lax-Wendroff solution ($a=1$ and $\nu=0.5$).
if $a<0$. With time-centered differencing this is the Beam.Warming scheme [116]. The solution of the teat problem is shown in Fig. 3.9.

The methods discussed in this chapter do not cover all "classical" CFD methods, but represent the most commonly used. The concepts presented above also represent the basic means through which modern methods are based. The met hods discuseed in this :nxpt:r are linear. Linea:ity is expressed in the application of the finite difference stencil to the governing differential equations. In all the clasgical methods, the stencil is identical for all grid points. The importance of this will become clear shortly.

In the following chapter 1 describe the basics of high resolution upwind methods for conservation laws. Rather than a fixed finite difference stencil, the methods introduced in the next chapler use adaptive stencils that change as the fow changes. The methods of this chapler are laid as the forandation for what follows.

Chapter 4.

An Introduction to High-Resolution Upwind Shock-Capturing Methods

l.inearity breeds contempt. Peter Las

4.1 Motivation

I's start the discission of high-order inethods in CFD for solving IICl.s, I thought a guick motivational introduction is uceded. The first modern method discussed in detail liere is that of Goolunov [56,57], which is at the root of inost recent methods (we Fig. 2.1). One might believe that using a high (fuality method like Godunov's woukl do the job (if inore detail is needed, use more grid points). To illustrate why higher order methods are worth exploring, I make use of a test problem used by Woodward and Colella [44]. This is an interacting blast wave problem described in more detail in Appendix A.

In a one-dimensional domain, the density is set to unity everywhere with the fluid at rest, the left most ten percent of domain has pressure set to 1000 , the right most 10 percent has a pressure of 100 , and the rest of the domain set to 0.01 with $\gamma=1.4$. Two very strong shocks form and eventually interact forming a combination of shock waves, contact discontinuities and rarefactions. This turns out to be a very stringent test of a numerical metho,d and it is very difficult to resolve all the phenomena involved.

Figures 4.1 and 4.2 show the results for density using Godunov's method (Sec. tion 4.3) and a second-order Godunov (Section 4.4) method respectively. The first order Godunov's method uses 5 times the computer memory and 35 times the com puter time to solve the problem yet the second-order solution is of much better quality and is closer to the \cdot onverged solution'. This point has been raised in [89], in a simulation of hydrodyn;mic phenomena in the 1987A supernova. The cost and complexity of the partial parabolic methof (PPM) they used allowed the resolution of phenomena in their simulation. With other methods the solutions could not be attempted berause of limitations on computer memory. It should be pointed out that as the dinuensionality of the problem increases, the advantage of high resolution methods

[^5]increases. Things like adaptive griding could also improve matters considerably although a combination of adaptivity and high resolution appears to work best (117).

Remark 7 The use sf 10 times as many grd points t.iplies through the action of the CFL stability criterion that 10 times a:s many time sisps be used for a given calculation. This equals 100 times as many orid points times time sieps, zhich in turn indicates that the high onder method is abont three times as expensive as Godunov's method on a per grid point per time step basie. From the perspective of performetce, at 15 times the resolution the high resolution method is 5 times cheaper per grid point per time step. If these resul!s are applied to multidimensicial problems, the differences become more profound.

4.2 Introduction

The work of Godunov [56) has led to many strikiug advances in the numerical solution of (2.1). The unique nature of Godunov's work was recognized by van Leer (118). In a seriass of papers, he $[119,120,60$) spearheaded the modern developinent of HOG algorithms. Godunov's method and van leer's extensions use polynomial representations of the conserved variables in each grid cell in the process of computing the solution. These piecewise polynomials can be disesntinuous at gid cell interfaces and as such require some closure relations at these interfaces to compute the numerical fluxes. This closure uses the local solution to a Riemann problem (Appendix B) though either an "exact" [41, 50, 121, 122, 123, 124] or an approximate (125, 126, 63, 127, 128) Riemann solver.

Colella and Woodward [122] advanerd the method developed by van Leer in their PPM. This method is still considered a premier nethod for computing the solutions to (2.1) [129]. Several theoretical advances have been made as well as the more practical ones. Harten's theory of TVD schemes (130, 61! (Section 4.5) made greal strides toward understanding the t'icoretical properties of methods like van Leer's and those discussed lp:low.

Several different varieties of TVD methods have been developed: the modified flux formulation due to Harten and seversi symmetric TVD sechemes. Roe introduced the synumetric fo:m of TVD scheme [131]. Sweby [132] and Davis [133] also presented methods of the same general form. These were all derived as a Lar-Wendroff method augmented with a nonlinear upwind biased dissipation term. Yee [134] christened these schemes as symmetric TVD schemes in her paper. The general form of symmetric TVD schemes can be viewed in different ways: as an advanced form of artificial diffusion, and as a Lax-Wendroff [58] with ar additional dissipative flux to ensure a TVD solution. Along other lines, Goodman and leVesque [135] took a geometric view similar to van (eer's work in deriving a '|V1) methoul.

Figure 4.1: The density computed with Godunov's method using 10,000 grid points shows the general structure of the solution: however, the solution also shows significant smearing behind :he contact discontinuity at $x \approx 0.6$. The peaks at $x \approx 0.65$ and $x \approx 0.80$ are clipped. ($\Delta x=0.01, \nu=0.99, t=3.80$.)

Figure 4.2: The density computed with a second-order Godunov method using 1000 reid points shows a nearly converged solution. Much of the smearing and clipping i seant in the first-order solution is gone. (See Woodward and Colella 1984 for the ronerergent onhtion.)

A linitation of these methods is that they are limited to first-order accuracy in the maxillum error norm. This is due to the action of the flux or slope limiter used in arsuring the TVD ;uality of the solutions. To increase the accuracy of this sort of nethod. more elaborate numerical algorithms have been developed in the past few years. Among these are the uniformly non oscillatory (UNO) scheme of llarten and Osher [136]. which is second- order accurate in all norms. Fissentially non-oscillatory (ENO) methods are described in a series of papers [64, 137, 65, 66], where these ideas have been extended to arbitrarily high order: of accuracy (Section 4.4.2). These ideas are also making their way into multidimensional algorithms [138, 139].

Another modern advection algorithm also can be viewed along these lines. Perhaps the first modern algorithm to recognize the necessity of nonlinearity in the difference scheme was the F'CT method as introduced by Boris and Book [59] (Section 4.6). This method was developed with the recognition of the theorem of Godunov,

Theorem 3 (Godunov [56]) No monotone numerical algorithm for solving (2.1) can be both linear and second-order accurate.

This does uot preclude the possibility of producing a "monotone" second-order scherne, but situply state that such a method cannot be linear in nature. Thus the FCT is lesigued as a nonlinear blending of high- and low-order numerical fluxes, which ensures the lack of dispersive ripples. In a series of papers [59, 140, 141, 142, 62] this inethorl has been revised and extended.

Digressing slightly, there appears to be a schism in the literature between the TVD, IIOCi and F.NO type methods and the FCT methods. Authors doing research on each method usually mention the other methods, but the syiergism ends there. It is often stated in the FCT literature that the TVD type methods require Riemann solvers and as such are horrendously complex in comparison to FCT. It is my cuntention that this is simply not true. Underlying each method is a scheme for scalar advection, which is at the gencsis of more complex development. In extending the methods to systems of equations, the TVD type methorls use Riemann solvers, which have many exceptional theoretical and res:hetic appeals. The extension of FCT, on-the-other-hand, is usually extended in what seems an ad hoc or naive (see Section B.3.4) fornulation [1.43, 1.44].

Borrowing from [45] one can sort of "see" how various schernes are related pictorially. This is done in Fig. 4.3. If one imagines some sort of space of schernes with monotone schemes, S_{M} being the most reatrictive and the space of all transport schemes, S_{T} encompasing all methods. The various methods can be seen as a set of overlapping spaces. The space of all TVD methods is $S_{T V D} \cup S_{M}$ and ENO schernes are tine union of the TVD space and that labeled $S_{\text {ENO }}$.

Recently. I have thought a lot about the philowophy related to the design of high rexhlithill whilles and I believe these philomphies call be classified as follows:

Figure 1.3: In this diagram a rough classification of modern muncrical schemes is showil. S_{U} is the space of upwind uncthods and S_{C} is the space of centered schemes, the other terms are explained in the text. (adapted froill [45, 1.45].)

1. Artificial Viscosity: There are those that believe that the high-orier scherves are simply fancy artificial diffusion piescriptions. This is largely a product of the TVD-Lax. Wendroff [133, 131, 132\} and the symmetric TVD [134] methods.
2. Hybridization: The FCT [59, 140, 141, 142, 62] and Hybrid (146] methods are nost easily classified as combinations of first- and higher-order classic schemes.
3. Mathematical Theory: Harten [130, 61] and Harten et. al [64] have produced a mathematical framework which is useful in producing rigorous proofs and bounds on the behavior of these schemes (TVD) and a vague generalization to lesu restrictive schernes (FNO).
4. Interpolation and Advection: This was given by van leer [120,147] (based on the work of Godunov) and ilic:n extended in PPM. The method seems somewhat heuristic in nature, although it works well. TVD theory aids and expands this train of thought. which works well for conceptualization of the schemes. The ENO algorithms extend this view to a broader class of methods, but at this point do not include the breadth of possible methods. In a recent paper, llarten brings the: arguments of semi-Lagrangian method [1|2] into the arena of high-resolution methods. This should be clarified by the fact that unlike those inethods used in meteorological $[148,149]$ flow by $v \leq 1$. Despite this kind of different viewpoint, the results are generally similar, although the meteorolog. ical schemes are not conservative in nature. Thus they are not appealing for computations of discontinuous solutions.

At some point, these various approaches should be equivalent, which would result in an increased synergism between methods and casp of analysis.

Remark 8 In (149) it was noted that van loeer began lmoking at semi-Lagrangian methods carly in has studirs, but dropped them from camsideciulion because of their

Figure 4.4: The initial data is denoted by thr solid line while the dotted line shows the solution at some advanced time on a periodic domain. The upper figure's solution is monotone because the extrema in the advanced time solution are bounded above and below by the initial data. The lower figure's solution is not monotone because new extrema exist in the solution.
lack of conservation.

A key concept in this entire discussion is that of monotone convection ${ }^{2}$. This means that the solution is a physical solution for physical initial data and that it does not create new extrema in the solution. I'his is depicted graphically in Fig. 4.4.

Definition 1 (Monotone Numerical Advection [151]) Monotone numerical advection is defined by a scheme which is a combination of coefficients of the local data which are all positivc. Consistency requires 'hat some conservation principle be enforced i.e. the coefficients sum to one. This also means that the numerical scheme docs not introduce new extrema inta the solution.

For the remainder of the presentation, the following nomenclature is used: $\Delta_{j+\frac{1}{2}} u=$ $u_{j+1}-u_{j}$. A conservative finite-difference sclution to (2.1) using a simple forward Luler time discretization s

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\sigma\left(\dot{f}_{i+\frac{1}{2}}^{r}-\dot{f}_{j-\frac{1}{2}}^{n}\right) . \tag{4.1}
\end{equation*}
$$

[^6]The ternporal spacing is Δt and Δx is the spatial mesh spacing. The superseript n refers to time, $t, n+l$ refers to the time $t+\Delta t$, and the subscript j refers to space with j being a rell reuter and $j \pm \frac{1}{2}$ being the cell edges. The construction of the nummerical fluxes $\dot{f}_{, \pm \frac{1}{2}}$ is at the heart of this subject. The cell edge flux can be defined as

$$
\begin{equation*}
\dot{f}_{,+\frac{1}{2}}=\frac{1}{2}\left(f_{2}+f_{,+1}\right)+\phi_{,+\frac{1}{2}} \tag{4.2n}
\end{equation*}
$$

where ϕ is a n.merical dissipatiouterin. For a system of equations the flux is written

$$
\begin{equation*}
\dot{F}_{,+\frac{1}{2}}=\frac{1}{2}\left(F,+F_{1+1}\right)+\Phi_{1+1} \tag{4.2b}
\end{equation*}
$$

where F and Φ are vectors, but are defined similarly to the single equation case. For instance, the first-order donor.cell flux can be written

$$
\begin{equation*}
j_{,+\frac{1}{2}}^{D C}=\frac{1}{2}\left(f_{1}+f_{,+i}-\left|a_{,+\frac{1}{2}}\right| \Delta_{,+\frac{1}{2}} u\right) \tag{4.3}
\end{equation*}
$$

thus

$$
\phi_{j+\frac{1}{2}}^{d^{2} c}=-\frac{1}{2}\left|a_{j+\frac{1}{j}}\right| \Delta_{j+\frac{1}{2}} .
$$

Remark 9 When numerical schemes become nonlinear in nature and/or are applied to nonlinear probleins, standard means of analysis are not typically valid. New approaches to method analynis have been developed, but are not as mature as classical methods. l.e Veque (40) gives an overview of this topic. Afuch of the modern analyois is based on "compensated compratness" as used by DiPerna (152, 153) in his proofs of conrergence. Nonlinear dynamics may also yield uscful means of analysis (154].

4.3 Godunov's Method

I have already visited Ciodunov's method in the Section 3.3. For a single scalar equation this is simply the upwind method described there. For nonlinear problems this is not so straightforward. The key point in constructing a Godunov method is to use some sort of Riemann solver. Another consideration is entropy satiofaction of the solution [155]. This gencrally means that the solution muat contain sufficient numerical viscosity to insure physical solutions.

The following algorithm gives a general outline for Godunov type methods.

Algorithm 1 (Godunov's Method)

1. (Initialization Step) Average the initial distribution over the computational cells

$$
\begin{equation*}
u_{j}^{0}=\frac{1}{\Delta, x} \int_{z,-\Delta, z / 2}^{s,+\Delta, z / 2} u(x) d x . \tag{4.4a}
\end{equation*}
$$

2. (Reconstruction step) Reconstruct the injtial distribution as piecewise polynomials over the computational cells

$$
\begin{equation*}
u_{,}(x)=P,(x), \tag{4.4b}
\end{equation*}
$$

where $P,(x), x \in[x,-\Delta x, / 2, x,+\Delta x, / 2]$ is a polynomial in cell j.
3. (Solution in the Small Step) Solve the initial value problem at each cell interface where discontinuities can exist

$$
\begin{equation*}
u(x, t)=E\left(x, t-t^{n}\right) \cdot u\left(x, t^{n}\right) . \tag{4.4c}
\end{equation*}
$$

where $E\left(x, t-t^{n}\right)$ symbolically represents the evolution operator given by the solution to the Riemann problem.
4. (Averaging Step) Reaverage the solution over the grid cells given the solution operator in the previous step.

$$
\begin{equation*}
u_{j}^{n+1}=\frac{1}{\Delta, x} \int_{z,-\Delta, z / 2}^{z,+\Delta, z / 2} u\left(x, t^{n+1}\right) d x \tag{4.1d}
\end{equation*}
$$

5. Go back to the reconstruction step.

This process is shown schematically in Fig. 4.5.
Remark 10 Osher (155) defined a Codunov flur for scalar equations as

$$
\begin{align*}
& \text { (a) if } u,<u_{j+1} \text { then } f_{j+1}^{c}=\min (u), u \in\left[u_{j}, u_{j+1}\right] \tag{4.5a}\\
& \text { (b) if } u_{j}>u_{j+1} \text { then } f_{p+\frac{1}{c}}^{c}=\max (u), u \in\left[u_{j}, u_{j+1}\right]
\end{align*}
$$

and the inequality for an entropy satisfying fluz is

$$
\begin{align*}
& \text { (a) if } u_{j}<u_{j+1} \text { then } f_{y+1} \leq f_{j+k}^{0} \tag{4.5b}\\
& \text { (b) if } u_{,}>u_{j+1} \text { then } f_{j+k} \geq f_{j+k}^{0}
\end{align*}
$$

For the scalar equation, this Godunov fur is the least diffusive entropy satinfyiang fur. Thus for the case of scalar equations one can ahow what the appropriate entropy inequalities are. This inequality can be written

$$
\begin{equation*}
\operatorname{sign}\left(u_{j+1}-u_{j}\right)\left\{\dot{f}_{\jmath+1}-f(u)\right] \leq 0, u \in\left[u_{,}, u_{j \neq 1}\right] . \tag{4.5c}
\end{equation*}
$$

Osher defined schemes which meet the entropy requiremerils as "E-schemes". This concept has proven to be important in the development of higher order schemes which

Figure 1.5: The following steps are showa: averaging and reconetruction, solution in the snrall, and reaveraging in this schematic represeatation of Codunov's method
produce physical solutions. It is common piarlice to develop the higher order schemem with an E-scheme as a building block.

This algorithm can be formulated in several ways: in a fixed or Eulerian coordinate systell or in a moving or Lagrangian coordinate system. With the Lagrangian formulation, the common practice is to set the coordinate frames speed equal to that of the flow. Another common practice is to compute solıtions in the Lagrangian frame and map the results back to an Fulerian grid. For the Fulerian algorithm, the solution in the small is done in a fixed coordinate frame so the averaging step is a simple one step process. In the Lagrangian algorithm, the averaging step takes place in two steps: first an average in the Lagrangian frame and then a remap to the fixed Fulerian grid.

The averaging step can be simplified with the divergence theorem that allows the integral

$$
u_{j}^{n+1}=\frac{1}{\Delta x,} \int_{z,-\Delta z, / 2}^{x,+\Delta x, / 2} u\left(x, l^{n+1}\right) d x,
$$

to be transformed to

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\lambda\left(\dot{f}_{,+\xi}-\dot{f}_{,-k}\right), \tag{4.6}
\end{equation*}
$$

where $\lambda=\Delta t / \Delta x$ and

$$
\begin{equation*}
\dot{f}_{,+\xi}=\frac{1}{\Delta l} \int_{10}^{1+2+1} f\left(x_{j+1}, t\right) d t \tag{4.7}
\end{equation*}
$$

This formulation is just like the norrnal finite difference equations for a differential equation in conservation form. For the solution in Lagrangian coordinates, the spatial variable x in the above equations is replaced with \%, the mass variable. The remap step of the lagrangian Godinov also can be expressed in these terms. In this step, the solution in the Lagrangian cocidiaates is mapped onto an Eulerian grid. This can be expressed as the advection of the conscrved quantities through the cell boundaries.

This reaveraging step (see Appendix B equations (B.3a)-(B.3c)) can be derived from the concept of operator splitting (156). The Lagrangian step is the solution for the Euler equations for the sound wave related transport and the remap is the solution for the advection related transpoit. This concept is at the genesis of the Arbitrary Lagrangian-Eulerian algorithms [157], but these differences ase more philoeophical than substantive.

The remapping procedure must deal with several specific possibilities, as shown in Fig. 4.6. Carrying out the summations over the Eulerian grid cells reveals that the use of a siuple upwind difference formula suffices to carry out the remapping. From the smletion of the l, agrangian equations the rell rige velocities are known, thus the:

Figure 4.6: The rases which in 1 be cor.:i:dered by a remap algorithm.
remapping is uniquely deternsined. 'The formula is constructed as follows

$$
\begin{equation*}
\phi_{j}^{n+1}=\frac{\Delta \dot{x}}{\Delta x} \dot{\phi}_{,}-\frac{\Delta t}{\Delta x}\left[\dot{f}\left(\dot{\phi}_{,+\frac{\xi}{2}}\right)-\dot{f}\left(\dot{\phi}_{,-\frac{1}{2}}\right)\right] . \tag{4.8a}
\end{equation*}
$$

with

$$
\begin{equation*}
\dot{f}\left(\dot{\phi}_{j+\frac{1}{2}}\right)=\frac{1}{2} \dot{u}_{j+\frac{1}{2}}\left(\dot{\phi}_{,}+\dot{\phi}_{,+1}\right)-\frac{1}{2}\left|\dot{u}_{j+\frac{1}{2}}\right|\left(\dot{\phi}_{j+1}-\dot{\phi}_{j}\right) \tag{1.8b}
\end{equation*}
$$

where all quantities with a "tilde" are new time Lagrangian frame variables except \dot{u}, which is time centered.

The formulation above has several stability limits. For the solution step to make sense [30] requires that the waves not interact which leads to the restriction

$$
\begin{equation*}
\Delta t \leq \inf \left(\frac{\Delta x_{1}}{2\left|a_{j}\right|}\right) \tag{4.9}
\end{equation*}
$$

where a, is the maximum wavespeed present in each cell. This means that waves cannot pass through more than half a grid cell in a time slep. The stability restriction is the more familiar Courant-Friedrichs-Lewy (CFL) condition

$$
\begin{equation*}
\Delta t \leq \inf \left(\frac{\Delta x,}{|a,|}\right) \tag{4.10}
\end{equation*}
$$

which is the restriction u:ually triken for methods of this type. Por the purely Eulerian calculations with the Fialer equations. see (B.la)-(B.lc),

$$
\Delta t \leq \inf \left(\frac{\Delta x_{j}}{\left|u,-c_{j}\right|} \cdot \frac{\Delta x_{j}}{\left|u_{j}+c_{j}\right|}\right) .
$$

where c_{j} is the Eulerian sound speed. For the Lagrangian computations with the remap step, see (B.2a)-(B.3c), there are three reatrictions to consider:

$$
\Delta t \leq \inf \left(\frac{\Delta \xi_{1}}{C,}, \frac{\Delta x_{j}}{\left|u_{j}\right|}, \frac{\Delta x_{j}}{\Delta, u}\right)
$$

where $C^{\prime},=\rho C$, the Lagrangian sound spered and the sound speed restriction refers to the Lagrangian step. the advective velority is for the pemap step. and the zone
tangling limit.

4.4 High-Order Godunov Methods

For Godunov's method, the reconatruction stel, consists of setting

$$
P_{j}(x)=u_{j}^{0} .
$$

or piecewise constant. The Eulerian Godunov uses the Eulerian equation set for the solution step, while the Lagrangian with remap Godunov uses the iagrangian equations with an averaging done in the moving coordinate frame followed by the remap step back to the Eulerian grid (ase Appundix B).

Remark 11 The primery (and often the only) difference between Godunov's method, sohich is first onder accurate, and higher onder methods (see Seection 4.4) tike MUSCL (60) and PPM [128] is the order of the polynomial isrd in the reconstrection atep.

Further developments on this topic were achreved by van Leer [60] jn his higher order extensions of Godunov's method often referred to as monotone upatream-centered scheme for conservation laws (MUSCL). Recent ty, researchers have extended the ideme of van Leer to arbitrarily high-order spatially or iemporaliy and christened these meth. ods as uniformly (138) or essentially (64) non-oncillatory (UNO or ENO) schemes.

4.4.1 MUSCL Type Schemes

The second-order methods developed by van leer ementially replaced the conatant piecewise profile used in Godunov's method with a linear profile. This profile is "limited" (Section 4.7 and Chapter 8) in order to prevent non-monotone behavior in the solution procedure Van Leer's criteria was somewhat heuristic in nature, although it turns out to be fairly rigorous after Harten's work on the theory of TVD wehemes $[130,61]$. The iriteria states that th.- interpolation in a given cell should not lie outside the range of values defined by the cell average and the neighboring valucs of the variable being interpolated (120. 37]. This is shown in Fig. 4.7. Stated mathematically this is

$$
\begin{equation*}
\min _{\left.k \rightarrow j\right|^{\prime}} u_{k}^{n} \leq P_{j}(x) \leq \max _{k-j \leq 1} u_{k}^{n} . \tag{4.11}
\end{equation*}
$$

Woodward states that this can be relaxed alightly to the averages of the advected quantity within a cell and that which remains in its original cell muat lie within the range of the original cell average and its neighbors. A scheme typical of those used here is

$$
\begin{equation*}
P_{1}(x)=u_{j}+\overline{\Delta, u} \frac{\left.x-x_{j}\right)}{\Delta, r} . \tag{4.12}
\end{equation*}
$$

Figure 4.7: A graphical depiction of van Lere's heuristic monotonicity constraint. For the second constraint given by Woodward the interpolation is monotone for some time step sizes.
where $\widetilde{\Delta, u}$ is a limited approximation to $d u /\left.d x\right|_{g,} \Delta_{j} x$.
With a second-order algorithm, the question of time accuracy must be iddrasued. This is usually done through a Lax. Wendrof like procedure like that described in the previous chapter. This ran proceed from two viewpoints: the first being that 1 am moving with the fluid to the point in time which is the average of the old and new time steps and evaluating the polynomial reconstruction there, the second is linat of averaging the polynomial over the domain of dependence for the time step [122]. These two views are equivalent if the integral time average is evaluated with a midpoint rule. This process is depicted in Fig. 4.8.

Van leer [158, 159] reports another appronch to finding a second-order accurate temporal solution. Defining $u_{j, ~}$ as the value at the left cell edge of cell j and $u_{j, p}$ as the value at the right hand cell edge of j, the second-order time accurate values of $u_{j!}$ and $u_{j,}$ are computed from

$$
\begin{equation*}
u_{, l}^{n+\frac{1}{2}}=u_{j, j}^{n}-\frac{\sigma}{2}\left[j\left(u_{j, j}^{n}\right)-j\left(u_{j, j}^{n}\right)\right] \tag{4.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j, \infty}^{n+\xi}-u_{j, 0}^{n}-\frac{\sigma}{2}\left[j\left(u_{j, \rho}^{n}\right)-j\left(u_{j, j}^{n}\right)\right] . \tag{4.13b}
\end{equation*}
$$

This form of the algorithm bears great resemblance to the two-step Lax-Wendroff seheme presentret in Sectiron 3.s.1. Similar sorts of ideas are also expressed in a serjes

Figure 4.8: Two views of time accurate computation of cell edge valuas.
of papers $[65,160,66]$ where a TVD Runge-Kutla time discretization is introduced and implemented.

Remark 12 The TVD Runge-Kuttu temporal discretization provides the means through which high-order lemporal oreurecy can be achieved without significun: implementation difficulties. This is especially true in multidimensional problems it vith systems of HCLs. These multistage algorithms can be written in the following form

$$
\begin{equation*}
u^{\prime}=\sum_{k=0}^{\prime-1}\left[a_{1} u^{k}+\beta_{k}>\backslash L\left(u^{k}\right)\right] . \tag{14a}
\end{equation*}
$$

where the discrule differential uperator is denoted by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=L(u), \tag{4.14b}
\end{equation*}
$$

and $a_{i k}$ ana $\theta_{\text {, }}$ are coefficients. The criteria for this to produce TVD results (asee Section 4.5) jiven an appropriate spalial operalor is a CFL condition

$$
\begin{equation*}
\nu \leq \frac{a_{d k}}{\left|\beta_{1, k}\right|} . \tag{4.14c}
\end{equation*}
$$

If 9_{14} is negatice. the spalial operator musl be antiupliond [6.5. 160). In those references.

4.4.2 ENO Type Schemes

Harten and Oshor [136] defined a new class of schelnes as being uniformly nonuscillitory. This class of method is part of and predecessor to the fiNO schemes. Onfe particularly distinguishing fart about this scheme is that it is second-order accurate in all its norms. This gives it some strong advantages over other second-order hight resolution schenses, which degenerate to first-order accuracy in the maximum uorus.

Definition 2 (Harten and Osher [136]) Non-oscillatory interpolation is defined by interpolation, $l,(x)$ that has its number of cxtrema in an interval that in not exccoded by the local estrema in the data, $u(x)$.

The co: atruction of ENO schemes has extended the concept of high-order Godunov infethods to a inuch wider range of potential schemes [161] (this class of methods inctuded other (iodu, Iov type algorithms). The basic concept of the ENO scheones is to compute a interpolating polynonsial using the data from the smoothest part of the grid locally [162]. To do this a linuiter is used to choose which direction to go for the smoothest reconstruction. Thus the stencil used for the finite difference formulas is adaptive in nature and the accuracy of the scheme is limited ouly by its implementation and the properties of the data. One problem is that despite the relatively simple concept. the E:NO schemes [64] as originally formulated are horribly complex. This problems is even more severe in multi-dimensional implementations [161, 69]. Shu and Osher $[6.5,66]$ have eased this burden somewhat and if more recent work is any indication [139] this should ease more. For F.NO schemes, in general, most properties such as convergence, boundedness of solutions etc. have yet to be proven.

Definition 3 (Harten, Osher, Engquist and Chakravarthy (84]) Essentially nonoscillatory interpolation is defined by interpolation, $P_{j}(x)$ that is the smootheat approsimation to the data in some sense.

An ENO algorithm for polynomial reconstruction is outlined below. This is known a reconstruction by a primitive function. This ENO formulation is based on the interpolation of a function defined by

$$
\begin{equation*}
Q\left(x_{j+1}\right)=\int_{-\infty}^{x+1} u d x . \tag{4.15a}
\end{equation*}
$$

thus

$$
u,(x)=\frac{d Q,(x)}{d r} .
$$

By virtue of the previous two equations, the interpolation can be integrated to the cell average of cell j, but also every cell the stencil for cell j.

Before showing the algorithm, some terms need to be defined

$$
\begin{align*}
& a^{k}=Q\left[x_{j, \min }^{k-1}, \ldots, x_{j, m a x+1}^{k-1}\right], \tag{4.168}\\
& b^{k}=Q\left[x_{j, \min -1}^{k-1} \ldots \ldots, x_{j, m \in z}^{k-1}\right], \tag{4.16b}
\end{align*}
$$

where the brackets denote the $k^{\text {th }}$ divided difference [163] which can be defined recursively ${ }^{3}$ The algorithm computes a polynomial for $Q\left(x,+\frac{1}{2}\right)$, which once differentiated can serve as the polynomial approximation in the $j^{\text {th }}$ cell.

Algorithm 2 [ENO Reconstruction via Primitive Function (6t)]

1. Initialize $k=0, x_{j, \text { min }}^{0}=x_{j, \text { mas }}^{0}=x_{j+\frac{1}{1}}$
2. Ii $\left|a^{k}\right| \geq\left|b^{k}\right|$ then

$$
\begin{gather*}
c^{k}=b^{k}, \tag{4.17a}\\
(j, \min)^{k+1}=(j, \min)^{k}-1,(j, \max)^{k+1}=(j, \max)^{k} . \tag{1.17b}
\end{gather*}
$$

3. If $\left|a^{n}\right|<\left|b^{n}\right|$ then

$$
\begin{gather*}
c^{k}=a^{k}, \tag{4.17c}\\
(j, \min)^{k+1}=(j, m i n)^{k},(j, \max)^{k+1}=(j, \max)^{k}+1 . \tag{4.17d}
\end{gather*}
$$

4. $k=k+1$
5. Return to step 2 until desired accuracy is achieved ($k=n$).
6. Define the following polynomial

$$
\begin{equation*}
P(x)=\sum_{n=1}^{n} c^{A^{n}} \prod_{i=1, \ldots, m^{*}}^{, m a x^{n}}\left(x-x_{j}\right) \tag{4.17e}
\end{equation*}
$$

Remark 13 The consideration of pint valses versuc cell averages is of paramount importance in a theoretical sense. Ciodunov's method is predicated on the concept that the grid point values are aserages uver a control volume. The spatial determination of the values is only set in the averaged sense, but the point values are not defined clearly as to where they should reside in space. This is a sort of grid uncertainty problem or Gibb's error. Because most ENO implementations are hased on interpolating

[^7]$Q(x)$ this problcm docs not arise. From the standpoint of conservalion the interpolation methodology is not crucial. It is precisely this point on which the problem of iluplementation of E:NO schemes hinges. Sec Chapter 9 for further discussion of this topis.

Remark 14 In Sihu and Osher's papers on the easy inplementation of E:NO schemes, a formula was prcsented without much explanation. Their numerical flux is defined by

$$
\dot{f}_{2+1}=f_{j+1}+\sum_{k=1}^{m} a_{2 k}\left(\frac{\partial^{2 k} f}{\partial x^{2 k}}\right)_{j+\frac{1}{2}}+O h^{m+1}
$$

wherr $a_{2}=\frac{-1}{24}$ and $a_{4}=\frac{7}{3750}$. Where does this come from? from carlier ENO work

$$
\dot{f}_{3+1}=\left.\frac{d Q}{d x}\right|_{t+k},
$$

where

$$
Q_{,+\frac{1}{2}}=\int_{x_{0}}^{x} 1+\frac{1}{x} f(x) d x .
$$

From Ifildebrand's numerical analysis tert [16.3], the rocfficients in the above squation are from the Fiuler : MacClaurin cquation for errors in integration with a slight modifiration to take the function to approsimate $\dot{f}_{j+\boldsymbol{j}}$ mather than \dot{f}_{j-1} as the eyuation in the tezt would indicate. This corresponds to adding $\left.f_{j} \neq\right\}$ to the equation and retersing the signs of the error terms. This raises the question of whether or not the Q function is correct in the sense that this implies. The definition of the point values as cell averages would support this, but it raises questions of the correct derivation of these concepls in multidimensions especially on non-orthogonal grids or unstructured grids (16).
'lo close out this section, the results on the same test problem used for the classical methorls is used with a high-order Codurov method. The results shown in Fig. 4.9 are muclı lietter than those foind by any of the classical method, with the discontinuitics reunailuing sharp and with little smearing and no creation of arcillations.
Remark 15 One problem with this sort of method is that it is expensive to use in some cases. Some promising work has appeared recently which only applied to more complex methods described above at a fev grid locations (where oscillations would orcur with classical methods). These method use a fittering technigue to choose where to apply the HO(i-lype methods (164, 165).

4.5 Total Variation Diminishing Methods

The effort to put the new modern algorithms on firmer theoretical footing resulted in ilse romerept of total variation diminishing (TVD) methorls (130], which have a number

Figure 1.9: Computation of a square wave by the scalar wave equation using a HOC algorithm ($12=1$. and $\nu=0.5$).
of desirable properties. To be total variation diminishing, a scheme must satiofy the following inequalities,

$$
T V\left(u^{n+1}\right) \leq \operatorname{TV}\left(u^{n}\right)
$$

where

$$
T V(u)=\sum_{,=-\infty}^{\infty}\left|u_{j+1}-u_{j}\right|
$$

While these methods include classic monotone schemes (such as upwind difierencing or l.ax-Friedrichs), they can also be extended to include methods that are second-order in the L_{1} norm. By construction, these methods are still first-order a! points of extrems (in the $l^{\prime} x$ norm). A second properiy of TVD schemes, which is bosh useful and satisfying, is that they can be extended to include implicit temporal differencing [110]. I'his generality is quite desirable as it allows a more general use of TVD algorithms for a wide range of problems and applications. It should be noted that MUSCL schemes have also been extended to include implicit semporal differencing.

The basic proof of the TVD property proceeds as follows:

Theorem 4 (Harten [130]) Given a scalar wave equation and a conservative nwmerical acheme quillen as

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}+C_{j+k}^{+} \Delta_{j+\frac{1}{2}} u^{n}-C_{j-\xi}^{-} \Delta_{j-\frac{1}{2}} u^{n}, \tag{4.18a}
\end{equation*}
$$

uhere

$$
\begin{equation*}
C_{j+\frac{1}{-}}^{-} \geq 0, C_{j+\frac{1}{+}}^{+} \geq 0, \tag{4.18b}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{j+\frac{1}{2}}^{-}+C_{j+\frac{1}{\prime}} \leq 1, \tag{4.18c}
\end{equation*}
$$

then the scheme is TVD.

I'roof. Start by subtracting the equations at $\boldsymbol{j}+1$ from \boldsymbol{j} giving

$$
\begin{equation*}
\Delta_{j+\frac{1}{2}}^{u}=C_{-\frac{1}{j}}^{-} \Delta_{j-\frac{1}{2}} u+\left(1-C_{j+\frac{1}{2}}^{-}-C_{j+\frac{1}{2}}^{+}\right) \Delta_{j+\frac{1}{2}}^{u}+C_{j+\frac{1}{2}} \Delta_{j+\frac{1}{2}} u . \tag{4.19a}
\end{equation*}
$$

Because I am assuming the condition stated in the theorem, all the terms on the right hand side are positive, thus by the triangle inequality

$$
\begin{equation*}
\left|\Delta_{,+\frac{1}{2}} u\right| \leq C_{-\frac{1}{2}}^{-}\left|\Delta_{,-\frac{1}{4}} u\right|+\left(1-C_{j+\frac{1}{2}}^{-}-C_{j+\frac{1}{2}}^{+}\right)\left|\Delta_{,+\frac{1}{2}} u\right|+C_{j+\frac{1}{2}}^{+}\left|\Delta_{,+\frac{1}{2}} u\right| . \tag{4.19b}
\end{equation*}
$$

Summing over all $;(-\infty<j<\infty)$ gives the necessary conditions as the above equation must hold for all j. This takes the conservation principle into account resulting in the cancellation of most terms in the equations. C

Remark 16 The theory of TVD schemes has also lead to implicit scheines based on these principles (110). These have been used to produce steady-slate profiles for aerodynamic designs in a variely of flow regimes (166). In addition, the HOC and ENO (167) algorithms have also been estended to implicil time differencing. By taking the semi-discrete form of these equations

$$
\begin{equation*}
\frac{\partial u}{\partial r}=C_{j+\frac{1}{+}}^{+} \Delta_{\partial+\frac{k}{u}}-C_{,-\frac{1}{2}}^{-} \Delta_{,-\frac{1}{2}}{ }^{u}, \tag{4.20a}
\end{equation*}
$$

with the conditions for a TVD approximation being

$$
\begin{equation*}
C_{j+1}^{-} \geq 0, \text { and } C_{j+1}^{+} \geq 0 . \tag{4.20b}
\end{equation*}
$$

One can see that the set of linearly equations resulling from this seheme in the case of an implicit differencing is diagonally dominant and thes stable for solution by a vancly of means.

Jameson and lax [168] have provided a more general definition of a TVD scheme. This theorem provides conditions by which a scheme can have much larger support and be TVD. Shu [169] reports that Engquist and Osher had developed very high order TVD schernes along these lines.

Theorems s (Jameson and Lax (168)) Uiven a nimitherofe ethelif:

$$
\frac{d u}{d t}=\sum_{k=-j \leq,<j}\left(i, k, 1, \quad t^{n} .\right.
$$

is TVD if the following conditions are satisfird in t.

$$
\begin{equation*}
C_{-1}(k-1) \geq C_{-2}(k-2) \geq \ldots \geq C_{-s} k-\geq b \tag{4.21b}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.-C_{0}(k) \geq C_{1}(k+1) \geq \ldots \geq C_{1} \quad-\quad-1\right) \geq 1 \tag{4.21c}
\end{equation*}
$$

Remark 17 This theorem when interpreted sirsmo, mernay that the support for an interpolation within a given cell muat decreane ymather from that point.

Remark 18 The questions relating to the stabitar: .snd accuracy of a 5 VD approzimation must be addressed separately from the previnmon of its nature with regard to being TVD. It is often the case that when a scheme faile to proorde TVD solutions, it also is essentially unstable.

For instance, to prove a polynomial ropresentamea of a function is TVD (in one dimension), a general procedure can be defruad. Taxing the polynonnial, $P_{g}(\theta)$ where

$$
\theta=\frac{x-x_{0}}{\Delta x}
$$

and then taking the case where $\lambda a>0$. awer definm

$$
P_{1}(\theta)=z_{1}^{\prime}(\theta)-1:
$$

with the function $\theta \in\left[-\frac{1}{2}, \frac{1}{2}\right]$. The formitarstar tomernason law :x:proots of TVD algorithms (explicit) is

$$
u_{j}^{n+1}=u_{j}+C_{j+1}^{+} \Delta_{r+\ldots} x_{j}^{n}-T_{1}^{+} t_{1}^{u^{n}} .
$$

setting $C_{j+\xi}^{+}=0$ then,

$$
C_{j-\xi}^{-}=\lambda a\left(1+Q,(\theta)=Q_{r-1},\right.
$$

where

$$
Q_{,}(\theta)=\frac{P_{1}(\theta)}{\nabla_{\Sigma^{2}}} .
$$

The conditions to be TVD are

$$
0 \leq c_{--\frac{1}{2}}^{-} \leq 1 .
$$

thus the following conditions can be brought to bear on the Q functions such that

$$
Q_{1-1}(\theta)-Q,(\theta) \leq 1
$$

and

$$
Q,(\theta)-Q,-1(\theta) \leq \frac{1}{\nu}-1
$$

then the overall scheme is TVD while these are satisfied.
Ilisre are $8 w_{1}$, iffajor types of TVD srhemes: the nodified flux form (130) and :he
 xifrouse fous - יrave equation.

4.5.1 Modified Flux TVD Schemes

The modified nux TVD scheme has its dissipation function defined by
where

$$
\begin{align*}
& g_{j}=Q\left(\mu_{,-\xi} \Delta_{j-j} u \cdot \mu_{j+\xi} \Delta_{j+j} u\right), \tag{4.22b}\\
& f_{j+\xi}= \begin{cases}\frac{\Delta_{j+\frac{1}{} g}}{\Delta_{j+\frac{1}{2}}{ }^{u}} & \text { if } \Delta_{j+\xi} u \neq 0 \\
0 & \text { otherwise }\end{cases} \tag{4.22c}
\end{align*}
$$

and

$$
\begin{equation*}
\mu=\frac{1}{2}\left(\mid \mu \mathrm{i}-\lambda a^{2}\right) . \tag{4.22d}
\end{equation*}
$$

4.5.2 Symmetric TVD Schemes

The symmetric TVD scheme has its dissipation function stated as

$$
\begin{equation*}
0_{j+\frac{k}{\prime}}^{\text {Y }}=\left[\left.\left(\left|a_{j+\frac{1}{2}}\right|-\lambda a_{j+\frac{j}{2}}^{2}\right) Q_{j+\xi}-\left|a_{j+\frac{1}{j}}\right| \right\rvert\, \Delta_{j+\frac{k}{}},\right. \tag{4.23}
\end{equation*}
$$

 unetric $T(i)$ acherne is its lower rasit in terms of arithmetic operations.

4.6 Flux-Corrected. Transport

The filsx-corrected tranaport scheme was the firat algorithm developed that ree 'gnized the importance of Godunov's theorem. Some of the flux limiters (notably the minmod limiter) seem to have their genesis in the FCT method. Yet despite this, the other methods have flourished while the FCT methods have languished by comparison.

The original FCT was defined in a serjes of papers which gave analysis and results of using the scheme. The best recent reference is the book by Oran and Boris [4]. This method blends a high order flux with a low orler monotone flux is such a way as to prevent the creation of new extrema. Although it is an improvement over classical methods, the FCT has not done well in tests against other modern algorithms (170, 44) and remains a pariah of sorts. The primary uses of the FCT have primarily been confined to turbulence [77], M11D [171] and reactive flow problenis [172].

Zalesak [62] redefined the F("T in such a way as to make it more general. A standard low-order solution, similar to that obtained by donor-cell differencing, is used to define a monotonic solution. This solution is then used to linnit an antidiffusive flux, which is defined as the difference between a high-order and low-order flux. As with the earlier versions of the F('T. the limiter is designed to give no antidiffusive flux when an extrema or a discontinuity is reached. This prescription of the FCT can allow the user to specify a wide range of low-order fluxes as well as a large variety of high-oriler fluxes. These have included central differencing of second- or higher-order, Lax- Weudroff. and spectral fluxes (173].

Recrntly, several researchers [174] have introduced an implicit FCT algorithm; however. this algorithm is limited to small multiples of the CFL number. This is because the low-order solution is produced by multiple sub-cycles with an explicit donor-cell (or other monotonic) solution and an implicit high-order solution. The ligh-order solution is only stable for small multiples of the CFL number, thus limiting the applirability of this algorithm. The FCT has also been extended for use with a finite-clement solution method with great success [144]*.

One problem that plagues the FCT method is extension of the method to sysirms. Ziome schemes have used an equation-by-equation synchronization of flux limiters [14.1]. but the results are not altogether pleasing. To my knowledge no one has publishral results of a Riemann solver being used to extend a FCT method to ayatems.

The flux-corrected transport algorithms can be written as follows:

1. find low-order monotonic cell-edge fluxes, $j_{j+\frac{1}{2}}^{l}$,
2. find the diffused solution, $\bar{u}_{\text {, }}$.
3. find a high order flux $\boldsymbol{f}_{j+\frac{1}{\prime}}$,
4. define an antidiffi:sive Ilux, $^{j_{j+k}^{A}}=j_{j+\xi}^{H}-j_{j+\xi}^{L}$,
5. limit the antidiffusive flux to $j_{j+\frac{1}{2}}^{c}$, and
6. apply the corrected antidiffusive flux to the diffused solution to find u_{j}^{n+1}.
[^8]Thee Boris and Book algorithill and Zalesak's algorithm differ only in a few steps. The Boris and Book algorithm uses a monotonic flux clefined by

$$
\begin{equation*}
\left.\hat{f}_{j+\frac{1}{2}}^{L}=\frac{1}{2} t f_{j}+f_{j+1}\right)-\left(\frac{\lambda}{6}+\frac{1}{3} n^{2}\right)\left(n_{j+1}-u_{j}\right) \tag{4.24}
\end{equation*}
$$

In Zalesak's algorithm, a simple donor-cell flux may be used (or any other monotone meldiod) as the low-order flax. lu the Boris and Book algorithm, the antidiffusive flux is defined by

$$
\begin{equation*}
\dot{f}_{j+\frac{1}{\prime}}^{\prime}=\frac{1}{6}\left(\lambda \cdots \lambda a^{2}\right)\left(\dot{u}_{j, 1}-\dot{u}_{j}\right) \tag{4.25}
\end{equation*}
$$

and in Zalesak's algorithm il conld be a Lax. We-Idroff flux or another higher order llux minns the monotone flux.

Remark 19 The formalısm adopled ahour: is from Zalesak's generalization. Boris and Book's original IP(7 acas struclured slightly differently, although the end resull a. equivalent. Their algorillint prosieds as follon:s f4. 17.i]: Compute a transported solution

$$
\begin{equation*}
u_{:}^{r}=u^{\prime \prime}-\lambda\left(\dot{\delta}_{j+\frac{1}{2}}^{T} \cdot \dot{i}_{i-\frac{1}{2}}^{T}\right) . \tag{4.26a}
\end{equation*}
$$

7his solution is unstable and onusl be slabilized witt a diffusion step

$$
\begin{equation*}
u_{j}^{T D}=u_{j}^{T} \cdot u_{j+\frac{1}{2}}\left(u_{j+1}^{T}-1_{l}^{T}\right)-u_{i-\frac{1}{2}}\left(u_{j}^{T}-u_{i-1}^{T}\right) . \tag{4.26b}
\end{equation*}
$$

This solution can then b: corrected amilh an antid.flusion step, but this step is filtervd with "flux limiter to avoid osrillatory solntzon.

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{T D} \cdot v_{j+\frac{1}{2}}^{c}\left(n_{j+1}^{T L}-1_{j}^{T D}\right) \cdot \nu_{j-\frac{1}{2}}^{\prime}\left(n_{j}^{T D}-u_{j-1}^{T D}\right), \tag{4.26c}
\end{equation*}
$$

where 1 is an antidiffuster" roeffictevo not llw ($\%$, number.

Remark 20 The main prablem with the $\mathrm{H}^{\prime} \cdot \boldsymbol{T}$ s its lack of theoretical basis in the light of other modern methods. Wirre this prrseut thes method could move back toward the mainstream of numerionl analysio.

Before moving on, the results of the square wave test problem are given in Fig. 4.10. It should be noted that theso results are very similar to those produced from the HOC algorithm (see Fig. 4.9). 「 「he results is somewhat less aesthetically pleasing due to a lack of symmetry. A simifar test with a sine wa:e produces a "squaring" of the sine wave because of over compressioll

1 explore FCT methods in a great deal of derail in Clapter 5.6 and 7.

Figure 1.10: Computation of a square wave by the scalar wave equation using a FCT (Zalesak) algorithm.

4.7 The Role of Limiters

Flux. slope or gradient limiters play a pivotal role in the construction of modern inethods for solving HCls. The source of the nonlinearity necessary to produce highorder $\mathrm{n}: \mathrm{on}$-osrillatory algorithms is in these limiters. Despite their importance, the atnount of work alone toward understanding their behavior is relatively small [132, 176] and lintited to a sntall class of schemes. A notable problem is that the analysis was ronfined to the same class of schemes, which are not necessarily representative of all the modern algorithms. This lapse in the collective understanding of limiters is important because limiters are a means through which a large class of modern ullmerical algorithms can be unified theoretically.

The FC:T linniter his remained largcly unstudied; the only major development is that of Zalcsak [62]. The reasoning behind the form and function of the FCT limiter is unknown beycnd the purely obvicus. It is high!y likely that both the FCT and other usoreru algorithons could benefit greatly from a greater understanding of their pespective limiters.

At this point, it is useful to delineate the differeuce between slope and flux limiters urore closely. This is done from the standpoint of a philosophical differentiation rather than from a purely technical basis. The slope limiters can be thought is being usad directly during inkerpolation. Flux limiting usually involves me.hods that are clastified as finite differener types. Thus slope limiting applies to HOf; aizorithitas
ind the thx limiting applies to 'TVI) and F'(T algorithnns. One caveat can be placed ont this classiticationtit it not stringent, all "xample of this are the ENO schernes dite to Slin and Osher [65, 66].

A more complate description of limiters is given in Chapters 7 and 8.

4.8 The Role of Riemann Solvers

The rule of Rirmanus solvers in modern methods for solving ! iLs is not always clear. de one level. these incthod can be thought of as an essential ingredient for a surcessful algorithun. but at another level they apprar to be a elosure relation insed to improve arcurary, or an extravagant feature which is not necrssary.

The issure of Riemann solvers is critical to these types of methods. The philusophical basis of these unethods is that the computational domain has berelf cut up irto a mumber of discrete subdomains with the distinct possibility of discontinuities at the subdollain boundaries. The Riemann solvers resolve the behavior of the interaction of the subolomains. The Riemaina ivlvers are integral parts of the schemes, but so is the fundaurntal differencing stheme. The prescription of the state of the fluid at the computatioual dounain is as important (for high accuracy) as the solution for the cusuing fluid behavior. The Riemann solver however must ensure the plysical nature (satisfartion of an entropy condition) of the solution.

Appendix B develops Rirmann solvers in significanely troore detail.
In the next chapter I begin the study of the design of high.resolution upwind shock-capturing methods through looking at the FCT method critcally.

An Improved Flux Corrected Transport Algorithm: A Finite Difference Formulation

Abstract

Iron rusts from disuse, stagnant water loses its purity, and in cold weather becomes frozen; even so does inaction sap the vigors of the mind. Leonardo Da V'inci

5.1 Introduction

As discussel before. Godunov [56] showed that the monotonic solution of first-order hyberbolir conservation laws is at most first-order accurate for linear differencing srliemes. The first algorithm to successfully address this difficulty was the FCT algoritianll of Boris, Book, and Hain [39, 140. 1.11. 142]. This algorithm performed quite wrll on linear advertion problens and paved the way fot future developments in, the field. It essentially consisted of computing a solution with a nondiffusive transport mucthod followed by a stabilizing diffusive step. This monotone solution is then used to aid in the construction of an antidiffusive step in which the solution from the first part of the algorithm is locally sampied and corrections are "patcher" to it. This is arcomplished with a flux limiter that only applies the flux corrections in the shouth part of the flow. As a result, the solution will be of a high-order in smooth parts of the converted profile. but first-order near discontinuities and steep gradients. Fixtension of the F('T algorithm to systems of conservation laws, however, has proved less surressful.

Fiurther devrlopments on this topir were arhieved by van Leer [60] in his higher oriler extensions of Ciodinnov's methorl uften referred to as MliSCL. The prescription of slope-limiting used by van Leer has great similarity to the flux.limiting used in the original FCT. The difficulties associated with FCT with systems equations is not shared by MOSCI. because an exact solution to the local Riemann problem is used to construct the convective fluxes. While this approach adds complexity and cost to the solistion procedure, the corresponding quality of the solution is greatly improved.
\%almak [62] redefined the F(:T in sush a wiay as to make it inore general. A standard low-order solution. similar to that olstained by donnt-cell differencing, is used to definc a monotonic solution. This solution is then used to limit an antidiffusive filux. whirli is defined as the difference beiwroll a high-order abll low-order flux. As with the

extrema or a discomstimity i- reachen. This prescription of the FCT can allow the aser iu sperify : widle range of lon-order fluxes as well as a large variety of high-order fluxes. These have ineluded central differencing of second or higher order, Lax. Wendroff, and spectrad fluxes [173]. Recently, several researchers (174] have introdured an implicit F("I algorithm; however, this algorithm is linited to small imultiples of the CFL unubrer. This is because the low-order solution is produced by multiple sutb-cycles with all explicit donor.cell (or sther monotonic) solution and an implicit high order solution. Ther high order solution is only stable for small multiples of the CFI. number, thus limiting the applirability of this algorithm. The FCT has also been extended for use with a finite element solution methorl with great success (144].

T!ne performancer of the explicit F('T algorithm is the subject of this chapter. Sev. "ral investigators (170) $\mid \cdot 4$) have noted for the older FC'T algorithn that a lower CFL limit is refuirecl for stability. The F(T algorithin also suffers from being overcom. pressive (as is shown in Section 5.3). This was shown in a test of the F(:T on a shock tilbe problem [1.43), where even at a (Fl . number of 0.1 , the solution was of relatively peore quality. This probably is due to the handling of the pressure-related terms in the monuentum and energy equations. This work aims to address these problems, first through nakiug several improvements to the FCT and then by showing the extension of this modiferl F('T to systerns of equations. In accomplishing this. I make extensive use of approxillate Riemann solvers of the type introduced by Roe [63].

This chapter is organized into four sections. The following section provides an overview of the numerical solution of hyperbolic conservation laws. Later in that section, the FC'T method according to Zalesak is introduced. This method is analyzed and suggestions for improvements are made including the extension of FCT to systerns of eqlilitions. In the third section, results are presented for the methods discussed in this rhapter. These results are for a scalar wave equation, Burgers' equation and a shork tulier problern for the Euler equations. Finally, some closing remarks are made.

5.2 Method Development

Thir ievelopment of improved methods follows a short description of current FCT incthouls.

5.2.1 Zalesak's FCT Algorithm

\%alesak's f(C' has been classified as a hybrid method that is applied in two steps. By being hybrid, the algorithm is based on the blending of high. and low.order difference schetnes together. Step one is accomplished with a first-order monotonic solution such as donor.cell plus some additional diffinsion (the entropy fix discussed in the previous sertion adds such dissipation). This could be accomplished with other first-order aleorithme such as (indinov'a !5fi| or Fingquist and Osher's [127]. These fluxes are
used to produce a transported diffused solution iu as follows:

$$
\begin{equation*}
\dot{u}_{1}=u_{j}^{n}-\sigma\left(j_{+\frac{1}{2}}^{D C}-j_{,-\frac{1}{2}}^{D C}\right) . \tag{5.1}
\end{equation*}
$$

A high-ordes flux. $f^{\prime \prime}$, is defiused in some way and then the low-order flux is subtracted from the high-order flux to define the antidiffusive flux as

$$
j_{j+j}^{A D}=j_{j+j}^{H}-j_{j+\xi}^{L} .
$$

The antidiffusive flux is then limited with respect to the local gradients of the conserved variable computed with the transported and diffised solution. Zalesak defined his limiter as a prehude to a trily multidimensional linuiter, but also defined an equivalent litniter as
where $\left.S_{,+\frac{1}{2}}=\Delta_{t+\frac{1}{}} / /\left.\right|_{\lambda+\frac{1}{}} \dot{1} \right\rvert\,$ is the sign of the conserved variable's gradient spatially. This limiter is identical to the limiter defined by Boris and Book [59], but with a different definition of $j^{A D}$. The final cell-edge memerical diffusion is defined by

$$
\begin{equation*}
\phi_{j+k}^{F C T}=\int_{i+j}^{C}+\phi_{,+j}^{D C C} . \tag{5.3}
\end{equation*}
$$

The FCT generally carries a stability limit on its time step of

$$
v \leq 1 .
$$

Before going further, several critical comments need to be made concerning this algorithon. Despite the striking generality, which is driven by the preseription of ther antidliflusive fluxes, the algorithm has some deficiencies. By its formulation as a two-step snethod it has sotne disadvantages in terms of analytical analysis and efficiency of irnplementation. By the use of the inverse grid ratio σ^{-1} in the ficx limiter, the algorithon is effertively limited to explicit time discretization (as is shown in the following section). The use of a diffused solution in the liniter is important in stabilizing the solution, which could yield oscillatory solutions without this step. U'inder closer examination, the use of a diffused solution acts as an upwind weighted artificial liffision term. This sort of definition could lead to a fairly complex onestep F'C:T algorithm, which has, at first glance, similarity to UNO-type schemes. The diffusive terms in the F'C'T algorithre's linuiter are upwinio weighted rather than renterel as with UNO based algorithms. Additionally, numerical experiments with a scalat alvection equation show that the total variation for the FCT solution can increase with tille for a CFI. nurnber less than one.

raisess sunfe questious ab. Wt the actioal of der of the approximation. The antidiffusive Hux is of the higher ordel, but the local gradients in the limiter are only accurate to second-order. This suggests that the solution may actually be of only second-order spatially (in the L_{1} norm). This also holels for temporal order as the local gradient terilis are only firs. order in space, thus an antidiffusive flux based on a l.ax. Wendroff flux utay actually yield a first-order accurate teniporal approximation. Thus the form of the local gratients nsed in the linuter may also need to be modified to accomplish the go.il of true higher order accuracy:

5.2.2 A New FCT Algorithm

flie first and simplest cliange is to rewrite the flux limiter as
where

$$
\begin{equation*}
\dot{\mu}_{,+\frac{1}{2}}=\dot{h}^{\prime}\left(\dot{a}_{,+\frac{1}{3}}\right), \tag{5.1b}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{\mu}_{,+j}=\dot{i} \cdot\left(\dot{a}_{,+\frac{1}{}}\right)-\sigma \dot{a}_{j+\frac{1}{2}} . \tag{5.1c}
\end{equation*}
$$

and $S_{j+\frac{1}{2}}$ has the same definition as before. Ser Section 13.3 .8 for the definition of ψ^{\prime}. The wrond choice for $\mu_{j+\frac{1}{2}}$ gives second-order accuracy in both time and space if $\int_{j+\frac{1}{2}}^{A D}$ is of sinilar or higher accuracy \{61]. This relatively small change has a significant inspact on the f'TT algorithm, the solution is better behaved, and with some minor modifications can be stated as a stable implicit algorithm. This form is also a great deal closer to the definition of limiters used in TVD algorithms. However. this still leaves a two-step method which poses some problems from the standpoint of efficiency and extension to systens of conservation laws.

Ther similarities of this modification of the FCTT with symmetris TVD schernes (13A) are quite strong. The necessary chang ${ }^{4}$ to convert this scheme into one equivalent to the one described by Yee are simple. 7 itis consiats of dividing the local gradient terms in the limiter by two and removing the first step of the FCT. Yee writes the numerical flux for the symmetric TVD method as

$$
\begin{equation*}
\dot{f}_{,+\xi}=\frac{1}{2}\left[a_{,+\xi}\left(u,+u_{1+1}\right)-\psi\left(a_{,+\xi}\right) \Delta_{,+\xi} u+Q_{,+\frac{k}{}}\right] . \tag{5.5}
\end{equation*}
$$

An example of the $Q_{1+\}}$ function would be

$$
Q_{j+\xi}=S_{j+\xi} \max \left\{0, \min \left[S_{j+\xi} \psi\left(a_{j+\xi}\right) \Delta_{j+\xi} u, \psi\left(a_{j+\xi}\right) \Delta_{j+j} u,\right.\right.
$$

[^9]\[

$$
\begin{equation*}
\left.S_{\rho+\}} \psi\left(a_{j-\frac{1}{}}\right) \Delta_{j-\frac{1}{4}} u\right\} . \tag{5.6}
\end{equation*}
$$

\]

which strikes a strong reseln, nee with (5.4a) for an antidiffusive flu: defined with a second-order central differelio. For ease of analysis, this method is rewritten in the following form:

$$
\begin{equation*}
j_{j+\xi}=\frac{1}{2}\left[a_{j+\xi}\left(u_{j}+u_{j+1}\right)-\psi\left(a_{j+\xi}\right)\left(1-Q_{j+\xi}\right) \Delta_{j+j} u\right], \tag{5.7}
\end{equation*}
$$

where

$$
Q_{,+1}=\operatorname{minmod}\left(1, r_{j+1}^{+}, r_{j+1}^{-}\right),
$$

 with symmetric TVD schemes is defined by Yce, but has the same effect as (3.6). The minmod function of two arguments the she usual definition given in [45], which gives the same effect as the FCT limiter for three arguments. In words, the ninmod limiter returns the minimum argument if the arguments are of the same sign and nero if the signs differ.

The FCT cell.edge flux can be written in the same way as the flux for a symmetric TVD scheme by defining

$$
\begin{equation*}
j_{j+\xi}^{c}=\frac{1}{2}\left|a_{j+k}\right| Q_{j+k} \Delta_{j+\xi} u, \tag{5.8}
\end{equation*}
$$

if $Q_{,+1}$ is based on (5.4 b)

$$
Q_{,+\xi}=\operatorname{minmod}\left(1,2 \dot{r}^{+}, 2 \dot{r}^{-}\right) .
$$

and if Q_{r+1} is based on $i ; 3$ lc)

$$
Q_{j+\xi}=\left(1-\sigma\left|a_{j+k}\right|\right) \min n \text { nod }\left(1,2 r^{+}, 2 j^{-}\right),
$$

and

$$
\begin{aligned}
& \dot{r}^{+}=\frac{\Delta_{j+j^{\dot{u}}}}{\Delta_{j+j^{u}}}, \\
& \dot{r}^{-}=\frac{\Delta_{j-j^{\dot{u}}}}{\Delta_{j+\xi^{u}}} .
\end{aligned}
$$

In [130] the inequalities that need to be satisfied i, order for a flux of the form given in (5.5) to bo TVD are

$$
\begin{equation*}
Q, . \xi<2 . \tag{5.9a}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{Q_{,+\frac{1}{2}}}{r_{j+\frac{1}{2}}^{t}}<\frac{2}{\sigma(1-0)\left|a_{j+1}\right|}-2, \tag{5.9b}\\
\nu<\frac{1}{1-\theta} \tag{5.9c}
\end{gather*}
$$

where θ is an innplicitless parancter, such that $0=0$ is fully explicit and $0=1$ is fully implicit. The F(:T limiter giveli in (5.fa) satisfies the first and last of theser relations, but satisfaction of the other relation (5.9b) in a rigorons manner has proved to be unore diffirult. To establish souse bounds on the propetties of the F('I' solutio is. the first ste, of the F('T is ignored for the time being. Given this, the worst cases fur blie liniter are $Q=2 r^{ \pm}$or $2(1-\nu) r^{ \pm}$. Comparing the first of these cascs with (5.9b) gives

$$
2<\frac{2}{\sigma(1-0)|a|}-2
$$

or

$$
\nu<\frac{1}{2(1-\theta)} .
$$

For the second of the two rases (only considered for $\theta=0$),

$$
2(1-\nu)<\frac{2}{v}-2
$$

of

$$
v<1 .
$$

Thus. even withonll the first step, the new FCTT algorithm is TVD under some condi. tions. It is also unconditionally stable for fully implicit temporal discretization. The first step adds more dissipation into the algorithm, which should result in higher CPL limits for the first inse. Nunverical experiments confirm this and show that the new : FCT is TVD for al: CFL numbers less than one.
"alewak's F'CT' ran be subjected to a similar test after a reformulation of ita limiter. fiven the same drlinition as before $!\cdot ; \int_{1+\frac{1}{\prime}}^{\circ}$.

$$
\begin{equation*}
Q_{,+\xi}=\left(1, \frac{2 \dot{r}^{+}}{v} \frac{2 \dot{r}^{-}}{v}\right) \tag{5.10}
\end{equation*}
$$

where $\dot{r}^{ \pm}$are defined as before. Using (5.9b), and again neglecting the first step, one can show that

$$
\begin{equation*}
n<\frac{0}{1-0} . \tag{5.11}
\end{equation*}
$$

Thus, for a fully explicit approximation witherat the firs: step, Zalesak's FCT is never TVD. However, as the degrce of implicitness increases, the agorithm becomes TVD

looks at the form of the limiter as the CFL number increases, the effective antidiffusive flux reduces in an inverse!y proportional fashion. Therefore, at large CFL numbers, Zalesak's F('T is largely ineffective as a high-order implicit algorithm. Numerical experiments have shown that with the first step. Zalesak's FCT produces results that diusinish in total variation up to a ('FL number of about 0.95 . Because the algorithm described above does not meet all m; goals, further improvements are sought.

5.2.3 A Modified-Flux FCT Algorithm

To attain these goals. the FCT is recast in the form of Harten's modified. flux TVD scheme [61]. From this basis several FC:T limiters can be shown to be TVD by the criteria given by (132], and the FCT can be written as a one-step method and extended to use as an implicit algoritlım in the same way as TVD methorls are [110]. This will be examined in the future.

The modified-flux TVD inethod is defined by computing cell-centered modified fluxes and t:aking the overail flux upwind with respect to both the "physical" and modified fluxes. Furmally. the morlified-flux formulation has a dissipation term,

$$
\begin{equation*}
\Delta_{j+k}^{M F}=\frac{1}{2}\left[g,+g_{\jmath+1}-\varepsilon^{\prime}\left(a_{\jmath+\frac{1}{}}+\gamma_{\jmath+\frac{k}{}}\right) \Delta_{j+\frac{1}{2}} u\right], \tag{5.12a}
\end{equation*}
$$

where

$$
\begin{equation*}
g,=\operatorname{minmod}\left(\mu,-\xi^{\Delta},-\xi^{1,}, \mu_{j+k} \Delta_{j+\xi^{u}}\right) \text {. } \tag{5.12b}
\end{equation*}
$$

and

$$
\gamma_{j+\xi}=\left\{\begin{array}{ll}
\frac{\Delta_{j+1} g}{\Delta_{j+\xi^{u}}} & \text { if } \Delta_{,+\frac{1}{u}} \neq 0 \tag{}\\
0 & \text { otherwise }
\end{array}\right. \text {. }
$$

A more general form of the minmod function is

$$
\begin{array}{r}
\min \bmod (a, b, n)=\operatorname{sign}(a) \max (0, \min (n|a|, \operatorname{sign}(a) b), \\
\min (|a|, n \operatorname{sign}(a) b)], \tag{5.13}
\end{array}
$$

which for $n=2$ gives the Superbee limiter developed by Roe [176]. The function $\mu_{,+\frac{1}{}}$ can have several forms, including

$$
\mu_{,+\frac{1}{}}=\frac{1}{2} \dot{E}\left(a_{,+\frac{1}{k}}\right) .
$$

$0:$

$$
\begin{equation*}
\mu_{1+\xi}=\frac{1}{2}\left[i^{i}\left(a_{,+\xi}\right)-\sigma a_{j+1}^{2}\right] . \tag{5.14b}
\end{equation*}
$$

Fior 1 i. ltai. the stability limit depents on the foris of the limiter. for iastance the
general minmod limiter yields a stability limit of

$$
\nu \leq \frac{2}{(2+n)\left(1-\theta_{1}\right.}
$$

for $\boldsymbol{u} \leq 2$. The use of (5. $\mathbf{1 4}$) 1 gives a stability limil of

$$
\nu \leq 1
$$

for all values of $n \leq 2$. The second definition has been recommended for explicit, time-accurate solutions [61] [110].

To formulate the FCT in a similar form, simply change the specification of the limiter. The traditional limier used with the P ? T is effectively a cell-edged flux rather than a cell-centered thix as needed for i.he modified-flux formulation. The definition of the artidiffusive flux must also be changed to a form more amenable to this formulation. This requires a more thoughtful statement of the antidiffusive flnx. which can be easily incorporated with the type of formulation desired. For instance. the second-order central difforence antidiffusive flux is

$$
\begin{equation*}
f_{j+\frac{1}{2}}^{M}=\frac{1}{2} \psi\left(a_{j+\frac{i}{2}}\right) \Delta_{j-\frac{1}{2}} n \tag{5.15a}
\end{equation*}
$$

or a lax. Wendroff flux

$$
\begin{equation*}
\int_{j+\frac{1}{2}}^{A D}=\frac{1}{2}\left[\psi^{\prime}\left(a_{j+\frac{1}{2}}\right)-\sigma a_{j+\frac{1}{2}}^{2}\right] \Delta_{j+\frac{1}{2}} u . \tag{5.1.5b}
\end{equation*}
$$

or a fourth-order central difference

$$
\begin{equation*}
\left.f_{j+\frac{1}{2}}^{A D}=\frac{1}{2} \psi!a_{j+\frac{j}{j}}\right) \Delta_{j+\frac{1}{2}} u+\frac{1}{12}\left(\Delta_{j-\frac{1}{2}} f-\Delta_{j+\frac{3}{2}} f\right) \tag{5.15c}
\end{equation*}
$$

which can be written

$$
f_{j+\frac{1}{2}}^{A D}=\frac{1}{2} \dot{\psi}\left(a_{j+\frac{1}{2}}\right) \Delta_{j+\frac{1}{2}} u+\frac{1}{12}\left(a_{j-\frac{1}{2}} \Delta_{j-\frac{1}{2}} u-a_{j+\frac{3}{2}} \Delta_{j+\frac{3}{2}} u\right) .
$$

These forms can be incorporated with a new limiter that has the desired properties. This limiter has the following form:

$$
\begin{align*}
\operatorname{minmod}(n)= & S_{j+\frac{\circ}{2}} \max \left\lvert\, 0 \cdot \min \left(\frac{1}{2} n\left|f_{j+\frac{1}{2}}^{A D}\right| \cdot n S_{j+\frac{1}{2}} \mu_{j-\frac{1}{2}} \Delta_{j-\frac{1}{2}} u\right)\right., \\
& \left.\min \left(\pi \mu_{j+\frac{1}{2}}\left|\Delta_{j+\frac{1}{2}} u\right| \cdot \frac{1}{2} \pi S_{j+\frac{1}{2}} f_{j-\frac{1}{2}}^{A D}\right) \right\rvert\,
\end{align*}
$$

where $\mu_{j+\frac{1}{2}}$ is defined by (5.14a) or (5.14b).
Analysis of this limiter for the second-order central-difference-based antidiffusive flux follows that of Sweby \{132]. For the values of $0 \leq n \leq 2$ in (5.16), the resulting

Figure 5.1: The characteristics of the FCT limiters for the modified flux formulation.
limiter is in the TVD region of the curves shown in Fig. 5.1. For the value of $n=2$, the resulting limiter is identical to Roe's Superbee limiter [176]. Shown in this figure are the plots for $n=1$ and $n=1.5$; tie plot for $n=2$ is identical to the upper boundary of the second-order TVD region. The boundaries of the second-order TVD region are shown by the thick lines on the plot. These limiters are second-order for all n for $r \leq 1 / 2$ and also second-order for $r \geq 2 / n$. The orly limiter of this clases that is always second-order is the $n=2$ limiter. The definition of r follows from Sweby's work.

5.2.4 Extension of FCT to Systems of Equations

The extension of the previously describet methods to systems of hyperbolic conservation laws is no siniple natter. The FC:T currently is extended to aysterms in the simplest fashion. Traditional iunplementations of the FCT take the fresaure terms in F as source terms a:id are handled with central diferences. This leado to a pocis representation of the wave interactions and the results that follow are often less than satisfactory.

The use of exact and approximate Riemann solvers offers a way through which more of the physical nature of the solution can be integrated into the solution p: rcedure. To the authors' knowledge no attempl has been made to iacorporate \mathbf{F}. eemann solvers with any of the previous F(TT algorithms. Using van Leer's Riemann solver [60] (177), with Godunov's first-order method [56] [41] as the low.order method
with the first modification of the FCT, is my first attempt to incorporate a R:emann solver with FCT. While the results are better than the standard FCT implementation, they are worse than the Godunov method alcne. To provide a more accurate and robust method, an approximate Riemann solver of the type introduced by Roe [63] is used.

The implementation of these Riemann solvers relies on the following transformations:

$$
\begin{equation*}
\Delta_{j+j} u^{\prime}=\sum_{k} r_{j+k}^{k} a_{j+k}^{k} \tag{5.17e}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{j+k}^{k}=\sum_{j}^{-b_{j+k}^{k}} \Delta_{j+k} u^{j} \tag{5.17b}
\end{equation*}
$$

The numerical dissipation terms are then written as

$$
\begin{align*}
& \Phi_{j+k}^{B C}=\sum_{k} \frac{1}{2} r_{j+k}^{k} \forall\left(a_{j+k}^{k}\right) a_{j+k}^{k}, \tag{5.18a}\\
& \Phi_{j+\frac{1}{j}}^{F C T}=\sum_{k} r_{j+\frac{1}{k}}\left(f_{j+\frac{1}{k}}^{C k}+\oplus_{,+\frac{1}{j}}^{O C}\right) . \tag{5.18b}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi_{j+k}^{N / F}=\sum_{k} \frac{1}{2} r_{j+k}^{k}\left[g_{j}^{k}+g_{j+1}^{k}-\psi\left(a_{j+k}^{k}+\gamma_{j+k}^{k}\right) a_{j+k}^{k}\right], \tag{5.18c}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{j}^{k}=\operatorname{minmod}\left(\mu_{j-\frac{1}{2}}^{k} a_{\left.j-\frac{1}{j}, \mu_{j+\frac{1}{k}}^{k} a_{j+1}^{k}\right), ~}^{\text {a }}\right. \text {, } \tag{5.18d}
\end{equation*}
$$

and

$$
\gamma_{j+k}^{k}= \begin{cases}\frac{\Delta_{j+1} g^{k}}{a_{j+k}^{j}} & \text { if } a_{j+\xi} \neq 0 \tag{5.18e}\\ 0 & \text { otherwise }\end{cases}
$$

Given these expressions for the numerical dissipation, the fux limiters used in the modified FCT (and for that matter claspical FCT) Rqs. (5.2),(5.4e), and (5.16) are rewrittell to take advantage of these forms. When a monotone first step is required with the FCT. Koe's first-order method [63] plus the entropy cosrection is used for tise low-order method. The antidifiusive fluxes for the $k^{\text {eh }}$ wave ase rewritten as

$$
\begin{equation*}
\int_{j+\frac{1}{2}}^{A D}=\frac{1}{2} \psi\left(a_{j+k}^{k}\right) a_{j+k}^{k}, \tag{5.19a}
\end{equation*}
$$

or a Lax. Wendroff flux

$$
\begin{equation*}
\int_{j+\frac{1}{j}}^{A D}=\frac{1}{2}\left[\vartheta\left(a_{j+k}^{k}\right)-\sigma\left(a_{j+\frac{k}{k}}^{k}\right)^{2}\right] a_{j+\frac{k}{k}}^{k} \tag{5.19b}
\end{equation*}
$$

or a fourth-order central difference

$$
\begin{equation*}
\int_{j+\frac{1}{2}}^{A D}=\frac{1}{2} \psi\left(a_{j+\frac{1}{j}}^{k}\right) a_{j+\frac{1}{2}}^{k}+\frac{1}{12}\left(a_{j,-\frac{1}{2}}^{k} a_{j-\frac{1}{2}}-a_{j+\frac{1}{2}}^{a_{j+\frac{1}{2}}^{k}}\right) . \tag{5.19c}
\end{equation*}
$$

For the classic FCT method, the flux limiter becomes

The new FCT limiter becomes

$$
\begin{equation*}
f_{j+\frac{1}{j}}^{C}=S_{j+\frac{1}{2}} \max \left[0, \min \left(\left|\int_{j+\frac{1}{j}}^{A 0}\right|, S_{j+\frac{1}{2}} \dot{\mu}_{j-\frac{1}{2}}^{\dot{a}_{j-\frac{1}{2}}^{h}}, S_{j+\frac{1}{\mu}} \dot{\mu}_{j+\frac{1}{k}}^{A} \dot{a}_{j+\frac{1}{h}}^{A}\right)\right] ; \tag{5.206}
\end{equation*}
$$

where

$$
\dot{\mu}_{i+\frac{1}{2}}^{k}=\psi\left(\dot{a}_{j+\frac{1}{k}}^{k}\right)
$$

of

$$
\dot{f}_{j+\xi}^{k}=\psi\left(\dot{a}_{j+k}^{k}\right)-\sigma\left(a_{j+k}^{k}\right)^{2}
$$

The modified.flux FCT method becomes

$$
\begin{align*}
& \operatorname{minmod}(n)=S_{j+\frac{1}{2}} \max \left\{0, \min \left(\frac{1}{2} n\left|f_{j+\frac{1}{1}}^{A D}\right|, n S_{j+\frac{1}{k}} \mu_{j-\frac{1}{j}} a_{j-\frac{k}{k}}^{k}\right),\right. \\
&\left.\min \left(n \mu_{j+\frac{1}{j}}\left|a_{j+\frac{1}{k}}^{k}\right|, \frac{1}{2} n S_{j+\frac{1}{j}} f_{j-\frac{1}{j}}^{A D}\right)\right\}, \tag{5.20c}
\end{align*}
$$

where

$$
\mu_{j+\xi}^{A}=\frac{1}{2} \psi\left(a_{j+1}^{a}\right)
$$

or

$$
\mu_{j+\xi}^{k}=\frac{1}{2}\left[\dot{(}\left(a_{j+k}^{k}\right)-\sigma\left(a_{j+\xi}^{k}\right)^{2}\right] .
$$

Again the F(TT corresponding to the symmetric TVD schemes would require that (5.20 b) be divided by two and the first step of the FCT removed from the algorithm. In the next section, the effects of these changes in the FliT is presented and compared with other standard methorls.

It has come to my attention thai Harten has developed similar ideas in [178). These ideas are directly relaterl to Harten's modified fiux algorithm.

5.3 Results

To gauge tine capability of the methods discussed in the previous sections, three teas problems were solved with the PCT methods and several orber high-resolution finitedifference methods. The other methods used are not described in detail here. The first test problem solves a scalar advection equation, on a uniform grid. Two problems are considered: a square wave and a sine wave over a complete period. Both waves
have an amplitude of one. The second problem is the inviscid Burgers' equation with initial data of a sine wave on a periodic domain with an amplitude of one. This solution is compared with the exact solution and th:e corresponding error norms are used to show convergence and order of approximation in these ncrms for the various methords. Finally, the shock tube problein used by Sod [41] is used as a vehicle for comparison of these methods for their use with systems of hyperbolir conservation laws.

The test problems are discussed in more detail in Appendix A. Specific differences in the use of the problems is given in the discussion.

5.3.1 Scalar Advection Exuation

For the scalar advection of a square wave with a uniform velocity, the FCI performs quite wel! with very litele numerical diffusion present in the solution. These solutions are obtained for a CFL number held constant at $1 / 2$ after 80 time steps.

As shown in Fig. 3.2 (a), the square wave is captuird quite well by the difference schence. however, there is a distinct lack of symmetry in the solution. This lack of symmetry is evident in this version of the PCT dessite the choice of th: CFL number (which should lead to symmetric results. ideally). This can be attributed to the use of anti-upwind data by the limiter. This is more evident in Fig. 5.2 (b), but also .vident is the overcompressive nature of the scheme. The sine wave is in the process
heing compressed into two square waves. This behavior is clearly unacceplabla 1, use the character of the waves is largely deatroyed by this algorithm. Figure 3.5 :r.s.s that the new FCT algorithm is somewhat more diflusive (leas compressive) and he more of the expected symmetry in the solution. Figure 5.3 (b) still shows liL. a t h his algorithm remains too compreasive despite being TVD. One negative appect ut inis calculation is the clipping of the extrema with respect to the previous figure, ad. tough overall this solution is superior in most respects to Zaleak's FC7.

By using the Lax-Wendroff fluxces as the base for the antidiffusive fluxes, the paitlem of overcompression is eliminated from both algorithms. This is at the cost ofsume clipping of the solution's extrema. The clipping in Fig 5.4 is less than that in eig. 5.5, but at the cost of the symmetry of the soluticn. The lack of symmetry is caised by the use of a computational velocity rather than a physical velocity in the liriter in Zalesak's FCT. Despite the dimensional consistency, this choice leads to incorrec! local propagation speeds when the local gradients are chosen in the limiter, thus destroying the symmetry. The upwind bias is more eviden! in Zalesak's FCT, but is present in both swlution terhniques. This is caused by the first step of the FCT for Zalesak's algorithm, but in the new FCT, the use of the first step mitigates a lack of symmetry.

Figures 3.6 and 5.7 show the impact of the choire of \boldsymbol{n} in the modified.flux FCT formulation (and for that matter other implement stions of limiters). The fower salue

Figure 5.2: Solution of the scalar advection equation with Zaleak's FC' wilh the high-order flux defined by second-order central differencing.

Figure 5.3: Solution of the scalar advection equation with the new FCT with the high-order flux defined Defined by second-order central differencing.

Figure 5.4: Solution of the scalar advection equation with Zalesak's FCT with the high-order flux defined defined by Lax-Wendroff differencing.

Figure 5.5: Solution of the scalar advection equation with the new FCT with the high-order flux defined by Lax. Wendroff differencing.

Figure 5.6: Solution of the scalar advection equation with the modified-flux PCT ($n=1$ limiter).

Figure h.in: Solution of the scalar advection equation with the modified-flux FCT ($n=2$ limiter).

Figure 5.8: Solution of the scalar advection equation with a symmetric TVD scheme.
of n results in solutions that exhibit a great deal of dissipation and clipping of extrema. Fo: the $n=2$, solution is of high quality with the clipping of extrema quite controlled. This solution nearly equals that of the other FCT forinulations for the square wave. For the siue wave, despite some clipping, the overcompression has disappeared with the character of the original profile well preserved.

The symmetric TVD algorithm (second-order in both time and space) produces results similar to the new FCT, but with a lack of symmetry. This can be cured with a predictive first step as with the FCT. As Fig. 5.8 shows, both exhibit a fair amount of extreina clipping and lack of symmetry. These are similar to the results obtained in Fig. 5.2 with Zalesak's FCT, but are more diffused.

5.3.2 Burgers' Equation

In all cases, the solutions obtained by using the high-resolution algorithms on Burgers' equation are quite good in terms of quality. Little would be gained by simply viewing their profiles (they are similar to the results in [110] for a TVD algorithm). By nature these high-resolution methods produce results that are first-order accurate in the L_{∞} norm and approach second-order acruracy in the L_{1} norm. In the next four figures discussed, figure (a) is for time equal to 0.2 when the solution remains smocth, and (b) shows the error norms (L_{1}, L_{2} and L_{∞}) at time equal 1.0 after a shock has formed. For the methods used, each is second-order in time and space with the exception of the fourth-order FCT method, which is fourth-order in space. Second-order temporal accuracy is obtained by using a Lax-Wendroff t:pe formulation. These calculations are all done with σ held constant.

In Fig. 5.9 the solution for $t=0.2$ converges in the expected fashion, but at $t=1$ problems are present with the convergence in the L_{∞} norm. As the grid is refined, the L_{∞} norm error increases rather than decreases as expected. As the grid size is further jecreased convergence resumes, but is quite slow (about order $1 / 4$). Figure 5.10 shows ti-at the convergence properties of the fourth-order antidiffusive flux do not converge at a tourth-order rate and are in fact worse than those shown in the previous figure. The nonconvergence in the L_{∞} norm for intermediate grid sizes for the $t=1$ case is comparable. The new FCT algorithm shows slight improvements over both of these cases, but still has the same difficulties after a shock nas formed in the solution. As st.own by Fig. 5.11, the solutions converge faster than Zalesak's FCT, but are still plagued by some of the same problems. This behavior is also shared by the symmetric TVD's results in Fig. 5.3.2. The symmetric TVD does not converge as well as the new FCT method, but the nonconvergence problem is not as pronounced although it is clearly present.

The similarity of the solutions for the two FCT methods and the symmetric TVD adgorithm, and the lack of such a problem in the modified-flux TVD method points to the form of the limiter as being the problem. The FCT and symmetric TVD use

Figure 5.9: Convergence of error norms for Burgers' equation for Zalesak's FCT with the high-order flux defined by Lax. Wendroff differencing.

Figure 5.10: Convergence of error norms for Burgers' equation for Zalesak's FCT with the high-order flux defined by fourth-order central differencing.

Figure 5.11: Convergence of error norms for Burgers' equation for the new FCT with the high-order flux defined by Jax. Wendroff differencing.

Figure 5.12: Convergence of error norms for Burgers' equation for a symmetric TVD algorithm.
cell－edged liniturs rather that cell－centered limiters．This difference requires that each limiter lias a wider spatial stencil than ihe cell－centered limiter，and as a result the resulting algoithmis inot as sensitive to the presence of a discoutinuity．This lark of sensitivity results in a poorer handling of shocks and discontinuities．The FCT is less diffusive than the symmetric TVD method，and this lack of diffusion incieases the problem．The results for the fourth－order spatial limiter point out two problems： because the fourth－order spatial diference is more compressive than the second－order difference scheme，the convergence difficulty in the L_{∞} norm at a shock is increased slighty．Experiments with a second－order Runge－Kutta time integration scheme show iniprovements in the L_{1} couvergerice of the FCT．

5．3．3 Sod＇s Shock Tube Problem

The third problem involves the solution of Sod＇s test problem which tests the mettle of each algorithm against a diff：cult physical problem．For the FC＇T methods［in the modificd－flux $\mu=1 / 2\left(\mid a!-\sigma a^{2}\right) \mid$ ，the Lax－Wendroff flux is used to define the antidiffusive flux．All results were produced for $\Delta t=0.4 \Delta x$ and shown for $t=0.24$ ．

Figure 5.13 shows that the results using Zalesak＇s FCT are rcasonable；，but are pofluted with a fair number of nonlincar instabilities．These insta⿱宀㠯ilities are sig． nificantly worse if the limiter is based on a second－order central differences with numerous small expansion shocks present in the rarefaction fan．Even with the ex－ tra diffusion produced by the Lax－Wendroff flux，an expansion shock is preser：in the rarefaction wave and oscillations are present in the preshock region of the flow． The overall quality of this solution is quite poor．The new FCT formulation produces qualitatively better results that appear to be due to greater dissipation in the achel．se． The expansion shock is no longer present．The overall quality of this solution is ant high because of the considerable smearing of the features of the flow．In Fig．5．14， the results show that a great deal of smearing is present except at the shock wave where the solution is very sharp．In both of these figures the pressure－related terms in the momentum and energy equations are incorporated as source terms rather than as convective fluxes，and are central differenced．

By computing the first step；of the new FCT with Hoe＇s first－order scheme，and using an approximata Riemarin solver to compute the Hux correction，the results are extremely good．As Fig． 5.15 shows，the sinearing of a standard FCT implementation of the new FCT is gone，with the shock buirs；computed with the same crispness． The rarefaction fan is smooth and in good agreement with the exact solution．The resolution of the contact discontisuity is somewhat smeared but is afceptable．

The modified－flux Fr：T（Fig．j．16）has slightly poorer resolution of the contact discontinuity，but computes the shock in a sharper fashion．The overall quality of the solution is nearly identical to tire previous case．In this case the value of $n=1.5$ was used on all three fields．Better resolution oi the contact discontinuity conld be
obtained with the $n=2$ limiter. The final two figures are shown for comparisoll with the previous figure:s. The symmetric TVD method (Fig. 5.17), gives adegutate solution although the amount of smearing exceeds that of the other methods i:scorporating Roe's approximatc Riemann solver. The UNO method (impiemented with a method similar to the modified-flux TVD algorithmn) was used to contpute the solution shown in Fig. 5.18. This solution is of a quality similar to that found in Fig. 5.16 with slightly better resolution of each of the features of the flow.

5.4 Concluding Remarks

The inodifications proposed in this work oll the FC'T algorithm of Zalesak have proved to be quite successful in terins of performance and in terins of yielding a better understanding of che FCT algorithm in general. These nodifications give an algorithm that is fo:: ..ly second-order in both time and space. Also, the extension of this method to $\because \because$ stems of equations is a good deal more effective than the typical extension of the FCT to systems. The notion that the FC'T algoritism for certain cases may be TVD (subject to certain restrictions on the CFL number) is quite gratifying. It is perhaps more useful to consider the flexibility of the formulation of this FCT with respret. to a wider range of ligh-order fluxes. This gives the prospect of formulating solutions that have higher orders of approximation than previously attempted and also have a reasonable extension to systems of equations.

Futire work includes the modification of the FCT to include MUSCL-type schemes as well is the appropriate generalization of Zalesak's multidimensional limiter to these types of m thods. As mentioned earlier, these methods, once cast in the appropriate form, call be used for implicit time integration where the necessary form is similar to that fom in TVD implicit formulations. Tests on simple test problems indicate that these methods are unconditionally stable.

The initia' motivation of this work was to tie together in a more coherent fashion the various modern high-resolution methods for numerically solving hyperbolic conservation laws. This work should be considered a start, with the advances mentioned above, as progress toward this goal.

The next chapter explores the topic of this chapter further. The link between fluxcorrected transport and high-order Godunov schemes is shown and explored further.

Figure 5.13: Solution of Sod's shock tube problem with Zalesak's FC'T.

Figure 5.13: continued.

Figure 5.14: Solution of Sod's shock tube problem with the new FCT.

Figure 5.14: continued.

Figure 5.15: Solution of Sod's shock tabe problem with new FCT with Roe's approximate Riemann solver used to define both lows and high-order fluxes.

Figure 5.15: continued.

Figure 5.16: Solution of Sod's shock tube problem with the modifill.Hux FCi and $n=1.5$ limilers on all fields.

Figure 5.16: conlinued.

Figure 5.17: Solution of Sod's shock tube problem with a symmetric TVD algorithm.

Figure 5.17: continued.

Figure 5.18: Solution of Sod's shock tube problem with a UNO limiter and a modifiedflux TVD algorithm.

Figure 5.18: continued.

Chapter 6.

A Generalized Flux-Corrected Transport Algorithm: A Geometric Approach

Abstract

It is written in the language of wathentatics and its characters are triangles, circles, and other geouctrical figures without which it is hunaanly impossible to understand a single word of it; without these, oue is wandering about in a dark labyrinth. Gailen Cialilei

6.i Introduction

The work oi Godunov [56] has led to inany strikiug advances that have been made in the numerical solution of (2.3a). In a series of pajeres, vall leer [120.60] spearheaded the modern developntent of $H O C$ algorithms. Godunov's method and van lecr's extensions use polynomial representations of the conserved variables in each grid cell in the process of computing the solution. These piecewise polynomials can be discontinuous at grid cell interfaces and as such require some closurc at these interfaces to compute the numerical fluxes. 'lypically this closure uses the local solution to a Riemann problem tirough either an "exact" or approximate [63] Riemann solver.

Colella and Woodward [122] advanced the rethod developed by van Leer with their PPM. This method is still considered a premier methods for computing the solutions to (2.3a) ||29]. Several theoretical advances have been made as well as the more practical ones. Harten's theory of TVD schemes [130, 61j made great strides toward understanding the theoretical properties of methods like van Ieer's and those discussed below. Although these methods were first formulated as cither purely Lagrangian or Eulerian through a combination of a l.agrangian step plus a remap step, these also can be used in a purely Einlerian context [123]. The nethods derived in this chapter also can be used in either of these forms, but the description found below is presented in a purely Eulerian context.

Several different varieties of TVD methods have been introduced, such as the modified flux formulation from Harten and several "symmetric" TVD schemes. Roc introduced one form of TVD scheme [|3|]. Davis [133] also presents a method of the same general form. Sweby [132] and Roe [176] present a similat method, but the limiters are of an upwind-biasei nature. Yee [134] christened these schemes as symmetric TVD schemes. The general form of symmetric TVD schenies can be looked at in several different ways: as an advanced fornt of artifirial dihusion, a Lax. Wendroff method [58] with an additional dissipative flux to ensure a TVI) solution, or a TVD
nethod that is symmetric in its stencil whenever (dic limiter is not present. Another view taken in this chapter, more closely ties this formulation to that introduced by van leer. This viewpoint has been used in the derivation of TVD methods by several authors. The TVD analog to van Leer's MUSC:I. scincme was discussed by Osher [179]. Goodman and LeVesque [135] took a geometric view was in deriving a TVD method.

Aroohef modern advectivis algorithmalan can b \cdot viewed along these lines. Pesbaps the first modern algorithm t.0 recognize the necessity of nonlinearity in the difference scheme was the method of Hux-corrected transport (FCT) as introduced by Boris and Book [59]. This method was developed with the recognition of the theorem of Godunov, which states that nt, algorithm can be both linear and second-order accurate: This theorem dues not preclude the possibility of producing a "monotone" second-order scheme, but viniply states that such a mothod cannot be linear in nature. Thus, the FCT was a nonlinear blending of high- and low-order numerical fluxes. which ensures the lack of disieersive ripples. In a series of papers [59, 140, 141, 142, 62], this method has been revised and extended. The author recognized that the FCT and the symmetric TVD of Yee were very similar ise terms of form and could easily be unified into a single general algorithm developed in Chapter 5.

At this point it is useful to delineate the difference between slope and flux limiters more closely. This is done from the standpoint of a philosophical differentiation rather than from a purely lechnical basis. The slope limiters can be thought of as being used directly during interpolation. Flux limiting usually involves methods that are classified as finite-difference types. Thus slope limiting applies to HOG schemes and the flux limiting appiies to TVD and FCT algorithms. One caveat can be piaced on this classification: it is not stringent. An example of this is the ENO schemes from Shu and Osher [65,66]. where flux limiters are used. Previous work with ENO schemes proceeded from the standpoint of slope .imiters.

In extending the methods to systems of equations, the TVD and HOG type methods use Riemann solvers, which have many exceptional theoretical and aesthetic appeals. The extension of F(YF. on the other hand. is usually extended in what seems an ad hoc formulation [143, 144|. In Lagrangian coordinates this might seem somewhat less so, as the splitting between sound waves and fluid motion is somewhat built in. but the same principles apply as with the Euler rquations (see Appendix B). In this regard, ifeei that there is no reason why the Riemann soivers, which have been so successful with TVD type methods, cannot be used with FCT.

With this in mind, the generalization of the FC'I algorithm from a geometric point of view is discussed brelow. This discussion alse holds for the symmetric type of TVD scheme and serve as an extension of this method. Through the use of ideas of UNO schemes, these algorithms are extended to higher than first-order accuracy in the maximum norm.

This chapter is organized into four sections. The second section first reviews modern high resolution algorithms. The geometric analog to the symmetric TVD scheme
is then intioduced. 'This method is also extended from a linear to a quadratic reconstruction schenue. Uuifornuly nonoscillatory schemes are also discussed. Following this presentation, results for the schemes de'eloped here are given for several test problents: the scalar wave equation, Burgers' equation and the Euler equations. The fourth section gives closing remarks and conclusions.

6.2 Method Development

In this section, the unified description of the symmetric TVD and FC' methods is reviewed. It should be noted that this is in a finite difference form, rather than a finite volunic form. Following this brief review, the finite volume methods as typified by the Godunov and HOG algorithms are described. A tic between these methods is drawn along the same lines as the modified flux TVD scheme of Harten is related to the inethods developed by van Leer. Several variants of the geometric FCT is given along with their description and mathematical properties.

6.2.1 Review of Modern Advection Algorithms

In previous work, I drew parallels between the symmetric TVD methods and the various FC'T methods [6]. Specific parallels between the symmetric TVD methods and the extension of the FCT as given by Zalesak are concentrated on, with several improvements suggested for the FCT methods.

The specific form of the symmetric TVD schemes for (2.3a) is

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\sigma\left(j_{j+\frac{1}{j}}-j_{j-\frac{1}{2}}\right) . \tag{6.1a}
\end{equation*}
$$

where $\sigma=\Delta t / \Delta x, \Delta x=x_{j+\frac{1}{2}}-x_{j-\frac{1}{2}}, \Delta t=t^{n+1}-t^{n}$, with

$$
\begin{equation*}
\dot{f}_{j+\frac{1}{2}}=\frac{1}{2}\left(f_{j}+f_{j+1}\right)+\phi_{j+\frac{1}{2}} . \tag{6.1b}
\end{equation*}
$$

being the numerical flux; also defined are $x_{j+\frac{1}{2}}=\frac{1}{2}\left(x_{j}+x_{j+1}\right)$ and $x_{j-\frac{1}{2}}=\frac{1}{2}\left(x_{j-1}+x_{j}\right)$. The term $\phi_{j+\frac{1}{2}}$ is the numerical dissipation function, which is the key to obtaining high-order accuracy without dispersive ripples. For example, the form for this function for donor cell or upwind differencing is

$$
\begin{equation*}
\phi_{j+\frac{1}{2}}^{D C}=\frac{1}{2}\left|a_{j+\frac{1}{2}}\right| \Delta_{j+\frac{1}{2}} u, \tag{6.2}
\end{equation*}
$$

where a the characteristic speed $\partial \int / \partial u$, and $\Delta_{j+\frac{\xi}{u}}=u_{j+1}-u_{j}$. If the method is used to solve a system of equations, then some modification in the definition of the above terms is in order.

For the FC1', the overall dissijation finuction is aldined by

$$
\begin{equation*}
\phi_{1+\frac{1}{2}}^{F C \cdot T}=\phi_{1+\frac{1}{2}}^{D C}+\phi_{1+\frac{1}{2}}^{A} . \tag{i.3}
\end{equation*}
$$

where $\phi^{\boldsymbol{A}}$ is the linited difference between the a high-order flux and the donor cell flux (or another appropriate monotour scheme). This terin is also kunwil as the autidiffusive flux. The synnmetric TVI) scheme has its dissipation functic stated as [13.1]

$$
\begin{equation*}
\phi_{j+\frac{1}{2}}^{S Y M}=\left[\left.\left(\left|a_{j+\frac{1}{2}}\right|-\sigma a_{j+\frac{1}{2}}^{2}\right) Q_{j+\frac{1}{2}}-\left|a_{j+\frac{1}{2}}\right| \right\rvert\, \Delta_{j+1} u .\right. \tag{6.1}
\end{equation*}
$$

where $Q_{j+\frac{1}{2}}$ is a function of a the local gradients, $\Delta_{j_{-\frac{1}{2}}} u, \Delta_{j+\frac{1}{2}} u$, and $\Delta_{,+\frac{j}{2}}$ " where

$$
\begin{equation*}
s_{t+\frac{1}{2}}=\frac{\Delta_{\mu+\frac{1}{2}} u}{\Delta_{\mu+\frac{1}{2}} r} . \tag{6.5}
\end{equation*}
$$

The actual limiters used are describel in detail in ('hapter 8.
If the high-order tlux used in the FC'T is a Lax-Wendroff flux, these two metheds are virtually identical. To show this recouires that the flux limiter used in the FCI be changed slightly. J'he multipliers of the local gradient terms need to be changed froin $\sigma^{-1} t 0|a|-\sigma a^{2}$ as suggested by the alithor in the previous chapter. In that chapter, parallels between both symnetric 'l'VD) and the modificd flux TVD scliemes and the FCl' were described. The redefined $1: C T$ algorithm is shown to produce TVD results.
'Ilee modified TVD method is simply a finite difference analog to a second-order Godunov method like that of van leer. For a scalar advection equation, the two methods are identical if the slope limiter used in the IIOG nethod is equivalent to the flux limiter used in the TVD scheme. A IIOG method is described tiy Algorithm I with the only difference being the order of the interpolation used in the reconstruction step being higher than zero. As stated earlier, this algoithin can take the form of either a totally Eulerian algorithm, or a lagrangian solution (the local solution step) with an Eislerian remap (overall solution step). Hligher order schemes are produced with higher order prescriptions (duriag the reconstruction step) for the function $\boldsymbol{P}_{\mathrm{j}}(\boldsymbol{x})$, such as those produced by MUSCI., PPM, UNO nr ENO methods.

6.2.2 Geometric Symmetric TVD and FCT Schemes

I he l.ax. Wendroff method [58] is the canonical classical second-order method. This method produces second-order solutions, tilt with spurious oscillations near discontinnities, thus raising the possibility of prociucing negative values of positive definite values such as density or pressure. With several observations about the l.ax-Wendroff method and the symmetric TVD scheme (and its relation to FCT) a geometrically based algorithm can be found. From the standpoint of algorithmic description, geometrir depiction is particularly useful. Normally, the method of l.ax. Wendrof is

Figure 6.1: A geontetric interpretation of the b.ax. Wendroff method is given. This shows how this method consists of a simple linear averaging with an "upwind" correction to give time centered flux functions.
descrihed as a finite-difference algorithm; however, it also can be described geometrically.

It is wrll known that the second-order central difference scheme with forward Euler time dill-rencing is unconditionally unstable. This can be easily verified with Von Vermann stability analysis, but I proceed from a different standpoint. First, some nomenclature lieeds to be introduced. The flux functions for difference schemes of the form are functions of the deprndent variables and can be written in terms of interpolating polynomials. Thus, given a piecewise polynomial, $P,(x)$, that interpolates the dependent variable u, the flux functions can be written

$$
\begin{equation*}
f,(11)=\int[P,(x)] \tag{6.6}
\end{equation*}
$$

With this definition, the prol,lem reduce:s to approximating the dependent variables on a grid atul computing the valure of the interpolant at cell edges.

The lax. Wendroff in:thod was infined in Chapter 3. The symnetric TV!) scheme is thought to be the Lax-Wendroff se incone plus sorne upwind-biased, nonlinear numerical diffusion. The canonical upwiud scheme is Godunov's nethod, which is based on a geometric derivation. (:ombining this fact with the above discussion shows in a heuristic sense that the symmetric TVD scheme has a geometric analog. Dow I will be somewhat more concrete in the derivation.

Lemma 1 The symmetric TVD method can be defined in terms of the reconstructive polynomial

$$
P_{,}(x)=\left\{\begin{array}{l}
u,+j_{j+\frac{1}{}}\left(x-x_{j}\right): x \in\left[x,, x,+\frac{1}{}\right] \tag{6.7}\\
u,+j_{,-\frac{1}{j}}\left(x-x_{j}\right) ; x \in\left[x,-\frac{1}{2}, x_{j}\right]
\end{array} .\right.
$$

 polylumillal shown aloove coll be v.rilleu

The alocivion about which, polynonial to use at each flux interface pequires the invoca-
 for the wial.r case. Thaing $a>0$ (the case where $a<0$ is analogous), (6.8) beconses
and substititing the aluve ilefinitions of x^{f}; and x^{R}. (3.|3a) and (3.|3b), gives

$$
\begin{equation*}
r_{1}^{H}=x_{, H}-\frac{a \Delta t}{2}, x_{,-1}^{N}=x_{1-1}-\frac{a \Delta t}{2} \tag{6.9b}
\end{equation*}
$$

which in turn gives

$$
\begin{equation*}
r_{1}\left(r^{\prime \prime}\right)=: 11,+\dot{s}_{j+\frac{1}{2}}\left(x_{j+\frac{1}{2}}-\frac{a \Delta t}{2}-x, j,\right. \tag{6.9c}
\end{equation*}
$$

with $\prod_{j,-1}^{H}$ defincel abloslogously. This ergliation can be simplified to

$$
\begin{equation*}
f_{j}\left(f_{j}^{R}\right)=\|,+\dot{i}_{,+\frac{1}{2}}\left(\frac{\Delta x_{j}}{2}-\frac{a \Delta \ell}{2}\right) . \tag{6.9d}
\end{equation*}
$$

defining $\Delta_{j+\frac{1}{2}} \|=\dot{s}_{,+j} \Delta_{s, \text { utd }}$ seting $\Delta_{r}=\Delta_{x_{j-1}}$. Thesc cquations can be written as

$$
\begin{equation*}
u_{1}^{n+1}=u_{;}^{0}-\sigma a\left(u_{1}^{n} \cdots u_{j, 1}^{n}\right)+\sigma a\left(1-\frac{n a}{2}\right)\left(\Delta_{,+\frac{1}{2}} u-\Delta_{,-\frac{1}{2}} u\right) . \tag{6.9c}
\end{equation*}
$$

Wri illg the cell colge: flux for the alowe scheme gives

$$
\begin{equation*}
\dot{f}_{2+\frac{\xi}{}}=a 111_{j}^{n}+a(1-\pi a) \widetilde{\Delta_{j+j}}{ }^{1 n} . \tag{6.9f}
\end{equation*}
$$

which ran ber rewritten as

$$
\begin{equation*}
\dot{f}_{j+\xi}=\frac{11}{2}\left(11_{j}^{n}+u_{j+1}^{n}\right)-|a| \Delta_{j+\xi} u+\left(|a|-\sigma a^{2}\right) \Delta_{,+\frac{\xi}{}} u . \tag{6.9g}
\end{equation*}
$$

wherc $\Delta_{j+\frac{1}{2}} u$ ran bre written $Q_{j+\frac{1}{2}} \Delta_{j+\frac{1}{}}$. This is simply the symmetric TVD scherne as givern liy (6.1 l) with (6.4) and this is also a geometric analog to the $\mathrm{F}^{\prime} \mathrm{C}^{\prime} \mathrm{C}$ algorithm. U

III [134]. the comditions for the above scherne to be TVI) are stated. By writing

Figure 6.2: The symusetric TVD schemes geonetric analog is similar to the LaxWendroff method, with the major difference being the limiting of the slopes. This leaves the scheme with $C^{(1)}$ continuity, but not C^{0} continuity.
of the time centering of the fluxes ($\theta=0$, explicit scheme using forward Fiuler time differencing) and are written as

$$
\begin{gather*}
Q_{,+1} \leq \frac{2}{1-\nu}, \tag{6.10a}\\
\frac{Q_{J+1}}{r^{-}} \text {or } \frac{Q_{,+1}}{r^{4}} \leq \frac{2}{\nu(1-\nu)}-\frac{2}{1-\nu} \tag{6.10b}
\end{gather*}
$$

and

$$
\begin{equation*}
\nu \leq 1 \tag{6.10c}
\end{equation*}
$$

This assumes that both Q and Q / r are positive. Without these assumptions the conditions above take a urore complicated form, but allow a slightly larger set of Q functions.

Figure 6.2 shows the pictorial represer ation of this scheme. For the scalar wave cquation, this method and the classic symmetric TVD are equivalent, but for nonlincar problems the two methods are as different as Harten's modified TVD is different from the corresponding MUSCl. scheme.

6.2.3 Parabolic Symmetric TVD and FCT Schemes

If one proceeds aloug this line of thought and considers a polynomial approximation, it is notable that three conditions exist for each grid cell in the above scheme, and that one degree of freedom is not fully utilized. These conditions are

$$
P_{j}(x,)=u,: \frac{d P_{j}}{d x}\left(x,-\frac{1}{\xi}\right)=s_{j-\frac{1}{j}} ; \frac{d P_{j}}{d x}\left(x,+\frac{k}{j}\right)=\dot{s}_{j+\frac{1}{2}} .
$$

thus a milique parabola call loe fit ill mach cell. Tat illg the form

$$
\begin{equation*}
P_{1}(\theta)=A,(s-s,)^{2}+B,\left(x-r, 1+C_{0},\right. \tag{6.11a}
\end{equation*}
$$

the corefficients afte defined

$$
\begin{align*}
& A_{1}=\frac{i_{1+\frac{1}{2}-i_{,-1}}^{2 \Delta r}}{2} \tag{iG. 111.1}\\
& H_{1}=\frac{i_{\mu+\frac{1}{2}+i_{,-\frac{1}{2}}}^{2}}{} . \tag{6.11r}
\end{align*}
$$

and

$$
\begin{equation*}
r_{i},=u, \tag{6.||d}
\end{equation*}
$$

Thiss. the interpolant ran be writtern for completeness:

This prolynomial describes what I call the parabolic FC"T when נsed with the convective algorithon descrined by (6.5). It shrolld the noted that the temporal integration can ber accolliplished by other means such as a multigtage algorithon.

1 luw seck to prove under what ronditions this algorithrn produres TVI) results These conditions defium the ablowable values of the cell edge slipes. $i_{1} \pm \frac{1}{2}$.

Theorem 6 The parabolic symmetric TVD and F(.T method derired above i.s Tl'I) under the follouing conditions:
 than or equal to $|A / 3|$.
2. If the slopes $\mathrm{S}_{\mathrm{taj}}$ are required to be of the same sign. the function $\boldsymbol{Q}\left(r^{-}, 1, r^{+}\right)$ must be less than or equal to $8 / 3$.

Proof. For the following proof, only the spatially accurate case is studied. thus to some extent this study is limited to the semi-discrete version of the equation. Thus the TVD conditions [180] shown above are simplified to

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\left(: \Delta_{,+\xi} u-D, \Delta,-\frac{\xi}{u}\right. \tag{6.12a}\\
C_{, j} D, \geq 0 \tag{6.12b}
\end{gather*}
$$

For titue integration typically a l.ax. Wendroff or Cauchy-Kowsaleski procedure is appliort. which in some sense is characierintic tracing. Runge. Kutis algorithms also call i,e used, although for the corremponding composice algorithm, the Runge. Kuta
methods are not classical in form [160]. In general, careful analysis must be applied to deternine the stability sequirements.

Examining the case where $a>0$, with the case where $a<0$ yielding equivalent results. Given this characteristic speed, (6.12a) with (6.11a) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{a}{\Delta x}\left(u_{j}^{n}-u_{j-1}^{n}\right)-a\left[\left(\frac{3}{8} s_{j+\frac{1}{2}}+\frac{1}{8} s_{j-\frac{1}{2}}\right)-\left(\frac{3}{8} j_{j-\frac{1}{2}}+\frac{1}{8} j_{j-\frac{1}{2}}\right)\right] . \tag{6.13}
\end{equation*}
$$

Setting C, $=0$ and rewriting the above equation in a form amenable to analysis produces

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-a\left[1+\left(\frac{3}{8} \frac{Q_{,+\frac{1}{2}}}{r^{-}}-\frac{1}{4} Q_{j-\frac{1}{2}}-\frac{1}{8} \frac{Q_{,-\frac{1}{2}}}{r^{+}}\right)\right] s,-\frac{1}{2} . \tag{6.14}
\end{equation*}
$$

It should be noted that all the three parameter limiters that would be used with the
 gradients [132, 176]. Putting this form into the form useful for analysis and using the 'TVD conditions discussed above

$$
\begin{equation*}
\frac{a}{\Delta x}\left[1+\left(\frac{3}{8} \frac{Q_{j+1}}{r^{-}}-\frac{1}{4} Q_{j-\frac{1}{2}}-\frac{1}{8} \frac{Q_{,-1}}{r^{4}}\right)\right] \geq 0 \tag{6.15}
\end{equation*}
$$

allows the proper conditions on $Q(u)$ to be eatablished for TVD solutions. If I set $Q_{,-\frac{1}{j}} / r^{+}=Q_{,-\frac{1}{2}}$ as a bound and simplify accordingly. the above condition becomes

$$
\begin{equation*}
a\left[1+\left(\frac{3}{8} \frac{Q_{j+1}}{r^{-}}-\frac{3}{8} Q_{j-\frac{1}{2}}\right)\right]=0 \tag{6.16}
\end{equation*}
$$

This simplification seems a quite reasonable bound in ligi: of the functiona! form of the flux/slope limiters.

For the first of the two cascs, the proof is

$$
\begin{equation*}
\frac{3}{8}\left(Q_{,-\frac{1}{2}}-\frac{Q_{j+1}}{r^{-}}\right) \leq 1 \tag{6.17}
\end{equation*}
$$

which gives the condition that $|Q(u)| \leq \therefore \beta$. This corrcapond's to the limiter of the "minbar" type that is defined by

$$
\dot{\operatorname{m}}_{a}=\left\{\begin{array}{l}
a c|a|=\operatorname{iaf}(|a|,|b|,|f|) \tag{6.18}\\
a b|b|=\inf (|a|,|c|, \cdot f \mid) \\
a c \text { otherwise }
\end{array}\right.
$$

where a is a constant that is $0 \leq a \leq 4 / 3$ to produce a TVD solution.
Before going onto the second casc, certain caveats should be applied to this class
of limiter. Although the "minbar" limiter is a TVD limiter int the sense of llarten's definition of TVD) selhemes, it is not a classic "monotonicity" linater, similar to the type derived by van leer [120, 60], and thus has some fewer favoralile geometric properties. The act of not necessarily clipping at extrema yields construction of new extrenta near extrema, in the data, which are not necessarily physical. This may not be much of a problein if one takes the ENO philosophy of simply seeking the suroothest available interpolant within some local support. Nevertheless, care should be taken in applyiug this limiter as the results section shows.

The second rase proceeds rmch in the same way and yields a class of limiters that are very similar to the "classic" TVI) liniters. For the abuve-stated conditions for positive definite values ef $Q(u)$ changes the furin of (6.17) to

$$
\begin{equation*}
\frac{3}{8} Q_{,-\frac{1}{2}} \leq 1 \tag{6.19a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3}{8} Q_{,+\frac{1}{2}} \leq r^{-} . \tag{6.19b}
\end{equation*}
$$

which gives a litmiter such that $0 \leq Q(u) \leq 8 / 3$. In the same fashion as TVD limiters, the coultpression applied by the limiter grows with the increasing value of the limiter maxinum. Thus the limiter associated with the scalar, $8 / 3$, would correspond to the "superbee" limiter defined by Roe |176]. 0

A three-parameter limiters of the form discussed carlier are within this class. In addition, some general useful forms of this class of linniter would be

$$
\begin{equation*}
Q_{f}=m\left[\frac{4}{3} r^{-} \cdot \frac{4}{3}, \frac{4}{3} r^{+} \cdot \frac{1}{2}\left(r^{-}+r^{+}\right)\right] \tag{6.20a}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\frac{1}{3}}=m\left[\frac{8}{3} r^{-}, \frac{8}{3}, \frac{8}{3} r^{+} \cdot \frac{1}{2}\left(r^{-}+r^{+}\right)\right] . \tag{6.20b}
\end{equation*}
$$

The order of accuracy of the limiters discussed above provides tl.e parabolic FCT algorithm. To do this, the methods described by Sweby [132] will be used. Without difficulty it can be shown that the same region of the limiter curves can be obtained if the limiters discussed by Sweby are multiplied by $4 / 3$.

A problem with this method common to all typical second-order (or higher) TVD methods is that they are order one accurate in the L_{∞} norm [64]. To overcome this requires that the method be reformulated.

Using the upwind, two parameter limiters in conjunction with this method would violate the assumption made is simplifying (6.15) to (6.16). From a heuristic standpoint, this would imply the use of data at points downwind of the limiter's stencil, which would lead to instabilities.

6.2.4 UNO Symmetric TVD and FCT Schemes

lon give the method described in the previous section, higher than first-order accuracy in the $l_{. \infty}$ llorill, the symnectric and parabolic schemes are redefined by changing the form of the slope liuniters.

The following lemma nuotivates the first of these proposed schemes:
Lemma 2 The interpolant defined by (6.7) interpolating in the interval $\left\{x_{,-\frac{1}{2},} x_{j+\frac{1}{2}}\right]$ has a local maximum or minimum in this interval if and only is the slopes, $\dot{s}_{j-\frac{1}{2}}$ and $j_{j_{+j}}$ are opposilc in sign.

Proof. 'To prove this, take the derivative of the polynomial defined by (6.7) giving

$$
\frac{d P(x)}{d x}=\left\{\begin{array}{ll}
i_{,-\frac{1}{}} & x \in\left[x_{j-1}, x_{j}\right] \tag{6.21}\\
i_{,+\frac{1}{2}} & x \in\left[x_{,}, x_{j+\frac{1}{2}}\right]
\end{array} .\right.
$$

A monotone piecewise interpolant has the same sign across the interval it interpolates. If the derivative changes sign in the interval, an extrema exists in that interval. Simple inspection indicates that to produce an interpolant with a extrema requires that the cell-edged slopes differ in sign. This shows that $\dot{s}_{j+\frac{1}{2}} \dot{s}_{j-\frac{1}{2}}<0$ produces an extrema in the local interpolant.

Corollary 1 (Lemma 2) If the slopes defining (6.7) are of the same sign, the interpolant is monotone on the interval $\left[x_{j-k}, x_{j+k}\right]$.

Proof. To state that the interpolant is not monotone on this interval would contradict Lemilaa 2 and the definition of monotone interpolation (in a local sense). o
Lemma 3 The parabola defined by ($6.1 / a)-(6.1 / d)$ interpolating in the interval $\left|x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right|$ has a local maximuin or minimum in this interval if and only if the slopes are opposile in sign.

Proof. 'To prove this take the derivative of the polynomial defined by (6.1la) giving

$$
\begin{equation*}
\frac{d P(x)}{d x}=\left(\frac{s_{1+\frac{1}{2}}-j_{j-\frac{1}{1}}}{\Delta x}\right)\left(x-x_{j}\right)+\frac{\dot{s}_{j+\frac{1}{}}+\dot{j}_{j-\frac{1}{2}}}{2} . \tag{6.22a}
\end{equation*}
$$

By setting the derivative to zero the local minima and maxima can be found by

$$
x^{\bullet}=x,+\frac{\Delta x\left(j_{j+k}+\dot{s}_{j-k}\right)}{2\left(\dot{s}_{j-1}-\dot{s}_{j+k}\right)} .
$$

By setting the ronditions for a local extrema to lie in the interval

$$
\begin{equation*}
x_{,+\xi} \leq x^{\bullet} \leq x_{j+\xi} . \tag{6.22b}
\end{equation*}
$$

'lhe values for the slopes that satisfy this inequality call be found through substitution giving

$$
\begin{equation*}
s_{,-\frac{1}{}} \geq 0, \bar{s}_{\jmath+\frac{1}{2}} \leq 0 \tag{6.22c}
\end{equation*}
$$

and by using symusetry this insplies that

$$
\begin{equation*}
\dot{s}_{,-\frac{1}{2}} \leq 0 \text { and } \dot{s}_{,+\frac{1}{3}} \geq 0 \tag{6.22d}
\end{equation*}
$$

also satisfies the inequalities. As with Lemma 2, this shows that $\boldsymbol{s}_{,+\frac{1}{2}}{ }^{\frac{3}{3},-\frac{1}{2}}<0$ producs an extreuta in the local interpolant. In addition, this inequality shows that if the signs of the slopes arr the same any local extre:na, lies outside the interpolated interval. \square

Corollary 2 (Lemma 3) If the slopes defining (6.1la) are of the same sign, the parabola is monotone in the interval $\left.\left\{x,-\frac{1}{2}, x,+\right\} \right\rvert\,$.

Proof. To state that the interpolant is not monotone in this interval would be a contradiction of Lemma 3 and the definition of monotone interpolation (in a local sense).
lhis might cause one to assume that the minbar limiter would suffice here to provide the correct slopes near minima or maxima in the data. But. one problem is that the three paranteter form of the minhar limiter also would allow extrema to be found in cells where no such extrema exists in the data (to the left or the right of a true extrema).

Definition 4 (Harten and Osher [138]) Non-oscillatory interpolation is defined by interpolation $P,(x)$ that has its number of extrema in an interval that is not exceeded by the local cxtrema in the data, $u(x)$.

An UNO type scheme can be dirived oy sonsidering a formulation that is close the original UNO scheme. These sche,nes are also motivated by the desire to have a better grasp on higher e:rder accuracy with the parabolic formulation. 1 begin by defining second-order accurate candidate slopes for the limiters. Consider the determination of $s_{j+\frac{1}{2}}$, which requires candidate slopes $s_{j-\frac{1}{2}}, s_{j+\frac{1}{2}}$ and $s_{j+\frac{1}{j}}$. The candidate slope $s,+\frac{1}{2}$ is already second order in its standard form,

$$
\begin{equation*}
s_{j+\xi}=\frac{u_{j+1}-u_{j}}{x_{j+1}-x_{j}}, \tag{6.23a}
\end{equation*}
$$

because it is a centered approximation about $x_{j+\xi}$, but the other slopes ase not. In order to make these appoximations second-order at $x_{j+\frac{1}{2}}$, a corrective term is

the following approximations are found:

$$
\begin{equation*}
s_{f+\frac{1}{}}=s_{,-\frac{1}{2}}+\Delta x,\left.\frac{d s}{d x}\right|_{x_{1-\xi}}+\mathcal{O}\left(\Delta x_{j}^{2}\right) . \tag{6.23b}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{j+\frac{1}{2}}=s_{j+\frac{1}{2}}-\left.\Delta x_{j+1} \frac{d s}{d x}\right|_{s_{j+1}}+O\left(\Delta x_{j+1}^{2}\right) . \tag{6.23c}
\end{equation*}
$$

where $\Delta x_{j}=x_{1+\frac{1}{2}}-x_{j-\frac{1}{2}}$.
Theorem 7 The method for polynomial reconstruction described by (6.7) or (6.11a) are uniformly non-oscillatory by Definition $\{$ if the cell edge slopes are prescribed as follows:

$$
\begin{equation*}
s_{,-\frac{1}{}}=m\left(s_{,-\frac{1}{2}}+s_{,-\frac{1}{2}}^{\prime} \Delta x_{,-1}, s_{,-\frac{k}{}, s_{j+\xi}}-s_{j+\frac{1}{\prime}}^{\prime} \Delta x_{j}\right), \tag{6.24a}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{s}_{j+\frac{1}{2}}=m\left(s_{j-\frac{1}{2}}+s_{j-\frac{1}{2}}^{\prime} \Delta x_{,}, s_{j+\frac{1}{2}}, s_{j+\frac{1}{2}}-s_{j+\frac{1}{2}}^{\prime} \Delta x_{j+1}\right) . \tag{6.24b}
\end{equation*}
$$

uhere $s^{\prime}=d s / d x$ is defined in a consistent fashion.
Proof. For this proof, as before, I must show that the extrema in the polynomial, $P,(x)$, coincide with the extrema in the given data. As stated in Lemiras 2 and 3 ,
 also signals the presence of an extrema in the data.

The consistent forms for s^{\prime} considered here are

$$
\begin{equation*}
s_{j+\xi}^{\prime}=m\left(\frac{s_{j+\xi}-s_{j+\xi}}{\Delta x}, \frac{s_{j+\xi}-s_{j-k}}{\Delta x}\right) \text {, or } \dot{m}\left(\frac{s_{j+\xi}-s_{j+k}}{\Delta x}, \frac{s_{j+\frac{1}{}}-s_{j-\frac{1}{2}}}{\Delta x}\right) \text {. } \tag{6.25a}
\end{equation*}
$$

with a similar function for $s_{j}^{\prime},-\frac{9^{\prime}}{\prime},-\frac{\}}{\prime}$ and $s_{j+\frac{1}{\prime}}^{\prime}$. The limited slope functions (6.24a) and (6.24 b) can be written in a form similar to the Q functions introduced earlier:

$$
\begin{equation*}
s_{,-\frac{1}{2}}=m\left(r^{-}+\frac{s_{j-\frac{2}{2}}^{\prime}}{s_{j-\frac{1}{2}}} \Delta x,-1,1, r^{+}-\frac{s_{j+\frac{1}{2}}^{\prime}}{s_{j-\frac{1}{2}}} \Delta x, s_{,-\frac{1}{2}},\right. \tag{6.25b}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{j+\frac{1}{2}}=m\left(r^{-}+\frac{s_{j-k}^{\prime}}{s_{j+1}^{\prime}} \Delta x_{j, 1, r^{+}}-\frac{s_{j+k}^{\prime}}{s_{j+1}^{\prime}} \Delta x_{j+1}\right) s_{j+1} \tag{6.25c}
\end{equation*}
$$

These functions take on the same sign as $s^{\prime}-\frac{1}{4}$ and $s^{\prime}+\frac{\xi}{}$, reapectively, by the definition of the minmod limiter. Thus an extrema in the interpolant exists in the interval only if the extrema exists in the data by Lemmas 2 and 3 . 0

Remark 21 Eiach of the methods discussed above can be used as an implicit algorithm. The theory surrcunding the TVD methods [130. 61) gives a firm basis for
implicit solutions and this basis follows to the application of the methods presented here.

6.3 Results

The results section of this chapter shows the strengths and weaknesses of the algorithus described above. The scalar wave equation should reveal the basic properties of the solution srlfounes its a simple setting. These propertics hold with the use of the ulethod in miore complicated situations. Burgers' equation provides resules for a noulincear ecןuation as well as convergence results, which show the order of accuracy obtaiurd by the urithod. Finally, the Euler equations provide an indication of these algorithms performance with problems with systems of equations. For the remainder of the discussion, the following nomenclature is used:

- the standard geometric analoz to the symmetric TVD scheme is denoted by the uame syifunctric.
- the parabolic variant of this method is denoted by quadratic
- the UNO modification of the symmetric method is denoted as the symmetric UNO, and
- the UNO mrolification of the quadratic method is denoted as the quadratic i.No.

A detailed accilnt of the test problens used is given in Appendix A. Specific details of their use is given below.

6.3.1 Scalar Wave Equation

To begin to assess the algorithms presented here, a simple standard test problem was solved. On a domain of 100 equidistantly spaced cells, a square wave 10 cells in width is advected at a unit velocity with periodic boundary conditions. The CFL number is held at $\frac{1}{2}$ and the solution proceeds for 300 time steps.

The symmetric scheme performs with the lowest resolution of the schemes discussed here and has some symmetry problems as shown in Fig. 6.3. This sort on unsymmetrical behavior was noted by Munz [181] in a study of solutions to twodimensional problerns by high-resolution methods. This lack of symmetry is somewhat alleviated by the use of the quadratic scheme (sce Fig. 6.4). The UNO-type methods both give sigsificantly better solutions in terms of preservation of maximum values, but also give rise to some controlled oscillations (see Figs. 6.5 and 6.6). The quadratic method provides both better resolution than the symmetric scheme and also slows inlich better molution syr:metry. ''urt of this increase in resclution can be

Table 6.1: Order of accuracy in several norms for the schemes solving Burgers' equation when the solution is smooth.

Scheme	L_{1}	L_{2}	i_{∞}
Symurtric	1.83	1.58	1.19
Quadratic	1.88	$1.6!$	1.25
Symmetric UNO	1.94	1.65	1.07
Quadratic UNO	1.97	1.60	1.02

attributed to the more compressive form of the liniter used with this nethod ($Q_{4 / 3}$ rather than Q_{1} and $Q_{8 / 3}$ rather than Q_{2}). When the sanse limiter is used in each scheme, the solution is only slightly better with the quadratic scheme; however, the quality of the results remains innproved with respect to symmetry.

6.3.2 Burgers' Equation

The solution of Burgers' equation i. hese methods can provide more information concerning the behavior of the alge ithons. By omputing the error as compared with the exact solution an order of accuracy can be obtained.

When the solution is smooth, each of the solution methods is well behaved and gives convergence at expected rates as shown in Table 6.1. The UNO selutions are the most accurate and have the lowest error as well as the highest rates of convergence (especially in the L_{2} norm). When a shock has formed, this situation changes in several respects. All the methods converge more slowly, but the UNO schemes converge more slowly than the simpler symmetric and quadratic schenues (see Table 6.2). The L_{∞} norm also shows a "kne_" in eacn case. T'nis signals a slowing in the rate of convergence beyond a certain grid spacing. These results are summarized by Figs. 6.7-6.10.

For times after $t=1.0$ the UNO solutions resume their initially high rates of convergence. The behavior shown near $t=1.0$ seems to be temporasy and limited to a short period near the formation of the shock. The poorer convergence may be related to the width of the finite difference stencil used in these schemes. This behavior was noted in [6] and was noticeable for schemes with three rather than two parameter limiters. The effect of the three parameter limiters is to increase the support of the interpolation at each cell edge. This increase is not accompanjed by a subsequent increase in accuracy and because a minimum principle is used with the limiters, the effect is to lower order of accuracy due to the limiter over a wider set of grid points.

Figure 6.3: The solution of the scalar wave rquation by the symmetric method using both a noncompressive, Q_{1}, and compressive limiter, Q_{2}. The Q_{1} (6.3a) limiter produces a solution which is significantly better than a first-order upwind solution, but exhibits excessive smearing from diffusion. The compressive limiter (6.3b) shows ant improvement in the solution as a result of reduced diffusion. Both solutions exhibit some lack of symmetry which is indicative of this method.

Figure 6.4: The solution of the scalar wave equation by the quadratic method using both a noncompressive, $Q_{4 / 3}$, and compreasive limiter, $Q_{\mathrm{a} / 3}$. Again, the noncompressive limiter produces a solution that is diffused by comparison to the solution found with the compressive limiter (6.4b). Both solutions have improved symmetry when compared with the symmetric method.

Figure 6.5: The symmetric UNO solution shows a marked increase in the preservation of the maximum value; however, the effects of a lack of symmetry are also evident. Both solutions exhibit a leading phase error greater than that present with the symmetric scherne.

Figure 6.6: The quadratic iNO scheme gives maximum values slightly greater than the maximum value of the initial distribution. The leadiag phace error present in the symmetric scheme is improved somewhat. The compresaive limiter gives the leat ad:ditional resolution in this case.

Figure 6.7: The symmetric scheme gives good, well-behaved convergence when the solution is smooth ($t=0.2$), but when a shock forms ($\ell=1.0$), the error grows by about an order of magnitude and the L_{∞} norm's curve has a "knee" in it indicating a reduction in the order of convergence.

Figure 6.8: The quadratic scheme has better accuracy in general than the symmetric scheme, but afler the thock forms the "knee," the colution is somewhal more severe in nature. For a small range of Δx 's the solution actually divergea.

Figure 6.9: The symmetric UNO scheme has better accuracy than either of the previous methods. The convergence after the shock in the L_{∞} norm is worse, however.

Figure 6.10: This scheme is the moat accurale of the schemes shown bere, but the i:havior associated with the L_{∞} norm at $t=1.0$ is worse. Despite this, the solution was more accurate in every brorm than any of the other methods.

Table 6.2: Order of accuracy in several nornms for the selienues solving Burgers' equation whell the solution contains a shock.

Scheme	$I .1$	I_{2}	I_{∞}
Syumetric	1.18	1.19	0.78
Quadratir	1.5 .3	1.06	0.55
Syunuetric I NO	1.50	0.99	0.39
Quadratic liNO	1.39	0.89	0.36

6.3.3 Euler Equations

Two test problems are used to test the methods on the solution of systerms of rquatious. In both rases only the drusity solutions is given. For the shock tube problem, atl exact solution exists and is used for comparison. In the second case, a blast wave problenu, no exact solution exists, therrfore a converged numerical solution is used for coluparison. This solution is computed insing a Ml:SCl, schenue with a Superbee limiter on t e lineary drgencrate field and van lecr's limiter ons the two nonlinear fiedds (see ('hapter 8). Two thousand equidistantly spaced grid points are used with a (:F\}, number of 0.9.5.

The results for these problems are given in Figs. 6.11 6.14. In gencral, the results of the previous section hold up for these problems. The syunumetric schene (sec Fig. 6.11) gives the lowest resolution risulis. while the guadratic liNO sclieme (see Fig. 6.14) gives the leest results. The symmetric UNO scheme gives good resolution, inut also suffers from some nonliucar instability resultiug in oscillations. These oscil. la'ions are associated with the end of rarrfaction waves as showis by Fig. G.13. Both of the qualratic methods give better resolution of shocks and contact discontinuities than their symmetric counterparts.

In the shock tube problem. the solutions are all very sinnilar with the resolution of the contact discontinuity being the primary difierence between the methorls. The guadratic LiNO methorl also improves the smearing of the rarefartion wave. In the blast wave problein, all the methorls reproduce the left of the two density peaks and all of them destroy the contact dismontirnity to the left of that peak. The primary differences are in the area of resolution of the right density peak and the degree of filling in of the rarefaction between the praks. In both cases. the quadratic UNO sehene excels by romparisun.

Figure 6.11: The solution of Sod's shock tube problem by the symmetric scheme is quite good except for some smearing near the contact discontinuity. The solution to the blast wave problem shows several important features aleo related to the smearing of contact discontinuities leading to the clipping of the right peak and the nearly complete loss of the discontinuity at $X \approx 60$. The filling in of the gap between the peaks results from smearing in rarefaction waves.

Figure 6.12: The overall results using the quadratic scheme are very similar to the symmetric scheme. The resolution of the solution is enhanced in both cases. This is eapecially noticeable at the shock in Sod's problem and in the left peak and rarefaction wave between the peaks in the blast wave problem.

Figure 6.13: The symmetric UNO scheine gives much better resolution of contact discontinuities as shown by both figures. The price is several accillations. One can be seen to the left of the contact discontinuity in Sod's problem. The remulte for the blat wave problem are quite impresive except for the dip to the left of the left-moot contact discontinuity.

Figure 6.14: The quadratic UNO scheme seems to have the good aspects of the symmetric UNO scheme without the oscillations. For both problems, the resolution is enhanced.

6.4 Concluding Remarks

This chapter has presented an extension of the previously derived aymmetric TVD methods to a geometric analog very similar to MUSCL type methods developed by van Leer. This extension has also enabled the derivation of new inethods involving parabolic interpolation and the ideas of uniformily non-oscillatory methods. Through the symmetric TVD method's connection to flux corrected transport methods, these methods also tie that group of algorithms more closely to other modern algorithms.

These methods have been used to solve several test problems and have proved successful behaving as expected. Each of these newly derived method represent and improvement over the symmetric TVD method.

The topic of limiters to use with FCT methods is concentrated on in the next chapter.

Chapter 7.
 FCr Limiters

A new way to pay old debts. Phillip Mas.singer

The limi ers used with F''T' algorithus fall into two categories: the classic type developed by l3oris and Book and the generalization of \%alesak. 'This study started as ant attempt to "xplain the less than stellar porformance of the FC'I schemes on a varicty of problenss and expanded in srope from there.

7.1 Classic FCT Limiters

The linuter used in the l. ("I methods ileveloped by Boris and Book is nearly jelentical to the iniamod liniter disenssed in (Chapter 8. The inain difference is the nature of the arguments applied to the limiter. These arguments are the local gradients multiplied by the inverse grid ratio $(\Delta r / \Delta l)$ and the antidiffusive flux. This makes it a three argurrent limiter with support identical to that found in the symmetric TVI) scheine. The classic F("I' limiter is

$$
\begin{equation*}
m\left(j_{j+\frac{1}{2}}^{a} \cdot \sigma^{-1} \Delta_{,-\frac{j}{}} \dot{u}_{,} \sigma^{-1} \Delta_{j+\frac{j}{2}} i i\right) \tag{7.1}
\end{equation*}
$$

This limiter can be analyzed $t_{i j}$ assumuing that $j_{j+\frac{1}{2}}=\frac{1}{2}|a| \Delta_{j+\frac{1}{2}} u$ and factoring $\frac{1}{2}|a|$ out of the $\mathrm{F}^{\prime \prime}$ "'I limiter and writing the result in a ratio form

$$
\begin{equation*}
Q^{F C T}\left(r^{-}, 1 . r^{+}\right)=m\left(1.2 \nu^{-1} r^{-}, 2 \nu^{-1} r^{+}\right) . \tag{7.2}
\end{equation*}
$$

 the the form used for three argunuent Γ Vi) liniters as was discussed in Section 8.3.3. 13; iuspertion, one can wer for $\nu \neq 1$ this limiter is not TVD brcause its result is larger than two and that the result grows infinitely large as $\nu \downarrow 0$. Figure 7.1 shows the limiter for two values of ν. The limiter is not TVD for explicit time differncing. This does not account for the stabilizing influence of the diffusive step in the solution algorithm. In Section 8.3.5, the UI.TIMATE limiter is discussed. It has sotue similarity to the FC'T limiter and as such the experience with the FCT can carry over.

As discussed in Chapter 5, this can easily be morlifisd to rid the scheme of the need for an antidifusive step by rhanging thr limiter to

$$
\begin{equation*}
m\left(j_{j+\frac{1}{2}}^{0} \cdot n,-\frac{1}{2} \Delta_{,-\frac{1}{2}} n_{1}\left\|_{++\frac{1}{2}} \Delta_{j+\frac{j}{2}}\right\|\right) . \tag{7.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=|a|, \tag{7.3b}
\end{equation*}
$$

or

$$
\begin{equation*}
\mu=|a|-\nu a . \tag{7.3c}
\end{equation*}
$$

An entropy correction as descrihed in [182] can be applied to these definitions. This modification makes this scheıne TVD and significantly improves its solutions especially for systems of equations. This formulation also allows the FCT to be used as an implicit algorithm in a siınilar manner as other TVD algorithms.

A second formulation based around the modified flux TV1) scheunes was also given in Chapter 5 ,

$$
\begin{array}{r}
\operatorname{miumod}(a, b, n)=\operatorname{sign}(a) \max [0, \min (n|a|, \operatorname{sign}(a) b), \\
\min (|a|, n \operatorname{sign}(a) b)] . \tag{7.4}
\end{array}
$$

which for $n=2$ gives the superbee limiter developed by Roe [176]. To get the implementation correct in the sense of a FC"I method this becomes

$$
\begin{align*}
& \operatorname{minmod}(n)=\operatorname{sign}\left(j_{j+k}^{a}\right) \max \mid 0, \min \left(\frac{1}{2} n\left|f_{\jmath+\xi}^{A D}\right|, n \operatorname{sign}\left(f_{j+\xi}^{,}\right) \sigma_{,-\xi} \Delta_{,-\frac{\xi}{}}^{u}\right), \\
& \left.\min \left(n \sigma_{j+\frac{1}{2}}\left|\Delta_{j+\frac{1}{2}} u\right| \cdot \frac{1}{2} n \operatorname{sign}\left(j_{j+\frac{1}{2}}^{a}\right) f_{,-\frac{1}{2}}^{A D}\right)\right] . \tag{7.5}
\end{align*}
$$

This scheme is closer to the moditied flux TVD formulation and produces a family of limiters shown in Fig. 5.1.

7.2 Zalesak's Generalization

Zalesak [62], redefined the F'C"I limiter to make it more general. The resulting lins. iter is nearly identical to the original FC'I' limiter in one dimension. but has a true multidimensional form. \%alesak also made the prescription of the antidiffusive fluxes more general, with the definition being simply stased as the difference between the low. and high-order fluxes, $j_{j+\frac{k}{a}}^{a}=\int_{j+\frac{1}{\prime}}^{\prime \prime}-j_{j+\frac{1}{2}}^{L}$. The low-order flux, $j_{j+\frac{1}{l}}^{b}$, could be any monotone numerical flux and the high-order flux, $j_{j+\frac{1}{2}}^{\prime \prime}$, could be specified by any high-order flax.

Algorithm 3 [Kalesak's flux limiter (62]]

1. Sum all antidiffusive fluxes going into, A_{j}^{+}, ant out of, A_{j}^{-}, a cell. In one dimension this is expressed as

$$
\begin{equation*}
A_{j}^{+}=\max \left(j_{:-\frac{1}{2}}, 0\right)-\min \left(j_{j+\frac{1}{j}}^{2}, 0\right) . \tag{7.6a}
\end{equation*}
$$

Figure 7.1: The r.lassic FC.'T limiter is showin for $\nu=0.25$ in Fig. i .1 la and $\nu=0.5 \mathrm{ir}$ Fig. 7. Ib. Both of these figures show that where $r^{ \pm}<\|$the limiter is very compressive, but not second order in nature.
and

$$
\begin{equation*}
A_{j}^{-}=\max \left(j_{j+\xi}, 0\right)-\min \left(j_{j-\xi}, 0\right) . \tag{7.6b}
\end{equation*}
$$

2. Find the maximum, $u_{j}^{\text {mas }}$, and minimum, umin values locally, and define

$$
\begin{equation*}
M_{j}^{+}=\sigma^{-1}\left(u_{j}^{\text {anas }}-\dot{u}_{j}\right) . \tag{7.6c}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{j}^{-}=\sigma^{-1}\left(i_{j}-u_{j}^{m+n}\right) . \tag{7.6d}
\end{equation*}
$$

For example $u_{j}^{m a x}$ and $u_{j}^{\text {min }}$ could be computed with the following relations:

$$
\begin{equation*}
u_{j}^{\max }=\max \left(\dot{u}_{,-1}, \dot{u}_{j}, \dot{u}_{j+1}\right) \tag{7.6e}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j}^{\min }=\min \left(\dot{u}_{j-1}, \dot{u}_{j}, \dot{u}_{j+1}\right) \tag{7.6f}
\end{equation*}
$$

3. Compute

$$
\begin{equation*}
R_{j}^{+}=m\left(1, M_{j}^{+} / A_{j}^{+}\right) \tag{7.6g}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j}^{-}=m\left(1, M_{j}^{-} / A_{j}^{-}\right) \tag{7.6h}
\end{equation*}
$$

4. At each cell edge, k, on the cell, j, compute

$$
\begin{equation*}
C_{k}=\min \left(R_{+}^{+}, R_{i}^{-}\right) \tag{7.6i}
\end{equation*}
$$

if $\dot{j}_{k}^{A} \geq 0$, oti,erwise compute

$$
\begin{equation*}
C_{k}=\min \left(R_{l}^{+}, R_{i}^{-}\right) \tag{7.6j}
\end{equation*}
$$

5. Finally, $f_{k}^{c}=C_{k} j_{k}^{A}$.
6. Zalesak aloo states some quality-enhancing corrections based on previous experience with the PCT

$$
\begin{equation*}
C_{j+\xi}=0, \tag{7.6k}
\end{equation*}
$$

if

$$
\begin{equation*}
\dot{f}_{j+\frac{1}{2}}^{e}\left(\dot{u}_{j+1}-\dot{u}_{j}\right)<0 \tag{7.61}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{f}_{j+\frac{k}{e}}^{0}\left(\dot{u}_{j}-\dot{u}_{j-1}\right)<0 \text { or } \dot{f}_{j+\frac{j}{e}}^{0}\left(\dot{u}_{j+2}-\dot{u}_{j+1}\right)<0 . \tag{7.6m}
\end{equation*}
$$

The modistations made in the previous section can be applied to this limiter rather easily with by changing σ^{-1} in step 2 to σ as defined in (7.3b) or (7.3c). This
change also allows the diffusive first step to be avoided without negative consequences. the resulting algorithun is given below.

Algorithm 4 [Zalesak's modified fur limiter]
I. Sum all antidiffusive fluxes going into, A_{j}^{+}, and out of, A^{-}, a cell.
2. Find the maximum, $u^{\text {mas }}$, and minimunt, usin values locally, and define

$$
\begin{equation*}
M I_{j}^{+}=\mu\left(u_{1}^{\text {mas }}-u_{j}^{n}\right) . \tag{7.7a}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{j}^{-}=\mu\left(u_{j}^{n}-u_{j}^{\min }\right) . \tag{7.7b}
\end{equation*}
$$

3. Compute

$$
\begin{equation*}
R_{j}^{+}=m\left(1, M I_{j}^{+} / A_{j}^{+}\right) . \tag{7.7c}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j}^{-}=\operatorname{in}\left(1, M I_{j}^{-} / A_{j}^{-}\right) \tag{7.7d}
\end{equation*}
$$

4. At each cell.edge, k, on the cell, j, conspute

$$
\begin{equation*}
C_{k}=\min \left(R_{r}^{+}, R_{l}^{-}\right), \tag{7.7e}
\end{equation*}
$$

if $\dot{j}_{k}^{A} \geq 0$ (the antidiffusive flux $\dot{j}_{k}^{\prime \prime}-\dot{j}_{k}^{L}$), otherwise compute

$$
\begin{equation*}
C_{K}=\min \left(R_{1}^{+}, R_{r}^{-}\right) . \tag{7.7f}
\end{equation*}
$$

5. Finally, $j_{k}^{c}=C_{k} j_{k}^{A}$.
6. lise the quality corrections substituting u, for in,.

Lemma 1 For a second-oraer spatially accurate high-order flux, the Zalesak's modified fux timiter produces a scheme equivalent to a symmetric TVD scheme with a Q function of

$$
\begin{equation*}
\left.Q_{j+k}^{F C T}=m\left(2 \mu \Delta_{,-k}\right)_{, \mu \Delta_{j+k}}{ }^{u, 2 \mu \Delta_{j+k} u}\right) . \tag{7.8}
\end{equation*}
$$

Proof. For μ defined by (7.3b), the appropriate high-order flux is the second-order central difference flux. For μ defined by (7.3 sc) it would be the Lax-Wendroff flux. For both cases,

$$
\begin{equation*}
\dot{j}_{j+\frac{1}{2}}^{2}=\mu \frac{1}{2} \Delta_{++\frac{1}{2}}^{u} . \tag{7.9}
\end{equation*}
$$

if the antidiffusive flux. When u, is a local maximum or minimum, then the limiter produces a value of zero. 1 proceed assuming that u is monotone and increasing on
 case where u is monotone decreasing is similar. Cuc.sidering cell edge $j+\frac{1}{2}, j_{j+1}>0$, thus I must find R_{j+1}^{+}and R_{j}^{-}. In this case $A_{j}^{-}=j_{j+1}^{j}$ and $A_{j+1}^{+}=j_{j+\frac{1}{j}}^{j}\left(A_{j}^{-}=A_{j+1}^{+}\right)$. Because u is monotone increasing. $u_{j}^{\min }=u_{j-1}^{n}$ and $u_{j+1}^{\operatorname{man}}=u_{j+2}^{n}$; thus $M_{j+1}^{+}=\Delta_{j+1} u$ and $M_{j}^{-}=\Delta, \quad u$. From these relations and the formulas for R_{j}^{-}and R_{j+1}^{+}, it can be seen that

$$
\begin{equation*}
C_{j+1}=\min \left(1, \frac{M_{j}^{\prime}}{A_{j}^{-}}, \frac{M_{j+1}^{+}}{A_{j+1}^{+}}\right) . \tag{7.10』}
\end{equation*}
$$

Inspection shows that the terms in this limiter are identical to those asserted if the limiter is written in ratio form. When coribined with the conditions for a local minimum or maximum, the minmod limiter is:

$$
\begin{equation*}
C_{, \pm\}}=\frac{1}{2} m\left(1,2 r^{-}, 2 r^{+}\right) . \tag{7.10b}
\end{equation*}
$$

By checking the form of the symmetric TVD schemes, it can be seen that this has the form of an upwind flux plus mome second-order centrally differenced high-order flux multiplied by a limiter (ser Section 4.5). Subtracting the low-order flux from the symmetric TVD flux gives (for $\mu=|a|-\sigma a^{2}$)
equating terms gives the desired result. A similar reault is obtained with $\sigma=|a|$. 0
Remark 22 For higher order spatially accurate fluzes, the quality factors imposed at the end of the limiter become important (oee Algorithm 3). These factors make sense in a heuristic way and definitely improve the limiters performance, but the properties of limiter are more difficult to determine in this case, although it appears to be TVD from experimental evidence. For the second-order case discussed in the previous lemma, these factors are immaterial.

This scheme is TVD in one dimension under the conditions stated in the following theorem:

Theorem 8 Zalesak's modified fux limiter with a second-order spatially accurate high-order fux is TVD under the following conditions

1. The values of $u_{j}^{\text {man }}$ and $u_{j}^{\text {min }}$ are taken from the set of pointe u_{j-1}^{n}, uj, and u_{j+1}^{n}.
2. For σ defined by (7.93), $|\nu| \leq \frac{1}{2}$.
3. For σ defined by (7.9c), $|\nu| \leq 1$.

Proof. The comditions fur a scheroue to he 'V'I) are givern in Theoreme fi. U'siug time resules from l.cuma a the proxif call procered from the standpoint of proving that a given limiter proclucess a TV') scherme. To case the allalysis, \%allesak's limiter is

$$
\begin{equation*}
r_{,+1} \equiv Q_{,+\frac{1}{2}}=111\left(2 r^{-}, 1,2 r^{+}\right), \tag{7.11a}
\end{equation*}
$$

where $r^{ \pm}=M^{ \pm} / A^{ \pm}$with A and M defined by the meditied $F(" Y$ flix liniting algorithen. As given in (|31], the conditions for this limiter to assure a TVI) algoritluns are

$$
\begin{gather*}
Q_{\mu+\frac{1}{2}} \leq 2 \tag{7.1|b}\\
\frac{Q_{j+1}}{r^{-}}<\frac{2}{v}-2 \tag{i.1|c}\\
\frac{Q_{+1}}{r^{4}}<\frac{2}{\nu}-2
\end{gather*}
$$

and

$$
\begin{equation*}
\nu \leq 1 . \tag{7.11c}
\end{equation*}
$$

These comditions should be compared with these given in Section s.3.3. The condition

 $\mu=|n|-\nu a$ the right hand sides of $(7.11 \mathrm{~b}) \cdot(7.1 \mathrm{~d} \mathrm{l})$ are divided by $1-\nu$. For the given limiter, the ('Fl. condition now becomes $\nu \leq 1$. This completes the proof.

Suitable generalizations can be made for implicit 'TVI) schemes. These proofs du not extend to multiple dimensions. but provide some insight to the schenx's probable performance.

This method can also be applied to $H O C$; schemes ly extending the generalization made above to appiy to the reconstruction step of (iodinov's method. Low-order monotone fluxes are allalugons to reconstructing u by pircewise constant functions equal to 11 . "The antidiffusive fluxes could be made into "antidiffusive" gradients or the difference between higher order peolynomial recolnstructions and the low-order one. There is some aunh:guity with the definition of the couparison gradients defined by $W_{j}^{ \pm}$. but this can be rectified by several olservations. These sinould be converted to gradients of similar definitiou, but in keeping with the F'O't litniters of the past, these gradients shonld be imultiplied by two. Previous F'CT limiters had this effectively done by the limiter's ronstruction and is an explanation for the highly compressive nature of $\mathrm{F}(\mathrm{FI}$ seliemes. Low nualtiples ran be chosen for this limiter to achieve greater dissipation. The remainder of the HOG algorithm can poreed conceptually withont any changes.

Algorithm 5 [Zalesak's IIOG slope limiter]

1. Defiue "antidiffusive" slopes, $s^{\boldsymbol{\bullet}}$, as $s^{\boldsymbol{H}}-s^{L}$.
2. Sum all "antidiffusive" slopes going into, A^{+}, and out of, A_{j}^{-}, a cell.
3. Find the maximum, u, mand minimum, $u,{ }_{j}^{\text {min }}$ values locally, and define

$$
\begin{equation*}
X_{1}^{+}=n \frac{u_{1}^{\max }-u_{i}^{n}}{\Delta x^{\operatorname{man}}}, \tag{7.12』}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{j}^{+}=n \frac{u_{j}^{n}-u_{j}^{\min }}{\Delta x^{\text {min }}}, \tag{7.12b}
\end{equation*}
$$

where $1 \leq n \leq 2$ and with $\Delta x^{m a s}$ and $\Delta x^{\text {min }}$ being the appropriate distances froun r, to $x_{1}^{\operatorname{man} x}$ and $x_{1}^{\text {min }}$, respertively.
4. Compute

$$
\begin{equation*}
R_{j}^{+}=m\left(1, M_{j}^{+} / A_{j}^{+}\right), \tag{7.12c}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j}^{-}=m\left(1, M_{;}^{-} / A_{j}^{-}\right) \tag{7.12d}
\end{equation*}
$$

5. At each cell edge, k, on the cell, j, compute

$$
\begin{equation*}
C_{k}=\min \left(R_{r}^{+}, R_{i}^{-}\right) \tag{7.12e}
\end{equation*}
$$

if $s_{k}^{\hat{k}} \geq \mathbf{0}$, otherwise compute

$$
\begin{equation*}
C_{k}=\min \left(R_{:}^{\dagger}, R_{r}^{-}\right) . \tag{7.12f}
\end{equation*}
$$

6. Finally, $s_{k}^{C}=C_{k} s_{k}^{A}$.

Theorem 9 Yalesak's HOG slope limiter is TVD under the following conditions and the ralues of $u_{j}^{m a s}$ and $u_{j}^{m i n}$ are taken frm the set of points u_{j-1}^{n}, u_{j}^{n}, and u_{j+1}^{n}.

Proof. The proof is nearly identical to that given in Theorem 8, but uses the generalization of symmetric TVD schemes to a HOG formulation (see Chapter 6). 0

7.3 Results

This section presents results for some of the limiters deacribed in the pervious sections. The results are limited to the scalar wave equation and Burgers' equation. No attempt is made to present results for all the limiters given above, but the types of limiters introduced here are discussed with regard to their performance in relation to resolution and convergence. Table 7.1 st,uws a list of the limiters considered in the results and the abbreviations used in referring iic them below.

Table 7.1: Abbreviations for the methods used in this study.

Limiter	Equation	Abbreviation
Classic FCT	(7.1)	FC:TC
Zalesak's FC'I	$(7.6 \mathrm{a})-(7.6 \mathrm{~m})$	F(:'T\%
Morlificd FC'I	(7.3a)	FC:IMM
Modified Zalesak's FCT	$(7.7 \mathrm{a})-(7.7 \mathrm{I})$	FC:I\%N

7.3.1 The Scalar Wave Equation

In this suction using various limiters, the scalar wave equation is solved by the methods described in this chapter. Two initial conditions are used for the analysis: a square wave with a wilth of 10 cells and a $\sin ^{2} x$ wave (half of a period) of a width of 25 cells. l3oth tests are conducted for 500 time steps with a ('Fl. number of one-half. The advective velocity is taken to be unity.

For the FCT type limiters. a Lax. Wendroff Hux is used for the high-order flux in earh case. In general, the FCT schemes all compete quite well with the best of the threr argument limiter-based solistions. The changes required to make either the classic or Lalesak's limiter TVD result in small drop in resolution, but it is hardly noticeable. It should be stated that each FC'T scheme is TVD for the cascs shown. Onc problem that scerns to plague all the three argunvent limiter-based schemes is the gualitative shape of the converted profile (its lack of symmetry). The FCT-based solutions seem to aggravate this problem somewhat when compared with more clasic TVI) solutions. Other resuits are given in Tables 7.2-7.4. The numerical viscosity results are explained fully in the following chapter.

A simple change to the FCT limiter can result in a large payoff. By making the limiter upwind biased, the performance of the scheme improves dramatically fthis is explored in more detail in the next chapter). Staying with the scalar wave equation with $a>0$ the classic FCT limiter would become

$$
\begin{equation*}
m\left(j_{j+\frac{1}{\prime}}^{\bullet}, \sigma^{-1} \Delta_{j-\frac{1}{2}} \hat{u}\right) \tag{7.13s}
\end{equation*}
$$

and '/alesak-type limiter would only need modify the choice of C_{h} to

$$
\begin{equation*}
C_{k}=R_{1}^{-} . \tag{7.13b}
\end{equation*}
$$

if $\dot{f}_{t}^{\prime}>0$ and otherwise

$$
\begin{equation*}
r:=1 i \tag{i.13c}
\end{equation*}
$$

Table 7.2: L_{1} error norms with minimum and maximutn values for the square wave problem.

Limiter	Minimum	Maximum	L_{1} error
FCTC	0.0000	0.8376	5.85×10^{-2}
FCTZ	0.0000	0.8310	5.95×10^{-2}
FCTM	0.0000	0.7923	6.35×10^{-2}
FCTZN	0.0000	0.7782	6.42×10^{-2}
FCTCU	0.0000	0.8377	5.85×10^{-2}
FCTYU	.0 .0522	0.8899	5.75×10^{-2}
FCYMU	0.0000	0.8090	5.99×10^{-2}
FCTZNU	0.0000	.8090	5.99×10^{-2}

Table 7.3: L_{1} error norms with minimum and maximum values for the $\sin ^{2} x$ wave problem.

Limiter	Minimum	Maximum	L_{1} error
FCTC	0.0000	0.9509	2.91×10^{-2}
FCT\%	0.0000	0.9511	2.99×10^{-2}
FCTM	0.0000	0.9556	2.93×10^{-2}
FCTZN	0.0000	0.9523	3.00×10^{-2}
FCTCU	0.0000	0.9514	2.92×10^{-2}
-r"r7\%.	. 0.0278	0.9716	3.22×10^{-3}
FCTM	0.0000	0.9587	3.02×10^{-3}
PCTTANU	41040	0.9587	3.02×10^{-2}

Figure 7.2: The sealar square and $\sin ^{2} x$ wave solutiona using several FCT limiters with a Lax-Wendroff high-order flux.

Table 7.4: Numerical viscosity and total variation for both scalar wave equation problems.

Limiter	$\sum r$ square	TV square	$\sum r \sin ^{2} \times$	$T V \sin ^{2} x$
FCTC	26.67	1.68	16.99	1.90
FCTZ	27.44	1.66	17.81	1.90
FCTM	31.09	1.58	18.52	1.91
FCTZN	31.04	1.56	18.31	1.90
FCTCU	26.64	1.68	16.97	1.90
FCTZU	27.20	1.89	19.14	2.01
FCTMU	29.60	1.62	18.16	1.92
FCTZNU	29.60	1.62	18.16	1.92

"These schemes are denoted by the same nomenclature as used above, but with a " \mathbf{U} " at the end of the acronym. For the classic FCT limiter the effect of this change is minimal. For Zalesak's limiter, the impact makes the solution oscillatory. For the modified limiters there is an improvernent for the square wave problem, but the $\sin ^{2}$ problem the effects wash out. The tabuler data reflects this, as does Fig. 7.3.

7.3.2 Burgers' Equation

This section of the chapter centers around the order of accuracy obtained with methods in conjunction with limiters and their subsequent solutions. To accomplish this, a standard test problem using Burgers' equation is user. The problem consists of an initial condition of $\sin (x), x \in[0,2 \pi]$. At $t=0.2$, the solution is smooth, and at $t=1.0$, a shock has formed in the solution. It is at these times that the accuracy of the solution is assessed. The problem is solved with 10 grid cells followed by 1000 grid cells.

The results for this test problem are given in Tables 7.5 and 7.6. The PCT limiters seem to suffer from poor convergence characteristics. In general, the modified PCT limiters ase more efficient and provide resolution on consre grids.

7.4 Concluding Remarks

In this chapter a number of limiters have been reviewed and their properties examined. In addition, several limiters have been is,ipduced os reformulated and analyzed within a coinmon framework. 'The impact of limiters on high.resolution numerical

Figure 7.3: The scalar square and $\sin ^{2} z$ wave solutions usiag sereral FCT limiters with a Lax-Wendrof high-order flux and upwind biacing.

Table 7.5: Order of convergence in several error norms for Burgers' equation at $t=0.2$ when the solution is sriscoth.

Limiter	\mathbf{L}_{1}	\mathbf{L}_{2}	\mathbf{L}_{∞}
FCTC	2.00	2.01	1.74
FCTZ	1.97	1.67	1.13
FCTM	1.87	1.58	1.12
FCTZN	1.91	1.58	1.08

Table 7.6: Order of convergence in several error norms for Burgers' equetion at $t=0.2$ when the solution has a shock in it,

Limiter	L_{1}	$\mathrm{~L}_{2}$	\mathbf{L}_{∞}
FCTC	1.42	0.89	0.33
FCTZ	1.46	0.91	0.33
FCTM	1.49	0.94	0.37
FCTZN	1.34	0.80	0.28

solutions hei also been demonstrated. The importance of limiters on the solution of the cquations is undeniable. The quality of solutions is directly traceable to the limiters because they are the heart of the numerical schemes.

More study of limiters is warranted in light of these results. As discussed carlier, limiters can impact steady-state solution convergence. Some study of this phenomena is needed. Additionally, hnth TVB and generalized average limiters should studied in order to give more systematic mantucr to choose the constants used with the limiters.

The next chapter explores the topic of limiter more generally and in more detail.

Chanter 8.

TVD and Nearly TVD Limiters

The rnad to resolution lies by doubl. Francis Quartes

8.1 Background

Godunov gave the impetus for the development of modern high-resolution methods with his paper [56]. Boris and Book [59] realized that Godunov's theorem meant that a second-order "monotone" algorithm could be constructed if it were nonlinear in nature. In deriving their $\mathrm{F}^{\prime} \mathrm{CT}$ algorithm, they introduced limiters as a means to assuring spcond-order accuracy with "monotone" results.

8.2 Introduction

This line of thought was also followed by other pioneers in the field. Van Leer used a nonlinear limiters function in defining what has become known as the classic MUSCL algorithm [119]. IIarten and I/was used a similar formalism in deriving the hybrid method [146], as did Ilarten with artificial compression method [183]. The methods developed by van Leer and Harten took the form of switching functions between highand low-order schemes. Thus the high-order selieme would be used where the solution is smooth, and the low-order solution is used near discontinuities to guard againat the formation of osrillations.

Van Leer extended this line of thought more dire-tly to a high-order extension of Godunov's method in [120,60). The limiters were used to define polynomial reconstructions of the dependent variables used to derive difference approximations for the numerical fluxes. This general line of thought led to schemes known as HOG schemes. These schemes can be viewed similarly to the switching schemes discussed previously. The limiters are used to blend high. and low-order approximations guarding against oscillations. The major difference is the inclusion of the Riemann problem in the solution scheme, thus embodying the easence of upwind weighted differencing.

The gencral form of limiters defined in the FCT schemes and by van leer's HOG schemes were used to define TVD schemes. liarten [130, 61] introduced the concept of nonlinear TVD finite difference schemes. This concept was also used by Roe [131, 176], Sweby [132], and Davis [133] to define a class of schemea based on TVD corrections to the Lax. Wendroff [58] scheme. This work was summarized by Yee [134] where orie member of this class of schemes was dubbed as the "symmetric TVD" scheme. In recent years, several authors have made firmer connections between FCT and

IVI)/IIOC; methods [184, 185]. I have written about this relation in Chapters 6 and 5. In those chapters, the relation between the FCT methorl as stated by Zalesak and the symmetric TVD schemes and subsequently the relation to the symmetric TVD scheme to HOG type methods are explored. This line of apl:; achic can benefit all forms of high resolution solution of hvperbolic conservation laws hy adding a larger degree of syurergisun between these various formmations.

This chapter has been organized into four sections. The next section describes a wide variety of limiters used in the construction of high.resolution algorithms. This exposition includes material applicable to TVD and TVB schemes as well as generalizations to limiters generally denoted by the label, "rearly TVD." A number of limiters discussed in the third sections are used to solve the scalar wave equation and Burgers' equation. These results are given and discussed in the fourth section. The final section discusses conclusions.

8.3 Description of Limiters

In my opinion, this subject has been given inadequate coverage in the literature despite its relative importance to the derivation of nonoscillatory high-resolution difference schemes. Sweby $[132,186,187)$ has given the most widely refrrenced coverage of the subject. Roe $[131,176]$ also gave attention to the suthject. A more detailed discussion of these references is given in the following sections.

The work contained in [132] and [176] is limited to an up:vind-Siased limiter applied to a TVD Lax.Wendroff scheme [133, 5, 134]. Roe's work given ir- ! 131] applies to a TVD Lax-Wendroff scheme where the limiter is not biased with the wind, which has become known as the symmetric TVD schemes. Becsuse the liniter is cell-edge centered this requires the limiter to use three arguments rather than two as in the upwind-biseed case (also see $[8,6,134]$). This is significant in algorithmic periormance as noted later in this chapter. Munz [181] surveyed a number of litaiters with relation to a HOG scheme for a scalar two-dimensional equation using operator splitting (see Appendix F). In this work problems with both symmetry and resolution were noted with symmetric TVD schemes.

8.3.1 General Requirements

To begin the discussion of limiters, a concise definition is presented.
Definition 5 (Limiters) A limiler is a mechanism that imposes specified constraints on the computation of the numerical fiux producing higher onder accuracy, but aloo controlling oscillations and sometimes improving the resolution of discontinuities adaptively.
This definition fails to encompaes the full range of limiters given in the literature. It does give the gensral concept embodied by limiters. The constraints in many cases are
taken to be the restriction to TVD discretizations of a scalar hyperbolic conservatinn law. Often, as is the case with the $\mathrm{F}^{\prime} \mathrm{CT}$. the limiter is defined in a more somewhat heuristic manner, namely to keep new extrema from being formed in the solution.

At this point, it is useful to delineate the difference between slope and flux linniters more closely. This is done froni the standpoint of a philosophical differentiation rather than from a purely substantive basis. The slope limiters can be thought as being used directly during interpolation. Flux limiting usually involves methods that are rlassified as finite-difference types. Thus slope limiting applies to HOG algoritims and the flux litniting applics to TVD and FCT algorithms. One caveat can be plared on this classification, it is not stringent. An example of this are the ENO schemes due to Shu and Osher [65. 66, 188].

Remark 23 In general slope limiting refers to the reconstruction (projection) phase of the solution process. Flur liniting infringes on the solution in the small (evolution) portion of the solution. In [147]. van l.eer admonishes this prectice. The evolution process can aid in the lin:yt:ng pioress through the determination of the domain of dependence for the limiter. This principle has been used successfully with upwindbiased cell-edge type TV'D Las-Wendroff schemes or. for that malter, linear schemes such as the Beam-Warming scheme.

Typically, a limiter is used to choose the sinoother of several gradients with some caveats imposed to improve the guality. This can also be viewed as a form of averaging which is nonlinear rather than linear in nature. The averaging can also have the condition of setting its value to zero if the arguments differ in sign. This condition with apr,ropriate iunits on the magnitude of the resultant gr.adient in relation triother local gradients results in "monotone" solutions. Other litni $*$ of the resultant cherne can be applied to give something closer to an ENO type of philosophy.

The limiter functions have a general form given by the "minmod" lype

$$
\begin{equation*}
Q=m(a, b) \tag{8.1a}
\end{equation*}
$$

or

$$
\begin{equation*}
Q=m(a, b, c), \tag{8.1b}
\end{equation*}
$$

where

$$
\begin{equation*}
m(a, b)=\operatorname{sgn}(a) \max \{0, \min (j a \mid, \operatorname{sgn}(a) b)\}, \tag{8.1c}
\end{equation*}
$$

or

$$
\begin{equation*}
m(a, b, c)=\operatorname{sgn}(a) \max \{0, \min (|a|, \operatorname{sgn}(a j b, \operatorname{sgn}(a) c)] . \tag{8.1d}
\end{equation*}
$$

This definition can casily be extended to an arbitrary number of arguments. As one can see, the minmod limiter returns the minimum of the arguments unless they differ in sign. If they difier in sign, the result is zero. As I show in Section 7.1, this form was introduced with the FCT method of \{3oris and Book [59].

Figure 8.1: The computational stencil of the main limiter types in one dimension. Brackets indicate which points are used in evaluating local gradients. The modified flux or cell-centered limiter is centered about grid point j, the symmetric limiter is centered about cell.edge $j-\frac{1}{2}$, and the upwind-biased limiter for cell-edge $j-\frac{1}{2}$ is centered about cell $j-1$ for $a>0$. For $a<0$ it would have the same atencil as the cell-centered limiter.
limiters are centered in some sense. They can be centered about a grid point, cell edge, or biased by the direction of the flow as shown by Fig. 8.1. The appropriate definition of this centering is determined by the requirements of the underlying polynomial reconstruction. The limiters are defined at the points where a gradient of some sort is nceded in the scheme definition.

Hoe [176] and Sweby [132] introduced a formulation of these limiters that is particularly useful for analysis. Yee (134) also used this form in her analysis of symmetric TVD schemes. In this form, the function $\boldsymbol{Q}_{j+\frac{\xi}{}}$ is rewritten in terms of ratios of local gradients denoted by $r=\Delta_{k} u / \Delta_{j+\xi^{u}}$ under this formulation. The minmod limiter has a slightly modified form

$$
\begin{equation*}
m(a, b)=\max [0, \min (1, r)] a, \tag{8.2}
\end{equation*}
$$

with $r=b / a$, which has an similar functional form for three arguments.

Roe and Sweby also gave some desirable propertics for limiters to have such as symmetry (applicable to two argutnent limiters;

$$
\begin{equation*}
\frac{Q(r)}{r}=Q\left(\frac{1}{r}\right) . \text { or } Q(a, h) \div Q(b, a) \tag{8.3a}
\end{equation*}
$$

and homogencity

$$
\begin{equation*}
Q(\mu, \mu r)=\mu Q(1,1) . \tag{8.3b}
\end{equation*}
$$

Although the homogencity property cau easily be generalized, the symmetry property is in need of proper gencralization for liniters using more than two arguments.

Another property discussed by Roe [176) is that of linear averaging. Quadratic data could be exactly advected with the use of a function of the form

$$
\begin{equation*}
Q(a, b)=\mu a+(1-\mu) b, \mu \in[0,1] . \tag{8.3c}
\end{equation*}
$$

because in quadratic data the lifferences in gradients varj linearly. This characteristic cannot be used with TVD limiters because this would produce a line ar algorithm and produce oscillatory solutions by virtue of Theorem 3. Some of the characteristics of this property can be recovered when the flow field is smooth and resolved.

Although this is not coummonly stated, the limiters used in TVD schernes are convex and consistent averager of their local data's graelients. This is equivalent to stating that the schemes are second-order accurate because the limited gradients and the resulting schemes are convex averages of a family of second-order linear schemes. Thus a general form of limiters is

$$
\begin{equation*}
Q\left(a_{1}, a_{2}, \ldots, a_{n}\right)=c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{n} a_{n}, \tag{8.4a}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{z} \geq 0, j \in[1, n] \tag{8.4b}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j}=1 \tag{8.4c}
\end{equation*}
$$

Consistency would dictate: that

$$
\begin{equation*}
Q(a, a, \ldots, a)=a . \tag{8.4d}
\end{equation*}
$$

As discussed in more detail below (Sections 8.3.3 and 8.3.3), the commonly used TVD limiters have this property wheicas some other limiters of similar design (such as the $F^{\prime} C^{\prime} T$ or UI.TIMA'T\&' limiters) do not.

One key point in this entire discussion is that the limiters in conjunction with upwind principles attempt to! !alance resolution with the need for dissipation in the algorithms. It is this trade off that is vital to the success of schemes. It is explored
in the next section.

8.3.2 Numerical Dissipation

The view can be takent that the limiter is simply a "fancy" form of artificial dissipation. This is true to a certaill extent whell considering the classical depiction of artificial dissipation, but the difference is that the choire of dissipation coefficients is nonlinear. To see this, I recall the observation given in [30] that an upwind differenced scheme solves the following parabolic equation to secoud•order accuracy:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial s}=\frac{1}{2}|a| \Delta x(1-\nu) \frac{\partial^{2} u}{\partial x^{2}} . \tag{8.5}
\end{equation*}
$$

This equation can be derived ly taking the difference between the mumerical schemes for upwind differencing and l.ax- Wendroff's inethod. Taking this approach a sort of numerical viscous stress can be definel as

$$
\begin{equation*}
r_{L . H . V}^{H}=f_{l, K}^{L W}-\int_{L R}^{L P} . \tag{8.6}
\end{equation*}
$$

Using the approach outlined abour for IIOG-type algorithons yield a uscful measure of a limiter's effect on the solution. These relations are given for a scheme defined by the following polynomial:

$$
\begin{equation*}
P_{p}(x)=u,+\overline{\Delta, u} \frac{(x-x,)}{\Delta, x}, x \in\left[x,-\frac{1}{2}, x, k\right] \tag{8.7}
\end{equation*}
$$

where $\overline{\Delta, u}=Q, \Delta,+\frac{t}{2} u$. Using a l.ax. Wendroff. type time discretization and ccastant mrsh spacing gives for upwind differencing

$$
\begin{equation*}
T_{L R . v}=\frac{\Delta x}{4}\left[(a-|a|)(1+\nu)\left(Q_{j+1}-1\right)+(a+|a|)(1-\nu)\left(1-Q_{j}\right)\right] \Delta_{j+j} u, \tag{8.8}
\end{equation*}
$$

where Q is defined as

$$
\begin{equation*}
Q,=\frac{\widetilde{\Delta, u}}{\Delta_{j+\xi^{u}}} \tag{8.9}
\end{equation*}
$$

For Lax.Friedrichs' differencing used as the underlying Esecheme fives

$$
\begin{equation*}
T_{L A . N}=\frac{\Delta x}{4}\left[\left(a-\frac{|a|}{\nu}\right)(1+\nu)\left(Q_{j+1}-1\right)+\left(a+\frac{|a|}{\nu}\right)(1-\nu)\left(1-Q_{,}\right)\right] \Delta_{j+\xi^{u}} . \tag{8.10}
\end{equation*}
$$

Remark 24 for general use in computing the quantily TLA,N the difference between the Lar-Wendroff fus and a certain high-order fus is used.

Several observations can be made by carefully analysing these functions. For an
upwind-based scheme, the viacoas stress is with the gradient $\Delta_{,+\frac{1}{2}}$ w whenever the limiter gralient is taken to be the minimum pradient or less; however, if the limited gradient is larger than one of the locsl gradients, then the stress ran be against the gradient or anti-diffusive. Ther second of these two cases leads to compressiou in an algorithon. Geometrically, the orientation of the cell averages beconues inverted at the computed cell-edge values. If this persist for many time steps, it would lead to a disastrons instability, but the nonlinear nature of the limiters guards against this occurrence.

This is of sonse consequence with the Lax-Priedrichs-based scheme (or similarly based scheures such as a local l.ax. Friedrichs $[65,66]$ or the III.I.E solver (130,128). In most cases, tise diffusive effect is enhanced by the increased diffusion, but where the liniter produces an autidiffusive flux, the antidiffusive uature is enhanced by the diffusion. This can lead to small oscillations. This behavior is exemplified by the Y('T liniters where the limiter has an antidiffusive lax-Friedrichs-type signal speed $\left(a^{-1}\right)$.

8.3.3 TVD Limiters

Although this is not conipletely general, for the purposes of this study the limiters used with J'VD schemes cast be divided into two categories: two argument and three arguruent types. these limiters can also be used with FCTI schemes as I have refornulated them and with 110 (; algorithms corresponding to a given TVD scherne. The principal contributions found in the following sections are generalizations of the ideas of Swely [1:32] and Roe [176] to more general numerical schemes. The analyses of Sweby and l'oe used with an upwind-biased TVD Lax. Wendroff scheme applies very well to other uses oi two argument limiters. The analysis of Roe [131] with regards to threc argument limiters is limited to a small set of the limiters which are a natural outgrowth of the two argument limiters.

Fior general serond-order 'TVD schemes, several condition must be mot for the limiters to provide a TVD solution. These are taken from the conditions for a TVD scheme in a semi-discrete case, (see Chapler 4). For cell-centered based limited schemes such as the modified flux TVD scheme in (4.22a), the conditions are for $a \geq 0$

$$
\begin{equation*}
\frac{Q_{j}}{r}-Q_{j+1} \leq 2, \tag{8.11a}
\end{equation*}
$$

and for $a<0$

$$
\begin{equation*}
Q_{3+1}-\frac{Q_{2}}{r} \leq 2 \tag{8.1ib}
\end{equation*}
$$

For cell-edge based limited schernes such as (6.4) or (6.7) the conditions are for $a \geq 0$

$$
\begin{equation*}
Q_{,-\frac{1}{2}}-\frac{Q_{,+1}}{r^{-}} \leq 2 . \tag{8.12a}
\end{equation*}
$$

anll for a <0

$$
\begin{equation*}
Q_{,+\frac{1}{2}}-\frac{Q_{1-\frac{1}{2}}}{r^{4}} \leq 2 \tag{8.12h}
\end{equation*}
$$

Wh:ed elle fully dincrebe cane is cumsiderell (using hackwarel Einler time differencing), the cell erlge hased linitern cunform to the same restrictions as the cell-rentered types,
 cilisool latcr ill the rlapter. I.ator sonice conditions are given with regard to certain fully discrete cases.

Remark 25 I)ains (IXQ)] disrusaes iess reatrictive limilers based on lar-Wendroff type lime centering. These limits are stated for $a>0$

$$
\begin{equation*}
Q,<\frac{2}{\pi a} . \tag{8.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{Q_{1}}{r}<\frac{2}{1-\pi a} . \tag{8.13b}
\end{equation*}
$$

with analogous limits for $u<0$.
Onc caveat applies to the strict use of conditions such as (8.11a)-(8.12b): the [1 i) ronditions should lie derjverl for rach scheme from those stated in 'Theorem 6. An exaisple of this prinriple at voork is the derivation of appropriate timiters defined i:a ('Inapter 6 for paratolic F("I' srhemes. The resulting conditions for the limiters are identiral to those alowe. Hut the right-hand sides of the inequalities are multiplied by 1/3. A simple exatuple of this is the minhar limiter, (3.17), which produces a TVD schefure. but the proxif of this requires a slight modifiration of the usual proofs (i.e., dropling the assumptions that the \boldsymbol{Q} functions are positive or equal to zero for all r).

Two Argument Limiters

Ifor: [176] and Swrby [132] defined their schemes (and limiters) to be upwind biased in nature. The stencil for the limiters was centered about a cell-edge and the cellrdge upwind from that. The typical assumptions regarding the ponitivity of the \boldsymbol{Q} functions leads to the TVD region defined by Sweby. The boundary of this region is given los

$$
\begin{equation*}
Q_{T v l}=m(2.2 r) \tag{8.14}
\end{equation*}
$$

It is bounded below by the x-axis. The TVD region using this assumption is shown in Fig. 8.2a. If the assumptious regarding positivity is dropped then the region is fronnded by

$$
\begin{equation*}
Q_{T V D}^{1}=m(1, r) . \text { and } Q_{T V D}^{2}=\dot{m}(-1,-r) . \tag{8.15}
\end{equation*}
$$

This region is shown in Fig 8.2b. Figure 8.2 b differs from previous presentations in it rercognition of limsters that ran differ in sign (an example of which is the minbar
limiter).

 $r>0$ and the entire shaded regirn f.it $r \quad u$
 tions (forward Euler or forward Euker w: 1 . vendrol : . . rerretion), se re-
 methodology, the TVD region meet thr. . :A... Ent the : cond irder region of the plane rentains ifie same, thus for practut. surpows yieldug tive same sort of himiters. This point becomes significars war onsultering tle ULTIMATE limiter iro Section 8.3.5.

Several of the more common limutern ar" ithe basic "minmod" limiter [13,N]

$$
\begin{equation*}
Q_{1} \cdot 1 \cdot r_{1}-n_{1}(l . r) \tag{8.16a}
\end{equation*}
$$

van Leer's limiter [119]

$$
\begin{equation*}
Q_{1, v}(1, r)=\frac{r+|r|}{1+i r \mid} \tag{8.16b}
\end{equation*}
$$

the centered limiter [120]

$$
\begin{equation*}
Q_{c}\left(1 \cdot \cdots \cdot 1=5 m\left[\because-\frac{\square}{\square}(1+r)\right]\right. \tag{8.16c}
\end{equation*}
$$

and Roe's superber limiter

Another form of limiter is used w ana the $\because(0)$ ipe scher- i ics inmiter is called the "minbar" limiter and it return: the ampernen! with tor malleat aboolute value. It can be written symbolically

$$
\dot{\mathrm{m}}(a, b)= \begin{cases}a & \text { if }|u|=\operatorname{mm} 0(|c|,| | \tag{8.17}\\ b & \text { o:herwise }\end{cases}
$$

and in the ENO schemes the difference ntencil gram. Ifose direction of the smaller argument. Figure 8.3a shows the behavrer with revg… III the satio form in the

Figure \$.2: Ther sce crit neter 'TV') regions are shown in the shaded regions of these figures. Th..., limi lines ...1\% f.e linits of the TVD region for an explicit time differencing. bigitr-x. $2 h$ gives the TVD regions ascuming Q is ponitive definite. This agri "y with the pre:arntation given by Sweby. Figure 8.2a shows the TVD region assuning Q is not positive definise. The second-order TVD region includes the lines $Q=r$ for $0 \leq r<1$ and $Q=1$ for $r \geq 1$. The lines denoted by $Q_{L w}$ and $Q_{B W}$ corrospenal tes the l.ax. Wrndroll and Beam-Warming methods. ihe regions lying heivrell theso curves are second-order accurate. The other "thin" lines outline the TV'D reqjols. In fir, $8.2 a$ this is the reaxis for $r>0$. For Fis. 8.2b this is the line $Q=r$ for 1$) \cdot r \cdot 1$ and $Q=\mid$ for $r>1$.
is shown as outlined by Q_{1} and $Q_{s B}$. Figure 8.4 l , hows the behavior of Q_{c} and $Q_{\text {ul }}$ with respect to r.

For the initial presentation of this analysis, for example, the determination of the limiter at cell.edge $:+\frac{1}{2}$ if the signal velocity $a>0$ then the gradient at $j-\frac{1}{2}$ is compared with the gradient at $j+\frac{1}{2}$, otherwise the gradient at $j+\frac{3}{2}$ is used for comparison. This scheme is (6.7) with

$$
\begin{equation*}
i_{j+\frac{\xi}{}}=Q_{j+\frac{1}{}} \frac{\Delta_{j+\frac{1}{}}}{\Delta_{j+\frac{1}{2}}} . \tag{8.18}
\end{equation*}
$$

The question of accuracy of limited schemes of this nature was addressed by Sweby in [132]. The schemes of this nature could be viewed as convex averages of the Lax-Wendroff and Beam-Warming schemes. These schemes are defined by the use of certain gradient ratios defined in a linear mauner. The second-order TVD region is a set of the regions bounded by these two schemes and the conditions defining TVD schemes. A secondary effect of this is that the limiters thus berome convex but nonlinear averages of the sample gradients. Two third-order upwind methods can also be incorporated into this framework. One is based on cell averages and the other is point value based [190] (see Chapter 9). These schemes are defined for the upwind.biased TVD schemes with gradients written in ratio form as

$$
\begin{equation*}
\frac{s}{s_{j+1}}=\frac{3}{4}+\frac{r}{4}, \tag{8.19a}
\end{equation*}
$$

for the point-value form and

$$
\begin{equation*}
\frac{s}{s_{j+\frac{1}{j}}}=\frac{2}{3}+\frac{r}{3}, \tag{8.19ł}
\end{equation*}
$$

for the cell-average form. Figure 8.3b shows the region defined by these limiters in the second-order TVD region.

The use of these identical limiters has not been limited to schernes of this type. The HOG scheme described by Colella in (123) and Osher in (179) and the modified flux TVD scheme of Hasten $\{130,61\}$ succeafully use these same limiters. The polynourial interpolation for this scheme is given by (8.7). The limiters are not biased with the direction of the flow, and the limiters stencil is invariant. These schemes determine a value for the gradient which is cell-centered and is based on sample gradients tahen at the cell edges. Analysis of conditions resulting in TVD limiters yields :dentical renults as the upwind-binced limiter applied to a TVD Lax.Wendroff sch ine as discusced later. In fact, for a scalar wave equation these two schemes give identical results with identical limiters. This does not generalize to nonlinear equations.

The accuracy of these schemes is second order in the L_{1} norm, but the limiters make the resulting scheme a con:ex average of a second-order upwind scheme and the rorresponellug anti-npwind interpolated scheme. The first schellie proclures results of

Figure 8.3: This shows the errinbar limiter. It is intereating to note that for an upwindbiased cell.edge scheme tinis limiter gives a Beam-Wastring scheme for $|r| \leq 1$ and a Lax. Wendrof reethocs for $|\mathrm{F}| \geq 1$. Figure 8.3 b nows the third-order region of the plane.
relatively good guality, white the second scheme produces poor results (saved by the Riemann solver). but the linjiter provides exceptional results inuproved in all resperts. The relation of the liuear difference schemes to the high oreler method is akin to the relation of Sweby and Roe's scheme and Lax. Wi-ndroff or Beam-Warming scliemes.

Before going further, several other two argiment limiters should be introduced. The form used to define the minmod and superbee limiters are specific cases of a family of schemes defined by

$$
\begin{equation*}
Q_{n}=\max [0, \min (n, r), \min (1, n r) \mid, 1 \leq n \leq 2 . \tag{8.20}
\end{equation*}
$$

For $\boldsymbol{n}=1$ this reduces oo the minmod limiter and for $\boldsymbol{n}=\mathbf{2}$ it is the superbec limiter. The above caveat also applics to this limiter because for some possible schemes the above definition can be extended. Figure 8.5 a shows the behavior of Q_{n} for $n=: 1.5$.

Osher and Chakravarthy [180] introduced a limiter

$$
\begin{equation*}
Q_{o c}=m(1, n r) \text { or } m(n, r) \mid \leq n \leq 2 \text {. } \tag{8.21}
\end{equation*}
$$

which does not share the symmetry condition witt the other limiters (unless $n=1$) and thus must be used with cautiou. This can be scen in Fig. 8.5b for $n=2$ and each of th: two forms given abore. The first of these two choices makes sense from the standpoint that in a upwind-biased cell-adge limiter it would choose the centrally differenced gradient. The results presented in (181, 132) show the effects of this lack of symmetry. This limiter may still be used if applied carefully in algorithm construction. Neverthelens, these limiters find widespread use in a number of scherres and produce quality results in spite of their less desirable qualities.

Uniformly nonoscillatory schemes [64] use a limited second derivative to corsect the first der: valive estimate to give uniform second-order accuracy in all erros norrns. The price paid is the loas of the TVD property; however, these schemes are designed not to create any new extrema not in the initial datia (for linear problems). For the polynomial form (8.7), the sample gradients used are cell-edge centered. The UNO scheme maket an estimate of the second derivative at the seli-edges and cortect the value of the cell.edge first derivative to the cell center. I detine

$$
\begin{equation*}
d,=\frac{s_{j+1}-s_{j-1}}{\Delta x} . \tag{8.22}
\end{equation*}
$$

as the second derivative computed from the first derivatives $\left.{ }^{\prime}, \pm\right\}$, and corrpute an estimate for d_{j+j} with

$$
\begin{equation*}
d_{j+\xi}=m\left(d_{i}, d_{l+1}\right) \text { or } \min \left(d_{1, \ldots}, d_{, 1}\right) . \tag{x.23}
\end{equation*}
$$

Figure 8.4: Figure 8.4a shows the minmod and superbee limiters. The minmod limiter gives the lower boundary and the superbee limiter gives the upper boundary of the second-order TVD region. In Fig. 8.4b, van Leer's and the centered limiter are given.

Figure 8.5: Figure 8.5a shows the limiter, Q_{n}, for $n=1.5$. The plot shown by Fig. 8.5b looks similar to Fig. 8.3a, the difference is that the upper boundary of the second-order TVD region is given by one of the two limiters (Qoc $=\mathrm{m}(1,2 r)$)for $r<1$ and by the other (Qoc $=m(2, r)$) for $r>1$.

1 currect the firs | |erivative estimates

$$
\begin{equation*}
s_{,-\frac{1}{}}=s_{--\xi}+\frac{\Delta x}{2} d_{\jmath_{-j}} \tag{8.24a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{\rho+\frac{1}{2}}=s_{\rho+\frac{1}{2}}-\frac{\Delta x}{2} d_{\rho+\frac{1}{2}} . \tag{3.24b}
\end{equation*}
$$

and linjit these modified gradients in a normal fashion. The performance of this schenle on test problems is generally exceptional. This approach works for the modified flux TV'D metind and its related IIOG counterpart. Suresh aud Huynh have stuclicel some interesting variant of the above UNO-type schemes [191].

The upwind-biased cell-edge limiter uses two argument liuniters as well, but the proper definition of tiNO requires some modification. Discussion of this is deferred to the next section.

The compressive limiters are necessary for computing contact discontinuities be cause of their tendency to diffuse. Less compressive limiters are recommended for shocks becanse of a shock's self-sharpening nature.
Q_{11} loes not have the usual form, but checking its functionality shows what its effert is. This can also be viewed as a modified harmonic mean. This connection is explored at length in Section 8.3.4.

Three Argument Limiters

As the discussion in the previous section would indicate, the two argument TVD limiters are relatively simple to ana!yze and take a number of forms. The three argument limiters are more dificicult to analyze, but 1 follow the same general methodology.

Several limiters of this class have already been given in Chapter 7. To present these limiters in as compact a form as possible, the nomenclature used in Section 7.2 is used. Thus the following variables are defined:

$$
\begin{equation*}
r^{-}=\frac{\Delta_{j_{-} \xi^{u}}}{\Delta_{\mu+\xi^{u}}{ }^{u}}, r^{+}=\frac{\Delta_{j+\xi^{u}}}{\Delta_{j+\xi^{u}}} . \tag{8.25}
\end{equation*}
$$

 The term s_{j+j} has th.e same definition as before. Some of the limiters of this class have been reported by Roe [131] and Yee [134]. Some example of these limiters are

$$
\begin{gather*}
Q_{1}\left(r^{-}, 1, r^{+}\right)=m\left(r^{-}, 1, r^{+}\right), \tag{8.26a}\\
Q_{c}\left(r^{-}, 1, r^{+}\right)=m\left[2 r^{-}, 2,2 r^{+}, \frac{1}{2}\left(r^{-}+r^{+}\right)\right] . \tag{8.26b}
\end{gather*}
$$

alad

$$
\begin{equation*}
Q_{1}^{\prime}\left(r^{-} .1 . r^{t}\right)=m\left(r^{-}, 1\right)+m\left(1 . r^{t}\right)-1 . \tag{8.26ic}
\end{equation*}
$$

Figure R.f whows these limiters. limiters of the form of Q_{1}^{\prime} are not recommended
 beretavior by definiug this type of functiof as a "scparable Q function." Ihas repressents a sinnple Hanliner of extending two argument liniters to the three argulnent case. Fixangles of this philosoplyy are extensions of the superbere aud van lecer's limiter

$$
\begin{equation*}
Q_{11}\left(r^{-} .1 . r^{+}\right)=\frac{\left|r^{-}\right|+r^{-}}{1+r^{-}}+\frac{\left|r^{+}\right|+r^{+}}{1+r^{+}}-1 \tag{8.26d}
\end{equation*}
$$

ancl

$$
\begin{align*}
Q_{\Delta b}\left(r^{-} .1 . r^{+}\right) & =\text {max }\left[0 . \min \left(1.2 r^{-}\right) . \min \left(2 . r^{-}\right)\right] \\
& +\max \left[0 . \min \left(1.2 r^{+}\right) . \min \left(2 . r^{+}\right)\right]-1 . \tag{8.26e}
\end{align*}
$$

If a function being linited is smooth and monotone over range of the threr arguments
 I'rohlenis occur when the diaia shows nore structure. This is evident through Fig. 8.: which shows that both of the abover limiters are not TV1) although their behavior in practice may be acceptable on thost initial data.

At this pmint, several topics are in nerel of discussion. As before with the two argunuent limiters, accuracy of the approximation is important, and as before some rrituria surli as symunctry needs to be met. These allow us to create new limiters with desirable qualities.

The topic of acruracy can be addressed quite simply, as part of the answer cornes froll the previons analysis of upwind-biased limiters for the TVI) lax-Wendroff srlieınes. The there argument limiters (l asn considering those reentered about a cell edgr) are a convex average of the lax. Wendroff and Beam. Warming methods, but also include an anti. lleam. Warıning-ty pe scherne where the stencil is taken to be opposite of upwind. Althonght the result of the limiter is a convex average of these schemess, it is second-order arrurate. The stability of scliences such as FC:T or symmetric 「V1) show the power of limiters to ofiset the effects of using anti-upwind data. This statruent is sourewhat misleading as anti-upwind data is dangerous at extrema and discontinuitics and the limiters discunaed hure would chouge data from elsewhere in the steuril at these points.

As noted with Fig. 8.2, the TVD regions for the three argument litniters can be visualized by projectirg the regions shown in the plot in an additional coordinate direction.

The concrpt of sjinnmetry in these limiters needs to bed difiererit than with the two

Figure 8.6: Three of the three argmuent limiters are shown here. These are the minmod limiter $\left(Q_{1}\right)$, the centered limiter $\left(Q_{c}\right)$, nud a luodified minmod limiter $\left(\left(Q_{1}\right)\right.$. The modified minnod limiter dors ner give TVI) resules because of its form and subsequent behavior when $\boldsymbol{r}^{ \pm}<\mathbf{0}$. The other two litriter are TVD for second-order symunetric type schemes.

Figure 8.i: Both of these lintiters inse the desigu philuouphy of the morelified minned scheme. Figure 8.7a uses van Leer's limiter and tig. 8.7b uses the superbee limiter. Both are not TVD for $r^{ \pm}<0$, but aleo are fot TVD should $r^{ \pm}$grow sufficiently large with both being greater than 1 .
the central value in the stoncil. i.e..

$$
\begin{equation*}
Q\left(r^{-}, 1, r^{+}\right)=Q\left(r^{+}, 1, r^{-}\right) \tag{A.27}
\end{equation*}
$$

Inspection reveals that this is inded the case for the limiters given ahowe. The property of homugencity is also innportant and is kept by the abrove linuiturs. The same caveat coucreuing linuters and spurifir difference schemes made in the previous section applies to the three argumenet linsiters.

Before moving on. several limiters ran ine introduced that inest the above stated criteria. One limiter that guickly coness to mind is an extension of the minbar limiter, (8.17).

$$
m(a, b, c)=\left\{\begin{array}{ll}
a & \text { if }|a|=\inf (|a|,|b|,|r|) \\
b & \text { if }|b|=\inf (|a|,|b|,|c|) \\
c & \text { otherwise }
\end{array} .\right.
$$

Figure 8.8 shows thes linuiter behavior for different values of r^{-}and r^{+}. A general class of limiters extending two argument limiters to three arguments can be writtea

$$
\begin{equation*}
Q^{2}:=\min \left\{Q^{2}\left(1 . r^{-}\right) \cdot Q^{2}\left(1 . r^{+}\right)\right] . \tag{8.29}
\end{equation*}
$$

where C ${ }^{2}$ could be any two argument limiters like thuse discussed in the previous section. Two examples of this design principle are given in Fig. 8.9 (using van leer's and the tentered two argument limiters). This limiter does not share sotne of the prost rharacteristics of the separable limiters shown above. In several cases. the results from this limiter reduce to other limiters discussed above. For instance, the basic three argumelil minenod limiter ran be found from the above combination of two argument minmod limiters.

A serond group of limisers, which have their basis on the ahoverstated symmetry propesty, are natural natgrowthe of sevrial of the two argument TID linuiters. Examplon of this design are

$$
\begin{gather*}
Q_{c}=\max \left[0, \min \left(2,2 r^{-}, 2 r^{+} \cdot \frac{1}{2}\left(1+r^{-}\right), \frac{1}{2}\left(1+r^{+}\right)\right)\right], \tag{8.30}\\
Q_{a t}=\max \left[0, \min \left(2, r^{-}, r^{+}\right), \min \left(1,2 r^{-}, 2 r^{+}\right)\right], \tag{8.30b}
\end{gather*}
$$

and

$$
\begin{equation*}
Q_{n 1}=\frac{\left|r^{-}\right|+\left|r^{+}\right|+r^{-}+r^{+}}{2+\left|r^{-}\right|+\left|r^{+}\right|} . \tag{8.30c}
\end{equation*}
$$

The limiters satisfy the TVD requirements for the symmetric TVD acheme and perform quite well in practice. These are shown in Fig. 8.10, which dermonstraten their ability to produce symmetric TVD limiters.

Figure 8.8: The three argument alaalog to the minbar limiter is showis here.
\therefore discussed in Chapter 6, the rourept of UNO schemes can be generalized to the three argument limiters. This is done in the following manner. The cell-edged stenc:l for the limiters requires that gradients one full cell distant from cell edge be used in the limiting process. As with the :wo argument implementation of an UNO scheme, these gradients are corrected. To do this, cell-edged estimates for the second derivatives are needed, as defined by (8.23). The gradients used in the limiter are then corrected with a first-order correction based on these second derivat:ves. The cell-edge gradient on the cell edge where the limiter is defined is already second-order and needs no correction. These corrections are

$$
\begin{equation*}
s_{j_{-1}}=s_{j-j}+\Delta x d_{j-k} \tag{8.31a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{j+j}=s_{\rho+j}-\Delta x d_{t+j} . \tag{8.31t}
\end{equation*}
$$

As noted in the previous section, the opwind biased limitern cannot use the UNO description given in the previous section. The cell.edge-based definition given in the previous paragraph ie ther proper basis to begin from ard the generalizaticn to the upwind biased limiters is natural.
'The methods introduced as being symmetric TVD ar.hemes are differentiated by their flux lizniters which are centered in support about the cell edges. The other methods like those introduced by Sweby and Roe are upwind biased in the support for their limiters. Beth methods however are closely related to :he: I.ar Wirnireft methoed. The syumetric sechemes have bren favorably viewed becalise of thell lowio operatioll rount and an increased convorgence rate [166].
in considering the perfurmance of th:se schemex, six teat problems afe completed: two fur the scalar wave cqliation. one for liurgers' equation, and three for the Eiuler

 ite uanulting limiters arr IVD and do not suffer from the samic ditheultims as the incolitieat minbar type of limiter. The two t,ase lirniters used here are van Leer's and the centered limiters. In practice any TiVD two argument limiter can be used in this comtext.

Figure s. 10: The limiters shown here une the symmetry property discussed in the text. The limiter showa in Fig. 8.10n is allalogoms to the rentered limiter while fig. 8. 10 b is analogous to the superbee limiter. Betli are serond order and TVD. Figure 8.10c gives a van leve type lisuiter, which is not TVI) bint works quite well i , practire.

Table 8.1: Oriler of accuracy in several norms for the schemes solving Burgers' equation.

Scheme	L_{1}	L_{2}	L_{x}
Symmictric $(t=0.2)$	1.83	1.58	1.19
Upwind $(t=0.2)$	1.90	1.65	1.28
Symmetric $(t=1.0)$	1.18	1.19	0.78
$U_{\text {l wind }}(t=1.0)$	1.41	1.14	0.74

"dllatsons. The two problens for the sralar wave repliation art the advection of a sellate wave anci of a -teepre" funstion arross a preriodic domain. Farh test rums for 300 tine steps with a ('ouraut-Friedrichs. Lewy (CFL) mumber of ! . The Burgers' equation problen is simply a $\sin (x)$ initial coudition on a periorlic donnain with lengeth of $2 x$. The three Einler equation piobleins are Sod's problem [.81]. Lax's problem [5.5]. and a blast wave probletn [44]. The rombination of these problems highlights the strengths and weaknesses of these algorithmis. Both algorithnis always use the limiter denoted by Q_{2} in the previous section for all problems except the Burgers' equation problenl where Q_{1} is used.

Figure 8.11 shows the solutions to the scalar wave equation. The symmetric scherue obviously provides lower resolution in both rases. The difference is also fairly griat in terms of both peak preservation as well as signal width. The syunnctric erhenle also lose problems with signal shape as it is somewhat distorted. A notable feature of the upwinel-biased scheme is that for the scalar wave equation the solution is identical to that obtajned by the modified flux TVD scheme if the same limiters are used. This call be explained by the support of the limiter used and the reaulting interpolation on the upwind side of each cell interface. For nonlincar problems this does not hold.

In Table 8.1. the rates of convergence are given for Burgers' equation. When the solution is smooth. the upwind method : evidently superius in every error norm. After a shock forms. the symmetric scheme is slightly more convergent: howevrr. for all test cases (up to 1000 grid cells) the actual error is lower for the upwind scheme. In addition, as tine progresses after $t=1.0$, the upwind scheme recovers its initially higher sate of convergence.

The solutions for the Euler equations echo the results with the previous threct problems. Across the board, the resolation afforded by the upwind sriseme is superior. The major flow structures: shocks, rarefactions, and contact discontinuities are all noticeably better resolved with the upwind inethor. The results from ionl's problem

Figure 8.11: The solution of the scalar wave equation by both these methods is shown for two teat problems. In both cases, the upwind method provides superior performance.

 showit. Also evidiolt from this figure is the symmetry probleuss exhitited by the syumetric schernce. The sl:ape of the density peak is mote consistemt with the exact solution with the upwibil-hiased usethod.

Thie hlast wave problenf (see Fig. 8.1.1) acceutrates cach of these jssises. This is purticularly true with respect to the: right density peak whicii is significamely rloser t, the convergel salntion with the upwind uncthod. T wo other key frat:ures of the solution are the degree of -fill-in" betwren the praks and the contart discontimuity to the left of the left density preak. The fill-in regions are both suleared urarly equally, lint the shaper of the upwint computed solution is better. The left-most rontact discontinnity is umarlinore surated by the syunuetric schenue.

The result: uf the previous paragraplis show conclusjvely that the upwind scheme urodures results of highor resolation when rounpared with the synunctric scheme. lhis raises the issue of ranse. These sehemes are secmud-order accurate wher; the solution is sumoth. The liniters are based on ininimum principles. and increasing thecir suppoort lewers the value returued by the function. The subsergueut "flatiening" of the slojer is akin thitureasing the mumerical viscosity of the scherme thus lowering the accuracy.
luterpreted on a more pliysiral basis. the upwind scheme takes data from a more physically meaningful loration of the grid. The support for the limite. can be perrriverl to affert the solution at that joint. whereas the symmetric limiters are centered by taking both upwind and antjupwind data. Both arguments lead to a :onclusion that if resolution is of prisnary colncern. the limiter should have as small a support as possible in order to limit its indured viscosity. This of course shou!d lie within the linitations of providing physically useaningful oscillation-frce (or nearly so) results.

Appendix E provides the results of asing both two and three argument limiters without limiting for cach term.

Artificial Compression

Often. it is impor!ant to choose the limiter used b; the nature of the problem. For fichls eliat are lilirarly irgenrrate. the problem of numerical diffusion is severe. In the solution of systens of equations this manifests itself as severe smearing of contact discontinuitics. A number of schemes have been developed to deal with this probIrm [183. 122, 110, 137, 192, 193]. One such scheme is artificial compression, which call be applied to TVD limiters. The form is

$$
\begin{equation*}
Q,=11 r \omega_{1} 0_{1}, \bar{Q}, \tag{x.3.0}
\end{equation*}
$$

Figure 8.12: The solution to Lax's problem highaighte the resolution of both shocks and contact discontinuities a well an the symmetry properties of the solution: meth. ods.

Figure 8.13: The solution to Sod's problem by both methods shows the improved resolution given by the upwind-biased scheme.

Figure 8.14: In the blast wave problem, the deficiencies of both methods are most clearly shown. The difficulty of the problem is due to the large amount of structure confined to a small physical space.

Where the discontinuity detector, θ, is defflled as

$$
\begin{equation*}
\theta_{3} \equiv \frac{\left\lvert\, \Delta_{\left.\rho_{+\frac{1}{2}} u-\Delta_{\lambda_{-\frac{1}{2}}} u \right\rvert\,}^{\left\lvert\, \Delta_{\rho_{+\frac{1}{2}} u\left|+\left|\Delta_{-\frac{1}{2}} u\right|\right.}\right.}=\frac{\|-r \mid}{1+|r|} .\right.}{\text {. }} . \tag{8.32b}
\end{equation*}
$$

alld the argument. w_{j}, is chosen to give the best results. Figure 8.3.3a shows how 0 varies with r. This applies compression to the method (makes the local slope steeper). If the field is geuuinely nonlinear, then the limiter should not be so compressive in nature.

All effective forr for ω_{j} in transient problems was introduced in [101]. This was used with the superbee limiter under the stipulation that the resulting scheme remained TVD after the application of artificial compression. This application was not second order in the sense of the definition given in the previous sections. With the superbee limiter the form is

$$
\begin{equation*}
\omega_{j}=\min \left(\left|\nu_{j}\right| .1-\left|\nu_{j}\right|\right) . \tag{8.33}
\end{equation*}
$$

where ν_{j} is the local CFL number. A more general form ca:a be found that produce's TVD results (for common TVD schemes like those presented in Section 8.3.3). This form is

$$
\begin{equation*}
\omega_{j}=2-\xi+\min \left(\left|\nu_{j}\right|, 1-|\nu,|\right), \tag{8.34}
\end{equation*}
$$

where $\xi=\max [Q(r) \mid r \in \mathscr{R}$.
For the case of three argument limiters, artificial compression is generally not applied. The same general form used above can be used after several modifications. The discontinuity detector is applied to two sets of gradients when choosing the maximum value is

$$
\begin{equation*}
\theta_{j+\frac{1}{2}}=\max \left(\theta_{j}, \theta_{j+1}\right), \tag{8.35}
\end{equation*}
$$

and ω is computed at the cell-edges. The behavior of θ for the cell-edged three argument case is shown in Fig. 8.3.3b. The effectiveness of this approach is discussed in Section 8.4.

A large degree of caution should be exercised when using artificial compression or similar schemes. The type of limiter used and the compression involved appears to affect solutiors solved for long time periods on periodic domains [159]. The more compressive algorithms ran give completely erroneous results while less compressive ones converge to the correct solution. In steady-state solutions the less compressive limiters normally give more convergent solutions. This is the likely outcome of increased dissipation present in the algorithms. In this example, the FCT method of Boris and Book produced exceedingly poor results that can probably be attributed to the amount of compression in the algorithm.

Figure 8.15: Here the behavior of the discontinuity detector in the artificial omapression algorithm is shown for use with both two and three argument limiters.

8.3.4 Nearly TVD Limiters

The previuns sections conce:atrated on linniters that meet TVD criteria for the comnmonly used 'TVD sclumes. By its naturc, maintaining a TVD solution requires that the solution redicc to first.order accuracy at extrena. For loug transjents o: those involving a great unuber of tinie steps, the impact of this is profound. In virtually every comnonly reported solution, peaks are clipped and the solution is difused. It is sot reasonable to expect this to change as these are intrinsic to numerical approxillation, but the degree to which these errors occur should be inproved. Where the solution is wot diffused and the front remain sharp, often smooth transitions are unplisisically sharpened by the action of the limiter. Thus the currenily used limiter: are sot atways equal to the task.

Ti, attempt improventent on soult of the above-ntentioned problens it may be useful to relax the reguiruncut that a schente produce a TVD solution. One way of doing this is to use a ${ }^{1}$ trecent defiuition for variption control of the scherrir. This approach has beces take: by Shu (169] in the total variation bounded (TVE) scluesues. I have also looked int. a more general view of limiters as a nonlinear iverage of the saunple gradients as a manner of approach to this problem. Other a!proaches employ [:.N() ịpe discretizatious and/or least squares methods [165].

TVB Limiters

Shu has developed TVB sehemes as a uniformly high-order alternative to TVD schemes. the $1 \times B$ property simply requires that

$$
\begin{equation*}
T V(u, \imath) \leq B \tag{8.36}
\end{equation*}
$$

for some time $t>0$. This requires that hasic TVD limiter be modified to take advantage of this defillition (TVD iınglies that a scheme is TVB). This modification requires that sulfer estimate: of the second derivative of the solution be made in an a priori mannel. Higher order derivatives have to be estinnated if higher than second. order schemes are needed. This quantity is defined by the symbol M. This estimate thell modities the gradients in the limiter that are not centered about the point being linited. The effect of this is to bias the limiter into choosing the ligher-order centered gradient. This allows osciltatious to fornt in the solution, but when they grow too large the nonlinear action of the limiter stops the growlh. Although this has not been proved, it is helieved that ENO schemes are TVB $[65,66]$.

The details uf implementation can he divided into several distinct groups based on ine type of liniter briug used. For two argument limiters centered on the grid pa: : The limiter must be divided into two pieces, each centered on the cell edge. Thas the: mi..e

$$
\begin{equation*}
\widehat{S, u}^{T v^{\prime \prime}}-Q(!. r) د_{,-\frac{1}{3}} u \tag{8.37a}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\widetilde{\Delta, u}^{T V B}=\frac{1}{2}\left[Q(1, r+m) \Delta_{j-\frac{1}{2}} u+Q(1, r+m) \Delta_{,+\frac{1}{2}} u\right], \tag{8.37b}
\end{equation*}
$$

where $m=M \Delta x / s_{j-\frac{1}{2}}$ of $m=M \Delta x / s_{j+\frac{1}{2}}$ for the appropriate term in (8.37b). Examples of this limiter are shown in Fig. 8.16 for two values of $M \Delta x$. Here the definition of the limiter function Q has not changed from that given in Section 8.3.3, but its arguments have. The argument away from the cell edge where the limiter is centered has $M \Delta x$ added to it, thus the limiter is in most cases biased towards :he selection of the argument it is centered on. A proof of the 'TVB nature of this limiter is given in [169].

Several approaches can be taken to implementing this methodology with celledged limiters. The method described above for cell-centered limiters can be used with slight modification. The upwind-biased cell-edge limiter is defined by

$$
\begin{equation*}
\dot{s}_{j+\frac{1}{2}}^{T V B}=Q(1, r+m) s_{j+\frac{1}{2}} \tag{8.38}
\end{equation*}
$$

where m is defined as above and r is the ratio of the upwind gradient from cell-edge $j+\frac{1}{2}$ and $3,+\frac{1}{2}$. For the centered cell.edge limiters, the approach follows the logical extension of the upwind-biased casc. lis this case a limiter is defined by

$$
\begin{equation*}
\dot{s}_{j+\frac{1}{2}}^{T V B}=Q\left(r^{-}+m, l, r^{+}+m\right) s_{j+\frac{1}{2}} \tag{8.39}
\end{equation*}
$$

Figure 8.17 shows this dimiter for two values of $M \Delta x$. On the plateau of the figures, the schemes are second-c rder accurate and, as shown, the sizes of the plateaus increase with $M \Delta x$.

Theorem 10 The limiters given by (8.98) and (8.99) resull in a TVB scheme if these limiters and the resulting numerical schemes are TVD with $m=0$. The resulting schemes (those considered here) are uniformly second-order accurate.

Proof. The proof is similar to the proof given in [169]. If the underlying numerical scheme is TVD, then the proof reduces to showing that the total variation is bounded by some constant at all time, $t>0$. This is accomplished through the use of a modified flux

$$
\begin{equation*}
\boldsymbol{f}_{j+\frac{1}{2}}^{T V B}=\dot{f}_{j+\frac{1}{2}}^{T V D}+\dot{c}_{j+\frac{1}{2}} \tag{8.40}
\end{equation*}
$$

which is the susf of a JVD flux and a constant. If it can be shown this constant is bounded, then its sum is bounded, in turn leading to an upper bound on the total variation. The accuracy argument involves showing that the constant M in the limiter creates a bias that results in the selection of the high-order accuracy gradient centered at the limiters location.

Figure B.16: J'wo cases of the two argurnent TVB limiter are given here. The line that grows upward along the line $Q=\frac{1}{2}(1+r)$ past $r=3$ uses $M \Delta x=5$ while the other line uses $m \Delta x=2$. Both are always in the second-order region of the plane.

S-Limiters

One characteristic shared by the TVD linsiters with the exception of the minbar limiters is setting the limited gradient to zero when the sign changes among the liniters arguments. The ininbar limiter simply returns the argument that has the smaller absolute value. which may be opposite in sign to the function at that given poillt. This leads to a loss of accuracy at these points. As Tadmor [194] showed, the requirement for a scheme to be TVD (by Harten's definition) extrema must be clippect.

The limiters given in this section were designed to correct this problem. The essential feature of these schemes can be encapsulated in the following definition:

Definition 6 (S-limiters) An S-limiter returns a value equal to some nonlinear average of its input arguments and has the same sign as the argument defined at tise same li:ation as the limiter.

For example, in most cases this is some sort of gradient. The limited gradient has the same sign as the gradient at the location where the limiter is defined. For cell-edgebased algorithms, the changes in the reconstructive polynomial are minimal, but for cell-centered reconstructions some redefinition is required.

Sta:ting from the scheme given by (8.7) and redefining it to meet the above.stated

Figure 8.17: The threc argument TVB limiter is shown here for $M \Delta x=2$ and $M \Delta x=5$. The larger value of $M \Delta x$ gives a larger "plateau" on the plot.
defluition gives

Here the gradjent. $\overline{-11}$, is redefineol as

$$
\begin{equation*}
\overline{J_{,} u}=S(1 . r) \Delta_{-\frac{1}{2}} u \text { or } S(r, 1) \Delta_{,+\frac{1}{2}} u . \tag{8.41b}
\end{equation*}
$$

where the simplest example of the function S is

$$
\begin{equation*}
S_{1}(1, r)=\min (1,|r|) ; \tag{8.41c}
\end{equation*}
$$

another example would be the centered limiter

$$
\begin{equation*}
s_{c}(1, r)=\min \left[2,2|r| \cdot \frac{1}{2}(1+|r|)\right] . \tag{8.41d}
\end{equation*}
$$

These liniters are shown in Fig. 8.18. The term S_{1} is a TVD limiter over its entire range, but $S_{\text {. }}$ is not. The limitcrs can be logically extended to three arguments as before. One noteworthy point to raise with this reconstruction is that cell average of the reconstruction no longer equals the cell average \bar{u}_{j} if $\operatorname{sign}\left(\Delta_{j+\frac{1}{2}} u\right) \neq \operatorname{sign}\left(\Delta_{j-\frac{1}{2}} u\right)$. This subject is the topic of the next chapter.

If general. these limiters can be defined as above. They act as a multiplier on the cell-edge gradients modifying its magnitude but not its sign. This differs from the normal definition of limiters at points of extrema as noted above. The limiters are easily constructed from the definition of TVD limiters by removing the feature that sets the gradicift to zero if the signs differ, and changing the reconstruction algorithm to one like the one shown above.

These lirniters are not TVD unless the magnitude of $S(1, r) \leq 1$. Despite this, limiters of this nature perform well in practice (see Section 8.4) and have some advantages over the limiters constrained to be TVD. In test problems, the total variation was monitored and these limiters provide a TVD solution in practice. This may not old true for all initial data.

Generalized Average Limiters

As noted in several sections above (8.3.3 and 8.3.3), limiters can be viewed as nonlinear averages of their arguments. In this section, this subject is explored further. As noted in Section 8.3.3, van Leer's limiter is a modified harmonic mean of its arguments. Another limiter was introduced in [1:59, 1.58], which has an interesting interpretation.

Figure 8.18: Two S-limiters are shown here. The upper of the two lines is for the centered limiter S_{c} while the lower is for $S_{1} . S_{1}$ is a TVD limiter.

This limiter is written

$$
\begin{equation*}
Q_{\mathrm{alb}}(a, b)=\frac{\left(b^{2}+\delta^{2}\right) a+\left(a^{2}+\delta^{2}\right) b}{a^{2}+b^{2}+2 \delta^{2}}, \tag{8.42}
\end{equation*}
$$

where δ is a small positive bias. This bias is added to guard against clipping smooth extrema in the soiution. Its role is similar to that of M in the TVB schemes. It should be chosen to be $|d u / d x|$ (195] or $|d u / d x|^{3 / 2}$ [159] from the smooth regions of the flow. Dropping \mathcal{E} and converting this to the normal form for analysis gives

$$
\begin{equation*}
Q_{\text {alt }}(1, r)=\frac{r^{2}+r}{1+r^{2}} . \tag{8.43}
\end{equation*}
$$

This limiter car be written in an interesting form

$$
\begin{equation*}
Q_{a l b}(a, b)=\frac{2 a b}{a^{2}+b^{2}}\left[\frac{1}{2}(a+b)\right] . \tag{8.44}
\end{equation*}
$$

In this form it has a noulinear coefficient modifying the average of the input arguments. In [196], another form of this family of limiter was given (dropping the bias, ס) as

$$
\begin{equation*}
Q_{m-u l}(a, b)=\frac{2 a^{2} b+2 a b^{2}}{(|a|+|b|)^{2}}=\frac{4 a b}{(|a|+|b|)^{2}}\left[\frac{1}{2}(a+b)\right] . \tag{8.45}
\end{equation*}
$$

This limitur is more compressive thatl $Q_{\text {ntb }}$ and looks a great ilal like the harmonic mean limiter. $\lambda s|n / b| \dagger \alpha, Q_{m-1 \mid} \dagger 2$. This limiter can also be written in ratio form as

$$
\begin{equation*}
Q_{m-u l}(1, r)=\frac{2 r+2 r^{2}}{(1+|r|)^{2}} . \tag{8.46}
\end{equation*}
$$

'Ihis imititer bellaves exactly as $Q_{u l}$ for $r \geq 0$, but for $r<0$ it behaves differently (brcinse it does not equal zero).

The noteworthy point is that both this limiter and van Leer's linniter can be writtell in a form that encompasses both of them as well as a much larger class of limiter. I'his form is

$$
\begin{equation*}
Q(a, b, n)=\frac{|a|^{n} b+|b|^{n} a}{\left.!a\right|^{n}+|b|^{n}}, \tag{8.47}
\end{equation*}
$$

or in a form suitable fo: analysis,

$$
\begin{equation*}
Q(1, r, n)=\frac{r+|r|^{n}}{1+|r|^{n}} . \tag{8.48}
\end{equation*}
$$

Limiters oblained for two values of 1 are given in Fig. 6.19a.
If one takes the limit as $n \dagger \infty$, the minbar limiter is recovered, onaking it a limiting form of this family. For $n \neq 1$ or $n \neq \omega$ this limiter does not produce a TVD scherure in the thanderical exprenturuts, but the results are quite good. The comments contained in [159] are aiso of some importance when considering this limiter.

For more than two arguments, one can look to the suitable extensions of the definitions of harmonic mean and generalize to the power limiter above. For the three argument case this is

$$
\begin{equation*}
Q(a, b, c, n)=\frac{|a b|^{n} c+|a c|^{n} b+|b c|^{n} a}{|a b|^{n}+|a c|^{n}+|b c|^{n}} . \tag{8.49}
\end{equation*}
$$

This limiter is shown for $n=2$ (in ratio form) in Fig. 8.19b.
$\|$ is also interesting to investigate the results obtained with other nonlinear averages such as the geometric mean. The results oblained with this scheme are not TVD, but have some redeeming qualities.

8.3.5 The ULTIMATE Limiter

This limiter has received a great amount of attention in the literature recently. Leonard and coworkers $[81,82,83]$ have presented this limiter in a series of papers. In another recent paper, this limiter was compared with other methods on shock tube problems [197]. The res:/ts showed that Leonard's limiter probably suffers from overcompression resulting in entropy violating solutions. In the following paragraphs, I discover where this characteristic arises in this method.

For this discussion, I do not use the system of nomenclature adopted by Leonard,

Figure 8.19: The generalized average limiter is shown in these figures. Figure 8.19a gives two examples of the two argument limiter for $n=2$ and $n=3$. Neither of these limiters is TVD. Figure 8.19b shows the $n=2$ limiter for the three argument case.
but rather move his motation into the system adhered to earlicer in this chapter. I'his sloonld allow this linniter to be connpared oll a "level playing fiell." birst, a short biack. ground is necessary. This uncthod was developed in response to non-: lavior of l.eonard's QIICK' unethod in the presence of discontinnities. This uncthod lias been used extensively in cugincering heat transfer type applications and represeuts the typical high-ordor schense eniployed in those simulations. In this regard, l,ronard's liniter is a great inuprovernent, but its incrits and shortronimgs ured more attention.

I'he: נormalized value diagrann insed by leromard is mot reviewed (one call refer to the alouve references), and simply inove on to the presentatiou of the UlilimAl'F: limiter in my terms. Quite easily it can be shown that his limiter loas the following form:

$$
\begin{equation*}
Q(r)=\ln \left(\Delta \|^{a}, C r, 2,\right) \tag{8.50}
\end{equation*}
$$

 is determined by a linear high-order upwind method (like QUICK). This limiter is displayed in the usual fashion in Fig 8.20a. By including the Qlile'F differcucing (the third-order point value scheme form Section 8.3.3) it call be sern that the region near the origin is not TVD for explicit tinie differencing.

Simple observation sioows that the above limiter is not TVD for explicit temporal calculations unless $\mathbf{~}^{\bullet}=\underline{2}$ and u^{a} can be guaranteed to be within the bounds of a TVD liniter. When used with fully implicit time differencing or steady-state computations, the liniter is ' $\left[\backslash 1\right.$. liur $C^{\prime}>2$, the limiter is no longer a convex average of secondweder scheuses and rextremely compressive. This behavior is similar to that folund sith the FCT lanitcr. I'he saving grace is that the high-order upwiud methods lih. (${ }^{\prime}$ IICK are well-lechaved approximations for hyperbolic couservation laws. It is his. ly likely that if othrr high-order centered approximations wrore used ther linsiters behavior would be far we (much inore compressive). In other words, the positive featires of the underlying linear advection scheme mask sonie of the problems with the limiter.

A recent paper by Leonard [8.t] discusses the UlIIIMAI'F. limiter in transient problems. He suggests that $C=2 / \nu$. This yields a scheme which is nearly identical to the classic. FC'T without the diffusive first step. His results show that using a IaxWendroff or Beam-Warming typ: flux for the high-order flux with IIITIMAJI: yiclels poorer results than the better 'TVD limiters. Only wisen the thiri-order high-order flux is used are they better (not by much). Considering that the 'TV') scheines are essentially designed with lax-Wendroff or Beam-Warming fluxes as the high-order fluxes thosi results are more applicable for limiter comparison.

[^10]

Figure 8.20: The ULTIMATE limiter is shown in this figure without the benefit of the high-order upwind flux. The basic limiter is not TVD for explicil time discretizations unless $C=2$. The QUICK differencing is included in 8.20 b . The region near the origin gives non-TVD results for explicit schemes.

8.4 Results

'This suction presents results for some of the linfiters described . . .ervious sections. The results are limited to the scalar wave equation and lsurgers' equation. No attompt is made to presedit resilts for all the limiters given above, but the types of linniters introduced liere are discussed with regard to their performance in relation to reselution and couvergence. The solution of the Euler cquations using these limiturs could also yield useful information about the linitier. 'This is left for later investigations. With the exception of the FCT limiters, the basic unimerical schemes used iutheresults is (8.7) for the two argunent limiters and (6.7) for the three argument liniters. Table 8.2 shows a list of the limiters considered in the results and the abloreviations used in referring to thent below.
'The gesseral characteristics of the test problems are given in Appendix A.

8.4.1 The Scalar Wave Equation

In this section usiug various liniters, the scalar wave equation is solved by the meethods described in this cliapter. I'wo initial conditions are used for the analysis: a square wave with a width of 10 cells and a $\sin ^{2} x$ wave (half of a period) of wideth of 25 cells. Boti, tests are conducted for 500 time steps with a CFl. nuniber of one-half. The advective velocity is taken to be unity.

The results for the TVD two and three argument limiters are given in Figs. 8.218.23. The results for nos! limiters are what can be expected. The three argument limiters make the resulting numerical scheine more diffusive, thus lowering the resolution of the solutions. One important point is the horrible performance of the SB3P limiter, which is not TVD. The SB2 limiter is also interesting becanse it seems to coupress the $\sin ^{2} r$ wave into a square wave. This behavior is commonly seen with this linniter and warrants sonse warning. It is primarily caused by the limiter not being able to differentiate between a diffused square wave and the smooth $\sin ^{2} \geq$ wave. The liniter "recognizes" it as diffusion and compresses it. Various results regarding the resolution, accurac:0, and numerical diffusion can be seen in Tables 8.3-8.5. For the limiters of these categories, these tables show no surprises except in the case of the SE2 lisniter. By the measure of numerical diffusion used here this limiter actually provides negative diffusion. This is not unstable because it is applied in a nonlinear fashion. Where positive diffusion is needed, the limiter supplies it. For the $\sin ^{2} x$ problem, the CEN' ${ }^{\prime}$ and VI, 2 limiters are more accurate than SB2.

The results for artificial compression show that its effects are similar to that produced by the superbee limiters in both the two and three argument cases. Figure 8.24 shows that the artificial compression results in sharper profiles and increased resolution when coinpared with the normal minmod limiter. For the form of implementation used there, the resulting solution is not as compressed as with the superbee limiter.

Table 8.2: Abbreviations for the methods used in this study.

Limiter	Equation	Abbreviation
Two Argument Minmod	(8.16a)	MM2
Two Argument van Leer	(8.16b)	VL2
Two Argument Centered	(8.16c)	CENT2
Two Argument Superbee	(8.16d)	SB2
Three Argument Minmod	(8.26a)	MM3
Three Argument Minmod Prime	(8.26c)	MM3P
Three Argument Superbee	(8.30b)	SB3
Three Argument Superbee Prime	(8.26c)	SB3P
Three Argument van Leer	(8.30r)	VL3
Three Argument Centered	(8.26b)	CENT3
Two Parameter Artificial Compression Minmod	(8.32b)	MM2A
Three Parameter Artificial Compression Minmod	(8.35)	MM3A
Two Argument Minmod TVB	(8.37b)	MM2TVB
Three Argument Minmod TVB	(8.51b)	MM3TVB
Signed Two Argument Minmod	(8.41r)	SMM2
Signed Two Argument Centered	(8.41d)	SCENT2
Signed Three Argument Minmod	(8.41c)	SMM3
Signed Three Argument Centered	(8.41d)	SCENT3
Two Argument van Albada	(8.43)	VA2
Three Argument van Albada	(8.49)	VA3
Two Argument van Albada with Bias	(8.43)	VA2B
Three Argument van Albada with Bias	(8.49)	VA3B

Figure 8.21: The scalar square and $\sin ^{2} \mathrm{I}$ wave solutions using :rveral two argument TVD limiters. Note that the SB2 limiter compresees the $\sin ^{2} x$ prolle into a sqiare wave.

Figure 8.22: The scalar square and $\sin ^{2} x$ wave solutions using neveral three argument TVD limiters.

Figure 8.23: The scalar square and $\sin ^{2} 2$ wave solutions using several three argument "prime" limiters. Note the decidedly non-TVD behavior of the SB3P limiter.

Figure 8.24: The scalar square and $\sin ^{2} x$ wave solutions using artificial compression It is notable that the solution with the two aggument limiters (MM2A) compresses the $\sin ^{2} x$ profile in a simila: manner to the SB2 limiter.
iter performs quite well, improving the resolution of the basic two argument limiterbased solution at the cost of not being 'TVD. 'The three argument TVB limiter does not fair as weff. This can be attributed to the "joraj" nature of the restiting scheme. which looks too much like Ithe l.ax Wendrofl scheme. In Fig. 8.25, the MM3TVB is virtually identical to the corresponding Lax. Weudroff solution. To combat this problem, two other forms of the three argument limit, $\mathrm{I}_{\text {are introduced, the MM3TVB* }}$

$$
\begin{equation*}
Q^{T V B}\left(r^{-}, 1, r^{+}\right)=\max \left[0 . \min \left(r^{-}+m .1+\| . r^{+}+m \cdot \frac{1}{2}\left(r^{-}+r^{+}\right)\right)\right] \tag{8.51a}
\end{equation*}
$$

and MM3TVB"

$$
\begin{equation*}
Q^{T V B}\left(r^{-}, 1, r^{+}\right)=\max \left[0, \min \left(r^{-}+m, 1+m,:^{+}+m, \frac{1}{2}\left(1+r^{+}\right), \frac{1}{2}\left(r^{-}+1\right)\right)\right] \tag{8.51b}
\end{equation*}
$$

As Fig. 8.27 shows, the results arc improved. The tabular data also reveal this.
Figure 8.28 shows the rusults obtained with S.Jimiters. For the two argument case, the results are not significantly different thas those obtained with standard TVD two argument limilers. The S-limiters have a slight advantage in terms of the quality of results with slighaly lower numerical diffusion. As reveaked by looking at the numerical data, the three argument case is -mproved greatly hy the use of the S-limiters when compared wilh the corresponding TVD limiter case. This is most likely due to some reduction in the clipping of snooth extrema in the solution.

Van Albada's limiter is used $\mathbf{t o}$ represent olu- solution by a generalized average limiter ($n=2$). I have already seen the val) leer or $n=1$ limiter at work. The results in Fig. 8.29 do not use bias in tlie schentes. The results are quite comparable with other two or three argument TVD) type shemes. In fact, the solutions are quite similar to those obtailted with the V1. 2 ol VL3 limiters. By adding bias to the limiter, the resolution can be improved iu a qualifative sense. In a quantitative sense, the results are worse. One uteresting remark is that ahe three argument limiters in gencraf seem to be more selusitive (as seculin thoi: case or the TVB fimiters)

8.4.2 Burgers' Equation

This section of the chapter centers on the order of accuracy obtained with methods in conjunction with limiters and their subsequent solutions. To accomplish this, a standard test problem using Burgers' equation is used. The problem consists of an initial condition of $\sin (x)_{.} r \in[0,2 \pi]$. At $t=\eta .2$. the solution is smooth, and at $t \equiv 1.0$, a shock has formed in the solution. if is at these tinves that the accuracy of the solution is assessed. The problem is solved with 10 grid cells followed by 1000 grid cells. The solution is shtained with a Godınov numerical fluxes as described in [158].

The results for this test j roblem are given in Tables 8.6 and 8.7. In general. the

Figure 8.25: The scalar square and $\sin ^{2} x$ wave solutions using TVB limiters. The three argument TVB limiter produces a results nearly identiral to the Lax-Wendroff method.

Figure 8.26: The modified three argurnent TVB limiter is shown here for $M \Delta x=5$
MM3TVB' is shown in Fig. 8.26a. MM3TVB" is shown in Fig. 8.26 h

Figure 8.27: The scalar square and $\sin ^{2} x$ wave solutions using modified three argument TVB limiters. These improve the performance of the three argument TVB limiters.

Figure 8.28: The scalar square and $\sin ^{2} x$ wave solutions using two and three argument S-limiters.

Figure 8.29: The scalar square and $\sin ^{2} x$ wave solutions using the generalized average limiters with $\boldsymbol{n}=2$.

Figure 8.30: The scalar square and $\sin ^{2} x$ wave solutions using the generalized average limiters with $n=2$ with a bias added as suggested in [198].

Table 8.3: L_{1} error norms with minimum and maximum values for the square wave problem.

Limiter	Minimum	Maximum	L_{1} error
MM2	0.0000	0.7108	7.41×10^{-2}
VL2	0.0000	0.8784	4.50×10^{-2}
CENT2	0.0000	0.9508	3.65×10^{-2}
SB2	0.0000	0.9927	1.79×10^{-2}
MM3	0.0000	0.6037	9.41×10^{-2}
MM3P	0.0000	0.6005	9.47×10^{-2}
SB3	0.0000	0.7819	6.36×10^{-2}
SB3P	-0.1690	1.1875	9.71×10^{-2}
VL3	0.0000	0.6760	8.20×10^{-2}
CENT3	0.0000	0.7632	6.60×10^{-2}
MM2A	0.0000	0.9668	3.14×10^{-2}
MM3A	0.0000	0.7174	7.55×10^{-2}
MM2TVB	-0.0514	1.0901	4.00×10^{-2}
MM3TVB	-0.0392	0.7616	7.77×10^{-2}
SMM2	0.0000	0.7108	7.41×10^{-2}
SCENT2	0.0000	0.9516	3.65×10^{-2}
SMM3	0.0000	0.6059	9.39×10^{-2}
SCENT3	$0.000 ;$	0.7758	6.52×10^{-2}
VA2	0.0000	0.8035	5.63×10^{-2}
VA3	0.0000	0.6801	7.95×10^{-2}
VA2B	-0.0314	1.0313	4.04×10^{-2}
VA3B	-0.1885	0.9275	7.78×10^{-2}

Table 8.4: L_{1} error norms with minimum and maximum values for the $\sin ^{2} x$ wave problem.

Limiter	Minimum	Maximum	L_{1} error
MM2	0.0000	0.9197	3.74×10^{-2}
V1.2	0.0000	0.9668	2.26×10^{-2}
CENT2	0.0000	0.9794	1.94×10^{-2}
SB2	0.0000	0.9893	2.43×10^{-2}
MM3	0.0000	0.8717	5.20×10^{-2}
MM3P	0.0000	0.8708	5.24×10^{-2}
SB3	$0.003 n$	0.9552	2.98×10^{-2}
SB3P	-0.1801	1.1847	5.63×10^{-2}
VL3	0.0000	0.9162	4.06×10^{-2}
CENT3	0.0000	0.9571	3.00×10^{-2}
MM2A	0.0000	0.9835	2.10×10^{-2}
MM3A	0.0000	0.9385	3.53×10^{-2}
MM2TVB	.0 .0321	0.9943	2.08×10^{-2}
MM3TVB	-0.0266	0.9538	3.95×10^{-2}
SMM2	0.0000	0.9195	3.74×10^{-2}
SCENT2	0.0000	0.9791	1.95×10^{-2}
SMM3	0.0000	0.8726	5.20×10^{-2}
SCENT3	0.0000	0.9606	3.00×10^{-2}
VA2	0.0000	0.9524	2.59×10^{-2}
VA3	0.0000	0.9217	3.56×10^{-2}
VA2B	-0.0319	0.9944	2.02×10^{-2}
VA3B	0.1086	1.0564	4.37×10^{-2}

Table 8.5: Numerical viscosity and total variation for both gcalar wave equation problems.

Limiter	$\sum r$ square	TV square	$\sum r \sin ^{2} x$	TV $\sin ^{2} x$
MM2	40.67	1.42	30.61	1.84
VL2	17.65	1.76	7.91	1.93
CENT2	10.74	1.90	3.58	1.96
SB2	3.00	1.99	-8.49	1.98
MM3	60.59	1.21	53.15	1.74
MM3P	61.19	1.20	53.62	1.74
SB3	30.57	1.56	17.52	1.91
SB33	26.63	4.052	.23 .78	3.11
VL3	47.09	1.35	35.02	1.83
CENT3	31.97	1.53	17.91	1.91
MM2A	8.19	1.94	-1.38	1.97
MM3A	40.73	1.43	29.39	1.88
MM2TVB	7.90	2.41	3.36	2.12
MM3TVB	39.71	1.61	29.39	1.96
SMM2	40.47	1.42	30.55	1.84
SCENT2	10.63	1.90	3.53	1.96
SMM3	60.09	1.21	52.94	1.75
SCENT3	30.85	1.55	17.53	1.92
VA2	25.70	1.61	12.72	1.90
VA3	44.75	1.36	39.82	1.84
VA2B	9.11	2.20	3.37	2.13
VA3B	12.11	2.37	4.38	2.42

Table 8.6: Orde; of convergener in several error norms for Burgers' equatin as $1=0.2$ when the solutitio. is smooth.

Limiter	L_{1}	L2	\mathbf{L}_{∞}
.1.M2	2.12	2.15	1.84
VLL	2.15	2.17	1.94
(iNNT2	2.16	2.17	1.95
SB2	2.18	2.17	1.84
.11.93	2.08	1.86	1.32
MM.3'	2.08	1.87	1.32
SB3	2.15	1.85	1.31
ib:3P	1.91	1.6 .3	1.08
10.3	2..	1.85	1.31
CESM:	2.13	1.86	132
MM2A	2.14	2.16	1.63
MM:A	2.12	1.89	1.31
M.M2TVB	1.73	1.73	1.63
MM3TVB	2.0.4	1.82	1.28
SMM2	2.12	2.14	1.85
SCEST2	2.16	2.15	1.83
SMM3	2.08	1.84	1.27
SCEVT3	2.08	1.81	1.26
VA2	2.16	2.18	1.87
VA3	2.13	1.86	1.31
VA28	1.73	1.74	1.64
VA3B	2.02	1.80	1.25

Table 8.7. urlef of converr.oner .ll several error norins tor Burgers' equation at $t=0.2$ when the solution has a stuck in it.

Limiter	L_{1}	$\mathrm{~L}_{2}$	L
SM:	1.47	1.12	0.70
VL2	1.51	1.10	0.61
CENT2	1.52	1.10	0.61
S1:	1.51	1.01	0.49
MM3	1.57	1.18	0.71
MM3P	1.57	1.18	0.74
SB3	1.68	1.14	0.60
SB3P	1.28	0.79	0.25
VL3	1.65	1.19	0.69
CENT3	1.53	1.00	0.47
MM2A	1.49	1.08	0.58
MM3A	1.60	1.10	0.54
MM2TVB	1.19	0.83	0.36
MM3TVB	1.52	1.05	0.51
SMM2	1.51	1.14	0.70
SCENT2	1.60	1.16	0.63
SMM3	1.51	1.15	0.72
SCENT3	1.52	0.98	0.44
VA2	1.54	1.12	0.65
VA3	1.65	1.13	0.60
VA2B	1.15	0.77	0.31
VA3B	1.51	1.01	0.48

order of cullvergibice for the solutions is better for the two argument limiter than the
 differellce ill convirgence from one norm to a higher norm. The unn TVI) alld F("I linuiters seedn to siffer from worse convergence rharacteristics than the other schences. Additionally. the schemes usiug some constant ('IVB or VA213 and VA3B) in the linniter show poor convergence. These schenlex do perform far better when the mesh is coarse. and these limiters secoul to produce excellent results in relation to other limiters for those cases. After a shock has formed. the two argument limiters sliow a greater degradation in colliergellre. Agaill, this is especially true with the non.TVD limiters. l'he stated convergence of the three argument lioniters when a shock has formed is somile:what a function of the axceredngly poor results found un the roarsest grid. In the samere veiu. the poor couvergeuce of the TVB atsel the biaverl vall Alliada limiters is somewinat a rosult of the excellent results obtained on the cuarsest grid.

8.5 Concluding Remarks

In this chapter a muniber of lisibers have been reviewed and their propertios exam. ined. In addition. several linuters liave been introduced or reformulated and analyzed within a common framework The inpart of linsiters on high-resolution numerical solutions has also hovil dentonstrated. The importance of limiters un the solution of the equation's is undeniable. The quality of solutions is directly traceable to the linliters because they are the heart of the numerical achemes.

More study of lintiters is warranted in light of these results. As discussed carlier. liniters can impact strady-state solution convergence. Some study of this phenomena is ureded. Additionally, both TVB and generalized average limiters should studied in order to give more systematic manner to choose the constants used with the limiters.

The following rhapter explores the effect of the constraints placed on the polynomial interpolation employed by ligh-order Godunov schemes.

Chapter 9.

Cell-Averages or Point-Values? On Reconstruction Methods

Abstract

We have found a strange footprillt on the shores of the unkllown. We have devised profollnd theorics, one after another, to arcollut for its origin. At lazt we have succeeded in reconstructing the creature that made the footprint. And lo! it is our own. Sir Arthur Sitancly Eddington

9.1 Introduction

One o, ihe primary manuers of comstructing moderu liggh.eresolution upwind schemes is the: use of the HO(; philosophy: This uncthot has several kery points in its favor: the use of conservation form, the case of use with systems of erguations, the use of a quality underlying physical noolel, aud reduction of fusite differences to polynomial isiterpolations. It is this fistal point on which I courentrate my efforts.

The polynomial reconstrnction determines the order of accuracy the scheme can attain. It also interacts strongly with the underlying physical andel mentioned in the previous paragraph. This underlying model is typically a Kiemarll solver of some varicty [30]. In HOC; methods, the polynomials used are constructed piecewise so that each rontrol volume has one pulynomial per variable in it. At the boundaries of the control voluns, the polynontial distributions are not required to be continusus and a discontinuity typically results. The Riemann solver acts as a sort of "referee" determining what the correct numerical flux should be at that cell boundary. I return to the gelucral description of $110($ inethods in the following sertion.

These intithils grew wit of the work of Gorlunor [56, 57] where ingenious method
 Rees [5.4. 31]. The: work of (iorlunor was importint in two regatise becalise of his use of a Kiromanu solver within the differemer orheme and lis theorem regarding difference schemes.
 in attaining monotone sclicines of higler urder acruracy. .outable al ang these wirks
 artificial compression incthod [18.3]. The werk of van leer was conperterd more clusely to that of (indunov and in a series of papers. H()(; urthods wese itfilimet [11: 120. 60). The key to this definition was the definition of monotorie advertion usis.g bigitet urder

 the adnalysis that follows.

 Ir.il..rks.

9.2 High-Order Godunov Methods

 to definge their minnirije al thaxe: ill conjonetion with a Kiemanu solver.

 the varsables eliveribution in ally givens cell. \boldsymbol{A}_{1} is tegration of the reronstritetive polynomial ever the cell erivially tecovers the coll-avarage-
de this peint ias the expenition. it is laclpful ter concretely state what is meant by a cell-average ur point-valuc-baved isterpotation.

Definition 7 (cell-average reconstruction) 1 pircrias palynomial rroonalrurlion is cell-arerage brased if the are rage of the reconstructent ouer the crll is equal to the cell-alirrage.

Definitica 8 (point-valuse reconstruction) l'onat-valur intr rpolation is mare lonasely
 interpolating the data within agreen rell.

Figure 9.1: The steps of Codunov's methods are shown for a higher order polynomial reconstruction. The solution in the small takes place with data that has been time centered over the domain of dependence of the local characteristics.
the data. In a semse, the cell-aserage reconstantion is a sulaset of the point-value reconstrinction based oll the restriction to all illtegral constraillt hassed inl a cell. average.

 cell-averages of the dependent variables are a whierved by the scluente. In the above algorithun, the cell-averages represent ther quantiatios used in the inethoel derivation. The use of cell-averages fits nicely into the theory of weak solntions given in ('hapter 2.

Hhe question to ponder is whether it is wressisary for the celleaverages to be nsed explusively in the ilifference sche mes. The conservation ferm of the finjte difference
 accuracy anci cfliciency of the approximation. At a more philosophical trvel, the generality of the desigu priuciple conues to play. Because the peint-value philosophy is more gencral it leuds itself to extension in multiphe dinensions and other types of problenfs with greater case than the meore restrictive rell-aberage reconstrurtion.

The formulation of Codunov's method implies the use of some rell-average interpolation. The use of the divergence theorem to transform the integrals to forms inore annenable to munerical treatnent rhanges the sitnation sonnewhat. It is neressary to conpute the flux functions in order to complite rlianges in the cell-averages. The conservation is not refferted by this chauge regardless of the method nsed to come. pute the lluxes (as long as $\dot{f}_{,+\frac{1}{2}}=\dot{f}_{,+\frac{1}{2}}$ irregarilless of what rell is being romputed). The upwind primejples eumodied by Riemanu sulvers and appropriate monotonicity constraints on the :eromstrintion ensure that the fluxes are of . . illality nature.

Point-values of the function being advected should be reasonable representatious of the function in anf given control volunte and by the mean value theorenn should be fairly rlose to the rell-averages. As noted in [199]. ther rell averages and poiat values differ loy $\mathcal{O}\left(\Delta r^{2}\right)$. These values should certainly be arceptable for the romplitation of fluxes, because the form of the difference repuations couserves the cell-averages. Most classical difference are based onf point-valur iiscerpolation (or can be thought of in this way).

The cell-average basis makes geod theroretical abillogical sense. (ijven a finite volume discretizatiof ered taki:ug into acronut a (ijhbstype reror would infply that yolt could orly know the rell-averages. The peint of infortance is how to ronstruct a pierewise 'eronstriation for the purposers of ronifniting fluxes.

9.3 Description of Polynomial Reconstructions

As noted in the previons section, 1 iexabsian two approaches to reronstrurtion in HOC; methods. The cell-abirage formula'ion is more theoretigally pleasing, but the peciust.

9.3.1 Cell-Average Reconst:uction

This section of the chapter concerns the construction of piecewise polynomials of the cell-average type.

The canonical cell-average reconstruction is used in Codunov's method, i.e..

$$
\begin{equation*}
P(x)=u,, x \in\left[x_{,+\frac{1}{},}, x,+\frac{k}{j}\right] \tag{9.1}
\end{equation*}
$$

This method has first-crder accuracy and trivially has the cell-average reconstruction property.

A second-order method widely used for HOG type algorithms [123. 179] is defined by the reconstructive polynomial

$$
\begin{equation*}
P(x)=u,+\widetilde{\Delta, u}, \frac{(x-x,)}{\Delta, x}, x \in\left[x,+\frac{x}{}, x+\frac{k}{j}\right] . \tag{0.2}
\end{equation*}
$$

 limiters used were discussed in Chapter 8. Integration over the cell confirms that this reconstruction has the cell-average property. This scheme is compared with a point-value type of reconstruction in Section 9.4.

The third form of cell-average reconstruction is the MUSCL reconstruction [120, 147, 45]. This form is particularly useful because it has a parametric form and thus is actually a family of schemes. The polynomial is based on Legendre polynomials, and thus has the desired cell-average reconstruction property. The basic form of the scheme's reconstruction is

$$
\begin{align*}
P(x)=u, & +\frac{1}{2}\left(s_{j-\frac{1}{2}}+j_{j+1}\right)(x-x,) \\
& +\frac{3 \kappa}{2}\left(j_{j+\frac{1}{2}}-j_{j-\frac{1}{2}}\right)\left[\frac{(x-x,)^{2}}{\Delta x}-\frac{\Delta x^{2}}{12}\right], x \in\left[x_{j+\frac{1}{2}}, x_{j+\frac{1}{2}}\right] . \tag{9.3}
\end{align*}
$$

Here $s_{-\frac{1}{2}}=Q(1, r) s_{3+\frac{1}{2}}$ where $Q(1, r)$ is a limiter and $s_{-\frac{1}{2}}=\Delta_{-\frac{1}{2}} u / \Delta,_{-\frac{1}{j}} r$. Ta. ble 9.1 gives the types of schemes that arise for different values of κ. Care must be taken in the use of limiters with this scheme, as was discussed previously (Snection 8).

One problem with this scheme is the definition of the stencil used for thr: limiters. If the stenril is not chosen correctly, the scheme, although stable, is not TVD, and thus be oscillatory. In general, upwind biased limiters used with this scheme do not produce TVD results because the upwind biased gradients used in defining the reconstruction apply their information throughout the cell, thus violating the assumptions made with an upwind biased stencil. This problem can be cured through centering the stencil in some manner. One option is to center the limiters, but this has a detrimental impact on the scliente's resolution.

Befrime moi:ing onto point-value hased reconstructions, somb conumatuls must be

Table 9.1: The type of scleme produced for various values of a with the MUSCL reconstruction.

:	Scheme
. 1	onfesided, second-order
0	unwind, sacond-osiler
1/3	unwilll, third-ordar
1	cantered, second-order

made concerning EAS type schemes. The powerfil PPM methorl is basell on cell. average recoustruction. This scheme uses a qualratir rell abrrage reconstructicn. Another concept used with this scheme is a priminitive fulliction that is used to deffue values of u at the cell interfaces. The pininitive fininction of u is defined by

$$
\begin{equation*}
r(x)=\int_{-n}^{x} \|(s) \Delta x \tag{I.1}
\end{equation*}
$$

This concept is put to greater use in the ildrivation E,NO schemes [6.1]. The artial reconstruction takes plact: with the primitive function. This reconstruction is then differentiated to give the :econstruction to $\|(x)$. By inspection, this scheme has the cell-aviraged reconstruction property. Our inuportant caveat is that this does not generalize to undiple dimirnsions rexerpt through dimensional splitting. This is due to the lack of a generalization of the prinitive fanction concept to multulimensional rases.

To test the cell-average reconstruction I Insed two test problenis: one with a sinooth nearly discontinuous form. and a secoud with a smooth local extrema. The first problem was used to test the PPM [122. 2i] method, and has the functional form

$$
f(x)=\tanh (x),
$$

the second problem is a (iaussian distribution with a standard deviation $\Delta x=3$

$$
f(x)=\exp \left[-\left(x^{2}\right) / 2 \Delta x\right] .
$$

Both are ploted over the range $x \in[-10,8]$.
The results for these functions with (iodunov's method are shown in Fig. 9.2. The large jumps result in a large amount of diffusion in the solution as given liy the theory shown in Chapter 8 . Bly going to a second. order algorithen, the results innprove.

The diffusion has been decreased because the jumps have diminished in magnitude. By using the central limiter these results improve, and by using the superbee limites: the results innprove again. This is shown in Figs. 9.4 and 9.5. With the Gaussian distritution, the superbee has overcompressed one loration, which is typically the beginning of forming a false discontinuity. The use of cell-averages is diffusive, (in fact TVD see [64]) and results in the ininsediate clipping of an extrema in the solution.

Figure 9.6 shows the reconstruction using the MUSCL interpolant with $\kappa=1 / 3$. The use of tifree argument liniters makes this a TVD scheme, but as noted in Ctrapter 8 the three argument limiters are more diffusive than the two argument limiters. The tanh (x) grid is too coarse to capture the discontinuity with these limiters.

The methods for reconstruction given above aree coutrasted with the methods discussed in the following section for form and complexity.

9.3.2 Point-Value Reconstruction

In this section, 1 introduce the general concept in point-value based reconstruction and compare sonue specific examiples with the cell-average formulation in Section 9.4.

If, for instance, the cell-averages are not used to derive the fluxes, the scherne still mairtains its conservation. The canonical example of this is the Lar. Wendroff method. This method is conservative, but its HOG analog described in Chapter 6 does not use a reconstruction, which is of a cell-average variety.

The integral average of the Lax-Wenn.uff polynomial over a cell $x \in\left\{x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right\}$ yjelds

$$
\begin{equation*}
\int_{s_{, 1 j}}^{x_{1+\frac{1}{2}}} P_{j}(x) d x=u,+\frac{\Delta x}{8}\left(s_{,+\frac{1}{2}}-s,-\frac{1}{2}\right) \text {. } \tag{9.5}
\end{equation*}
$$

which does not equal 1 , unlems $s,-\frac{1}{2}=s_{3+\frac{1}{2}}$.
With the inclusion of slope limiters, this scheme becomes the symmetric HOG method (see Chanter 6). These limiters can either be upwind biased or centered in their support (see Chapter 8). These schemes are defined by changing $s_{\mu \pm \frac{1}{2}} \rightarrow \mathbf{s}_{, \pm \frac{1}{2}}$ in (3.12a). Here $\boldsymbol{s}_{\boldsymbol{1}+\frac{1}{2}}$ are defined with appropriate limiters [132, 134].

In Chapter 6, the scheme above was extended to include a quadratic interpolation basel on the same availabie data (one degree of freedom is not used in the above schemes). Although not siated in Chapter 6, this scheme is the analog to the Ml!SCL reconstruction using Taylor rather than Legendre polynomials. This scheme is described by the reconstruction

$$
\begin{equation*}
P(x)=u,+\frac{1}{2}\left(j_{,-\frac{1}{2}}+\dot{s}_{,+\frac{1}{2}}\right)\left(x-x_{j}\right)+\kappa\left(\dot{j}_{j+\frac{1}{2}}-\dot{s}_{j-\frac{1}{2}}\right) \frac{(x-x,)^{2}}{\Delta x}, x \in\left\{x_{j+\frac{1}{2}}, \left.x_{j+\frac{1}{2}} \right\rvert\, .\right. \tag{9.6}
\end{equation*}
$$

The lower operation count in the above equation is evident by corriparing the two forrıs. The family of schemes produced for differing values of κ is described by Table 9.2. In the fellowing sertion. the limiters used with these srtermes are discussed.

Figure 9.2: 'The reconstruction of the test functions by Godunov's method. The exact functions are given by the dashed lines. The grid on the plot denotes the computational grid.

Figure 9.3: The reconstruction of the teat functions by a second-order HOC method with the minmod limiter.

Figure 9.4: The reconstruction of the teas functions by a second-order HOG method with the centered limiter.

Figure 9.5: The reconatruction of the teat functions by a second-order HOC method with the superbee limiter.

Figure 9.6: The reconstruction of the teat functions by a MUSCL method with the three argument centered limiter.

Table 9.2: The type of scheme produced for varions values of x with the quadratic HOG reconstruction.

κ	Scheme
-1	oue-sided, second-order
0	upwind, second-order
$1 / 2$	upwind, third-order
1	centered, secoud-order

Another interesting cell-average form can be found through imposing the constraint on the syinmetri- HOG; scheme of giving a cell-average reronstruction. The scheme that results is
(Caution must be used with this scheme with regard to retaining TVD properties. In general upwind limiters do not produce a TVD scheme because the information froni the upwind limiter is passed downwind via the correction tern that assures the cell-average property, but a three argument centered limiter does not have these difficulties.

As 1 did in the cell-average section, the point-value interpolants are tested. In both cases shown below, three argminent centered limiters ase used. In Fig. 9.7 the symmetric HOG method is shown and in Fig. 9.8, the quadratic $110 \mathrm{G}(\kappa=$ $1 / 2$) method is shown. Tlie three argument limiters are too diffuse to capture the discontinuity in the tanh (x) function. The figures also show how the interpolants are ('t continuous at the cell edges. Both are roughly equivalent to the MUSCL method in arruracy.

9.4 Results

This section presents results ising inethods deacribed in the previous sections. Results cover the resolution, accuracy, er.onomy, and general quality of the solutions. In order to do this. three types of problems are examined: the scalar wave equation. Burgers'

Figure 9.7: The reconstruction of the test functions by a symmetric HOC method with the three argument centered limiter.

Figure 9.8: The reconstruction of the test functions by a quadratic HOC method with st.e three argument centered limiter.

Table 9.3: Sinn of menmerical viscons flux for the scalar wave callation test problemes at $t=2 \% 0.0$.

Schense	Sine Squared	Stuare
(3.192a) upwisul hiasmal	30.84	161.95
(9.i) 11 p wisid biascol	31.36	13.27
(3.12a) symunctric	i.4. 67	6il. 80
	5.3.8.3	(6).81
(9.6) $x=1 / 2$ minumed	.93.9x	60. 96
	:33.79	60.79
(1).ti) $x=1 / 2$ ciontereal	13.65	25.6.9
	12.97	$2 \times .99$
(!.ti) $\kappa=1 / 2 \mathrm{MliSc}(1$.	30.25	39.51
(9.3) $\kappa=1 / 3 \mathrm{M1}$. ${ }^{(9)}$	30.52	10.06

9.4.1 Scalar Wave Equation

In aldition to a romparison of the qualitative appearance of the resilts, several guantitative nueasures of aldorithmir performance are used: the prak valurs in the solutious. the total variation of the solution at the end of the test and a measure of unsurical viscosity. The measure of numerical viscosity is made by a technique described in a general sense in [30]. This idea was expanded on by the anthor in (${ }^{\prime}$ iaptor x. The gist of the terhnigue is to rom, are the musnerical fluxes of a high. order terliniglie with that of the !ax- Wendroff methorl and denote the difference as municrical viscosity: The results for varions methods using this approach are shown in Table 9.3. Fior the schrines that are TVD for both construction technigurs, the cell-average: reconstruction rarries less numerical viscosity, but when the sclicrnes are not I'I'). rell-average reconstruction is more viscous. This general conclusion is born roit liy othere lippirtions of the data.

The results showill it Table 9.4 show that, in general, the two metheols of reronstrurtion gield similar results for similar sehemes. Execept for the upwind-hiased l.ax- Wirndroff type selicince, these results are consistent with the measure of unmerical visconit: Figure: 9.9 sloows the excellent results obtained with the upwind-biased laxWendroff 'TVD schenie. Making this schenue a rell-average reconstruction destroys its W'I) property and makes the results (showin in Fig. 9.10) quite pors alehonght the

Table 9.1: Maxinumu profile values for the scalar wave cepration test problems at $t=2.50 .0$.

Scheme	Sine Squared	Square
(3.12a) upwind biasel	0.9197	0.7108
(9.7) upwind biased	0.9481	0.7598
(3.12a) symmetrir	0.8717	0.6037
(9.7) symmetric	0.8689	0.6030
(9.6) $\kappa=1 / 2$ minmoal	0.8690	0.6032
(9.3) $\kappa=1 / 3$ mimunol	0.8689	0.6031
(9.6) $s=1 / 2$ centered	0.9602	0.7795
(9.3) $\kappa=1 / 3$ cantered	0.960 .3	0.7799
(9.6) $\kappa=1 / 2 \mathrm{MLSSCL}$	0.9394	0.7519
(9.3) $\kappa=1 / 3 \mathrm{MLSSCL}$	0.9334	0.7487

In the case of the symmetric HOC; scheme. the method remains TVD after its transfurmation to a cell-average econstruction. Figures 9.11 and 9.12 show the results obtained with these methods. The point-value reconstruction gives slightly \mathfrak{a} gher resolution and less viscosity. but the cell-average reconstruction results in a solution with better symmetry propertios.

As shown in Figs. 9.13-9.16 these results carry over to the quadratic reconstruc. tions usiung the minmod litniter. but not to the centered limiter, which slightly favors the rell-average reconstruction from every perspective. This included the gualitative aplecaraure of the solutions. The classic.MUSCL (nonTVD) solutions are similar, lint the ressilts io not favor the cell-average reconstruction for the square wave. In this rase the uscillations are worse.

9.4.2 Burgers' Equation

This section of the chapter discusses the order of accuracy of the reconstructions and their subsequent solutions.

Table 9.5 shows the raies of conve.gence obtained with some of these methods when the solution is sinooth. In every case, the rates of convergence obtained with the point.value reconstruction are superior, in some cases by quite a margin. This is "cqually truc for the solutions after a shock has formerl. Table 9.6 shows this duite

Figure 9.9: The solution to the scalar wave equation by an upwind-biased Lax. Wendroff TVD methorl.

Figure 9.10: The solution to the scalar wave equation by an upwind-biaced LaxWendroff TVD method with a cell-average correction.

Figure 9.11: The solution to the scalar wave equation by a symmetric HOG nethod.

Figure 9.12: The solution to the scalar wave :quation by a symmetric HOG method with a cell-average correction.

Figure 9.13: The solution to the scalar wave equation by a quadratic Taylor polynomial based HOC method with a minmod limiter.

Figure 9.14: The solution to the scalar wave equation by a quadratic Legendre poly. nomial based HOG method with a minmod limiter.

Figure 9.15: The solution to the scalar wave equation by a quadratic Taylor polynomial based HOC; method with a centered limiter.

Figure 9.16: The solution to the scalar wave equation by a quadratic Legendre polynomial based HOG method with a centered limiter.

Figure 9.17: The solution to the scalar wave equation by a Taylor polynomial based classir MIISC:L scheme.

Figure 9.18: The solution to the scalar wave :qquation by a Legendre polynomial based classir MUSCL scheme.
'Table 9.5: The order of convergence in several norms for varions schemes for Burgers' equation at $\ell=0.2$ whenf the solution is sumooth.

Scheme	L_{1}	\mathbf{L}_{2}	$\mathbf{L}_{\text {ca }}$
(9.2)	2.16	$\because .17$	1.95
(3.12a) uןwind biaseal	2.16	2.17	1.95
	$\underline{2} .13$	1.86	1.32
	1.87	1.60	1.23
(9.6) $\boldsymbol{s}=1 / 2 \mathrm{TVO}$	2.	1.8.3	1.28
(9.3) $\kappa=1 / 3 \mathrm{TV}$	2.02	1.7 .4	1.22
(9.6) $\wedge=1 / 2 \mathrm{Mlisc}(\mathrm{l}$.	2.05	1.72	1.15
(0.3) $\kappa=1 / 3 \mathrm{MWS}(\mathrm{s}$.	I.SX	1.57	1.11

Table 9.6: 'The order of ronvergence in sevirral norms for various schemes for Burgers' equation at $t=1.0$ when the solution has a shock.

Scheme	\mathbf{L}_{1}	\mathbf{L}_{2}	\mathbf{L}_{∞}
(9.2)	1.52	1.10	0.61
(3.12a) upwind biasel	1.52	1.10	0.51
(3.12a) symmetric	1.53	1.00	0.47
(9.7) symumetrir	0.71	0.58	0.36
(9.6) TVI) $n=1 / 2$	1.61	1.05	0.513
(9.3) TV1) $\kappa=1 / 3$	1.60	1.07	0.56
(9.6) MUSC:\%. $\kappa:=1 / 2$	1.43	1.02	0.54
(9.3) MUSCPI. $\kappa=1 / 3$	0.98	0.78	0.533

Tab!! -9.7: 1.1 norms for irnsity anl velocity in Sod's problenn, including times for rccomstruction for cach solution

Scheme	Density	Velocity	Times
(9.2)	5.81×10^{-3}	1.13×10^{-2}	0.97
$(3.12 a)$ upwind biased	5.86×10^{-3}	$1.1 .5 \times 10^{-2}$	0.9 .4
(9.7) upwind biased	8.15×10^{-3}	1.18×10^{-2}	0.93
$(3.12 a)$ syminetric	6.50×10^{-3}	1.02×10^{-2}	1.08
(9.7) synmetric	6.40×10^{-3}	9.99×10^{-3}	1.14
(9.6) TVD $\kappa=1 / 2$	6.44×10^{-3}	1.01×10^{-2}	1.18
$(9.3) \mathrm{TVD} \kappa=1 / 3$	6.44×10^{-3}	1.01×10^{-2}	1.34

9.4.3 The Euler Equations

This section shows the performance of some of the methods discussed in this cliapter on a systent of conservation laws. As is common practice, the Fuler eguations are solved becanse of their great practical interest. It should demonstrate a "true" picture of rach methods capabilities. For each of the methods used below, the density and velocity profiles are shown and the L_{1} norms of these solutions are given.

The solutions are shown at $\ell=20$. The solutions shown below use Roe's approximate Riemann solyer and a cheracteristic variable based reconstruction [63, 200]. The TVI) schemes using the three arganent linsiters employ the centered liniter for the monlinear waves in equations and a superber limiter for the diucarly degenerate wave: For those methods using two argument lirniters, the ronlinear waves use a van l.crer linniter.

As shown in Figs. 9.19-9.2., the results obtained with these methods for systems of eguatious are all guite good. Fiach solatious with the exception of the upwind-hiased lax-Wendroff type has a boinp itl the velocity solution at the end of the rarefaction wave. The solution obtained for the shork wave with this methorl is slightly better (two cells wide rather than three). Table 9.7 shows the methorls' L_{1} norms for density and velocity. In general, the results are similar here as well. For the upwind-hiased Lax-Wendroff TVD methorls, the cell-average form is noticeably inferior whereas the cell-average symmetric $H O(;$ methot is superjer to the corresponding point.value reconstrurtion. In general, the differences econot.,y of use are inconsequential except

E'igur: 9.19: The density and velocity solutions to Sod's problem with a celf. average second-order HOG method.

Figure 920: The densit; .' ' wrlucity solutions to Sod's prohlem with an upwind. biased I.mx. Wendenf TV'D um: • 1

Figure 9.21: The density and velocity solutions to Sod's problem with an upwind. biased Lax.Wendrof TVD method with a cell-average correction.

Figure 9.22: The density and velocity solutions to Sod's problem with a symmetric HOC method.

Figure 9.23: The density and velocity solutions to Sod's problem witl a symmetric HOG method with a cell-average correction.

Figure 9.24: The density and velocity solutions to Sod's problem by a quadratic Taylor polynomial based HOG nuethor.

Figure 9.25: Tñe density and velocity solazions to Sod's problem by a quadratic Legendre polynomial based HOG method.

9.5 Concluding Remarks

The results in the above section show that the method of reconstruction used in HOG schemes is of some importance to the quality of the results. For cases where the solution remain TVD, the cell-average solutions are of higher quality, but as the Burgers' equation solutions show. are of lower rates of convergence. Where the schemes are not TVD, the point-value reconstructions are superior and result in less oscillatory results. For systems of equations. the picture is less clear. The solutions obtained with all the methods show that the sulutions are acceptable and quite good.
'The major difference between the two approaches is one of ease of implementation. For one-dimensional problems, the differences are hardly consequential, but the edge is with the point-value polynomials. For multi-dimensional reconstructions, the pointvalue reconstruction is clearly easier and shonld be considered for this purpose despite certain philosophical inadequacies.

Chapter 10.

Conclusions and Recommendations

Order and Simpl cation are the first st. toun.til the maslity of a subject. Thomas Mann
Life is the art of drawing sufficient conclasions from insufficient premises. Sainuel Builer

In this chapter, overall conclusions are usade concernjug the preceding work. These's ronclusions act as a sumniary of the results of this work. Following this a number of recormurndations are made concerning future dircetions for research.

10.1 Conclusions

The F('T method is shown to be similar to symmetrir TVD methods under certain conditions. This similarity is exploited in iopproving the performance of F("T'. This improveruent is particularly evideut in the solution of systerns of equations.

With the relationship between FCT and TVD inethods firmily established, both of tinese methorls were directly rominerted to high-oriler Ciodunov methods. This is accomplished through definiug a non-upwinal biased geometric version of the LaxWendroff metheel. Because the Lax- Wendroff method is the basis of the symunetric TVD method, the generalization is straightforward. From this, a scherne based on parabolic interpolation is lerived. Fiurther juprovements are made through the use of uniformly non-oscillatory reconstruction urethods.

The topic of limiters is then explored in ronsiderable depth. This begins with a review of the FCTT limiters. In this section of the work, Zaiesak's limiter is modified in a similar fashion to the classic F("T limiter.

TVD limiters and their general properties are discussed in a manner that is more general than found in the literature. Three argument limiters are revised and extended with the use of rertain limiter properties. The use of two parameter limiters is compared with three parameter liniters. It is shown that three parameter limiters induce a significant amount of aumirrical diffusion in a solution when compared to the analogous two paraincter limiter. In addition, a general clase of imiters referred to as nearly.TVD are discussed. These include TVB limiters, but also new classes of limiters such as generalized average limiters and S-Limiters. The ULTIMATE, limiter is also discussed.

Finally, the topic of reconstruction in high-order Codunov methods is exalls. ined. This topic is precipitated by the work on high-order Ciodunov analogs to

Figure 10.1: The significance of this work is shown in relation to the rough genealogy given in ($/$ ha ter 2.
reconstruction step that requires the interpuiant to have an average value in a grid rell cequal to the rell average in that gridl cell. This property is disesssed, and properties of the solutious using brefh ttandard and new high-order Godunov inethods are examined. The lack of the ...Il average property is demonstrated to not have significant negative consequences, and tor certain situations to halie positive consequences.

The principle advances madr in this work can be seen graphically in Fig. 10.1.
These conclusions can be summarized as follows:

- FC'T was improved and shown to be part of a more general family of methods.
- Combined FCT and Symnetric TVD methods were extended into the HOC; fallity of inverinows.
- A general procedure for improving F(:I liniters has been described.
- A more gencral theory on limiters has been developed and used define new liniters.
- The difference betweres cell-average and point-value II()(; schenues has been defined and explored. The point value llO (; schernes provide reliable solutions aud improve on the cell-avarage HO(; schenues when the schente is not TVD).

10.2 Recommendations

With these conclinsions in mind a mumber of recomulindatious for finture research can be utale. These do not rover the range of uereded work, but represent some isnportant ueeds from our perspuertive.

- In light of the results of this research and the liturature, parabolic unethods are worth expluriug in milsell mere detail. The added degree of frecelonn begond lisear interpolation allows the algorithun to be more flexible than second order wethods. ('urreutly, the Pl'M urethoed is the prenuier scherne for solving conservation laws. A large number of pectential paraloulic schenes exist, and should be studied in more detail. Ther use of parabolir scheines is need of assessment rspecially in the ight of the results presented in Appenclix \mathfrak{F}.
- One of the krys to the PPM algoritlim is the use of a discontinuity detection algorithm [|22]. This algorithut was the inspiration for the superber lituiter [132, 176]. The use of fuzzy logir [201. 202] should prove uscful in designiug this sort of algorithri. More generally, fuzzy limiters could have a more general application perhaps makiug limiters that work equally well in smooth and discontinuous regions of the flow.
- E:NO methoils should be broadened to include point-valise schemes as well as the ceil-average varinty. In auldition, other measures of reconstruction smoothness should be investigated perhaps using generalized average limiters is some sense. This is partirularly iuportant in the light of recent work [203].
- Smoot/s particir hydrodynamics (SPll) $[204,205,206]$;nay profit from nonlinear limiters. These methods typically use artificial viscosity to compute shorks. Through the use of biased gradient computations at discontinuities in the flow, (perhaps E.VO-type algorithms) the use of artificial viscosity could be done away with. The resolution at these portions of the flow should also improve.
- Implirit numerical solutions with high resolution incthods [196, 198, 207, 195.

uethots [208. 209] are the preferred choice. The upwind typre methods need to be more cronoinical to compete. Kesearch into imiltigrid acceleration of highresolution upwind methods is a clear and present nerel. Also conjugate gradient type illethouls hold sollle prollise [210]. The work of Yere alld others [1.51] on uonlinerar dynamirs conld provide sonne useful inproveruents.
- The sule of Ricumaun solvers ill algorithun dissipation is in nerel of riarification. Rebberts [211] sheows that the Ricinanill solver can cause escillations for slow moving shocks even when used with Gudnnov's nuctinot. 'Iher solution is to use a more elissipative Riconaun solver. This is innoortant in light of the PPM's zone flattening algorithm, which is used to deal with such rases. This apprars to be alluther place where fuzzy logic conidd be useful.
- Ther role of high.resolustion upwind algorithus in turbulence sesearch ureds to be establishacl. The work of Boris [77] is coutroucrsial with the large redely
 research with sucress [78. 212, 213. 79]. The results ret,ortell in [7e, serest to show that high. resolution urethods like the PPM give results indicative ef very hight Reyuolds numbers. The inpact of the design of methods ou this use urads further assessument.
- Heceutly, front-trarking algorithoms which are conservative have proveln to be
 and high-order high.reoplution inethods are powerfil solition methools. (:ous. pling these unethods to the design of new high resolution uethods wonld be highly profitable. (Othre adaptive mesh algorithmi $[216,217,218]$ showe promise. III addition bechuiques used in [219] inay prove useful.
- The use of these methods in radiation transport may be applifalik. In diserete ordinates methods i220. 221] diamond difierenciug is typirally used. althnugh linear discontinuous inethonl: s 'so are users. Hoth of these methods rould profit feom moxern upwind turthois in insure positivity of solutions. The liuear disronstinuolls methed has bere use d for high resolution fluid Now solutions [222].
- Multiphase flow presents a fumber of challenges to the use of this sori of inethorl. Typirally, the algorithens tesed for this type of flow are semi- iluplicit [3. 2. 223]. Semi-iuplicit tims- diacretizations are in need of development and would be use. ful in colicr applications [93] where problems are stiff in somne manluer. Mılti. phase flow ran also be ill.posed in the sense of Haramascl. thus rtratiug difficulty with Kirmann woluers.
- Mialtidinucusional schemes are al: artive topir of research. The role of liniters

may prove useful in defining multidinuensional limiters. The use of E.N() schennes ill multidimensionss is proceroling [1:39, 199. 13s]. lint it is in its infouley.
- Multidimensiosial Ricomann solvers mered work. Mest current schemess show peror results hecall.ee they are not inenotolie (based on a wave analogy [228]). Recent work on flux-splittug in several dinucusions [229] may prove vory useful in a unuiber of regards and uceds further developincul.

Oibur rescarch is also exciting. The use of high-resolution upwind methods with iuronupressible flow computations, weather simulations and other applications (188, $230 \mid$ shows considerable promise.

Appendix A.
Test Problems

A. 1 Introduction

The inethools described in this rescarch are nsed to solve three terst problems: the scalar wave equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial r}=0 \tag{A.la}
\end{equation*}
$$

inviscid Burgers' rquation

$$
\frac{i u}{\partial t}+\frac{i}{\partial r}\left(\frac{1}{2} u^{2}\right)=0 .
$$

and the Fule: equations (ser Approndix is for a more complete discisssion) for ant ideal gas

$$
\begin{equation*}
\frac{\partial U}{\partial r}+\frac{\partial F}{\partial x}=0 . \tag{A.Ic}
\end{equation*}
$$

where

$$
U=\left[\begin{array}{l}
\rho \\
m \\
E
\end{array}\right], F=\left[\begin{array}{c}
m \\
m^{2} / \rho+p \\
m(E+p) / \rho
\end{array}\right]
$$

For the Euler roluations the variables are defined $m=\rho u$ where u is the fluid
 of state (for all ideal gas).

$$
\nu=\rho \varepsilon(\gamma-1),
$$

where $:=E / \rho-1 / 2 u^{2}$ and γ is the ratio of apecific heats for ahe gas in question.

A. 2 Scalar Wave Equation

In this section. the test problertis used for the scalar wave equation ate deseribed. Four initial conditions are used for the analysis: a square wave with a "adth of 10 cells, a sine wave over one full period with a width of 20 cells, a sille squned wave (half of a period) of a width of 25 cells and a triangle function with a width of 10 . The advective velocity is taken to be unity. Each of these test problems is shown in Fig. A.I. The exact solution fo: the sealat wave equation is given thy

$$
u(r . l)-!:(s-n!) . \quad \text { iq: }
$$

Where a is the advertive velocity and $u_{u}(x)$ is the intitial condition.
The conrse appenrance of several of the figures is inislearling. The two functions liased on $\sin (x)$ are smouth. The course natire of the plots reauits from the low resolution of elfe discictizations.

A. 3 Burgers' Equation

The test problent ronsists of N equidiatantly spacel rells on a domain $r \in[0,2 \pi]$. The initial condition is $\sin (x)$. At $t=0.2$ and $t=1.0$ the solution is colupared with the exact solution. At $t=0.2$ the solution is snooth; however. at $t=1.0$ the solution has ieveloped a shock. The CFL number is ≈ 0.4. The solutions at these two tisurs are showill ill Fig. A.2. The exact solution is produced using a formula found in [67], which is

$$
\begin{equation*}
u(x, t)=\frac{\partial}{\partial x} \min _{y}\left[\int_{0}^{y} u_{0}(x) d x+\frac{1}{2 t}(x-y)^{2}\right], \tag{A.3}
\end{equation*}
$$

where the definitions are the same as for the scalar wave equation.

A. 4 The Euler Equations

The Fiuler equations are used as an exauluple of the solution process on a systein of equations. The Fiuler equations are perhaps the most common application of the methods discussed in this work.

A.4.1 Sod's Problem

The problens used by Sod [41] to test a number of methods for solving the equations of compressible flow has become a standard test problem. The initial condition for this problem consists of two semi-infinite states separated at $t=0$, and the left and right states are set to the following conditions:
for $X<\mathbf{5 0 . 0}$,

$$
\left[\begin{array}{l}
r_{L} \\
u_{L} \\
p_{L}
\end{array}\right]=\left[\begin{array}{l}
1.0 \\
0.0 \\
1.0
\end{array}\right] .
$$

and for $\boldsymbol{X} \geq \mathbf{5 0 . 0}$

$$
\left[\begin{array}{c}
\tau_{R} \\
u_{R} \\
p_{R}
\end{array}\right]=\left[\begin{array}{l}
8.0 \\
0.0 \\
0.1
\end{array}\right] .
$$

Figure A.I: continued.

Figure A.2: The exact solutions to the leat problems used in the Burgers' equation teats. The figures are shrwn at $t=0.2$ in (a) and $t=1.0$ in (b).
with $\gamma=1.4$. The domais is discretized into 100 cells of equal lengtlis $(\Delta x=1.0)$ and the CFL number is set to 0.9 . The solutions are shown in Fig. A. 3 at $t=20$. The exact solutions can be seen in Fig. A.3. These solutions are computed with the method described in Apperdix B for the exact salution to a shock tube problem.

A.4.2 Lax's Problem

Lax's problem is a shock tube problem similar to Sod's, but with one of the two semi-infinite states used as initial conditions nat being at rest. The initial condition for this problem consists of two semi-infinite states separated at $t=0$, the left and right states are set to the following conditions:
for $X<50.0$,

$$
\left[\begin{array}{c}
\tau_{L} \\
u_{L} \\
p_{L}
\end{array}\right]=\left[\begin{array}{c}
2.24^{\star} \\
0.69 \star \\
3.52\rangle
\end{array}\right],
$$

and for $X \geq 50.0$,

$$
\left[\begin{array}{c}
\tau_{K} \\
u_{R} \\
p_{R}
\end{array}\right]=\left[\begin{array}{c}
2.1 \\
0.0 \\
0.5 \%
\end{array}\right],
$$

with $\gamma=1.4$. The domain is discretized into 100 cells of equal lengths ($\Delta x=1.0$) and the CFL number is set to 0.9 . The solutions are shown in Fig. A. 4 at $t=1.5$. The exact solution can be seen in Fig. A.4.

A. 5 The Vacuum Problem

The vacuum problem is a shock tube problem where two identical states are moving away from each other at $t=0$. The states are kinetic energy rich, which causes probienus for the funite difference scienes. The mitial condition for this problem consists of two semi-infinite states separated at $t=0$, the left and right states are set to the following conditions for $X<50.0$,

$$
\left[\begin{array}{c}
\rho_{L} \\
u_{L} \\
p_{L}
\end{array}\right]=\left[\begin{array}{c}
1.0 \\
-2.1^{\prime} \\
1.0
\end{array}\right] \text {, }
$$

Figure A.3: The exact solution for Sod's Riemann problem. Note the appeasaure of the rarefaction wave running from about $x \approx 3010 x \approx \mathbf{5 0}$, whicls is a smooth, transition. The contact discontinuity is at about $x \approx 65$ and the shock is at $x \approx 45$. Note that the transitions between states for these two structures are sharp. The density and energy profiles show more structure than the velocity or pressure profiles because of the contact discontinuity.

Figure A.3: consinued.

Figure A.4: The exact solution for Lax's Riemann problem. Note the appearance of the rarefaction wave running from about $\approx \approx 10$ to $\approx \approx 25$, which is a smooth transition. The contact discontinuity is at about $x \approx 75$ and the shock is at $x \approx 90$.

Figure A.4: conlinued.
and for $X \geq 50.0$,

$$
\left[\begin{array}{l}
\rho_{R} \\
u_{A} \\
P_{H}
\end{array}\right]=\left[\begin{array}{l}
1.0 \\
2.0 \\
1.0
\end{array}\right],
$$

with,$=1.4$. The domain is discretized into 100 cells of equal lengths $(\Delta x=1.0)$ and the C.FL number is set to 0.9 . The solutions are shown at $t=10$. An additional caveat is that the computation of the stability criteria also involves the condition based on a condition similar to the "tangling" or "emptying" conditions in Lagrangian computations, i.e.,

$$
\begin{equation*}
\Delta x \leq c \cdot \frac{\Delta x}{\left\lvert\, u_{t+\frac{1}{2}-u_{j-\frac{1}{2}}}\right.} . \tag{A.4}
\end{equation*}
$$

where ($' \in[0.1]$. The exact solution can be reen in Fig. A.s.

A.5.1 Blast Wave Problem

This blast wave problem was used liy Woodward and Colella [44] to test a varicty of high-resolution methods. This test turns out to te an extremely stringent test of numerical methuds for solving hyperbolic conservation laws. The initial conditions consist of the following: for $\boldsymbol{X} \leq 10.0$,

$$
\left[\begin{array}{l}
r_{L} \\
u_{L} \\
p_{L}
\end{array}\right]=\left[\begin{array}{c}
1.0 \\
0.0 \\
1000.0
\end{array}\right] .
$$

for $\mathbf{1 0 . 0} \boldsymbol{>} \boldsymbol{X}>\mathbf{9 0 . 0}$,

$$
\left[\begin{array}{l}
r_{L} \\
u_{L} \\
P_{L}
\end{array}\right]=\left[\begin{array}{c}
1.0 \\
0.0 \\
0.01
\end{array}\right],
$$

and for $X \geq \mathbf{9 0 . 0}$

$$
\left[\begin{array}{l}
\tau_{R} \\
u_{R} \\
p_{R}
\end{array}\right]=\left[\begin{array}{c}
1.0 \\
0.0 \\
100.0
\end{array}\right]
$$

with $9=1.4$. The boundary conditions play an important role in this probilem and are refertive at broth the left $(X=0)$ and right $(X=100)$ walls. The solit:tions are shown in Fig, A fiat $t=3$ 3n. The solution develops into twe strous shork wive that

Figure A.5: The exact solution for the vacuum Riemann problem. Note the appear. ance of the rarefaction waves running both directions from the initial discontinuity. The internal energy plot (c) shows error near the vacuum beeause of round off errors.

Figure A.5: continued
collide. The result of this is a complex set of shock and rarefaction waves as well as contact discontinuities in a shliall region of space. These interactions are exceedingly difficult to resolve on a fixed F.ulerian grid without prior knowledge of the solation so that the grid can be locally refined (certaill adaptive meshing piocedures call avoid the need for a priori knowledge of the solition). The "exact" solution can be seen in Fig. A.6. This "exact" solution was computed with 2000 grid cells at a C.Fl. number of 0.95 using a cell-centered second-order HOG inethod. The superbee limiter was used on the linearly degenerate field and van Leer's liniler was used on the nonlinear fields (sec Chapter 8 for a complete discussion of the limiters).

The solution of Riemann problems both: exactly and approximately in discussed in the next appendix.

Figure A.6: The "exact" solution for the blat wave problem. Note the large amount of solution structure between $x \approx 60$ and $x \approx 85$. The two strong blat waves are interacting and ase in the process of paasing through one another. The interartion region is richly populated with cuntact discontinuities and shock waves.

Figure A.6: continued.

Appendix B.

The Equations of Corypreseible Flow and Riemann Solvers

B. 1 Introductinn

Whell alrueloping solution techull, temations of compressible flow, the common practice is to solve the equation in o L iemian frame of reference. For certain classes of problems, a Lagrangian or Lagrangian followed by a transiation back to aus Eulerian frame methods has aelvantages.

Nluch of the developinent of rurient high-resolution numerical methods for the solution of the Eiller equations was the product of just such algorithms, although development has concentrated on purely Eulerian scheines; in recent years. Godunov's Inetholl [56] is the basis of van Leer's work [60]. These methods find the solution to a Lagrangian flow systett and then remaps it to a fixed (or moving) Eulerian gricl. This methodology can also be thought of as operator splitting [156] based on convective and sound waves. The piecewise parabolic method [122] extended van l.ecr's method. Godunov and coworkers also introduced a purely Eulerian variant of (iorlunov's method [5i]. which call be thought of as the basis of currert: !urely Eulerian nuethods.

In modern high.resolution Euicerian algorithms, it is common to use approxiunate Riemann solvers of some sort to compute correct wave p:opagation, because exact Riemann solvers $[60,41$] are expelnsive. As a solution to this problerns, several researchers have developed approximate Riemann solvers. Earh of these has seen its primary development and use in an Fulerian frame. In this appendix, seven types ase explored:
I. a naive Riemann solver.
2. the Lax.Friedrichs Riemann solver [55],
3. the loral l.ax. Friedrichs (LLF; Riemann solver $\{65,66 \mid$,

1. the simple Riemaun solver introduced in $\{30\}$ and refined in $[125,231\}$, known as the IILLE; (Ilarten, Lax, van Leer and Eiafeldt) Riemann solver,
2. Roe's approximate Rieniann solver [63], discuseed in [232].
3. the Kiemann solver of Engquist and Osher [127].
4. and flux spliting like that of Steger and Warming [12.5].

The uext section discusses the flow solution algorithms and derives several approx'. mate Ricmann solvers.

B. 2 The Equations of Compressible Flow

The fiuler equations represent the conservation of mass, momentum, and energy in a fixed coordinate system and in one dimension are

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+\frac{\partial m}{\partial r}=0 \tag{B.Ia}\\
\frac{\partial m}{\partial t}+\frac{\partial}{\partial z}\left(\frac{I^{2}}{\rho}+p\right)=0 \tag{B.|b}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\partial E}{\partial t}+\frac{\partial}{\partial x}\left(\frac{n}{\rho}(E+p)\right)=0 . \tag{B.lc}
\end{equation*}
$$

Here ρ is the density, m is the momentum ($m=\rho u$, where u is the flow velocity), and E is the total energy. The other variables are related to the pressure p through an equation of state.

$$
\begin{equation*}
p=f(p, i) . \tag{B.Id}
\end{equation*}
$$

where $i=E / p-\frac{1}{2} u^{2}$. For an ideal gas, the equation of state is $p=\left(E-\frac{1}{2} m^{2} / p\right)(\eta-1)$ with γ being the ratic of specific heats. This system is hyperbolic and has three characteristic velocities $u-c, u$, and $u+c$, where c is the sound speed. For an ideal gas

$$
c^{2}=\frac{\gamma P}{P}
$$

Fairly directly, this systern can be converted to a system of equations in conser. vation form for a coordinate system moving at the flow velocity. This introduces a change of coordinates from the variable z to $\&$ where $\&$ is the maes coordinate defined by

$$
\varepsilon=\int \rho d s, \text { or } d \xi=\rho d s
$$

The system of equations is then

$$
\begin{align*}
& \frac{\partial r}{\partial t}-\frac{\partial u}{\partial \xi}=0 \tag{B.2e}\\
& \frac{\partial u}{\partial t}+\frac{\partial p}{\partial \xi}=0 \tag{B.2b}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial e}{\partial t}+\frac{\partial p u}{\partial \xi}=0 \tag{13.2c}
\end{equation*}
$$

In this equation set $r=1 / \rho$ and $e=r E$. This system also has three characteristic speeds: $-C, 0$, and C, where $C^{2}-\tau p / r$ is the Lagrangian sound spr. I for an ideal gas. The ideal gas equation of state in terms of the Lagrangian variables is $p=\left(c-\frac{1}{2} u^{2}\right)(\gamma-1) / r$.

W!ith remap equations the solutions found with these equations caus be remapped to an Eulerian grid (as is discussed in the next section) and produce a solution that is equivalent to the solution of the first equation set. The three retriap equations are

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}=0 \tag{B3.3a}\\
& \frac{\partial m}{\partial t}+u \frac{\partial m}{\partial x}=0 \tag{B3.3b}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial E}{\partial l}+u \frac{\partial E}{\partial x}=0 \tag{B.3C}
\end{equation*}
$$

B. 3 Solution Algorithms

In this section. Godunov's method is described with specific attention being given to the Lagrangian formulation with an Eulerian remap. This is followed by a discussion of each of the approximate Riemann solvers used in this sturly.

B.3.1 Exact Solution of the Riemann Problem

The construction of the exact solution to the given Riemann problenf follows the algorithm given in Sod's paper [41] with improvements suggested in [60. 1i7]. These improvements constitute a Newton-type iteration to solve the nonlinear governing equations for the Riemann problem as suggested by van Lerer. Ihe remainder of this section describes the algorithm used to find tive exact solution to the Rimmann problem. Following this, the rxact solution to the particular Ririlann problelll which is to be solved numerically is sinown for the primitive variables.'

This solver described blow uges shock relations at the shock and rarefartion rela. tions at a rarefaction. The Riemann solver used by Colella [121) uses shock relations for both types of waves. This results in a much simpler solver. For a detailed lexik at the Riemann problem see the review paper by Menikoff and Plohr [68].

The algorithm that follows begins from initial data which is defined in two states right, r, and left, 1 , which ase shown graphically in Fig. B.I. The basic algorithm is

[^11]

Figure 13.1: A representation of the initial conditions for the Riemann Problem. given below.

$$
\begin{aligned}
& \text { Algorithm } 6 \text { (Exact Riembin Solutior. for a Shock Tube) } \\
& \text { Initial rondition. }\left(\rho_{1}, u_{1}, \varepsilon_{1}, p_{1}\right)^{T},\left(\rho_{r}, u_{r}, c_{r}, p_{r}\right)^{T} \\
& p_{-}=\frac{1}{2}\left(\rho_{1}+\rho_{r}\right)+\frac{1}{2} \sqrt{I\left(p_{i}+p_{r}\right)\left(\rho_{1}+\rho_{r}\right)}\left(u_{1}+u_{p}\right) \\
& \text { begin } \\
& \text { Do While not converged } \\
& \text { begin } \\
& \text { begin } \\
& \text { if } p_{0}>p_{1} \text { then } \\
& M_{1}=\sqrt{7 P_{1} p_{1}} \sqrt{\frac{1+1}{27} \frac{p_{0}}{p_{1}}+\frac{\lambda_{1}-T}{27}} \\
& \left(u_{10}\right)^{\prime}=-\frac{\left(M_{1}\right)^{2}+y \rho_{1} i_{n}}{2\left(M_{1}\right)^{2}} \\
& \text { else } \\
& M_{1}=\frac{\lambda_{1}-1}{2 \gamma} \sqrt{7 P_{1} P_{1}}\left(1-\frac{R_{8}}{P_{1}}\right) \\
& \left(u_{10}\right)^{\prime}=-{\frac{1}{\text { Tpipi }}\left(\frac{E_{0}}{p_{1}}\right)}^{\frac{1-1}{i p}} \\
& \text { endif } \\
& \text { if } p_{0}>p_{0} \text { then } \\
& M_{r}=\sqrt{T P_{r} P_{r}} \sqrt{\frac{1+1}{2 \gamma} \frac{p_{0}}{p_{r}}+\frac{1}{2 \gamma}} \\
& \left(u_{r o}\right)^{\prime}=-\frac{\left(M_{1}\right)^{2}+\eta_{\rho_{0}} p_{p}}{2\left(M_{r}\right)^{2}} \\
& \text { else } \\
& M_{r}=\frac{1-1}{2 \gamma} \sqrt{7 P_{1 P}}\left(1-\frac{p_{1}}{p_{1}}\right) \\
& \left(u_{\mathrm{ro}}\right)^{\prime}=-\frac{1}{\operatorname{p\rho ⿻}_{0} p_{r}\left(\frac{p_{0}}{\rho_{0}}\right)^{\frac{201}{7}}} \\
& \text { endif }
\end{aligned}
$$

$$
\begin{aligned}
& u_{10}=u_{j}-\frac{p_{0}-p_{1}}{D_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& p_{0}=p_{0}-\frac{u_{l}-u_{r_{\varepsilon}}}{\left(u_{l \cdot}\right)^{2}-\left(u_{r e}\right)} \\
& \text { end } \\
& \text { check convergence } \\
& \text { end } \\
& u_{n}=\frac{1}{2}\left(u_{10}+u_{70}\right)
\end{aligned}
$$

This algorithm was used to produce the solut ons shown in Apprendix A These show the characteristics of the exact solution to a Rimmann probiem for an ideal gas when both sides of the initial condition are at rest and the density and pressure are discontinuous.

B.3.2 Approximate Riemann Solvers

The banis of approximate Riemann solvers is discussed in [40). Fo: a Riemann solver to be conse! vative, the following relation should hold assuming [' is chosen tos be large enough

$$
\begin{equation*}
\int_{-r}^{r} W(\xi) d \xi=r\left(U_{1}+U_{1}\right)+F_{1}-F_{r} \tag{B.4a}
\end{equation*}
$$

This relation can be rewritten to give

$$
\begin{equation*}
\int_{-r}^{0} W(\xi) d \xi=r U_{1}+F_{l}-F_{1 r} \tag{13.4b}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{r} W(\xi) d \xi=\Gamma U_{r}+F_{l_{r}}-P_{r} \tag{13.1c}
\end{equation*}
$$

These relations can be manipulated to give various approximat. Kientann solvers. For instance choosing $r=1 / 0$ give the Lax. Friedrichs scheme and $r=\max _{k}\left(\lambda^{k}\right)$ gives the Rusanov or Local Lax. Friedrichs scheme.

In this section, six approximate Riemann solutions for the equations in lagrangian coordinates ase given. The solution using these algorithms gives the "solution in the smal" in Lagrangian coordinates.

The solution in the smail algerithm is identical for all three methods desceiled below except for the details.

Algorithm 7 [Solution in the Small]

1. Jor each grid cell edge, $j+\frac{1}{2}$, compute the right and left variable values from the reconstruction polynomial, $U_{j}(x)=P ;(x)$. Here for Godunov's method $P_{j}(x)=\mathbf{U}_{j}$, thus $\mathbf{U}_{l}=\mathbf{U}_{j}$ and $\mathbf{U}_{r}=\mathbf{U}_{j+1}$.
2. Conspute the solution, $U_{l r}$, (exact or approximate) to the Riemann problem with initial states U_{l} and $U_{\mathbf{r}}$.
3. Use $U_{l r}$ to compute the flus functions, $F_{l_{r}}$, at the interface $j+\frac{1}{2}$.

B.3.3 Approximate Riemann Solvers for the Scalar Wave and Burgers' Equation

The scalar wave equation, (A.la), is tise sinsplest equation to solve. For a constant wave speed, a, the solution to the local Riemann problem is

$$
\begin{equation*}
f_{j+\frac{1}{2}}=\frac{a}{2}\left(u_{j+\frac{1}{2}, 1}+u_{j+\frac{1}{2} \cdot r}\right)-\frac{|a|}{2}\left(u_{j+\frac{1}{2} \cdot r}-u_{j+\frac{1}{2}, 1}\right) \tag{B.5}
\end{equation*}
$$

Here the cell edge values are given by the local interpolating polynomials as

$$
\begin{equation*}
u_{j+\frac{1}{2}, l}=P_{j}\left(x_{\mu, r}\right) \tag{B.6a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j+\frac{1}{2}, r}=P_{j+1}\left(x_{j+1,1}\right) \tag{B.6b}
\end{equation*}
$$

where $x_{j, r}=x_{j+1, l}=x_{j+\frac{1}{2}}$.
In [158] van Leer gives the local Riemanu solution to Burgers' equation. Given in the nomenclature of this appendix this solution restated is

$$
\begin{equation*}
f_{j+\frac{1}{2}}=\max \left[\frac{1}{2} \max \left(u_{j+\frac{1}{2}, l, 0}\right)^{2}, \frac{1}{2} \min \left(u_{j+\frac{1}{2}, r}, 0\right)^{2}\right] \tag{B.7}
\end{equation*}
$$

B.3.4 Naive Riemann Solver

This method of closing the equations is included because it is so frequently done despite a number of deficiencies. The system is considered to be a set of uncoupled equations and the terms are considered one-by-one. If a term appears to advect the variable, such as density in the mass conservation equation or energy in the energy equation, it is upwind differenced. If it is another term, such as the pressure gradient in the momentum equation or the work term $(p \nabla \cdot u)$ in the energy equation, it is centrally differenced.

For the Lagrangian equation set all spatial derivatives are centrally differenced. This is justified because sound waves travel in both directions from an interface, and the effect is nearly correct. This is the manner in which the flux corrected transport
algorithms are implemented [143, 4]. As the magnitude of the jump increases, the errors become larger resulting in unplyysical solutions.

B.3.5 Lax-Friedrichs Riemann Solver

The simplest Riemann solver is the Lax-Fiedrichs solver [55]. This solver is the most diffusive of the solvers discussed in this appendix. It corresponds to Godunov's method over a staggered grid [200] and has a simple form. The only requirement is that the CFL condition be satisfied. The fornt of the flux function is

$$
\begin{equation*}
F_{l r}=\frac{1}{2}\left[F_{l}+F_{r}-\frac{1}{\sigma}\left(U_{r}-U_{l}\right)\right] . \tag{B.8}
\end{equation*}
$$

B.3.6 Local Lax-Friedrichs Riemann Solver

Recently [65, 66, 169], the Lax-Friedrichs scheme has been resurrected. This method is also known more classically as Rusanov's method [233, 189]. It has been ciranged to a form known as the local Lax-Friedrichs (LLF). In this form, it is less diffusive than the classical form of the Lax-Friedrichs method, but still has the advantage of satisfying the entropy equality. The form of the flux simply depends on the maximum (absolute value) wavespeed locally and the form is given by

$$
\begin{equation*}
F_{l r}=\frac{1}{2}\left[F_{l}+F_{r}-\eta_{l r}\left(U_{r}-U_{l}\right)\right], \tag{B.9a}
\end{equation*}
$$

where $\eta_{l r}=\sup _{k}\left|\lambda_{i r}^{k}\right|$. For the Lagrangian flow equation, this is equal to

$$
\begin{equation*}
\eta_{l_{r}}=\max \left(C_{l}, C_{r}\right) . \tag{P.9b}
\end{equation*}
$$

B.3.7 HLLE Riemann Solver

In their paper [30], Harten, Lax, and van Leer discuss several approximate Riemann solvers in a theoretical context. One of these solvers is derived for a solution containing the left and right initial state plus one intermediate state. Finfeldt [128] then took this basis and showed how this theoretical construct could be used as a practical approximate Riemann solver. Work on this method has also been done by Davis [189]. This method has several desirable properties: its simplicity, ease of implementation, and satisfaction of entropy inequalities.

The general form of a flux function with this solver is

$$
\begin{equation*}
f_{l r}=\frac{b_{l r}^{+} f\left(u_{l}\right)-b_{l_{1}}^{-} f\left(u_{r}\right)}{b_{l r}^{+}-b_{l r}^{-}}+\frac{b_{l r}^{+} b_{l r}^{-}}{b_{l r}^{+}-b_{l r}^{-}}\left(u_{r}-u_{i}\right), \tag{B.10a}
\end{equation*}
$$

where $b_{l_{r}}^{+}=\max \left(0, b_{l_{r}}^{r}\right)$ and $b_{l_{r}}^{-}=\min \left(0, b_{l_{r}}\right)$. The signal speeds $b_{l_{r}^{\prime}}$ and $b_{l_{r}^{\prime}}^{\prime}$ are upper and lower bounds on the signal velocities, respectively. Reference [231] makes the
suggestion for the computation of $b_{l r}^{r}$ and $b_{l r}^{l}$. The fornulas are

$$
\begin{equation*}
b_{l r}^{j}=\max \left(a_{R, m a \leq}, a_{L R, \max }\right), \tag{B.10b}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{l r}^{\prime}=\min \left(a_{L, \min }, a_{L R, \min }\right), \tag{B.10c}
\end{equation*}
$$

where ina d inin refer to the maximunt and ninimum characteristic speeds at the respective ', .cations. The values for $a_{\text {lr }}$ come fron Roe's linearization that is discissed below.

For the Lagrangian flow equations, this leads to a straightforward algorithm. The Lagrangian cell interface fluxes can be witten

$$
\begin{equation*}
\mathbf{F}_{l r}=\frac{C_{l \mathbf{r}} \mathbf{F}\left(\mathbf{U}_{l}\right)+C_{l \mathbf{r}} \mathbf{F}\left(\mathbf{U}_{\mathrm{r}}\right)}{C_{l r}+C_{l r}}-\frac{C_{l r} C_{l r}}{C_{l r}+C_{l r}}\left(\mathbf{U}_{r}-\mathbf{U}_{t}\right) . \tag{B.10d}
\end{equation*}
$$

which simplifies to

$$
\mathbf{F}_{l r}=\frac{1}{2}\left[\left(\mathbf{F}\left(\mathbf{U}_{t}\right)+\mathbf{F}\left(\mathbf{U}_{r}\right)\right)-C_{l r}\left(\mathbf{U}_{r}-\mathbf{U}_{\mathbf{r}}\right)\right],
$$

withl $b_{t r}^{+}$in eq. (B.10a) being replaced by $C_{l r}$, the largest signal speed, and $b_{l r}^{-}$being replaced by $-C_{l r}$, the smallest -ignal speed.

B.3.8 Roe's Riemann Solver

Roe presented this solver in [232] and the derivation given below gives the same results. The main difference is that the form given here is useful in the derivation of the flux splitting scheme. Roe's approximate Riemann solver uses the Jacobian of the flux function to derive a characteristic decomposition of the system of equations: thus in general

$$
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}=0 \Rightarrow \frac{\partial U}{\partial t}+A \frac{\partial U}{\partial x}=0, \tag{B.Ila}
\end{equation*}
$$

where $A=\partial F / \partial U$ is the Jacobian matrix. If I define the decomposition as

$$
A=R \Lambda R^{-1},
$$

Λ is a diagonal matrix with the eigenvalues of A on the diagonal, R is the matrix of right eigenvectors (columns), and R^{-1} is the matrix left eigenvectors (rows). Characteristic equations are then defined as

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}+\Lambda \frac{\partial a}{\partial x}=0 . \tag{B.l|b}
\end{equation*}
$$

where $\alpha=R^{-1} 1$. These equations can be solved with upwind biased methods to get physically correct propagation of information for data associated with each separate wave.

For a scalar wave equation, the expression for an upwind biased flux can be written as,

$$
\begin{equation*}
f_{l r}=\frac{1}{2}\left[\left(f_{t}+f_{r}\right)-\left|a_{l r}\right|\left(u_{r}-u_{l}\right) \mid\right. \text {, } \tag{B.|lc}
\end{equation*}
$$

where L and R refer to the states to the left and right of the cell interface $j+\frac{1}{2}$. For Roe's Riemann solver and a system of equations, the flux can be expressed as

$$
\begin{equation*}
F_{l r}=\frac{1}{2}\left[\left(\mathbf{F}_{l}+\mathbf{F}_{r}\right)-\sum_{k} \mathbf{r}_{l r}^{k}\left|a_{l r}^{k}\right|\left(\alpha_{r}-\alpha_{l}\right)\right], \tag{B.1/d}
\end{equation*}
$$

where r^{k} is the $k^{\text {th }}$ right eigenvector and

$$
\alpha_{r}=\mathbf{l}_{l_{r}}^{k} \cdot \mathbf{U}_{r} .
$$

Roe defined the Jacobian to be used in this numerical approximation to have the property

$$
\mathbf{F}_{r}-\mathbf{F}_{l}=A\left(\mathbf{U}_{r}-\mathbf{U}_{l}\right)
$$

for averaging the values to find A. For the Euler equations, the averaging procedure is somewhat more complicated than simple averaging, but for the fluid equations in Lagrangian coordinates simple averaging suffices. Therefore, the following relations are used:

$$
\begin{align*}
& p_{l r}=\frac{1}{2}\left(p_{l}+p_{r}\right) \tag{B.|2a}\\
& \tau_{l r}=\frac{1}{2}\left(\tau_{l}+\tau_{r}\right) \tag{B.|'2b}
\end{align*}
$$

and

$$
\begin{equation*}
C_{l r}^{2}=\frac{\gamma p_{l r}}{T_{l r}} \tag{B.12x}
\end{equation*}
$$

When λ^{k} can change sign, one slight modification of the above methodologry is used for nonlinear equations and systerns; as suggested by Yee [134] an entropy fix is implemented for the donor-cell differencing, which modifies the use of the absolute value in donor-cell differencing of a characteristic speed. by

$$
\psi(z)=\left\{\begin{array}{ll}
|z| & \text { if }|z| \geq \epsilon \tag{B.13}\\
\left(z^{2}+\epsilon^{2}\right) / 2 e & \text { if }|z|<\epsilon
\end{array} .\right.
$$

if one is dealing with a linear equation set $c=0$. The parametcr c is determined by
the following equation [30],

$$
c=\max \left[0, a_{j+\frac{1}{2}}-a_{j}, a_{j+1}-a_{j+\frac{1}{2}}\right] .
$$

This averagiug for the Euler equations requires that a parameter be defined by

$$
\begin{equation*}
D_{j+\frac{1}{2}}=\left(\rho_{j+1} / \rho_{j}\right)^{1 / 2} \tag{B.14a}
\end{equation*}
$$

which is in :uin used to define the following cell edge values:

$$
\begin{align*}
& u_{j+\frac{1}{2}}=\frac{D_{j+\frac{1}{2}} u_{j+1}+u}{D_{j+\frac{1}{2}}+1}, \tag{B.14b}\\
& H_{j+\frac{1}{2}}=\frac{D_{j+\frac{1}{2}} H_{j+1}+H}{D_{j+\frac{1}{j}}+1} . \tag{B.|4c}
\end{align*}
$$

and

$$
\begin{equation*}
c_{j+\frac{1}{2}}=\left[(\gamma-1)\left(H,+\frac{1}{2}-\frac{1}{2} u_{j+\frac{1}{2}}^{i}\right)\right]^{1 /:} \tag{B.14d}
\end{equation*}
$$

where

$$
\begin{equation*}
H=\frac{\gamma p}{(\gamma-1) \rho}+\frac{1}{2} u^{2} \tag{B.|4e}
\end{equation*}
$$

For the Euler equations, the eigenvalues of the flux Jacobian are

$$
\begin{equation*}
\left(a^{1}, a^{2}, a^{3}\right)=(u-c, u, u+c) \tag{B.15a}
\end{equation*}
$$

The right eigenvectors form a matrix

$$
R=\left(r^{3}, r^{2}, r^{3}\right)=\left[\begin{array}{ccc}
1 & 1 & 1 \tag{B.15b}\\
u-c & u & u+c \\
H-u c & \frac{1}{2} u^{2} & H+u c
\end{array}\right]
$$

and by using

$$
\begin{gathered}
z_{1}=\frac{1}{2}(\gamma \cdot 1) \frac{u^{2}}{c^{2}}, \\
z_{2}=\frac{\gamma-1}{c^{2}}
\end{gathered}
$$

the left eigenvectors form a matrix

$$
R^{-1}=\left[\begin{array}{l}
l^{\prime} \tag{B.15c}\\
l^{2} \\
l^{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2}\left(z_{1}+\frac{u}{c}\right) & -\frac{1}{2}\left(z_{2} u+\frac{1}{c}\right) & \frac{1}{2} z_{2} \\
1-z_{1} & z_{2} u & -z_{2} \\
\frac{1}{2}\left(z_{1}-\frac{u}{c}\right) & -\frac{1}{2}\left(z_{2} u-\frac{1}{c}\right) & \frac{1}{2} z_{2}
\end{array}\right] .
$$

For the Lagrangian flow equs. (B.2a)-(B.2c). the flux Jacobian is

$$
A=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-C^{2} / \gamma & -u(\gamma-1) / \tau & (\gamma-1) / \tau \\
-u C^{2} / \gamma & \tau C^{2} / \gamma-u^{2}(\gamma-1) / \tau & u(\gamma-1) / \tau
\end{array}\right]
$$

Insing all ideal gas equation of state. As stated before the matrix has the eigenvalues of $-C, 0$, and C, and the correspolidiug right eigenvectors are

$$
R=\left[\begin{array}{ccc}
1 & 1 & 1 \tag{B.16b}\\
C & 0 & -C \\
u C:-p & p /(\gamma-1) & -u C-p
\end{array}\right] ;
$$

the left eigenvectors are

$$
R^{-1}=\left[\begin{array}{ccc}
\frac{1}{2 \gamma} & \frac{1}{2 C}+\frac{u(\gamma-1)}{2 \gamma p} & \frac{1-\gamma}{2 \gamma p} \tag{B.16c}\\
\frac{\gamma-1}{\gamma} & \frac{u(1-\gamma)}{\gamma p} & \frac{\gamma-1}{\gamma p} \\
\frac{1}{2 \eta} & -\frac{1}{2 C}+\frac{u(\gamma-1)}{2 \gamma p} & \frac{1-\gamma}{2 \gamma p}
\end{array}\right] .
$$

These matrices and the definition of the flux functions above eq. (B.11d) give the method for solution. Roe [232] noted that the actual implementation for this case is somewhat simpler because of the great amount of cancelation of terms as they are miltiplied out. The flux vector gives the simplification

$$
F=\left[\begin{array}{l}
f_{1} \tag{B.16d}\\
f_{2} \\
f_{3}
\end{array}\right]=\left[\begin{array}{c}
u_{-} \\
p_{-} \\
p_{0} u_{-}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}\left(u_{l}+u_{r}\right)-\frac{1}{2}\left(p_{r}-p_{l}\right) / C_{l r} \\
\frac{1}{2}\left(p_{l}+p_{r}\right)-\frac{1}{2}\left(l_{l r}-u_{l}\right) C_{l r} \\
p_{0} u_{-}
\end{array}\right] .
$$

AII interestiug footuote to this discussion is that these expressions were developed ley Kichthiger and Morton [31, pages 342.315 as a linarized version of Ciodunov's
method. This unctiod was relited to the work of Courant, lssacson, and Rees [5.1] in order to draw a direct analogy between that method and (iodunov's origisial work.
 for these conations. The full natrices also may lue nseful in visnalizing the extension of this: incthod to real gases with more general equations of state.

B.3.9 The Engquist-Osher Solver

The Euguluist-Osher Riemann solver [127] has a mumber of useful properties. It is somewhat differeut than the uthers presented here. The scheme takes into account the "ffects of sonic points and thus satisfies cutropy coustraints. It is built upon the kuowledge that there are a finite number of jumps to states, which can be determined by the characteristic deconiposition (Riemanu invariants) of the problenn. (iiven these junips, a well-defined path of integration can be defined for a systent.

The form for the fluxe's [104] is
where u^{-}is a reference state and $a(s)$ is the characteristic speed as a function of position in phase space. It is generally wise to choose $u_{.}$to be one of the states at the cell edge: Using the definitions of the characteristic decomposition used for Roe's solver, the fluxes for a systern call be written

$$
\begin{equation*}
F_{l r}^{E O}=F\left(U_{l}\right)+\sum_{k=1}^{N}\left(\int_{0}^{a^{k}} \min \left(\lambda^{k}, 0\right) d \alpha\right) \cdot r^{k} \tag{B.18}
\end{equation*}
$$

In this fornt, the functions to the right of $F\left(U_{1}\right)$ only have to be evaluated if the sign of λ_{k} becontes negative (indicating a change of direction in the upwinding). This change can happen during auy of the jumps defiued by the Rientann invariants. Because the cigenvalues of the Lagrangian flow equations do not contain sonic points, the effects of this solver are not profound when compared to Poe's Riemann solver). For all intents aud purposes, the results obtained with this solver are nearly identical to thosc obtained with Roc's solver. The integration procedure adds some additional uuncrical dissijpation to the solver not found with Roe's soiver.

B.3.10 Flux Splitting

The third approxinate Rieınann solver used is the process of flux splitting [125]. This incthod has been widely used for the Euler equations. For the Euler equations, the process of flux splitting has some difficulties because the characteristics can change sign at sollic points (which notivated van Leer's work [126] on flux splitting methods), thins forcing the hasis of the algorithon to take thas beliavior inte acconnt. This also
can create difficulty in inceting contropy requircuments (also a problens for Roc's solver for the Finler equations). Part of the herauty of the Lagrangian "eluations is that each characteristic does not change signi. thills the schellie is the sallie for every grid point, thereby reflecting the symmetry of the system that led to all the cancellation in the final result of the section describing Roe's inctlod.

Upwind differencing in its most basic form is the basis of flux splitting. In general, upwind differencing can be defined for a scalar advection law as follows:

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\lambda\left(f_{,+\frac{1}{2}}^{+}-f_{,-\frac{1}{2}}^{+}\right)-\lambda\left(f_{j+\frac{1}{2}}^{-}-f_{,-\frac{1}{2}}^{-}\right) . \tag{B.19a}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{+}=\max \left(f_{1}, 0\right) . \text { and } f^{-}=\min \left(f_{r}, 0\right) \tag{B.19h}
\end{equation*}
$$

This general concept can be extended to systems of equations by the type of decompositiul described in the previous section. Givell the eigenvalues of the system that defiue the directiou of the flow for a set of characteristic variables, a flux splitting can be defined. For this purpose, the cigenvalues are split as

$$
\begin{equation*}
\Lambda=A^{-}+\Lambda^{+} \tag{B.10c}
\end{equation*}
$$

and the flux Jacobian is split accordiugly as

$$
\begin{equation*}
A=A^{-}+A^{+} \tag{B.1Od}
\end{equation*}
$$

witl each matrix corresponding to the appropriate eigenvalue direction. These matrices can be constructed under tlic rondition that

$$
\begin{equation*}
\mathbf{F}=A \mathbf{U}: \tag{B.|9e}
\end{equation*}
$$

thus,

$$
\begin{equation*}
F_{l_{r}}^{-}=A^{-} U_{r}, \text { and } F_{i_{r}}^{+}=A^{+} U_{l} \tag{B.19f}
\end{equation*}
$$

To derive the flux splitting used here, I draw on an observation reported in [35] that the flux splittings can be found through the right eigenvectors of the flux Jacobian. Using the results of the previous section, the following equation set can be constructed

$$
\lambda_{1} \beta_{1}\left[\begin{array}{c}
1 \tag{B.20a}\\
C \\
u C-p
\end{array}\right]+\lambda_{2} \beta_{2}\left[\begin{array}{c}
1 \\
0 \\
p /(\gamma-1)
\end{array}\right]+\lambda_{3} \beta_{3}\left[\begin{array}{c}
1 \\
-C \\
-u C-p
\end{array}\right]=\left[\begin{array}{c}
-u \\
p \\
u p
\end{array}\right],
$$

whrre

$$
\lambda=\left[\begin{array}{c}
-C \\
0 \\
C
\end{array}\right]
$$

This equation set can be solved to yield the appropriate flux splitting.
The cesulting flux splitting is

$$
F_{l r}=\left[\begin{array}{c}
\frac{1}{2}\left(\frac{p_{r}}{C_{l r}}-u_{r}\right) \tag{B.20b}\\
\frac{1}{2}\left(p_{r}-u_{r} C_{l r}\right) \\
\frac{1}{4}\left(\frac{p_{r}}{C_{l r}}-u_{r}\right)\left(u_{r} C_{l r}-p_{r}\right)
\end{array}\right]
$$

and

$$
F_{l r}^{+}=\left[\begin{array}{c}
-\frac{1}{2}\left(\frac{p_{l}}{q_{10}}+u_{l}\right) \tag{B.20c}\\
\frac{1}{2}\left(p_{l}+u_{l}\left(l_{l r}\right)\right. \\
\frac{1}{4}\left(\frac{p_{l}}{l_{l r}}+u_{l}\right)\left(u_{l} C_{l r}+p_{l}\right)
\end{array}\right],
$$

wherc: $C_{l r}$ is the Roc averaged sound speed. Close inspection of the above expressions reveals that the energy flux in each case js sinilar to Roe's solver in that $F_{3}=-p_{0} u_{0}$. Still closer inspection reveals that this flux splitting is in fact identical to Roe's solver.

Remark 26 The use of the HLLE or LLF solvers promises to significantly ease the implementation of Codunov type schemes uith Riemann solvers. This is especially true for complex systems of equations or for implicit algorithms. If maximum and/or minimum wavespeeds cannot be found, then by using an estimate plus (or minus) some constant, which is large enough (this constant or estimate must be used in computing stability limits), a physical solution can be found. The one problem of this approach is that the solutions found with these approaches can be significantly more diffused than Roe's algorithm (as shown in the follouring section).

B. 4 Results

In this section, the results obtained through the use of the algorithms described above is given and discussed. Several test problems taken from the literature are used: Sod's problein [41], Lax's problem [5j], and a blast wave problem [44]. In each case, only the solution for density is given for brevity. This should not present too much of a detriment because the density profile in each problem captures the essence of earh method's strengths and weaknesses. For Lax's a:ad Sod's problem, an exact solution is used to provide and absolute romparison of the results. For the hast wave problioll.
no exact solution exists; thus, for an absolute comparison, a converged high resolution second order solution is used. ${ }^{2}$

For brevity, the examination of the solution's properties is done using the density profile obtained. The density is an effective measure of algorithunic performance because it contajns all the pertinent structures in the oue-dimensiontial flow (shocks, rarefactions, and contact discontinuities).

B.4.1 Sod's Problem

Figure B.2a shows the solution obtained through the use of the naive Riemann solver with Godunov's method. The most noticeable feature of this p!ot is the oscillations behind the shock ($X \approx 85$). The shock is relatively sharp, but the contact discontinuity is smeared severely. Less notable is the small osciilation ahead of the rarefaction wave as well as what appears to be a small expansion shock in the rarefaction wave ($X \approx 30$). These oscillations cas be reduced significantly by reducing the time step used in the calculations (which increases the inherent dissipation in the solution). In general, the solution by this method is unsatisfactory.

In Figs. B.2b and B.2c the solutions found with Roe's and Engquist-Osher's Riemanll solver are given. These solutions are nearly identical with Engquist-Osher's Riemann solver, but have slightly more sumearing. The shock is about four cells wide in both cases, but is slightly slarper with Roe's method. The contact discontinuity and the rarefaction wave are both smeared significantly, but the solution appears to be physical throughout the domain for both methods. It should be noted that Engquist-Osher's Riemann solver is more expensive than Roe's Riemiann solver

Figure B.2d shows the results for the HLLE Rientann solver and Fig. B.2e shows those for the LLF Riemann solver. Both of these solutious show a great deal more numerical diffusion in the rarefaction wave through the contact discontinuity. The HLLE Riemann solver gives a crisp shock wave across approximately two cells. The LLF Riemann solver shows about the same resolution of the shock as Roe's and Engquist-Osher's Riemann solvers. Another notable feature of these solvers is their cost. Buth are snmewhat cheaper than the more complex Riemann solvers like Roe's and the Elugquist. Osher. As with the previous two solvers, the solution is physical in nature.

B.4.2 Lax's Problem

The naive Riemann solver again produces less than satisfactory results. The oscillations behind the shork are present again, but large oscillations are also present between the rarefaction and contact discontinuity. Again there is some semblance of

[^12]

Figure B.2: The solution for Sod's shock tube problem at $t=20$ is obtained with each of the methods discussed in this appendix. The exact solution is denoted by the solid line in each plot, and the solution obtained with Godunov's method is shown by the circles. Figure B.2a shows the solution obtained with the naive Riemann solver followed by Roe's Riemann solver (B.2b), Engquist-Osher's Riemann solver (B.2c), the HLLE Riemann solver (B.2d) and the LLF Riemann solver (B.2e).

Figure B.2: continued

Figure B.2: continued
all ciratolo:i shock in the rarefaction wave. Figure B.3a shows these results. The negistive features in the solution are gradially removed from the flow as the CFL numl is reduced.

The Rise and the Engquist-Osher Riemann solvers again produce nearly identical solutions with the only difference being the slight increase in numerical dissipation for Engquist-Osher's Riemann solver. The shock is smeared to be quite wide as is the contact d: ontinuity. Figures B.3b and B.3c show that in both cases the rarefaction is smeared. In addition, both solutions slightly clip the square peak in the density profile.

Figures B.3d and B.3e show the HLLE and LLF Riemann solvers respectively. As before, the shock is crisper with the HLLE Riemann solver than either the Roe or Engquist-Osher Riemann solvers, but the clipping of the densit; peak is more pronounced and the smearing in both the rarefaction wave and contact discontinuity is more severe. The LLF Riemann solver shows the same characteristics; but does not have a crisper shock wave, and the smearing is more severe than that found with the HLLE Riemann solver.

B.4.3 Blast Wave Problem

Figure B.4a shows the results using the naive Riemann solver. The smooth portion of the flow on the left is severely polluted with instabilities as is the shock wave at $X \approx 64$. Other smaller oscillations can be seen past the shock at $X \approx 8.5$ and uext

Figure B.3: The solution for Lax's shock tube problem at $t=15$ is obtained with each of the methods discussed in this appendix. The exact solution is denoted by the solid line in each plot, and the solution obtained with Godunov's method is shown by the circles. Figure B.3a shows the solution obtained with the naive Riemann solve followed by Roe's Riemann solver (B.3b), Engquist-Osher's Riemann solver (B.3c), the HLLE Riemann solver (B.3d), and the LLF Riemann solver(B.3e).

Figure B.3: continued

Figure B.3: continued
to the right wall. Although the solution captures some of the essence of the flow, the characteristics of this solution do not indicate that this procedure is robust. Reducing the CFL as before improves the esults; however, the improvement is rot as quick as with the simpler shock tube type problems.

Figures B.4b and B.4c show the results obtained with the Roe and EngquistOsher Riemann solvers. As before, these are nearly identical, but Engquist-Osher's Riemann solver degrades the solution peaks slightly more than Roe's. In gencral, all features of the solution are smeared considerably by the solution procedure. The contact discontinuities at $X \approx 60$ and $X \approx 80$ are both smeared considerahly with the first one being totally obscured. The "dip" between the peaks associated with a rarefaction wave is filled is to a large degree.

The results obtained with the HLLE and LLF Riemann solvers are even more diffusive as one might expect. The peaks are clipped to a larger degree and the "dip" between them is filled in to a greater degree. Again the LLF Rietnann solver exhibits more dissipation than the IILLE soiver, although their performance is nearly indistinguishable. The HLLE Riemann solver also produces a slightly sharper shock at $X \approx 88$ than the other methods (except the naive Riemann solver), although this result is barely perceptible from the figures (Figs. B.4d and B.4e).

Figure B.4: The \boldsymbol{c}-lutions to the blast wave problent $t=3.8$ afe shown. The converged numpical solution is shown by the dashed line and the sold line shows the solution obtained with the approximate Riemann solvers in c., jjumetion with a first-order Gidunov method. Figure B.ta shows the solutian .in a aned with the naive Riemaun solve followed by Roe's Riemanu solver (B.sb). he I agquist.(Onher's Kiemann molver (B.4c), the HLLE Riemar.il solver (B.4d), and the l.LI Riemamn solver(B.4c:

Figure B.4: continued

Figure B.1: rontinued

B. 5 Concluding Remarks

This appendix has given elfe forın of various approxintate Riemanusolvers that may be: usef:ر in producing quality results with Ciodunov's method in Lagrangian coordinates with or without an Eulerian remap. In aldition, the results show some of the problems with taking the maive Ricmann solver approach. The three test problenss show that the other types of Riemann solvers produc: physical resules (and importantly at a lower cost than "exact" Riemann solvers).

The Roe and Engquist-Osher Riemann solvers both employ a great deal of knowl. edge of the wave structure of the equation set and as such produce relatively good results. If the wave structure is not as well defined or known. the HLLE and LI.F Riemann solvers provide a simple alternative provided good estinates of the wavespeeds present are available. The latter two solvers also are less computationally intensive and generally simpler. and thus offer some saving in that regard.

With the use of higher order "monotone" interpolation principles with the methods given in this appendix, the results for all methods improve.

The extension of high-order methods to syatems of equations is explored in the following appendix.

Appendix C.

Extension of High Resolution Schemes to Systems of Conservation Laws

C. 1 Introduction

Iu recent years, there has berin an abundance of work deriving ligh.resolution schemes for hipurholic conservation laws. Wist of the developuent is mate with scalar equations and genuralizecl in somen fasthion to nominear equations or systems of equations. Typically, the "xtension: to systems of equations takes onl great inmportance as is the rase with the solntion of the E.ulur equations of compressible flow. Muel of the devel. upinent uf higheresolition methods is devoted to the solution of systerns of equations as th. oir primary practical use.

This appendix is divided into five sectious. The following section introduces the incthods used for a scalar wave cipluation. In the third section, each of these inethods is cxtencled to systems of equations. The fourth section presents and discusses results found using these methods for the Euler equatioun. Finally, concluding remarks are iound in the last section. An appendix describes the characteristic decomposition for both couserved and primitive variables.

C. 2 Preliminaries

In this apperdix. I concentrate my efforts on one specific method and its extonsion to systens of equations. This method is a standard second-order HOG methou aug. inented with TVD limiters (Chapter 8 and (1.32]). As noted in (64, 14i), the process if solving a problem with a Godunov type method can be divided into two basir steps: reconstruction or projection and evolution. The evolution step involves the use of some sort of exact or approximate Riemann solvers (see for example Appendix B or (30]). The issue at hand here is the method of projection for systems of equations.

The projection step requires that a piecewise polynomial (or some fin, tinr :i resentation) be defined fer each cell of the system to reconst. I the vallable. dos. tribution in space to some level of desired accuracy. In this appendix, the following form is used for this polynomial

$$
\begin{equation*}
P,(v)-n,+\overline{\Delta, n} \frac{(x-x,)}{\Delta, x} \cdot s \in\left[f,-\frac{1}{2} \cdot x,+\frac{1}{2}\right] . \tag{C.1a}
\end{equation*}
$$

whers

$$
\begin{equation*}
\widehat{\Delta, \|} \because Q(1, r) \Delta,-\frac{1}{2} u . \tag{c.1b}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta_{,-\frac{1}{2}} u=11,-u_{,-1} \tag{C.lc}
\end{equation*}
$$

 Thar function $Q(1, r)$ is a linutar.

The linliters llsed in this appenelix are disrussed in (:hapter 8.
Tlepe polyuonsial is then used to define left and sigit states of the varjables at cach

 collsidcred iu this appendix, Koe's approximate liemann solver [6.3] is used. This givers all overall conservative 川nuserical selleflle of

$$
\begin{equation*}
u_{,}^{n+1}=11{ }_{j}^{n}-\sigma\left(\dot{f}_{1+\frac{1}{2} \cdot 1 r}-\dot{f}_{,-\frac{1}{2} \cdot 1 r}\right), \tag{..2a}
\end{equation*}
$$

wit/is

$$
\begin{equation*}
\dot{f}_{,+\frac{1}{2}, l r}=\frac{1}{\Delta t} \int_{t}^{1+\Delta 1} f\left(11\left(r,+\frac{1}{2}, \tau\right)\right) d \tau \tag{C.2b}
\end{equation*}
$$

For extensjou to systems not using a characteristic decomposition it is likely that otlicr approximate Riemanus solvers will be used.

C.2.1 Lax-Wendroff-Type Differencing

Another issuc casily addressed with sinfple model problems is tine accuracy. For a secoud-order accurate scheuse spatially, it is often important to attain second-order accuracy teniporally. A common practice is to use a Lax. Wendroff approach to time accuracy. From one point of view this reduces to characteristic tracing at the cell edges to get a time-centered estimate of the cell-edge state. For this numerical scheme this yields the following form for cell edge states:

$$
\begin{equation*}
u_{j+\frac{1}{2} \cdot 1}^{n+\frac{1}{2}}=u_{j}+\frac{1}{2} \overline{\Delta, u}\left(1-I_{1 r}\right) \tag{C.3a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j+\frac{1}{2}, r}^{n+\frac{1}{2}}=u_{j+1}-\frac{1}{2} \Delta_{j+1} u_{j+1}\left(1+\eta_{(r}\right), \tag{C.3b}
\end{equation*}
$$

$=\sigma . \quad$ Thiss can also be viewed as evolluating in the integral in (C.2b) by a $1: \quad 1 י . . .15$ comparison is shown in Fig. 4.8.

C.2.2 Two-Step Formulation

This procedure becomes more difficult when systems of equations are considered

scheme [114, 113], has been used [159, 158]. The left and right states are computed from the projective polynomial and then used to produce time-centered estimates for the cell-edge states. Given the cell-edge states, $u_{j+\frac{1}{2}, l}^{n}$ and $u_{j+\frac{1}{2}, r}^{n}$, computed with a high-order method, the time-centered estimates are

$$
\begin{equation*}
u_{j+\frac{1}{2}, 1}^{n+\frac{1}{2}}=u_{j+\frac{1}{2} .1}^{n}-\frac{\sigma}{2}\left|f\left(u_{j+\frac{1}{2} . l}^{n}\right)-f\left(u_{j-\frac{1}{2} \cdot r}^{n}\right)\right|, \tag{C.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j+\frac{1}{2}, r}^{n+\frac{1}{2}}=u_{j+\frac{1}{2}, r}^{n}-\frac{\sigma}{2}\left|f\left(u_{j+\frac{1}{2}, 1}^{n}\right)-f\left(u_{j+\frac{1}{2},}^{n}\right)\right| . \tag{C.4b}
\end{equation*}
$$

This gives second-order temporal accuracy and is equivalent to the Lax-Wendroff type procedure for scalar equations.

Remark 27 Davis [189] pipsents an alternate two-step method that is similar. In that method, the first step is

$$
\begin{equation*}
u_{j}^{n+\frac{1}{2}}=u_{j}^{n}-\frac{\sigma}{2}\left(f_{j+\frac{1}{2}, 4}^{n}-\int_{j-\frac{1}{2} \cdot v}^{n}\right), \tag{C.5a}
\end{equation*}
$$

and a second slep of

$$
\begin{equation*}
u_{j+\frac{1}{2}, l}=u_{j}^{n+\frac{1}{2}}+\frac{1}{2} \overline{\Delta, u}, \tag{C.5b}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j+\frac{1}{2} \cdot r}=u_{j+1}^{n+\frac{1}{2}}+\frac{1}{2} \Delta_{j+1} u . \tag{C.5c}
\end{equation*}
$$

C.2.3 Component-Wise Extension

A third approach is also available. This approach involves the separate limiting of the flux vector and the solution variable. It has been uf. i by $[200]$ with a high-order Lax-Friedrichs solver. This solver makes use of the identity, $f=a u$, which implies that

$$
\begin{equation*}
\frac{\partial f}{\partial x}=a \frac{\partial u}{\partial x} \tag{C.6}
\end{equation*}
$$

which gives an equivalent form to that used above with a Lax-Wendroff approach. Specifically this can be written

$$
\begin{equation*}
u_{j+j, 1}^{n+\frac{1}{2}}=u,+\frac{1}{2}(\widetilde{\Delta, u}-\sigma \widetilde{\Delta j} J)_{j}, \tag{C.7×}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{j+\frac{1}{2}, r}^{n+\frac{1}{2}}=u_{j+1}-\frac{1}{2}\left(\overline{\Delta_{j+1} u}-\sigma \overline{\Delta_{j+1}} J\right) . \tag{C.7b}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\Delta f f}=Q(i, n) \Delta,-\frac{1}{} f . \tag{C.76}
\end{equation*}
$$

Sillilar to the approach taken with the interpolation of the depenicut varjables, $r=\Delta_{\mu_{+\frac{1}{2}}} f / \nu_{,-\frac{1}{2}} f$ and $\Delta_{-\frac{1}{2}} f=f,-f,-1$. Again for the scalar wave ecpuation, this is crguivalent to the Lax-Wendroff type of tinse differencing.

C. 3 Method for Extension to Systems

This saction concerns itself with the subjert of extending the meethods desrribed in the previous section to systems of rquations. I deal with the specific case of the Euler cquations for the ronscration of mass, monuentum, and total energy.

The above systels of expations can loe written is a so-called primitive variable form. It bias been suggested that this systenf of variable should be used to determine cell-odge states [2:34, $[22]$. In the above form the variables are conserved quantities ($\rho, \ldots, E)^{\boldsymbol{T}}$, but ill the form givell briow the variables are $(\rho, u, e)^{\boldsymbol{T}}$, the density, velocity, and internal energy. This follows the description of Roe's solver given in Appendix B. This set of equations is

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho \|}{\partial x}=0 \tag{C.8a}\\
\frac{\partial \|}{\partial t}+u \frac{\partial \|}{\partial r}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0 \tag{C.8b}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\partial c}{\partial t}+n \frac{\partial c}{\partial x}+\frac{p}{\rho} \frac{\partial u}{\partial x}=0 \tag{C.8c}
\end{equation*}
$$

The: equations in primitive form give a inuch sinupler system than the Euler equations. The flux Jacobian is

$$
A=\left[\begin{array}{ccc}
u & \rho & 0 \tag{C.9a}\\
\frac{e(\gamma-1)}{\rho} & u & \gamma-1 \\
0 & \frac{p}{\rho} & u
\end{array}\right]
$$

Again, the eigenvalues of this matrix are

$$
\begin{equation*}
\left(\lambda^{3}, \lambda^{2}, \lambda^{3}\right)=(u-c, u, u+c) \tag{C.9b}
\end{equation*}
$$

The right eigenvectors form a matrix

$$
R=\left(r^{\prime} \cdot r^{2} \cdot r^{3}\right)=\left[\begin{array}{ccc}
1 & 1 & 1 \tag{C.9c}\\
-\frac{c}{\rho} & 0 & \frac{c}{\rho} \\
\frac{p}{\rho^{2}} & \frac{p}{(1-1) \rho^{2}} & \frac{p}{\rho^{2}}
\end{array}\right]
$$

and by usillg

$$
z_{1}=(\gamma-1) \rho^{2},
$$

and

$$
z_{2}=2 \gamma p,
$$

the left eigenvectors form a matrix

$$
R^{-1}=\left[\begin{array}{l}
l^{1} \tag{C.9d}\\
l^{2} \\
l^{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2 \gamma} & -\frac{\rho}{2 c} & \frac{z_{1}}{z_{2}} \\
\frac{\gamma}{\gamma-1} & 0 & -\frac{2 z_{1}}{z_{2}} \\
\frac{1}{2 \gamma} & \frac{\rho}{2 c} & \frac{z_{1}}{z_{2}}
\end{array}\right] .
$$

Of the methods available for extending the scheme outlined in the previous section, the characteristic decomposition due to Roe [53] is the inost cominon. In this method, a sinilarity transform takes the variable frons the conservative form to a characteristic form. Each variable can then be computed at the cell edges fron its characteristic contributions. This methodology can also be applied to the primitive variables in a similar manner. The basic theory of Roe's method is given in Appendix B.

Thus, earh characteristic is linsited separately in defining the new cell-edge value of \mathbf{U}. For this purpose, I define

$$
\begin{equation*}
\overline{\Delta ر u}=\sum_{k=1}^{3} r^{k} \overline{\Delta, a^{k}}, \tag{C.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\Delta, \alpha}=Q(1, r) \Delta_{j-\frac{1}{2}} \alpha \tag{C.11}
\end{equation*}
$$

for each component of U where $r=\Delta_{f+j} a / \Delta_{,-f} a$.
The characteristic approach must also be integrated into the attainment of temporal accuracy. Each wave in the above decomposition travels at different speeds and they can also travel in different directions. For this reason, the cell edge quantities are computed from the following formulas:

$$
\begin{equation*}
\mathbf{U}_{j+\frac{1}{2} \Lambda}=\mathbf{U}_{j}+\frac{1}{2} \sum_{k=1}^{3} r^{k}\left(1-\eta^{k}\right) \widetilde{\Delta, a^{k}}, \tag{C.12a}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{j+k, r}=U_{j+1}-\frac{1}{2} \sum_{k=1}^{3} r^{k}\left(1+\eta^{k}\right) \Delta_{j+1} a^{k} . \tag{C.12b}
\end{equation*}
$$

here $\eta^{k}=\lambda^{k} \sigma$. Colella $[234]$ reports a more robust characteritic decomposition that is described and tested in Appendix \mathbf{D}.

This method is aesthetically pleasing because the coupled nonlinear system is
locally reducerl tu a set of decoupled seabiar comations. Wecalase of this, the theory developed and applied to simpler model problenss carries over without intorforcuce: to systellis. Oll the other hand, the: exprose associatell with procedure (e:specially when multidinsensional or more comphex systenns are considered) makes thens less attractive than othor altornatives. A modifiration of this method that is touted as increasing the robinstucss of the reconstruction is given in [2:34]. This method takes inte account the direction of wave carrying information and only allows plysically uleaniugful reconstructions to occur.

The other options described in Siction (. 2 are somewhat more straiglitforward to inflenuent for systems of equations. The two-ste:p method is simply applied in a vector fashion, i.c..

$$
\begin{equation*}
\mathbf{U}_{3+\frac{1}{2} . l}^{n+\frac{1}{2}}=\mathbf{U}_{,+\frac{1}{2}, 1}^{n}-\frac{\sigma}{2}\left[\mathbf{F}\left(\mathbf{U}_{,+\frac{1}{2}, l}^{\prime \prime}\right)-\mathbf{F}\left(\mathbf{U}_{,-\frac{1}{2} . r}^{n}\right)\right] . \tag{C.13a}
\end{equation*}
$$

aud

$$
\begin{equation*}
\mathbf{U}_{1+\frac{1}{2}, r}^{n+\frac{1}{2}}=\mathbf{U}_{,+\frac{1}{2}, r}^{n}-\frac{\sigma}{2}\left[F\left(\mathbf{U}_{,+\frac{1}{2}, l}^{n}\right)-\mathbf{F}\left(\mathbf{U}_{,+\frac{1}{2}, r}^{n}\right)\right] . \tag{C.13b}
\end{equation*}
$$

Sinilarly the component-wise extrusion urethod can be extended by using linited values of the flux function for rach of a systen's equatious. Thus, the method can be writens

$$
\begin{equation*}
\mathbf{U}_{,+\frac{1}{2}, 1}^{n+\frac{1}{2}}=\mathbf{U},+\frac{1}{2}(\widetilde{\Delta, \mathbf{u}}-\widetilde{\Delta, f}) \tag{C.14a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{U}_{,+1, f, r}^{n+\frac{1}{2}}=\mathbf{U}_{,+1}-\frac{1}{2}\left(\widetilde{\Delta_{,+1}} \mathbf{u}-\widetilde{\Delta_{j+1} \mathbf{f}}\right) . \tag{C.14b}
\end{equation*}
$$

For both of these methods, the computation of the cell-edge value could be done in either conservative. primitive, or characteristic variables. The alvantage of the two-step or the component-wise extension uncthods can only be obtained if the interpolation is donse in cither the conservative or primitive variables becanse of the relative simplicity of each formulation.

Another issue of some importance is the application of linniters in consputing the piecewis? polynonials. It is common practice to use a compressive limiter such as superbee on the field that produces the contact discontinuity. The compression given by the limiter maintains the sharpness of the interface. The same limiter when applied to shocks or rarefactions cant produce entropy violating solutions. For the characteristic decomposition the insplementation of this is quite clear. For other uethorls not involving characteristic decomsosition it is usual practice to apply the compressive limiter to the computation of the density profile [122].

Table C.I: Abbreviations for the methods used in this study.

Scheme	Abbreviation
Characteristic-conservative variables	CC
Characteristic-primitive variables	PC
Two-Step-conservative variables	CR
Two-Step-primitive variables	PR
Component-wise-conservative variables	CF
Component-wise-primitive variables	PF

C. 4 Comparison of Methods

In the following section, 1 compare the performance of the methods for several standard test problems for the Euler equations in one space dimension. The results of this discussion should provide guidance for more complex systems of equations as well as guidance in a route to take in extending these methods to multidimensional problems. Table C.I list the abbreviations used in this section to describe the methods.

C.4.1 Sod's Problem

The solutions to Sod's problem can be seen in Figs. C.I-C.6. In general, the solutions are quite good and exhibit the qualities one would expect with a high-resolution numerical solution.

The solutions found with the CC' method are seetı in Fig. C.I. They are qualitatively quite good, with the only problem being the glitch in the velocity at the ead of the rarefaction wave. With the PC method the velocity glitch is gone, but a suall rise is before to the shock. As can be seen in Fig. C.2, the del:sity profile is nearly identical to that found with the CC method.

With the two-step formulation, the solations are again quite good as can be seen in Figs. C. 3 and C.4. The major problems can be seen with the velocity profiles where small problems exist with at the end of the rarefaction wave and in the post shock region of the flow. These problems are not major in nature. Major features of the flow field such as the shock, contact discontinuity and rafefaction wave are resoived well.

The component-wise extension of the schemes has a few more problems. In Figs. C. 5 and C. 6 the solutions are shown. The shock wave is exceptionally sharp, improved over the other methods, bilt in both the conservative and primitive variable formulation there are a number of small oscillations in the velocity solution between

Figure C.I: Sod's problem computed with the characteristic formulation with conservative variables. In these figures, the solid line denotes the exact solution, whereas the circles denote the approximate numerical solution.

Figure C.2: Sod's problem computed with the characteristic formulation with primi. tive variables.

Figure C.3: Sod's problem computed with the two-step formulation with conservalive variables.

Figure C.4: Sod's problem computed with the twostep formulation with primitive variables. Note the small spikes at the end of the rarefaction waves and the post-shock spike in the velocity solution.

Table (.2: The L_{1} errol nurms for rach schemir ,uthend's problem

Scheme	Densit:	Velur
$\mathbf{C C}$	5.86×10^{-3}	1.19×10^{-3}
$P(\cdot$	4.90×10^{-3}	6.14×10^{-3}
CR	5.26×10^{-3}	7.27×10^{-3}
$P R$	5.45×10^{3}	7.56×10^{-3}
CF	5.34×10^{-3}	0.33×10^{-9}
PF	6.20×10^{-3}	1.22×10^{-2}

the rai-iaction aud shock waves. In this casp. thess essethastions are not destructive. but detract fruil: the overall quality of the solution.

In Table: C.2. the L_{1} nurm errors using these incethudo are sinwas. In these terms the lest solution is the $\mathbf{P (}$ method with both of the twa ejop metheds of slightly lower gluailty. The PF method is the worst, with the CC Gormwtiation slightly better. However. the better qualitative appearance of the $\mathrm{C}:(\cdot$ makes in mutich supetior ton the PF inethod.

C.4.2 Lax's Problem

The solutions to thas problem by the methods discussed in this agpendix are shown in Figo. C.7-C.12. Again the solutions are guite good acruse the board. tut problems with the methods show more strongly in the density profilos. The regiou hetween the ,hock wave and the coutart discontinnity is sensitive to the limmer used, and in the non characte: istic methods, problems show up.

Figures $C .7$ and ($\cdot .8$ show the CC and $P($ ' solutions to Lax's problem. respectively. The only problem with tieses solutions is evident in the PC velority solutict, where a small dip in the velocity is present coincilent with the contart discontinnity. This is an artifact of the compres.ive superbee limiter used on the linearly degenerate wave.
Γ : pı..es C.9-C. 12 show the solutions found with other methods. These solutions all siare common characteristios. The contact discontinuity causes orrillations in the solutions as evident in both the density and velocity profiles. These oscillations are more severe in the primitive variable formulations. These oscillations can be controlled through another choice of a limiter to apply to the density interpolation.

In terms of L_{1} error (see Table (:3), the conclusions that are drawn are somewhat different to those found with Sod's probicon. The velocity errirs are very close in magnitude and no real conclusions can be drawil frollt them. The density efrors

Figure C.5: Sod's problem computed with the component-wise formulation with conservative variables. Note the amall occillations in the velocity solution between the rarefaction and shock waves.

Figure C.6: Sod's problem computed with the componen-wise formulation with primitive variables. Note the small oacillations in the velocity solution between the rarefartion and shock waves.

Figure C.7: Lax's problem compisted with the chameteristir ingl:ulation with conservative variables. With the exception of this solution, all the solintioms to Lax's problem have small spikes or oncillations associated with the centinct discontinuity. This is indicative of the overcompressive nature of the limiter olacea on the density. The conservative characteristic formulation guards against thin problem.

Figure C.8: Lax's problem computed with the characteristic formulation with primitive variables. Despite using a characteristic formulation, a small oceillation is present with the contact discontinuity.

Figure C.9: Lax's problem computed with the two-step formulation with conservative variables.

Figure C.10: Lax's problem computed with the two-step formulation with primitive variables.

Figure C.11: Lax's problem computed with the component-wise formulation with conservative variables.

Figure C.12: Lax's problem computed witt the component-wise formulation with corservative variables.

Table C.3: The L_{1} error norms for each scheme on Lax's problem

Scheme	Density	Velocity
CC	1.46×10^{-2}	1.61×10^{-2}
PC	1.92×10^{-2}	1.42×10^{-2}
CR	1.30×10^{-2}	1.53×10^{-2}
PR	1.52×10^{-2}	1.61×10^{-2}
CF	1.29×10^{-2}	1.54×10^{-2}
PF	1.44×10^{-2}	1.62×10^{-2}

seem to favor the conservative iurmulations, but for the two-step or coinponent-wise formulations the differences are not profound.

C.4.3 Vacuum Problem

As noted in Section C.2, one rise int this study does not use Roe's approximate Riemann solver. The case of i_{i} : vacuum problem considered below cannot use Roe's solver as explained in [231). ior this case, a more diffusive scheme is used to maintain physical solutions. This is the IILLE Riemann solver [30, 231, 128] (see Appendix B).

This method has several desirable properties: its simplicity, ease of implementation, and satisfaction of entropy inequalities. Reference [231] makes the suggestion for the computation of b_{l+}^{r} and $U_{l r}$. The formulas are

$$
\begin{equation*}
b_{i r}^{r}=\max \left(a_{r, \text { max }}, a_{l r, \text { mas }}\right), \tag{C.15a}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{l r}^{l}=1: \operatorname{iin}\left(a_{l, \text { min }}, a_{l r, \min }\right), \tag{C.15b}
\end{equation*}
$$

where max and min refer to the maximum and minimum characteristic speeds at the respective locations. The values for $a_{l r}$ come from the Roe linearization that is discussed below.

The solutions found with the CC, PC, PR, and PF (Figs. C.13, C.14, C. 16 and C.18) methods are not worth much discussion. All of them are quite good and appear to be nearly identical in terms of resolution. Table C. 4 shows this as well.

The solutions found with the CR and CF methoas do warrant some discussion. The CR solution is shown in Fig. C. 15 and the CF solution in Fig. C.17. Bcth solutions are of exceedingly pror quality. In fact if measure hard not been taken to prevent this, the computer code should have blown up catiy in the solution process.

Figure C.13: The vacuum problem computed with the characteristic formulation with conservative variables.

Figure C.14: The vacuum problem computed with the characteristic formulation with primitive variables.

Figure C.15: The vacusm problem computed with the two-step formulation witl, conservative variables. The use of conservative variables with this flow is disastrous. The total energy has become negative in the region around $X=50$.

Figure C.16: The vacuum problem computed with the two-step formulation with primitive variables.

Figure C.17: The vacuum problem computed with the component-wise formulation with conservative variables. The conservative variables have not guaranteed that positive definite quantitiss (colal energy) stay positive definite.

Figure C.18: The vasuum problem computed with the component-wise formulation with conservative veriables.

Table C.4: The L_{1} error norms for cach scherme on the Vacuunis problem

Scherue	Density	Velocity
$\mathbf{C C}$	1.27×10^{-2}	2.63×10^{-2}
$P C$	1.24×10^{-2}	$2.8 .5 \times 10^{-2}$
$C R$	2.72×10^{-2}	1.00×10^{-1}
$P R$	1.20×10^{-2}	2.39×10^{-2}
$C F$	2.81×10^{-2}	5.85×10^{-2}
$P F$	1.20×10^{-2}	2.40×10^{-2}

This is because the total energy in the solutiols becomes negative in the vicinity of the vacuum in the solution. The use of the conservative variables in a non characteristic method when the solation is kinetic energy rich causes the problem. This is akin to the problenis with the Roe linearization siudied in [231]. The interpolation of the variables creates nonphysical states in the total energy. Lowering the compreasion of the limiters alleviates this problem as does moving to primitive or characteristic variables for the interpolation.

C.4.4 Blast Wave Problem

The solutions are in general all quite good. The major features of this complex flow field are all tepicted in the plotted density profiles (Figs. C.19-C.24). The major differences can be seen in the resolution of the contact discontinuity at.$X \approx 60$, the "well" at $X \approx 75$, and the peak at $X \approx \mathbf{8 0}$.

In Fig. C.19, the CC method's major problem is the clipping of the second peak in the solution. Other features are well resolved in comparison to the other methods. The PC method (Fig. C.20) smears all the features of the flow considerably more than the CC method. The CR method is generally like the CC method with the exception of the contact. discontinuity at $X \approx 60$, which is smeared mich more that by the CC' method. The solution is somewhat "noisier" with over/undershools in several locations. These characteristics are duplicated in large part by the CF method (compare Figs. C.21 and C.23).

The PR and PF methods produce nearly same resules. Both solutions are remarkably crisp and each feature in the flow field is sharply defined. Figures C. 22 and C. 24 also show the major detriment to these solution. The second peak ($X \approx 80$) sig. nificantly overshoots the "exact" solution. Nevertheless the solution found by these inethods is gnite good ill all other respects.

Figure C.19: The blast wave problem computed with the characteristic formulation with conservative variables. The first peak is captured very well, but the second is clipped severely. With the blast wave solution, the "exact" solution is marked by the dached line and the approximate numerical solution by the solid line.

Figure (..20: The blast wave prolletn computed with the characteristic formulation wilh prinitive variables. Both praks are clipped and the contact discontinuity at $X \approx \mathbf{6 0}$ is smeared.

Figure (C.2l: The blast wave problern coinputed with the two-step formulation with conservative variables. This is similar to Fig. C.19, but the contact discontinuity at

Figure C.22: The blast wave proble.n computed with the two-step formulation with primitive variables. This solution is higbly resolved and is of high quality with the exception of the overshoot of the second peak.

Figure C.23: The blast wave problem computed with the component-wise formulation with conservative variables. This solution is fairly well resolved, but is somewhat "noisier" than other solutions.

Table (.:s: The times fine the blast wave solation coniputation insing erich method

Scheolur	Tortil Tinue (4)	Preceutage in Reconstrurtion
(${ }^{\circ}$	81.93	19.58
Pr ${ }^{\circ}$	79.11	49.55
(K	*2. 49	13.12
P'K	72.0 .1	42.57
(r	$\times 1 \pm 2$	40.44
Pr	69.07	40.54

C. 5 Concluding Remarks

Table ('. 5 shows the total timer takern for the blast wave solution an' the perce:tage of that tinlue takeu by the reconstruction of the cell.edge values'. In terms of economy, the I'lt anll P'F inethoels have rleat alvantages. Taking this into account with the results in mind seseral ronelusioms ran be drawn. These conclusions are summarized brolow:

- All the inrethots dearribed in the appendix produce qiality sesults.
- Whall a now characteristic extension is used care i;ast be taken in applying liniters (to not over-compress the density).
- Fior non characteristic extensions, the primitive variables formulation should be nised.
- Nion rhararteristir formulations insing t ' p primitive variables are lower in cost.

Aucther point nut emphasisell here has been extension oo multiple dimensional probilems. All of theremethoils can te used with a dimensional splitting method, but the twirstep methorl has rlear applicability to a purely multidimensional methods without splitting. This is clearly $\geqslant \mathrm{n}$ alvantageous feature. In sum, both of the chararteristir approaches (CC and P(') are reliable and producr excellent results in all rases. The tworstep primitive variable method (PR) with appropriate selection of limiters is both ernnomical and has applicability to a multidimmsional algorithm.

[^13]

Figure C.24: The blast wave problem computed with the component-wise formulation with conservative variables. This solution is very similar to Fig. C.22.

Apperndix D.

A More Robust Characteristic Reconstruction

D. 1 Methodology

In $[: 3 \cdot 1]$. Coblella discusses a more robust means to accomplish characteristic reconstruction. Int this appendix, I show this method and explore its use.

Brefily itated, this is a modification of the methodology given carlier. For constant roefficient problents these steps lead to identiral values for $\mathrm{U}_{\mathrm{p}+\mathrm{l}, 1 / 1, \text {, but as Colella }}$ cominents leads to a more robust algorithon in the case of highly nonlinear problems. This method requires that we define left and right referencestates, $\dot{U}_{t+\frac{1}{}, ~}$ and $\dot{U}_{\mu+\frac{1}{2}, n}$ respectively. These states are defined as

$$
\begin{equation*}
\dot{\mathbf{U}}_{,+\frac{k}{}}=\mathbf{U},+\frac{!}{2}\left(1-\max \left(\lambda_{j}^{K_{j}}, 0\right)\right) \overline{\Delta_{j} \bar{J}}, \tag{D.la}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{U}_{j+\frac{\xi}{}, r}=U,-\frac{1}{2}\left(1-\min \left(\lambda_{j+1}^{j}, 0\right)\right) \Delta_{j+1} U \tag{D.lb}
\end{equation*}
$$

Here, the eigenvalues, λ^{k}, have been arranged in incieasing order frrm $\lambda^{\boldsymbol{\beta}} \cdots \lambda^{k}$. These reference states are then used in defining the cell.edge values as

$$
\begin{equation*}
\mathrm{U}_{2+\xi, \lambda}=\dot{\mathrm{U}}_{\mathrm{y}^{2}+\lambda, 1}+\frac{1}{2} \sum_{k: \lambda^{k}>0} r^{k}\left(\lambda_{j}^{k}-\lambda_{j}^{k}\right) \widetilde{\Delta a^{k}} . \tag{D.7a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{U}_{j+\frac{1}{2} \cdot r}=\dot{U}_{j+1, r}+\frac{1}{2} \sum_{k: \lambda^{\lambda}<0} r^{k}\left(\lambda_{j+1}^{\prime}-\lambda_{j+1}^{k}\right) \Delta \bar{ر}_{+1} \alpha^{k} . \tag{D.2b}
\end{equation*}
$$

Alt the above terms where defined in Chapter C. One would expect this method to be slightly more diffusive than the usual reconstruction because of the lack of extrapolation of the linear profile for eigenvalues that do not propagate toward the cell edge.

D. 2 Results

I compare the above described method with the more straight foiward algorithm used throughout this research. To do this I use the same four test problens described in Chapter A. To simplify comparison on the deneity and velocity profiles are studied.

For Sod's problem, the more robust algorithms sole improventent seems to he in the velocity profile where the "bump" experienced with the usual algorithm, near the end of the rarefaction wave has disappeared. This is shown in Fig. D.I. The L_{1} error for density is also slightly better.

With Lax's problem, the difference is barely perceptible. Figure D. 2 shows that the two solutions are nearly identical. The L_{1} error norm for density is slightly worse for the robust reconstruction.

Again for the vacuum problem as with Lax's problem, the two solu ions are not greatly different, although the rabust reconstruction appears to be more diffusive. As Fig. D. 3 shows, near the vacuum in the solution, the robust reconstruction shows inore artificial diffusion.

Figure D. 4 shows the solutions for the two methods on the blast wave problem. The solutions were ccmputed with 500 grid points. Only the region of wave interactions is shown. Again, as shown in this figure, the solut:ons are very simular.

While the robust reconstruction does not have any detrimental effects on the sclution (save a little artificial diffusion), except in the case of Sod's problem, it does not improve the solution. It is also somewhat more expensive thall the usual reconstruction, although this cost is not particularly high.

Figure D I: The density and velocity solutions to Sod's problem using both the usual and robust reconstruction methods.

Figure D.2: The density and velocity solutions to the vacuum problem using both the usual and robust reconstruction meibods.

Figure D.3: The density and velocity solutions to the vacuum problem using both the usual and robush, reconstruction methods.

Figure D.4: The density and velocity solutions to the blast wave problem using both the usual and robust reconst vetion methods.

Appendix E.

Neo-Classical Upwind Type Methods

Ilere 1 briefly explore the types of solutions that arise from the solution of modified flux and symmetric TVD schemes without timiters. The schemes can be derived from those schemes by consideting what the fluxes would be for the various sample gradients used in the limiters. This gives three separate schemes for the modified flux type of method: upwind, antiupwind and centerell (or averag' of the other two). For the symmetric method, four schemes arise: upwind (Beam Warming). centered (Lax-Hendrof), antiupwind and averagr.

The results for these methods on the sralar advection of a square wave for 100 time steps at $\nu=0.5$ can be seen in Figs. E. 1 and F.2. E.ach of the solutions is second-order accurate and shows distinct dispersive effects. For the inodified flux type of scheme, the upwind and antiupwind errcrs are opposite in orientation and the centered solution is superior. For the syinmetric scheme, surprisingly, the antiupwind method followed by the average method seem to be superior in terms of oscillation control.

Figure E.1: The solutions fo: the neo-clansical modified flux upwind schemes on the scalar advection of a square wave ($a=1$ and $\nu=0.5$).

Figure E.2: The solutions for the neo-classieal symmetric upwind schemes on the scalar advection of a square wave ($a=1$ and $\nu=0.5$).

Extension of High Resolution Schemes to Multiple Dimensions

F. 1 Introduction

Methods for numerically integrating ronservation laws are best understored in one: dinesusion. Beranse of this, schemes are most often developed anel thoroughly tested
 rases, a good our- limensional metheel rannot be generalize-l to multiple dimerusions because of assumptions made in their derivation. Fortnuately, this is not always true: although the one-dinensional methots are always somewhat limited when used in multiplo-space dimensions.

Ther more straigheforwarel methools for the matidimerusional advertion algorithms are developerel in physirally or logically rectangular courdinates. Finite elrment ineth-
 eral germetries. The problimen with theser methods is that the theoretical support in multidimensions is somewhat larking. A perfert example of this difficulty is with Ricmann solvers. Multidimensional Kiemamn solvers are an active topic of research [22x. 23.5. 236. 23i. 229). but in one dimension. Riemaun solvers are well developed. Typirally, Riconann solvers are used in anl operatur splitting fashion [1;i] where at earh rell interfare the multidiunensional problem is reduced to a one-dimensional problent. These are then pieced together to give a multidimensional algorithmn [234]. As is discussed shortly. the advent of multidinuensional Riemann solvers do not cure all tife problems ansoriatel with the solution of minltidiunensional problems with high. resolution upwind inethods.

A common approarli to achievilus high.resolution methods is the use of flux or slope limiters. For one space dimension. limiters are well developed. but for more than oue dimension, thrir development is somewhat less. One aspect to multidimensional limiters is that they require the use of inore ample gradients than their one dimensional counterparts. As discussed in Chapter 8. the more argumeuts given to a limiter, the lower its resolution simply because of the minimum principle used. Multiolimensional limiters havm been given by [238, 139, 239].

In this appendix, I atten:int to see what some of these limitations are and what metliodology is best suited to the task. The appendix is organized into nine sections: an introduction, a description of the first-order methods, the test problems, and

method and its extension to multiple dimensions. After this, the resuits of the highresolution methods in two space dimensions is given. Following that discussion is a brief description of the impact of limiter selection on the results. Finally, some closing remarks are made.

F. 2 First-Order Methods in Multiple Spatial Dimensions

In this appendix I am interested ill solving the following equation.

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}+\frac{\partial g(u)}{\partial y}=0 . \tag{F.I}
\end{equation*}
$$

where $f(u)=a u$ and $g(u)=b u$. A conservative differeucing of this equation is
where $\sigma_{x}=\Delta t / \Delta x$ and $\sigma_{y}=\Delta t / \Delta y$.
In each of the methods discussed in this appendix, the cell-edge flux at cell edge $i+\frac{1}{2}$.j are defined by the following approximate Riemann solver for scalar wave equations

$$
\begin{equation*}
f_{i+\}, j, i r}=\frac{1}{2}\left[a\left(u_{i+\{, j i l}+u_{i+\{, j: r}\right)-|a|\left(u_{i+\}, j ; r}-u_{i+\}, i: i}\right)\right] . \tag{F.3}
\end{equation*}
$$

where a is the velocity in the 2 -direction at the cell edge and the subscript \mid refers to the value to the laft of the cell edge, r to the right and $t r$ is the interface value. Similarly, the flux is the y-direction at cell edge $i, j+\frac{1}{2}$ is
where b is the velocity in the y-direction at the cell edge and the subscript b refers to the value at the bottom of the cell edge, t to the top, and $b t$ is the interface value. By defining the cell-edge values, 1 then define the scheme.

For the first-order schemes, the value at the cell edges are given by the value of the variable in each cell for instance

$$
\begin{equation*}
u_{i+k, j, l}=u_{i, j}, \tag{F'.5a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{t+k, j ;}=u_{t+1, j}, \tag{F.5b}
\end{equation*}
$$

and other redl-redge walues defined in a simitar fashion. The simpiest scherine is then
froms the conservation form, (F゙: $)$.
 Strank splitting [2.10. 241]. This method pieces together one dimensional solutions intu a multidinucusional solution. For two dinnensions, I can order the solution in two ways as cither

$$
\begin{equation*}
u_{r, j}^{n+1}=\mathcal{L}_{s} \mathcal{C}_{y}\left(u_{i, j}^{n}\right), \tag{F.ba}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{1,1}^{n+1}=\mathcal{L}_{y} \dot{L}_{z}\left(u_{0, j}^{n}\right) \tag{F.6b}
\end{equation*}
$$

Here the operator $\mathcal{L}_{s} \mathcal{L}_{y}\left(u_{1, s}\right)$ would be carried out in two steps. the first being

$$
\begin{equation*}
u_{i, j}^{0}=\mathcal{L}_{y}\left(u_{1, \nu}^{n}\right) . \tag{f.7a}
\end{equation*}
$$

innel the second being

$$
\begin{equation*}
u_{0,1}^{n+1}=\mathcal{L}_{2}\left(u_{1,}^{\bullet}\right) \tag{F.7b}
\end{equation*}
$$

with $\mathcal{C}_{y} \mathcal{C}_{x}\left(\|_{0, j}^{n}\right)$ defincel in a similar manuer. The function $\mathcal{C}_{z}\left(u_{0, j}\right)$ is defined as

$$
\begin{equation*}
\mathcal{C}_{s}\left(u_{1, j}^{*}\right)=u_{0, j}^{:}-\sigma_{s}\left(\int_{1+j, j, i r}^{0}-\int_{1-\xi, j: d r}^{0}\right), \tag{F.8a}
\end{equation*}
$$

ausd $\dot{L}_{b}\left(u_{1, j}^{*}\right)$ is defined as

$$
\begin{equation*}
\mathcal{C}_{v}\left(u_{i, j}^{*}\right)=u_{1,0}^{*}-\sigma_{v}\left(g_{1,, j+k .01}^{*}-g_{1, j-k: 01}^{*}\right) . \tag{F.8b}
\end{equation*}
$$

Strang [240] showed that if the order of evaluation is alternated, errors cancel to second-order in time (also see LeVeque [40, Chapter 18]) thus the implemented order of evaluation for two time steps is

$$
\begin{equation*}
u_{0,1}^{n+2}=\mathcal{L}_{y} \mathcal{L}_{x} \mathcal{L}_{s} \mathcal{L}_{v}\left(u_{0, N}^{n}\right) . \tag{F.9}
\end{equation*}
$$

The use of this with Godunov's method defines the split Godunov method.'
Colella lefines a thired choice for multidimensional extensions of one-dimensional usethods. He calls these corner trausported upwind (CTU) methods, a term I use here. The hasir geometric idea is shown in Fig. F.I. This is a two-step method that defines time-centered values for the cell edges and uses these to complite the advance time rell-centered valucs. The first step of the method computes a time-centered value for a cell cilge based on the characteristics traced from the corners of that cell

[^14]

Figure F.1: A diagram showing the trace of characteristics back from the cell corner of cell (i, j) with both velocities being positive-
edge. For the x-direction cell edge, this gives

$$
\begin{equation*}
u_{i+\frac{1}{2} J ;!}^{n+\frac{1}{2}}=u_{i, j}^{n}-\frac{\sigma_{y}}{2}\left(g_{i, j+\frac{1}{2} ; b t}^{n}-g_{i, J-\frac{1}{2} ; b 0}^{n}\right) . \tag{F.10a}
\end{equation*}
$$

and for the y-direction cell edge

$$
\begin{equation*}
u_{i+\frac{1}{2}, j ; l}^{n+\frac{1}{2}}=u_{i, j}^{n}-\frac{\sigma_{x}}{2}\left(f_{i+\frac{1}{2}, j ; i r}^{n}-f_{i-\frac{1}{2}, j, t r}^{n}\right) . \tag{F.10b}
\end{equation*}
$$

The fluxes are computed by some means, in this case a Codunov flux as described above. The final time-advanced solution is computed from

$$
\begin{equation*}
u_{i, j}^{n+1}=u_{i, j}^{n}-\sigma_{x}\left(f_{0+\frac{1}{2} N j d r}^{n+\frac{1}{2}}-f_{i-\frac{1}{2}, j ; j r}^{n+\frac{1}{2}}\right)-T_{y}\left(g_{i, J+\frac{1}{2} ; b 0}^{n+\frac{1}{2}}-g_{i, j-\frac{1}{2} ; b t}^{n+\frac{1}{2}}\right) . \tag{F.10c}
\end{equation*}
$$

which uses the CTU-time.centered values to define the Godunov fluxes.
Before continuing, some comments concerning stability should be made. Classical stabiligy analysis applies tat the above schemes. For the split and CTU Godunov schemes the stability limit is

$$
\begin{equation*}
\max _{i_{j} j}\left(\nu_{x}, \nu_{y}\right) \leq 1 . \tag{F.11a}
\end{equation*}
$$

and for the unsplit Godunov scheme

$$
\begin{equation*}
\nu_{x}+\nu_{y} \leq \tag{F.11b}
\end{equation*}
$$

where $\nu_{x}=|a| \sigma_{x}$ and $\nu_{y}=|b| \sigma_{y}$.

F. 3 Test Cases and Problem Setup

In this approndix. I consider threr tort problems as initial conditions to the multidimensiomal sealar wave cyuation. The" "quation I solve is

$$
\begin{equation*}
\frac{\partial u}{\partial t} t+\frac{\partial(u(y) u)}{\partial z}+\frac{\partial(b(x) u)}{\partial y}=0 \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
a(y)=-w\left(y-y_{0}\right) . \tag{F.12b}
\end{equation*}
$$

anll

$$
\begin{equation*}
b(x)=\omega\left(x-x_{0}\right) . \tag{F.12c}
\end{equation*}
$$

with $\cdot=0.1, s=50$ and $y_{0}=50$. At $t=20 \pi$ the field has rotated once. The overall lun:tain is $\left[x_{0}, F_{n}\right] \times\left[y_{0}, y_{n}\right]=[0,100] \times[0,100]$. This problem setup follows Zalesak [62] and Munz [|81]. I use a time step size of $20 \pi / 628$ so that the profile ravolves once in 6:2X time steps.

The first probicul is defiued hy Sinolarkirwirz [242] as the cone problem. The initial conditions and rxart solution ape shown in Fig. F.2. The cone is centered at (30.7 i:) with a heright of unity and a radius of 15 . This problem should show how the solintin, ins maintain focal extreminalle shape during advection. For the cone and the wotted ryliuder probilemes. the figures are only showil a 50×50 portion of the grid in orider tor ronerentrate on the solution.

The second problem is the sloteed cylinder problem introduced by Zalesak in [62]. This probilem lias been used by a number of researchers (181. 93. 242) to test multidiIurensiomal alluertion schemes Ther rylinilet is centered at (50.75) and has a height of unity and a radius of 1.5. A slot is rut out of the cylinder at its lower center leaving a "briulge" with a maximum width of 5 . This problera highlights the performance of the unethods on contact discontinuities showing their numerical diffusion. Figure F. 3 shows the initial condition for the sloted cylinder.

F. 4 First Order-Results

In this section I discuss the results of using the first-order methods on the rotating rone and slotted cylinder problems after one rotation. In general, the solutions all have similar properties and results. Graphically speaking, the solutions are nearly identiral. This is showa by looking at Figs. F.4, F.6, and F. 8 for the cone problem and Figs. F.s. F.T. and F. 9 for the slotted cylinder. All these solutions show exceedingly peore resolution of the solution and the original profile is nearly indistinguishable.

The results for all the methods discussed in this appendix are given in several tables. Table F. 1 shows the compuler time used in producing each solution. It is urtable that the ("Tli.Ciodunov method uses half again as much time as the split

Figure F.2: Initial condition and exact solution after a rolations for the cone problem. The spike in the upper right hand corner of the upper figure is set equal to 1 and the spike in the lower left hand corner equal $:: 0-\frac{1}{2}$.

Figure F.3: Initial condition and exact solution after n rotations for the slotted cylinder problem.

Figure F.4: The split Godunov method solution for the rotating cone shows the excessive diffusiun of this method.

Figure F.5: The split Godunov method solution for the rotaling slotted cylinder slows the excessive diffusion of this method.

Figure F.6: The unsplit Godunov method solution for the rotating cone shows the excessive diffusion of this method.

Figure F.7: The unsplit Godunov method solution for the rotating slotted cylinder shows the excessive diffusion of this method.

Figure F.8: The CTU.Godunov :nethod solution for the rolating cone shows the excessive diffusion of this method.

Figure F.9. The CTU-Godunov method solution for the rotating slotted cylinder shows the excessive diffusion of this method.

Table F.I: Computer time used for the solution of a problem using each method :hrough six rotations (CFT 1.14 on a Cray X-MP4/16 with a CTSS operating system).

Scheme	CPU Time (s)	Total Time (s)
Split Godunov	27.975	41.372
Unsplit Godunov	27.640	40.905
CTU Godunov	42.455	60.256
Lax.Wendrof	39.013	55.54 .5
Split HOG	49.913	71.684
Unsplit HOG	48.943	70.346
CTU HOG/Godunov	73.487	134.891
CTU HOG	63.542	124.737
Runge-Kılta HOC:	70.885	101.848
Hancock-van Leet HOG	58.656	117.215

Godunov mett od to achieve nearly the same result. The times for the split and unsplit Godianov so!utions are nearly equal. Table F. 2 gives the solution minimums and maximums for all methods after one rotacion of the cone. The split Godunov solution is slightly better than the other sclutions, and all three methods are monotonic. Table $\mathbf{F} .3$ shows that the slotted cylinder results yield similar conclusions.

F. 5 High-Fesolution Methods

This section explores riethords used to improve the above results while staying within the basis of one.di:ter sionai nethods as a basic building block. Below I show the basic scheme used in the stidy and introduce the methods of extension to multiple dimensions.

F.5.1 The Basic One-Dimensional High-Resolution Method

To set the high-order Ciodunov (HOG) methods tested in this appendix on equal footing, all ancthodus use the same bacic ons-dimensional method as a bacis. This method is a simple second-order method defined by the following piecewise polynomial function in the s-direction

$$
\begin{equation*}
P_{0, j}(x)=u_{1, v}+\overline{\Delta_{,} u} \frac{x-r_{1, j}}{\Delta x} . \tag{F.13a}
\end{equation*}
$$

Talle F.2: Mininum and maxinum values after one rotation of sher rone using all ther urchomls.

Scheme	Minimum	Maxirium
Split Ciodurnov	0.0010	0.3300
Uisplit Ciodunov	0.0000	0.32 .17
(${ }^{\text {TII }}$ Gindunor	0.01010	0.3599
L.ax. Wenilroff	.0.7970	0.8.186
Split 110)(0.0000	0.860 .1
V!usplit HO)(0.0000	0.86 .38
("IU HOCi/Gioxlusas	.0.0120	0.8.575
C.TL HOC;	. 0.0190	0.8 .589
Kunge Kiuta 11OC;	0.0000	0.8697
Hancock-van Leer IlOC;	. 0.0062	0.8529

Table F. 3: Mininum and maxinum valucs after oue rutation of the slotied cylinder using all the usethools.

Scheme	Minimum	Maximum
Split Ciodunov	0.0000	0.1883
Uusplit Godunov	0.0000	0.579.1
CTU Ciodinnor	0.0000	0.5882
Lrax. Weicdeoff	. 0.794 .5	1.2627
Split ilOC;	0.0000	0.9993
linsplit HOG;	. 0.0005	0.9996
(:TI; 110G/Giodunov	-0.0555	1.0625
cirvi HOC;	. 0.0 .0585	1.0736
Runge-Kılta HOC;	0.0000	0.9999
Hancork-van lemer HOC;	.0.0.332	0.998 .5

and in the y-direction

$$
\begin{equation*}
P_{0 .,}(y)=u_{0 .,}+\widetilde{\Delta, u} \frac{y-y_{0 .,}}{\Delta y} . \tag{F.|3b}
\end{equation*}
$$

The terms $\overline{\Delta, u}$ and $\widetilde{\Delta, u}$ are defined by limiters (see Chapter 8).
From the above methods I may get srcond-order time accuracy by defining the time-centered, cell.edge values as

$$
\begin{equation*}
u_{i+\frac{1}{2}, l: l}^{n+\frac{1}{2}}=u_{i, j}^{n}+\frac{1}{2}\left(1-\eta_{z}\right) \widetilde{\Delta_{1} u} . \tag{F.14a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i-\frac{1}{n}, j: r}^{n+\xi}=u_{0, \rho}^{n}-\frac{1}{2}\left(1+\eta_{z}\right) \widetilde{\Delta_{1} u_{0}}, \tag{F.14b}
\end{equation*}
$$

where $\eta_{s}=a \Delta t / \Delta x$. The terms η_{s} and η_{y} are signed versions of ν_{z} and ν_{y}. Similas definitions are used for the cell edges in the y-dircction.

Nuw I explore how I extend these one-dimensional methods to two space dimensions.

F.5.2 High-Resolution Methods in Multiple Spatial Dimensions

The first three ways to extend schemes to multiple spatia! dimensions are simply extensions of the methods used for the first-order Godunov schemes. The operator split nind unsplit methods are extremely straightforward, but the C'TU scheme is worth exploriag.

To get second-order accuracy I use a Taylor expansion for each eime-centered cell-edge value

$$
\begin{equation*}
u_{i+j, j ; l}^{n+l}=u_{i, j}^{n}+\frac{\Delta l}{2} \frac{\partial u}{\partial t}+\frac{\Delta z}{2} \frac{\partial u}{\partial x}, \tag{F.15a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{1, \downarrow+\} ; \infty}^{n+f}=u_{1, N}^{n}+\frac{\Delta l}{2} \frac{\partial u}{\partial l}+\frac{\Delta y}{2} \frac{\partial u}{\partial y} . \tag{F.15b}
\end{equation*}
$$

I can replace $\partial u / \partial t$ with $-\partial f / \partial z-\partial g / \partial y$ in a manner similar to the derivation of the Lax-Wendroff method. This gives

$$
\begin{equation*}
u_{i+\xi, j, l}^{n+\frac{1}{2}}=u_{i, j}^{n}-\frac{\Delta \ell}{2}\left(\frac{\partial f}{\partial x}+\frac{\partial y}{\partial x}\right)+\frac{\Delta x}{2} \frac{\partial u}{\partial x}, \tag{F.16n}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i, \rho+j: t}^{n+\xi}=u_{i, \rho}^{n}-\frac{\Delta t}{2}\left(\frac{\partial f}{\partial z}+\frac{\partial g}{\partial z}\right)+\frac{\Delta y}{2} \frac{\partial u}{\partial y} . \tag{F.16b}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{0, j+\frac{1}{3}: b}^{n+\frac{1}{2}}=1_{0}^{n}, j+\frac{1}{2}(\Delta y-\Delta t b) \frac{i y 11}{\partial y}-\frac{\Delta t}{2} \frac{\partial f}{\partial J t} . \tag{F.1ih}
\end{equation*}
$$

Evaluated numerically the above expressions lacome
annd

$$
\begin{equation*}
u_{0, i+\frac{1}{2}, n}^{n+\frac{1}{n}, 2}+\frac{1}{2}(\Delta y-\Delta t b) \frac{\bar{y}_{1 u}^{-}}{\Delta!}-\frac{\sigma_{t}}{2}\left(\int_{1+\frac{1}{n}, \ldots, 10}^{n}-\int_{0-1,10}^{n}\right) . \tag{F.18b}
\end{equation*}
$$

line original ("fl methool presented above nsed the last terms in each of the last two "xpressions in defiaing t!e tinue centered cell colge values used in (F.10c). Applying
 the wew terms in the "xpansions. Twosparate metheds arise from this derivation: I get serconilorder arrurary with fiadumov lluxes being used as with the first-order ("T1' method or I may use serombeorder thaxes in the place of the first. order fluxes.
 ("T1/HOC:

In [159. 1:sx]. an alternat: bucthoul for extencling HOC; methorls to second-order tulue arcuracy was preseutel. This method was developed in one dimension and is similar in flawor to the two-step Lax. Wendroff method. Using the above stated derivation I can extend this method to two (or nore) dimensions. I substitute nuunerical approximations directly into (F.16n) and (F.16b). This gives expressions for the timue. rentered cell.erige values of
and

(F.JOc) is used to update the grid values. This is referred to as the Hancock-van Leer HOG method. Unlike the CTU schemes, the 1 'FL limit for this scheme is given by

$$
\nu_{x}+\nu_{y} \leq 1
$$

This is because cell-to-cell interactions are ignored in the predictor step.
The next method I study here is a TVD Runge-Kutta method introduced by Shu [169, 65, 66]. These methods were shown to be TVD when the coefficients of the time discretization meet certain conditions. These multistage algorithms are written in the following form

$$
\begin{equation*}
u^{\prime}=\sum_{k=0}^{0-1}\left[\alpha_{i k} u^{k}+\beta_{i k} \Delta t L\left(u^{k}\right)\right] \tag{F.20a}
\end{equation*}
$$

where the semi-discrete differential operator is defined by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=L(u) \tag{F.20b}
\end{equation*}
$$

and $\alpha_{i k}$ and $\beta_{i k}$ are coefficients. The criteria for this to produce TVD results given an appropriate spatial operator is a CFL condition

$$
\begin{equation*}
\prime \leq \frac{\alpha_{i k}}{\left|\beta_{i k}\right|} \tag{F.20r}
\end{equation*}
$$

where

$$
\nu_{x}+y \leq \ldots
$$

If $\beta_{i k}$ is negative, the spatial operator must be antiupwind [65, 160]. A number of schemes can be defined with the second- and third-order methods being particularly useful. The second-order method turns out to be the classic modified Euler or Heun scheme

$$
\begin{equation*}
u_{i, J}^{l}=u_{i, v}^{n}+\Delta t I_{.}\left(u^{n}\right) \tag{F.21a}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{0, j}^{n+1}=u_{i, j}+\frac{\Delta t}{2}\left[L\left(u^{n}\right)+L\left(u^{\prime}\right)\right] . \tag{F.21b}
\end{equation*}
$$

with a CFL condition of $\nu \leq 1$. It is notable that Riemann solvers are needed at each step of the multistep integration.

For convenience, the CFL limits for the schemes studied in this appendix are given in Table F. 4

F. 6 Results for the Second-Order Methods

This section shows and discusses solutions to the test problems by the second-order methods described above. Before continuing to this, I show the results that a classic

Scheme	Lienit
Spplit (iodunov	M19, $\left(11_{4}, M_{y}\right) \leq 1$
Unsplit (iodinov	$\nu_{s}+{ }^{\prime} \cdot{ }_{v} \leq 1$
(Tli fiodunove	$\max \left(\nu_{s}, \nu_{p}\right) \leq 1$
l.ax-We.lirroff	$\max \left(\nu_{s}, v_{y}\right) \leq 1$
Stit llOC;	$\max \left(v_{x}, v_{v}\right) \leq 1$
linsplit HOC;	$\nu_{s}+\nu_{v} \leq 1$
("TV Hosi/Giodunow	$\max \left(v_{s}, v_{y}\right) \leq 1$
	$\max \left(\nu_{s}, l_{y}\right) \leq 1$
Runge Kiulta lione	$\nu_{s}+\nu_{\nu} \leq 1$
Hancurk-valu l.erer HOC;	$\nu_{z}+\nu_{p} \leq 1$

scromul-oriler unctaod produres. Figures F. 10 and F.ll show the operator split LaxWridroff solintions to the test problelus. Wisth of th se solutions are unacceptable. The large cerour neas the lower bombelary is the ronseluence of bonmelary conditions.
 the hounclary: Fiventually. the wolution undergoen lonudiess growth beranse of this. If the adprions are aet to zero at the hemndary (errors flow out of the donain), the

Tabin f.l showis the eromomy of earh scheine. All are mote expensioc than the lax. Wiendrosf urethod, vith she split allil unsplit HO(; inethorls being the least ex. prosive followed by the linugr. Kintia Illot; urethorl. The ("TI' and Hancock-van Leet methods are all very expeusive. The bislk of this expense serms to be related to memury acress time. which favors the Runge-Kutta type ucthot. In terms of economy, the Itr.ere rlasur.al aplit. Ilwethod appears to be the winner.

I/I: :it lhe H()(i-type utethorls shown here, the superbere limiter is used to give the l.ugherst resaliotion pussible. Other linuiters are briefly discussed later in the appendix. Ther aplit IIO)(; methorl gives excelient results in terms of resolution and solution symmetry (ser: Fig. F.12). The bridge in the slotted rylini r is only slightly eroded as shown by fig. F.13.

Figure F.10: The Lax-Wendroff method solution for the rotating cone shows the excessive dispersion errors of this method.

Figure F.!!: The Lax. Wendrofl method wolution for the rotating sloted cylinder shows the excessive dispersion errors of this method.

Figure F.12: The split 1HOG method solution for the rotating cone showa the high quality of this suethod.

Figure f'.13: The split IIS)(; methot solutin, for the rotating slotted cylinder shows

Table F.5: Minimum and maximum values after une rotation of the cone for various limiters using the Runge. Kutta HOG method.

Limiter	Minimum	Maximum
Minmod	0.0000	0.6703
van Leer	0.0000	0.7754
Central	0.0000	0.8154
Superbee	0.0000	0.8697
Generalized Average $\mathrm{n}=2$.0 .0277	0.8439

that the cross derivative terms $\left(\theta^{2} u / \partial_{x} \partial y\right)$ are ignored. This problem has been noted by Sinolarkiewicz [242].

The solutions computed with the C.TU Godunov/HOG and CTU HOG methods do not share this problem. Both methods have excellent symmetry qualities as shown by Figs. F. 16 and F.18. The resolution is also quite high as can be seen in Figs. F. 17 and F.I9. These figures also s!low that the solutions are not monotone and also produce a great deal of high frefuency but low amplitude noise. The solutions do no: differ greatly as evidenced by the figures and the data in Tables F. 2 and F.3, but the CTU HOG method is slightly noisier and less monotonic.

The Hancock van Leer HOG methrd has many of the same characteristics as the CTU algorithm, but the oscillations are smaller and the actual resolution is improved. These two features are evident in Figs. F. 20 and F.21. This method produces the best reproduction of the "bridge" in the slotted cylinder problem.

The Runge-Kutta IIOC; method improves on all these methods. As Figs. F. 22 and $F .23$ demonstrate, the problems with the above methods are cured. The solutions is of slightly better quabity than the split HOC meethod.

F. 7 Test of Various Limiters

This sertion briefly discissess she performance of the HOC methods for different choices of flux limiters. Tables $\overline{\mathrm{F}} .5$ and $\mathbf{F} .6$ show the minimum and maximum values for each of the limiter for the test prollems. In all cases, the Runge-Kutta HOG methol is used.

The figures that follow show that the rhoice of limiter caln have a profound influence on the quality of the solution. The minnoal limiter provides the lowest resolution second-order solution as is showis by Figs. F.24 nud F.25. The van Leer and center limiters are sornewhat bretert in resolution, but are still noticeably leas resolved than

Figure F.14: The unsplit HOC method solution for the rotating cone showe the lack of symmetry of this method.

Figure f. 15: The unsplit HO(i method solution for the rotating slotted cjlinder shows the lack of resolution of this method.

Figure F.15: The CTIU (iorlunov/HO(; method solution for the ratating cone shows the resolistion and noise of this methorl.

Figure F.17: The CTU Godunov/HOC; methed solution for the rotating sloted cylinder shows the resolution and noise of this method.

Figure F.18: The CTU HOG; method solution for the rotating cone shows the pesolution and nopise of this method.

Figure: F.19: The CTU HOG method solution for the rotating slutted cylinder aherws the resolution and novise of this method.

Figure F.20: Thie llancock-van Leer HOC method solution for the rotating cone shuws the irsolutiont and reduced noise of this method

Figure F.21: The Hancock-van Leer HOG method solution for the rotating slutted cylinder shows the resoluticn and reduced noise of this method.

Figure F.22: The Runge-Kutta HOC; method solution for the rotating cone shows the resolution and the lack of nojse of this nethod.

Figure F.23: The Runge-Kutta HOG method solution for the rotating slotted cylinder shows the resolution and the lack of noise of this method.
 for varuons limiters using the Runge hinta HIO(; mutheot.

Limiter	Minis,num	Maximum
Minmod	0.0000	0.76 .3 .7
van lece	0.0000	0.9237
Central	0.0000	0.9797
Superiser	0.0000	0.9999
Generalized Average $1 s=2$.0 .07 .59	1.0 .110

the supurber limiter. Tt: center linuster solutions ase given is ligs. F. 26 and $\mathfrak{F} .27$ and the vall Leer liniter solutions in Figs. $\mathfrak{F} 28$ and $\mathfrak{F} .29$. The gencralized average liniter gives a more resolved solution. ! ant at the rost of symmetry and monotonirity. These are show, in Figs. F. 30 and F.31. The superber limiter solutions were shown in Figs. F. 22 an ! F.23.

Figure F.24: The Runge-Kutta HOG method with the minnod limiter solu:ion fer the rotating cone shows the pour resolution of this limiter.

Figure F.25: The Runge-Kutta HOG method with the minmod limiter solution for the rotating slotted cylinder shows the poor resolution of this limiter.

F. 8 Closing Remarks

Of the met!ods discussed in this chapter, the split HOG and Runge-Kutta HOG meth. ods are the clear winners in terms of overall performance. The Runge-Kutta HOG methods are especially appealing because they can be extended to higher than secondorder accuracy. This makes them important for consideration with ENO schemes or such schemes as the PPM [122]. The Haucock-van Leer method is als improvement in terms of performance and ecousomy orer the CTU-type methods. If a larger time step is desired, the split scher.ies seer: :o be quite effective. For systems of equations, this topic is it need of additionat research. Split methods seem to have some intrinsic problems with systems [243j. Perhaps this swings the balance in favor of Runge-Kutta-type methods, but the performance of C'TU-type methods also needs critical evaluation for systems.

Figure F.26: The Runge-Kutta HOG method with the central limiter solution for the rotating cone shows the resolution of this limiter is nearly on par with the superbee limiter.

Figure \dot{F}.27: The Runge-Kutta HOG method with the central limiter solution for the rotating slotted cylinder shows the resolution of this liniter is nearly on par wit': the superbee limiter.

Figure F.28: The Runge-Kutta HOG method with the van Leer limiter solution for the rotating cone shows the better resolution of this limiter.

Figure F.29: The Runge-Kutta HOG method with the van Leer limiter solution for the rotating slotted cylinder shows the better resolution of this limiter.

Figure F.30: The Runge-Kutta HOG; method with the generalized average limiter $n=2$ solution for the rotating cone shows the better resolution of this limiter, but the non-monotonic behavior.

Figure F.31: The Runge-Kutta HOG method with the generalized average limiter $n=2$ solution for the rotating slotted cylinder shows the better resolution of this limiter, but the non-monotonic behavior.

References

[I] S. V. Pataukar. Numerical IIcat Trumsfcr and Fluid F'low. Hemisphere, 1980.
[2] D. R. Liles and W. H. Reed. A semii-implicit method for two-phase fluid dynamics. Journal of Computational Physirs, 26:390-407. 1978.
[3] F. II. Ilarlow and A. A. Ausden. A uunerical fluid dynamics calculation urethod for all flow speeds. Jourial of Computational Physics, 8:197-213. 1971.
[-1] F.. S. Orall and J. P. Boris. Numerical Simulation of Reactive F'lou. Elsiver. 1987.
[5] W. J. Rider. A comparisun of TVD Lax-Wendroff schemes. Technical Report LA-UR-91-2770, Los Alamos National Laboratory, 1992. Accepted in Comnunications in Applied Numerical Methods.
[6] W. J. Rider and D. R. Liles. A generalized flux-corrected transport algorithin. I: A finjte difference formulation. Techuical Report LA-UR-90-372?., Lus Alasmos National Laboratory, 1990. subilitted to the Journal of Collmputational Physics.
[7] W. J. Rider. The use of approximate Riemann solvers with Godunov's inethod in Lagrangian coordinates. Techilical Report LA-UR-91-2555, Los Alaınos National Laboratory, 1991. subuitted to Computers and Fluids.
[8] W. J. Rider. A generalized flix-corrected transport algorithin. II: A geometric approach. Technical Report LA ('R-91-2i69, Los Aiamos National l.aboratory, 1991. submitted to the SIAM Journal on Scientific and Statistical Computing.
[9] W. J. Rider. Linuiters in the high resulution solution of hyperbolic conservation laws. Technical Report LA-UR-91-3568. Los Alamos National Laboratory, 1991. subinitted to SIAM Journal on Numerical Analysis.
[10] W. J. Rider. Methods for extending high resolution schemes to systems of hyperbolic conservation laws. Technical Report LA-UR-91-3286, Los Alamos National Laboratory, 1991. submitted to International Journal of Niumerical Methods in Engineering.
[11] W. J. Rider. Cell averages or point values ? On reconstruction methods for the solution of hypesbolic conservation lawr. Technical Report LA-UR-91-3567, i.cs Alaınos National Laboratory, 1991. Submitted to Journal of Computational Physics.
[12] J. J. Monaghan. Why particle methods work. SIAM Journal on Scientific and Statistical Computing, 3:422-433, 1982.
[13] A. J. Majda. Vorticity, turbulence and acoustics in fluid now. SIAM Review, 33:349. 388. 1991.
[1.1] J. Gilimu. Nonlinear and stochastic phenomena: The grand challenge for partiad

[15] M. Brio and C. C. Wu. An upwind differencing scheme for the equations of ideal inagnetohydrodynamics. Journal of Computational Physics, 75:400-422, 1988.
[16] S. Osher. IBM Third Computational Fluid Dynamics Shor: Course, Monterey CA, May 1991.
[17] P. D. Lax. Shock waves and entropy. In E. H. Zarantonello, editor, Contributions to Nonlinear Functional Analysis, pages 603-634. Academic Press, 1971.
[18] P. D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, 1972.
[19] J. Sinoller. Shock Waves and Reaction-Diffusion Equations. Springer.Verlag, 1982.
[20] L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon Press, 1987.
[21] D. Mihalas and B. W. Mihalas. Foundations of Radiation Hydrodynamics. Oxford, 1984.
[22] J. J. Duderstadt and W. R. Martin. Transport Theory. Wiley-Interscience, 1979.
[23] A. J. Chorin and G. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag. 1990.
[24] Js. J. D. Anderson. Modern Compressible Flow. McGraw Hill Book Company, 1982.
[25] R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves. Interscience, 1948.
[26] A. J. Chorin. Numerical solution of Boltzmann's equation. Communications on Pure and Applied Mathematics, 25:171-186, 1972.
[27] P. R. Woodward. Piecewise-parabolic metiods for astrophysical fluid dynamics. In K.-H. A Winkler and M. L. Norman, editors, Astrophysical Radiation Hydrodynamics, pages 245-326, 1986.
[28] D. D. Joseph and L. Preziosi. Heat waves. Reviews in Modern Physics, 61:41-73, 1989.
[29] II. D. Weymann. Finite speed of propagation in heal conduction, diffusion, and viscous shear motion. American Journal of Physics, 35:488-496, 1967.
[30! A. Harten. P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. S/AM Review, 25:35-61, 1983.
[31] R. D. Richtınyer and K. W. Morton. Difference Methods for Initial Value Problems. Wiley-Interscience, 1967.
[32] P. J. Roache. C'omputational Fluid Dynamics. Hermosa, 1976.
[33] D. Potter. Computational Physics. Wiley-Interscience, 1973.
[3.1] D. A. Asderson, J. C.. Tannehill, and R. II. Pletcher. Computational Fluid Mechanics und Hcat Transfer. Hemisphere, I9x.I.
[35] C. Ilirsch. Vinthe, ical Computation of Internal and Eizternal Filows: Volume I. Wiley. linterscjence, 1988.
[36] C'. Hirsch. N'umerical Computation of Internal a:Id External Flows: Volume 2. Wileylıterscience. 1988.
[3i] ('. A. J. Fle, eher. Computaticnal Techniques for f'luid Lynamics: Volume I. Springer-Verlag, 198\%.
[38] (:. A. J. Fletcher. C'omputational Trchniqnes jor Filuid Dynamirs: Volume II. Springer-Verlag, 1988.
[39] (:. A. Sod. Numerical Methods in Fluid Dynamics. C.ambridge, 1985.
[40] R. J. LeVinque. Numerical Methods for Conservation Lau's. Birkhäuser, 1990.
[1i] (i. Sod. A survey of several finite difference methods for systems of nonlinear hyper. bolic conservation laws. Jourial of Computational Physirs, 27:1-31, 1978.
[42] J. P. Boris. New directions in computational fluid dynanics. Annucl Reviews in jluid .1fechaniors, 21:345-385. 1989.
[43] A. Rizzi and B. Engquist. Selected topics in the theory and practice of computational flisid dynanijes. Jourial of C'omputational Physics, 72:1-69, 1987.
[44] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of C'omputational Physics, 54:11.5-173, 1984.
[45] H. C. Yee. Upwind and symmetric shock-capturing schemes. 'Technical Report NASA TM-89464, NASA, 1987.
[46] R. B. Rood. Numerical advection algorithms and their role in atrrospheric transport ard chemistry models. Reviews of Geophysics, 25:71-100, 1987.
[47] S. Osher and P. K. Sweby. Recent developinents in the numerical solution of nonlinear conservation laws. In A Iserles and M. J. D. Powell, editors, The State of the Art in Numerical Anulysis, pages 682-701, 1987.
[48] II. Lomax. C.FD in the 1980's from one point of view. In D. Kwak, editor, Proccedings of the AlAA Tenth Computational Fluid Dynamics Conference, pages 1-9. 1991. AlAA Paper 91-1526.
[49] A. J. Przekwis and II. Q. Yang. Advanced CFD methodology for fast transients encountered in nonlinear coubustion instability problems: SB|R phaselfinal repor!. Technical Repurt Report 406:/1. CFD Research Conforation. lgx9.
[50] J. D. Baum and J. N. Levine. A critical study of uumerical melinods for the sotution of nonlinear hyperbolic equations for resonance systelus. Jowimal of Cion.putetional Physics, 58:1-28, 1985.
[51] L. F. Richardson. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with applications to stresses in a masonry dam. Transactions of the Royal Sociely of London, 210:307-35\%, 1910.
[52] R. Courant, K. Friedrichs, and II. Lewy. On the partial differential equations of mathematical physics. Mathematische Annalen, 100:32-74, 1928.
[53] J. VonNeumann and R. D. Richtmyer. A method for the numer:cal calculation of hydrodynamic shocks. Journal of Applied Physics, 21:232-237, 1950.
[j4] R. Courant, E. Issacson, and M. Rees. Cn the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applicd Mathematics, s:243-255. 1952.
[55] P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7:159-193, 1954.
[56] S. K. Godunov. Finite difference method for numerical computa:jon of discontinuoss solutions of the equations of fluid dynamics. Matematicheski Sbornik, 47:271-306, 1959.
[57] S. K. Godunov, A. iV. Zabrociyn, and G. P. Prokopov. A computational scheme for two-dimensional nonstationary problems of gas dynamics and calculation of the flow from a shock wave approaching steady-state. USSR Journal of Computational Mathematics and Mathematical Physics, 1:1187-1219, 196!.
[58j P. D. Lax and B. Wendroff. Systems of conservation laws. Communications on Pure and Applied Mathematics, 13:217-237, 1960.
[59] J. P. Boris and D. L. Book. Flux-corrected transport I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 11:38-69. 1973.
[60] B. van Leer. Towards the ultimate conservative difference scheme. V. A serond-ordep sequel to Godunov's method. Journal of Computational Physics, 32:101-136. 1979.
[61] A. Harten. On a class of high resolution total-variation-stable finite-difference schenres. SIAM Journal on Numerical Analysis, 21:I-23, 1984.
[62] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 31:335-362, . 979.
[63] P. L. Hoe. Approxilnate Riemann solvers, parameter vectors, and difference schemes. Journal of C'omputational Physics, 43:357 372, 1981.
[64] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high order accurate essentially noll-oscillatory schenses. III. Journal of Compulational Physics, 71:231303, 1987.
[65] C. W. Shy ald S. Osher. Efficient implementation of essentially non oscillatory shockcapturing schentes. Journal of Computational Physics, 77:439-471, 1988.
[66] C. W. Shu and S. Osher. F.fficient implementation of essentially non-oscillatory shock. capturing schemes II. Jourial of Computational Physics, 83:32-78, 1989.
[67] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge, :986.
[68] R. Menjkoff and B. J. Plohr. The Riemann probleu for Huid flow of real materials. Reviews in Modern Physics, 61:75-129, 1989.
[69] P. D. Lax. Nonlinear partial differential equations and computing. .SIAM Review, $1^{\prime}: 7-1 \mathrm{I}_{1} 1969$.
i'ioj J. Glimm. The interaction of nonlinear hyperbolic waves Commulications on Pure and Applied Mathematics, 41:569-590, 19x8.
(71] H. B. Stewart and B. Wendroff. Two-phase flow: Models and methods. Journal of Compulational Plyysics, 56:363-409. 1984.
[72] V. H. Ranson and D. L. Hicks. Hyperbolic two-pressure models in two-phase flow. Journal of Compulational Physics, 53:124-151, 1984.
[73] A. Harten, J. M. Hyman, and P. D. Lax. On firite difference approximations and r. iropy conditions for shocks. Communications on Pure and Applied Mathematics, 29:297-322. 1976.
[74]. M. Virinkur. An analysis of finite-difference and finite-volume formulations of conservation laws. Journal of Computational Physics, 81:1-52, 1989.
[75] I. I. Giluss. Some aspects of shock-wave research. AlAA Journal, 25:214-229, 1987.
[76] W. C. Reynolds. The potential and limitations of direct and large eddy simulations. Lecture Notes in Physics, 357:313-343, 1990.
[77] J. P. Boris. On large eddy simulation using subgrid turbulence i.ıodels. Lecture Notes in Physics, 357:344-351, 1990.
[78] D. H. Porter, P. R. Woodward, W. Yang, and Q. Mei. Simulation and visualization of compressible convection in two and three dimensions. In J. R. Buchler and S. T. Gottesmann, editors, Nonlinear Astrophysical Fluid Dynamics, pages 234-258, 1990.
[79] D. H. Porter, A. Pouquet, and P. R. Woodward. A numerical study of supersonic homogeneous turbulence, 1992. preprint.
[80] S. V. Patankar. Recent developments in computational heat transfer. Journal of Heat Transfer, 110:1037-1045, 1988.
[81] B. P. Leonard. Simple high-accuracy resolution program for convective modelling of discontinuities. International Journal for Numerical Methods in Fluids, 8:1291-1318, 19xs.
[82] B. P. Leonard and S. Mokhtari. Beyond first order upwinding the ULTRA-SHARP alternative for non-oscillatory steady-state siujulation of convection. International Journal for Numerical Methods in Engineering, 30:729-766. 1990.
[83] B. P. Leonard and H. S. Niknafs. Sharp monotonic resolution of discontinuities without clipping of narruw extrema. Computers and Fluids, 19:14|-154, 199|.
[84] B. P. Leonard. The ULTIMATE convective djfference scheme applied to unsteady onedimensional advection. Coinpuler Methods in Applied Mechanics and Engineering, 88:17-74. 1991.
[85] J. B. Bell, P. Colella, and II. M. Giaz. A second-order projection method of the incourpressible Navier-Stokes equations. Journal of Computational Physics, 85:257283. 1989.
[86] J. B. Bell, L. Howell, and P. ('olella. All efficjent second-order projection method for viscous incompressible flow. In D. Kwak, editor, Proceedings of the AIAA Tentl. Compulational Fluid Dynamics Conference, pages 360-367, 1991. AIAA Paper 911560.
[87] D. B. Kothe, R. C. Mjolsuess, and M. D. Torrey. RIPPLE: A computer program of incompressible flows with free surfaces. Technical Report LA-1200-7•MS, Los Alamos National Laboratory, 1991.
[88] J. F. Hawley, L. L. Smarr, and J. R. Wilson. A nuinerical study of nonspherical black hole accretion. II. a finite differencing and code calibration. Astrophysical Journal Supplementary Series, 55:211 246, 1984.
[89] B. Fryxell. E. Müller, and D. Arnett. Instabilities and clumping in SN 1987a. I. Early evolution in two dimensions. Aatrophysical Journal, 367:619-634, 1991.
[90] E. Müller, W. Hildebrant, M. Orio, P. Ilöflich. R. Mönchmeyer, and B. Fryxell. Mixing and fragmentation in supernova envelopes. Astronomy and Astrophysics, 220:167-176, 1989.
[91] E.. Müller. B. Fryxell, and D. Arnett. Instability and clumping in SN 1987A. Astronomy and Astrophysics, 251:505-514, 1991.
[92] D. Arnett. B. Fryxell, and E. Müller, Instability and nonradial motion in SN 1987A. Astrophysical Journal, 341:L.63-L66, 1989.
[93] R. L. Carpenter, K. K. Droegemeier, P. R. Woodward, and C. E. Hane. Application of the piecewise parabolic method (PPM) to meteorological modeling. Monthly Weather Review, II8:586-612, 1990.
[94] D. J. All'll. A. R. Douglass, R. B. Rood, and P. L. !h:ie. Application of a monotonic upstream-bjased transport schente to three dimensional constituent transport calculations. Morthly Weather Revicw, 119:2456-2454, 199|.
[95] M. J. Fritts, W. P. Crowley, and II. Trease, edjtors. The Frec Lagrailge Method, volume 238 of Lecture No!es in Physis. Springer. Verlag, 1985.
[96] II. Q. Yang. Characteristics-based high.order accurate and nonoscillatory numerical inethod for hyperbolic heat conduction. Numerical Heal Transfer, Part B, 18:221241. 1990.
[97] V. Shankar, W. F. Hall, and A. H. Mohamnadian. A time domain differential solver for electromagnetic scattering problems. Proccedings of the IEEE, 77:709-721, 1989.
[98] V. Shankar. W. F. Hall, A. H. Mohamınadian, and S. Chakravarthy. Applications of computation filsid dynamics-based methods to problems ill computational science. Computer Systems in Engineering. 1:7-22, 1991.
[99] I. Toumi and P. Raymond. Numerical inethod for two-phase flow discontinuity propagation calculation. In M. L. Hall, elitor. Advances in Nuclear Enginecring Computation and Radiation .Shielding, page 53, 1989.
[100] C. P. Tzanos. Central differencr-like approximations for the solution of the convectiondiffusion equation. Numerical Ileal Transfer, Part B, 17:97-112, 1990.
[101] W. J. Rider and S. B. Woodruff. High-order solute tracking in two-phase thermal hydraulics. In II. A. Dwyer, editor. Pmcredings of the Fourth International Symposium on Computational Fluid Dynamics, pages 957-962, |99|.
[102] J. A. Trangenstein and P. Colella. A higher-order Godunov method for modeling finite deformation in elastic-plastic solids. Communications on Pure and Applied Mathematics, 44:4|-100, 1991.
[103] J. B. Bell, G. R. Shubin, and J. A. Trangenstein. A method for reducing numerical dispersion in two-phase black-oil reservoir simulation. Journal of Computational Physics, 65:71-106, 1986.
[104] J. B. Bell, P. Colella, and J. A. Trangenstein. High order Godunov methods for general systems of hyperbolic conservation laws. Journal of Computational Physics, 82:362-397, 1989.
[105] Y. Brenier and J. Jaffé. Upstream differencing for Inultiphase flow in reservoir simulation. SIAM Journal on Numerical Analysis, 28:685-696, 1991.
[106] A. Jameson. A nonoscillatory shock capturing scheme using flux limited dissipation. In B. Engquist et al., editor, Lectures in Applied Mathernatics, pages 48-65, 1985.
[107] J. R. Buchler and P. Whalen. Experiments with artificial viscosity. In J. R. Buchler, editor, The Numerical Modelling of Nonlinear Stellar Pulsations, pages 269-288, 1990.
[108] T. Y. Hou and P. D. Lax. Dispersive approximations in fluid dynamics. Communications on Pure and Applied Mathemalics, 44:1-40, 199|.
[109] E. M. Murman and J. D. Cole. Calculation of plane steady transonic flows. AlAA Jourial, 9:||4-12|, 1971.

〔110] H. C. Yee, R. F. Warming, and A. Harten. Innplicit total variation diminishing (TVD) schemes for steady.state applications. Journal of Computational Physics, 57:327-360. 1985.
[111] P. D. Lax and B. Wendroff. Difference schemes for hyprobolic equations with high order of accuracy. Communicalions on Pure and Applied Mathematics, 17:381-398, 1964.
[112] A. Ilarten. From artificial viscosity to ENO schemes. In J. R. Buchler, editor, The Numerical Modelling of Nonlinear Stellar Pulsations, pages 239-262. 1990.
[113] R. D. Richtınyer. A survey of difference methods for non-steady gas dynamics. Technical Report NCAR Tech Note 63-2, NCAR. 1963.
[114] S. Z. Burstein. Finite.difference calculations for hydrodynamic fiows containing discontinuities. Journal of Computational Physics, 1:198-222, 1966.
[115] R. W. MacCormack. The effect of viscosity in hypervelocity impact cratering, 1969. AldA Paper 69-354.
[116] R. M. Beam and R. F. Warming. An implicit factored scheme for the compressible Navjer.Stokes equations. A/AA Journal, 16:393-402, 1978.
[117] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82:64-84, 1989.
[118] B. van Leer. A Choice of Difference Schemes for Ideal Compressible Flow. PhD thesis. University of Leiden, 1970.
[119] B. van Leer. Towards the ultimate conservative diffetence scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14:361-370, 1974.
[120] B. van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. Journal of Computational Physics, 23:276-299, 1977.
(121) P. Colella. Gilimm's method for gas dynamics. SIAM Journal on Scientific and Statistical Computing, 3:76-110, 1982.
[122] P. (:oiella and P. Woodward. The piecewise parabolic method (PPM) for gasdynamical simulations. Journal of Computational Physics, 54:174-201, 1984.
[123] P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM Journal on Scientific and Statistical Compuling, 6:104-117. 1985.
[12.4] 1'. Colella and II. M. Cilaz. Efficient solution algorithus for the Riemann problenn in real gases. Journal of Computational Physics, 58:264-289, 1985.
[125] J. I.. Steger and R. F'. Warming. Flux vector splitting of thr inviscid t dynath..'s equations with application to finite.difference methods. Journal of Compe etutional Physics, 40:263-293, 1931.
[126] B. van Leer. Flux-vector splitting for the Euler equation: Lectur. Nis:es in shysics. 170:507-512. 1981.
[127] B. Engquist and S. Osher. One.sided difference approximati : for wilinear conselvation laws. Mathematics of C'omplutation, 36:321-351 1981.
 ical Analysis, 25:294-318, 1988.
[129] A. Bourlioux, A. J. Majda, alal V. Royllarl. 1 moratiral alld rme:-iral structure for unstable onedillensional detonation, ilati lor. ial of $A_{\text {: }}$ rijed Mothematira. 51:303-343. 1991.
[130] A. Harten. High resolution schemes f. hy olu inseristian laws. Jourrial if Computational Physics, 19:357-393. |98:
[131] P. L. Roe. Generalized furmulation of TVI!ax. - יndroff scheines. Thinical Repurt

[132] P. K. Sweby. High.resolution schemes " ie t x limitors for hypertholic couservation

[133] S. F. Davis. A simplific I TVI) finite diffret ti. ithe via alticial viscosity .i/AM

[134] II. C. Yee. Construrtion .f explic:t and in olicut immetric TVD schemes alld their

[136] A. Harten al-: S. Oshet. Uniformly high.ordir arcu ie nencmeilatory schemes. 1. SIAM Journall on Vumerical dialysur, 24:279-309. In
[137] A. Harten. VO scheme: with subcell resolution. 'ourna: "omputational Pingoirs.

[138] A. G. (iolfres. C.. R. Mitche!l, and R. W. Walters. Practical asports uf simeth y high accur :t illethurls. In 30th Aeroapace Scrences Meeting ared Eihible, Renn. Vicvania. 1992. AlAA-92-005.4.
(139) L. J. Marlofsky, B. Engquist, and S. Osher. Triangle liabed ad plar ste:-ils for the inlution of hyperbelic conservation laws, 1991. to be pllblished
11.40] J. P. Horis, D. L. Book, and K Hain. Flux.corrected transport II: Genelalizations of lir method. dourial of Compitational Physirs, 18:2.18 283. 197.5.
[1.11] I. P. Boris and D. L. Book. Flux-rorrected transport III. Ininintal.error FC"I algorithurs. Journal of Computationill Physics, 20:357-431, 1976.
[142; J. P. Boris and D. L. Book. Solution of Continuity Equations by the Method of FluxCurrected Transport, volume 16. pages 85-129. Academic Press. 1976.
[143] S. T. \%alesak. High order "ZIP" differencing of collvective terills. Journal of Computational Physics, 40:497 508. 1981.
[1.44] R. Löhner, K. Morgan. J. Prrairr, alid M. Vahdati. Finite element flux.corrected transport (FEM.F('T) for the Fiuler and Navier-Stokes equations. International Journal for N'umerical Mcthods in Fluids, ï:1093-1109. 198 i.
[14.5] II. (.. Jee. A r!aus of high.resolution explicit and inıplicit shock-tapturing illethods. Trehnical Report NiASA TM-101088, NASA, 1989.
[1.16] A. Harten and C. Zwas. Self.adjusting hybrid schemes for sheck computation. Journal of iomputational Physics, 6:568-583, 1972.
\{1fi', B wall Leer, 'Ppuind-difference methods for aerodynamic problems governed by the Euler equations. In B. Engqnist et al., editor, Lectures in Applied Mathematics, volume 22. pages 327 336. 1985.
[1.18] D I. Williaınsolt and P. J. Rasch. Two-dimensional semi-Lagrangian transport with shape. preserving interpolation. Monthly Weather Review, 117:102-129, 1989.
!149! r. J. Hasch and D. L. Williamson. On shape-preserving interpolation and semiI.agrangian transport. SIA.M Jourial on Scientific and Statistical Compuling, 11:656• 6×7. 1990.
[1.50, J. 13. (ioodlilian and R. J. LeVeque. On the accuracy of stable schemes for 2 d scalar conservation Jaws. Mathematics of Computation, 45:15-21, 198.5.
!1:1: r. L. Roe. A basis for upwind differencing of the two-dimensional unsteady euler equations. In K. W. Morton and M. J. Baines, editors, Numericat Methods for Fluid Dynamirs I/. pages 5.5-83, 1986.
[1:2] R. J. DiPerna. Convergencr of approximate solutions to ronservation laws. Archives for Rational Mechanics and Allalysis. 82:27-70. 1983.
[1:3] R. J. DiPerna. Oscillatinns ill solutions to nonlineas diffreential equations. In (. Daferinos, J. I. Firickwul, U). Kididerlehrer, and M. Slellisnd, edinors. The IMA Volurnes. in , Hath matirs and its Applirations, volume 2. pages 2.3 34. Springer-Verlag. 1986.

 SIAMS Journai on Numi riral Analysis. $21 \% 17$ 235. 109,

 phting method for all flow speeds. Jonrinal of $1 \circ$ omputatiminal Phyas.s. 1.1:227 25.3. 1974.
[158] 13. vall Leer. Oil the relation betwern ! he upwind diffrrincilis ocheines of riciduact,
 5:1 20. 19K.1.
[1.99] (: D. van Albada, B. van l.eer, and W. W. Roberts. A comparative stuly of compulational mpthods in rusmic gas dynanics. Astronomy and Astrophysics. 10x:7f; x.t. 1! ! 2 .
 1ntific and Statistiral ('onputing. 9:1073-1084. 1988.
:[til] A. Harten. Prelillinary results on thr axtension of ENO schelles to two diminsional problems. In .ionlinear Hyperbolir Problems, pages 23-40, 1986.
[162] A. Harten. On high-order acrurate intorpolation fol non-oscillatory shock capturife, vchemes. Tecinical Report MR(* Tech. Rep 2829. U'niversity of Wisconsin, 198.5.
[163] F. B. Hildebrand. Introduction to Mathematical Analysis. Dover. 197.4.
(16.1; H. F.ngquist. P' Lötstedt, and B. Sjögıeen. Nonlinear filters for efficjent shock complitation. Wathe matics of Computation, 52:509 .537, 1989.
[16.5] F. Lafon and S. Osher. High order filtering methods for approximating byperbolic systems of conservation laws. Journal of C'omputational Physirs, 96:110-142. 1991.
[166] H. (:. Yre, (i. H. Klopfer, and J.-L. Montagne. Migh-resolution shoik.rapturing schemes forinviscid and viscous hvpersonic flows. Journal of Compulational Physics. xx:31 61. 1990.
[167] J. Y. Yang. Uniformly second-order accurate msentially nonoscillatory schems for the E.uler equaijurs. A AA Joumal, 28:2069-2076. 1990.
[168] A. Jameson and P. D. Lax. Conditions fus the construction of multi-point lotal variation diıninishing difference schemes. Applird Numerical Matheriatir.s. 2:3:3.5 34.5. loxg.
[169] (' W. Shu. TVB uniformly high-order schemes for conservation laws. Mathematics of (in, i!utation, 19:10.5-121, 1987.
[170] T. Ikeda aldd T. :iakagawia. On the Sll ASIIIFCT algorithm for the equation $\partial \rho / \partial t+$ $\partial(v(\rho)) / \partial x=0$. Wathematics of Computation, 33:1157-1169, 1979.
[171) ('. R. DeVore. Flilx-corrected transport techniques for Illultidinnensional compressible nagginctohydrodynamics. Juurial of Computational Physic s, 92:142-160, 1991.
[172] E. i (1;.t J. P. Bois. and 1). A. Jones. Hractive flow compulations on a connection Harhine. lit \because Mnfton, editor. Tirlfth Intermational Conference on Numerical Methods in filuid Iylinmi: . pages 318 322. 1990.
[173] B. E. McDonald. Flux-corrected pseudospectral method for scalar hyperbolic conser. vation laws. Juurnul of Computationol I'hysics, 82:413-428, 1989.
[17.1] P. Stcinle and R. Horrow. An insplicit flux-corrected transport algorithus. Journal of (umupitational Physjcs. 80:61 71. 1989.
[17.5] D. L. Book, pditor. Finite.Differenre Technigues for Vertorized Fluid Dynamic Calculations. Springer. Vetag. i98l
[176] P. L. Koe. Sonte culltrjbutions t., the inodelling of discontinuous flows. In B. Eingquist et al.. edjtur. Lectures in Applied L/athematics, volunte 22, pages 163-193. 198.5.
! 177 ! .I. I. (iotiljeb and C. P. T. Groth. Assessment of Rieinann solvers for unsteady one.dimensional inviscid fows oŕ perfect gases. Journal of Computational Phyaics, 78:1.3i-4.58. 1988.
[178] A. Harten. Short course: Sillierical inethods for hyperbolic conservation laws, 1986. 1('ASF. Iuternal Report, Dorulient Number :3.3.
!179] S Osher. ('onvergence of generalized MUSC'L schemes. S/AM Joumal on Numerical Analysis, 22:947-961. 198.5.
[1HO] S. Osher and S. Chakravarthy. High resolution schemes and the entropy condition. Sl.i.1f Journal on .iumerical Analysis, $21: 955$ 983, 1984.
[181) (..-1). Munz. On the \|unnerical dissipation of high resolution schemes for hyperbolic cosisestation laws. Journal of Computational Physics. 75:1.4 39. 1988.
[192!. 1. Harton and J. M. Hymafn. A selfadjusting grid for the comput.'ion it ak
 269. 1983.
[183] A. Harten. The artificial compression method for computation of shocks and contact djscoutumities: Ill. Self-adjusting hybrid schemes. Mathematics of Computation, 32:3f1.3-399. 1979.
[18.] B. Corkburn. Quasillonotone schemes for scalar conservation laws. Part I. SIAM Journal on Aumerical Analysis, 26:1;325 1341. 1989.
[ix.5] J. l'. Vila. High-order schemes and enıropy condition for nonlinear hyperbolic systems of conservation laws. Mathematics of C'omputation, 50:53-73. 1988.
[186] P. K. Sweby. Fluy limiters. In F'. Angrand. A. Dervicux, J. A. Desideri, and R. (ilowinski. editors. Numerical Methods for the Euler Equations of Fluid Dymamics, pages 18-65, 198.5.
[1×7] 1'. K. Sweby. High resolution TVD schemes using fllx limiters. In B. Engquist et al., editor. Lertures in Applied Mathematics, volume 22, pages 289-309, 1985.
[188] S. Osher and C..W. Shu. High-order essentially nonoscillatory schelles for HamiltonJacohj equations. SIA, I/ Journal on Numerical Analysis, 28:907-922, 1991.
[149] S. F. Davis. Simplified second-order Godunov::jpe methods. SIAM Jourial oll S'ci(Intijic and Statistionl Computing, 9:44.5 473. 1988.
[190, \%. Wang and B. F. Richards. High resolution schrines for steady flow computation. .Journal if (omputational Physirs, 97:53-72. 1991.
[191] A. Suresh and II. T. Huynh. Numesical experiments on a new class of nonoscillatory schenes. In 30th Acrospace Scierices Meeting and Eizhibit, Reno, Nevala, 1992. AlAA-92-0421.
[192] H. Yang. An artificial compression inethod for E.SO schemes: The slope modification method. Journal of Computational Physics, 89:125-160, 1990.
[193] D..K. Mao. A treatment of discontinuities in shock-capturing finite difference meth. ods. Journal of C'omputational Physics, 92:422-45.5. 1991.
[194] E. Tadmor. Convenient total variation diminishing conditions for noulinear difference schumes. SIAM Journal on Numerical Analysis, 25.1002-1014, 1988.
[195] W. A. Mulder. A note of the use of syminetric Gauss.Seidel for the steady upwind differenced E'uler equations. SIAM Journal on Scientific and Statistical Computing, 11:389-397. 1990.
[196! W. S. Mulde; and B. van Leer. Experimeats with implicit upwind methods for the ト, ier en , Hions. Journal of C'omputational Physics, 59:232-248, 1985.
a... . . (: (:hieng. Characteristic-based flux limiters of an essentially third. order flux-splitting method for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids. 13:287-307. 1991.
[198] W. A. Mulder. Multigrid relaxation for the Euler equations. Journal of Computa. fional Phyairs. 50:2:35-2.52. 1945.
[199] A. Ilarten and S. R. Chakravarthy. Multi-dimeusional ENO schemes for general geometries. Terhnical Report CAM Report 91-16, L'(:LA, 1991.
[200] II. Nessyahu and E. Tadiwor. Non-oscillatory central differencing for hyperbulic conservation laws. Journal of Computational Physics, 87:108-463. 1990.
[201] D. Dubojs and H. Prade. Fuzey Sets and Systens. Academic Press. 1980.
[202] R. L..P. Chang and T. Pavtidis. Applicatious of fuzzy sets in curve fitting. Fuzzy Sets and Systerns, 2:67-74, 1988.
[203] (..W. Shu, T. A. Lang, (i. Erlebacher, D. Whitaker, and S. Osher. High order ENO schelles applied to two- and three-dimensional compressible flow. Applied Numerical Mathematics. 9:45-71, 1992.
[204] W. Benz. Applications of smooth particle hylrodynathics ('SPH) to astropinysjeal problems. Computer Physics ('ommunications, 48:97-105, 1988.
[20.3] W. Benz. Smooth particle hydrodynamics: A review. III J. R. Buchler, editor, The .'vumerical Modellirg of Nonlincar Stellar Pulsations, pages 269-248. 1990.
[206] J. J. Monaghan. An introlluction to SPII. Computer Physics Communirations, 48:8996. 1988.
[207] W. A. Mulder. C.omplutation of quasi•steady gas flow in a spiral galaxy by means of a multigrid inethod. Astronmeng and Ast:ophysics, 1.56:3.54-380. 1946.
[208] A. Jalleson and W. Schmidt. Some recent developments in numerical n.ethods for transonir flows. Computer Methods in Applied Mechanics and Engineering, 51:467493. 198.5.
[209] A. Jameson. Computational transonics. Conmunico'ions on Pure and Applied Mathcmatirs, 11:507-549, 19x8.
[210] 3. Engquist and Q. Q. Huynh. Herative gradient. Newton type methods for steady shock computations. In S. Comez, J. P. Hennart, and R. A. Tapia, edjtors. Advances in Niumerical Partial Differential Equations and Optimizalion, pages 60 75. SIAM. 1991.
[211] T. W. Roberts. The behavior of finx difference splitting schemes near slowly moving shock waves. Journal of Compulational Physics. 90:141-160. 1990.
[212] D. Rotinan. Shock wave effects on a turbulent flow. Phys. Fl. A. 3:1792-1806. 1991.
[213] 1'. K. Woodward. Picewise-parabolic methods for systems of hyperbolic conservation laws in multiprocessing environments. Technical Report DOE/ER/2503.5 2. University of Minnesota, 1990.
[214] 1.-1. (hern and P. Colella. A conservative front tracking method for hyperbolic conservation laws. Technical Report UCRL.97200, Lawrence Livermore National Laboratory. 198i. subilited to the Journad if Combintational Fhysirs.
[215] J. B. 13ell, l'. Colella, and M. Welcome. Conservative front-tracking for inviscids counpressible tlow. In D. Kwak, editor. Procedinge of the A/4A 7enth Computational Fluid Dynamics Conference, pages 814-822. 1991. AlAA Paper 91-1.599.
[216] II. Paillere, K. G. Powell, and D. De Zeenw. A wave model.basell refinement crite. rioll for adaptive grid conipllation of collifressible flows. In soth icrospace Scicrices Meeling and Exhibut. Reno. Nevala, 1992. AlAA. 92 0.322.
[217] D. De Zeeuu and K. (; Yowell. Euler calculations of axi.ymmetric ur.der.expander jets by an alaptive.refillement method. In .30th Acrospace Seiences Meeting and Fíhibit, Reno, Tevada, 1992. AlAA 92 j.s2!
[218] Y..l.. Chialig. B. van Leef, and K. (i. Powell. Sillinlation of unsteady inviscid flow on an adapilively refined cartesian geid. In 50th Aerospare Scicices Mecting and Ézhibil. Keno. Sevala, l!92. AlAA 92 0.1.13.
[219] B. K. Eilgar and P. r. Woodward. Diffraction of a shock waye by a wedge: Comparison of l'I'M simmlations with experillellt. In y0th Aerospace Sciences Mecting and Eizhibil, Reno. Nevada. 1992. AldA 920696.
[220] R. D. O'Dell and R. F.'. Alconffe. Transport calculations for nuclear analyses: Theory and guidelines for effective use of transport codes. Technical Report LA-10983-MS. Los Alamos National l.aboratory, 1987.
[221] E. E. Lewis and Jr. W. F. Miller. Computational Methods of Neutron Transport. Wiley-Interscience. 19×1.
[222] B. Cockburn. S.•Y. Lin, and (C..W. Shu. TVB Runge-Kutta Incal projection discontinuous (ialerkin finite element method for conservation laws Ill: One-dimensional systems. Journal of Computational Physirs, 84:90-1|3. 1989.
[223] (;. Patnaik, R K. (iuirguis. J. P. Boris, and E. S. Oran. A barely implicit correction for flux-corrected transport. Journal of Computational Physics, 71:1-20, 1987.
[224] II. Akima. A new method of interpolation and smooth curve fitting based on local procedures. Journal of the A('M. 17:589-6C2. 1970.
[225] H. Akima. A nethod of bivariate interpolation and smooth surface fitting based on local procedures. Communications of the ACM, 17:18-31, 1974.
[226] II. Akima. A method of bivariate interpolation and smooth surface filting for irreg. ularly distributed data puints. ACM Transactions on Mathematical Softuare, 4:148. 1.59. 1978.
[227] H. Akima. On estimating pastial derivatives for bivariate interpolation of scattered data. Kocky Mountain Journal of Mathematics, 14:41-52, 1984.
[228] P. L. Roe. Discrete models for the numerical analysis of time-dependent multidimen.

[229] H. Öksüzoğlu. State vector splitting for the Euler equations of gasdynamics. In S0th Aemspace Sciences Mecting and Eizhibil, Reno, Nevarla, 1992. AlAA-92-0326.
[230] S. Osher and L. I. Rudin. Feature oriented itnage enhanceinent using shock filters. SI/A M Journal on Numerical Analysis, 27:919-940, 1990.
[231] B. Einfeldt. C. D. Mınz, I'. L. Roe, and B. Sjögreen. On (iodunov lype methods near low densities. Jourial of Computational Physics, 92:273-295, 1991.
[232] P. L. Roe. Modern nulierical unethods applicable to stellar pulsation. In J. R. Buchler, editor. The Numerical Modelling of Nonlinear Stellar Pulsations, pages 183-213, 1990.
[233] 13. van l.eer. Towards the ultimate conservative difference schelle. III. Upstreamrente: ${ }^{\text {d }}$ finite difference schelles for ideal collipressible fluw. Jourial of Compulational Physics, 23:263-27.9, 1977.
[23-1] 1'. (olella. Multidimensional npwind methods for hyperbolic conservation laws. Journal of Computational Physirs, 87:171 200. 1990.
[235] H. Deconinck, R. L. Roc, alld K. Strujes. A multidimeusional gemeralization of Roe's flux difference splitter for the Eiller equations. In II. A. Dwyer, editor. Proceedings of the fourth Interiational Synmosium on C'omputational Fluid Iynamics, pages 282227. 1991.
[236] (:. Runlisey, B. van Leer, and P. L. Kor. Effect of a inulti-limensional flux function on the monotonicity of Euler and Navier-Stokes computations. In D. Kwak, editor, Proccedings of the AIAA Tenth Compulational filuid Dynamics Cor.ference, pages 32 16. 1991. AlAA Paper 91-1530.
[237] D. Kontinos and D. McRae. An explicit, rotated upwind algorithm for the solution of the Euler/Navier.Stokes equations. In D. Kwak, editor. Proceedings of the A/AA Tenth Computational F'luid Dynamics Conference, pages 47-59. 1991. AlAA Paper 911.531.
[238] J. K. Dukowicz and J. W. Kodis. Accurate conservative remapping (rezoning) for arbitrary l.agrangian-Fillerian computations. SIA M Journal on Scientific and Statistical Computing, x:305 321, 1987.
[239] 1.. Frzoni and 13. Stouffet. A class of implicit upwind schemes for Euler simulations with unstructured ineshes. Journal of Computational Physics, 84:174-296. 1989.
[2-10] (i. Strang. On the construction and comparison of difference schemes. S/AM Journal on Numerical Analysis, 5:506-517, 1968.
[241] D. Ciottlirb. Strang-typr diference schemes for multidimensional problerns. SIAM Journal on Numerical Analynin, 9:650-660, 1972.
[242] P. K. Smolarkiewicz. A fully multidimensional positive definite advection transport algorithm with small implirit diffusion. Journal of Computational Physics, 54:32535,2 . 19.41
[243] P. L. Roe. Discontinuous solution to hyperbolic systems under operator splitting. Num. Meth. Parl. Diff. Eq., 7:277-297, 1991.

Curriculum Vita

Willia!: Jackson Rider was born in Spokane, Waslsington, September 5, 1963 to Carol Winslett Rider and Frank Williant Rider. After speudiag mine months in Spokalle, he moved to Oberanmmergau Germany where his father was stationed in the United States Army. After three ycars in Cermany, he returned to the Uailed States with silort stays in El Paso, 'lexas and Fort Sill, Oklahoma illoved back to Spokane while his father spent a tour of duty in Vietnam. Upon his father's return to the United States, the Author noved back to Fort Sill (Lawtoll: where l.: spent the next six years attending elementary school. In 1975, his family noved to Germany cnce more. living two years in Aschaffenburg and Stuttgart each. After their return to the United States, the Author's family to Albuquergure, New Mexico where his father retired fron the Army. The Author graduated from Eldorado High School in 1982.

He curolled at the University of New Mexico in the Fall of 1982 . On July 27, 1985. the Anthor warried the former Felicia Anne Forbes. In the Spring of 1987, the Author graduated with a bachelor of scirnce degice in nurlear engiuecring. He begaul his graduate work imuseliately following at the University of New Mexicu. He completed his master's degree in the Summer of 1989. The Author's master thesis was eutitled. "Paranuetric and Transient Analyses of the SP-100 System."

At that time the Author took a job at Los Alamos National Laboratory in the Reactor Design and Analysis Group, N-12. He has worked on a number of projects iucluding: two-phase thermal-hydraulic code developinent. code development and analysis for gas-conled terrestrial and extraterrestrial reactor systerns, accelerator transnutation of waste, high-order solute tracking in reactor thermal-hydraulics and as well as other endeavors. He has presented papers at several conferences in the past several years. The Author has published a paper in the AIAA Journal of Propulsion and Power, and submitted a number of papers to various joursals for review. The Author is a member of the American Institute for Aeronautics and Artronautics (AIAA) and the Society for Industrial and Applied Mathematics (SIAM).

How This Document Was Prepared

This docunient was prepared on a SPARCStation2 runuing SunOS 4.1: using ${ }^{L} T_{E} X$ version 2.09 with $T_{E X}$ version 3.0.0. The BIBTEX bibliography database version 0.99 c was used to format the references. DVILASER/PS Sun Version 6.2 .1 was used to produce the postscript output file, which excreds 333 negabytes in size.

The line drawings were drawu on a Maciutosh Ilex using a combination of Canvas version 2.0 and Aldus Freeliand version 2.02 . The two dinnensioual !!lots were done with Kaleidagraph version 2.02 . The threr. dimensional plots of the slope limiters were done with Mathematica version I.2. The surfare and contour plots in Cliapter \mathbf{F} were drawn with CA-DISSPLA subrontines ou a X-MP4/I6 and transferred to a SPARCStation2 with the utility PPS as postscript files. All the Macintosin files were converted to postscript by Aldus Freehand version 2.02.

All of the computers mentioned above are located at Los Alamos National Laboratory.

[^0]:

 $\because 1 \cdot$

[^1]: IThe QUICK scheme uses a third-order (spatially) upwind algorithm based on a finite difierence stencil containing the one downwind point and two upwind points. It can also be derived by meana of innadfatir protynominals

[^2]:

[^3]: ${ }^{2}$ The cerms dififuion and dimipation af. used interchangeably in the text. They should tie treated an synonyilas

[^4]: ${ }^{3}$ The term seencil refers to the giodpminte umed by acherme.

[^5]: ${ }^{1}$ This is in line with the remasks found in [80]. There it was ntated that high resolution mecondorder (or higher) methods were 15 to 30 times higher in resolution than Godunor's method for entar: fisenntinuitios

[^6]: ${ }^{2}$ Defined rigorously, monotane convection implies that the finite difference scheme is first order [73]. Also some work shows that as currently defined no scheme can be TVD in more than one dimension [150].

[^7]:

[^8]: 'The use of adaplive unstructured grido has been a key part of the succeat of this work.

[^9]: Ifinorrtially of in a smonthed definition of abolute value. The fusetion is ideatical to the abeolute

[^10]:

[^11]: The pilmilive variables ace the denaity. p. the velocity. w. the intepnal rnopky. e. and the promupr. p.

[^12]: ${ }^{2}$ This is a second-order Godunov method using Roe's superbee [176] flux limiter to enhance the resolution of contact disconsinuities and high-resolution limiters for the genuinely nonlinear firlds

[^13]:

[^14]: TThe ane of Stiang splateing is n-: fircrsary with first-order methods, but is really geeded for

