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TURBULENCE TRANSPORT EQUATIONS FOR VARIABLE-13ENSITY

TURBULENCE AND THEIR RELATIONSHIP TO TWO-FIELD MODELS

by

Didier Besnard, IWmciti H. Harlow, Rick AM.Rauenzahn, and Charles Ze.mach

ABSTRACT
This study :’.ves an updated account of our current ability to

describe multl~naterial compressible tlwbulent flows by means of
a one-point transport model. Evolution equations are developed
for a number of second-order correlations of turbulent data, and
approximations of the gradient type are applied to additional
correlations to close the system of equations. The principal fields
of interest are the one-point Reynolds tensor for variable-density
flow, the turbulent energy dissipation rate, and correlations for
density-velocity and density-density fluctuations. This single-
field description of turbulent flows is compared in some detail
to two-field flow equations for nonturbulent, highly dispersed flow
with separate variables for each field. This comparison suggests
means for improved modeling of some correlations not subjected
to evolution equations.

1. INTRODUCTION

Turbulence in complex, high-sped, high-lleynolds number flows has been of wide

Laboratory interest for many years. PrcxIictivc capabilities in the Inertial Confinement

fision (ICF) and certain Strategic Defense Initiative (SDI) programs have relied crucially

on modeling the effects of material mixing and enhanced momentum and thermal transport
.

brought about by turbulence. The Laboratory’s ability to model turbulence has improved

significantly with the advent of high-speed computers and increased theoretical knowledge

about the proper manner of modeling the ensemble-averaged Navier Stohs equations. Our

recent goals have focused on understanding the theoretical foundations of mriablc-deusity

turbulence and mixing and the implementations of sirnplc models into misting computer
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cwks, like CAVEAT [1]. This manuscript will outline our current state of expertise in

nmdelilig variable-density turl IS4mCCSand propose some simpler models for everyday use

in lakI”iltOry cd%.

~frc itrc ~)rilllliril}~interested iI1 (lcscri~,ing multimaterial compressible turbulent flow;

the diffcmnt materials might not ho initiallj’ lllixul, which means that the mixing proces..

itself must ht. modeled aY well. The pot(mtial applications of such a description range

fro]l] lwlcauic eruptions, where a pllmw of hot air containing ash and rocks mixes with

surrounding cold air, to consideration of liwcr-drit’cn ICF, where the mixing of the outer

shell and the inner fuel may lead to decreased neutron yield. In the first case, the

mixing is predominantly due to highljo noldinvar stages of Kelvin-Hchnholtz instability at

the interface between hot and cold fluitLs; in t}le second instance, R.ichtmeyer-Meshkov

and Rayleigh-Taylor instabilities can play a dominant role. Other temperature and

pressure regimes can be studied through laboratory experiments, such as the shock-

tube experiments of Sturtevant [2], Houas et aL [3), and Anclronov et al. [4]; in these

experiments, a thin ( 1 mm or less) membrane initially separating two test gases of dfierent

densities is shattered by an incident shock wave. The details of membrane destruction

are poorly characterized, however, hut subsequer,: shocks reflected from the end wall

interact with the mixing zone established by initial shock passage to greatly increase the

growth rate of the mixed region. In addition, the AWE in Great Britain haa performed

experiments by accelerating a tank containing two incompressiblematerials initially in a

stable cw:~guratic-! do,l;nwardsat about 40 times the acceleration due to gravity [5].

Ail of these application,= arc time-unsteady flows involving two or mom materials.

Turbulence models that attempt to analyze and characterize these flows need to pay

attention to issues of initialization of turbulence field variables, which is a serious challenge

for most usual turbulence theories. Ideally, the mo&l should mimic the linear phase of

instability as well as the fully turbulent late-stage mixing.

have ken taken. One scheme postulates the existence

2
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[6)7] while the other uses the more usual ReynoMs decomposition of the Navier-Stokes

equations for a single field with potentially large density variations [8-12]. The different

approaches are compatible and, as wc shall show here, an equivalence between schemes

can be demonstrated in some interesting cases.

I%om our single-field modeling, wc produced a report a fcw years ago that used

standard turbulence closures [12], and the first part of this work will revisit those equations,

modifying them at some points and looki~g mere closely at the assumptions of closure. In

that earlier effort, we realized that the Reynolds stress models must consistently include

evolution equations for all relevant second-order correlations, in order to describe flows of

this nature adequately. Since then, t,he formal parallels between tw~field formulations

and the unmodeled turbulence equations were exposed by us in an unpublished and

unfinished working paper, and have more recently been completed by Lance Collins at

Pem State. We will be reviewing these results near the end of this paper. First, however,

in Section 3, we derive the turbulence equations in a standard fashion by dividing the

flow variables into mean and fluctuating parts. ‘X’heresulting equations are clod by

postulating, with sorni: (admittedly incomplete) physical justifications, apixopriate models

for unknown higher moments of the fluctuating variables. Because instability-driven

mixing is of particular interest to laboratory programs, we then specialize the equations in

Section 4 to the cases of Rayleigh-Taylor and Keivin-Helniholtz instabilities and compare

the behavior of our equations to other published work. Finally, in Section 5 we show

an interesting correspondence between our unmodeled equations and the twdield flow

equations describing nonturbulent highly-dispersed flow with separate field variables for

twdield flmv. We believe that new directions in variable-density turbulence modeling will

arise from considering this correspondence.
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2. DESCRIPTION OF TURBULENT FLOW OF
FLUIDS

2.1. Formulation

‘lhrbulcntflowsdevelop wheneverincipient instabilities,

COMPRESSIBLE

drivenby the advection terms

in the flow dynamics, arc not dissipated q~tickly enough by the action of fluid viscosity. As

a result, fully developed turbulence is often characterized by the interactions of random,

nonlinear modes (jf motion, ty!)ically swirling, overlapping eddies of fluid, Despite the

appearance of compIetc disorder, turbulent flows often exhibit rather universal average

behavior. Bou.dary layers, jets, and wakes all have been studied extensively in the past

and, while the details of each experiment are not repeatable, even by a single researcher,

the observablcs in each set of experiments have been well correlated and used to great

advantage by engineers and scientists worldwide. The basic notion is that while turbulence

cannot be analyzed in e-/ery detail, either by computer or by experiment, enough can be

extracted from physical or nurm.ical experiments to deduce the e&ects of turbulence on

what we routinely observe in the typical design of aircraft, mixing vessels, heat exchangers,

and piping systems.

set

As

by

The poirit of departure for nearly all engineering analysis of turbu!cnt flows is the

of Navier-Stokes equations for compressible, variable-density flow of a single m~terial.

convenience dictatcs$ we denote vectors and tensors in Cartesian coordinate form or

bold letters. (The tensor symbols will be Latin capitals or Greek.) The equations for

density, velocity, and internal energy are:



where ~ij = _P6ij + ~,), Gencrnl]y, the pr~sg{ii~P is n function of spccics nm.wfractions

Ci, m well as p and 1. The viscous stress ~ is takcn M

(

a, A, - ;6 ~ ~
T,j

)= 1’ ~ + z 3 “ “ “
(4)

The molecular viscosity p and the thermal conductivity K arc taken as constmts for this

analysis.

For the mass fraction, wc apply

coefficient D;

Typically, wc sep:irtiw turbukmt flow

.

Fick’s law of diffusion with a constant diffusion

(pIIC,) = V . (pDVci)

properties into mean

. (5)

parts, such ,as the turlmlcnt

velocity profiic in a pipe, which for an ixmmprcssiide fluid is a radial function only. and

fluc~:lating parts that account for whly motions that are not reproducible or describable in

detail. The details of these fluctuations iuc dctcrminwl in a strict sense by cxtrmncly fixic-

scalc irregularities in the boundary and initial conditions of the cxpcrinwnt, but IIIC’iill-floW

proper~~es are assumed to bc deterministic and rcprot.iuciblc.

We denote average properties bv ovcrbars and fluctuations by primes. The appropri~tte

average is taken over many mcmlwrs of an ensemble of expwimcnts that arc indistinguish-

able microscopically, but may differ ill microscopic detail in no controllable manner. Thus,

u = ii + u’, P = F + P’, p = ~ + p’, etc.

Two important measures of a turbulent regime are A“(x, t), the turbulent kinetic

energy per unit mass, and C(X,t), th~: rate of dissipation of turbulent kinetic energy pcr

unit mass (i.e., irrcversihlc conversion into internal energy). These arc defined explicitly

below by ensemble averages. Onc identifies a turbulent velocity scale A“1t2, a turbulent

time scdc t~urb= K/c, and a turbulent Iengyh scale Lt.,b = J@iz/c. These maybe thought

to characterize the motion, period, and size of the dominant turbulent eddies. They may

be compared to scales for the mean flow: c. = ~uxid speed, tmeam~ [@/8~jl-’ , ~~

Lmean = scale for variation in physical space of mean-flow properties.



In conventional one-point nnaly.scs of t:tjnstnilt-tlcllsity flowY, the Wwnpthl

Ltu,b/Lnlean~< 1 is commonly mmh:. explicitly or implicitly, and fiicilitiit.~~ the model-

ing of the ~~rcs~.lrc-k-~?~ocitycorrelation p’du~/&l. Realistically, LtUrt,and L~can may have

comparable size, though onc cxljccts Lturt,/L,,,,.a,,slot to ~*xwcd unity; f)thfrwisr, thr !ogic

of separation of variables into mcvui a]t,l fltwt mtting parts is sacrificed.

The itssumption t~u,~/tn,cac << 1 k iih) frc(jucntly Il]itdc. It sllggcst~, i~ Il(JtCdby

Lumlcy [8], that the distribution of t~u-}~ldcnccmodes ammg cliff(wnt kmgth sc;ilm hM

time to achicvc approxirtmtc spcccral cqllilibriurn, and this undt’rlics the logic of onc-

point modeling. It is an essential assumption in the ikrgll!nf’l]tfor closures oi otherwise

undctu-mined correlations. In the case of colist~t]~t-~lcnsity fluids, the paradigm for such

closures is (with account for synnnctr}” if .l” hits fii(:t~rs of u’):

.

Uy’ = (constant) : - $Y . (6)
II

Hereafter, wc refer to this as a gradient chnmc or gradiexlt [~~}j>r(>xixilati(~:i.Rcalisticidly,

flurb need not be small compared with t~~t~ in regimes of rapid time nnd space variation,

such as shock-driven flows or intcrfaciitl instability flows. Thcrcforct it is prcfcrablc to

construct evolution equations for what appear to be the more important sccomi-order

correlations. We cannot avoid gradient closuresfor some higher-or(icrcorrelationscntirc!y.

By limiting their usc to terms of prm.uncd secondary importance, we hope to capture the

main physical consequences of turbulence in evolution equations.

A third inequality assumed for the purposes of this paper is that the sound transit

ti,meLrnc~a/csacross typical mean-flowhmgthscales be muchlessthan the dominant-eddy

turnover time, which translates into

m L,u,bw
— < Lmean<1 “c,

That is, the turbulent velocity scale is subsonic. Then the fluctuating velocity field may

be taken as divergenceless; V “u’

heat conduction or mass Wfusion

6

= O. Wc qualify this by allowing nonzero V ● u’ when

between species is important; see Section 3.4.



Fourth, we assume that the turbulent Reynolds number of the system, Mined by

(Re),Urb = pA”2/(pc), be large compared to unity. This condition sepamtcs the dissipiltiml

scale from the dominant-eddy scales, allowing the neglect of viscous diffusion and viscous

-tresses relative to turbulent diffusion and pressure effects, respectively; and, as in the

constant density case, is a requirement for the viability of a one-point model in which

the dimensionless parameters of the model are hoped to have constant values valid for a

general class of phenomena,

2.2. Mass-Weighted Averages and Mean Flow Equations

For my fluid variable .Y, the sepamtion X = ~ + X’ (Reynolds decomposition) i~

based on the uniformly-weightedensemble average~. The separation X = X+X” (Favrc

decomposition) is based on the mass-weightedensemble average .~, defined as

x = pfi .

Such averages, and especially the mass-averaged fluid velocity, appear naturally in

conservation relations, as is the case in multispecies flow equations [13].

We shall use the folknvingrelations among these constructs repeatedly:

F=p=o,

~ =X7 +XT ,

p = ?Zv+px”Y” ,

XT=m= m=,
3F=X- x=-~/p .

The M of important averages begins with P and the mass-weighted

Then come the density-velocity correlation A and the associated velocity a:

A = ~ . ~ ; a . A~ . -~, (7)

7



Note that A is the rwt umss flux relntivc to ~, the unweightcd average velocity, and that

ii.= ii + A/~ = ii+ a , (8)

u“ = u’ - Alp = u’ -a. (9)

Next are the generalized Reynolds stress tensor ‘Rand the turbulent flux of internal energy

s:

Si= pIttUtt = ~~ - ~i~ +.~lIlu~I i“ (11)

Ensemble averages of the flow equations (1), (2), (3), and (5) now yield the mean-flow

With V ● u’ = O,as assumed above, the P’V” u’ term drops, and

(12)

(13)

(14)

(15)

8
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which is observed to be nonncgetivc. In the more general case, wc can write

whit]: is still nonnegative.

2.3. Energy and Energy Dissipation

The inertial and advection terms of airerngcd evolution equations are best cxprcsscd

by mass-weighted averages, tmcausc physical con..ervation applies to aggregates of mass,

momentum, energy, etc. The strcsws, lacking factors of p, me probably best described in

terms of unwcightcd averages.

“TheFavrt technique points to a conception that may usefully guide modeling. The

Favrc velocity o is a mean variable that includes, in

velocity fluctuation correlated with density fluctuation.

velocity fluctuation, but only the part uncorrclatml with

and higher functions of velocity fluctuation, whether in

addition to =, the part of the

Then u“ is not the whole of the

density; ~ = O. How quadratic

unwcighted or in mass averages,

contribute to density-correlatedor uncorrelatcdeffects is not, in general, easy to sort out.

For the ensemble averageof total fluid kinetic energy density, wc have

+puz = ; 7(fi)2 + 4 P(U”)2“

Hwe regard # ~(ii)2 as the encr~ density due to the combined mean and density-correlated

turbulent motion, then #p(u”)z = ~ trace R,, measures the residual turbulent motion. The

generalizations of K, the turbulent energy per unit mass, and c, the dissipation rate for

K, as originally defined for constant-density one-phase flow, are now chosen to he

~K = ~ trace Rij , (16)

@ = T:m&l~/&m . (17)

The first definition motivates the second, for @ as defined hxe represents the irreversible

conversion of turbulent kinetic energy into intcrnai energy in the ~~ evolution equation

9



nnd is also (one-half of) the decay term

given in Section 3.

Also suggestive are the equations

in the trace of the llij evolution equtiion, to be

-
pu:u;

= ~u;Iu; +. ~aiaj 9

~— . = U~U~ + (Jlaj.
~>

These are relations between nonnegative definite tensors with nonnegative diagonal

elements. They indicate that pu~u; and u:’u~ carry r.iore of the fiect of the density -

correlated turbulent motion than do pu~u~ and ~, respectively.

2.4. Turbulence Variables of the Present Theory (Summary)

The flow equations for the mean variables ~, ii, ~, ~nd ii introduce second-order

averages, and equations for the latter introduce further correlations, A judgment rr~tit be

made as to which turbulent variables are to be subjected to evolution equations and which

areto be regardedas secondaryand modeled by constraint equations, relatkg them to the

more primary data at a common time.

In the present paper, we prescribe evolution equations for R, S, a, or equivalently

A = ~, and nlso fora density self-correlation bdefined by

()b= ~ ‘.-pl 1

Alternatively, because -#(l/p)’ = +(P - p)/p,

b=j5~- 1.

5= -p~(~-~] .m,
A third alternative,

(18)

(19)

makes clear that b is nonnegative and that the approximation b a ~/(~)2 would apply

if p’ < ~. We also encounter w = ~fi in the evolution quation for S andwritean

evolution equation for w but without modeling it in dctaiL

10



.4., a simplified alternative to the R equations, we can set forth K and c equations as

generalizations of the Ji”-c model for incompressible flow, In these, the anisotropic part of

R is replaced by its gradient approximation;

(20)

~i~= Cj,~A”2/e ; CP= constant .

The a equation requires considcratiorl of ~. We shrdl finesse this by expressing ~~

in terms of primary (lilf;: Id a triple correlation, then applying a gradient approximation

to the latter:

..

( i?a
‘(+ R,n~

tkll‘plu;u>= + Rj. ~
)

; CD.= constant .
n n

(21)

(22)

%ml($of the gradient rl~ ,INCSSinvolved in the next section have a rationale based on

C(lll :,!. ~ati[jn of tcrrmslik~‘, to bc dominated in evolution equations for the next higher-

ordtcri“~luationsas noted in S( ction 3.2.

2.5. Rf~alizability

Realizability, the notion applied by Schumann to constant-density flows, also applies

to variable-density flows. If vi , 1 ~ i ~ JV, is any sequence of fluid variables, and

ei , 1 ~ i ~ N, is any co~t~t vector, then ~eiui)2 <0 and hence

t38t?j~ >0.
.

Then ~ is a nonnegative definite tensor, and all of its principalminorshave nonnegative

determinants. Rom this, we can infer that

———— ——



—.

and

~a, ,- (m)’” (%)”2 ,= ~ = (p’/pw) #2uU <

whence, applying the third definition of Lin the previcus section,

Gradient approximations arc

checked in practical applications.

a: < bRj ~/~ .

not always consistent with realizability ~d should be

3. TURBULENCE EQUATION’S

A summary of the evolution equations to be developed for the psimary turbulence

variables is given in Section 3.9.

3.1. Preliminaries

We note that, in view of (1), (12),

Subtracting (pfi) times Eq. 13 from Eq. 2, and utilizing the above, we get a useful form

for the u“ equation:

(23)

A second useful form (set ii = Ui – u:’in the thirdtcm of (23)) js

As a notational device aimed at conciseness without ks of clarity, we write

~’ (product of tensors)

12



to denote a symmetrizing proccdurc with respect to the free indices in -“, ~d productf.,

of tensors. Spccific:\lly, ~’ is the instruction, first, to replace each c o tensors by its

symmetric part with respect to ity frcr indices, and second, to supplement the rcsu)t by

adding to it the minimal number of like terms, with frcx

find result symmetric. One could also make the notation

to show that there are N permutations in the final rcmdt.

indices pcmnuted, to make the

more complete by writing ~‘

For example,

= ~~ (~icnjk+ BiCnkj+ BjCn~i+ ~jc.:k + Bkc.ij + Dkc.ji) ,
n

and, if ai = bi + c,,

3 3,

ai~j~k = bibjbk + ~’b8bjck + ~ b8cjck + Cicjck .

Note that ~’ ~ (B,cnjk) differs from ~ ~’ (Bicnjk) beCaUSC t~ IILUCX is to ~

symmetrized over four free indices.

Now let the definition of the R tensor bc gcncraliwxl to

Rijk.ea~ = ~u;u~u: . . . 14; *

Wc observe that

More generally, if .Y,, .Yz, . . . .Y~ arc any fluid variables, then

+9
‘~”~l~z . . .Xm.+ az.

3.2. Equation for the Generalized Reynolds Stress

To obtain an evolution equation for R, multiply (23) by u~, apply ~’, and take the

ensemble average. .Apply ~ = Oand

13



and integrate the last term by parts, Then

——a.

The terms requiring modeling arc, in

corrclntions Rn,,, (2) stress-velocity

order of occurrence in

correlations occurring

t)

this equation, (1) the triple

in a transport term, (3) a

correlation of pressure and velocity grndicnt that is triwclcss for the awmmcd case V.U’ = O,

and (4) the avcrnge of (&~/ihn) r~,,, whose tram rupre.scnts the dissipation of turbulent

energy. and whose residual, tr~icclww part may be grouped with the tmrn (3). Insight

provided by a spectral approach to constant-density flow suggests, by analogy to the

present ciw, that the term (4) will bc diago:ml for Iargc turbuknt Reynolds number,

that is, for large pA”2/(pc); scc %ction VA of [14].

We now exhibit a rationale for a gradient approximation of the &sj t-. Multiply

(23) by v~u#, apply ~’, and take the en~mble average. The l~t side Of the r~~ting

equation is

.

Set
3

This is, in the first instance, simply a definition of the fourth-ordercumtdant R’. But

if p were constant and the velocity fluctuations followed a gaussian random distribution

law, then R’ would vanish. Let us disregard R’ in the present case. Then the left side

simplfies to

&i&
}

Rin~(Rjk/~) + %nz ●

n

14



Next, wc suppose that in the absenceof the source term ~“ J?ln& (Rjk/p), the turbulent

strcsws On IIw rig}~t-h~~d si[lc of !IIC R,jk equation would drive ~ljk to zero on the

turbulent tirnc scale ttu,h, and let this rffcct }M modeled by a decay term proportional

to (~/J{)Rijk. If the illcrt~a] terms and any transport terms implicit in the stresses change

on a time scale of t~e.~, and t~ean > ~l”,b, then WCmay have an approximateequilibrium

set up, expressed by

This tnkrs rnrc t)f tiw modeling of #x J?tllj. If there were residual effects correlated with

dmsity”, they might be simtdatcd bj” terms proportional to ~’ & [~aRnj) ~d rqniring

an additionrtl dimensionless phcx~o[:~crlol(~gicalconstant; we do not ;nclude such terms ili

the present theory.

Next, wc discnrd the transport terms of the form

a [(— U; linjP’ - TJ))+ 14;(&n:P’– T;,)
Oxn 1

This follows tht procmhmt established for trcatmcrit of consttmt-density one-phase flow,

though the justi6cation remains obscure,

~cxt, wv ccmsidm the pressure-vekwity gradient correlations. Again. wr make

cxtcnsivc usc of ideas of other researchers. For const;mt-dcnsjl \ f?-WA,cmc UWA1: soltes

a Poi.sscm equation for P’, forms the correlations of interest, and notices that there are

two types of terms involved: those specified by a product of turbulence variables ~d thaw

with explicit factors of mean vchwity gradient. For variable-dentity flows, even if V“U’ = O

is assumed, the analog of the Poisson equation is more complex:

and more difficult to scdvc for P’. WCadopt a simpler approach and model the pressurc-

vtdocity gradient correlations in coxnplctcanalogy to the constant-density case. For the

“slow” part, wc set

(23)

15
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In principle. wc should also rfmsidm a third contribution arising from

a ami the mmm pressure gradivnt. This model would presumably look

(26)

the interadions of

like

(27)

thmlgh wc IMVCnot explored this possibility in detail in our sirnlllntions.

Agitil~ procmding fronl cxprricnn’ witli consttt:lt-density mo[icls, wc awmrncit to be

a(iequatclj” rnodt”h.{1by

In thr iimit of high Reynolds number, c is cxpt~ctedto be independent of visco: ‘1 .,

trmwlcsspart is either zero or is lumped with the pressure-velocity gradient correlations

[8].

3.3. Equation for the Density-Velocity Correlation

We work with a = Afi as our primary viiriablc,insted of A. Because a = -~, we

average (24), and then multiply by ji Observe that with V - u’ = O,

and with 6 = ~ ~ -1,

Hence

o ()(I ‘ /lP’ a ,
—~ + ~ -

-bazn P )Tz: - 37” “
(28)

16



Again, wc two prepared to ignore the viscous stress tarns when compared to pressure

d?ccts at high Rt.ynolcls nurnb( r. The contributions from ~ and R from (2$) can bc

writtcu as

The modeled form of p%;,u: was givm in (22). Finally, the density-pressure correlation

iri the a equation is split into two parts: that which responds to mean flow gradients and

that which involves only turbulence, The latter (“slow” part) becomes a decay term

%: = c,+t ,

whik! the r~~Jid part introduces a mean velocity gradient

%; = Czap(a ● V)ii.

(30)

term that is modeled as

(31)

Also, as in the R cquatiort, tcrrnscontaining the mean pressure gradient could emerge

from the pressure-(icnsitycorrelation in a manner something like

3.4

this h~s not been utilized in the current

specification of the a equation.

implementations of the modeL This completes

. Equation for the Modiki Density Self-Correlation

FYomthe mass equation, one may deduce an equation for the spedc volume, u = l/p,

and hence for ~:

Rom this, the equation for 5 = ~Z -1 follows:

(33)
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There nrc two l~xprcssimw to he modvlcd. WV apply n gradient closurr to tlw first and

;Lppl)”( 19):

(-)

1’ k R,,, 0
()

l+b
11:= -C’,,b..—— — (35)

P t ~ Lh”,, F“

The i,tst term provides for drcny of b and req~lircs sonw c;wc. As jwviously stated in this

report, ~~warc comidcring only sub.wmic turbulrncc, Thrrcforc, V “u’ is nonzcro only in

thr Iwcwvu:c of }lCat t-ducth] and/or mass diffusion. For Pxamplc, when two species

with different lni~r~scopic dl:nsitics arr intcrdiffusi]ig with a ({nwtant diifusion coefficient

D at ,nncquilihrium pressure anti tlwlpt!ridur(”, then p is 8 function of concentration only

and

v .u -’7.
()

D
‘~}) .

P

()A‘V;=-w-’cw’~,
IILthe iimit of

wc mothd this

dissi:>ation c is

high Pcclct number for mass transfer. which is

decrty terxn for b to bc indepcmhmt of D, iil the sarnc way t!iat energy

independent of t,iscosity in the limit of }tigh ltti~.nolds number. Thus

(37)

We WACtwo circumstances in which this form is not approprktc. First, if D iu Iargc

(small Pcclvt number), the rate of &decay will depend directly on D, and not merely on

turbukmcc variakdcs. Second, if D is strictly zero, e.g., for a system of two immiscible

incompressible fluids, then V. u’ = Oand 6 would not decay. Questio~ related to b &cay

need further study and are not resolved hem

3.5. Equation for the ‘. I!tmbulentHeat Flux

From the internal energy equathm, the fluctuating momentum equation for u“, and

the mass equation, it is straightforward to derive an equation, in ~.hclimit of incomprcs~ible

turbulence, for the turbulent flux of internal energy ~ = S:

18



(38)

where w = p/~ = –~e \VC will :lot ;itt~-lllpt to propo.sc closures here for all tllcsc

unknown terms, hccausc wc ha~’cnot hwl much rxpericncc with this equation, WCmcre]y

point out that pressure-intcrnnl cncr~- ct>rrrlntic)llsnnd pressure-density correlations, such

gasthose found in the a equation, should I)chnvr in analogous fashions, thereby introducing

a decay term and some mmiifkd prmhwti{m terms. Fhrthcrmorr, the triple correlation
.— —.
pU’’U”l” could also IX mod~’lmlb)”the npprmwh usml for pl’’U’~U”o

As a simpler altcrnativr for S, ouc COO*Musc the stan(iarti analogy to the grndicmt

approximation, appealing to the concrp: of an cffectivc turbulent thermal conductivity:

—— h“
pu”l” = pu’f” = –C~/T[R . V)j . (39)

For cornpletcncss, an equation for w can bc derivwi to give

ov

- bV. (Kv~) -~ ; v “(fsvT’) .

The last two terms on the right-hand side could bc

we woldd model the tripk correlation by n gradient

trm.

modcld as &cay ofw. Once again,

approximationleading to a difhsion

3,6. ElJil:!I‘ t?-w ‘ w- Of ‘Nrbulent Energy Diwipat ion

An exact c eq~iatlon could, in principle, bc (krived fram the Navier-Stokescquatiozur,

much as an equation for (Ou~/&n) (A~/~~n ) WA9originality derived by Daiy and Harlow
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[16]. More

taking the

concisely, howcwcr, most rcwmrchcrs have merely fornwd the equation for K by

trace of the Rtj cq~mtiou:

where the tmisotropic prtrt of R is given hy the gradient Op~JrOxillltdion stated earlier

(Eq. 20). Then, wc form n dinwnsi~mnlly correct cqumtion for f from the A“equation.

Supplying comitants to all productioli terms, we get

opt i) ihi,,, m o [pJi”=ih )—(pfint)+ C:,,+br ==c+lnG +Ci),b..- (-y K - Cg .“a- ‘fax,, n n n n

~ equation. WCshn]l, however, modify it slightly, ;idding nnothm production tmm (m the

right han(l sidr ( –C~,jjCV. ii) to git.~-the C(JIWCt length scal10b~”}titvio:’during compression

and ,:xpansitm[17].

3.7. The Concentration Equation

The cnsembic-nvcragcd mass cousavation equation for a spccics i interdiffusi::gin a

mixture was given in (15). Once again, wc identify the last term on the M side as a

turbulent diffusion of species maqs fraction, and model it as

~ = ~ = -C’#(R ● V)?. .
e

(43)

Hence

~o

the

the

To co:nplctc this set of equations, the equation of state

3.8. Mixture Equation of State Considerations

Generally, pressure can h cxprcsscd as a function of ali but one of the mass

cxmccntrations, system density and internal energy:

needs to bc Sgccified.

~ = ~(P?J?c1,C2,...,%-1) . (44)

T = j(~, f, Cl,C~, ..., C“-, ) (45)



which is not necessarily the same as j(~, ~, tl , . . .), but this last approximation is accuri.tc

up to inclusion 0! second order corrclatiome \Vhat wc mm say is that, bectiusc of the

assumptions of neady incompressible turhulencc outlined in the introduction, the prcswwr

is constant among a group of eddies twcompassing n region small compared !0 themean flow

gradient length. This constancy implies relationships among the fluctuations in density,

internal energy and concentrations, such that

P = j(p + PI,i +r’, tl + C!,...) = P (46)

evcrywhcrc. For n single material gamma-law gas with constimt specific hc[st, P = ~

implies pZ= ~; hence p(f + 1“) = ~~ = (p - p’)~. Then

(47)

but no specific relationship can be i:~fcrrtd Aout p’f~. The assumption of eddy pressure

equilibrium breaks down in a shock but hold~ after a shock has left the mixing zone

between two materials. A seu-consistent description of the interactiomq of the shock and

the fluctuations is not possible with this postultitc. Nonetheless, wc expect that thcjumps

of mean and turbulent quantities CMhe sufficiently WC1ldmcribcd by this model.

3.0. Summary of ‘Ibbulence Model Equations

We now summarize our model equations, which shodd be most relevant in the limit

of fully developed turbulence:

●z{ (
--++cDRa:Rinw91}

aF8Y= ‘i ~Zj
(48)



(4f)j

(51)

‘cD’+[wnmw+”’a$9)l
{52)



(53)

I.m equations for S and w could be omitted if (39) is adopted as a simpler model for the

turbulence heat flux.

4. SPECIALIZATION OF EQUATIONS TO I?VSTABILITY-DRIVEN
TURBULENCE

One of the major goals of our work is to utilize these model equations to describe

instability-driven turbulence accurately. The difbrent types of instabilities encompassed

by the equations are pressure-gradientdriwm, as in Raylcigh-Taylor instability or its

shock-drivencounterpart, Richtmcyer-Meshkovinstability, and shear instability, commonly

known as Kelvirv?Ielmholtz instability. To dmw that our model can reproduw the

statistical effects of these instabilities, we first specify that the flow is nearly incompressible,

but variable-density, and we define a coordinate system for the general case of variable-

density turbulence in a combined pressure gradient and shmr flow. Let us dictate that

the initial flow velocity (u) is aiigned with the x-axis, while !he pressuregradient acts in

the y-direction, which is the same direction in which the x-velocity varies. Fbtherrnore,

we are interested in the ability of the mo&l to predict how mean fluw variations affect

these instabilitics, and so we ignore the secondary efkcts of turbulence or. itself. ~iple

correlations, decay serms, and the %low” parts of the pressure-containing correlations

will be &opped. This amounts to rapid distortion theory applied to instability-driven

turbulence. fithcr, in source terms, gradknts of turbulence v~”ables are dropped and ii
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is rcplnceclby li, The turbulence cqtlittions for the Reynolds strcssm and the tUdJUh’llCC

mass flux vector (XJIIIJXMMltSam, ill this s}wcial ~i~se(with D/Dt = ~/~ + GoV),

~=(-’-’)n’’’’)n’%

(55)

(56)

(57)

(58)

Tim rttpiil parts of thr pressure-vch)city arc included here ~Jccau.set}wy ficct ~he quiditalivc

,..mc!usioms about forms of instat>ilitj, growt!l rtites. Wc arr now in a position to examine

the dmcription of instabilities by thcsr sirnplifkd cquatimu;.

For pure shcm f!ow in a constant dt”nsity medium, the pressure and knsity gradient

terms disappear. If the mean fiow gradient is tdwn to be approximatelyconstant over the

time scale of interest, then differentiationof Eq. 55 gives

D2RPP DR=VS- :#A _ —
Dt2 = Df ~y

(Z)2=+R4 :)2

(60)
= ;C2R(1 – c2fon9~ ~v

if c2~ is near 0.5. The rcmdting expression for the growth rntc of the instability is

w = ~kaAu , (61)

where km= (LU)-l, which nearly corresponds to the growth rate of Kelvin-Hehnholtz

instability [18] at a wavcnumbcr characteristic of the mixing layer width.
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on the othrr hand ., ,,. i~~~{ ~iadient driven circumstances, with no initial flow in

the x-(l!-tw-tit)~l..11 cqf\;ttif).\- ,Vjth t jme.derimtiveg of x-direction variabh?sdistippear. By

differentiatingEq. 55 in I.:~111.II, P- . manner as above for Kelvin-Hehnholtz instability,

Wf’get

(62)

T!I~’IAl\\ Lc!rIIlon the right side of this equation describes the cfhct of a pressure grdient

‘:LL~~L.... . ;lJh or shock) interacting with the turbulent density fluctuations, as measured by

~. This always le~s to incre~ of turbulent energy but is not present in purely Rayleigh-

‘1’aj”lorinstability.

The second term on the right, proportional to mean-density gradient, gives the efkct

of Ru~”lrigh-Taylorunstable conditions on turbulence, as th~~ arc characterized by the

incmw: io[] of density grndient and acceleration. This term gives exponential growth to

Ryy at a rate determined by

(63)

where g = – $ ~ wherever g% >0. If we interpret ~ ~ to bc a density difference between@ay

two sup ”rposcd fluids divided by their sum times the reciprocal of a gradient scale length

( .)p), ‘.: recover the form of the expression for the growth rate for large wavenurnber

disturbances (k> 9P) in gradient-stabilized Rayleigh-Taylor instability:

in which At is the Atwood number.

~’= J-” , (64)

Turning now to shock-driven growth, we use the other

term in Eq. 62. The weak shock is approximated [19]by a velocity jump

impulsive pressuregradient (l~@iJ(t)/~ . Then V = (@p/@)~ and

a~ = bV,

and

V induced by an

(65)
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R“y = bjW2 , (60)

which iigrccs with Stiman nnd ?vlviron’srwndt for initin] turhuhmcc khmtic energy after

n weak shock contacts a density discmltinuity, here modrlw) hy a finite value of IJ.

When considering n combined Kelvin Ht’ltnlicltz. Rayleigh-Taylor instability, the

equntions lmcomc somewhnt more c(jnl~diciit~o(l[20]. From Eq. 6!?nnd the time dificrential

of Eq. 56, a fourth-order equation for RYPrmmgcs:

(68)

1

J( ( ))

%22

*5
.L”j,l. + ;C2H(1 - c~/{) —&J – &d:T ,

whi~h wi]] have a rwd portion if 3 lw~lY$l< ~C21dl - C,H)(~)’”. If the density and
.

velocity gradients have the same chamctmistir wavcnumhcr k,tf, then we expect growth

for cases where, for g and Ap taken ns positive,

(6!))

5. COMPARISON TO TWO-FIELD MODELS

Two-field descriptions of instability-driven turbulence mad mixing hold some advan-

tages over the approach taken thus far in this paper, e.g., the Aility to describe interpen-

etration naturally by lumping two separate wdwity 6AcILL,and tho marking of the mixture
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fraction at any point, among others. Further, the two mmms of analyzing mixtures arc

cquivnlent in some simple, yet iutctwsting cases. The two-field continuum flow mluatiom

can take on many forms, depending on the amount of detail that the researcher wishes to

capture. Here, for present purposes, one of the simplest forms of these equations, written

for two microscopically incompressible fields, will suffice.

The rnodrl equations of Section 3 should include the capability of describing Lhc

interpenetration processes of two-field flow. To define the concepts of mean and fillrtuating

pnrt in the two-field context, wc consider the system composed of particles or droplet:

dispersed within n continuous surrounding fluid.

Twwfield flow theory would allow for fluctuatiorw from particle to particle and from

point to point within the fluid. The dynamics of the system is described by field vnriablcs

at several hwcls of specificity.

First, there are subscripted variables pertaining to the individual ficIds. The field

densiti~ ~&, k = 1, 2, are conztants, The charactctistic function @&(x,t) satisfhw /?&= 1

for regions of x-space occupied by the k’b field and /?k = O elsewhere, so that ~k ~jk= 1.

The velocity U&(x,t) of the k~hfield is defined where @&= 1 and j3&(x,t)ub(x, t) is defined

for all x (within the physical region occupied by any field).

Second, one computes averagesd these field data, either ensemble averages, or .+pace

averages over control volumes smail compared to significant macroscopic length sdcs, but

large compared to droplet size and separation scales. The volume fractions ~&arc defined

b

ag(z,t) = ~&(z,t) , () ~ ~A(%,t)S 1 (70)

and obey ~A cr~= 1. Then an averaged velocity Uk(z, f) is defined f- each field and aU x

by

Other averaged individual

——
c8&(r,q u&(z,t) = /9&(x,t)v&(x,f) . (71)

field data, such as internal energy J&are defined similarly.
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Next, “mixture” variables thnt charnctcrim the system of fickls M n single fluid arc

defined hy sums over k, weighted }>}0t~w chimwtmistic functions ~j&(unnvcragcd mixture

variables) or by the volume fractions Ok (avrrngml mixture variables). In this W8y, we

arrive at wmlogs of the turbulence nvcr[~gcs. drnotcd with ovcrbms or tildes, and the

turbulence fluctuations, denoted }Jyprimed wwiablcw:

u-.- ~/j &v&, ii = x a&uk, Uj = u&- Ii , (73)
k k

and

(74)

total mwrgyfor em.h tirhi. \\’r II;ttIO

~okpk— +v “(n&/l&ui) = 0,
a

(75)

uk) , :76)

(77)

+ RT~C’em (~L~- Tk) + h-l)~(ut~ - W) , (u - u~) .

These equations represent avcrrigcs ot”crrealizations of flows rtthigh RcynoMs number,

and viscous strew terms arc ignored. P is the spatial!y avmngcd prmsur~~of the surrounding

field. CV~ is an efkctive specific heat of the mixture. 11~ is a heat-exchnngn f~mction and

KDisamomentum-exchangefunction (inverse drag time wale); they result from modeling

of the interactions at field interfaces. For present purposes, wc m-cd not .spmify how their
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transport equnti(ms of %ction 3.!).

of this papm CmIbe vx;m’sscti, in

~’ohtm{’fractions:

(70)

(00)

(81)

‘=--;’’’(f~k-~’(;))=)+;:xf,,,~”,,~”,82,n

~ ak (P4 -~, (fk - ~)
k

M =
?

_= -~,,’ (*k ‘j)= j-~. (83)
k

II, gemmd, to ftmn :my c(mclntion (whic}l. lmwiously, wc hml associated with turbulcncc),

one [tvcragcs the dcpnrturm from thr nl(*iitl,rit}wr mass-weighted or uniforndy weighted,

over the number of mitttirii&Another ~xiill)pl(~of a correlation of fluct~tions is

== ~@JA -=)(’’k -~) .
k

These rc]ationships hold for rmynumberof fields, but we arc most intcrcstcd in a twdwld

description because of the ndditiona] relationships that apply. Thus, for two fields, wc

have:

(84)

‘))



and

a =

b=

w=

RiJ =

s-.-

01 CtZ(pl– pz)(ul– u~)
9 (85)

F

(8V)

In this model, evolution equations for R and S am not nrrdmi and only the a, 6, and w

equations need to bc examined.

Rom the iwo-field quations and the tw~field definitions outlined above, an eqttatiwl

for a follows:

By comparing this equation to (28), the turbulence equation for a, and to (29) we can

infer a new modeling for the correlation~:

(91)

This gives a wave-like flux term in the a equation, as opposed to the difbive flux term

that most modelers would use, following (22). For the model of SectiorI3, taken in the

hiting case of twdield interpenetration, p%~u~should reduce to the right side of (91),

which the gradient closure (diffusive flux) would not.
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Then, substitutin~ il]to Eqs. 91 !)?, sym;nctri~ing the

which is different, nnd perhaps better, thm t}l~ form in (22). Also, the decay term in t]W

newly-derived a equation could he modrlcd as

By extending the analysis for other turbulence quantities, we get, for the evolufio~~of L,

~b b+ 1

()

#
~ + (ii. V]b + —v “* +jw “u’ ~ = o ●

F P
(95)

if V ● u’ = O. This leads to a revised model for the term we were calling diffusion=lik(”,

which is
-

0u’t- ab= -—
P jm “

(9G)
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Now we write an equation for D = ~~/P2. 1’}w turb~ilcnce vquntion for this is, again

auaumingincompres..ibleturhulvnm.

Rom the twdiehi description, written in terms of single-fiebl vmiablcs, D evohm

A similnr trc~tmcnt of the w equntion gives

-=’41-+0*

(98)

I
(90)

(loo)

which also reduces properly in the fully -dcvc]opedturba!mm limit. The potcntid decay

Ccrms(cf. Eqs. 53 ami 77) in the two-ficki vrrsion of thistvinati~ican be written m

where~ = RTj521(qo2p1pJ. Theac tWO=pt~ eattbe trddmd intosingk-field

variables, to become

-R;-W

and
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These can be identified with two terms in the original w cquntiotJ, namely

and
I

()(~,aiin aim-F! )—-@,
P x - ‘;’’”ax,,

respectively, though thr second corrcqxmdencc is less clear.

For the mrws concentration equations, n similarformalparallelholds. Applying Eq. 15

for the mass-rnwrtqyxlccmccntrationof material 1 at high Pcclet numbe~sfor nmMJtransfer,

(D - O),

apt,— +v.pil il + v.~ =0.a (101)

From the two-field dcscriptio[l as a point of deptirturc, the mass fraction for fichl 1, in

the region occupim! by field &is Cl&= #l&. The associated single-field variables, unavenged

and nm9s averngcd, respectively, are c1 = ~t /3&cl&= 81 and

Observe that Z1+ Z2= 1 and c;’~= cl&“-Z1is the negative of d~h Rewriting the unknown

correlation in ( 101) in terms of two.fkkl wwhbks, wc gc!

(103)

Thus, the material ffuxcs can be rc-cxprcsscdin terms of single-field wwiables as

Ifa is again takenin its fulIy developed turbulence limit (ad = -C;4 (A”/e~2)& (@/&.))
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which agrees with (43), to withi;l an adjustable constant. ‘F)Ius, wocha~~edemonstrr.tcd

the relation..hip of the unmmlclcxl :UI‘~ulcvlccctluntions to chc two-field equations and, as

a result, suggested some ncw closures for variable-densityturhuhmccmalls that capture

both the ordered

6. SIMPLER

and fully turbulent limits.

MODELS

1fnplCfIICnt~thlOf~udl 1nOdC]~ill Ill[\]ti(lifll(’liSi(Jn~]hydrf’)d}”nhlllhCOdC9 Cdn bCCOMC

extremely tcdiom and thr resulting run times can In-omc unn-vwontdk. (Thcmforc, it is of

signific:mc intmcst to develop find program simpler modr]s in order to gain cxpcricncc wit}l

thcm and. if they cim lm demonstrated to be dcfwicwt in crwitd arcn.., then improved at a

later time.) onr of the simplifications wc havr usrd with sonw st;cccss in thr CAVEATcode

[1] retains Htransport equation for the trace of the Reynolds stress tensor (~Rmm= ~A-)

and makes usc of the Botlssincs~l(gradient) approximationfor specifying the components

of the Rcyrmldsstrew tcn.sorin tcrnw of /i nnd c. Then

A*2
p,= cpj5—

c“

(107)

(108)

13mthermorc,keeping only the most important production terms, the decay term and

a sirnpkr turbulent diffusion term front the a equation {cf. Eq. 49), reds in a more

manageable model expression:

(109)
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The proposed c cqurttion is the wunc ns dcrivwl previously (cf. Eq. 51), ns is the

crmmncrntion equnticm (cf. Eq. 54):

thin
– C’l,* – c4,@37 , (110)

n

(111)

Further, b can bc romputcd from its own tramport equation or, if wc tuwwmcthat there is

no intwspccics diffusion, so that the hcquntionhas no dcmy tmm. tb twdield expression

for b should be accurate:

b= ~t~2(171 - PZ)2 (112)
Pln “

In practice, in a ccmyutational cell, ot, 02, pt, and ~ wcmld be determined from the two

criteria of ( 1) pressure equilibrium bctwccn compments, and (2) either adinbaticwork

exchange or tempcmturc equilibrium betwmn ma!crink. Finally, the tutbulent heat flux,

in accordance with this simplified npproach, isgiven by diffusionof the internalenergy,as

.

s,= E ~–CDJ7R8,,3- .
-n

(113)

This nidci can be considered a natural cxtensior of h- - e models and the modeling

:ncthodology to variable-density flows.

Another type of mode] would use the tweficld [or multificId) flow equations (7$

77) for the stable part of the flow, together with the turbulent transport equations of

Section 3 to reprcmnt the multificld instabilities. In this context, the stable part of the

flow has been refcrmdto aa %rdcrcd,n white the unstable part may be calkd “disordered.”

Closures should then be modeledso that they vanish in the pure multifleld limit, rather

than approaching their multificld limits as giwn in this section.The type of turhkncc
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model to bc used to augment the description of ordered tJlotion could also provi& the drag

length scale [61for the phcnomcnolngicid momcnturn cxchangc coefficient:

The Reynolds stress d

the model arc taken from

(114)

turbulence dissiptition c~iwitions ii] the disordered portion of

stamhzrdturhtllmwe IIUXMS(e.g.. t}mt o! Lmmdcr, Rwce, and

Rt di [16]), but wc suppose that the energy lust from the ordrrcd motion (-2Af”-~7 =

-!? K”.~jd) acts m a 5ourcc to t{isordvr~d energy, not hc%t:

(115)

(116)

- C2,$ -c4#7t(v“6),

(117)

The “d” superscriptrefers to only the disorderedpart of the turbulence and J(~ can be

modeled as in Eq. 94. Then the total Reynolds stress that entersthe meanflow momentum

equationis (cf. Eq. 13)

I

I
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and equations for a, b, and ci arc not needed. An equation for the disorderedpart of tiw

heat flux could be derived in an analogous fdlhJn, with a source term

( ))1

SJ

P

Then

(120)

(121)

is the quantity nccdcd for the mean internal energy equation.

7. SIJMMARY

Starting from the ~rwmr-stokes equations written for a single fie]d, we have derived

and cbecd a set of transport equations rtppropriatc for varhbk-density turbulence when

the fluctuating velocities are fnrsubsonic.

among the di.Eerenteddies and species

gradients. We have also talvm a rather

This condition implies load pmssurcequilibrium

over a distance small compared to mean-flow

simpk twdield rna&l from the literature and

demonstrated that our unclowd equations are formally quivalent to this model if the

densities of the two fluids are constant. From this quivalence, new closures for turbukrm

quantities, such as triple correlations, emerge naturally. Thaw new closure ideas have the

ability to describe not only ful!y developed turbuknce but also encompass the limit of

purely ordered interpenetration of two incompressiblematerials. Therefore, these closures
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may be superior to those commonly proposed for variable-density turhulcncc and their

application to real problems should IN*ex;)lorcd.

W-carc indebted to Charles Cranfill for discussions and insights on the topic Jof this

paper.
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