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TURBULENCE TRANSPORT EQUATIONS FOR VARIABLE-DENSITY
TURBULENCE AND THEIR RELATIONSHIP TO TWO-FIELD MODELS

by
Didier Besnard, Francis H. Harlow, Rick M. Rauenzahn, and Charles Zemach

ABSTRACT

This study - .ves an updated account of our current ability to
describe multiinaterial comgpressible turbulent flows by means of
a one-point transport model. Evolution equations are developed
for a number of second-order correlations of turbulent data, and
approximations of the gradient type are applied to additional
correlations to close the system of equations. The principal fields
of interest are the one-point Reynolds tensor for variable-density
flow, the turbulent energy dissipation rate, and correlations for
density-velocity and density-density fluctuations. This siugle-
fleld description of turbulent flows is compared in some detail
to two-flield fiow equations for nonturbulent, highly dispersed flow
with separate variables for each fleld. This comparison suggests
means for improved modeling of some correlations not subjected
to evolution equations.

1. INTRODUCTION

Turbulence in comiplex, high-speed, high-Revnolds number flows has been of wide
Laboratory interest for many ycars. Predictive capabilities in the Inertial Confinement
Fusion (ICF) and certain Strategic Defense Initiative (SDI) programs have relicd crucially
on modeling the effects of material mixing and enhanced momentum and thermal transport
brought about by turbulence. The Laboratory’s ability to model turbulence has improved
significantly with the advent of high-spced computers and increased theoretical knowledge
about the proper manner of modeling the ensemble-averaged Navier Stokes equations. Our
recent goals have focused on understanding the theoretical foundations of variable-density
turbulence and mixing and the implementations of simple models into existing computer

1
A



codes, like CAVEAT (1). This manuscript will outline our current state of expertise in
modeling variable-density turlilence and propose some simpler models for everyday use

in laboratory codes.

We are primarily interested in describing multimaterial compressible turbulent flow;
the different materials might not be initially mixed, which means that the mixing process
itself must be modeled as well. The potential applications of such a description range
from volcanic eruptions, where a plume of hot air containing ash and rocks mixes with
surrounding cold air, to consideration of laser-driven ICF, where the mixing of the outer
shell and the inner fuel may lead to decreased neutron yield. In the first case, the
mixing is predominantly due to highly nonlincar stages of Kelvin-Helmholtz instability at
the interface between hot and cold fluids; in the second instance, Richtmeyer-Meshkov
and Rayleigh-Taylor iustabilities can play a dominant role. Other temperature and
pressure regimes can be studied through laboratory experin.ents, such as the shock-
tube experiments of Sturtevant (2], Houas et al. (3], and Andronov et al. [4]; in these
experiments, a thin (1 mm or less) membrane initially separating two test gases of different
densities is shattered by an incident shock wave. The details of membrane destruction
are poorly characterized, however, hut subsequetn: shocks reflected from the end wall
interact with the mixing zone established by initial shock passage to greatly increase the
growth rate of the mixed region. In addition, the AWE in Great Britain has performed
experiments by accelerating a tank containing two incompressible materials initially in a

stable cor:Gguratic: downwards at about 40 times the acceleration due to gravity (5).

All of these applications are time-unsteady flows involving two or more materials.
Turbulence models that attempt to analyze and characterize these flows need to pay
attention to issues of initialization of turbulence field variables, which is a serious challenge
for most usual turbulence theories. Ideally, the model should mimic the linear phase of
instability as well as the fully turbulent late-stage mixing. Traditionally, two approaches

have been taken. One scheme postuiates the existence of multiphase flow equations



(6,7) while the other uses the more usual Reynolds decomposition of the Navier-Stokes
equations for a single field with potentially large density variations [8-12]. The different
approaches are ccmpatible and, as we shall show here, an equivalence between schemes
can be demonstrated in some interesting cases.

From our single-field modeling, we produced a report a fcw years ago that used
standard turbulence closures [12], and the first part of this work will revisit those equations,
modifying them at some points and lookirg mcre closely at the assumptions of closure. In
that carlier effort, we realized that the Reynolds stress models must consistently include
evolution equations {or all relevant second-order correlations, in order to describe flows of
this nature adequately. Since then, the formal parallels between two-field formulations
and the unmodeled turbulence equations were exposed by us in an unpublished and
unfinished working paper, and have more recently been completed by Lance Collins at
Penn State. We will be reviewing these results near the end of this paper. First, however,
in Section 3, we derive the turbulence equations in a standard fashion by dividing the
flow variables into 1ean and fluctuating parts. The resulting equations are closed by
postulating, with som: (admittedly incomplete) physical justifications, appropriate models
for unknown higher moments of the ﬂuctuat.ing variables. Because instability-driven
mixing is of particular interest to laboratory programs, we then specialize the equations in
Section 4 to the cases of Rayleigh-Taylor and Kcivin-Helmholtz instabilities and compare
the behavior of our equations to other published work. Finally, in Section 5 we show
an interesting correspondence between our unmodeled equations and the two-field flow
equations describing nonturbalent highly-dispersed flow with separate field variables for
two-field finw. We believe that new directions in variable-density turbulence modeling will

arise from considering this correspondence.



2. DESCRIPTION OF TURBULENT FLOW OF COMPRESSIBLE
FLUIDS

2.1. Formulation

Turbulent flows develop whenever incipient instabilities, driven by the advection terms
in the flow dynamics, are uot dissipated quickly enough by the action of fluid viscosity. As
a result, fully developed turbulence is often characterized by the interactions of random,
nonlinear modes of motion, tynically swirling, overlapping eddies of fluid. Despite the
appearance of complete disorder, turbulent flows ofien exhibit rather universal average
bekavior. Bouudary layers, jets, and wakes all have been studied extensively in the past
and, while the details of each experiment are not repeatable, even by a single researclier,
the observables in each set of experiments have been well correlated and used to great
advaniage by engineers and scientists worldwide. The basic notion is that while turbulence
cannot be analyzed in every detail, either by computer or by experiment, enough can be
extracted from physical or nume ical experiments to deduce the effects of turbulence on
what we routinely observe in the typical design of aircraft, mixing vessels, heat exchangers,
and piping systems.

The point of departure for nearly all engineering analysis of turbulent flows is the
set of Navier-Stokes equations for compressible, variable-density flow of a single material.
As convenience dictates, we denote vectors and tensors in Cartesian coordinate form or
by bold letters. (The tensor symbols will be Latin capitals or Greek.) The equations for

density, velocity, and internal energy are:

0 .
5 +V () =0, (1)

%3+v-(puu)=v-a, (2)

_aa”__t{+v.(pu1)=a;vu+v-(xv7‘). (3)



where 0;; = - P§;; + 7,,. Generally, the pressuce P is a function of species mass fractions
ci, as well as p and I. The viscous stress 7 is taken as
T = p (-gTu; + -‘% - %&',‘V ' “) - (4)
The molecular viscosity u and the thermal conductivity x are taken as constants for this
analysis.
For the mass fraction, we apply Fick's law of diffusion with a constant diffusion

coefficient D:
apc.'
ot

+ V. (pue,) =V . (pDV¢). (5)

Typically, we separate turbulent flow properties into mean parts, such as the turbulent
velocity profi.c in a pipe, which for an incompressible fluid is a radial function only. and
flucinating parts that account for ¢ddy motions that are not reproducible or describable in
detall. The details of these fluctuations are determined in a strict sense by extremely fine-
scale irregularitics in the boundary and initial conditions of the experiment, but mcan-flow
proper:‘es are assuined to be deterministic and reproducivle.

We denote average properties bv overbars and fluctuations by primes. The appropriate
average is taken over many members of an ensemble of experiinents that are indistinguish-
able macroscopically, but may differ in microscopic detail in no controllable manner. Thus,
u=tu+u,P=P+P,p=p+p, ctc.

Two important measures of a turbulent regime are R(x,t), the turbulent kinetic
energy per unit mass, and ¢(x,t), the rate of dissipation of turbulent kinetic energy per
unit mass (i.e., irreversible conversion into internal energy). These are defined explicitly
below by ensemble averages. One identifies a turbulent velocity scale £'/2, a turbulent
time scale t,,,;, = K/¢, and a turbulent leng b scale Ly, = K 3/2 J¢. These may be thought
to characterize the motion, period, and size of the dominant turbulent eddies. They may
be compared to scales for the mean flow: ¢, = sousid speed, tpean = |317.-/a:t,-|"', and

Lmean = scale for variation in physical space of mean-flow properties.



In conventional one-point analyses of constant-density flows, the assumption
Liyv/Lovean < 1 is conunonly made. explicitly or implicitly, and facilitates the nodel-
ing of the pressure-velocity correlation ;;'—Z)Wér_, Realistically, Lyyn, and Lgean inay have
comparasble size, though one expects Ly, / Luwan B0t to exceed unity; otherwise, the logic
of separation of variables into mean and fluctuating parts is sacrificed.

The assumption iy /tmear € 1 is also frequently made. It suggests, as noted by
Lumley (8], that the distribution of turbulence modes among different length scales has
time to achieve approxin:ate spectral equilibrium, and this underlies the logic of one-
point inodeling. It is an essential assumption in the arguinent for closures of otherwise
undetermined correlations. In the case of constant-density fluids, the paradigm for such

closures is (with account for symmetry if X’ has factors of u’):

u, X’ = (constant) LS ujul, -é-)i:—-.? . (6)
¢ "

Hereafter, we refer to this as a gradient closure or gradient approximation. Realistically,
tiurb Need not be small compared with t,..n in regines of rapid time and space variation,
such as shock-driven flows or interfacial instability lows. Thercfore, it is preferable to
construct evolution equations for what appear to be the more important second-order
correlations. We cannot avoid gradient closures for some higher-order correlations entircty.
By limiting their use to terms of presuined secondary importance, we hope to capture the
main physical consequences of turbulence in evolution equations.

A third inequality assumed for the purposes of this paper is that the sound transit
time Lpyean/c, across typical mean-flow length scales be much less than the dominant-eddy

turnover time, which translates into

\/I_‘-: < Llurb

C, Lmeau

z1.

That is, the turbulent velocity scale is subsonic. Then the fluctuating velocity field may
be taken as divergenceless; V - u' = 0. We qualify this by allowing nonzero V - u’ when

heat conduction or mass diffusion between species is important; see Section 3.4.
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Fourth, we assurne that the turbulent Reynolds number of the system, defined by
(Re)urb = pK? [(pe), be large compared to unity. This condition separates the dissip-ition
scale from the dominant-eddy scales, allowing the neglect of viscous diffusion and viscous
~tresses relative to turbulent diffusion and pressurc effects, respectively; and, as in the
constant density case, is a requirement for the viability of a one-point model in which
the dimensionless parameters of the model are hoped to have constant values valid for a
general class of phenomena.

2.2. Mass-Weighted Averages and Mean Flow Equations

For any fluid variable X, the separation X = X 4+ X' (Reynolds decomposition) ie

based on the uniformly-weighted enscmble average X. The separation X = X + X" (Favre

decomposition) is based on the mass-weighted ensemble average X, defined as

X=pX/75.

Such averages, and especially the mass-averaged fluid velocity, appear naturally in
conservation relations, as is the case in multispecies flow equations {13].

We shall use the following relations among these constructs repeatedly:

X' =pX"=0,

XY =XY+XY,
XY =pXY + pX"Y7"
XY =XY =X7",
Xi=X-X=-pX'/p.

The list of important averages begins with 7 and the mass-weighted velocity @ = pu/p.
Then come the density-velocity correlation A and the associated velocity a:

A=puW=pu" ; a=Afp=-u". (7



Note that A is the net inass flux relative to 1, the unweighted average velocity, and that

u=tU+A/p=uU+a, (8)

uw'=u-A/p=u -a. (9)

Next are the generalized Reynolds stress tensor R and the turbulent flux of internal energy

S:

R pu” "= P u.“ pa'a) + P’u. ) ) (10)

Si=pl"u! =p I'u’ —a;p'l' + p'I'u]. (11)

Ensemble averages of the flow equations (1), (2), (3), and (5) now yield the mean-flow

equations:
P + 5o (i) =0, (12)
5837“ af.. (za,,i) + -a%s,. =-PV.5-PV.w
+ """aaﬁ,,, +7 ax (14)
gt'ﬁéi + -a-g: (Ptnci) + -5-3: punc) = aa ( Daa:;) ain 9z, cf (15)

With V - u' =0, as assumed above, the P'V - u’ term drops, and

- Oup _ 1 Oy, O, ) (D, Bu,
7 Moz, " 0z, ) \oz, * 0z,)°

nmam



which is observed to be nonnegative. In the more general cuse, we can write

o, 1 ou', !, 2 , 2
Tnmaxm - 2“2 (azm + azn 3(v u )6nm) ’

n,m

whicl: is still nonnegative.
2.3. Energy and Energy Dissipation

The inertial and advection terms of averaged evolution equations are best expressed
by mass-weighted averages, because physical conservation applies to aggregates of mass,
momentum, energy, etc. The stresses, lacking factors of p, are probably best described in
terms of unweighted averages.

The Favre technique points to a conception that may usefully guide modeling. The
Favre velocity @ is a mean variable that includes, in addition to u, the part of the
velocity fluctuation correlated with density fluctuation. Then u' is not the whole of the
velocity fluctuation, but only the part uncorrelated with density; pu” = 0. How quadratic
and higher functions of velocity fluctuation, whether in unweighted or in mass averages,
contribute to density-correlated or uncorrelated effects is not, in general, easy to sort out.

For the ensemble average of total fluid kinetic energy density, we have

pu? = § p(11)? + 4 p(u")?.

(S]]

If we regard % p(11)? as the energy density due to the combined mean and density-correlated
turbulent motion, then £ p(u”)? = 3 trace R,; measures the residual turbulent motion. The
generalizations of K, the turbulent energy per unit mass, and ¢, the dissipation rate for

K, as originally defined for constant-density one-phase flow, are now chosen to be

pK = -} trace R;; , (16)

pe = 1! ,,0u), [0z . (17)

The first definition motivates the second, for pe as defined h:re represents the irreversible

conversion of turbulent kinetic energy into internal energy in the 1 evolution cquation
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and is also (one-half of) the decay term in the trace of the R;; evolution equation, to be
given in Section 3.

Also suggestive are the equations

P = pu" " +pa.a, .

MWagll — vol o il .a:
ujuj = uu; +0q; .

These are relations between nonnegative definite tensors with nonnegative diagonal

u/ and ul'uj carry niore of the cffect of the density-

elements. They indicate that puu’ )

” H

correlated turbulent motion than do pu!'u”/ and ulu’, respectively.

T4
2.4. Turbulence Variables of the Precent Theory (Summary)

The flow equations for the mean variables 5, 4, I, and & introduce second-order
averages, and equations for the latter introduce further correlations. A judgment must be
made as to which turbulent variables are to be subjected to evolution ¢quations and which
are to be regarded as secondary and modeled by constraint equations, relatir.,g them to the
more primary data at a common time.

In the present paper, we prescribe evolution equations for R, S, a, or equivalently

A = pa, and also for a density self-correlation b defined by

=-¢ (1) (18)

Alternatively, because —p/(1/p) = +(5 — p) /p,
b=7 (1) -1. (19)

A third alternative,

b=—p' (—‘- 1) =(¢')?/(pP) ,
makes clear that b is nonnegative and that the approximation b = (¢')3/(p)? would apply

if p' € p. We also encounter w = p'I'/5 in the evolution equation for S and write an

evolution equation for w but without modeling it in detail.
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A, a simplified alternative to the R equations, we can set forth K and ¢ equations as
gencralizations of the K-¢ model for incompressible flow. In these, the anisotropic part of

R is replaced by its gradient approximation:

2 : ou; Ou; 2
2SR = — —_— L 5.9 1
Ri 3 PR h (6z,~ + Oz; 36” u) ’ (20)

with 4, the turbulent viscosity, given by

je =C,ph/e ; c, = constant .

The a equation requires consideration: of u'u’; uju’. We shall finesse this by eypressmgr
in terms of primary diti: ud a triple correlation, then applying a gradient approximation

to the latter:

uju} = aiaj + Rij/p — p'uiuj[p, (21)
p’u;u; = —(70,,-);‘- (R.,.-gz—’- + R,-,,-g:—i-) ; Cpa = constant . (22)
n n

Some of the gradient cl sures involved in the next sectiorn have a rationale based on
con::<boration of terms lik ' to be dominated in evolution equations for the next higher-
order vquations as noted in S ction 3.2.
2.5. Realizability

Realizability, the notion applied by Schumann to constant-density flows, also applies
to variable-density flows. If v; , 1 < i < N, is any sequence of fluid variables, and

ei, 1 <1< N,is any constant vector, then p(e;v;)? ~ U and hence

eiej puiv; 2 0.

Then pv;v; is a nonnegative definite tensor, and all of its principal minors have nonnegative

determinants. From this, we can infer that

50 20, RyRa-(Ri2)*>0, detRi; >0,
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and

Py 1/ 1/2
pa; = p'uf = (,,:/,,l/?) pl/2ul: < ((pl)z/p) (pu” n) '

whence, applying the third definition of b in the previcus section,
aj <bRi/p.

Gradient approximations arc not always consistent with realizability und should be

checked in practical applications.

3. TURBULENCE EQUATIONS

A summary of the evolution equations to be developed for the primary turbulence
variables is given in Section 3.9.
3.1. Preliminaries

We note that, in view of (1), (12),

a, 7] . au. gu_._
Et-('pu.) + '5;_"'(”“"“') = 8‘ az" '

and

0, . 9 _. .. _0u __ 0y
5;(7"“!')*' (P“n“t)—l’aut ‘*'P“nau .

Subtracting (po/p) times Eq. 13 from Eq. 2, and utilizing the above, we get a useful form

for the u” equation:

9 " " o O; _ £_?_ )
o (ru3) + (pu,,u )+p 'a';: >z, R,; (2
= —(p/? 06 ; aam
= —(p )az" a z,
A second useful form (set i; = u; — u! in the third term of (23)) is
a au” " au. 1 aR'" - —-1' 85,..’ -l'aa'"'
EIRALY mel el Pl ¥ ke e (24)

As a notational device aimed at conciseness without loss of clarity, we write

Z‘ (product of tensors)
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to denote a symmetrizing procedure with respect to the free indicesin’ ... >4 product
of teasors. Specifically, Y°° is the instruction, first, to replace each ¢ - .ensors by its
symmetric part with respect to its free indices, and second, to supplement the result by
adding to it the minimal number of like terins, with free indices permuted, to make the
final result symmetric. One could also make the sotation more complete by writing f:‘
to show that there are N permutations in the final result. For example,

Z’ 5‘?:‘(3&0";&) = Z' —(?— [Bi(Crjs + Cas;) /2]

=1 aa (B Chnjtk + BiCnkj + BjCpii + BjCpix + ByChij + BiChji) ,

and, if a; = b; + ¢,,
3. 3.
ajajay = b,'bjbk + Z b,b,‘ck + z b,’Cng + cicjcy .

Note that }° 5—?: (B,Cn,s) differs from 3?: Y.’ (BiChjs) because the latter is to be
symmetrized over four free indices.

Now let the definition of the R tensor be generalized to

R. P un n u’. . u .
) P k m

We observe that

s 9 i}
Z uj...up [c’)t(pu")+-—(;7un ")] ot R;;.. m‘*’a (dnRij.. m)+ R""J"--""

More generally, if X, X3, ... X,, arc any fluid variables, then

Z X:X3... Xm lat(p\

X )] 5 PX1Xa..

d
aznpunxTX’ e

3.2. Equation for the Generalized Reynolds Stress

+

To obtain an evolution equation for R, multiply (23) by u}, apply Y>’, and take the
ensemble average. Apply pu” = 0 and

W puid L) 57' " (aam' ad:“-) 05,..- do’
= uf +

= 1 =708
) az, a.t.. azn

= —ajm u,- azn ’

13



and integrate the last terin by parts. Then

0 0 oiy ok
atRu + 5= 0 (“n l)) + a Ruu + R'"OI,, + R’"(').r,. v
a 7 . 0 ! . P !

= Z { (311 oz, "'u) ~ 9z, uj (6n; P — 1p;)

+ P'.ai: -_— .Q_u_".-r' . R
dr, 0z, ™
Th~ terms requiring modeling are, in order of occurrence in this equation, (1) the triple
correlations R.,,,, (2) stress-velocity correlations occurring in a transport termn, (3) a
correlation of pressure and velocity gradient that is traceless for the assuined case V-u' = 0,

and (4) the average of (Qu!/dr,) 7! ., whose trace represents the dissipation of turbulent

nj
energy. and whose residual, tricceless part may be grouped with the term (3). Insight
provided by a spectral approach to constant-density flow suggests, by analogy to the
present casc, that the term (4) will be diagonal for large turbulent Reynolds number,
that is, for large pK?/(pe); sce Section VA of {14].

We now exhibit a rationale for a gradient approximation of the Rn;; term. Multiply

(23) by ujuy, apply 3°°, and take the ensemble average. The left side of the resulting

equation is

d
atRl)k + 5 a (“n n)l) +

Rm;l + Z {Rn)na - (R)t/—)a Rm} .
Set
3
Rpijs = Ry + Z ‘Ri;Rnr/? -
This is, in the first instance, simply a definition of the fourth-order cumulant R¢. But
if p were constant and the velocity fluctuations followed a gaussian random distribution
law, then R* would vanish. Let us disregard R€ in the present case. Then the left side

-simplifies to
a 0 - ou
l)k+ (Un ul)+z { 1',, (R,l/P)'f'R.,"'a';f} .

14



Next, we suppose that in the absence of the source term ).’ R,',.;,-f—" (R,'g /'ﬁ), the turbulent
stresses on he right-hand side of the R;jx equation would drive R;jix to zero on the
turbulent time scale ty,1,, and let this cffect be modeled by a decay term proportional
to (¢/X)R;;x. If the inertial terms and any transport terms implicit in the stresses change
on a time scale of {40, and tiean P tiurb, then we inay have an approximate equilibrium
set up, expressed by
Rije = —CDR"I;“ E' Rm'é'?:' (Rjx/p) .

This takes care of the modeling of 5—?: R,i;. If there were residual cffects correlated with
density, they might be simulated by termms proportional to Y°° 5—‘}: (aiRn;) and requiring
an additional dimensionless phenomenological constant; we do not include such terms in
the present theory.

Next, we discard the transport terins of the form

'a% [ usP = m0,) + Bl = 73] -
This follows the precedent established for treatment of constant. density one-phase flow,
though the justification renains obscure.

Next, we consider the pressure-velocity gradient correlations. Again. we make
extensive use of ideas of other rescarchers. For constant-density f-ws, one usually solves
a Poisson equation for P’', forms the correlations of interest, and notices that there are
two types of terins involved: those specified by a product of turbulence variables and those
with explicit factors of mean velocity gradient. For variable-density flows, even if V-u’' = 0

is assumed, the analog of the Poisson equation is more complex:
a (10 o 0 ] 0 0 __
~a (; P2 P) = I (2uqu,, + uLul, —ulu ) u"'az,,. a:" ,

and more difficult to solve for P'. We adopt a simpler appsoach and model the pressure-

velocity gradient correlations in complete analogy to the constant-density case. For the

“slow” part, we set

(”"R).,‘ = _ClR";"-' (le - ';'6in1"|) ’ (25)

15



and for the “rapid” part. we use the straightforward extension of Launder, Reece, and

Rodi's [15] simpler model to the variable-density case:

. 4 Jdu (?l.t, 2. Mm
(7[',-‘)‘) 3 62,‘ (R‘"E;-i- 4 }{)n'(.')';_"' - 's'bl)Rmn'b-;:) .

(26)
In principle. we should also consider a third contribution arising from the interactions of
a and the mean pressure gradient. This model would presumably look like
: oP 9P 2 5
P
(RR)U = —C;n ((l,'-aT) + (l,‘a-r—. - 56,,’ a VP) ’ (27)
though we have not explored this possibility in detail in our simulations.
The fourth and last group of terius to be modeled make up the dissipation tensor.

Again proceeding from experience with constant-density tnodels, we assume it to be

adequately modeled by

» Ou) , 2 s | .
= -_— = —=p traceless part .
oz, Tw, 3[)6 iy + traceless pa
In the iimit of high Reynolds nuinber, ¢ is expected to be independent of visco:. . "1 -

traceless part is either zeto or is lumped with the pressure-velocity gradient correlations
18).
3.3. Equation for the Density-Velocity Correlation

We work with a = A/p as our primary viriable, instead of A. Because a = -u”’, we

average (24), and then multiply by p. Observe that with V- u' =0,

" u; = u!’ —7, + 1151__ ._?_—.4._.__"
Undz, T Un g, T g, T T, T Br, Uni s
and with b=75(1/p) - 1,
L0 5 B0 05 +_(1 ",
oz, '™ 7,0z, ni =05z, Im P 5) Bz, ™
Hence
a—. a—'. —__q_—?_-a"__.a_
5;(/’“:)*‘ dz., (P“nan)‘*‘l’“na:n U, = pat.. u,u; 8:..""‘
d . _(1\ (P 8 ,
_b-a-;:dm +p(p) (-a—z—. - drn Tm) . (28)
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Again, we are prepared to ignore the viscous stress terms when compared to pressure

cffects at high Reynolds number. The contributions fromn u’u’ and R from (28) can be

written as
0 9, _(P-Re) g o R
pg;-; Uy, — -5;—"-’1,.. = > 9z, + paI,. (ape;) — 5;-'- puLu, . (29)

The modeled form of p'u/ u! was given in (22). Finally, the density-pressure correlation
in the a equation is split ‘nto two parts: that which responds to mean flow gradients and

that which involves only turbulence. The latter (“slow” part) becomes a decay term

T

= Ciuppa, (30)

while the rapid part introduces a mean velocity gradient term that is modeled as
w, = C2.p(a-V)u. (31)

Also, as in the R equation, terms containing the mean pressure gradient could emerge

from the nressure-density correlation in a manner something like
x2 = ~C3,bVP, (32)

tut this has not been utilized in the current implementations of the model. This completes
vur specification of the a equation.
3.4. Equation for the Modified Density Self-Correlation
From the mass equation, one may deduce an equation for the specific volume, v = 1/p,
and hence for v:
dv

5-+'6-W=W-'ﬁ—u'-vv'+v'v-u'. (33)

From this, the equation for b =5 T — 1 follows:

%’+(ﬁ-\7)b+b—;—1V-7m+ﬁV- (%) v —25(-1-) V-u=0 (34)



There are two expressions to he modeled. We apply a gradient closure to the first and

('l')'u —Cm‘-IE" 9 (lfb)- (35)

P p Or, 4
The last term provides for decay of b and requires some care. As previously stated in this

apply (19):

report, we are considering only subsonic turbulence. Therefore, V - v’ is nonzero only in
the presence of heat conduction and/or mass diffusion. For example, when two species
with different microscopic densities are interdiffusing with a constant diffusion coefficient
D at an cquilibrivun pressure and temperature, then p is a function of concentration only
and

Then

() vw=-G) (=)
, p P
In the it of high Peclet number for mass transfer. which is also the linut of sinall D,
we mosdel this decay term for b to be independent of D, in the samic way that cnergy
dissipation ¢ is indepenlent of viscosity in the limit of high Heynolds number. Thus
ﬁ(ﬁ)'v- w=-Cul (37)

We note two circumstances in which this forin is not appropriate. First, if D is large
(small Peclet number), the rate of b-decay will depend directly on D, and not merely on
turbulence vaniables. Second, if D is strictly zero, e.g., for a system of two imuniscible
incompressible fluids, then V- u’' = 0 and b would not decay. Questions related to b decay
need further study and are not resolved here.
3.5. Equation for the Turbulent Heat Flux

From the internal energy equation, the fluctuating momentum equation for u”, and
the mass cquation, it is straightforward to derive an equation, in the limit of incompressible

turbulence, for the turbulent flux of internal energy puI" = S

as;, ad ,. oI au. 9 — 95 ;i - ——=—\ Fim
5t -5-:(“"5')+R'"8 +5na 3o P I"=u 97, T (a'a""' m e )
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a7 Ou " 2 T 1
+ 0 " —ajpe + wiyme=Lo1p, — a,-—(-)— N_(?_'I_'_ - uj 9 naT (38)
Oz, Iz, dr, \ Or,, Or, Org
where w = ;'_17/';3 = —T", We will not attempt to propose closures here for all these

unknown terms, because we have not had much experieace with this equation. We merely
point out that pressure-internal energy correlations and pressure-density correlations, such
as those found in the a equation, should behave in analogous fashions, thereby introducing
a decay termi and some modified production terms. Furthernere, the triple correlation
pu"u"T" could also be modeled by the approach used for pu”u”u”.

As a simpler alternative for S, one co-ld use the standard analogy to the gradient

approximation, appealing to the concep: of an cffective turbulent thermal conductivity:

"I = pu'l" = —c,,,é‘-(a- Wi . (39)

For completcness, an equation for w can be derived to give

w 9 .. . _ Ol -\ P -0
—a‘—+-a-z—"-(punu)+[’anaxn +(S a "'P'é';_"'.
L "
= -b amn‘a;:' - P (;) mn ( ) (Tm,. + Tam) 53— oz, (40)

— bV - (xVT) - p(p) V. (sVT).

The last two terms on che right-hand side could be modeled as decay of w. Once again,
we would model the triple correlation by a gradient approximation leading to a diffusion
trrm.

3.6. E.uwt’ the - ir of Turbulent Energy Dissipation

An exact € equation could, in principle, be derived from the Navier-Stokes equations,

much as an equation for (9u./0z,)(0u’/dr,) was originally derived by Daly and Harlow
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[16]. More concisely, however, most researchers have mierely form:d the equation for K by

taking the trace of the R;; equation:

d _.. 1, dii,y, oP o ( c”K) _
— pe

75 (PR + 35— (ﬁﬁ R)+ Rom5— 77— o Yo \mar (41)

where the anisotropic part of R is given by the gradieut approximation stated carlier

(Eq. 20). Then, we form a dimcusionally correct equation for ¢ from the R equation.

Supplying constants to all production terms, we get

07’ a a“m - 07’- 0 /pl\2 3( ('lﬁ
at + '5;— (pune) + (l( Ropm a.t.. C'l( "na Cl).d . \ p 01“) - Cg,T‘:‘ .
(42)

This is the natural generalization of the most frequently used forms of the constant- density
¢ equation. We shall, however, modify it slightly. adding another production term on the
right hand side (- Cy,peV - @) to give the correct length seale behavior during comnpression
and cxpansion [17).
3.7. The Coucentration Equation

The ensemble-averaged mass conservation cquation for a species i interdiffusing in a
mixture was given in (15). Once again, we identify the last term on the left side as a

turbulent diffusion of species mass fraction, and model it as

P = pd'u’ = -C,,,f“-'(n . V)é. . (43)

To complete this set of equations, the equation of state needs to be s, ccified.
3.8. Mixture Equation of State Considerations
Generally, the pressure can be expressed as a function of ali but une of the mass

concentrations, the system density and intcrnal energy:

P=f(P-I-ChCz----.Cn-|)- (44)

Hence

P=f(p.l,cy,2,...,6n1) (45)



which is not necessarily the same as f(3, 1,6, ...), but this last approximation is accur:.te
up to inclusion of second order corrclations. What we can say is that, because of the
assumptions of nearly incompressible turbulence outlined in the introduction, the pressure
is constant amorig a group of eddics encompassing a region small compared to the incan flow
gradient length. This constancy imnplics relationships among the fluctuations in density,

internal energy and concentrations, such that
P=fp+p, I+1I"é46),..)=P (46)

- everywhere. For a single material gamma-law gas with constant specific heat, P = P

implies pI = pI; hence o(I + I") = I = (p— p')i. Then

U I"
% = '-_I"' ’ (47)

but no specific relationship can be inferred about p'/p. The assumption of eddy pressure
cquilibrium breaks down in a shock but holds after a shock has left the inixing zone
between two materials. A self-consistent description of the interactions of the shock and
the fluctuations is not possible with this postulate. Nonetheless, we expect that the jumps
of mean and turbulent quantities can be sufficiently well described by this nodel.
3.9. Summary of Turbulence Model Equations

We now summarize our model equations, which should be most relevant in the limit

of fully developed turbulence:

OR;; d 8:'4 du;
9%
ot Bz, (nRu)+ Rugot + Ry
oP o7 d [K 3 [Rn;
= 2 In —_— 2R — [ =m)
{ ( " 0z, ) +Corgon [: Rin3en ( 7 )]} (48)
¢ 1 a au. 2 8& 2 _

21



oy, 0 0o W, (0P ) R 0p
ot Bz, (Pinai) FPanm = bl 5o a:,,) 7 O,

- 0 [K ~ dan, O,
+ CDup'a_;: [:_; (Rm 01',. + Rmn&i‘)]

Jdu

d
+p '5;_—"'(0..0.') - Cuﬁ’;‘:“i - Cuﬁ“naI '

(49)

B _ b b+10 . 9 (K. 9 (1+b ¢

e + u..alu + > 0.:,.(”“") = pCDb‘a‘;:' (;:5 "™ e (T)) - Cu-k-b (50)
Jpe a _. , € iy . ¢ OP

BT B, Pt Cug R g = O,

9 (BK? Oe a5 _ o,
+ CD( 01,. ( ¢ az") - C')( - C«P"a';- , (51)

2 T oz, (4aSi) + Rin 7.t Sn 3, =" (—52—. + E) + a; (P )

3 (K d (S\., O (S
+Cosggy [ (Fomzez (3) 2z ()]

— pa;e — a.'ai (x-g—:'—) - Cu-pl?‘si + Cz.S..g-:-"- , (52)

o ._. __ ol S,
+3z—,.(pu"w)+pa"8z,, +——p-8.t“

opw
o

0z, M"E

o= (P 7, )



-9 [K ow -
+ Oty R | P
_ba oT -C pe = Cr3 _6_7_ (53
| az" Kazn lw I‘-w 2wm" az" ] )
Ipé; o _. .. ._ 0 [__ 9 9 (K ¢,
ks . (PlinG;) = . (PDaz") + CD‘E:-,.' (7an az:) : (54)

Tae equations for S and w could be omitted if (39) is adopted as a simpler model for the

turbulence heat flux.

4. SPECIALIZATION OF EQUATIONS TO INSTABILITY-DRIVEN
TURBULENCE

One of the major goals of our work is to utilize these model equations to describe
instability-driven turbulence accurately. The different types of instabilities encompassed
by the equations are pressure-gradient driven, as in Rayleigh-Taylor instability or its
shock-driven counterpart, Richtmeyer-Meshkov instability, and shear instability, commonly
known as Kelvin-Helmholtz instability. To rhow that our model can reproduce the
statistical effects of these instabiiities, we first specify that the flow is nearly incompressible,
but variable-density, and we define a coordinate system for the general case of variable-
density turbulence in a combined pressure gradient and shear flow. Let us dictate that
the initial flow velocity (u) is aligned with the x-axis, while ‘he pressure gradient acts in
the y-direction, which is the same direction in which the x-velocity varies. Furthermore,
we are interested in the ability of the model to predict how mean flow varsiations affect
these instabilitics, and so we ignore the secondary effects of turbulence or. itself. Triple
correlations, decay terms, and the “slow” parts of the pressure-containing correlations
will be dropped. This amounts to rapid distortion theory applied to instability-driven

turbulence. Further, in source terms, gradients of turbuleace variables are dropped and @
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is replaced by u. The turbulence equations for the Reynolds stresses and the turbulence

mass flux vector components are, in this special case (with D/Dt = 9/ + 6 - V),

DR,, oP 2 o
Dt = —('y 0 ':;C'Ilflzlyay ’ (55)
DR, on oP
———iDt = =1 = Can)Ryy = By “x'g'y“ ' (56)
DR,, b1
Rer ( " cm) ey (57)
Doy 130 Ryl (58)
Dt  pdy Oy’
Da, R, 0p .
-B?' = - _ﬁz ay . (09)

The rapid parts of the pressure-velocity are included here because they affect the qualitative
<onclusions about forins of instability growth rates. We are now in a position to examine
the description of instabilitics by these simplified equations.

For purc shear flow in a constant density medium, the pressure and density gradient
terms disappear. If the incan flow gradient is tiken to be approxinately constant over the

time scale of interest, then differentiation of Eq. 55 gives

D*R,, —gC DR,,ZT:_
Dz 37Dy Oy (60)
2 au\’ 1 Au\?
if C2r is near 0.5. The resulting expression for the growth rate of the instability is
1
w=—=k,Au, (61)

V6
where k, = (L,)"!, which nearly corresponds to the growth rate of Kelvin-Helmholtz

instability (18] at a wavenumber characteristic of the mixing layer width.
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On the other hand ... .. isuic giadient driven circumstances, with no initial flow in

the x-dizeetion, 11 eqristions with time-derivatives of x-direction variables disappear. By
differentieting Eq. 55 in 100! 11 <o+ - :nanner as above for Kelvin-Helmholtz instability,
we get

L 1t, ,Day8P _ 2(68!’ Ry, a-) oP (©2)

VI Dt 9y poy p*3dy) oy’

The tirst erm on the right side of this equation describes the effect of a pressure gradient

“tuect-aaun or shock) interacting with the turbulent density fluctuations, as measured by

bh. This always leads to increase of turbulent znergy L:ut is not present in purely Rayleigh-
Taylor instability.

The second term on the right, proportional to mean-density gradient, gives the effect

of Raylrigh-Taylor unstable conditions on turbulence, as these are characterized by the

interaction of density gradient and acceleration. This term gives exponential growth to

R,, at a rate determined by

130p
+./2 (:—”) = +V2wpr, (63)
p 9y
where g = — 3'-’ wherever gg-é > 0. If we interpret %%‘: to be a density difference between

twou sup ~rposed fluids divided by their sum times the reciprocal of & gradient scale length
(:3,), .2 recover the form of the expression for the growth rate for large wavenumber

disturbances (k 3» 8,) in gradient-stabilized Rayleigh-Taylor instability:

v~ /By ALE,, (64)

in which At is the Atwood number. Turning now to shock-driven growth, we use the other
term in Eq. 62. The weak shock is approximated [19] by a velocity jump V induced by an
impulsive pressure gradient (1/5)8p5(t)/8y . Then V = (8p/8y)/? and

a, =0V, (65)
and
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R,, = b3V? (66)

which agrees with Saffinan and Mciron's result for initial turbulence kinetic energy after
a weak shock coatacts a density discontiniity, here modeled by a finite value of b.

When considering a combined Kelvin Helinholtz-Rayleigh-Taylor instability, the
equations becomme somewhat more complicated [20]. Fromm Eq. 62 and the time differential

of Eq. 56, a fourth-order equation for R, cmerges:

D'R 2 an\*\ D’R
—Tt‘u = (3.‘;;” + -3-6211(1 - Cyn) (-55) ) _IFH - ?..);q-”" . (67)

where wpy is given by Eq. 63. We will restriet the discussion to cascs in which the density
and pressure gradients have the same sign, the classically stable Rayleigh-Taylor case.
Then wh r < 0 and the combined growth rate is given by

1 2 I 2
WroTAL = D) (3‘*’.;17' + §C2n(l - Can) (5—;') )

(68)

2
1 2 o’
:!:-2-\,(&'3(1-1'”302"(1 "Cm)((?)'%) ) - &fer s

which will have a real portion if 3 |why| < 2Cyx(1 — Can) (%-E) If the density and
velocity gradients have the same characteristic wavenumber kyy, then we expect growth

for cases where, for g and Ap taken as positive,

9)Np 1

kag(Au) > == .
(Bu) 2 ngm(l-Czn)

(69)

5. COMPARISON TO TWO-FIELD MODELS
Two-field descriptions of instability-driven turbulence and mixing hold some advan-
tages over the approach taken thus far in this paper, e.g., the ability to describe interpen-

ctration naturally by keeping two separate velocity fields, and the marking of the mixture
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fraction at any point, among others. Further, the two means of analyzing mixtures arc
cquivalent in some simple, yet iuteresting cases. The two-field continuum flow equations
can take on many forms, depending on the amount of detail that the researchier wishes to
capture. Here, for present purposes, one of the simplest forms of these equations, written
for two microscopically incompressible fields, will suffice.

The modcl equations of Section 3 should include the capability of describing the
interpenctration processes of two-field flow. To define the concepts of mean and fiuctuating
part in the two-field context, we consider the system composed of particles or droplet:
dispersed within a continuous surrounding fluid.

Two-field flow theory would allow for fluctuations from particle to particle and from
point to point within the fluid. The dynamics of the system is described by field variables
at several levels of specificity.

First, there are subscripted variables pertaining to the individual fields. The field
densities py, k =1, 2, are congtants. The charactesistic function 8(x,t) satisfies 53 = 1
for regions of x-space occupied by the k*® field and gi = 0 elsewhere, so that Y, s = 1.
The velocity vy(x, t) of the k*® field is defined where 8 = 1 and 3i(x, t)va(x,t) is defined
for all x (within the physical region occupied by any field).

Second, one computes averages of these ficld data, either ensemble averages, or space
averages over control volumes small compared to significant macroscopic length scales, but

large compared to droplet size and separation scales. The volume fractions a; are defined

by

ax(z,t) = fi(z,t), 0<ax(x,t)<1 {70)

and obey Y, ax = 1. Then an averaged velocit; ux(z,t) is defined for each field and all x
by

ax(z,t) ux(z,t) = Bu(x, t)os(x,t) . (71)

Other averaged individual field data, such as internal energy I are defined similarly.
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Next, “imnixture” variables that characterize the system of fields as a single fluid are
defined by suins over k, weighted by the characteristic functions 4; (unaveraged mixture
variables) or by the volume fractions a; (averaged mixture variables). In this way, we
arrive at analogs of the turbulence averages. denoted with overbars or tildes, and the

turbulence fluctuations, denoted by primed variables:

p=Zﬂkm- ’ﬁ=znmt, F=p-p. (72)
! x
u-:Zﬂng, E=Zn§ug, u; =uy -1, (73)
x A
and
D DY/ TR S YT R (74)
Yiawm Yioum

Tt volvtion e« :ations for the interacting averaged field variables are developed in
detail by Ishii [6], starting from the statements of conservation of mass, inomentum, and

total encrgy for each field. We have:

d
—9(,;"—,"'+V'(n§pgu;}=0. (75)

Jdagpyu,

0‘ + V. (0&,)‘31‘“‘) - —nkv,’ + 1\.1)7'(‘“' - ul) ’ {76)

0
+V-(a;p‘u‘h) = —*P(g'; + V'(lgln)

+ R1pCom (Te - Ta) + Kpp(ue —ua) - (U - uy) .

Jdarps Iy

ot (77)

These cquations represent averages over realizations of tlows at high Reynolds aumber,
and viscous stress terms are ignored. P is the spatially averaged pressure of thie surronnding
field. Cym is an effective specific keat of the mixture. Rt is a heat-exchange function and
Kp is 8 momentum-exchange function (inverse drag time scale); they result from modeling

of the interactions at field interfaces. For present purposes, we need not specify how their

28



time and space vanations e determined. Ty i the temperature of the k'** field and
subscript &' 1 fers to ti. feld other than the &' ficll. We wish to demonstrate a elose
relationship betwee:  hese ecuations and the turbulent transport equations of Section 3.9.

The correlation fu: ~tions studied in the first part of this paper can be expressed, in

the two-ficld systen:. - . tenias of ~ums weighted by the volume fractions:

R,, - _\: Ak (Uy - @, oug - 1), (79)
A
a=-Y oi(wm u)=u-, (80)
A
S = Z(u;r‘(u;\ u) (lg - i) . (81)
- ‘

- i 1 g
b= - (¢ -p)| - - ") =-1+4 i QupPn » ‘82

Y ar(p ~p) (I = T) N
w=* =~Z¢.,(1.—1).—.1-7. (83)
[

P

lii general, to form any correlation (which, previously, we had associated with turbulence),
onc averages the departures from the mean, cither mass-weighted or uniformly weighted,

over the number of materials. Another example of a correlation of fluctuations is
u'u = Zm(ug —u)(ux —1).
k

These relationships hold for any nunber of ficlds, but we are most interested in a two-field
description because of the additional relationships that apply. Thus, for two fields, we

have:

P=aip+azp, (84)

3%}
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_ ajaz(p1 — p2)(u) — uy)

- ’ (85
P )
IPRY
b='p(ﬁ'-+2)_1._. @mas(ps — p2)” (59)
(I nm

- ajaz(py —£2)(11 - 1) ’ (87

p
R, = ajazp1p2(y ——uz).(ul - U2); _ a;a,p ’ (88)

p b
and

s Stz w2 b) s 5, (59

In this model, evolution cquations for R and S arc¢ not needed and only the a, b, and w
equations need to be examined.
From the {wo-field equations and the two-field definitions outlined above, an equation

for a follows:

Jpa - = T - ( 1. 1) _
5 +V - -pau+p(a-V)i-+uu-Vp+ V. jpaa .I—B‘*'b)_ (90)

bVP — K})ap,
where B = 3", ayas(py — p;2)?[5* = ¢ [3* = bpip2 /5’ and K} = Kpp*/(a1azp1p) -
By comparing this vquation to (28), the turbulence equation for a, and to (29) we can

infer a new modeling for the correlaticn p/u’u’:
Porlgdd o . l l l 91
pluiyj =paiaj\1 - +7 ] - (91)

This gives a wave-like flux term in the a equation, as opposed to the diffusive flux term
that most modelers would use, following (22). For the model of Section 3, taken in the

limiting case of two-field interpenetration, p'uju; should reduce to the right side of (91),

which the gradient closure (diffusive flux) would not.
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If n gradient approximation for a is derived from the balance in Eq. 49 for a between
the decay tenn ( C.pea/k) and the density gradient production tenn (R,,,/p) (9p/0,).

then
K 05

~Cra— R, e

la --;

(92)

We expeet that (92) will best appraximate a, as o constraint equation relatiug data ut a
common time, in the fully developed turbulence Lt when prod-ction and dissipation suc
in balance. Furthermore, one may show, from the two-field deseription expressed in 1erms
of single-field variables with g and p; as constants, that (expressing oy, a3 in tenus of p.,
21, P2, and here A in terms of 3, py, p2, and uy — uy)

AL S
“( b b)‘aﬁ'

Then, substituting into Eqs. 91 92, symmetrizing the expression and approximating

OA /Dx, by (OA/Tp)(Op/01,). the approximation to p'w'u’ emerges as

—_— K 2 d
p’u:u', = -—(."),,:5 (R"'E:A) + Rlna—::"l) ’ (93)

which is different, and perhaps better, than the form in (22). Also, the decay term in the

newly-derived a equation could be modeled as

! ava ap _Cl ala|p¢ ‘04)

}\Dap~C L“"g, e 1\3/2 .

By extending the analysis for other turbulence quantities, we get, for the evolution of b,

b b+l o (1)
-a—"+(u-V)b+-7ﬁ—V'pa+pv'll (P) =0. (95)

if V-u’ = 0. This leads to a revised model for the term we were calling diffusion.like,

which s
1\’ ab
ul - = e —, ‘96)
(P) pB



Now we write an equation for B = ;;—"7'/57. The turbulence cquation for this is, again
assuming incomnpressible turbulence,

'8

T + 9. (Up'B)+7'BV T +%a-V5+ V- plu =0. (97)

From the twofield description, written in terms of single-field vaiables, B evolves

according to

2
% B +V-(0p’B) +7’'BV -u+2%a-Vp
o (98)
A 1 1 '
. =2 -— s -— -
+V (pBa(l B+b)) 0,
which implics that the triple correlation .. Ee. 97 shou. ] be aiodeled as
p'u’ = pDa 1--l—+3) (99)
pre=e B %)
A similar treatment of the u' equation gives
T = pwa 1 = 42 (100)
B b)’

which also reduces properly in the fully-developed turbutenee limit. The potential decay

terms (cf. Eqs. 53 and 77) in the two-ficld version of this eguation can be written as

eer  aaz(py = )Ty -- T3)
Ay *m ;

+K°p °2P2 = "|Pl “1"2(91 QQL ~ Ug)- (4 — ug)
asaz(ps — p2) 7

where R = Rrp’ [ (aja2p1p2). These two expresians can be traasfatmed into single-ficld

variables, to become

and
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These can be iderntified with two terins in the original w equation, namely

!
-Pp (-l-) V (xVT") = —(';.,'f)-;::v
p \

_[1 ,0u, . Jduy,
p(P) (P 01" - mna ") bp'

respectively, though the second correspondence is less clear.

and

For the mass concentration equations, n similar formal parallel holds. Applying Eq. 15
for the inass-averaged concentration of material 1 at high Peclet numbess for mass transfer,

(D —0),

ag:. +V-poa+ V- pdu" =0, (101)

From the two-field description as a point of departure, the mass fraction for field 1, in
the region occupied by field & is ¢;x = §;4. The associated single-field variables, unaveraged

and niass averaged, respectively, aze ¢; = Y, resx = ) and
=) Bmen/p=ain/p. (102)
x

Observe that é, +¢; = 1 and ¢}, = ¢4 -~ €; is the negative of ¢;, Rewriting the unknown

correlation in (101) in terins of two-field variables, we ge!

pciu” = payu” = aypy (u; - 1) = -a—'"%p-'-&(u. -uz). (103)

Thus, the material fluxes can be re-expressed in terms of single-field variables as

C1ép .
pau’ = -pcu’ = pa —'3-3 sign(py ~ p2) - (104)

If a is again taken in its fully developed turbulence limit (a; = -C;, (K/¢p’) R, (8p/0z,))

as in Eq. 92, then, after re-expreising a;, a3, and hence &;é3, in terms of 3, p1, o2,

/' ¢ K_ @&p_oc . K. 0¢
pai V Cb sign(p; — p3) = —Cy, —Rina P‘-a":-'l' = Cu': 505;-"' . (105)
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which agrees with (43), to within an adjustable constant. Thus, we have demonstreted
the relationship of the unmodeled 1w ulence equations to the two-field equations and, as
a result, suggested somne new closures for variable-density turbulence models that capture

both the ordered and fully turbulent limnits.

6. SIMPLER MODELS

Implementation of such models in multidimensional hydrodynamics codes can become
extremcly tedious and the resulting run times can become unreasonable, (Therefore, it is of
significant interest to develop and prograin simpler models in order to gain experience with
then: and, if they can be demonstrated to be deficient in crucial areas. then improved at a
later time.) One of the simplifications we have used with some secess in the CAVEAT code
{1) retains a transport equation for the trace of the Reynolds stress tensor (3 Rnn = PK)
and makes use of the Boussinesq (gradient) approximation for specifying the components

of the Reynolds stress tensor in terns of A and ¢. Then

dpK o .. .. dim  OP i, OR -
7 + oz, (I"‘nl‘ )+ Rmn“.');':' = Qn oz, + a:" ("laxn) - pE, (“)6)
Ou, Ou, 2 2
= e ——..- —l -— - . 1 Py Y-
Ry = - (o + 5 = 307 )) + 36,58 (107)
R?
= C,,ﬁ—;— . (108)

Furthermore, keeping only the most important production terms, the decay term and
a simpler turbulent diffusion term froni the a equation (cf. Eq. 49), results in a more
manageable model expression:

a""“+5§-(ﬁa..a.-)+-pa..a'7‘ b(ar a?...-)

) 9z, \0z; 0z,

(109)

Rin a; (4 pkz aai ZC_
3 0:,,+CD'8:,,( ¢ Oz, —C“Ka"



The proposed ¢ cquation is the same as derived previously (cf. Eq. 51), as is the

concentration cquation (cf. Eq. 54):

Jdpe a _. ¢ da,, JoP 3 (PK? 0
_a‘T + dzm . R?Rmn dr, (lt “n 0:,. CD( . ( p 8:,.)
2— O n
C;. ‘[‘. C“p(-a%; (110)
Jdpe, N Jd _. . ad 0 J (R o,
0‘ t a_rn (p“ncl) - 0,( ([)Do!" ) + Cl)r a.tm ("“ R".na,rn) . (lll)

Further, b can be computed from its own transport equation or, if we assune that there is
no interspecies diffusion, so that the b equation has no decay term, the two-field expression

for b sliould be accurate:

_ 2
b= ai0z(p — p2)” (112)
P1P2

In practice, in a computational cell, oy, a3, p;, and p; would be determined from the two
criterin of (1) pressure equilibrimin between comporents, and (2) either adiabatic work
exchange or temperature equilibriumn between materials. Finally, the tisbulent heat flux,

in accordance with this simplified approach, is given by diffusion of the internal energy, as

K _ ai

S. = —CD[-;-R",--(;);— . (113)

This miodel can be considered a natural extensior of K - ¢ models and the modeling
:nethodology to variable-density flows.

Another type of mode! would use the two-field (or multifield) flow equations (75-
77) for the stable part of the flow, together with the turbulent transport equations of
Scction 3 to represent the multificld instabilities. In this context, the stable past of the
flow has been seferred to as “ordered,” while the unstable part may be called “disordered.”
Closures should then be modeled so that they vanish in the pure multifield limit, rather

than approaching their multifield limits as given in this section. The type of turbulence
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model to be used to augment the description of ordered motion could also provide the drag

length scale {6} for the phenomenovlogical momentum exchange cocfficient:

*3/1
Ly= h . (114)

€

The Reynolds stress and turbulence dissipation cquations in the disordered portion of
the model are taken from standerd turbulence models (e.g.. that of Launder, Reece, and
08i8;p

Rc di {16}), but we suppose that the energy lost from the ordered motion (-2K =

2K *Ro1d) acts as a source to disordered energy, not heat:
i) g

OR? 0 o Ju, ia;
1) o ! . L (et }
at 4 —— a.r (l‘n )) + R'“a 4 R‘)ln axn ',I\D b

9 (K>, O Rm
= Cong- [ X R 2t]

(115)
_enlrt - ts.mt)-c 150
IR "3 u 2R 3% % an
2K pp 1 2.
- C‘”( 3 ) (a,a, - 56,,a,,a,,) - 56,,;)( ,
Ope 9 _. ] Qi @ (PR? Oe
ot Zn (pu,.c)+C,.-I-‘-.-Rf,,,,-b?: B C"'az,. ( ¢ 8:,.)
(116)
r
- € B - Cupe(V ),
Ou du
= d ) i L
¢, = - (RG22 + RhZL) | (117)

The “d” superscript refers to only the disordered past of the turbulence and Kp can be
mpdclcd as in Eq. 94. Then the total Reynolds stress that enters the mean flow momentum
" equation is (cf. Eq. 13)

RO =R+ R =R+ ) aupa(up - ii}fus - @), (118)
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and equations for a, b, and ¢; are not needed. An cquation for the disordered part of the

heat flux could be derived in an analogous fashion, with a source term
& = (Kb + R3)S + Kby Ry (119)

arising from the decay of the ordered part of S:

ast o w4 81 0
at +a '("S)+Rma Sn'a':_:'—
Cos—- ( 9 (52 ) +Re 2 f_i (120)
ma‘tn P r'ma:" 7
— CisPis 4 Cps58 20 c
ISK |+ 28 na JS)&-
Then
s = 8¢ +3" aupe (s - @) (1. - i) . (121)

is the quantity neceded for the mean internal energy equation.

7. SUMMARY

Starting from the Navier-Stokes equations written for a single field, we have denived
and closed a sct of transport equations appropriate for variable-density turbulence when
the fluctuating velocities are fur subsonic. This condition implies local pressure equilibrium
among the different eddics and species over a distance small compared to mean-flow
gradients. We have also tak-n a rather simple two-field model from the literature and
demonstrated that our unclozed equations are formally equivalent to this mnodel if the
densities of the two fluids are constant. From this equivalence, new closures for turbulence
quantities, such as triple correlations, emerge naturally. These new closure ideas have the
ability to describe not only fully developed turbulence but also encompass the limit of

purely ordered interpenetration of two incompressible materials. Therefore, these ciosures

37



may be superior to those commonly proposed for variabl.:-density turbulence and their

application to real problems should be explored.

We are indebted to Charles Cranfill for discussions and iusights on the topics of this

paper.
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