LA-11256

The Chlorination of Plutonium Dioxide

For Reference

Not to be taken from this room

LosAlamos

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

Edited by Connie Snyder Photocomposition by Patrick Byrnes

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

LA-11256

UC-711 Issued: September 1988

THE CHLORINATION OF PLUTONIUM DIOXIDE

by

Mike H. West, Michelle D. Ferran, and Keith W. Fife

ABSTRACT

We investigated the conversion of PuO_2 to $PuCl_3$ with a number of chlorinating agents, sources of PuO_2 , and reaction conditions, including temperature. We examined Cl_2 , HCl, CCl_4 , Cl_2 -CCl₄, and HCl-CCl₄ as potential chlorinating agents. Our study showed that Cl_2 -CCl₄ was the superior chlorinating agent. Using this agent, low-fired PuO_2 —formed by calcining plutonium (III) oxalate at temperatures below 500°C—is more reactive toward chlorination than high-fired PuO_2 , which is formed by calcining plutonium (III) oxalate at 850°C. Both the low- and high-fired PuO_2 feed materials are more reactive than when PuO_2 is produced by burning plutonium metal at 400–500°C (foundry oxide). The conversion efficiency of PuO_2 to $PuCl_3$ is relatively constant over a batch-size range of 10–300 g.

I. INTRODUCTION

In recent years, researchers have noted a resurgence of interest in synthesizing PuCl₃ for use in pyrochemical processes. Reasons for this renewed interest are broad, encompassing a range of processing activities. A primary driving force has been the desire to substitute PuCl₃ for PuF₄ in the traditional bomb-reduction (pressure vessel) process for the large-scale production of plutonium metal. For three decades, concerns have arisen over the $\{\alpha, n\}$ reaction from the PuF₄ molecule and the subsequent high neutron exposure rates for chemical operators.¹ In addition, the CaCl₂-CaI₂ slag—formed during the bomb-reduction process in which PuCl₃ is reduced by calcium metal in the presence of an iodine booster—has a lower melting point than the analogous slag (CaF₂-CaI₂), which is formed by the reduction of PuF₄. The CaCl₂-CaI₂ slag is also more readily dissolved in aqueous plutonium recovery schemes.

Other significant molten salt processes for purifying and producing plutonium metal that could incorporate $PuCl_3$ are the molten salt extraction (MSE) of americium from plutonium metal, electrorefining (ER) of plutonium metal, and the ambient pressure reduction (APR) of $PuCl_3$ to plutonium metal, with calcium metal or other reducing agents in a molten salt diluent matrix. The availability of $PuCl_3$ is also vital to fundamental electrochemical studies of trivalent plutonium in molten chloride salt systems.²

Los Alamos researchers believe it is worthwhile to replace $MgCl_2$ with $PuCl_3$ as an oxidant in the MSE and ER processes from the standpoint of eliminating magnesium as a system impurity. Magnesium metal volatilizes during foundry casting of plutonium metal, causing plutonium losses through splattering and damage to the casting equipment and the associated vacuum system. Magnesium also participates in an $\{\alpha, n\}$ reaction with plutonium and americium, leading to a potentially serious neutron exposure problem. Another reason for using PuCl₃ in the MSE and ER processes is the large distribution coefficient for the partitioning of americium between the metal and salt phases in the presence of PuCl₃.³

The eutectic point for the CaCl₂-PuCl₃ phase diagram occurs at 40 mole % PuCl₃ and 610° C.⁴ Compound formation is not observed for this system. Thus, it may be possible to solubilize 0.4 moles PuCl₃ (138 g) in 0.6 moles CaCl₂ (66.6 g) at temperatures above 610° C and reduce the PuCl₃ to plutonium metal with calcium metal reductant at temperatures much lower than those employed in the conventional direct oxide reduction (DOR) process (>800°C).⁵ This procedure is the APR process. Calcium chloride will also be an effective solvent for CaO produced by the reduction of unconverted PuO₂ present in PuCl₃. In theory, the CaCl₂ salt phase is recycled to subsequent reductions as a result of the small CaO content and the increased purity resulting from the calcium reduction step. For plutonium metal, we are also considering performing the ER process in the vessel used for the APR process.

The development of synthetic routes for PuCl₃ production dates to the Manhattan Project efforts at Los Alamos and the Metallurgical Laboratory of the University of Chicago, which is now Argonne National Laboratory.^{6,7} In the Soviet Union, Budayev and Volsky used CCl₄ to chlorinate PuO₂, which was produced by calcining plutonium oxalate.⁸ Rasmussen and Hopkins¹ chlorinated low-fired PuO₂ with COCl₂ at temperatures up to 500°C. A screw calciner operated at 250-350°C produced the PuO₂ that subsequently flowed countercurrent to COCl₂ in a vibrating tube chlorinator. These workers also investigated HCl-H₂ and CO-Cl₂ as potential chlorinating agents but found them less reactive toward PuO₂ than COCl₂. Another potential source of PuCl₃ relies upon the substoichiometric oxidation of plutonium metal by ZnCl₂ in a KCl salt diluent. The oxidation process is a modification to the three-step pyroredox process for upgrading impure plutonium metal to a feed suitable for electrorefining.⁹ It remains to be seen whether trace quantities of zinc metal are deleterious to the use of K_3PuCl_6 in other processes. Reavis developed a two-step synthesis for preparing PuCl₃ that involved forming PuH_{2.7} at 25-250°C from the reaction between plutonium metal and H₂. This reaction was then followed by a subsequent reaction with HCl at 450° C for producing PuCl₃.¹⁰ The reversible reaction between H₂ and plutonium metal is vital to forming a large surface area for the subsequent reaction with HCl.

Boreham et al. reported forming PuCl₃ from plutonium (III) and (IV) oxalates by the reaction with HCl or $COCl_2$.¹¹ Temperatures near 500°C were optimal for hydrochlorinating the plutonium (III) and (IV) oxalates. Nance at Los Alamos also successfully hydrochlorinated plutonium (III) oxalate.¹² Becker and Soine studied the influence of various molten salt systems on the dissolution of PuO₂ by Cl₂ or HCl gas sparge.¹³ Maximum dissolution was observed for 0.3 LiCl-0.3 KCl-0.4 CsCl (mole fractions precede each salt component). The amount of PuO₂ dissolved and the concentration of tetravalent plutonium formed in the salt phase relative to the trivalent species depended directly upon the mole fraction of CsCl.

RESULTS

Recent Los Alamos research focused on evaluating prospective chlorinating agents for synthesizing PuCl₃ from PuO₂.

A. Small-Scale Chlorination Experiments

The first chlorinating agents investigated for PuO_2 were Cl_2 and HCl. Neither gas proved capable of chlorinating PuO_2 at temperatures up to 545°C (HCl) or 790°C (Cl₂). The thermodynamic data of Glassner suggest that chlorinating PuO_2 with HCl is not feasible.¹⁴

$$PuO_2 + 4HCl = PuCl_3 + 2H_2O + 1/2Cl_2,$$
 (1)

where $\Delta G_{1000K} = 29$ kcal/mole. Both low-fired and high-fired PuO₂ were studied in the case of Cl₂ and low-fired PuO₂ only with HCl. The inertness of PuO₂ toward HCl contrasts with AmO₂, which reacts with this reagent at 600°C to form AmCl₃.¹⁵

The first successful chlorinating agent for PuO_2 examined was CCl_4 , which decomposes at elevated temperatures to a variety of compounds including C_6Cl_6 , C_2Cl_4 , C_2Cl_6 , CO_2 , CO, Cl_2 , $COCl_2$, and C.⁸ Argon was saturated with CCl_4 by bubbling the argon stream through CCl_4 contained in a gas-washing bottle (Fig. 1). The Ar-CCl₄ stream passed over PuO_2 , which was contained in a quartz vessel heated by a Lindberg 55031 resistance furnace. The temperature of the reactor was monitored continuously using a type-K thermocouple protected by a quartz tube sealed at one end. Gases exiting the quartz reactor through a side arm were scrubbed by 5–6 M KOH.

The reaction proposed by Fullam and Soine¹⁶ for the reaction of CCl₄ with PuO₂ is

$$PuO_{2}(s) + CCl_{4}(g) = PuCl_{3}(s) + CO_{2}(g) + 1/2Cl_{2}(g).$$
(2)

However, Fig. 2 shows that the PuCl₃ product formed by this reaction was a dark solid, suggesting carbon contamination from CCl₄ pyrolysis.

Therefore, the use of Cl_2 gas saturated with CCl_4 was explored as a means of synthesizing $PuCl_3$ unadulterated by carbon. The Cl_2 was saturated with CCl_4 by the technique described for argon. Figure 3 shows that the $PuCl_3$ resulting from chlorinating PuO_2 appeared relatively free of carbon contamination from CCl_4 pyrolysis.

During subsequent experiments with Cl_2 - CCl_4 , we investigated the influence of both chlorination temperatures and calcination temperatures for plutonium (III) oxalate on the extent of $PuCl_3$ formation from PuO_2 at the 10-g scale. Plutonium (III) oxalate is typically calcined at temperatures <500°C to produce what is commonly referred to as low-fired PuO_2 . Figure 4 shows that the synthesis of $PuCl_3$ is more complete as the chlorination reaction temperature approaches 500°C. Through x-ray powder diffraction analyses we demonstrated that unreacted PuO_2 is present in $PuCl_3$. Lowfired PuO_2 is more reactive towards Cl_2 - CCl_4 at all temperatures than high-fired PuO_2 . High-fired PuO_2 is prepared by calcining the low-fired product at 800–900°C. This process prepares PuO_2 for use in the Los Alamos DOR operation during which plutonium metal is prepared by reducing

Fig. 1. Quartz reactor for exploratory chlorination experiments with PuO₂.

Fig. 2. Plutonium trichloride from a small-scale chlorination of PuO_2 with CCl_4 . Carbon contamination of $PuCl_3$ results in a black coloration of the sample.

Fig. 3. Plutonium trichloride from a small-scale chlorination of PuO_2 with Cl_2 -CCl₄. The absence of carbon during the process results in a lighter coloration of the sample, which contrasts Fig. 2.

the oxide with calcium metal in molten $CaCl_2$. By decreasing the chlorination reactivity of PuO_2 as it is calcined at increasingly higher temperatures (800–900°C), we substantiate the work of Bjorkland and Staritsky.¹⁷ They found that as the calcination temperature increases, the reactivity of PuO_2 toward aqueous HCl-KI decreases. Correspondingly, the x-ray diffraction pattern of the oxide intensifies, indicating a more stable crystalline state.

Figure 5 shows that a similar series of experiments was performed using $HCl-CCl_4$ with nearly identical results. However, the conversion of low-fired PuO_2 to $PuCl_3$ is not as complete with $HCl-CCl_4$ as with Cl_2-CCl_4 . In addition, carbonaceous deposits are present after chlorination with $HCl-CCl_4$.

Foundry oxide was also chlorinated with Cl_2-CCl_4 but not until the reactor temperature approached 700°C. Foundry oxide is unreactive toward concentrated HNO₃-dilute HF solutions. Bjorkland and Staritsky reported a 2.40 refractive index for oxide prepared from the metal at 170°C.¹⁷ An identical value for the refractive index was obtained for oxide prepared from plutonium (IV) oxalate at 1000°C. The lack of reactivity is related to a stable PuO₂ crystal structure formed upon burning plutonium metal in air.

Plutonium trichloride, formed by chlorinating PuO_2 , was transported from the main body of PuO_2 toward the monel heat reflectors shown in Fig. 1 and was deposited as a mass of green needles (Fig. 6). The chlorination rate appeared to depend on the transport of $PuCl_3$ from the reaction site. Plutonium trichloride has a negligible vapor pressure at 700°C (0.00029 mm),¹⁸ but $PuCl_4$ has a substantial vapor pressure at the same temperature (3.7 mm).¹⁹ Researchers believe the $PuCl_3$ is thus formed as in Eq. (2) and transported as in Eqs. (3) and (4).

$$PuCl_3(s) + 1/2Cl_2(g) = PuCl_4(g) @ 700^{\circ}C$$
 (3)

$$PuCl_4(g) = PuCl_3(s) + 1/2 Cl_2(g) @ < 700^{\circ}C.$$
 (4)

The vapor-phase absorption spectrum of PuCl₄ at 925°C reported by Gruen and DeKock provides additional evidence for its existence in the vapor phase.²⁰

Fig. 4. Chlorination of low-fired (\bigcirc) and high-fired (\triangle) PuO₂ with Cl₂-CCl₄ as a function of temperature.

Fig. 5. Chlorination of low-fired (\bigcirc) and high-fired (\triangle) PuO₂ with HCl-CCl₄ as a function of temperature.

Fig. 6. Crystals of PuCl₃ from chlorination of foundry PuO_2 with Cl_2 -CCl₄ at 700°C.

B. Large-Scale Chlorination Experiments with Cl₂-CCl₄

The initial work to scale up the batch chlorination experiments used a 3-in. (outer diameter) quartz vessel with a coarse porosity frit (Fig. 7), on which rest the PuO_2 feed; a 3-in. (inner diameter) Lindberg furnace (MK-3012) heated the reaction vessel. A gas inlet tube and thermocouple well, constructed from quartz, penetrated a silicone rubber stopper placed in a standard taper 24/40 ground joint at the vessel's top. Later, the rubber stopper was replaced with a Pyrex male ground joint with a thermocouple well and gas inlet tube, whereas a ball joint and elbow fitted with Tygon formed the exit line. Chlorine saturated with CCl₄ flowed into the top of the vessel through the inlet tube and exited through Tygon tubing at the vessel's bottom. Once the reaction neared completion, excess CCl₄ condensed in the off gas line. Fullam and Soine observed this phenomenon for the stirred-bed batch chlorinator.¹⁶ Figure 8 shows that volatile chlorides, such as FeCl₃ and pyrolysis products of CCl₄, collect below the frit in the cool region of the furnace. The preliminary experiments used a 50-g batch size of PuO₂. The reactivity of the low-fired PuO₂ partially determined the time required for complete chlorination. We needed to double the Cl₂ flow rate through CCl₄ to achieve complete chlorination of 100-g batches of PuO2 within a normal working day (one 8-hour shift). Figure 9 shows a 175-g batch size of PuCl₃ resting on the frit.

Table I illustrates the considerable variation in reactivity toward chlorination even among lowfired PuO₂ blends. The data in Table I also illustrate comparable reactivity for high-fired and some low-fired PuO₂ samples. Plutonium dioxide was originally derived by calcining plutonium (III) and (IV) oxalates.

Table I. Chlorination Reactivity of Some Selected Low-Fired and High-Fired PuO ₂ Blends						
Oxide Source	Pu (%)	Cl (%)	Reaction Time (h) at 500°C) Batch Size (g)		
MSTPPB9C05 (a) PUTHR2KFC5 (b) MSTPPB334C (a)	70.94 70.71 70.17	27.5 27.1 28.3	5 1/6 6 2/3 13 5/6	100.0 50.0 200.0		

(a) Low-fired PuO_2 .

(b) High-fired PuO₂.

The MSTPPB PuO₂ blends, which are low-fired oxides, are normally suitable for fluorination to PuF4 with HF for the synthesis of plutonium metal by the bomb-reduction process because fluorination also requires active or low-fired PuO₂.

Fifty-gram batches from blended, low-fired PuO₂ were chlorinated for periods between 1 and 6 hours at 500°C and 600°C. Chlorination appeared more rapid at the higher temperature, requiring approximately 3 hours, but work at 600°C requires using quartz, which is considerably more expensive, harder to fabricate, and more difficult to shape than Pyrex. For these reasons, chlorination at 500°C was chosen with approximately 4 hours required for a complete reaction (Fig. 10).

To achieve more rapid chlorination of PuO_2 and, concurrently, to increase the batch size, we constructed a Pyrex vessel from a 600-mL Büchner-type, fritted disc funnel. A standard taper 55/50 ground joint sealed the top of the reactor with an 18/7 ball joint and elbow forming an exit line. With this reactor vessel and a standard 6-in. (inner diameter) Lindberg furnace (MK-6015-S-V), up to 300-g batches of PuO_2 have been successfully chlorinated at 500°C in less than 7 hours. Table II summarizes the extent of chlorination for batch sizes ranging from 10 to 300 g.

Fig. 7. Apparatus for chlorination experiments with PuO_2 (50–100 g).

Fig. 8. Condensation of volatile chlorides and CCl_4 pyrolysis products at the reactor exit. The reddish deposits represent the products of the FeCl₃ distilling process. The whitish deposits present in the condensate represent CCl_4 pyrolysis products.

Fig. 9. Plutonium trichloride from a large-scale chlorination experiment (175 g PuO₂) using Cl₂-CCl₄.

Fig. 10. Weight change (g) versus chlorination time at 500°C and 600°C.

PuO ₂ Batch Size (g)	PuCl ₃ (%)	Number of Runs
10.0	95.4	2
50.0	94.5	2
75.0	94.2	1
100.0	94.8	14
125.0	94.6	3
150.0	95.1	1
200.0	95.2	8
300.0	94.6	6

Table II. The Effect of Batch Size on the Chlorination of PuO_2 with Cl_2 - CCl_4

The conversion efficiency is essentially constant at 95% as the batch size increases by an order of magnitude. The Appendix summarizes all chlorination experiments up to and including the 300-g batch size.

III. FUTURE WORK

We must continue our experimental work to evaluate other potential chlorinating agents including CO-Cl₂, photosensitized CO-Cl₂ mixtures, and COCl₂. (Phosgene was the optimum chlorinating agent for PuO₂ reported by the Hanford Atomic Products Operation.)¹

Once researchers select an optimum reagent for production of $PuCl_3$, we must evaluate construction materials under reactor-like conditions to ensure they are corrosion-resistant.²¹. The most corrosion-resistant materials will be used for constructing large-scale chlorination vessels comparable to those used on the metal preparation line. Large-scale production of $PuCl_3$ will enable researchers to more rapidly evaluate potential uses of $PuCl_3$. We continue our efforts to incorporate and evaluate $PuCl_3$ in the processes of MSE, APR, ER, and bomb reduction.

ACKNOWLEDGMENTS

The authors wish to thank James G. Reavis and Robert L. Nance of Los Alamos National Laboratory and Fred D. Fisher of Westinghouse Hanford Company for encouragement and helpful advice during the early stages of this work. Don Temer, Tom Marshall, and Brad Roof of CLS-1 have been indispensable to this project, providing plutonium, chloride, and x-ray diffraction analyses for PuCl₃.

REFERENCES

- 1. M. J. Rasmussen and H. H. Hopkins, "Preparing Plutonium via the Chloride Process," Industrial and Engineering Chemistry, 53(6), 453 (1961).
- 2. L. E. McCurry, G. M. M. Moy, and D. F. Bowersox, "Electrochemistry of Plutonium in Molten Halides," Los Alamos National Laboratory document LA-UR-87-1385 (1987).
- 3. G. D. Bird and M. H. West, Los Alamos National Laboratory, unpublished data (1987).

- 4. J. A. Leary, "Temperature-Composition Diagrams of Pseudo-Binary Systems Containing Plutonium (III) Halides," Los Alamos Scientific Laboratory report LA-2661 (January 22, 1962).
- 5. L. J. Mullins and C. L. Foxx, "Direct Reduction of ²³⁸PuO₂ and ²³⁹PuO₂ to Metal," Los Alamos National Laboratory report LA-9073 (February 1982).
- 6. C. S. Garner, S. E. Bakes, I. B. Johns, G. B. Moulton, and B. Weinstock, "The Preparation of Plutonium Trichloride," Los Alamos Scientific Laboratory report LA-112 (July 24, 1944).
- B. M. Abraham, B. B. Brody, N. R. Davidson, F. Hageman, I. Karle, J. J. Katz, and M. J. Wolf, "Preparation and Properties of Plutonium Chlorides and Oxychlorides," *The Transuranium Elements Research Papers*, Paper 6.7, G. T. Seaborg, J. J. Katz, and W. M. Manning, Eds. (McGraw-Hill, Inc., New York, 1949), pp. 740–758.
- I. V. Budayev and A. N. Volsky, "The Chlorination of Uranium Dioxide and Plutonium Dioxide" in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, September 1-13, 1958, Geneva, Switzerland, Vol. 28, Paper 2195, 316 (1959).
- 9. J. A. McNeese, D. F. Bowersox, and D. C. Christensen, "Recovery of Plutonium by Pyroredox Processing," Los Alamos National Laboratory report LA-10457 (September 1985).
- J. G. Reavis, K. W. R. Johnson, J. A. Leary, A. N. Morgan, A. E. Ogard, and K. A. Walsh, "The Preparation of Plutonium Halides for Fused Salt Studies," *Extractive and Physical Metallurgy* of *Plutonium and its Alloys*, W. D. Wilkinson, Ed. (Interscience Publishers, New York, 1959), p. 316.
- 11. D. Boreham, J. H. Freeman, E. W. Hooper, I. L. Jenkins, and J. L. Woodhead, "The Preparation of Plutonium Trichloride," J. Inorg. Nucl. Chem. 16, 154 (1960).
- 12. R. L. Nance, Los Alamos National Laboratory, unpublished data (1960).
- 13. C. R. Becker and T. S. Soine, "Screening Tests for Proposed Molten Salt Electrolytes," General Electric Company, Hanford Atomic Products Operation report HW-77591 (May 10, 1963).
- 14. A. Glassner, "The Thermodynamic Properties of the Oxides, Fluorides, and Chlorides to 2500 K," Argonne National Laboratory report ANL-5750 (1957).
- 15. J. H. Burns and J. R. Peterson, "Refinement of the Crystal Structure of AmCl₃," Acta Cryst. B26, 1886 (1970).
- H. J. Fullam and T. S. Soine, "Chlorination Reaction of Plutonium Oxide Prepared in a Screw Calciner," General Electric Company, Hanford Atomic Products Operation report RL-SEP-673 (December 1965).
- 17. C. W. Bjorkland and E. Staritzky, "Some Observations on the Reactivity of Plutonium Dioxide," Los Alamos Scientific Laboratory report LA-1869 (November 1, 1954).
- T. E. Phipps, R. C. Seifert, G. W. Sears, and O. C. Simpson, "The Vapor Pressure of Plutonium Halides," J. Chem. Phys. 18(3), 713 (1950).
- 19. R. Benz, "Thermodynamics of PuCl₄ from Transpiration Data," J. Inorg. Nucl. Chem. 24, 119 (1962).
- D. M. Gruen and C. W. DeKock, "Electronic Absorption Spectra of Gaseous PuCl₃, PuBr₃, and PuCl₄," J. Inorg. Nucl. Chem. 29, 2569 (1967).
- C. E. C. Rense, K. W. Fife, D. F. Bowersox, and M. D. Ferran, "Materials Compatibility During the Chlorination of Molten CaCl₂-CaO Salts," Los Alamos National Laboratory report LA-10700-MS (January 1987).

Appendix

٠

•

•

.

	initial weight (g)	final weight (g)	oxide batch	chlorinating agent	Pu, %	Cl, %	PuCl ₃ (based of % Cl)	Cl/Pu on
PUCL3-5P	9.4	11.6	MSTPPBMWC	l CCl ₄	68.98	29.2	94.8	2.85
PUCL3-6P	10.1	12.7			69.37	29.4	95.5	2.86
PUCL3-7P	10.0	12.4	PUTHR2KFC	5	70.39	28.1	91.2	2.69
PUCL3-8P	10.0	12.4			70.34	27.7	89.9	2.65
PUCL3-9P	9.9	12.3		CCl_4 - Cl_2	69.06	28.9	93.8	2.82
PUCL3-17P	10.0	12.5			69.18	29.9	97.0	2.91
PUCL3-20P	10.0	12.3			69.87	28.3	91.8	2.73
PUCL3-23P	10.0	12.4	MSTPPBMWC	1 HCl-CCl ₄	67.77	28.1	91.2	2.79
PUCL3-24P	10.0	12.6	PUTHR2KFC	5	69.69	27.0	87.7	2.61
PUCL3-31P	10.0	12.4	MSTPPBMWC	1 CCl ₄ -Cl ₂	69.53	28.0	90.9	2.71
PUCL3-32P	20.0	24.7			69.55	27.5	89.3	2.67
PUCL3-33P	30.0	37.0			70.57	27.9	90.6	2.66
PUCL3-39P	50.0	62.0			68.64	29.1	94.5	2.86
PUCL3-40P	50.0	62.3			68.95	29.1	94.5	2.85
PUCL3-45P	75.0	94.0			69.18	29.0	94.2	2.83
PUCL3-46P	100.0	124.6			67.26	29.3	95.1	2.94
PUCL3-47P	125.0	155.6			68.27	29.7	96.4	2.93
PUCL3-52P	50.0	60.4	PUTHR2KFC	5	70.71	27.1	88.0	2.58
PUCL3-54P	100.0	123.2	MSTPPBCO	5	70.94	27.5	89.3	2.61
PUCL3-55P	100.0	125.1	KHCB1C	3	69.41	29.6	96.1	2.88
PUCL3-56P	125.0	156.3			69.76	28.8	93.5	2.78
PUCL3-57P	125.0	156.2			68.12	29.1	94.5	2.88
PUCL3-58P	150.0	187.3			69.20	29.3	95.1	2.85
PUCL3-59P	175.0	218.0			69.98	28.6	92.9	2.76
PUCL3-60P	100.0	124.5	KHCB2C	5	69.81	29.9	97.1	2.89
PUCL3-68P	100.0	124.1			69.79	29.0	94.2	2.80
PUCL3-78P	100.0	124.6	KHCB1C	3	69.76	29.5	95.8	2.85
PUCL3-79P	100.0	124.2	KHCB2C	1	69.95	29.0	94.2	2.79
PUCL3-80P	100.0	123.6			69.76	29.2	94.8	2.82
PUCL3-81P	100.0	123.6			69.92	29.1	94.5	2.81
PUCL3-82P	100.0	124.1			69.96	29.1	94.5	2.80
PUCL3-83P	100.0	124.4			69.80	28.9	93.8	2.79
PUCL3-84P	100.0	124.5			69.85	29.2	94.8	2.82
PUCL3-85P	100.0	124.2			69.96	28.8	93.5	2.78
PUCL3-86P	100.0	124.2			69.47	29.1	94.5	2.82
PUCL3-87P	100.0	124.4			69.50	29.1	94.5	2.82

Summary of Plutonium and Chloride Analyses for Chlorination Experiments with Cl_2-CCl_4

	initial weight (g)	final weight (g)	oxide o batch	chlorinating agent	Pu, %	Cl, %	PuCl ₃ (based % Cl)	Cl/Pu on
PUCL3-89P	200.0	248.6			69.67	29.4	95.5	2.84
PUCL3-90P	200.0	249.6			69.53	29.3	95.1	2.84
PUCL3-92P	250.0	311.2			69.60	29.4	95.5	2.85
PUCL3-93P	250.0	308.3			69.72	29.1	94.5	2.81
PUCL3-94P	300.0	373.7			69.78	29.4	95.5	2.84
PUCL3-95P	300.0	373.0			69.74	29.4	95.5	2.84
PUCL3-96P	201.9	251.8	KHCB2C4 + KHCB2	C 1	69.66	29.2	94.8	2.83
PUCL3-97P	200.0	249.6	KHCB2	C4	69.47	29.5	95,8	2.86
PUCL3-98P	300.0	372.8			69.71	29.0	94.1	2.80
PUCL3-100P	300.0	372.7			69.87	28.9	93.8	2.79
PUCL3-104P	200.0	248.7	KHCB2	C4	69.79	29.1	94.5	2.81
PUCL3-105P	200.0	248.5			69.50	29.3	95.1	2.84
PUCL3-106P	200.0	249.1			69.65	29.6	96.1	2.87
PUCL3-107P	200.0	249.0			69.72	29.3	95.1	2.83
PUCL3-108P	200.0	247.3	MSTPPB33	4C	70.17	28.3	91.9	2.72
PUCL3-109P	300.0	371.5	KHCB2	C4	69.94	29.2	94.8	2.81
PUCL3-110P	300.0	374.4	MPB22ER	C1	69.46	29.4	95.5	2.85

Appendix (cont.)

.

•

•

•

.

Printed in the United States of America Available from National Technical Information Service US Department of Commerce 5285 Port Royal Road Springfieid, VA 22161

Microfiche (A01)

Page Range	NTIS Price Code	Page Range	NTIS Price Code	Page Range	NT1S Price Code	Page Range	NTIS Price Code
001.025	A02	151-175	A08	301-325	A14	451-475	A 20
026-050	A03	176-200	A09	326-350	A15	476-500	A21
051-075	A04	201-225	A 10	351-375	A 16	501-525	A22
076-100	A05	226-250	A11	376-400	A17	526-550	A23
101-125	A06	251-275	A12	401-425	A18	551-575	A24
126-150	A07	276-300	A13	426-450	A19	576-600	A25
						601-up*	A 99

*Contact NTIS for a price quote.

•

•

LOS ALANOS CPORT CERAFY SEP 20 1989 RECEIVED

> LOS AIAMOS Los Alamos National Laboratory Los Alamos, New Mexico 87545

• • •

•

:

•