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TRANSPORT CALCULATIONS FOR NUCLEAR ANALYSES:
THEORY AND GUIDELINES FOR EFFECTIVE USE OF
TRANSPORT CODES

by

R. Douglas 0'Dell and Raymond E. Alcouffe

ABSTRACT

This report is for the serious user of discrete
ordinates transport computer codes for performing nuclear
analysis calculations. The first section after the
introduction provides a reasonably thorough mathematical
description of the analytic Boltzmann transport equation.
Next is a section on the numerical discretization of the
energy, angle, and space variables in the transport
equation, along with an introduction to the source iteration
method. The fourth section provides numerical details and
features pertinent to discrete ordinates codes. That
section details angular quadrature, spatial discretization
methods, iteration acceleration methods, and search
capabilities. The fifth section presents considerations in
choosing a discrete ordinates code for use, and this is
followed by a section on typical discrete ordinates codes
available throughout the world. The report ends with some
guidance for the user.

This report is a revision of the chapter titled
"Transport Calculations for Nuclear Reactors," written by
the authors for Volume 1 of the three-volume CRC Handbook of
Nuclear Reactors Calculations, Y. Ronen, Editor, published
by the CRC Press, Boca Raton, Florida (1986).

I. INTRODUCTION

The use of computer codes to perform nuclear analysis calculations costs
money. Transport calculations are more expensive than diffusion calculations.
Although continuing development in computer hardware and codes (software) have

reduced the expense of transport calculations to more practical and acceptable




levels than in the past, transport calculations are still more expensive than
diffusion calculations. Moreover, there arises the question of whether a
transport calculation must adequately describe the physics in a given problem
or whether a diffusion calculation will suffice. To answer this question
intelligently and to use a computer code effectively and properly requires
understanding the physics modeled by a computer code and the numerical
techniques used in the code. The purpose of this report is to provide the
nuclear analyst with information about the use of deterministic particle
transport codes for nuclear analysis calculations.

This introduction describes briefly the principal differences between
diffusion theory and transport theory and some of the recent advances that have
reduced the cost of running a transport calculation. Subsequent sections
provide a more detailed description of the mathematics, physics, and numerical
methods in deterministic transport codes and give the reader guides to the use
of such computer codes.

Any precise description of neutral particle transport must involve
treatment of the migration of particles in phase space (space, energy,
direction, and time) as influenced by interactions with the underlying matter.
Below, the description of particle migration is as a single linear equation
under the assumptions that the particles interacting with the underlying matter
do not affect the matter and that the particles do not interact with
themselves. Stated another way, the descriptive equation is linear if
interactions between particles and material can be described in terms of cross
sections independent of the particle density. The neutral particle transport
equation is then developed by performing a mathematical balance on the physical
production and losses of particles. Section II of this report describes this
development of the transport equation in some detail. The result is, in its
full generality, an equation with seven independent variables, three spatial
variables, three momentum variables (or equivalently, an energy or speed
variable plus two direction-of-motion variables), and one time variable.
Although in practical applications the transport equation can be cast in
specialized forms involving fewer independent variables, the equation still
provides a rather elaborate description of the particle migration process, and

its computational solution is a fairly expensive method for performing reactor

or other nuclear analyses. It is thus desirable to discuss the utility of the




full transport description and to describe some of the simplified
approximations to it.

The most useful approximation for performing neutronic analyses is the
diffusion equation. The diffusion equation is computationally less expensive
to solve than is the transport equation because diffusion theory reduces the
maximum number of independent variables from seven to five--three spatial
variables, one momentum variable (energy or speed), and one time variable.
Mathematically, the diffusion approximation places some rather severe
restrictions on the momentum dependence of the neutron density. Physically,
these restrictions consist of two major requirements. First, the neutron
migration process must be dominated by scattering interactions, or collisions;
that is, the material must be highly scattering and weakly absorbing for
neutrons. Second, the neutron migration process must be far removed from
system interfaces - that is, material discontinuities - where large gradients
in the neutron density may occur. In practice, diffusion theory has been
applied extensively to reactor analyses and generally found to perform better
than it theoretically has any right to. That is, if proper corrections are
made from transport theory, diffusion theory can be used quite acceptably for a
large class of reactor analysis problems. These corrections come from a
transport-based homogenization theory and are normally made in preparing cross-
section data. These transport-based corrections do much to foster the success
of diffusion theory-based reactor neutronic analysis.

It is natural, then, to ask "If diffusion theory, successfully corrected
for transport effects, is computationally less expensive than transport theory,
why be concerned with transport theory to perform nuclear analyses?" To answer
this question, one must recall the two basic requirements of diffusion theory
which, even with transport-based corrections, still largely exist. Diffusion
theory relies on the absence of large gradients in the neutron density (or
flux) in any spatial region of the problem. Large gradients imply a highly
directional migration of neutrons, and diffusion theory does not include the
direction-of-motion variables. Also, for an accurate diffusion coefficient to
be defined for the material, diffusion theory requires that the migration
process be dominated by scattering collision. Both of these conditions
relate directly to the description of the neutron leakage, and in this
description diffusion theory suffers the most relative to transport theory.

Two examples in reactor analysis where large gradients are known to exist are




1) in thermal reactors near control rods and 2) in fast reactors in the
vicinity of internal blankets. In both cases, unless special, somewhat ad hoc,
treatments are applied, the diffusion solution will be inaccurate or, at best,
uncertain, and transport analysis is needed. Another application requiring
transport analysis is in shielding calculations or in any calculation of deep
penetration. In such applications, the collision (interaction) processes
between particles and material are usually not weakly absorbing and highly
scattering, but are commonly just the reverse, and diffusion theory cannot be
used with any confidence. Also, particle flow or migration through a shield
tends to be directional, and diffusion theory treats this situation poorly.
For these reasons, virtually all shielding and analyses of deep penetration
are performed with transport theory.

Given the experience with diffusion theory, the preponderance of reactor
core analyses will likely continue to be performed with this simpler,
computationally cheaper tool. Several developments in the late 1970s and early
1980s, however, reduced the expense of transport calculations to levels where
they can be performed much more routinely. One of the developments is the
continuing computer hardware improvement in computational speed, in memory
size, and in data storage availability. The Class-VI computers developed in
the early 1980s (CRAY-1 and Control Data Corporation's Cyber 205), which
perform tens of millions of floating point operations per second, have reduced
transport calculational times into the seconds and minutes range instead of the
minutes and hours range of earlier computers. Further, developments in
solution methods for the transport equation have shown that the nuclear
designer/analyst can have at his disposal an enriched set of transport analysis
tools completely compatible with the diffusion theory tools he has been
accustomed to using. This is discussed in our section on iteration convergence
of the transport solution process using the very effective diffusion synthetic
acceleration (DSA) method. The DSA method employs the diffusion equation to
accelerate the convergence of transport iterations by using the intermediate-
iteration transport results to correct the diffusion equation. When DSA
is carried to completion, the corrected diffusion equation solution is the same
as the transport solution within a specified convergence criterion. Note,
however, that since the iterative process is carried out in stages
(iterations), at each successive stage the diffusion solution becomes a better

approximation to the transport solution, so the DSA method can be thought of as




a diffusion improvement method. Thus, a properly designed transport computer
code offers the user a diffusion equation solver that can be consistently
improved by transport theory so any doubts or uncertainties about transport
effects can be systematically removed conveniently. Thus, with faster and
larger computer hardware and better, more modern computer codes, the use of
transport theory as a routine nuclear analysis tool is likely to increase.

In subsequent sections of this report, we attempt to provide the nuclear
designer/analyst with a reasonably completevoverview of numerical methods for
deterministically solving the transport equation. 1In Sec. II we present a
mathematical description of transport theory, quickly specializing to some
convenient geometries for the spatial resolution of the transport divergence
operator that appears in the transport equation. Next, in Sec. III, we proceed
to numerical descriptions based on the analytical equations, with emphasis on
the discretization of the independent variables to produce the discrete
ordinates equations. We also include an introduction to the concept of solving
the discrete ordinates transport equations by source iteration techniques.
Section IV is devoted, in some detail, to many of the numerical procedures that
are computationally effective and are in use in today's computer codes.
Section V discusses some considerations that are important in choosing a
computer code as a transport calculational tool, and this is followed by a
short section on some typical discrete ordinates codes that are readily
available for use. This report concludes with Sec. VIII, a brief section

giving some general guidance to the discrete ordinates code user.

II. MATHEMATICAL DESCRIPTION: THE ANALYTIC EQUATION

The linear Boltzmann transport equation is an integro-partial differen-
tial equation embodying the physics of neutral particle transport. This
equation and boundary conditions are required for problems of finite geometric
extent. The boundary conditions specify the distribution of particles entering
the geometric problem through its exterior boundaries. The Boltzmann equation,
together with the appropriate boundary conditions (and an initial condition for
time-dependent problems), constitutes a mathematically well-posed problem
having a unique solution. This solution consists of the complete, that is,
deterministic, distribution of particles throughout the space, energy,

direction-of-motion, and time (for time-dependent problems) portions of the




problem. The linear Boltzmann equation, together with the boundary conditions
(and initial condition, if required) in discretized form, is solved by
deterministic transport computer codes.

In this section, we present a brief development of the linear Boltzmann
transport equation in its general analytic form. Following this, we show some
of the specific forms the equation takes for common geometries - that is,
coordinate systems - encountered in practice. We then describe the various
boundary conditions that are appropriate for use in these geometries. Next, we
develop the spherical harmonics expansion forms for the particle source
(production) terms in the Boltzmann equation since these forms are almost
universally used in deterministic transport codes. We conclude this section

with a presentation of the adjoint form of the Boltzmann equation.

A. The Balance Equation (Linear Boltzmann Transport Equation)

The distribution of particles as a function of the seven variables
constituting phase space is obtained, in principle, by solving the linear
Boltzmann transport equation. This equation serves to precisely describe
particle balance in which the rate of accumulation of particles is equal to the
difference between their rates of production and removal. If
N(?,E,ﬁ,t)d;dEdadt is the number of particles in volume d; about space point ;,
with energy in dE about E, moving in direction da about 5, in time interval dt

about t, then the Boltzmann transport equation can be written as

IN(r,E,Q,¢t)

> > > > > > > >
ST = - yvQ « VN(r,E,Q,t) - vN(r,E,Q,t)Zt(r,E,Q,t)

+ S(r,E,2,t) . (1)

This equation is linear if the macroscopic cross sections of the medium,

such as I are not functions of the particle density. This linearity

t’
condition is met for virtually all practical applications.
The term on the left side of Eq. (1) represents the rate of accumulation

of particles at the phase space point in question, namely

lim [N(F,E,ﬁ,t + At) - N(F,E,ﬁ,t)] _ ON(F,E,8,t) (2)
At>0 At =Tt :




The first term on the right side of Eq. (1), va . §N(;,E,5,t), represents the
rate of change of the particle density at spatial position ; resulting from
streaming of the particles with speed v, that is, motion in a straight line
without collisions. That this term represents streaming can be seen by
considering, without loss of generality, a Cartesian incremental volume
AV = AxAyAz as shown in Fig. 1. In particular, consider the face of area AxAy
at z. The rate at which particles enter the volume through the face at z is
(VE-E)N(x,y,z,E,a,t)AxAy, where vR-k is simply the z-component of the velocity
va. Similarly, the rate at which particles leave the incremental volume
through the face at z+Az is (v§°E)N(x,y,z + Az,E,a,t)AxAy. The difference

between outflowing and inflowing particles is, in the limit of vanishingly

small Az,
> >
. . B
i;To (va-ﬁ) [N(x,y,z Az,E,Q,Z; N(x,y,z,E,Q,t)]AV
<>
I e oN(x,y,z,E,Q,t) AV L

9z

Fig. 1. Incremental volume in Cartesian coordinates.




Similar expressions can be written for flow (or streaming) in the x- and y-

directions so that the net rate at which particles are lost from the volume is
> > oN > > oN > > N
[(va-D) 57+ (vR-3) 5 + (viel) AV,

where the arguments (x,y,z,E,a,t) have been omitted for simplicity. Thus,
using the definition of the divergence operator 5-6, the net rate at which
particles are lost from an incremental volume because of streaming is
va-gN(r,E,a,t) per unit volume.

The second term on the right side of Eq. (1), vN(;,E,a,t)Zt(;,E,ﬁ,t),
accounts for the rate at which particles are lost because of collisions of any
kind with the nuclei constituting the medium. Here Zt(;,E,a,t) is the
macroscopic total cross section of the medium defined such that Ids is the
probability of a collision in a path length, ds.

The third term on the right side of Eq. (1), S(;,E,a,t), represents the
source rate of particles, that is, the rate at which particles are produced.
This source includes contributions from scattering, fission, and inhomogeneous
(fixed) sources.

The scattering source accounts for the rate at which particles are
produced as a result of particle interactions with nuclei - other than inter-
actions that result in fissioning of the nuclei. The scattering source is
denoted SS(F,E,ﬁ,t) and is described by the equation

SS(F,E,ﬁ,t) -f dE " fdﬁ' v(E'"N(P,E',R2',t)
E' L

> > >
x ZS(P,E'*E,Q'*Q,t) . (3)

where ZS(F,E'*E,a'*a,t) is the macroscopic differential cross section for
scattering particles from energy E' and direction 5' to energy E and direction
5. Here we have denoted the particle speed as v(E') for particles of energy,

E', since particle speed is a function of particle energy. The fission

contribution to the source is denoted SF(;,E,a,t) and is given by




> > > > > > >
SF(P,E,Q,t) = dq! x(P,E'*E)vZf(P,E',Q'*Q,t)
bomw E'

x V(E")N(r,E',2',t) |, (4)

where x(;,E'*E)‘represents the probability of particles appearing at energy E
as a result of a fission caused by a particle of energy E' at space point ;;
Zf(;,E',ﬁ'*a,t) is the macroscopic cioss section for fission induced by
neutrons with energy E' and direction Q', with emergent neutrons from the
fission having direction 5; and v is the average number of neutrons emerging
from a fission. The above expression for the fission source makes no
distinction between prompt and delayed particles. All particles have been
assumed to emerge simultaneously from fission. This assumption is valid for
most applications since the vast majority of transport calculations are time
independent, that is, steady state. Only for fission system dynamics
applications should delayed particles be explicitly described.

The inhomogeneous (or fixed) source is denoted Q(;,E,ﬁ,t). It represents
all sources not dependent on the particle density in the medium. Thus, the

total source rate of particles in Eq. (1) is
> > > > > > > >
S(r,E,Q,t) = Ss(r,E,Q,t) + SF(r,E,Q,t) + Q(r,E,Q,t) . (5)

Up to this point, the time variable has been included in the Boltzmann
transport equation. Since the usual application of transport methods is to
time-independent problems, we limit our considerations in this report to the
time-dependent equation. Accordingly, the remaining development will be
simplified to the time-independent Boltzmann transport equation,

g-Yo(r,E,8) + 2 (FE,D)e(r,E,d) - S(FED (6)

in which the angular particle flux o(;,E,a) = v(E)N(;,E,a). As before, the

total source rate of particles S(;,E,ﬁ) is written

S(F,E,8) = 5 (F,E,8) + Sp(F,E,&) + a(F,E,&) (7)




with

> > > > > > > >
S (F,E,) = /dQ' /dE' o(FE', I (F,EE,ER) (8)
4q E'

> > > > > > >
Sp(r,E,R) = /dQ' de' [x(r,B"5E)vIL(F,ET,21>0)
Y E!'

x o(rE', )] (9)

and with Q(;,E,ﬁ) denoting the inhomogeneous, or fixed, source rate of

particles.

B. Coordinate Systems and Divergence Operator Forms

The streaming term vR-UN(r,E,R) = 8-Vo(r,E,8) in Eq. (6) actually
represents the rate of change of the particle angular flux ¢ along the
streaming path, s, in the direction of particle motion 5. In other words,
3-§¢ = d%/ds where the arguments of ¢, (;,E,g) have been omitted for
simplicity. A description of the path, s, requires the specification of up to
five variables (three spatial variables and two variables to define the
direction 5). The choice of these variables is governed by both the
geometrical coordinate system to be used and a suitable angular-direction
coordinate system. Thus, the particular form of the divergence operator
5-3 d/ds or, more specifically, the streaming term 5-§® dé/ds, requires
specification of suitable coordinate systems.

Shown below are the three common coordinate systems used in deterministic
transport codes and the form of the streaming term for each. Note that in each
geometrical coordinate system, an angular direction coordinate system is
defined in which the direction variable 5 is described in terms of a polar
angle (or its cosine) measured from a directional coordinate axis and an
azimuthal angle specifying the angle of rotation about that axis. The symbol g
denotes direction.

1. Rectangular Cartesian Coordinates (x,y,z). The three-dimensional

rectangular Cartesian coordinate system is shown in Fig. 2, together with the

angular-direction coordinate system used to define the direction 5. In

10
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Fig. 2. Rectangular Cartesian coordinates.

this system, a space point is described by

incremental spatial volume dV = dxdydz, and

A A

N=el +e +e ’
X X

Yy z z
where
Q. =e -8
x = ex = cosy v,
QyE ey . 5= siny cos¢ =V - u2 cosd = n
QZ = e, * 5 = siny sin¢ = V1 - u2 sing = g

<>
and dQ = dud¢.

its (x,y,z) coordinates, an

(10)

(11a)

’ (11v)

’ (110)
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The divergence operator 5 . 6 is written, in general, as

With the rectangular coordinates, dx/ds = yu, dy/ds = n, dz/ds = E, and
du/ds = d¢/ds = 0. Thus,

> > 09 9¢ 9%
Q « Vo = Hag t "3y *E5 (12)
> >
where ¢(r,E,Q) = o(x,y,z,E,u,d).
For two-dimensional rectangular Cartesian (x,y) geometry, there is no z-
dependence of the particle angular flux, and Eq. (12) reduces to

> 9¢ 99
Q'-V)Q-uﬁ*'na—y R (13)

where ¢ = &(x,y,E,u,9).
For one-dimensional rectangular Cartesian (slab) geometry, there is

neither a y- nor a z-dependence of the particle angular flux, and Eq. (12)
reduces to

c P - w22 (14)

el

where ¢ = ¢(x,E,u,¢). In many one-dimensional slab applications, azimuthal
angular symmetry exists, so the angular flux is a function only of the

variables x, E, and u.

2. General Cylindrical Coordinates (r,6,z). The general three-

dimensional cylindrical coordinate system is shown in Fig. 3, together with an
angular-direction coordinates system used to define the particle direction 5.
In Fig. 3, the n-£ plane is tangent to the cylindrical surface at (r,8). In
this system, a spatial point is defined by its (r,96,z) coordinates, an
incremental spatial volume is given by dV = rdrdédz, and

~ A

S-en +e0 +en (15)
er ] ee 0 ez z '
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where

1l
1}

[}
(1}

dfdw.

¥

D¢

v
[}

o™

Fig. 3.

General cylindrical

V1 - £2 cosw

Vi - g2

sinw

coordinates.

(16a)

(16b)

(16¢)
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The divergence operator 5 . 6 is

With cylindrical coordinates, dr/ds = u, d6/ds = n/r, dz/ds = £, dE/ds = 0, and

dw/ds = -n/r. With some manipulation,

2 u 3(ré) . n 3® 1 3(nd) 09

g - Vo - r or < ro Tt dw &3z a7
where ¢ = ¢(r,0,z,E,E,w).

The selection of the angular direction variables £, w for the specifi-

cation of 5 is arbitrary, and the variables u, ¢ could just as well be used.

In the latter case,

~ >
S%,= e, * Q=u , (18a)
Qe = eq* Q= V1 - u2 cosp = n |, (18b)
QZE e, * 5 =Vl - u2 sing = £ , and (18¢)
>
dQ = dud¢.

Equation (17) remains unchanged.

In two space dimensions, there are two rather widely used cylindrical
geometries, both subsets of the general (r,6,z) geometry. These are the
finite, or (r,z), cylindrical geometry and the planar, or (r,8), cylindrical
geometry.

In (r,z) two-dimensional cylindrical geometry, a space point is defined
by the spatial coordinates (r,z), an incremental volume dV is given by 2wrdrdz,
and Eq. (17) reduces to

3(n¢)

wa(re) 1 20
— r TR + E; 32 s (19)

3 - Vo
T or

with ¢ = ¢(r,z,E,E,w) or ¢(r,z,E,u,$). The spatial variable 6 does not appear.

14




In (r,8) two-dimensional cylindrical geometry, a space point is defined
by the spatial éoordinates (r,8), an incremental volume dV is given by rdrde,
the angular particle flux is described by ¢(r,6,E,g,w) or é(r,6,E,u,¢), and
Eq. (17) reduces to

> >
Q « Vo =

(20)

Sie

In one-dimensional cylindrical geometry, a space point is defined solely by r,
its radial position. An incremental volume dV is given by 2wrdr, and Eq. (17)

reduces to

(21)

The angular particle flux is &(r,E,E,w) or, equivalently, &(r,E,u,¢).

3. One-Dimensional Spherical Coordinates. In spherical coordinates, the

only geometry for which deterministic transport has received much attention is
the one (space) dimensional sphere. Although a two-dimensional spherical
geometry computer code has been developed,1 its usage has been quite
specialized and limited. Accordingly, this section will be limited to one-
dimensional spherical geometry.

The coordinate system for spherical geometry is shown in Fig. U4, together
with the angular direction coordinate system used to define the direction 5.
In Fig. 4, the n-£ plane is tangent to the spherical surface of radius r. For
one-dimensional spheres, a space "point"™ is defined simply by its radius, r,
and the incremental volume dV associated with this point is the spherical shell
of volume Mnrzdr. The angular variable 5 is defined solely by u gr . 5 with
no dependence on the azimuthal angle ¢. Thus, the angular particle flux ¢ is

described by the arguments (r,E,u) and

For this geometry, dr/ds = uy and du/ds = (1 - u2)/r so that, with some

rearrangement,
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Fig. 4. Spherical geometry coordinates.

(1 = u2)e]

2
-_V)<I>= 113(1"<I>)+
ou

2 or
r

O

1

where the argument of ¢ has been omitted for simplicity.

4. Angular Redistribution in Curvilinear Geometries. In curvilinear

geometries such as those described in Figs. 3 and 4, a particle transport
phenomenon occurs that does not occur in rectangular Cartesian geometries.
This phenomenon is known as angular redistribution and is defined in

cylindrical geometries by the term

3(n¢)
ow

1
r

in Eqs. (17), (19), (20), (21), and in spherical geometry by the term

1300 - y2)e]
r ou
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in Eq. (22). To understand the physical meaning of angular redistribution,
recognize that in both cylindrical and spherical geometries the angular
variable u is proportional to the cosine of the angle w shown in Figs. 3 and 4.
(In cylindrical geometries, the angular variable n is proportional to sinw.)
In both geometries, the angle w is measured from the radius vector, r.
As a particle moves without collision in a straight line from the point r, to

1
the point o the angle w changes from w, to w, (Fig. 5). Angular

redistribution is simply the change in the dlrectio:al variable y (and n in
cylindrrical geometry) as particles move from one radial position to another.
Several observations can be made regarding angular redistribution.

First, there can be no net gain or loss of particles because of angular
redistribution, that is, if one integrates over all angles, the net
redistribution gain or loss term must vanish.

Second, there is no way in which a particle, moving without collision and
with w = 0, can acquire a direction w = w(cosw = -1) by angular redistribution.
Similarly, there is no way for a particle moving without collision and with
cosw # 1 to become anything but a particle with cosw closer to unity because of
angular redistribution. Restating this second observation, angular
redistribution always serves to increase the value of directional variable u

(or cosw) provided w # nm, n= 0, 1, 2.

Fig. 5. Illustration of angular redistribution of particles in
curvilinear coordinates.
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Third, there is no angular redistribution for particles with cosw = +1,
that is, for particles moving with directions along a radius vector of a
cylinder or sphere.

Finally, angular redistribution involves only the directional variables u
and n, as shown in Figs. 3 and 4. The value of the directional variable £

is unchanged with angular redistribution.

C. Boundary Conditions

The Boltzmann transport equation is normally used to describe transport
of particles in a finite region of space in which cross sections are known
functions of particle energy and position. To effect the solution to the
transport equation corresponding to the physical system being modeled, it is
necessary to specify the appropriate conditions on the particle density, or
flux, at the external boundaries of the region. Below are described the
boundary conditions most commonly used in deterministic transport calculations.

1. Vacuum Boundary. If no particles enter the region of solution from

external sources and if a particle, once it exits the region across its
external boundary, cannot return to the region, then the boundary is called a
free surface or vacuum boundary. Let 3 denote the outward-directed unit normal

vector at the boundary surface at spatial position ; Then, at a vacuum

0
boundary, any particle having K . 5 > 0 will be crossing the boundary in an
outward direction and any particle having ; . 5 < 0 will be crossing in an

inward direction. The vacuum boundary condition, then, is

¥

(P, ,E,8) =0 , ifn-@&<0 .
This boundary condition is the one most commonly applied at the external
surfaces of the region of solution.

In reality, of course, the vacuum boundary is an idealization. Particles
leaving a system will always have a finite probability of returning to the
system. Nevertheless, the vacuum boundary condition is quite acceptable if
either the probability of particle return is negligible or the boundary surface
is so far removed from the volume of interest that an approximate boundary
condition is sufficient.

2. Reflecting Boundary. The reflecting boundary occurs at a plane of

symmetry in the system being analyzed. At a reflecting boundary, the value of
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the angular flux for incoming directions is set equal to the value of the
outgoing flux in the direction corresponding to specular (mirror-like)
reflection. For example, in a rectangular Cartesian geometry (see Fig. 2), if
a y-z plane is a peflecting surface, then at the surface the incoming particle
flux with direction cosines u, n, £ is set equal to the outgoing particle flux
with direction cosines -y, n, §. Although rigorously correct only for planes
of symmetry, the reflecting boundary is frequently applied at the radial center
line of cylinders and at the origin of spheres. The theoretically correct
boundary conditions for these t{wo cases are described below. In practice, the
use of reflecting boundary conditions at the radial origin of cylinders and
spheres usually yields satisfactory results.

In cylindrical "cell" calculations, the reflecting boundary condition is
also frequently used at the outer radial surface of the cell. Such
calculations are used to analyze a typical cylinder in an extended lattice of
cylinders, in which case the cell is usually a fuel rod surrounded by an
annulus of moderator or coolant. Use of the reflecting boundary condition at
the cell surface is satisfactory only if the moderating annulus is reasonably
thick (about one thermal neutron mean free path or greater).

3. Spherical Origin Boundary Condition. In one-dimensional spherical

systems, a boundary condition is required at the center of the sphere. The
theoretically correct condition is that the angular flux be isotropic at the
center. The value of the angular flux at the center of the sphere can be found
by first solving the Boltzmann transport equation for u = -1, that is, for a
straight-in directed particle at the origin. Then, o(r=0,E,5) = ¢(r=0,E,u=-1)
for all other E(u).

4, Cylindrical Origin Boundary Conditions. In ¢ylindrical geometries, a

boundary condition is required at the radial origin. The theoretically correct
condition is that for a fixed value of the polar angle (or its cosine, ) as
shown in Fig. 3, the flux is azimuthally isotropic along the cylinder's radial
center line. The value of the angular flux at r = 0 can be found by first
solving the Boltzmann transport equation for n =0, p = - V1 - £2. Then,
letting & = &(£,n), &(r=0,E,E,n) = &(r,=0,E,E,n=0).

5. Periodic Boundary Condition. The periodic boundary condition sets

the values of the incoming angular fluxes at a boundary equal in detail to the

values of the outgoing angular fluxes on the opposite boundary. The periodic
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condition is used on the boundaries of an asymmetric "unit" cell, which
represents one of an "infinite" array of such cells. The boundary condition
can be applied to x-, y-, or z-dimension boundaries in Cartesian coordinates,
or to the z-dimension boundaries of (r,z) or (r,6,z) cylindrical geometries.
It must be used as the 6-dimension boundary condition where the 6-dimension is
used to represent a 360° circular mesh in, for example, (r,0) cylindrical
geometry.

6. White Boundary Condition. With the white boundary condition, the

values of the incoming angular boundary fluxes are set equal to a constant
value. In other words, the incoming angular flux is made isotropic. The
constant value used for the incoming angular flux is the average of the
outgoing angular fluxes such that the net flow of particles across the boundary
is zero. For example, in one-dimensional cylindrical geometry with a white

boundary condition at radius R,

2m 1
S S wTe(R,E, T ,0) dutde
0O O

Q(R’E’u"b) = o1 1

S [ wauwas
0 O

for pel-1,0].
This condition was designed to be meaningful as an exterior boundary

2,3 but with limited success. A

condition for cylindrical "cell" calculations,
variant of the white boundary condition, known as the cylindrical boundary
condition,u adjusts the incoming angular flux to be azimuthally isotropic for
constant values of the polar angle (or its cosine, £). This cylindrical
boundary condition shows evidence of producing good results for cylindrical
cell calculations.

7. Albedo Boundary Condition. The albedo, or grey, boundary condition

is similar to the white boundary condition described above except that the
ratio of the incoming (isotropic) particle current to the outgoing current is a
constant, o < 1. For example, in one-dimensional plane geometry with a grey

boundary condition at X = R,
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1
f u'®(R,E,u") du'

¢(R,E,u) = a 0

1
f u'duy’
0

for ue[-1,0].

When a = 1, the albedo condition is identical to the white boundary
condition. The albedo condition is sometimes used to approximate the effects
of external materials for which a detailed calculation is not required.
Another variant of the albedo condition permits the application of the albedo
fraction, a, to the reflective boundary condition so the angular incoming flux
is equal to o times the outgoing angular flux in the direction corresponding to
specular reflection. For example, in spherical geometry with an albedo-

reflective boundary condition at radius R,
®(R,E,u) = a®(R,E,-u)

for pef-1,0].

D. Spherical Harmonics Expansion of the Source Terms

Spherical harmonics series expansions are commonly used in representing
the angular dependence of the source terms in the Boltzmann transport equation.
In this section, the use of these expansions is examined for each of the
contributions to the total source of particles, namely scattering, fission, and
inhomogeneous sources.

1. Scattering Source Expansion. The differential scattering cross

section ZS(F,E'»E,a'*E) represents the probability that a particle of energy E'
and direction 5' will emerge from the scattering collision as a particle of
energy E and direction 5. For most materials, it is satisfactory to replace
the angular argument 5’ > 5 with uo = 5'-5. Then we say that the material is
isotropic, that is, there is no preferred direction in the material itself. 1In
other words, the scattering angle or its cosine, Moo is usually sufficient for

describing the angular dependence of the scattering cross section. Thus,
zs(F,E'+E,5'+§) - ZS(;,E'-»E,uO) . (23)
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Since the angular dependence of the differential scattering cross section is
now described in terms of uo, it is usually advantageous in reactor physics to

represent the cross section by a finite Legendre polynomial expansion

L
> _ 20 + 1y & 2, )

I (PE'E, 0 ) = z (55— T (PE™E) Potug)” (24)

2=0
where
1
©r (FEE  2n [ du, I (P,ETSE,u) Py (ng) (25)
s ’ 0"s "’ M ¢ )

-1

The series truncation index, L, should be large enough to provide adequate
representation of the differential cross section. If the scattering is
isotropic - that is, independent of the scattering angle Mo ~ then clearly
L = 0. If the scattering is linearly varying in Ko (linearly anisotropic
scattering), then L = 1. For higher degrees of anisotropy in the differential
scattering cross section, larger values of L should be selected. Practical
considerations, however, usually limit the value of L to 3, or perhaps 5, even
though such a limit may not provide an entirely satisfactory approximation to
the true angular variation in the differential cross section.

The first few Legendre polynomials are

Po(x) =1
P1(x) = X
1 2
P2(x) =3 (3x~ - 1)
1 3 _
P3(x) =3 (5x 3x)
P,(x) =+ (35x" - 30x% + 3)
4 8
PS(X) =-% (63x5 - 70x3 + 15x) .
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Since the particle direction of motion 5 is defined by the variables p and ¢
indicated in Figs. 2-4,

1/2 172

u2 (1 - u'2) cos(¢ - ¢') ,

>
=82 = (- 0)

and the addition theorem for spherical harmonics can be used to define Pz(uo)

in terms of u, u', ¢, and ¢' by

A
Po(u.) = =1 Z Y (' ,e")Y, (u,e) (26)
L0 28 + 1 Lm ’ m " *

m=—4%

The Yzm are the spherical harmonics with the definition

S22+ 1 (- m)tom im¢
You(He®) = = g+ myr FaW) e , (27)
where
d"P (1)
Pl = (-1"(- B A
du

is the associated Legendre function of the first kind, and
mY*
Yz,—m(“’¢) = (-1) z,m(“’¢) .

To represent the scattering source of Eq. (8), we also expand the angular

flux in terms of the spherical harmonics as

L 2
2 \ -)' - m,> ] \ \
o(F,ELAND = DN OIEED Y () (28)
2=0 m=-%
where
1 2m
g e = [ o [ wedEnd e (29)
-1 0
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Substituting Eqs. (24), (26), and (28) into Eq. (8), and evaluating, yields

L

© A
A
S (F,E,f) =de' . (F,E'E) z Y, (4,0)80 (F,ET) (30)

This gives the scattering source in the general case in terms of a spherical
harmonic expansion. For some special geometric situations, we can take
advantage of symmetry to simplify this expression so not all the terms are
needed. For example, in one-dimensional slab and spherical geometries with
azimuthal (¢) angular symmetry, the angular flux in Eq. (29) is a function of u

only. Thus,

1
V@esn f du ¢(r,E',u) Po(n), form =0
4
¢;](r'.E') = (31)

0] , form=20,

where we have used the fact that

v 2% + 1
Yzo(u.¢) =V =5 Pz(u)

Therefore, for one-dimensional spheres and slabs, Eq. (3) reduces to

> 2 . 28 + 1 8 . 0,2 .,
84(r,E,R) =/dE 2_2 I, (r,E'E) Po(n) ¢ (P,E") . (32)
0

L
2=0
With two-dimensional symmetry, the flux in Eq. (29) as a function of ¢ is

symmetric about ¢ = w [assuming the appropriate definition of ¢ - for example,

¢ for (r,z) geometry measured about the €y axis, as shown in Fig. 3]. In this

case, Eq. (29) becomes




L

1

0 _ > ' > *

o - 2 f duf a oD Y, (,0)
=1 0

1 T
Sodu S eFELDIY, (1,00 + ¥, (1,001, form > 0
-1 0

og (33)

0 , form<o0 ,
and this effectively reduces by half the number of moments that need be
computed for the scattering source. For one-dimensional cylindrical geometry,
a /2 symmetry exists in ¢ in the angular flux; therefore, reduction in the
number of moments is reduced further. Thus, in Eq. (33) all moments with £ + m
odd are zero for the one-dimensional cylinders.
We can summarize all these special cases by writing the following form

for the scattering source:

o NM
> > L > > = >

S, (r,E,Q) =/ dE' (28 + 1) I (r,E'E) R (@) ¢ (r,E') , (34)

0 n=1
where

NM = the total number of moments,

Rn(a) = the appropriate spherical harmonic functions indexed by
the simple index n, and

5n(;,E')= the flux moment corresponding to the spherical harmonic

indexed by n.

Equation (34) is a conveniently programmable form of Eq. (30). In Appendix A,
we show how to evaluate the Rn and 6n for both general and specific cases. 1In
Table I is the number of required spherical harmonic terms for each order of
scattering. In Table II are the results of our derivation in Appendix A,
giving the expansion terms explicitly for scattering orders up to L = 3. Note
that the flux moment corresponding to n = 1 in Eq. (34), 51, is simply the

scalar flux, as is QO

0 using Eq. (29). We will normally denote the scalar flux

simply as QO.
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TABLE I

NUMBER OF SPHERICAL HARMONICS, NM, AS A FUNCTION
OF LEGENDRE EXPANSION ORDER, L

Two—-Angle Planes

One-Dimensional and

L Standard Planes One-Dimensional Two-Dimensional Three-Dimensional

and Spheres Cylinders Geometries Geometries
0 1 1 1 1
1 2 2 3 4
2 3 y 6 9
3 y 6 10 16
y 5 9 15 25
5 6 12 21 36

2 2
L L+1 (L+2)°/4, (L+1)(L+2)/2 (L+1)
L even

(L+1)(L+3)/4,
L odd

2. Fission Source. Fission is normally treated as an isotropic process.

Accordingly, when the fission source term of Eq. (9) is expanded in a Legendre
series representation, similar to the scattering source, only the first term in

the expansion is retained and SF(;,E,ﬁ) is written

sF(F,E,ﬁ) =de' x(r,E'*E)vZf(r-:,E') oO(F,E') , (35)
E'

where QO(;,E) is the scalar flux as given by Eq. (29) for &, m = 0. In
Eq. (35), the fission fraction, x(;,E'*E), is the probability that a fission
induced by a particle with energy E' will produce a particle with energy E. It

is frequently assumed that this fission fraction is independent of the energy
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SPHERICAL HARMONICS, Rn

TABLE II

(5), FOR DIFFERENT GEOMETRIES

One-Dimensional ] Two—Angle Planes
N Standard Planes One-Dimensional Two—Dimensional and Three—Dimensional
and Spheres Cylinders Geometries Geometries
a
P5 Pu P3 P3
1 Po(u) Po(u) Po(u) Po(w)
2 Py () P} (w)coss Py Py ()
3 Pz(u) Pz(u) P}(u)cose» P:(u)co.w
Vf- 2 2 1
4 P3(u) P,(n)cos2¢ Pz(u) Py(u)sing
5 P, () ‘/—E P3(n)coss ‘/_P‘(u)cos¢ P, ()
Vio .3 /5 . V3
6 PS(") < 3(u)cos3¢ (u)cosz¢ =3 PZ(U)COS¢
7 Pyu) P (u) £P1(u)sin¢
3 2
8 ‘/_ ﬁ(u)cos&b ‘Lg_ (u)cosd Lg_ Pg(u)cosz¢
9 83(5) u(u)cosslms —“;g (u)cos2¢ ‘Lg_ Pg(u)sin2¢
10 ‘/%—0 PZ(u)cos3é P3(u)
" ‘Lg_ ;(u)cos¢
12 ‘Lg_ ;(u)sim»
Vis 2
13 30 P3(u)0082¢
V15 2
14 ﬁ P3(u)sin2¢
V10 ;3
15 0 P3(u)cos3¢
16 —“ég Pg(u)sin3¢
aP denotes Lth order Legendre expansion.
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of the particle that induces the fission so that x(;,E'*E) is written simply as
X(F,E), the probability that a particle produced by fission will emerge with
energy, E.

3. Inhomogeneous Source Expansion. In a manner similar to that used for

the scattering source, the inhomogeneous (or fixed) source Q(;,E,a) can be
represented as a finite expansion using the spherical harmonics Rn(a) defined

in Table II. That is, we make the expansion

L 'A
> > 2 :j : m,->
Q(P’E’Q) = QQ(P’E) Yzm(u"b) ’

2=0 m=—4
with
1 2m
m,~> > > *
e - f [ w0 aded e (36)
=1 0

This is a general spherical harmonics expression for the inhomogeneous source;
if we perform the same manipulations as in Appendix A, we can write a

programmable version of this in the form
NMQ
> > = >
o e - ) e e R @ G FE (37)
n=1

where Rn(a) are the same functions as in Appendix A, and NMQ is the total
number of spherical harmonics (and fixed source moments) required for a given
inhomogeneous source Legendre expansion order LQ as shown in Table I. The
index % is the subscript of the Legendre function P?(u) appearing in the
appropriate Rn(a), 0 < 2 <LQ. The Rn(a) are Ehui spherical harmonics
appropriate to the geometry being used, and the Qn(r,E) are the fixed source
angular moments corresponding to the Rn(a). The Rn(a) for typical Legendre
expansion orders are listed in Table II.

Note that the Legendre expansion used for the scattering source is

independent of the Legendre expansion order used for the inhomogeneous source.
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For example, one might use a P_, scattering order but only a P, (isotropic)

3
expansion for the inhomogeneous source.

0

E. The Adjoint Equation

Virtually all deterministic transport codes can solve either the forward,
or regular, transport equation described previously or the adjoint transport
equation. The adjoint solutions, namely the adjoint fluxes, have the special
physical significance of the "importance" of particles within the system being
solved. The solutions to the adjoint transport equation are used in
perturbation theory and variational calculations pertaining to nuclear
systems.5 The adjoint time-independent transport equation corresponding to Eq.

(6) is
& - Pt (FE,D) + I (r,E, D (rE,D) = sT(FED (38)
where the superscript + denotes the adjoint functions. In Eq. (38), the

adjoint source, S+(;,E,5), can be expressed similarly to the regular source in
Egs. (7)-(9), namely

s' (e D) = sIEED ¢ si(RED « T GED (39)
with
s;(F,E,ﬁ) =fd?z'f aE" ¢+(F,E',5)ES(F,E+E',§+§') , ' (40)

+ > > > > > >
Sg(r.E,Q) =fd$2'/dE' VI (r,E,2>Q")
x x(F,EE")0 (F,E',81) (1)

and Q+(;,E,5) representing the adjoint inhomogeneous "source."
With the spherical harmonics expansion technique described previously,

the adjoint sources can be written

NM
s‘;(F,E,E) =de' Z (2% + 1) zi (;,E*E')Rn(a)a;(;,f:}') , (42)
E' n=1
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Sp(FE,&) = VEL(F,E) de' X(FEsENO O(FEY) (43)
E'

NMQ
Q"(F,ED = Y@L+ DR T FEE) (44)

n=1

In these three equations, the spherical harmonics, R (Q), the adjoint angular
flux moments, o (r E), and the adjoint fixed source angular moments, Q (r E),
are defined in the manner described in Sec. D.

The complete specification of the adjoint problem requires specification
of boundary conditions for the adjoint particle flux. The most common boundary
condition is the vacuum, or free surface, boundary condition. For the regular
;0, Q(FO,E,ﬁ) = 0 for all incoming

directions, that is, for 5 + A < 0. The vacuum boundary condition for the

particle flux at a vacuum boundary,

adjoint particle flux is ¢ (r E,a) = 0 for all outgoing directions, that
is, for Q *n> 0.

III. NUMERICAL DESCRIPTION

The numerical description of the transport of neutral particles involves
discretization of the independent variables of the transport equation. In the
following, we start from the linear Boltzmann equation as developed in the
previous section, and we consider each of the independent variables in turn.
The general goal is to write the transport description in a numerical form that
can be efficiently solved using modern computing techniques and machines. In
this section, we present methods that, in common experience, lead to the most
efficient and most easily programmable computational algorithms.

To give a clear exposition of the methods used for discretization
purposes and to explicitly define the phase space cells, it is necessary to
particularize the geometries. For nuclear reactor analysis, methods based upon
orthogonal geometries are the most common. In this exposition we will restrict

ourselves to geometries that can be described in one, two, or three dimensions
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using rectangular Cartesian or cylindrical coordinates or in one dimension
using spherical coordinates as described in the preceding section.* The basic
reason that numerical methods are normally based upon orthogonal geometries is
that the spatial region is readily represented in a rectangular domain or its
three-dimensional generalization. As such, computationally simple
prescriptions for neutral particles traveling through the rectangular domain
can be established, and this permits efficient programming in codes based upon
such methods.

In the following, we treat the discretization of each of the independent
variables in turn. We start with the energy variable, then consider the
angular variables, and end with the spatial variables. Our last consideration
in this section involves the solution of the resultant set of numerical

equations by a source iteration technique.

A. The Energy Variable - The Multigroup Method

Note in Eq. (6) that the energy variable appears only on the source side
of the equation under an integral over the entire energy range. On the left
side, it appears merely as a parameter. Therefore, the most commonly used
discretization method is the multigroup method, in which the energy domain is
partitioned into G intervals of width Eg,% - Eg+%_5 AEg, g=1, 2, ¢+, G. By
convention, increasing g represents decreasing energy so that E% > E% > eee >

E e« > E If we integrate Eq. (6) over AEg, using Egs. (7) and

> E > .
g~ Tgrr G+y
(8) and assuming for the moment that scattering and fission processes are

>
represented by a transfer cross section, Z(P,E'*E,ﬁ-ﬁ'), we obtain

>

r,nv-ﬁ)og,(F,ﬁv) + Qg(?,ﬁ) , (45)

H
M-
Q.
1%
™
[o.2]
¥
o8]
~~
v

*
Some nonorthogonal triangular mesh methods are based upon the orthogonal (x,y)

or (r,z) geometries, and many of the following considerations apply to them as
well,
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where

o (P,0) = /o(F,E,ﬁ)dE , ' (46)

g
AE
g

f dE o(F,E,ﬁ)zt(F,E)

AE
I, o (rf)= —E — : (47)
! ¢ (r,Q)
g
> > > > >
de de' I(r,E'»E,Q'Q)o(r,E",R")
AE AE ,
28'-»8 (;’a'-’a) = . . > > ’ (48)
<I>g.(r',9)
and
og<?~,5) f dE Q(r,E,R) . (49)
AE
g

Here the group flux ¢g(;,5) defined by Eq. (46) is no longer a distribution in
energy or an average in energy but is the total flux of particles in the energy
interval AEg. Therefore, energy integrals can be replaced with the simple
sums. The definitions of multigroup cross sections, for example, those in
Eq. (47), are formal definitions since they require knowing the particle flux
Q(F,E,g) before they can be determined. Since the particle flux energy
distribution is unknown, suitable methods for employing weighting functions
that accurately approximate the spectral dependence of the flux are required.
Successful application of the multigroup method for energy discretization in
transport computer codes depends on accurate determination of the requisite
multigroup cross sections, and a great deal of effort has been devoted to this
area,

We observe that, numerically, by use of the multigroup treatment the
original transport equation has been reduced to a set of G equations coupled
through the source term. This suggests a conventional iterative method of
solution; that is, one solves Eq. (45) a group at a time, assuming that the
source is known. The source is then updated, and the process is repeated. We

can represent this procedure as follows:
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G
k+1 > > > k ,» > > >
L ¢ = L r,Q«Q')eo W) + , .
g E g'g ( ) g,(r ) Qg(r ) (50)
g'=1

where k = 0, 1, +*++ is an iteration index.

Thus, an initial guess, Qg, g=1, «++, G, is made and the equations
solved for oé, g=1, <+, G. With Zhis new value of ¢, the right side is re-
evaluated, allowing a new solution Qg tg be computed. This simple procedure is
repeated until convergence is obtained.

To further explain the iteration process, it is convenient to modify
Eq. (50) by expanding the transfer term into its fission and scattering
components. We will also separate the scattering source term into "upscatter®
and "downscatter" portions where upscattering denotes scattering from lower

energies to higher energies and conversely for downscattering. We then have

G
k*"l""_ > f->' > k ,»> >
Lg°g (r,2) = xg(r) E de [vzf(r)lg.og.(r.ﬂ)

g'=1 Um
g
' > ->'.-> k+1,> -
+ Z J/.dQ L, grag (M8 (r,a") (51)
g'=1 Unx
G
> k >
+ E / At I o, (78T eR)e , (r,a")
g'=g+1 Um

Thus, the downscatter processes are written at iteration k + 1 and the fission
and upscatter processes are written at iteration k because we start the
solution of this system of equations at the highest energy and proceed down the
groups. In this way, the downscatter source is known and utilized. We have
written the fission source in a separable form assuming that the fission

spectrum xg(;) does not depend upon the incident neutron energy. If it does,

*
We explain the convergence procedure in detail in Sec. III.D.
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we would have a matrix ng'(;)’ which would then appear under the summation
sign. (Most production computer codes do not allow for this, however.) The
iterative procedure described by Eq. (51) is known as the "source iteration"
method. It is almost universally used in production codes for time-independent
calculations. The solution of Eq. (51) beginning with energy group 1 and
proceeding successively through energy group G constitutes what is referred to
as an "outer" iteration. Note that in the absence of fission and upscatter the
source iteration method requires only a single pass, or outer iteration, to
effect the exact, fully converged, solution.

To consider the classical keff eigenvalue problem using Eq. (51), we set
the inhomogeneous source, Qg(;,a), to zero and replace xg(;) with xg(;)/szf,
is the estimate of the value of k at the k-th iteration. This

ff eff
eigenvalue is most conveniently solved by a "power iteration" technique

where kk
e

k
eff
while the outer iteration procedure is being effected. That is, after the k-th

outer iteration, we define a parameter Ak+1 by

L .=1fd?~ ./d?z'[vzf(F)J T LD
ket _ B hi g''g

A ) (52)
G > f 2 > kK > >
Zg,=1fdr' ? dQ [vzf(r)]g,og,(r,n)
v
and then
k+1 k+1, k
keff =2 keff : (53)

This procedure has been shown6 to be unconditionally convergent for reactor

analysis-type problems. This means that for any problem

lim (k+1

],(-N:nA = 1 ’
and

lim kk - Kk

k»o “eff eff °

In computer code applications, convergence is defined when Ak+1 differs from

unity by less than some user-defined convergence criterion, say 10_5.
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Thus, in summary, the multigroup discretization of the energy variable
leads to a natural iteration strategy in the solution computation of the
transport equation and puts the burden of accuracy on selection of the

multigroup cross sections.

B. Discretization of the Angular Variable

In this section, we briefly describe two discretization techniques for
the angular variable: the spherical harmonics method and the discrete
ordinates method. Discretization of the angular variable requires care
because, in general, it appears both in the discretization of the streaming
operator (5 . 6) and under an angular integral in the source side of the
transport equation.

1. Spherical Harmonics Method. To describe the spherical harmonics
method7

for treating the angular variable, we use the multigroup form of the
Boltzmann transport equation with the source terms expanded in spherical
harmonics, as described in Sec. II.D. Without loss of generality, we use the
nonfissioning, inhomogeneous source equation. Using the generalized form of
Eqs. (34) and (37) for the scattering and inhomogeneous source terms, the

transport equation is written

g
G NM
- ) @l PR @E LB (51)
g'=1 n=1
NM
FY @ Ry B,
n=1

where NM, the number of spherical harmonics used in the expansions, is assumed
to be the same for both the scattering and inhomogeneous sources. In Eq. (54),
as in Sec. II.D, we have defined the spherical harmonic angular flux moments
6n g(r-:) and angular inhomogeneous source moments 5n,

g(;), respectively. Thus,
14
in Eq. (54), the source side of the equation is expressed in terms of spherical

harmonic flux and inhomogeneous source moments, whereas the left side angular

dependence is as yet unapproximated. The spherical harmonics method consists
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of also approximating the angular flux on the left side in terms of spherical

harmonics, namely
NM
> > ¢+ -»(—D >
Qg(r,n) = E (2 1)Rn(9) n,g(r) ’ (55)
n=1

where, as described in Sec. II.D, NM is the total number of spherical harmonics
required for a given expansion order, L, as shown in Table I.

Inserting Eq. (55) into Eq. (54) and collecting terms yields

NM
Z (20 + DR @@ - T6 (™) vz (OF ()
n=1

(56)
G

) Z %s,g'0g (V0n,g(") T G g1 =0
g'=1

To reduce this to a set of NM equations in the flux moments 6n g(;), we
> s
multiply through by Rm(a) and integrate over aXl Q. Using the orthogonality of

the spherical harmonics Rm(a), the result is

NM /
Z cz e n S db r @ry @i - B, )
n=1
(57)
G
+ Um [Zt,g (r)om’g(r) - Z zs,g'*g (r) - Qn’g(r)] =0
g'=1

for 1 < m < NM. Note that we have been unable to use the orthogonality of the
Rn(a) in the streaming term (first term) of Eq. (57) since the streaming term

involves

> > > >
/dQ QRn(Q)Rm(Q) .
Yo
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To write the streaming term in terms of the flux moments, we must invoke
identities for ERn(a) specific to the different geometries of interest. For
our purposes, in three dimensions, the streaming term evaluation shows a
coupling of seven flux moments, whereas for two dimensions five moments are
coupled, and even for ordinary one-dimensional slabs and spheres, three moments

are coupled.7’8

For modern machine architecture, such an extensive coupling
leads to impractical computational algorithms for the fluxes.

Therefore, there are few production-oriented codes that employ spherical
harmonics as an angular discretization method. In the authors' opinion, the
chief value of the spherical harmonics method is its role as a successful
method for treating "ray' effects arising from discrete ordinates, as discussed
below, and the fact that it is a generalization of the extensively used
diffusion approximation.

The diffusion approximation is derived from Eq. (57) by truncating

Eq. (55) at L

1, which we write as

og(r,n) oog(r) + 30 - Jg(r) . (58)

where the scalar flux,
> > > >
¢ r=fd9<b r,Q) , 59
0g(") g(Tr8) (59)
Y
and the current term,
J - faide @b . (60)
g g
Yy

An evaluation of Eq. (57) with og(?,ﬁ) given by Eq. (58) yields the following

set of equations:

G

Ve3P e L Peg ) =D r L Do )+ g, )L (612)
=
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1 > > > > > > > > >
3 Vo (r) + Zt’g (r)J_(r) = :E: Ig,grog (Mg () +Q (1) . (61b)

To proceed, we make further approximation. That is,

1 z1

zs,g'*g s, g 68'8 ! (62)

where

G

1 1

zs.s; - Z zS.g*s;' ’
g'=1

and 68'8 is the Dirac delta function. With this we can solve Eq. (61b) for J
to obtain

> > > > 1 > >
Jg(r) = -Dg(r)Voog(r) +-E———ZE; Q1g(r) , (63)
r.,g
where
> 1
D (F) = ———~ (64)
3Ztr’g(r)
and
> > 1 >
op,g () = Iy g (1) - 20 (7). (65)

Combining Eq. (63) with Eq. (61a), we obtain the diffusion equation

G
- - 2 = ~ = 0 r r
Ve D (r)Vey (r) + I, Bog () E Lg,grog (Mg (1)
g'=1
(66)
> 1 >
+ Q. (r) - v[ Q, (r)]
g 2y 18
Ztr,g(r)
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In its usual form for fission problems, the self-scattering term is moved to
the left side of the equation and combined with the total cross section to

define a "removal™ term,

¢ (r) - ¢ (r) . (67)

>
Ip,g (M) = Iy S, 878

s
In addition, it is usually assumed that 518(;) = 0. From Egs. (58) and (62),
one sees the mathematical approximations needed to derive diffusion theory from
transport theory. Physically, it can be shown that diffusion theory is an
accurate approximation to transport theory when the physical processes are
scattering or fission dominated (small capture cross section); when the medium
is large (ZtL_Z 10, where L is a characteristic length); and when boundary or
interface effects are unimportant. We note that even when all these conditions
are not met, the diffusion approximation can still be invaluable in obtaining
*

inexpensive solutions to the transport equation.

2. Method of Discrete Ordinates. We have noted that except when

diffusion theory is accurate, the spherical harmonics discretization of the
transport equation is impractical for arriving at an efficient computational
algorithm for modern computers. The angular discretization method that is most
useful and is incorporated in most production transport codes is that based
upon the method of discrete ordinates.9 In this method, a set of discrete
directions for 5 is chosen, and the transport equation is evaluated for these
directions by suitable averaging processes. The choice of these ordinates is

not arbitrary; it seeks to satisfy the following conditions:

1) physical symmetries are preserved upon discretization;

2) the spherical harmonic moments are well approximated to provide
accurate representation for the sources; and

3) derivatives, with respect to the angular coordinates (in curved
geometries) resulting from the streaming operator, are simply

approximated.

*
We make additional observations in Sec. IV.D on the usefulness of the
diffusion equation and its relationship to transport calculations.
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In geometries of more than one dimension, not all of the above conditions can
be met exactly with a single selection of a discrete ordinates set. Thus,
compromises are made, such as relaxing the complete physical symmetry
requirement so more spherical harmonics moments can be accurately calculated or
so the angular derivative term remains a simple expression with minimum
coupling. These considerations are discussed more thoroughly in Sec. IV.A.
For our purposes now, we assume that we have an appropriately chosen discrete
set of directions Em with components Bpo Ny and Em’ in the direction of the
unit vector Em as shown in Figs. 2, 3, and 4. Each discrete direction Em can
be visualized as a point on the surface of a unit sphere with which a surface
area wm is associated. These wm are called the weights. The combination of a
set of discrete direction cosines together with their respective weights is
referred to as a "quadrature"™ set. Then, by integrating Eq. (54) over Em, we
obtain the discrete ordinates form:

[q - 3¢8(r,9)]m LI (e (F)

G NM
A > > = >
- :E: (2 + 1) I o (DR EDE () (68)
g'=1 n=1

NM
+Z @+ DRAN, ), m= 1,2, e N
n=1

In Eq. (68) we have used the spherical harmonics expansion forms of the
scattering and inhomogeneous sources as described in Sec. II.D with the

spherical harmonics evaluated at the discrete direction Em. We have also

defined the average angular flux Qm g(;) as
b4
> 1 > > >
°m,g(") = "—m fdsz og(r,n) , (69)
<>
Q
m
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*
with the weight defined as

wo E/dQ . (70)

In addition, we have used the notation for the streaming term,

g - -V)Qg(r',ﬂ)]m E-/.dQ [Q - VQg(r’,Q)] . (71)

>

Qm
This streaming term has been left in general form since one needs to specify
the spatial geometry before the term can be evaluated. We illustrate the
considerations necessary to evaluate the streaming operator by considering a
specific geometry, (r,z) cylindrical.
For two-dimensional (r,z) cylindrical coordinates, the streaming operator

is given by Eq. (19) (repeated below),
“r o v o ' tE o (19)

The independent variables are defined in Sec. II. With this, Eq. (68) becomes,

upon multiplying through by r,

a[rog<F,5)J a[nog<F.5)J aog<3.5) R R
M o - o tEr /32 . vorLy J(r)ey o (r)
(72)
- rSm’g(r-:) ,

where we have expressed the source on the right side as simply Sm 8(;). We now
b4
consider, in detail, the discrete ordinates representation of the streaming

terms in Eq. (72), recalling Eq. (71).

*
See Sec. IV.A for a complete discussion on the choice of weights.
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The first streaming term is readily evaluated as

N a[rog(F,E)] _ 3re_ E;(F)]
S —E s, —me (73a)
>
Q
m

and likewise the third term is written as

> > >
> aog(r,n) _ 3[r¢m g(r)]
/dQ gr—f Ty — 8 (73b)
>
Q
m

Thus, one assumes that for terms involving spatial derivatives, the angular
flux can be taken as constant within each angular interval. This assumption is
made to minimize the angular coupling between the discrete directions.

The second streaming term represents the angular redistribution term
characteristic of curvilinear geometries discussed in Sec. II.B. Since angular
coupling is required to properly represent the discrete ordinates form of the
angular redistribution term, it is inaccurate to assume that the angular flux
is angularly constant for evaluating in this term. Accordingly, we allow
og(?,ﬁ) = og(?,g,m) to vary linearly over ﬁm and define, with subscripts m+1/2
and m-1/2, the angular flux at the edges of an angular cell. Further, we note
from our discussion in Sec. II.B that angular redistribution involves changes
only in the angle w shown in Figs. 3 and 5; it is thus convenient to choose
discrete ordinates points on lines of constant Em on the unit sphere so that on
any given line, or £ level, a change in angle involves changing only the angle
w (0 < w < 2n).* With these conventions, then, we write the discrete ordinates

form of the angular redistribution term as the general linear form,

, e (r,&)] . 5
R e U T WU SN ¢ I (73¢)

>

Q
m

*
This is an example of condition 3) enumerated on page 39.
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In Eq. (73c¢c), the am+§ are, as yet, undefined angular coupling coefficients
that are spatially and energy independent. To define these coupling
coefficients, we note that the analytic angular redistribution term when

integrated over w, with £ held constant, yields

2m

[ aodnGin
w
0

since n = 0 both when w = 0 and when w = 2r. By analogy, then, if we "inte-
grate" the discretized form of Eq. (73c) over all points on a given £ level, we

require that

ML
> >
Z eyt g™ 7 g fng,g(M)]
m=1
(74)
> >
B N N

where ML denotes the number of discrete points on a given g level. Equa-
tion (74) is satisfied by requiring the first and last a on each £ level to be

zero, that is

O = oyt o . (75)

To determine the remaining values of the a coupling coefficients, we observe
that in "everywhere constant" particle flux, o(?,ﬁ) = C a constant, in which

5 . §¢ = 0; so using Egs. (73a)-(73c¢),

c=0 ,

WwuC+a ,C-aqa
m'm m+~ m~%

or

This recursion relation, together with the starting condition of Eq. (75),

completely determines the values of the coupling coefficients on each £ level
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for a given set of discrete ordinate directions. 1Inserting Eqs. (73a)-(73c)

into Eq. (72) yields the cylindrical (r,z) geometry discrete ordinates form

>
alre  (r)]
m,g > a >
R e T S SR
3lrey (7)) » N
$ Wy T+ WrI (e (1) (17)

s _(F)
= wmr m, g r .
No angular redistribution term occurs in Cartesian (x,y,z) geometry; the

angularly discretized form of the multigroup equation is simply

36 (r) 30 (r) 30 (r)
vy —me ~ o “me m
mm 9X mm oy m’m 9Z

(78)
+ wmzt’g(F)om’g(?) =wS (r) ,

where ; is represented by the Cartesian coordinates x, y, and z.

We can now make several observations about angular discretization by the
discrete ordinates method described above.

The procedure for generating a discrete ordinates representation of the
streaming operator is to specify the geometry and to work from a conservative
form of the streaming operator in that geometry. Conservative, in this
context, means that if the streaming operator is integrated over a spatial
region, the resulting quantities can be interpreted directly as the net leakage
of particles through the surfaces of the region. This conservative form is
best because its use greatly enhances accuracy, in an integral sense, of
methods based upon it. We present a rather extreme example of this property in
the "ray effect™ section below.

Next, discrete directions and weights are selected, and the transport
operator is evaluated for these discrete directions. With such a selection of
discrete directions and weights, the streaming operator in the transport
equation is approximated in a manner that yields minimal angular coupling,
simply expressed, and is thus amenable to efficient calculation using digital

computers.
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Another feature normally associated with the basic discrete ordinates
method is that the source is expressed in terms of spherical harmonics of the
angular flux. The reason is to save computer storage when evaluating the
source for neutron transport, which is, in general, angularly dependent. The
angular dependence of this source in most reactor applications is due to
angular dependence of the scattering interactions. In Sec. II, for isotropic
media, this angular dependence is conveniently and accurately represented by a
Legendre expansion in the scattering angle as measured in the laboratory
coordinate system (the same system that particle transport is measured in).
For eigenvalue calculations of reactor systems, this expansion can usually be
truncated at L = 0 or L = 1, still giving an accurate representation. For deep
penetration or shielding applications, it may be necessary to represent
scattering up toL = 5o0or L = 7. In Table I, page 26, we present the number of
flux moments required to compute the source up to a given order. 1In Table III,
we show for comparison the number of discrete directions in a typical discrete
ordinates, or SN’ quadrature. Because of accuracy considerations, the highest

Legendre expansion order is one less than the S, order used, for example, 88

N
and P_,. We see that for high-order scattering, the maximum number of moments

7
required approaches the number of angles for the corresponding SN set.
However, in practical applications the scattering order, L, is no larger than

5, or perhaps 7, and for, say, an S or S16 quadrature the number of Legendre

moments is considerably less than théznumber of discrete angles. In the final
analysis, the determining factor to using a Legendre expansion of the source is
the flexibility of the resultant code. This flexibility allows one to minimize
theamount of data needed to compute the angle-dependent source as the user's
accuracy requirements dictate.

Thus, having made the choice of using a spherical harmonic representation
of the source, we then see the necessity of requirement 2) (page 39) on the
choice of the discrete ordinates. That is, once we have picked a truncated
spherical harmonics representation of the source, we seek to minimize any
additional error by restricting the discrete ordinates set to one that
integrates (by quadrature) the spherical harmonics exactly up to the specified

order, How this is done is explained in Sec. IV.A.
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TABLE III

NUMBER OF TYPICAL DISCRETE ORDINATES (SN) DIRECTIONS

Spatial Directions
2 S % % 512 S
2-D y 12 24 40 84y 144
3-D 8 24 48 80 168 288

Having chosen discrete ordinates as the method to discretize the angular
variable, we offer the following observations upon its accuracy in two (and by
inference three) dimensions. In problems dominated by scattering, such as
reactor eigenvalue problems, the discrete ordinates method is generally more
accurate in integral quantities than is the corresponding spherical harmonics
method.10 These integral quantities include the eigenvalue, region-integrated
reaction rates, and leakages. A basic reason for this is that a conservative
form of the equation has been used, and the accuracy of the solution to
scattering problems depends upon such conservation. A second reason is that
discrete ordinates methods are more compatible with the natural boundary
conditions of the transport equation than are the spherical harmonics methods.

On the other hand, in low scattering, high absorbing problems or vacuum
regions far from the driving source, such as are encountered in many shielding
problems, the accuracy of discrete ordinates methods suffers from what are
called ray effects.11 An extreme example can be visualized as a point source
radiating into a pure absorber. The exact scalar flux solution of the problem
is spherically symmetric. However, a discrete ordinates solution will exhibit
maxima and minima corresponding to the presence or absence of ordinates in the
directions sampled. In Fig. 6 we show an S16’ two-dimensional, (r,z) geometry
calculation of the scalar flux at the surface of a purely absorbing sphere that
is five mean free paths in radius with a point source at the origin. The
figure dramatically shows that ray effects dominate the solution at this
distance from the source. Despite the nonphysical peaks in the flux, the
average flux over the surface is still fairly accurate (4.59 x 10_5 as compared
with 4.34 x 10_5 for the one-dimensional sphere solution shown). These peaks

are caused by ray effects; thus, large pointwise errors can be evident in the
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Fig. 6. Flux at the surface of an absorbing sphere
(an example of the ray effect).
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flux. Use of the conservative form of the transport leakage operator causes
the accuracy in the average flux. Anybody interested in knowing accurately the
flux pointwise has two alternatives. The first is to add more and more

order), or second, to invoke one of the remedies
10,11

ordinates (go to a higher SN

that mitigate or eliminate the ray effects. These latter remedies have
been shown to be computationally very expensive if they are effective; they
seek to add a source to the discrete ordinates equations that converts the
solution to the spherical harmonic solution. The first remedy is

straightforward but can be expensive because computing time is directly

ur




proportional to the number of ordinates. A variation on adding more ordinates
is to add the ordinates where they are most needed. For shielding problems,
this generally means adding ordinates in the direction of particle travel.
Such "biased" quadratures are further described in Sec. IV.A. It is generally
thought that the ray effect problem is still not satisfactorily solved and

awaits further research and development.

C. Spatial Discretization

The final step in discretizing the transport equation involves the
spatial variables. For illustrative purposes, we continue our consideration of
(r,z) cylindrical geometry. Discrete spatial mesh cells are generated by

partitioning the r dimension into IT intervals such that

Py <P <Py s 1=1,2, 00, 1T

and the z dimension into JT intervals such that

zjq% <z K< ZJ+§- sy J =1, 2, oo, JT .

The 1i,j mesh cell, with this nomenclature, is shown in Fig. 7. We also define
the width of the i,j cell as

Ar, P T Tia ' (79a)
_ _ 1,j+l/72
|+I/2,]+I/2f . ¢i+1/2,j+1/2
. by : :
i-1/72,j ¢ . ¢i+1/2,]
i-1/72,j-1/2¢ - —8i+1/2,j-1/2
ih,j-1/2

Fig. 7. Typical two-dimensional spatial discretization
mesh cell.
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and the height, Azj, as

Azj = zj+%w- Zjﬂ% . (79b)

To generate the fully discretized, conservative form of the multigroup,
discrete ordinates transport equation, we multiply Eq. (77) by 2wdrdz and
integrate over the i,j mesh cell. Considering these operations term by term,
we first have

3[r¢ (r z)]
/ / 2TwW u r drdz

Az Ar
(80)
= W A, -3 . - A, X3 .
Mt ivg,j it,j,m,8 i~3,J r%u.mg] !
where we have defined the cell-edge average angular flux
3 - d (r. z)dz (81)
it%,j,m,g Az, m,g  i+}’ ’
J az.
J
and the i-direction cell surface area
Ait%,j = Zﬂrir%AZj . (82)

The angular redistribution term of Eq. (77) becomes, when integrated over the

i,j cell,
f f [a 1 (r' z) - am_%omq_é_’g(r,z)]anrdz
Az Ar
(83)
1
- Vi.J(r)i[“m+%°i,j.m+%.g o‘m“%q’i.J,m--a‘-.g] )
Here we have defined the cell-averaged flux as
o, . r,z)2nrdrdz 84
i,j,meb,8 - ( )aw ’ (84)

’J Az Ar
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and have made the common approximation that

1
/f“’m*-},g""m“d"dz" G)i0 5 mebrg e,y

AzJ Ari

Also, the cell volume Vi i is

2 .2
Vi,J - f /Zwrdrdz = “(ri%— ri—%)AZj . (85)

Az, Ar,
i

J

Note that the quantity (1/r')i in Eq. (83) is, as yet, unspecified. Before it
is determined, we consider the last streaming term in Eq. (77), which when

integrated over the i,j cell is written

aom 8(r,z)
W f21rr' /T dzdr
Ari AzJ

(86)
= Wt il r'i“%][q)i.JH‘r.m.s; ®,3~4mgl
In Eq. (86), we have defined the j-direction cell surface average flux
fom (r,z.. , )2ardr
i i~

and we note that the j-direction cell surface area is n[r§+% - rfq%]. With the
three terms given in Eqs. (80), (83), and (87), the fully discretized streaming
terms for the i,j mesh cell are specified. To determine the quantity (1/r)i in
Eq. (83), we form the discretized streaming operator by summing Egs. (80),
(83), and (87) and consider the "everywhere constant" angular flux case for

which @ - Vo = 0. By setting all fluxes equal and using Eq. (76), we get

T R
(_)1 = V.

(88)
r i,J
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Returning to the last two terms of Eq. (77) and integrating over the i, j

cell, we get

r,z)2nrdrdz = w_I, . o, . \' 8
./P ‘/ﬁ n’t,g *n, ( ,2) mt,i,j,g i,j,mg i, (89)
Ar Az
and
W S r)2nrdrdz = w_S V.
./P df m, g ( 2 mi,j,mg i,j °’ (90)
Ar Az

>
where in Eq. (89) we have assumed that I (r) is constant within a given mesh

t,g
cell; ¢, and S, are the cell-average angular flux and source,

i,j,mg i,j,m,8
respectively, defined similarly to Eq. (84).

Thus, for (r,z) cylindrical coordinates, the fully discretized multi-
group, discrete ordinates transport equation is written using Eqs. (80), (83),
(86), (88), and (90). 1In fact, for the standard geometries under consideration
for nuclear reactor analysis, the fully discretized discrete ordinates

transport equation can be written in general form as

wu (A, 0., . - A, 40, , . )AH .
m'm ik ik, i, k,m, 8 i~5"i~4,j,k,m, g jk

x (a $. . - a ¢, . AH .
( me i,j,k,me5,8 m—% l,J,k.m“%.S) Jk

(91a)

+

w_n_AB -6, .
n"m?B ik (%1 yJ+E,k,m, g 1.3“%.k.m.8)

+ w € AC, (0 )

. . - ¢, .
1] 1’J’k+-%"m’8 1’J’k“_;"m’g
’

w X, . . ¢, . vV, . =w.S. . v, .
m t’l’\]’k’g l’J’k’m’g l’J’k m l’J’k’m’g l’J’k

g =1, ¢°°, G; m = 1, e, M; i-= 1, =2+, I; J = 1’ eee, J; k=1, =+, K;
the specific coefficients for each of the normal geometries are given in
Table IV.
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TABLE IV

AREA AND VOLUME ELEMENTS

Geometry A1~1/2 AHIk ABik Acij V11k
1-D slab 1 1 0 0 AXI
2
1-D cylinder 2ur1’1/2 1 0 0 11(:‘1*1/2 r1_1/2)
_ 2 3 ~ a3
1-D sphere uwr1’1/2 1 0 hn(r1’1/2 r1_1/2)/3
2-D slab (x,y) 1 AYJ AXI 0 AX’_A‘!J
2-D cylinder (r,0) 2nr AQ 0 Ar n(r2 - rz pIX:)
' 1+1/2 K 1+1/72 1-172"77
2-D cylinder (r,z) 2xr AZ x(r2 - rz ) w(r2 - rz )AZ
’ 1+1/2 J {+172 {-1/2 1+1/2 1-1/2 J
3-D slab (x,y,z) 1 A‘!JAZk AX’_AZk AX’_A\!J AX’_A‘!JAZk
3-D cylinder 2%r AG, AZ x(r2 - rz )a8 Ar  AZ n(r2 - rz YAZ AG
(r,0,2z) 1+1/72 k) 1+1/2 1-1/2 [3 J 1+1/2 1-1/2 J 7k
’ ’

NOTE: For 2-D cylinders (r,z), L and g should be interchanged in Eq. (91) for consistency with the

notation used throughout this chapter.

In writing Eq.

(91a), we have started from the conservative form of the

transport operator in its discrete ordinates representation [Eq. (77) for r,z

geometry].
derived a spatially discretized form of the operator.

over angle, we obtain

A dJd, - A J . AH
( i"‘;‘ 1"‘;":]’1(’8 1“31' i“—;',J,k,g) Jrk
+ AB, I - I.
lyk( i’J*"l‘T’k’g lyj_"lf’kyg)
+ AC K, . - K. .
i.J( i,j,k+4,8 1.J.k“—é,8)

Oy 50,1, 5,k,8 T S0,1,3,k,8 1,0,k
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We have then integrated over a spatial mesh cell and, thus, have

(91a)

Now, if we sum Eq.

(91b)




where

M
J . = W . .
iv4,j,k,8 Z mMm ik, i,k,m,g
m=1
M
I. = w $, .
i,j+,k, 8 Z m'm i, i+, k,m,g
m=1
and
M
K, . = w $. . .
i,j,k+,8 Z m°m i,j,k+},m,g
m=1

In this angle-integrated balance equation, the first three terms are inter-
preted as leakage out of the i, j, k faces, respectively, of the spatial cell.
The fourth is the total reaction rate, and last are the sources into the cell.
Thus, we consider Eq. (91a) to be a fundamental equation for all conservative
forms of spatial differencing of the transport equation, and we will refer to
it frequently. As we mentioned in the section on discrete ordinates,
satisfying the balance equation has a large impact upon the accuracy of the
transport solution for integral quantities such as system leakages,
eigenvalues, etc.

We note that Eq. (91a) is a single equation for a mesh cell, but there
are more dependent variables (angular fluxes) than one involved; that is, there
are more unknowns than equations. For example, in (r,z) cylindrical geometry,
Eq. (91) contains a total of seven fluxes, ¢
and ¢

< . o, . %,

i,j,m,g’ "ixd,j,m,g’ "i,j+i,m,g’
1 .. Some of these are known from boundary conditions and the

i,j,m+z,8

others are established from auxiliary equations. Establishing these auxiliary

equations is the distinguishing feature of the spatial differencing methods

presented in Sec. IV.B.

Finally, we observe that the design and performance of source iteration
acceleration techniques are influenced by the choice of the spatial dis-
cretization method. For example, if we choose to discretize the conservative
form of the streaming operator, then iteration acceleration by a rebalancing or

renormalizing algorithm that seeks to force some integral balance upon the
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solution is a natural thing to do. If one chooses a nonconservative algorithm,
then a rebalancing method is not natural. Also, the discrete ordinates
representation of the streaming operator suggests a natural direction for
sweeping (solving) the mesh. Because this operator is first order,* it is
essential for algorithm stability to difference (discretize) the operator in
the direction of flow. This also leads to a simple, noniterative class of
methods for inverting the matrix representation of the streaming operator.
Thus, it is very helpful for computational efficiency to minimize the coupling
in the spatial mesh so a clear and efficient mesh sweeping algorithm will
result. This is rather simple to do for the orthogonal geometries described
above.

As a summary, we list the following as desirable attributes for a spatial

discretization method for transport problems:

1) The method should be strictly conservative for purposes of accuracy
and source iteration acceleration.

2) The method should be accurate as compared to the analytic solution
for reasonable size meshes (<3 mfp).

3) The method should be non-negative; positive boundary data and source
should yield a non-negative solution for the angular flux in the cell
and at its outgoing boundaries.

4) The method should yield the diffusion solution limit [o(?,ﬁ) = QO(;)
+ 35 . J(;)] independent of spatial mesh size when the physical

conditions are appropriate.

The last attribute is important to accuracy and to the diffusion synthetic
acceleration method, which is described below in the iteration acceleration
section. The non-negative requirement has a severe impact upon simple, finite
difference (FD) or finite element (FE) types of methods. This requirement
seems to be basically incompatible with the requirement of conservation and the
diffusion limit; that is, invariably a linear FD or FE method with conservation

and the diffusion limit is positive only for restricted mesh sizes.

*There is a second-order form of the discrete ordinates operator, the so-
called, even-parity form, which is a diffusion-like operator. Methods based
upon this form are not in general use in reactor analysis; therefore, they
will not be discussed further here. For more information, see Ref. 12.
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It may be desirable, because of thé above mentioned incompatibility, to
relax the conservation condition in favor of strict positivity in a simple
algorithm. For reactor analysis, the deep penetration problem involved in
calculating neutron and gamma transport through shields may be such a desirable
case. What is required mathematically for acceptable accuracy in these methods
is a within-group scattering source that is small. 1In this case, leakage
effects dominate the source contribution to the group flux, and conservation is
not a strict requirement for accuracy. This becomes more and more the case in
shielding problems as the number of energy groups employed in the analysis
increases. This has been pointed out by Sasamoto and Takeuchi13 and
incorporated in the PALLAS codes, as discussed below. Thus, the application
can dictate the form of spatial discretization that is desirable and needed for
a swift, accurate solution.

The diffusion theory limit of requirement 4) (page 54) leads to some
restrictions on spatial discretization methods also. For example, in weighted

diamond discretization methods in which it is assumed that

Lo} = a¢

fm = gt O -ae (92)

H_z-’m

for a = 1/2, the difference equations that arise do not have the diffusion

limit,.‘”'l We discuss this and its importance in Sec. IV.B.

D. Source Iteration

In Sec. III.A, we indicated the iteration procedure normally used to
solve the multigroup equation because of the group coupling in the source. We
term this the outer iteration. In this section, we treat the normal iteration
procedure used to solve the discrete ordinates equations because of the angle
coupling in the source. We term this the inner iteration.

The considerations involved in iterating the discrete ordinates, within-
group source to some convergence criterion is best explained by referring to

the multigroup, discrete ordinates equation, written as
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k+d, > > k+d >
. §¢g (M1, + T, (Mo "2(r)
(93)

-2(22+1) s (MR (B2 (P + s () ,

5,878 n m n,g m, g

where the superscripts k and k++ are iteration indexes, and Sm g(r-:) is the

source-to-group defined as

> (r)
S (r) = [vZ ] , ,( r)

(94)
G MM
R ZZ @+ 1) Ip L PR AN, L)
g'=1 n=1
g'*g

We have used the spherical harmonics expansion forms for the source, as
described in Sec. II.D. Note that we have separated out the within-group (or
self-scatter) source from the scattering-from-other-groups source. The
scattering-from-other-groups plus fission source (plus any inhomogeneous
source, if present) constitutes the "source to group."

We see from Eq. (93) that within each energy group g, the source, in
general, depends upon moments of the group g flux. In our remarks on the
solution of the discrete ordinates flux on a spatial mesh, we indicated that we
strive to make the streaming operator representation on that mesh as simple as
possible so the matrix representation of the left side of Eq. (93) is easily
inverted without iteration. Because the right side couples all of the angular
fluxes together, however, the equation is most easily solved by iteration,
which we have indicated by the superscript k. The iteration involves
determining a starting value for Q (r), evaluating the source for each angle,
m, inverting the left-hand side of Eq. (93) upon the source for each angular
direction to obtain ¢1/2(r), evaluating a new value of the source at k = 1 and

repeating until convergence. A typical convergence criterion is

max 0 > k+1 0 > -k
2 [[9,g(PIT ~ Log g(MTT| Loy (95)
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. . X 0
where ein 1s a given convergence criterion and ¢

(;) is the scalar flux for
0,8

group g.

The procedure outlined above is the inner iteration or within-group
iteration. It was pointed out above by means of Eq. (50) that there is also an
outer iteration involved in sweeping through all the groups.

Two questions arise in connection with the properties of this inner
iteration method: 1) Does it converge, and 2) if it does converge, what is the
convergence rate? It is straightforward to show that for reactor-type problems
with positive cross sections the iteration procedure is convergent. For a
model problem (infinite medium with spatially constant cross sections), the
method converges such that the spectral radius of convergence* for group g of

the inner iterations is

0
pg < cg = FEE (96)
t,8
. 0 X . X
where physically Zs,g+g-§ zt,g’ cg is the scattering ratio and, therefore, 0 <

cglﬁ 1. Numerical experience for the general, nonmodel problems encountered in
reactor analysis also confirms Eq. (96). The number of iterations, p, required
for an order of magnitude reduction in the error is related to the spectral

radius as follows:

-1
logp

p = .
Therefore, as p approaches unity, the number of iterations required approaches
infinity; that is, the problem approaches nonconvergence. Because of this,
there is good incentive either to choose the group structure so that cg for
each group is far from unity or to find an efficient method of accelerating the
convergence. The latter approach is detailed in Sec. IV.C.

A concurrent observation is that the convergence test of Eq. (95) does

not mean that the solution is convergent to ¢ of the infinitely converged,

in
true solution. In fact, if convergence is slow, (cgl: 1), the convergence test

*
The spectral radius for the convergence of the outer iteration is discussed in
Sec. IV.D.
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of Eq. (95), even though satisfied, could well be orders of magnitude away from
this true convergence. A fairly good rule of thumb is that, given Eq. (95) is
satisfied, then

€n

i’y [og (P17 - L8] (M1 Zﬁg : (97)
This gives further impetus for developing an effective acceleration convergence
method because then the "false convergence" as embodied in Eq. (97) when c8 is
close to unity will not occur.

In summary, the transport equation is solved by discretizing the inde-
pendent variables such that the physical content of the equation is maintained
while a completely efficient algorithm for machine computation is provided.
These considerations have led us to choose a source iteration method based upon
discrete ordinates. We see two levels of source iteration: an inner iteration
for the within-group scattering source and an outer iteration to converge the
fission and upscatter sources and the associated eigenvalue of the fissioning
system. The spatial discretization is based upon a particle conservation
algorithm for fission (or scattering) dominated problems. Further, the spatial
discretization has been combined with the method of discrete ordinates for the
angular variable to lead to a non-iterative method for inverting the streaming
operator matrix. In the next section, we present some of the details involved
in making selections of a discrete ordinates set, a spatial discretization

method, and a source iteration-acceleration method.

Iv. NUMERICAL DETAILS AND FEATURES

The previous section presented a general description of numerical
procedures used in current deterministic transport codes. In this section, we
describe details and features related to transport codes using the method of

discrete ordinates.

A. Angular Quadrature for Discrete Ordinates Codes

As previously discussed, in the method of discrete ordinates, angular
fluxes representing suitable averages are evaluated at discrete directions 5m

>
having components Mo Mo and Em’ the direction cosines of the unit vector, Qm.
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Consequently, ui + ni + Ei = 1. Each discrete direction 5m can be visualized

as a point on the surface of a unit sphere with which a surface area, Wi is
associated. The wm denote the weights. (The combination of discrete direction
cosines and their respective weights is called a quadrature set.) Clearly, the
sum of the weights must equal the area of the unit sphere. Choosing M total

discrete directions and measuring angular areas in units of im,

M
Zwm=1 i (98)
m=1

Considerable work has been devoted to developing suitable quadrature sets for

15-23

discrete ordinates codes. Although characterized by the name "discrete

N method, the

selection of a quadrature set to be used within the method is somewhat

ordinates method" and customarily referred to as simply the S

arbitrary. Accordingly, two SN calculations, identical in all respects except
differing quadrature sets, may yield differing results. For most problems, the
differences are small, but the user should be aware of the potential for non-
negligible differences. Below, we provide some details about quadrature sets
and differences in treating the angular variable within the framework of the S

N
method.

1. Types of Quadrature Sets. In the development or selection of a

quadrature set one must initially consider not only the number and location of
discrete points on the unit sphere of directions but also that the set must
satisfy certain mechanical integration requirements. For example, in the
Legendre expansions of the source terms in the transport equation, one may be

required to calculate the spherical-harmonics angular flux moments

1 2w
. *
o5 (F,E) = o+ f duf do o(r,E,R) Yy e)
-1 0

as defined in Eq. (29).

Using a mechanical quadrature in the discrete ordinates method, this

integral is replaced with
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M
> > *
- }E: Wpd(FES D) ¥ (usen)

m=1

%
and one must be assured that the quadrature sum reproduces the integral. Other
conditions and requirements exist as constraints on the quadrature set, but for
the present it suffices to consider the integration requirements.

It is instructive to consider, in some detail, the generation of the
Gauss-Legendre quadrature set over the interval -1 < u < 1. Recall that in
ordinary plane geometry and in one-dimensional spherical geometry the angular
variable, 5, is defined solely by u since azimuthal (¢) invariance is assumed.
Thus, in these geometries the discrete ordinates are simply N discrete values
of uin [-1,1]. Most users are familiar with numerical integration schemes
(trapezoidal, Simpson's, etc.) in which N-point integration is equivalent to
approximating the integrand by a polynomial of degree N-1. The Gauss
integration scheme has the extraordinary property of exactly integrating a
polynomial of degree 2N-1 using only N points, called quadrature points. If
the interval of integration is [-1,1], the quadrature becomes the Gauss-
Legendre, or PN’ quadrature, one frequently encountered in discrete ordinates

codes. In some r'efer'ences,15’16

the Gauss-Legendre quadrature is referred to
as the PN_1 quadrature. The subscript N-1 refers to the fact that N points
define a polynomial of degree N-1. In this paper, the Gauss-Legendre
quadrature is denoted as the PN quadrature where N represents the number of
quadrature points in the interval [-1,1]. To derive the Gauss-Legendre
quadrature, consider an arbitrary polynomial of degree 2N-1, say 82N-1(u)’ in
the u interval [-1,1]. Now suppose another polynomial of degree N-1 exists,

say GN_1(u), that satisfies the following conditions in p € [-1,1]:

(1) Gy (up) = gopq(u ) » m=1,2, «=¢, N .

From condition (i), (u) can be expressed as

EoN-1
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g2n-1(“) = GN_1(u) + f2N-1(“) , (99)

where fZN_1(u) is a polynomial of degree 2N-1 that must vanish at each value of

My T = 1, 2, =<+, N. Because of this, fZN_1(u) can be written in the form
f2N-1(“) = (u - M Qe =) oo (- uN)FN_1(u) , (100)

where FN_1(u) is a polynomial of degree N-1. Applying condition (ii) to
Eqs. (99) and (100) requires that

1
T;_' f (b= )= uy) oo (u - My Fyoq (Wddu =0 . (101)
-1

Since 82N-1(u) is arbitrary, so is FN_1(u), and Eq. (101) requires that each

power of pu in FN_1(u) must vanish when integrated; that is,

1
%f (= w0 = ) v - wouFau =0,
-1

(102)
k=0,1, s+, N-1 .,

Observing that each uk has a polynomial of degree N as its coefficient,
Eq. (102) states that this coefficient polynomial is orthogonal to polynomials
of lower degree over the interval [-1,1]. The Legendre polynomials satisfy
this orthogonality property. Thus, if the interpolation or quadrature points
W, are the zeros of the Legendre polynomials, PN(u), then conditions (i) and
(ii) are satisfied exactly. Now, with N quadrature points in [-1,1], any
polynomial of degree N-1 can be integrated exactly by mechanical quadrature,
that is, N unique coefficients W called quadrature weights, can be determined
such that

1 N

712- f Gy—q (W) du = Z Woln—q (Bp) - (103a)

=1 m=1
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With conditions (i) and (ii), Eq. (103a) can be written in terms of the
polynomial of degree 2N-1, namely

1 N

'12'/82N-1(“)d“=zwmgzw-1(“m) , (103b)

=1 m=1

so the polynomial of degree 2N-1 is exactly integrated by an N-point mechanical
quadrature known as the Gaussian quadrature. The weights, wm, which satisfy
Eq. (103b), are called the Gauss quadrature weights; these are determined as
follows. Let the polynomial 82N-1(u) be written
N-1 2N-1
Bon-q (W) = 35 + aqu + Ml T L T AN ¥ ’ (104)
where the ak are arbitrary constants for k = 0, 1, -+, 2N-1. Substituting Eq.

(104) into Eq. (103b), performing the integration, and matching coefficients of

like ak for the first N values of k yields the following set of N simultaneous
equations for the weights, wm:

N
1 = E wm ’

m=1
N
O'E Wmum s
m=1
N
1% 2
3 m'm  ?
m=1
N
1 N N-1
N [1 (-1)7'] = E WoHn .
m=1
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For a given N, with L. being the zeros of the Legendre polynomial PN(u), the

above equations can be used to determine the Gaussian weights, wm. For

example, if N = 2, there are two quadrature points, the zeros of Pz(“)
(Ref. 23),

My = 0.577 35 .
The weights W, and w, are then found from the two simultaneous equations

Note that the integration form,

1
jl_-fg(u)du ,
-1

has been chosen sﬁch that the Gauss weights will sum to unity (and not to 2, as

in Ref. 24) as is customarily done in S codes. Table V lists the Gauss-

Legendre quadrature sets for typical N. Fo§ ordinary plane geometry and for
one-dimensional spheres, the subscript N in SN denotes the number of quadrature
points, N, to be used.

In ordinary plane geometry where the angular variable 5 is described
solely by the variable u, discontinuities in the angular flux for u = 0 may
occur at spatial interfaces. Since the standard Gauss-Legendre, PN’ quadrature
assumes continuous polynomial representations over the full range of
u e [-1,1], it cannot properly treat the discontinuities. A quadrature set,

called the Gauss-double Legendre set, permits treatment of discontinuities in
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TABLE V

GAUSS-LEGENDRE INTEGRATION QUADRATURE SETszu

N = 2: By = Thy e =0.57735 w1 - wz = 0.5

N = 4: L -0.86114 LI P 0.17393
u2 - -u3 = -0.33998 wz - w3 = 0.32607

N = 6: u1 = -u6 = —0,93247 w1 - w6 = 0.08566
Hy = THg -0.66121 Wy = Wg = 0.18038
u3 = Ty - -0.23861 Wam Wy o= 0.23396

N =8: u1 = -u8 = -0.96029 w1 = w8 = 0.05062
By = M, = -0.79667 Wy = W, o= 0.11119
u3 = “ug = -0.52553 w3 =g = 0.15685
uu - -u5 = -0,18343 wu - ws = 0.,18134

N = 10: u1 = —u10 = -0,97391 w1 - w10 = 0.03334
By = THg = -0.86506 W, = Wy = 0.07473
u3 = -ug = -0.67941 w3 =wg = 0.10954
uu = -u,, = —0,.43340 wu = w,, = 0.13463
By = “Hg = -0.14887 Wg = W = 0.14776

N = 12: u1 - -u12 = -0.98156 w1 - w12 = 0.02359
u2 = —u” = -0,90412 wz = w” = 0.05347
My * “Hyg = -0.76990 w3 =W ® 0.08004
uu = -u9 = —0,58732 wu = w9 = 0.10158
By = “Hg = -0.36783 ws =g = 0.11675
ug = "W, = -0.12523 we = w7 = 0,12457

the angular flux at w = 0. The Gauss-double Legendre, or DPN, quadrature is

25

based on work by Yvon and involves application of the Gauss-Legendre method

to the two half ranges [-1,0] and [0,1] in u.

15,16

Some references use the notation DP for the Gauss-double

Legendre quadrature. The subscript (N/2)-1 ::?212 Lo the fact that the N/2
points in the half interval [-1,0] or [0,1] define a polynomial of degree
(N/2)-1 within the half interval. In this paper, the Gauss-double Legendre
quadrature is denoted as the DPN quadrature, where N represents the total
number of quadrature points in the full interval [-1,1]. For the DPN
quadrature, the N values of p, ordered from most negative to most positive, are

defined as
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1 p— P — = e e e _N_
H = _2' (11 1) = uN_m+1 ’ m 1’ 2’ ’ 2 ’ (105)

'
m m

where the u' are the zeros of the Legendre polynomials P ) ordered as in

4
Ns2 (M

Table V with u; < ué { eee (K “ﬁ/z‘ The DPN weights, wm, are related to the

corresponding weights in the PN/Z quadrature, wé, by

w! N
m
"w T T T M 0 M T2t (106)
As an example, consider the DPM quadrature. From Eq. (105), the DPu quadrature
points use the Géuss-Legendre quadrature points for N = 2, From Table V, for N
= 2, u; = -0.57735, “é = +0.57735, so that Eq. (105) gives

I P - _
111-2(111 1) = My

-0.78868 ,

-0.21132 .

=
n
1
|-
=
N<
|
—
p—
1

~ug

Since the weights, wé, for the Gauss-Legendre, N = 2, quadrature are

w{ = wé = 0.5, Eq. (106) gives the DPu quadrature weights w, = 0.25,

i = 1, «ee L, Table VI lists DPN quadrature sets for N = 4, 6, 8, and 12.

The DPN quadrature is generally very good for ordinary plane geometry if the
overall thickness is small, that is, for thin slabs. In thin slabs, the
correct angular representation of the leakage flux is very important and is

accomplished by the DP,, quadrature, which permits a discontinuous polynomial

N

representation on each yu half range. For thick slabs,however, the PN

quadrature is superior to the DPN quadrature. This is because particles
traveling in the most outward direction (u = #1) are most likely to leak from
the right and left faces of the slab, and the PN quadrature sets have a

direction cosine closer to w = +1 than do the corresponding DP, sets;

N
therefore, the PN sets are more accurate. For spheres, the DPN quadrature set
shows no advantage over the PN quadrature simply because angular flux
discontinuities do not appear at spherical interfaces as they do at planar

interfaces.
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TABLE VI

DOUBLE LEGENDRE, DP,, QUADRATURE SETS
N8 6,8, 12

N = 4: I -0.78868 w1 -, = w3 =Wy, -.0.25
u, = -u3 = -0.21132

N = 6: u1 = -u6 = -0.88730 w1 = ws = 0.13889
u, = -us = -0.50000 w2 = w_ = 0,22222
u3 =y = -0.11270 w3 = wu = 0.13889

N = 8: Wy = “ug = -0.93057 Wy o= Wg = 0.08696
N -0.66999 Wy = W, = 0.16304
u3 = “ug = -0.33001 w3 =W = 0.16304
Hy T THg -0.06943 Wy = Wg = 0.08696

N = 12: L PP -0.96623 W W, 0.04283
My ® TMgg o= -0.83060 Wy = Wy o® 0.09019
u3 - u10 = -0.61931 H3 - H10 = 0.11698
My = Mg * -0.38069 L P 0.11698
us = -u8 = -0,16940 HS = He = 0.09019
A -0.03377 L 0.04283

Thus, even in one-dimensional geometries, there is no optimal or "best"
quadrature set. This fact is further compounded when geometries other than
ordinary planes and one-dimensional spheres are considered; those cases will be
discussed next.

In general, discrete directions of particle motion Em, are described by
the three direction cosines Myt Moo and Em' Only two of these three are
independent, of ??urse, since ui + nm + Ei = 1. The weights associated with
the directions Qm sum to unity if the surface area on the unit directional
sphere is measured in units of 4w, a convention used in most production SN
codes. That is, Eq. (98) must be satisfied. In curved geometries, one or more
of the following conditions must also be satisfied to ensure that no particles

are lost because of angular distribution:

M M
E wmum=0 s Zwmnm=0 . Zwm£m=0 . (107)

m=1 m=1 m=1
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That this is true is seen by integrating (summing) Eq. (76) over all directions

to get

M
aM+% - q% T z : “oPm T o

m=1

since Nap = %y 0 from Eq. (75).

A further condition arises from requiring the S_ method to agree with

N
diffusion theory when the latter is applicable, namely when the angular flux is
exactly a linear function of the direction cosines u, n, and £. In this

circumstance, the angular particle flux at space point ; and energy E is
> > > > > >
o(F,,) = o= [a(F,E) + B(F,E)u + o(FE)n + d(F,E)E] . (108)

In rectangular Cartesian geometry (x,y,z) coordinate system, for example, the

net or scalar particle currents in the x-, y-, and z-directions are,

respectively,
2m 1
> > >
JX(P’E) = / d¢ f du H‘D(Y’,E,Q) s
0 -1
. (109)
27 1
Jy(F,E) =f d¢ f dn né(r,E,R) ,
0 -1
and

2m 1
J_(F,E) =fd¢ f dE £0(M,E,R) .
0 -1

Using the diffusion condition, Eq. (108), and performing the integrations yield

JX(F,E)

[
|
o)
~~
Sy
=
S

Jy(F,E) -
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and
> 1 >
Jz(r,E) --§ d(r,E) .

In other words, the diffusion condition requires that

1 2 1
Hffududq)-—-—g , (110)
0

and similarly for n and §. Using the discrete ordinates counterpart to

Eq. (110) yields the diffusion condition that quadrature sets must satisfy,

M

M M
2 1 2 1 2 1
E Wobn = 3 E olm =3 woEn =3 - (111)

m=1 m=1 m=1

Equations (98), (107), and (111) comprise constraints on the selection of
quadrature sets. A final, somewhat obvious, constraint on any quadrature set
is that all quadrature weights must be non-negative.

Ensuring that physical symmetries are satisfied imposes further con-
straints on quadrature sets. In other words, the direction mesh embodied in
the quadrature set must be made as computationally invariant as possible with
respect to the geometric orientation of the problem model. For example,
consider a rectangular parallelepiped in Cartesian (x,y,z) geometry with one
face of the parallelepiped designated face A. It is desirable that the same
computational results be obtained independent of the orientation of
parallelepiped relative to the (x,y,z) or the (u,n,g) coordinate axes, as shown
in Fig. 2. 1In other words, the angular flux at, say, a point on face A should
not depend on whether face A is oriented normal to and intersected by the
positive x-axis (thus, the positive u-axis) or is oriented normal to and
intersected by the negative x-axis (thus, the negative p-axis). This requires
that a positive Mo must be the same in magnitude as the corresponding negative
Mo that is, M must be antisymmetric relative to u = 0. Similarly, the nm and
Em must be antisymmetric relative to their origins. In addition to invariance
with respect to this 180° geometric rotation, there should be invariance with

respect to any 90° geometric rotation so that for each M there must be an
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identical Ny and an identical Em' Accordingly, in three-dimensional Cartesian
geometry, quadrature sets should be chosen so that the Bpe Npe and Em sets are
the same, with each set symmetric about the origin. Such quadrature sets are
said to be fully symmetric, and the quadrature points on the surface of the
unit directional sphere lie on latitudes or levels. A typical fully symmetric
quadrature arrangement is shown in Fig. 8. Note that along a g-level, only u
and n change, and, since u2 + n2 =1 - £2, only one variable is independent.
Since two independent angular variables are required for all geometries other
than ordinary one-dimensional planes and spheres, this arrangement of
quadrature poiﬁts on levels leads to a decided computational advantage since,
by sweeping along, say, £ levels, a two-dimensional quadrature can be
programmed simply with a one-dimensional procedure. In one-dimensional
ordinary planes and spheres, the quadrature "points," My represent simply the

u levels (latitudes) of Fig. 8 with the azimuthal integrations along each u

Fig. 8. Fully symmetric S6 point arrangement.
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level performed a priori. For such one-dimensional geometries, there are only
N quadrature points (u levels) on the unit directional sphere, whereas in all
other geometries, there are customarily N(N + 2) quadrature points on the unit

sphere. This N is the subscript used in the term S, commonly used to describe

the discrete ordinates scheme. It is important tg note that, as described
here, N denotes a general symmetry-preserving arrangement of quadrature points
and not to any specific choice of quadrature values, for although the
requirements of Eqs. (98), (107), and (111), together with the condition of
full symmetry, are severe constraints, some degrees of freedom remain, and
particular additional conditions can be imposed to complete the specification
of a desired quadrature set. It should be emphasized here that fully symmetric
quadrature sets are not generally required except for full three-dimensional
Cartesian geometry. Relaxing of this constraint for other geometries will be
discussed below. For the present, however, it is useful to further consider
the fully symmetric quadrature arrangement as it is commonly used.

With a fully symmetric S, quadrature set, there are only N distinct

direction cosines (N different lgzels, or latitudes) even though there are as
many as N(N + 2) points on the unit sphere. Further, because of the symmetry
requirement, there are only N/2 distinct values of the square of the direction
cosines. This is readily seen in Fig. 8 where, for N = 6, the values of pu are
tu,, tH,, and zus and because of the full-symmetry condition, the values of n
and £ are taken from the same set of values as that used for the values of yu.
Thus, it is necessary to consider only one octant of the unit sphere (with yu,
n, and £ all positive), as shown in Fig. 8, to fully define the distribution of
directions on the full unit sphere. The number of quadrature points per octant
is N(N + 2)/8. 1In Fig. 8, the quadrature points are arranged in a triangular
pattern over an octant with N/2 different levels on the octant and with N/2 - i
+ 1 quadrature points on the ith level. With the concept of levels, a
quadrature point can be assigned three level indices, say, i, j, and k, each

with respect to one of the poles of the unit sphere. Then,
N
i+i+k=3+2 , (112)

and

2 2
ui + uJ + uk = 1 ’ (113)
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where {1 = 1, 2, e+, N/2 and j = 1, 2, eee, N/2 - i + 1. The correlation
between the i and j (hence, the k) subscripts, which represent an ordering of
direction cosine levels, and the subscript m, which represents the numbering of
points on the unit sphere, is arbitrary and can be made in any desired manner.

For a fully symmetric quadrature set, then, Eqs. (112) and (113) yield
the relation

5 5 2(1-1)(1-3uf)
My =t N-2 (114)

for 1 =1, 2, <+, N/2. Equation (114) shows the great constraint that full
symmetry places on a quadrature set. The selection of u,, which must be taken
in the range 0 < “?.ﬁ 1/3, completely determines the remaining values of My
If uf lies close to zero, the cosines tend to be clustered near the ends of the
interval [0,1] whereas if uf lies close to 1/3, the cosines are clustered near
the middle of [0,1]. The freedom of Gaussian quadrature is clearly missing.
Even though for a fully symmetric quadrature set there is only one
independent value of the quadrature point direction, uf, the values of the
weights associated with each point must be selected to complete the specifi-
cation of the quadrature set. The full symmetry condition again places
constraints on the number of independent point weights since the weights must
also be invariant under geometric rotations. For N = 2, that is, for an 82
quadrature, there is only one direction and weight on each octant of the unit
sphere and all weights are the same to ensure invariance under 90° rotations of
the (u,n,E) coordinate systems. For N = 4, the point weights are again all the
same. Generally, for 4 < N < 12, there are N/2 - 1 independent point weights.
For N > 12, the number of independent point weights grows rapidly. With the
independent value of u? and the (N/2) - 1 independent point weights, there are
thus, at most, N/2 free conditions that may be selected to determine the uf and
the point weights. The diffusion condition of Eq. (111) need not be chosen as
one of the conditions, for it can be shown‘|7 that all fully symmetric
quadrature sets satisfy this condition. The conditions most commonly used tend
to be various forms of "even-moment" conditions. For example, Table I of Ref.

16 presents an even-moment quadrature set in which
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1 M
1 2n 1 _ 2n
_2-_/- s du-m—ﬁ:wmum ' (115)

forn=20,1, 2, ¢+, N/J2 and M = N(N + 2)/8. Table VII lists this set for
N = 2, 4, 6, and 8. Another form of an even—-moment quadrature is that used at

Oak Ridge National Labor'at,or'y,26 in which p is selected using the asymptotic

1
prescription of Lee, T
TABLE VII
FULLY SYMMETRIC QUADRATURE seTs'® SATISFYING
EVEN-MOMENT CONDITION OF EQ. (115)
a a b
L Y i !
S,: 1 0.577 350 0.577 350 1.0
Sy: 1 0.350 021 Mg 0.333 333
2 o H ¥
3 0.868 890 L) W,
Sg: 1 0.266 636 ug 0.176 126
2 Hy My 0.157 207
3 L W W
y 0.681 508 by W,
5 Uy By W,
6 0.926 181 Hy W,
Sg: 1 0.218 218 10 0.120 987 7
2 My ug 0.090 740 7
3 u1 uS w2
4 | ¥ "
5 0.577 350 Hg Wg
6 ug ug 0.092 592 7
7 Hg wy Wy
8 0.786 796 Hg Wy
9 g L w,
10 0.951 190 Hy W,

3yalues provided for principal octant only.

bPoint weights sum to unity on an octant of the unit sphere,
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1 n/ 2 M
2 k & _ )
—TF/‘ du / deu n~ = E WoH (116)
0] 0. m=1

where n(u,¢) = 1 - u2 cosd, M = N(N + 2)/8 and k and % are even integers such
that k > 2 and k + £ < N. Table VIII lists this set for N = 2, 4, 6, and 8.
Numerous other prescriptions exist for selecting M and the weights for fully
symmetric quadrature sets. We note that there is no need to consider

satisfying "odd-moment" conditions since these are automatically satisfied by

TABLE VIII

FULLY SYMMETRIC QUADRATURE SEZTSZ6 SATISFYING

EVEN-MOMENT CONDITION OF EQ. (116)

a a W b

i Yt M !

S, 1 0.577 350 0.577 350 1.0
Su: . 1 0.333 33 u3 0.333 33

2 LI ¥ 1

0.881 92 Hy Wy
Sg° 1 0.258 20 Mg 0.166 67

2 By By Y

3 uy Wy Wy

y 0.683 13 uy Wy

5 uy Hy w1

6 0.930 95 L) LB
Sg: 1 0.218 218 Mo 0.120 988
2 uy g 0.090 7M1

3 u1 us w2

4 By L 1

5 0.577 350 ™ Wy
6 b Mg 0.0925 92

7 Hs Hy ¥

8 0.786 796 M W,

9 g ¥ W2

10 0.951 190 Hy "y

8yalues for principal octant only.

bPoim: welights sum to unity on an octant of the unit sphere.
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fully symmetric (hence, odd function) sets. Thus, even with the constraints
imposed by full symmetry, degrees of freedom remain, and there appears to be no
single best fully symmetric quadrature set. Fortunately, the numerical
differences in results obtained from using different quadrature sets of the
same SN order normally tend to be small.

As previously stated, except for three-dimensional Cartesian geometry,
fully symmetric quadrature sets are not required, and many of the above
constraints can be relaxed to allow additional degrees of freedom in specifying
the quadrature sets. Additionally, many geometries do not require treatment of
the full unit sphere of directions. As has been described earlier, for
example, in one-dimensional spheres and ordinary plane geometry, the quadrature
set need be defined only over the p interval [-1,1], and the quadrature points
and weights correspond to p levels and their weights with no n or £ levels.
Gauss-Legendre or double Legendre quadratures are commonly used for these
geometries,

For one-dimensional cylindrical geometry, only two octants of the unit
directional sphere need be considered because of the inherent symmetries in n
and £ with such a geometry. In other words, only the (u > 0, n> 0, £ > 0) and
the (0 < 0, n> 0, £ > 0) octants need be considered. Full symmetry is not
required, and the level point arrangement of Fig. 8 can be relaxed. For
example, quadrature points can be arranged on E-levels but not on p- and n-
levels. In such geometry, the point arrangement shown in Fig. 9 might be used
in place of the fully symmetric arrangement of Fig. 8. For this one-
dimensional cylindrical geometry case, then, one requires a quadrature only

over the n > 0, £ > 0 quadrant of the unit sphere; that is, define

1 T
A=—11Ffd£/ do (117)
0 0

where w is the azimuthal angle as shown in Fig. 3 and p = 1 - £2 cosw,
n= 1- 52 sinw. Then

1 Vi - g2
1
A=_1Ffd£
0

du

,/1 _ EZ _ u2

. (118)

- &
- 1_£2

T4




e

Fig. 9. Nonsymmetric S6 point arrangement.

Letting y = w/V1 - £2, Eq. (118) becomes

1 1
Aclfdgf__dY_,
T 2
0 -1

1 -y

(119)

a form that suggests using a Gauss-Chebyshev quadrature for the y, or u, n,
integration on each g-level. The Gauss interpolation, or quadrature, points
for a given g£-level are the zeros of the Chebyshev polynomials

(120)

Tz(cosm) = cosfw ,

which satisfy the orthogonality relation

(121)

[ 3
X XK
% |

1 p 1 0, 2
[ nonma -y L dla
w2, %

-1
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where y = cosw. Then, for a Tz quadrature on a given £-level, there are 2

zeros of cosfw for 0 < w < 7. Denoting these zeros as Wy, We have

(22 -Zii + 1)1[

The quadrature points, uij’ along a given g-level for which £ = £, are

J

The number of u quadrature points on each £-level is arbitrary. For example,
the same number of points can be kept on each £-level such that for an SN
quadrature, there are N/2 u values per octant on each g-level with, perhaps,
N/2 g-levels per octant. Alternatively, one could choose a different number of
y-points for each gE-level - say N/2 points per octant on the first £-level, N/2
- 1 points per octant on the second g-level, and so forth, with 1 point per
octant on £-level N/2.

For Chebyshev quadrature, the quadrature weights of all points on a given
E-level are the same. The location of the E-levels is also arbitrary, although

Eq. (118) suggests choosing the Gauss-Legendre, P or double Legendre, DP

N’
quadrature points for the g£-levels. If, for example, a P

N’

N quadrature is used,

the g£-values are simply the N/2 P quadrature values, and the total weight for

all points on a given E-level (ihe level-weight) is simply the Gauss-Legendre
weight. With point weights equal on each g-level, the point weights on a given
E-level are simply the level-weight divided by the number of points on that &-
level. Since for one-dimensional cylinders only one quadrant of the unit
sphere need be considered, the point and level weights are commonly normalized
to sum to unity over one quadrant. Table IX lists the PN(ﬁ)TN(u) quadrature
for an equal number of points on each E-level for N = 4, 6, and 8. In this
quadrature set, PN(E) refers to a Gauss-Legendre quadrature on the N/2 g-levels

required, and T, refers to N Gauss—-Chebyshev points on each £-level. Table X

lists the PN(E)T;%u) quadrature for a different number of points on each g-
level. In these sets, PN refers to Gauss-Legendre quadrature on the N/2 &-
levels and TN refers to N + 2 - 2j Gauss-Chebyshev points on the Jth level,
jJ=1, 2, e, N/2.

For two-dimensional (r,z) cylindrical geometry, four octants (one

hemisphere) of the unit sphere of directions must be considered, specifically,
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TABLE IX

PN(E)TN(H) QUADRATURE SETS - SAME ORDER TN SET ON
EACH g-LEVEL'S

a
i Hi, 3 i3 &

N =14 1 2 +0.194 546 4 0.086 963 7 0.861 136 3
2 2 +0.469 676 5 0.086 963 7 0.861 136 3
1 1 +0.359 887 9 0.163 036 3 0.339 981 0
2 1 +0.868 846 1 0.163 036 3 0.339 981 0

N =26 1 3 +0.093 498 0 0.028 554 08 0.932 469 5
2 3 +0.255 441 4 0.028 554 08 0.932 469 5
3 3 +0.348 939 4 0.028 554 08 0.932 469 5
1 2 +0.194 166 4 0.060 126 93 0.661 209 4
2 2 +0.530 472 5 0.060 126 93 0.661 209 4
3 2 +0.724 638 9 0.060 126 93 0.661 209 4
1 1 +0.251 342 6 0.077 985 66 0.238 619 2
2 1 +0.686 680 7 0.077 985 66 0.238 619 2
3 1 +0.938 023 3 0.077 985 66 0.238 619 2

N=2§8 1 4 +0.054 431 0 0.012 653 57 0.960 289 9
2 4 +0.155 006 5 0.012 653 57 0.960 289 9
3 4 +0.231 983 6 0.012 653 57 0.960 289 9
y 4 +0.273 643 3 0.012 653 57 0.960 289 9
1 3 $0.117 916 3 0.027 797 63 0.796 666 5
2 3 +0.335 797 3 0.027 797 63 0.796 666 5
3 3 $0.502 556 2 0.027 797 63  0.796 666 5
4 3 +0.592 805 4 0.027 797 63 0.796 666 5
1 2 +0.165 977 7 0.039 213 33 0.525 532 4
2 2 +0.472 664 4 0.039 213 33 0.525 532 4
3 2 +0.707 392 4 0.039 213 33 0.525 532 4
4 2 +0.834 L26 2 0.039 213 33 0.525 532 4
1 1 +0.191 780 0 0.045 335 47 0.183 U434 6
2 1 +0.546 143 2 0.045 335 47 0.183 U434 6
3 1 +0.817 361 2 0.045 335 47 0.183 434 6
4 1 +0.964 143 2 0.045 335 47 0.183 U434 6

aPoint weights sum to unity over a quadrant of the unit sphere.

the hemisphere in which n > 0. Generally, for this geometry quadrature sets
are selected from the fully symmetric even-moment sets given in Tables VII or
VIII. Alternatively, the PNTN sets of Tables IX or X can be used. In any
event, the point weights should be normalized to sum to unity over one

hemisphere of the unit sphere.
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TABLE X

P\ (E)T (1) QUADRATURE SETS - DIFFERENT ORDER T, SET ON
EACH E-LEVEL'®

a

i3 Mi,j i3 &

N = 4 1 +0.359 474 8 0.173 927 4 0.861 136 3
1 1 +0.359 887 9 0.163 036 3 0.339 981 0
2 +0.868 846 1 0.163 036 3 0.339 981 0

N =6 1 3 +0.255 441 4 0.085 662 25 0.932 469 5
1 2 +0.287 089 6 0.090 190 39 0.661 209 4
2 2 +0.693 095 7 0.090 190 39 0.661 209 4
1 1 +0.251 342 6 0.077 985 66 0.238 619 2
2 1 +0.686 680 7 0.077 985 66 0.238 619 2
3 1 +0.938 023 3 0.077 985 66 . 0.238 619 2

N=28 1 y +0.197 285 8 0.050 614 27 0.960 289 9
1 3 +0.231 301 2 0.055 595 26 0.796 666 5
2 3 +0.558 410 3 0.055 595 26 0.796 666 5
1 2 +0.220 196 4 0.052 284 4y 0.525 532 4
2 2 +0.601 587 8 0.052 284 4y 0.525 532 4
3 2 +0.821 784 2 0.052 284 4y 0.525 532 4
1 1 +0.191 780 0 0.045 335 47 0.183 434 6
2 1 +0.546 143 2 0.045 335 47 0.183 434 6
3 1 +0.817 361 2 0.045 335 47 0.183 434 6
4 1 +0.964 143 2 0.045 335 47 0.183 U434 6

8point weights sum to unity over a quadrant of the unit sphere.

In two-dimensional (x,y) geometry, the flux is symmetric in g, and only
the £ > 0 hemisphere of the unit sphere need be considered. Either fully
symmetric quadrature sets of PN(g)TN(u) sets are satisfactory for this
geometry.

It must be emphasized that there is no optimal quadrature set for all
situations. Different geometries and different types of problems for a given
geometry lend themselves to differing quadrature types, and for a
specific application one quadrature set might be better than another.
Generally, however, the even—-moment, fully symmetric quadrature sets are used
because of their generality and other sets are reserved for special situations
in which they are more accurate. A quadrature set that integrates angular
moments properly is important if anisotropic scattering is approximated by a

spherical harmonics (Legendre polynomial) expansion, so that the polynomials
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will be integrated correctly. For example, if the angular flux is isotropic,
all the Legendre moments, except the zeroth, must vanish; quadrature sets that
properly integrate polynomials guarantee this condition.

No mattervwhich quadrature set is used, problem solutions should be
tested for dependence on the order of quadrature. This is not to say that
every problem should be calculated several times to test the effects of
quadrature sets and/or quadrature order. It often suffices to perform a series
of calculations on a problem typical of the class of problems with which the
code user is involved. Large reactors with large homogeneous regions are often
quite insensitive to quadrature order. On the other hand, small reactors and
reactors with local heterogeneties are likely to be quite sensitive to
quadrature order. An example of the latter is shown in Table XI, in which the

multiplication factor, is listed as a function of angular quadrature

k ’
order for both phe PN :;giDPN quadrature sets. The problem analyzed for this
table is a model of an experimentally critical sphere of 93.71% enriched
uranium. The model sphere is uniform and homogeneous with a radius of 8.75 cm
and consists of the isotopes U-235 and U-238 with atom densities of 0.045009

10‘2Ll and 0.003021 «x 1024’ respectively. For the analysis, 40 equally spaced
27

mesh intervals were used for spatial discretization. Hansen-Roach 16 energy-
group, neutron cross sections were used. The table clearly shows the
sensitivity of the calculated keff to the order of angular quadrature and the
lesser sensitivity to type of quadrature. The results indicate that an Sus or
higher quadrature order is required to achieve a fully converged (with respect

to quadrature order) value of k The model problem used for Table XI is a

relatively extreme case with regaigfto its sensitivity to quadrature order. It
is a small, high-leakage system (57.05% of the neutrons produced leak from the
system) with the angular flux strongly peaked in the outward-flowing direc-
tions. This high degree of angular variation - that is, anisotropy - in the
angular flux requires a high-order quadrature. Fortunately, most problems do
not display this level of sensitivity to quadrature order, and a low-order
quadrature, perhaps N = 4, 6, or 8, is commonly satisfactory. Even for the
sample problem used for Table XI, a low-order quadrature can be used reliably
for parametric studies involving predicted differences caused by changes in the
problem. For example, the spherical model problem of Table XI was used to

perform calculations to predict the change in ke that would result if the

ff
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TABLE XI

k AS A FUNCTION OF ANGULAR QUADRATURE ORDER FOR AN

eff ENRICHED URANIUM SPHERE
Angular Quadrature Order, N
Quadrature
Type ] 8 16 32 48
PN 1.006 50 0.999 93 0.998 06 0.997 55 0.997 45
DPN 1.006 27 0.999 22 0.997 86 0.997 50 0.997 42

uranium enrichment was reduced from 93.71% to 91.71% with no other change in
the problem specifications. With Ak defined as keff (93.71%) - keff (91.71%),
all calculations gave a Ak = 0.0104, independent of SN order. That is, even an
Su calculation, in which the individual values of keff were nearly 1% in error
relative to the corresponding 848 values of keff gave virtually the same value
of Ak as did all other SN orders.

In any event, a person performing discrete ordinates calculations must be
aware of and have a feeling for the effects of quadrature order on
calculational results.

2. Specialized Quadrature Sets for Specific Applications. In many

applications, the space-energy dependent angular flux is anisotropic over a
reasonably small portion of the total phase space, and frequently the quali-
tative nature of this anisotropy is known beforehand. The applications of this
foreknowledge can often be used to tailor angular quadrature sets to be most
accurate in the phase space domain of flux anisotropy and to be less precise
over the remainder of the domain. Without such a use of specialized, or
tailored, quadrature sets, one is faced with using a detailed and precise
quadrature over the entire phase space. The latter procedure, of course, leads
to a much greater computational effort, much of which may be unnecessary.

Since the phase space domain ordinarily consists of the energy (group),
spatial, and angular variables (neglecting the time variable), procedures have
been developed for tailoring quadratures with respect to each of these
variables.

a. Energy Group-Dependent Quadrature Sets. The first and easiest-to-use

manner in which quadrature sets can be tailored to specific problems involves
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the use of energy group-dependent quadrature. Group-depehdent quadrature is
appropriate when the angular flux is quite anisotropic in some groups and less
so in other groups. One example of this is a spherical geometry problem
containing a localized monoenergetic source in a medium which is effectively a
pure "absorber" for source particles; that is, most of the interactions between
source particles and the medium are captures or scatters-to-other-groups. Then
the angular flux for source particles will be highly anisotropic in that it
will be nonzero only for directions with direction cosines (u) near unity away
from the localized source. Low-energy group angular fluxes, however, are
likely to be much less anisotropic since the source for these particles will be
because of scattering from other groups and will, therefore, be distributed
throughout the medium. Using group-dependent quadrature, a high-order
quadrature can be used for the anisotropic groups, with a lower-order
quadrature for the more isotropic groups.

The energy group-dependent quadrature capability is easily implemented in
discrete ordinates computer codes with only a minor increase in computer
storage requirements, and several current codes provide this featur’e.zs’29

The effective use of group-dependent quadrature requires that the user
have foreknowledge of the energy-dependent flux anisotropy for the problem
being solved. It is also important that the user have knowledge, based on
experience, of which quadrature order is adequate for each energy group. In
practice, the group-dependent quadrature feature, with its potential for
significant reductions in computation time, is not widely used.

b. Space-Dependent Quadrature Sets. The second manner in which quad-

rature sets can be tailored is to use different quadratures in different
spatial regions of the problem being solved. In some spatial regions, the
angular flux may be quite anisotropic, for example, near control rods, and a
high order quadrature might be necessary. In other regions, the angular flux
may be much less anisotropic, and a low-order quadrature is adequate.

Only a few computer codes contain the space-dependent quadrature capa-
bility (most notably the DOT series of codes), for example, DOT-IV.28 The
implementation of a space-dependent quadrature capability requires that the
code contain a translation algorithm for coupling the angular fluxes across
each boundary between regions of differing quadrature order. This coupling
necessarily introduces a certain degree of approximation into the solution.

Additionally, a computer run time penalty is incurred with space-dependent
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quadrature because of the required coupling at interfaces between regions with
different quadrature order. However, the use of space-dependent quadrature can
be effective when properly applied. The user is advised to acquire a good
working knowledge of the use of a space-dependent quadrature, however, before
attempting to use this capability on production calculations.

¢c. Biased Quadrature Sets. The final form of tailored quadrature sets

is the biased (asymmetric) quadrature, which is designed for problems in which
the angular flux is known to vary rapidly over a reasonably small range of
angular directions. For example, consider the spherical geometry problem with
a localized source in an effectively pure-absorbing medium for source-energy
particles. At distances far removed from the source, the angular flux for
source-energy particles is nonzero only for a small range of directions with
direction cosines, u, near unity. Another example involves the presence of a
penetration through an absorbing shield in which the emergent angular flux of
particles is highly peaked in the direction corresponding to the streaming path
through the penetration.

With biased, asymmetric quadrature sets, the quadrature points can be
closely clustered in the directional region where the flux is most rapidly
varying and can be more loosely spaced over the remaining directions where the
angular flux is varying less. With such an asymmétrical arrangement of
quadrature points, the freedom of geometric orientation invariance is lost, and
the quadrature set is intimately tied to a specific geometric orientation of
the problem.

Biased quadrature sets can be formed in several ways. Perhaps the most

30

consistent way was suggested by Cerbone and Lathrop in an analysis of a
spherical geometry localized source problem, such as that used as an example
above. Since the angular flux is highly forward peaked near y = 1, that is, in
the most outgoing directions, they divided the angular interval -1 < u<1into
two subintervals, -1 < u < 0.95 and 0.95 < < 1.0. Modified directions and
weights were obtained from regular Gauss-Legendre sets using the relation for

Gaussian quadrature on an arbitrary interval (a,b), namely

iy = 52w ¢ (52 (122)
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and
- _(b-a
wo= =)W, (123)

where the M and w, are the Gauss-Legendre, PN’ quadrature points and weights,
respectively, on the interval (-1,1) (see Table V, page 64), and the - and wo
are the corresponding, modified quadrature points and weights on the interval
(a,b). We note that Eqs. (122) and (123) are those used to generate the Gauss-
double-Legendre, DPN, quadrature relations of Egqs. (105) and (106) defined

previously. Cerbone and Lathrop used a modified Gauss-Legendre P 0 quadrature

over (-1,0.95) and a modified Gauss-Legendre P6 quadrature over1(0.95,1.0).
This procedure gives a total of 16 quadrature points over the full (-1,1)
interval but with 6 points clustered in the (0.95,1.0) interval. If an
ordinary Gauss-Legendre S16 quadrature had been used, there would still have
been 16 total quadrature points in the interval (-1,1) but only one point in
the interval (0.95,1.0). An ordinary Gauss-Legendre 864 set would also have
given 6 quadrature points in (0.95,1.0) but, of course, would have used a total
of 64 points over the full interval. Using their asymmetric S16 quadrature
set, Cerbone and Lathrop found that they could get comparable accuracy in
results as an ordinary 848 Gauss-Legendre quadrature but in about one-fourth
the computing time.

A different and somewhat less formal procedure has been developed at Oak
Ridge National Laboratory (ORNL) for generating biased quadrature sets26
primarily for use in their DOT series of codes. These biased sets are
potentially useful in (x,y) and (r,z) geometries. In the following description
of these ORNL "standard" biased quadrature sets, the ORNL notation of Ref. 26
is used in which, for (r,z) cylindrical geometry, the n-direction is measured
along the z-axis of the cylinder so that their n- and g-axes are interchanged
relative to those shown in Fig. 3.

The ORNL biased sets available in their quadrature set library are the
100, 166, and 210 direction downward-biased sets and the 100, 166, and 210
direction upward-biased sets. Downward is used to denote directions in the
negative n hemisphere. All of these biased quadrature sets are modifications
of what are referred to as half-symmetric sets. In these half-symmetric sets

10 10)
quadrature points shown in Table V. The £ value for each u and n value is then

the y and n quadrature values are chosen as the S Gauss-Legendre (P
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computed from £2 =1 - u2 - n2. Accordingly, the y and n values are symmetric
with one another, but they are not symmetric with the £ values.

The ORNL 100-direction biased sets contain 65 directions in the biased n-
hemisphere of directions and 35 directions in the unbiased hemisphere. The

directions in the unbiased hemisphere are taken from the S half-symmetric set

previously described. Of the 35 directions in the unbiaselohemisphere, 30 are
actual quadrature directions and 5 are starting directions with zero weight.
The directions in the biased hemisphere are also chosen from the S.|0 half-
symmetric set with the following modification. The n-level for which |n| is
the maximum and which contains three directions (two symmetric-in-uy directions
and one starting direction) is replaced by 11 new n-levels, each containing
three directions (two symmetric-in-u directions and one starting direction).
The 11 replacement levels are simply the 11 n-levels from the one-dimensional
S96 Gauss-Legendre quadrature for which |n| is largest. The procedure by which
the u values and their weights on these replacement levels are selected is not
specified in Ref. 26. This form of biasing provides clustering of quadrature
points near the |n| = 1 axis, which corresponds to the z-axis in (r,z) geometry
or the y-axis in (x,y) geometry. It is designed for problems in which the
angular flux is most strongly peaked in directions along the axes.

The ORNL 166-direction and 210-direction biased sets are formed similarly
and will not be discussed further here.

The ORNL biased quadrature sets have been used with apparent success in
shielding applications. Unfortunately, the procedure used for producing these
biased sets appears to be somewhat "ad hoe¢," and it is not at all clear how
other biased quadrature sets for two- or three-dimensional applications could
be generated. The following offers a consistent procedure that can be used for
completely and consistently producing biased quadrature sets. This procedure
applies the approach of Cerbone and Lathrop previously described to the Gauss-
Legendre/Gauss-Chebyshev, PNTN’ quadrature formulation discussed in Sec.
IV.A.1.

Consider, for example, the (r,z) cylindrical problem in which the angular
flux is expected to be rapidly varying for directions with £ near unity (see
Fig. 3) and is expected to be less rapidly varying for other directions. This
corresponds to a case in which particle streaming in the positive g-direction
is expected. The angular interval -1'5 £ <1 can be divided into two

subintervals -1 < g < 50 and 50_5 £ < 1, where EO is some value close to unity;
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for example, EO = 0.95. More than two subintervals can be selected, if
desired. Modified g£-level directions and g-level weights are then obtained
from regular Gauss-Legendre sets using the relations of Eqs. (122) and (123) to
achieve a suitable clustering of £-levels near the £ = 1, or positive z, axis.
The distribution of (u,n) points on each modified (biased) E-level can then be
chosen from a suitable Gauss-Chebyshev quadrature (see Tables IX and X), with
the advantage of having equal point weights on each £-level. Thus, all
directions and weights are completely and easily determined.

The use of biased quadrature sets can be quite effective in providing
accurate descriptions of localized angular flux anisotropics without severe
penalties in computational time or computer storage. As stated repeatedly,
however, the proper and successful application of biased quadrature sets to
transport problems requires an experienced user. Further, of course, any
biased quadrature set should be thoroughly validated before being used.

3. Starting Directions in Quadrature Sets. In curvilinear geometries

where angular redistribution occurs, it is necessary to invoke an angular
differencing scheme. The diamond difference approximation in angle is almost
universally used for angular discretization, as discussed ip Sec. IV.B. With
such a discretization, it is necessary to provide an initializing boundary
condition for thé angular fluxes on the "outer boundary" of angular direction
space. Zero-weighted starting directions are frequently used for this
initializing boundary condition. Starting directions are those inward
directions for which there is no angular redistribution. In one-dimensional
spheres, there is only one such direction, namely the straight-in direction for
which p = -1; that is, angle w = 180° in Fig. 4. For this starting direction
(1 - u2) is zero, and the angular redistribution term in Eq. (22) vanishes. As
a result, the angular flux in the starting direction can be computed directly,
as described in the next section. For cylindrical geometries, there is one
starting direction for each gE-level (see Fig. 3) corresponding to directions
for which n = 0; that is, angle w = 180°, in which case the particles are
inwardly directed toward the cylindrical axis. For each of these starting
directions, the angular flux can be computed directly.

These special starting directions appear in quadrature sets for computer
codes that require them. The starting directions are assigned a quadrature
weight of zero so that they do not contribute to any angular integration by

means of quadrature. For example, in the preceding discussion on biased
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quadrature sets formulated for use in the DOT series of codes, the directions
in a particular quadrature set include both normal quadrature directions and
zero-weighted starting directions. Quadrature sets for codes that use starting
directions therefore contain more data than are in quadrature sets that do not
contain starting directions. It is possible to eliminate the need for starting
directions by using a different initializing procedure. One example is the use
of a step function approximation for the most inward direction on each g-level.

This procedure has been used in the TWOTRAN code31

and is described below.
Studies have shown that the use of this step-starting procedure results in
virtually no loss in computational accuracy when compared with computations in

32

which starting directions are used.

B. Spatial Discretization Methods

In the numerical description section, we presented some general, desir-
able features of spatial discretization methods for the discrete ordinates
equations. 1In this section, we describe the commonly used spatial dis-
cretization methods and compare their attributes with these desirable features.
We also cover some methods not yet incorporated into production codes but which
have some desirable properties and are likely to be included in production
codes in the near future. The methods we have chosen are the diamond and
weighted diamond, linear discontinuous, linear nodal, and short characteristics
methods. The first three methods are based upon particle conservation; the
last is not a conservative method but is strictly positive.

1. Preliminaries. To display the spatial discretization methods, it is

necessary to specialize to a definite mesh-cell structure and to a particular
discrete ordinates coupling scheme. In Fig. 10, we show the typical mesh-cell
structure that will serve as the reference for all the two-dimensional,
orthogonal geometry, spatial discretization methods that follow. We also
depict an angular direction and the assumed known boundary values on the
exterior of the system "seen" by that direction (indicated by heavy lines in
Fig. 10). The common assumptions are made for the spatial discretization

methods.
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Fig. 10. Typical mesh for spatial discretization.

(i) A regular rectangular grid defines mesh cells.

(ii) Cell-to-cell communication is through cell edges or cell vertices.

(iii) The grid of cells is "swept," starting from the boundary data
given on the exterior edges or vertices and marching in a
specified order from cell to cell.

(iv) For conservative differencing methods, the basic unknowns are the
cell-averaged angular fluxes and the cell edge fluxes.

(v) The angular redistribution term is treated the same in all the

conservative methods.

To implement the last point, we take special care in curvilinear
geometries to treat the angular directions such that the spatial direction

solution methods can be performed directly (noniteratively). The main idea is
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to recast the equations and to eliminate one of the unknown fluxes in the
angular direction by a suitable approximation relating the cell-averaged flux
to the cell-edge flux in the angular direction.

We begin by writing the discretized (r,z) cylindrical geometry equation
for energy group g in the form of Eq. (91a):

Mg ®ied,gm T A ia®i-g, 5,002 Y Biap T Ay

Az,
- j
* Coag®s,5med T %3t 5,0 (124)
P e O setm T gt T By g% g T Sy

where

2

ABi = “(ri*-i- ri—Jz-) .
and we have dropped the energy group subscript, g, for simplicity. The first
approximation, which is common to all the following methods, is to make the

diamond approximation in the angular direction; that is, we assume

® =

1
i,j,m "2 ¢

i,3,m4 " %,5,mp) - (125)

The cell-averaged flux is thus related to the angle-edge flux by a simple
linear relationship. Combining Eqs. (124) and (125) yields the following

equation:
Mg ®iet im ~ A ia®i-4, 5,007
vy ) Ry T A PO 5 a7
(126)
*EAB (O sgm T %ai-gm’ Vs, 5% 5,m
R I T RS YA IS S I
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where

g = = T2 » (127)

As can be seen from the form of Eq. (126), the diamond-in-angle approximation

leads to a simple set of equations coupled in m. That is, given a starting

value Qi [P for all i,j, Eq. (126) is solved, in some approximation, for
14 b4 N

&, . .. Then, from Eq. (125), the ¢, . ; term is evaluated for all i and j,

i’J"I 1,37

and this process is repeated for all angles. Recall that in two and three
dimensions, the angles are on bands or levels on ‘the unit sphere. Thus, there
is a "starting direction" at each £ level for which the flux is assumed known.
We then sweep through Eq. (126) for each angle on the g level, using Eq. (125)
to obtain the requisite angular boundary fluxes for the right side of
Eq. (127). This procedure is called the space-angle sweep.

The starting angular fluxes are obtained in one of two ways. In the
first, a special starting direction equation is written. To derive this
equation, we return to Eq. (19) and note that at w = 180°, n = 0 (see Fig. 3);
thus, the angular derivative term vanishes for this particular direction that
passes through the axis of symmetry of the system. The streaming operator in

this case is simply
W, ror w1800 . (128)

This is just the two-dimensional slab streaming operator; hence, the starting

direction equation for y} on each level is written as

$. . - 9. . Az,
Wl 5,47 %o, 5,007

+ é. . - ¢, . Ar, 12
A I I T Jat (129)
+ (LV)., 6. . , = (S,V). . for all i,j .
(Zy )1.3 i,j% ('}z )1.3 ’ d

The second method is called the step-start method. In this case, we

assume
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® 5,2 " %,5,1 (130)

for each starting interval in angle (on each £ level). Thus, for the first

angular interval, the discretized transport equation is

MAg®iag,g,1 7 Pia®ig,g, 1007
+ u1(Ai+%-_ Ai“%)oi,j,1AZJ (131)
M R T o O I S DAL AR LW L B ST LU B

where we have used q% = "W, from Eqgqs. (75) and (76).

Equation (131) is solved for ¢ Then, oi is determined from Eq.

. 3
(130). Equation (126) is then used téjéllve for the’gg;aining angular fluxes
on the g level. The advantage of the step-start approach is that fewer
equations need to be solved for each angular quadrature set than when starting
directions are used. The potential disadvantage is that the step-start is less
accurate than using Eq. (129) and diamond-in-angle differencing for the
starting directions. Experience has shown, however, that for reactor
applications the loss in accuracy is quite small.

2. The Diamond and Weighted Diamond Spatial Differencing Schemes. We

now proceed from Eq. (126) with some common methods of spatial differencing.
We refer to Fig. 7, where for each cell there are five unknown angular fluxes
in two dimensions for a given energy group, Qi,j,m’ °i+%,j,m’ Qi-%,J,m’
Qi,J—},m’ and Qi,j+%,m' [In curvilinear geometries, the additional unknowns
Qi,J,m+% and Qi,J,mﬂ% have been eliminated through the use of the diamond-in-
angle relationship of Eq. (125) together with the use of special starting
relations for m = 1/2.] Two of the five quantities are known from boundary
data, for example, Qiﬂé,j,m and Qi,jﬂé,m in the case of Em pointing upward and
rightward in Fig. 7. Equation (126) provides one equation for the remaining
three unknown fluxes. Thus, two more relations are needed. 1In the weighted
diamond approximation, these relations are obtained by specifying a general

linear relationship among the cell-edge and cell-averaged quantities:
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®,5om = 05 Ay s % s
(132a)
+0.500 -3y 5 %5,
and
®,5,m = 050 0y 5 0 sein
(132b)
+ 0501 =y 5 W%k
where
-1 < a, . <1 and -1 < b, . < 1.
- 1,J,m— - 1,J,m —

In general, the coefficients a and b in Egs. (132a) and (132b) are both
cell and angle dependent. Two methods, the diamond difference method and the

step difference method, are special cases of Eq. (132):

(i) Diamond difference: 0 = 3 ;= bi,j,m , (133)
“m Em

ii Step difference: a. . = s b, . = . 134

(i1) P i,j,m Iuml i,j,m |£m| (134)

With Egs. (132a) and (132b), we can now solve Eq. (126) for the cell-

averaged flux, ¢ , and the outgoing boundary fluxes. Substituting and

i,j,m
rearranging leads to the following expression for oi i o’
b4 b4

¢1‘J'm - [(smv)i'J + 8m‘“1++ - Aiq*)AzJ¢i'J'm_%

(1 — a)A + (1 + a)A
+ ful e 4 1% 4z 0
m 1+ a JUIN, i

208,
el T °1N.J]

(1 - a)A + (1 + a)
. 1o 1~%
['uml 1 £ a Azj (135)

+ em(Ai*§ - Ai_+)AzJ

2AB
i
el 75 ¢ (Etv)i.d]
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In Eq. (135), we have suppressed the subscripts on a and b, .
i,3,m 1,J,m

the terms with 1 + a, one uses 1 + a for Mo > 0 and 1 - a for - < 0.

; and in

Similarly, one uses 1 + b for Em >0and 1 - b for Em < 0. Additionally, we
have defined ¢ to be the incoming (known) angular flux ¢

IN,i
and ¢ for um < 0; similarly,

i~1,5,m for Mo >0

¢ . is the incomin known) angular flux
i+},3,m IN, ] g (known) ang

~L,m for Em > 0 and Qi 4 lom for Em < 0.

s 29

Thus, Eq. (135) gives the cell-averaged flux, and the remaining unknown

%3

outgoing fluxes are determined from Eqgs. (132a) and (132b). These outgoing
fluxes are then used as incoming fluxes for the adjacent cells downstream
relative to the direction ﬁm so that the entire space—-angle mesh can be
systematically swept and solved. We now discuss the quality of the solution
effected by using the weighted diamond discretization method.

Experience has shown that the weighted diamond solution for mesh cells of
dimension Ar,Az converges O(Ar,Az)* in integral quantities as the mesh is

2

refined. The diamond method, however, converges O(Ar ,Az2) in integral

quantities.33

This latter property, along with its simplicity is why the
diamond method is the most frequently employed spatial differencing method in
discrete ordinates computer codes. For large meshes (Ar,Az > 2 mean free
paths), these methods do not retain positivity, as is discussed next.

Equation (135) gives a positive value for ¢ for all values of a and

b in the range [-1,1] for positive incoming anguf;g’?luxes and for positive
sources. However, the outgoing boundary fluxes, as determined from Eqs. (132a)
and (132b), are guaranteed positive only for the step method, Eq. (134).**
This can be shown by solving Eqgs. (132a) and (132b) for the outgoing fluxes and
substituting Eq. (135) for the cell average flux. Thus, for Mo < 0 and Em <0,

the outgoing flux oi 1

~5,5,m is, with many subscripts, omitted for simplicity:
b4 b4

*
0(h,k) means to order h and k in each of the independent variables
respectively.

* %
The step method is so inaccurate for reasonable mesh sizes, however, that it
is virtually never used.

92



. , . =[2(sV), . + B(A - A, Az,
i~3,3 [( )LJ B¢ i 1*? J

x [2¢. . - (1 + a)d,. .
[ i,j,m~% ( ) 1*%.31

+

[uCCr - a)Ai+% + (1 + a)Ai“%]AZjoi

1 .
+=,J

2AB

+ 18l 7= [2ory,y = (v a)e gy 4] (136)
- (A (I e j]
(1 -a)A, ., + (1 +a.
+ (1 - a) Iul[ e 3 — L 2] Azj
208,
+ 8(Ai+% - Ai“%)Azj t el 5 ¢ (05 5 .

This expression is negative for (ZtV) large or when the mesh is highly skewed

so that ¢ >> 29 .. Only for the step method (a = -1) is oi_l

i+4,] IN,] 4.3
guaranteed positive.

There are two remedies for dealing with negative extrapolations from the
weighted diamond method. In the first, we adjust the parameter in the
weighted diamond expression (ai,j,m or bi,j,m) so that the extrapolation is
positive. For example, upon examination of Eq. (136), we can guarantee
positivity if the numerator is positive. One of several possible ways to do

this is to satisfy the following inequality:

(1 +a, o )< (S V), .+ B (A

- A, )bz 0, .
i,j,m »J m T isg r%)J i,j,m~%
: 208,
ta Ay A D820t Bl T O, (137)
2B

i
toB(Ay g T A bz e[ g (BN 0

: 1 .
i+5,J,Mm

Thus, using Eq. (137) with equality to define the weighting parameter in
Eq. (136) and in the extrapolation Eq. (132), we obtain a positive outgoing

boundary flux for the cell. In a way, this is a fixup method; that is, this is
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a nonlinear adjustment of the computational algorithm to assure a positive
solution.

A much simpler way to ensure non-negative fluxes is the set-to-zero
fixup. In this method, whié¢h is used most frequently with the diamond method
(a="b = 0), when an extrapolated outgoing boundary flux is negative, we set it
to zero and re-solve the balance Eq. (126) for the cell-averaged flux. For
example, assume that ¢, , . < 0, whereas ¢,

Y >0 for uy <0 and £ < 0.
1~5,J,Mm 1,J~%,N m m
We then set ¢

i~1,j,m = 0, and from Egs. (126) and (132b),

*5m T Saliy B T R P0%0 gy

2AB

ol TT% i,j+i,m

* iR 250y g0 L8

(138)
+ Bm + IumI(Ai%- Ai“—l-z-)AZj

2ABi

el T ot (D,

j .

We then recompute oi j~t,m using Eqs. (138) and (132b); therefore, balance is
b4

b4
preserved. If oi j~%,m now happens to be negative, we set it to zero and again
s 29

solve Eq. (126) for the final value of oi,j,m'

If we go back to the desirable attributes of spatial discretization
schemes given in Sec. III.C, we see that the motivation for the negative flux
fixups is to ensure a positive solution. The cost is that we have sacrificed
the diffusion limit because the only weighted diamond method with the diffusion
limit is the diamond-differencing method (a = b = 0). Thus, any fixup scheme
used in the diamond method destroys the capability of the differenced equations
to have the diffusion limit.* Also, the diamond method is O(APZ,AZZ) in
integral quantities whereas the weighted diamond is 0(Ar,Az). This means that
as the mesh is refined the diamond method is a great deal more accurate in

integral quantities than is the weighted diamond. Therefore, any fixup also

*This may not necessarily be bad because fixup is generally required when the
local system is far from the diffusion regime and not required when the system
is near the diffusion regions. Thus, the impact of fixup upon the diamond-
differencing method is usually small.
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worsens this property of diamond differencing. Correspondingly, a method that
has the diffusion limit is more accurate for large meshes in problems where
diffusion theory is an accurate approximation to the transport problem. As has
been mentioned, this occurs in many reactor applications - thus, our emphasis
here on the diffusion limit. A more complete explanation of the diffusion
limit is given in Ref. 14,

Another problem with the use of fixup is that it can have a destabilizing
effect upon iteration convergence. That is, fixup is a nonlinear process
dependent upon the local value of the flux, so oscillations may occur in the
pointwise value of the flux that will prevent complete convergence.

In summary, the most useful weighted diamond spatial discretization
method is the diamond-differencing method. It is simple, accurate for small
meshes, and has the diffusion limit, all of which account for its popularity in
transport codes designed for nuclear analysis. The need for fixup to ensure
positivity is a drawback. To overcome this, an option is to abandon the simple
linear differencing scheme of the diamond or weighted diamond method and to use
other spatial differencing methods that more closely fulfill the objectives of
positivity, accuracy, and having the diffusion limit. The next two methods to
be described have improved positivity and higher-order accuracy in integral
quantities relative to diamond or weighted diamond methods while retaining the
diffusion limit.

3. The Linear Discontinuous Method. In the linear discontinuous (LD)
method,3ll

a linear function in space is assumed to represent the angular flux
within a spatial mesh cell for each direction, but the linear function in one
cell is not assumed to be continuous with the linear function used for an
adjacent cell at the common boundary between the cells. This is in contrast
to the diamond method, which can be considered a linear-continuous method.
Using our (r,z) cylindrical geometry model as an example, we represent the

angular flux for the LD method in the i,j cell as

r - ri z - Zj
¢m(r,z) = Qi,j,m * (-__KF—_) <I>R,i,j,m * (—_KE__) QZ,i,j,m ' (139)

ri*% <rcK ri+% ’ Zj~% <z < Zi+% ,
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where

Ar = ri+% - riql ,

2

Az = zZ, - 2z ’
i T4

2

Qi,J,m = cell-average flux ,
] .
R,i,j,m = r-moment of the flux ,
] . = z-moment of the flux ,
Z’i’\]’m
3 _ .3
. ri+% ri“L
i r2 B r2 !
i~ i~z
1
VA =

172 gt 25y

To derive equations that preserve the spatial moments of the flux as defined in
Eq. (139), we write the transport equation in which the angular derivative

terms have been approximated by diamond differencing as

3(r¢m) Bom
Mo — 3 — * By~ wpde (rz) + g r—=+rl (r,2)¢ (r,z)

(140)

= rSm(r,z) + Bmom (r,z) .

-1
2

The angular derivative term in Eq. (140) is similarly represented in cell i, j

as
r - r'i
3702 = % 5t TE Runebyi, g
(141a)
Zz - Z.
J
Az Z,m~3,i,J

b4
and because of the diamond differencing in angle, one can show that

0.5(¢ ) (141b)

. + ¢ .
R’i’\]’m“_;' R’]-’J’m'*Tl

) . =
R,i,j,m




and

o, . . = 0.5(¢ . + 9, . . . 11ec
Z,i,j,m 5( Z,i,j,m% Z,1,J,m+%) ( )
The procedure for deriving the requisite LD equations is to substitute
Egqs. (139), (141a), (141b), and (141¢) into Eq. (140) and then integrate over
the mesh cell using the weighting factors 1, (r - ri)/Ar, and (z - z.)/Az,
respectively. This yields the following three equations, which we call the

spatial moment equations of the transport equation for cell i,j.

M ieg®ied,5,m T Aigting, 5,002

+ (B, = u)(A,

(142)
Y e (% im0, 5~k Vs 5% g
= Gpl)y gt Bplhig T A0 5 ngt2
M [(ri*-é- BRETLSTEL PRSI ri-—%)Ai-‘z-oi“%,j.m]Az
riArAz
$ B - u A, , - A, ) —_)o .
m m’ U ivd i~% 12ri R,i,j,m
ArAz
(B = up)(Rypy Ai%)(m-, )“’i,j.m Mali,3%,3,m (143)
i
W,
A v G TCUD [ N DT N

rlArAz
= (S, W), . -8 (A, , - A, — e, . .
Or,aMi,5 7 Bnlhing 1“%)( 127 ) R,i,j,m~%
i

ArAz
- A - A, ¢, .
B ivt 1“%) (12; ) i,j,m~%
i
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A [ - A [ . Az
P iag®z 50,50 " Ai2%2,1-1,5,m)

+ (Bm - um)(Ai+% - Ai_%)Azo

Z,i,3,m
+ 6£m(°i,j+%,m - Qi,jﬂ%,m - 2¢i’j’m)APAzABi (144)
Y 5%, 5,m

= (S, )y gt Bhy g m Ay Dz L,

where some simplifications have occurred in the angular derivative terms of
Eqs. (143) and (144),

2 2
PO il S T S (145)
i,] Ar 2 i '
L Y (146)
i 2 i+ i~ '
and S . and S . . are the source spatial moments. Notice that
R,m,i,] Z,m,1,j

Eq. (142) is the same as Eq. (126), the starting point for the weighted diamond
method. This leads to the following interpretation of the linear discontinuous
method above. Equations (143) and (144) replace the simple weighted diamond
linear extrapolation Eq. (132), with a much more elaborate set, to preserve the
first spatial moments of the transport equation.

To proceed with the solution, we must approximate the moments appearing

in Eqs. (143) and (144). This is where we make the linear approximation; that
is,

2(%, . - . )for'um<0

i,j,m Qiﬂé J,m
¢ - T e , (147)
R,i,j,m 2(°i+%.J.m Qi,j,m) for Mo >0

2(¢ - ¢, . , ) for £ <0
= i’J’m i’J_‘T,m m
°z,1,J,m { (148)

2(°i,j+§,m - °1,j,m) for g >0
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we further assume

®°,1i,jek,m - ®R,i,j,m ° (149)

*2,1+4,3,m = %2,1,3,m (150)

These assumptions are then substituted into Egs. (143) and (144) to produce the
following for M <0, Em < 0:

T Il T TR e
+ (ri - ri“%)Ai“%Qi“%,j,m]Az
riArAz
R |um|)(Ai+1_;_ - A 12_;>
i
X (Qi’j’m B <I>i“‘;‘,J,m) - (Bm - um)(Ai'i—; - Ai"';')
W,
ArAz _ i,
x<1z;>°i,i,m 1,30, 5,m B The OR,1,3dom (151)
i
Wy
-— 3 _
%0 5z P15 7 %iggm) T 2N
O m T %5,m) T Croai,y T Baiag T A

r.ArAz
([ ——) o, . .
12r R,i,j,m~3 ~’
i
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T iR, 1,5 nt2 2l IR (O g0 T 05y g 002

¥ Zsm(Ai+%-_ Ai"%)AZ(Qi.j.m - Qi.j“%.m)
* 08 (% sedm T %, ~d,m T 20, 5,m0B; Y 2T (152)
(0 gm T %53 T Bz, t BaRig T Aiy)Az

X

¢ .
Z’i’J’m“%

Equations (151) and (152) can be solved for oi - and ¢, in terms of

~,J,m i,j—2,m

Qi,J,m and the known incoming boundary data and sources, and substituted into

Eq. (142) to obtain the cell-averaged flux, Qi,j,m' As is readily seen, this

procedure involves considerably more computational work and storage than does

the weighted diamond approach. What is gained? The method has the diffusion
limit, it is more accurate, and it is somewhat more positive.

Thus, we list the advantages of the linear discontinuous method over the

diamond method as

a. More accurate for small meshes; O(Ar3,Az3), in integral quantities;

b. Less negative for large meshes

¢ um as ZtAP > @
i_‘%’j’m ztAr um '

Lo} > Em as ztAZ > o
i,j~4,m 2.4z & ’

¢c. Retains the diffusion limit.

Its disadvantage is that it is computationally more expensive in computer time
(factor of 2 to 3) and storage (factor of 3) than the diamond method for a
given mesh. Further, the linear discontinuous method is not fully positive
and, hence, in general, requires some sort of fixup. One can devise a fixup,
however, that allows the method to be positive with a decrease in accuracy, yet
still satisfies the diffusion limit.

100



All thingé considered, in the authors' opinion a main overall advantage
of the linear discontinuous method over the diamond method is the better
stability of the LD method on problems with large meshes. The stability
referred to here is in the potential flux spatial oscillations from mesh to
mesh; they are much more damped in the LD method than those that have been
observed with the diamond method. Therefore, for problems with large mesh (> 3
m.f.p.), the LD method is preferred over the diamond method for reactor physics
applications; its use with relatively large mesh cells is actually more
efficient than that of the diamond method on a mesh small enough to reduce the
spatial oscillation error.

4, The Linear Nodal Method. The failure of the linear discontinuous

method to be positive arises from the linear representation of the flux and
source within a spatial mesh cell. For practical methods, the linear repre-
sentation of the source [for example, Eq. (139) applied to the source] is
probably an essential limitation for all methods; however, it is relatively
straightforward to relax the linear representation of the angular flux. A
variety of methods do this, but the most promising computationally oriented

method is the linear nodal method.35’36

We illustrate the method by starting
from Eq. (140) and developing two equations, the first by integrating over r

and the second by integrating over z within mesh cell i,j. This yields

a[raj’m(r)]

by —3— * (B~ ), () 4 rD ol

(r)
(153)
)

= r§. r) + 5. r) - r(o. r) — ¢.
Jm() BmehQ ) Em(3+£m() j~%,m




where

Zjed
8 (P =f o (r,2)dz (155a)
Zi~

Pied
5 . (2) -f o (r,z)rdr (155b)
r

i~3

with similar definitions for SJ - and Si o The procedure now is to represent
b4 b4

the source and the terms ¢ E%(z) as linear

Jié,m(z)’ 6i+=i-,m(r)’ 6j,mﬂé(r)’ 6i,m
functions and substitute into the right side of Eqs. (153) and (154). These
equations can then be solved for 6m’j(r) and 5i’m(z) analytically in terms of
these linear representations. Because the number of unknowns exceeds the
number of equations, we use the first spatial moment equations and integrate
as we did to obtain Eqs. (152) and (153). This set of equations, then, is
sufficient to eliminate the unknowns and to develop the entire solution for the
i,J cell. The procedure is much the same as the linear discontinuous method
except that the analytic solution is used in each direction. Thus, the cell
boundary fluxes are not extrapolated but are evaluated from an analytic
formula. 1In this way, assuming a positive representation of the boundary data
and the sources, the average outgoing cell boundary fluxes will be positive.
The details of this development for (x,y) geometry are given in Ref. 36, along
with an indication of the method's computational effectiveness.

The linear nodal method requires about half again as much computational
time as the LD method per mesh cell with about the same storage requirement.
It is more stable with respect to spatial oscillations and requires no flux
fixup. Thus, for problems with large spatial mesh cells, the linear nodal
method may be the method of choice over both the diamond and linear
discontinuous methods in two or three dimensions.

To illustrate the effect of spatial differencing methods, we present a
simple, iron/water shielding test problem representing a shielded reactor
system. This is a three energy group problem in (x,y) geometry with the

geometric arrangement shown in Fig. 11. The central 10-cm x 10-cm region
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Fig. 11. Iron/water shielding problem.

contains a uniform source, and the problem is symmetric in x and y. For energy
group three, the system is very large since the mean free path in the iron
is about 1 em and in the water regions about 0.3 cm. Table XII shows a summary
of the calculational results as a function of spatial mesh size, which varies
for group 3 from 15 mfp to 1 mfp. All calculations were performed using an Sll
quadrature set. Also presented in Table XI are the calculated groupwise
leakages for the diamond difference (DD), the linear discontinuous (LD), and
linear nodal (LN) methods, along with an indication of the computational time
required on a CDC 7600 computer. The computer run times shown in the table are

for comparison only. The calculations were performed using a prototype test
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TABLE XII

IROM/WATER SHIELDING PROBLEM RESULTS

(Convergence Critarton = 10

5

[2] LD LN
MESH SIIL, ca. Run NET LEAKAGE Run NET LEAXAGE fun MET LEAKAGE
(Mo. of Hesh Polnte) Time, (3 Error) Time (S Brror) Time, (3 Error)
ala. ain. nin.
Group ' Growp 2 Gro Growp 1 Ge 2 __Gro Group | Group 2 Geoup 3
5.0 2.337 2,860 37.39 N.AO7 2.750 8.557 LTS 2,083 8.822
0.2 0.3 0.6
(10x10 « 100) (-51.1)  (53.6) (677.2) (~7.86 (9.38) (77.86) (-0.79 (-1.27)  (0.23)
2.5 115 2.612 13.60 4.698 2.481 8.636 4.783 2.527 4.901
0.6 1.2 1.7
(20x20 = %00) (-18.0) (3.86) (182.7) -1.78 -1.35 -3.60 (o) (0.48) (1.87)
1.0 8.680 2.621 5.215% 4778 2.523 4.886 4.783 2.520 4.856
3.5 7.1 10.5
(50250 - 2500) (-2.15) (N.45) (8.40) (-0.10) (0.32) (1.56) ) (0.20) (0.9%)
0.5 N.T6N 2.5 §.887 N.783 2.517 8.826 4.783 2.517 8834
15.5 31.2 8.6
(100x100 = 10 000) (-0.40) (1.1%) (1.58) ) (0.08) (0.31) () (0.08) (0.48)
0.333 ... ATT6 2.526 4,84
38.9
(150x150 » 22 500) (-0.15) (0.44) (0.60)

code that contained no iteration acceleration methods. Actual production-type
computer codes could be expected to perform the calculations in perhaps one-
fifth of the times indicated in the table.)

The table shows clearly that the diamond method is inadequate for large
mesh spacings, and the LD and LN methods are much more acceptable. The LN
method gives good results even for the coarsest mesh.

It is generally concluded that for two-dimensional reactor core analysis
problems, the diamond method is the method of choice because of efficiency
since mesh sizes are generally < 2 mfp. For shielding applications, however,
the diamond method is frequently inadequate or inefficient because of the
necessity of refining the mesh to acceptable sizes, and here the LD or LN
method is preferable.

5.

for spatial discretization of the two-dimensional (r,z) transport equation.

The Short Characteristic Method. We have outlined some methods used

The main thrust has been to enforce conservation of particles over a
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spatial mesh cell and to obtain positivity of solution in ways that range from
the simple to the elaborate. The enforcement of conservation is important for
eigenvalue problems or for problems with a high within-group scattering ratio.
In this section, we present a brief summary of a method in current use that
does not use conservation within a mesh cell, but which is computationally
simple and strictly positive. The envisioned application is for shielding
problems where scattering need not be accurately resolved. The method is the
short characteristic method, which has been developed and implemented by

37,38 in the PALLAS series of codes.

Takeuchi and Sasamoto

We refer to Fig. 12 for the development of this method in (x,y) geometry.
Given the direction Em for cell i,j, we want to determine the flux at the point
D (the fluxes at points A, B, and C are known from solutions in the adjoining
downstream cells). We can formally write the solution of the transport
equation at point D by integrating along the characteristic Em, which strikes

the incoming cell boundary at point E. That is,

L
o(D,Em) = o(E,Em)e Fe +f S(t)e " at , (156)
0
where
t = the coordinate along Em,
2 = the length of the trajectory from point E to D,
S(t) = the source distribution along t.

In this method, the value of the flux at E is obtained by linear interpolation
of the values at A and B. That is,

> > >

o(E.ﬂm) = p<I>(A.9m) + (1 - p)o(B.nm) , (157)
where

p = ku/hn 3

>
Moo M are the direction cosines of Qm in the x and y directions,

respectively, and h,k are the cell width and height, respectively.
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previous iteration, and we assume linear representation of the source along the

characteristic as
s(t,8 ) =<s,3)+ (1 -4 s@E,d) (158)
'“m [} "m [ m !
where
> »> >
S(E,Qm) = pS(A,Qm) + (1 - p) S(B,Qm) . (159)

Thus, this solution method treats particle transport from point to point in the
mesh using interpolation to obtain the required initial or incoming flux values
and the sources. The accuracy of this method when the scattering ratio is
small is limited by the number of angular directions, 5m, and the size of the
spatial mesh that governs the accuracy of the interpolations.

We emphasize the weakness of this short characteristic method: no
particle balance equation within a cell, such as Eq. (126), is satisfied.
This restricts either the applicability or accuracy of the method, and it seems
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to be most applicable to shielding problems. Indeed, applying this method in
the reactor physics area has been most effective where no self-scatter
iteration is performed. The reason is that eigenvalue solution techniques rely
on particle balance to obtain an accurate and efficient solution. It is also
true that for eigenvalue (fission) problems and problems with high scattering,
the most effective iteration acceleration methods rely on particle conservation
within a cell or a group of cells. Thus, we list the advantages of this method

as
1) positive, yet computationally simple,
2) able to treat large absorbing regions well because it treats the
streaming operator analytically,
3) flexible in its ability to treat complex geometries.

We see the disadvantages as

1) not accurate or efficient for eigenvalue problems,

2) 1low order of accuracy for strongly fissioning or scattering problems.

6. Summary. The most commonly used spatiai discretization method in

present general-purpose transport codes is the diamond-differencing method with
either set-to-zero fixup or some weighted diamond fixup. If relatively few
fixups are used, this method has most of the desirable properties of a spatial
discretization method for reactor physics applications. The more elaborate
methods incorporated into some limited-distribution codes seek to address the
accuracy-positivity requirement while preserving the other desirable qualities
of conservation and diffusion limit. These more elaborate methods are also
useful when more accurate values of pointwise quantities on a given mesh are
required because these methods greatly reduce spatial flux oscillations.
Frequently such pointwise quantities can be obtained accurately with the
diamond method only by use of an uneconomical mesh refinement. The last method
discussed, the short-characteristic method, is a good example of a special-
purpose, nonconservative discretization method. It is useful for some types of
shielding problems where other methods may exhibit excessive inaccuracies in

pointwise values of the solution.
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c. Acceleration of the Inner Iteration

In Sec. III, we described the source inner iteration procedure for
solving the transport equation. In the multigroup formulation, we note that

the convergence of the inner iteration depends upon the scattering ratio, ¢

for that group where c¢_ = ZO /L ; for a model problem, one can show that
g s,g%g t,g

the spectral radius of convergence is the scattering ratio. When source

iteration is applied to the geometrically complex problems encountered in
reactor analysis, numerical experience shows that the spectral radius, p, of
flux convergence is the highest scattering ratio of any material region in the
problem in each group.

In the multigroup formulation of the transport problem, the scattering
ratio for the groups depends upon the number and distribution of groups over
the energy range of solution. 1In general, the more groups, the smaller the
scattering ratio for each group (because of the higher probability for
scattering out of the group). This is modified by the effects of scattering
resonances in some groups or the use of a "dump" group in fast reactor
applications, which covers all energies below a specified minimum. For a many
group problem in fast reactor analysis (>20 groups), unaccelerated iteration
for most of the groups may be satisfactory for convergence because the
scattering ratio is less than 0.5, and it only takes about three iterations to
reduce the error in the solution by an order of magnitude [see Eq. (95)].
However, such a fine group structure seldom occurs, so since a spectral radius
of 0.8 requires 10 iterations to reduce the error in the solution by an order
of magnitude, some form of iteration acceleration is usually needed for
efficient computation of the transport solution. In this section, we describe
three iteration acceleration methods for the inner iteration: Chebyshev,
rebalance, and diffusion synthetic.

1. Chebyshev Acceleration of the Inner Iteration. The Chebyshev

polynomial-based iteration acceleration method is a particular form of the
general residual polynomial family of methods to accelerate the convergence of
matrix iterative problems.6 These methods are very general. They utilize the
properties of the iteration matrix itself and thus are usually straightforward
to implement. We start our discussion with the discrete ordinates, inner-

iteration equation for energy group, g, using Eq. (93) written as
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(™ ] (160)

+Z (28 + 1) I m‘;)“n‘a)‘_"ﬁ L)+ s e
n=2

where the superscripts k, k+} denote an iteration index. In Eq. (160), we have
used the spherical harmonics expansion form of Sec. II.D with the self-scatter
(or within group) source separated out from the remainder of the scattering
source. Further, the self-scatter source has been broken into two parts, the

isotropic portion and the higher-order portion.

The unaccelerated iteration procedure is to set the flux moments

M

'k”(r) Zwmor‘:”‘g(rf) , (161a)
=1

and

M

—k#1 > }

(P = Zw Rn(Qm)om’ @, (161b)
m=1

for n > 1.

The Chebyshev polynomial-based acceleration procedure, as it is normally
implemented, assumes that the higher-moment scattering terms make a minor
contribution to the source convergence compared to the zero moment isotropic

term. Hence, Eq. (161b) remains the same, but Eq. (161a) is modified to

M
o<1 (P = akz W ok‘“'f(r) + (1 - ak)o (r)

mm,g 0,g

0,8

(162)
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where

al = s, B° =20 |,

2 -p

cosh (k - 1)Y]
cosh kY

Y=cosh '(2-1) , and

p = an estimate of the spectral radius of the transport iteration

matrix.

The procedure involved in Eq. (162) is a straightforward application of
the Chebyshev method to a problem where the eigenvalues of the iteration matrix
lie in the range, 0 < p < B. This application implies that the iteration
matrix is a positive definite matrix; that is, it has a largest eigenvalue
whose eigenvector is everywhere positive. This, in turn, implies that the
spatial differencing scheme as used in Eq. (160) should be positive. These
restrictions can be relaxed, but numerical experience has indicated that the
Chebyshev method is applied most effectively to those problems where the
iteration matrix is positive definite and acceleration is important.

We also note that the Chebyshev method depends upon the spectral radius
of the iteration matrix. This is estimated during the iteration process
itself in general-purpose codes. Normally, one takes a few (k < 5) unac-

celerated iterations and estimates Bk in some suitable manner’.s’39

Once the
Chebyshev extrapolation has begun, one can update the estimate of B by
continuing to monitor Bk and restarting the Chebyshev cycle. An alternative
procedure is to use the infinite medium estimate of the spectral radius, which
is simpl max o]
Y'1,3

(1,3).

., Where ¢

i3 is the scattering ratio in spatial mesh cell
b

i,
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There are many code-dependent details in the successful implementation of
the Chebyshev method, but these remarks should suffice to display the basic
concept and the potential of this method for the acceleration of the inner
iteration of the discrete ordinates transport equation. Numerical experience
has shown that the Chebyshev iteration procedure is stable and that it
generally reduces the number of required iterations by a factor of two compared
with unaccelerated iteration; that is, the Chebyshev spectral radius is
approximately 02, where ¢ is the scattering ratio. However, when ¢ is close to
one, many iterations are still required, and it is well worth the search for a
more effective acceleration method.

2. Coarse Mesh Rebalance. In the previous method, we described a

general extrapolation procedure based upon the mathematical properties of the
iteration matrix and its application to accelerate the convergence of an
iteration scheme. We now describe an iteration-acceleration method based more
upon the physical content of the equations. This acceleration method is called
coarse mesh rebalance.

In solving the transport equation, we are usually concerned with ob-
taining angular moments of the flux, rather than the angular flux itself, as
the primary solution. In the iterative procedure of Eq. (160), we obtain, with
each successive iteration, improved estimates of the angular fluxes and,
consequently, of the angular flux moments. It is plausible that the accuracy
of these estimates would be improved if a balance on angular moments is
enforced at each stage of the iteration because this is what should be
occurring physically. For example, if we integrate Eq. (160) spatially over
the entire system of interest and sum over the discrete ordinates, we obtain

the balance for group g,

LK 4 =ss:+s , (163)

where
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K = the outward-pointing normal to the system exterior surface,

-»k-l-;.z
Js g the net current at the exterior surface,
b4
k+-£- > k+d > >
A = ) r)é. 2(r) dr
c o, g (1) ar
R
k 0 k
Ss -_/Pz r)é
g S.g*g( ) 0,8 ’
R
S0 g -./réo g(;) d;, the total isotropic source to group in the system,
b4 b4
R
R = the region within the systemn,
6R = the surface bounding R.

We now rebalance; that is, we bring Eq. (163) into balance with the most

k+d

recent flux information, ¢m g’ by finding a factor fk+1 such that

L + Ab8 =3 . (164)

where

g
R
Lk+1 _ Lk+%fk+1 )
g g g
Thus,
S
k+1 0,8
f = 2 T (165)
g LKAE oK
g g

is the appropriate rebalance factor. It is then applied to the flux moments

before the source is computed for the next iterate, and the iteration proceeds
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- - 1
as usual. That is, ¢k+1 = ¢k+7fk+1
n,g n,g g

(165) is called "whole system rebalance." It is a stable (convergent) method

. The procedure given by Eqs. (164) and

of iteration acceleration.

This rebalance procedure is readily generalized to the situation where
balance is enforced on a spatial subset of the calculational grid. To
illustrate this procedure, we specialize to the spatially discretized form of
Eq. (160) on an orthogonal grid in two-dimensional geometry. The spatial
subset is defined from the calculational grid by taking a subset of the grid
lines to form a coarse mesh, which is then itself an orthogonal mesh (as shown
in Fig. 13). It is general practice and physically reasonable that all
material boundaries lie on coarse mesh lines. The coarse mesh can also
correspond to the original fine mesh. Again, the idea is to enforce balance
only on the angle-integrated equation. Thus, starting from Eq. (160), we sum
over the angles to obtain for each group g (with the group subscript

suppressed, for simplicity),

+ - k4 + - k++
R s =
(4 - + - k+t
+ AB, |I. + 1 - I. -1I. z 166
i v Tiv i J“%) (166)
k+L 0 K
+ (Z, V), .o ¢ z V)., .¢ S V).
(2, )1.3 0,i,J ( g8 )1.3 0,1i,J S )1.3 ’
with the flows
+
J1+—§ = Z “m"m m,i+&,j (167a)
um>0
Jl*—;= E wmum m,1+—§,3 ’ (167b)
um<0
+
Tyep = “nmlm, i, 54k (167¢)
nm>0
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Fig. 13. Typical coarse mesh arrangement for rebalance.
SR DK R (167)

and the iteration index k shows the state of the solution.

k+1
I,J°
for each coarse mesh (I,J) such that Eq. (166) is exactly satisfied on that

coarse mesh. An equation for the f¥+} is derived from Eq. (166) by summing
b4

over the coarse mesh and associating the appropriate rebalance factor with each

Now balance is enforced over each coarse mesh by defining a factor, f

mesh. We obtain, for each group g, the following rebalance equation:
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Ktk k+1 k+E k#1 _ ktd ket Kt _k+1
PR35 1,07 Flrad ofrer g0 7 PR3 gf1oq,0 * FLlra 4f1 g
Ktk k+1 L kk k]
« FUSTE K0T wk el (168)
ke K+ Kt k+1 kel
FUL g1 ,0-1 * FPr gafr 0 * W1,y = Sor,g
where
Flrag,g = Z Ao, 71,5 (1692)
Jjed
FR - A Jr (169b)
Ted,d ~ Ied,i'1+,5 9
jed
FU - B.I. (169¢)
I,d+ - iTi,d+t ¢
iel
iel
L = E (z. - 2 ). .o v (169¢e)
R,I,d t g*g’i,jo0,i,j i,j °’
iel jed
50,1,3 =ZZSO,1,J-V1.J- ’ (1691)
iel jed

and I,J denotes the coarse mesh interval. Equation (168) has the form of a
standard five-point difference equation for the rebalance factors f and, thus,
can be solved by any of a number of standard techniques. Upon solution of the
rebalance equation, we define the next flux moment iterate for Eq. (160) to be

(6n)?t} - (5n)?’Jf¥t} for iel and jeJ (170)
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where k is the iteration index.

In practice, this coarse mesh rebalance approach is better than the whole
system rebalance of Eq. (165) because balance is enforced at each coarse mesh
cell rather than just for the whole system. There are two remaining questions
about this method: 1) how does the choice of the coarse mesh bear upon the
effectiveness of this acceleration? and 2) how does the choice of the coarse
mesh bear upon the stability of the method? The first question results from
the observation through numerical experiments that when it converges, this
method is generally the more effective the finer the coarse mesh; that is, it
is most effective when the fine and coarse mesh correspond to each other. The
measure of effectiveness we are using here is the rate of convergence of the
accelerated iteration; that is, if we assume that the convergence rate of the

unaccelerated iteration is cm the maximum scattering ratio, then the

ax’
accelerated iteration convergence rate can be characterized as ac

’
0 < a< 1. Thus, the more effective the accelerator is, the smaller the vzize
of a. Question 2), above, results from the observation that as the coarse mesh
approaches the size of the fine mesh, in some problems the acceleration is less
and less stable, and, in fact, can be unstable depending on the size of the
fine mesh and the kind of spatial discretization used.u0 It has been observed
that for high scattering problems (c=1) this spatial size limit for stability
is 1-2 mfp; thus, in a typical multigroup reactor analysis problem, it is
difficult to ensure stability by choosing the coarse mesh to be the fine mesh,
which, we maintain, is required for maximum effectiveness. The art of applying
the coarse mesh rebalance acceleration method is in choosing a rebalance mesh
coarse enough to ensure stability and fine enough to achieve good
effectiveness. This can be a very difficult, if not impossible, task in many
multigroup reactor analysis problems. However, numerical experience has shown
that for stable applications of coarse mesh rebalance, this acceleration method
is more effective than the Chebyshev approach with the exception of whole
system rebalance.

Thus, we have presented two methods, one of which is stable but of
limited effectiveness and the other of varying effectiveness but not always
stable. The next method goes a long way to ensure effectiveness while
remaining stable for a wide range of problems.

41-43

3. The Diffusion Synthetic Acceleration Method. In presenting the

diffusion synthetic acceleration (DSA) method, we return to Eq. (160). The
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basic idea is somewhat like that involved in developing the rebalance method;
that is, we seek to balance the zeroth angular moment and the first angular
moment of the transport equation. By doing this, we can develop an equation
with some interesting properties, and in the course of this development, we can
address the effectiveness and stability of the resulting acceleration method.
As Will be seen shortly, this acceleration method is based upon the diffusion
equation, which is appealing because it is a valid approximation to the
transport equation in certain limits. These limits are expressed mathematiclly
by assuming that the angular flux is accurately represented by a linear
function of angle. Physically, this representation is valid within large,
homogeneous regions (about 2-3 mfp away from material boundaries) and where the
scattering ratio is close to one. It is precisely in such a situation that the
source iteration of the transport equation is slowly convergent; hence, it is
reasonable to expect that a judicious employment of the diffusion equation will
aid the convergence process.

First, we consider Eq. (160) not differenced on a spatial mesh, and we
take the first two angular moments while we drop the energy group index for

simplicity; this yields
,"k"“i"’ k4-i-->_0k-> >
V- 32 + I 8 2(F) = I_8,(r) + S, (r) (171)

1

. VTR v v - BKEE)  x

"k""'i"’_""k" >
(J r) = 2 J7(r) + 5.(r) (172)

where

M

8, (F) = Z W (r)
m=1
M

3(1:) =Z wQOom(r) .
m=1
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n—

= the unit diad ,

M

3 z 2 s ()
1 = wQO m r .

m=1

In the above, QO(;) is the scalar flux, 3(;) is the current, and Z(;) is a
tensor of a second angular moment quantities. As in rebalance and upon
examining Egs. (171) and (172), we want the following equations to be satisfied
at each iteration for each group:

¥ .3+ ek (R - zoo TPy + So(F) (173)
ARG I A I iy ORI i O N (174)

Notice that we do not insist that the quantity g be accelerated at the
iteration step; instead, it retains its unaccelerated value. We also note that
if the angular flux is a linear function of angle, then P is zero and is, thus,
in some sense, a second-order correction term in our acceleration method.
Indeed, if P is zero, then Egs. (173) and (174) can be used to determine ¢g+1
and 3k+1 in one iteration. However, we stress that g need not be zero or small

to ensure the effectiveness of the acceleration. We combine Egs. (172) and

(174) to eliminate gkﬁ% and obtain

ves l(F) + L Vol )

"3V 3
- sl [ - ) (175)
+ (Zt - Z;)3k+%(;) .

Substitution of Eq. (175) into Eq. (173) now yields
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1
D = ,
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5. =z, - g°

R t S, 878

The solution of Eq. (176) thus replaces Eq. (161a) in the iteration solution of
Eq. (160). Equation (176) has the form of the standard diffusion equation with
the addition of two source correction terms on the right side. Also, this
equation can be solved with either the conventional diffusion boundary
conditions or with boundary conditions specifically tailored to yield a
solution in one iteration if the transport solution is indeed a linear function
of angle.uu For weakly anisotropic scattering, the second correction term
involving the difference of currents makes a small contribution to the total
correction and thus is usually ignored.* The first correction term is
essential, giving the necessary correction to diffusion theory so that, at
convergence, the solution to Eq. (176) will yield the same scalar flux as
obtained from Eq. (160). This is what makes this method an acceleration
method. By assuming that the second correction term to the source on the right
side of Eq. (176) is zero, we obtain the following "source correction"”
diffusion synthetic equation for inner iteration acceleration for each group,

g:

*
If we retain this term, then the 3k+1 from Eq. (175) can be used to accelerate

the P, scattering term of Eq. (166). However, in reactor applications, this
is a rarely needed complication and is not included in present reactor physics
codes.
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where the group subscript has been omitted for simplicity. We also note that
if we replace the diffusion coefficient D(;), above, with the following

diagonal tensor with components,

k+4 >
J (r)
k++ o a=1, 2, 3
21,8 " TN { B=1,2,3 ' (178)
Vo,  2(r)
a0
then Eq. (177) becomes
i
v - DT L vegt(R) ¢ g (Preg T (F) = Sy(F) . (179)

This form is used for the homogeneous eigenvalue problem, as will be seen in
the next section, and is designated the "diffusion correction" scheme.u2 The
scheme is nonlinear and, hence, not amenable to analysis. However, numerical
experience indicates that DSA methods based upon Eq. (179) have the same
performance as those based upon Eq. (177). An attendant practical problem with
defining a diffusion coefficient from Eq. (178) is that it can numerically go
negative or even infinite. A remedy has been devised to modify the removal
term in these cases while using the conventional diffusion coefficent. This
preserves the homogeneous nature of the diffusion equation. The details of
this procedure are explained in Ref. 42,

The advantage of Eq. (176) is that one can do a stability analysis for a
model problem. The model problem is an infinite homogeneous medium in
Cartesian (x,y,z) geometry; thus, the cross sections are constant, allowing a

Fourier analysis. We rewrite our equations for this case as

4 > k,> >
(r) = cztoo(r) + Sm(r) , (180)




k+1 _ k+1 >
(r) + (1 C)Zt¢0 (r)
(181)
+L
= 5,(r) - [ov ok Z(ry + ¥ - I2(my]
. 43,45 .
If we resolve ¢ by a Fourier analysis, we write
> >
¢k+%-= Ak+% eix-r
m m
i= -1, o< A< o | (182)
Kk _iker
QO =B e r

and from Eq. (180) we obtain (with source set to zero)

Ak c K (183)

We now substitute into Eq. (181) to obtain

gkt 1 (1 + DA%/Z)p(1) - 1
w(}) —| = el 5 ], (184)
B 1 - ¢ + DA /Zt
where
A= X,
w(A) = the eigenvalue of the accelerated iteration as a function of the
parameter A,
M
p(1) = E .
2
- Qm X/z,)

In terms of the spectral radius of convergence of the iteration, B, we note

that

SUP

Po = » p(d)c = spectral radius of the unaccelerated iteration,
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and

- Sup
p-

\ w(A) = spectral radius of the accelerated iteration.

In Fig. 14, plots show the iteration spectra w(A)/c and p(A) as functions of
A/Zt for isotropic scatter (ZL = 0). For the worst case with ¢ = 1, the
unaccelerated iteration is nonconvergent since it has a spectral radius of
unity; for the worst case with ¢ = 1, the spectral radius for the diffusion
synthetic accelerated iteration has a maximum value of 0.2237, so only six
iterations are required to reduce the error in the calculated fluxes by four
orders of magnitude.

This is an impressive acceleration, at léast for the model problem. It

now remains to see whether this holds up for nonmodel problems where the cross

ITERATION SPECTRUM

N A

LOG(A/0)

Fig. 14. Iteration spectra for unaccelerated and
DSA accelerated iteration.
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sections can change by orders of magnitude as a function of space. To address
this issue, we first must consider the effects of spatial discretization. This
is a very complicated consideration because the results depend upon the
discretization chosen. We illustrate the concepts involved in deriving a DSA
equation for a discretized transport equation using a one-dimensional-slab
problem with diamond differencing. 1In this case, the relevant transport

equations are (with angular and energy group subscripts suppressed):

N = K

ix, A 0 3) + 2 0 ¢i%,1%,1 * S; (185)
k= 1 k+% k+}+

0 F = 5 (¢i+; + °i~§) . (186)

'“% =c¢,I, .9, .+ 8 . (187)

1 k+$ k+ 2 k+4 k+1
e Q 2 - Q 2 Q 2 - Q 2
38x, ( 0,i+% O,iﬂé) 38x, ( 2,i+t 2,i~%)
(188)
ket _
191 =0
k++ 1
%,1 =2 (°o,i+% ¥ °o,i~%) ’ (189a)
kvt 1 '

We again assume Egs. (187) through (189) are satisfied at iterate k+1 except

for the ¢2 term; thus, the current equation becomes
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k+1 k+% 1 k+1 k+1
s (e 1)

i T30, 0,144 %0,i3
(190)
1 ket ked
30z, &%) CAR %, 1~1)

We can combine Eqs. (187) and (190) along with the diamond relationships by
first adding two adjacent cells in Eq. (187),

(J, )k+1

+J
3
1+5

k+1
i) T Uiyt iy

+ [(1 - o)z Ax] ok+1

i+170,i+1

_ K+ 1
+ [ c)ZtAx]i¢0’i

= (soAx)i+1 + (soAx)i ,

which, combined with Eq. (190), leads to our final result,

)k+1

1
rq Lo ol ey v ey iy

+ [ - c)ZtAx]i(o + 0

0,105 * %012 (191)

"% [(sgox);yq + (soax);]
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and

G
n

K+1 1 k+1 k+1
> (o ) . (192)

% 1+% %

Equations (191) and (185), are the synthetic diffusion equations under the
assumption of diamond differencing of the spatial variable in slab geometry.
Similar equations are derivable for diamond differencing in other geometries.
With other spatial-differencing methods such as linear discontinuous, a similar
line of reasoning leads to the appropriate equations in slab geomet,r'y.u3
However, it is not at all clear that a simple diffusion-like acceleration
equation is possible in more complex cases.

We now consider the stability and effectiveness of the iteration embodied
in Egqs. (185) and (191). For constant cross sections, we can again perform a
Fourier analysis and obtain an expression for the spectral radius of iteration.

We quote the result here as

(p = 1)/p + (4/3)(2tAx)2 tan? (AAx/2)

(L)(A) = 2 2 pc ] (193)
1 - ¢ + (4/3)(ZtAx) tan”™ (AAx/2)

where
M
W
m
= 2 : 2, 2 I
£—s 1+ U(u /z.8x)7 tan® (Aax/2)
Ax = the spatial mesh size.
Since
SuUp SUP
m(A)Eq.(184)_ A “(A)Eq.(193) ’

the spectral radius for the continuous and discrete methods is the same,
independent of mesh size. Thus, for diamond differencing, iterating with
Eqs. (185) and (191) is very effective and stable with respect to spatial mesh

size.
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This proof of stability is for the model problem only. Naturally, since
one does not solve the model problem in practice, but problems in which the
mesh and cross sections are not constant, one can question whether the
conclusions derived from the above analysis are valid for real problems.
Through many tests and numerical experiments, it has been shown that for real
problems in which the boundary conditions have been properly formulated, one
obtains the above stability and convergence properties.uu That is, one can
assume that about six iterations are required to reduce the error by four
orders of magnitude.

Equation (191) is used to accelerate the diamond-differenced transport
Eq. (185). However, negative flux fixup is frequently used in the diamond
solution of Eq. (185). If Eq. (191) is used as the acceleration equation when

fixup is employed, the DSA procedure will not converge in the sense that
M
k-m k=co
¢0,1+%-* E wm°m,i+% .
m=1

A generally accepted way to remedy this is to modify the diamond relationships
of Eq. (189) to the forms,

k+1 k+1

kel _ ked [P0, " P0,i~
%0, 7 %0,1 \ T, kek
%,i++ ¥ %0,i~4
(194a)
k+dr k+1 k+1
= Yi (¢O,i"—; + ¢0’1_‘_;_) ’
ST, ke
1 1 res =L
gl gk iy ] - s (gL gy (194b)
i i Jk 7, Jk+% i i+ i
ik T Iig

Equation (194) is a generalization of the diamond expression relating the cell-
centered quantities to the cell-edge quantities and, in fact, reduces to
Eq. (189) when no fixup is used in solving Eq. (185). Now, if Eqs. (194a) and
(194b) are used in combining Egs. (187) and (188) to a single equation, we
obtain
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okt _ k+1 k+4 _ k+1
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+-% {[(r +e) ¢ AxYk*%]

t i+1(°o,i+i 0,i+t
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1 k+L K+t

A ICRE IR CRR U R O PO I Te

K+t
+ D, (8 141 - °0.i“%) :
1 k+¥
] (Ji+% N J1~%) ©
where
okid _ i
i - ket °
3(ZtAx6 )i

Unfortunately, Eq. (195) has some deficiencies that adversely impact the
acceleration procedure. Because Eq. (195) has a three-point removal term, it
is possible to obtain negative solutions; however, (Eq. (185) with fixup always
generates non-negative solutions. This situation leads to instabilities that
are not easily corrected by some kind of coding logic. To circumvent these
difficulties, one frequently resorts to converting Eq. (195) into an equation
with a one-point removal term while retaining Eqs. (194a) and (194b) to ensure
consistency between the transport and diffusion scalar fluxes upon convergence.

We write these two equations as
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A TTOVE NS L  N [{CRERS P
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+[(1 - c)ztAxJiogff} ,
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3(Zt1\x>i+1 (°0,1+—;_ <I>o,i\u-;.)k+1
+'§TE%K§7; (°0,1+% - QO,i“%)k+1 + E;t%;%pgt1 . (197)
3'% [Sgax);4q + (Spdx), ] - 3(£tlx)i+1 (°0,1+% - °o,1+§)k+%
3(Z1Ax) (o ,ivd Qo,la%)k+% _'% (Ji+% - Jiﬁ%)kf% ,
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Equation (196) is a linear form of a diffusion synthetic equation that is

stable but loses its effectiveness in acceleration for large mesh spacing.




Equation (197), a nonlinear diffusion synthetic equation, cannot be mathe-
matically analyzed as to its stability, but numerical results indicate that it
has the same stability properties as Eq. (196). The stability properties of
Eq. (196) are mathematically determined assuming diamond differencing using the
same procedure as that leading to Eq. (193) and do not apply when negative flux
fixup is used. Thus, the impact of using diamond differencing with negative
flux fixup upon this formulation of the diffusion acceleration method is to
introduce some nonlinear steps (steps that depend nonlinearly upon the
transport solution) into the solution procedure. These nonlinear steps, along
with the nonlinear aspects of the flux fixups, have been observed to limit the
effectiveness of the acceleration, but stability is not impaired for the
reasonable size meshes encountered in most reactor analysis. Even with this
reduced acceleration effectiveness for large meshes, numerical experience has
shown that the diffusion synthetic acceleration method is generally more
effective than either coarse mesh rebalance or the Chebyshev method.

For general one- and two-dimensional geometry, it is convenient to use
the nonlinear form of the acceleration equation, as indicated in Eq. (197),
together with the relationship of Eq. (194). For two-dimensional problems,
this type of procedure leads to a five-point acceleration equat,ionu2 rather
than a nine-point equation if a truly linear and consistent procedure were
followed. The advantage of the five-point form is the ease and efficiency of
solution and the availability of a large arsenal of diffusion equation solution
methods. In the discussion of outer iteration methods presented next, note
that for the diffusion synthetic method, a large fraction of the computation
time in two-dimensional problems is spent solving the diffusion equation.

Thus, efficient methods are important for this purpose.

D. Acceleration of the Outer Iterations

In Sec. II1I.A, we introduced the concept of source outer iteration in the
multigroup formulation of the transport equation. The relevant equation is
Eq. (51), in which two source processes are iterated: the fission source and
the upscatter source. Also included is the possibility of eigenvalue
determination when the inhomogeneous source Qg, g=1, ¢+« G, is absent. The
eigenvalue determination does not pose an additional problem because it is done

during the source iteration process by the power method. This has come to be
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standard in reactor analysis codes, whether based upon diffusion or transport
theory.

In this section, we present three methods used in transport theory codes
to accelerate the outer iteration procedure. These are based upon the
Chebyshev polynomial method, the coarse mesh rebalance method, and the
diffusion acceleration method. In this presentation, we will not go into much
detail but will outline each of the methods and leave the details to the
references.

4s

1. Chebyshev Polynomial-Based Outer Iteration Acceleration. In

transport theory, the significant outer iteration processes are on the fission

source and the upscatter source in the multigroup approximations. If we ignore
upscatter for this discussion and concentrate on the fission problem, the
Chebyshev method can be used effectively for the outer iterations. We write

this problem from the transport equation as

g
. ka—;- kb -0 e
§ - To 2(F) + 1, (Mo 2(F) - Iy, g1og(P)00 o0 (F)
g =1
(198)
G
k > >
“xg D O s W) v QB
g'=1

where k is an iteration index.

In Eq. (198), we have assumed that we have converged the inner iteration
process to the k+1/2 iterate in the scattering terms. We have also assumed,
for convenience, isotropic processes in the scattering term although this is

not necessary. If we define the fission source as

G
k, > - k >
FA(r) = Z (VEg) 80 oo () (199)
g'=1
and for the next iterate,
pktE2y 2:
(r) (vZf g QO 8'( r (200)

g'=1
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then Eqs. (198) and (200) constitute an iterative procedure for the fission
source, F(;), and this procedure can be accelerated. Details of this
acceleration procedure for the diffusion equation are given in Ref. 45, and we
summarize the results here. Instead of simply using Eq. (200), we update the

fission source by the following equation:

PR - D) ¢ o PR - D1 s R - PRI, ceom)

where the extrapolation parameters a and B are determined from the Chebyshev
polynomial-based spectral fitting procedure. That is, we assume that the
iteration of Eq. (198) has a matrix representation with an eigenvalue spectrum,
Ae{li}, i=1, ¢+, I, where I is the rank of the iteration matrix. If the
eigenvalues are ordered from largest at i = 1 to smallest, then the spectral
distribution of X is represented by Chebyshev polynomials in the range {AZ/A1,

A3/A1, eee }, If we define E = AZ/A1, then o and B are defined by

o, = s 81 =0 , (202a)

4 cosh(k - 1)Y
%k “'—p‘ cosh kY ’ (202b)
(1 _ By,
wi th
v =cosh (2-1) . (202d)
p

Again, as in the inner iteration application of this method, B is estimated

during the iteration process from the quantity

L k _ k-1 _k _ _k-1
- llm.\/ (F F , F F ) , (203)
(F

K s k-1 _ Fk-2’ Fk-1 _ Fk-2)

131




where the notation (a,b) denotes the inner product of a and b.

The details of how this is implemented in a code and the considerations
necessary for good estimates of p, which determine the quality of the
parameters a and B, are explained in Ref. U45. Also in that reference, the
modifications necessary to apply the procedure to eigenvalue problems is
detailed. In this latter case, we obtain an acceleration of the power
iteration method.

The attractive features of the Chebyshev polynomial-based acceleration
method are 1) it is easy to apply with a minimum of coding effort, and 2) it is
stable as long as any inner iterations are sufficiently converged.
Unfortunately, the effectiveness of this procedure is limited, especially for
eigenvalue problems, as the system becomes large. The accelerated spectral
radius depends upon the unaccelerated spectral radius of convergence roughly as
the square. Thus, as the unaccelerated spectral radius of convergence
approaches unity, so does the Chebyshev polynomial-based accelerated spectral
radius. (We derive the unaccelerated spectral for a model problem in the outer
diffusion synthetic acceleration section below.) To improve upon this
performance for transport equation outer iterations, we must apply more of the
physics of the iteration process. The next two methods discussed do this to
some degree and generally result in both theoretical and computational
improvement in the iteration convergence rate.

31,46,47

2. Coarse Mesh Rebalancing of the Outer Iterations. By coarse

mesh rebalancing, we refer to the general procedure outlined in the previous
section on inner iterations. Below, we describe some of the many ways to apply
this technique to the outer iterations. What is attempted in each of these
ways is to bring the multigroup system into balance at each step of the
iteration procedure.

One of the simplest methods is called whole-system, groupwise rebalance,
in which we integrate each energy group equation over the entire spatial domain
of the system and seek the multigroup factors that will bring the multigroup
equations into balance. To develop the appropriate rebalance equations, we
take the multigroup equation, Eq. (51), and integrate over angle to obtain the

following equation:
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We now integrate over space and employ rebalance factors to obtain

K+t ke k1
Lg E (vEg®) o, *f,

k+3 k+1 =
Z (Zso)z'*g g QO.g ’
g ag

where

k+—;_f ke o» _ 40 kit >
Lg = J [V Jg (r) + (zt ’8%)¢0 (r)Jldr ,

(v"z_fo)g* f(vz ) <x> z(r)dr ,
R

0 > k+% > >
(z o)g,*g fzs,gug"‘)“’O,gv"’)d” ,
R

- > >
Qo’g =_/‘Q0’g(r)dr ’

R

and

(204)

(205)

(206a)

(206D)

(206¢)

(206d)
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R = the spatial domain of the system.
We can rewrite Eq. (205) as the matrix equation for the fg as

Mf =Q , (207)
where

M = a GxG matrix,

f = the vector of the fg,
Q = the vector of Qg,
and solve it using some matrix solver routine. Once we obtain the rebalance of

factors fg, g=1, ++, G, we define our updated scalar flux as

k+1,»> k+d, > k+1
¢ r) = ¢. 2(r)f 208
0,g'") = %0,g(")fg (208)
and proceed. Actually, all angular moments can be updated as in Eq. (208), but
this has not been found to be useful.
We note that this type of rebalance, which concentrates on the energy

spectral details of the problem, is not well suited for ke eigenvalue

problems. This is because we usually solve the eigenvalue problegfby the power
iteration method described in Sec.III.A, which treats the fission term of
Eq. (200) as a given source. [Recall that Eqs. (198) and (204) can be cast in
the ke

eigenvalue form by replacing Xg with xg/k and by setting Qm g(r-:) to
b4

zero.]ffRebalance in this case will be effective oiii if there is significant
upscatter since the downscatter is solved without iteration over the groups.
Of course, a matrix eigenvalue problem similar to Eq. (207) can be posed where
the matrix solver could obtain both the eigenvalues and eigenvectors of M.
However, this is not as effective as estimating the eigenvalue from the
original Eq. (204), and, except for the first few iterations, has been found to
be largely wasted effort.48

A rebalance method that has been applied to the eigenvalue problem with
some success is described next. This method, which we call group-collapsed

coarse mesh outer rebalance, takes the coarse mesh rebalance equations of Sec.

134



IV.C, Egs. (168) and (169), and simply sums them over the groups.

have the following:

where

BAS FEUR L PO

553>

iel jed g=1

29 s

G
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( t,g S.g'*g)i.a i,j0,i,j,g °’
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|

Lia gfr,g °F

1
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Thus, we

(210a)

(210b)

(210¢)

(210d)

(210e)
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We then update the flux iterate for Eq. (204) as

k+1 k4 k+1 ; _ ..
%,1,5,8 = %,1,3,g71,0 for el , JjeJ , g=1, ¢+, G . 211)

We note that in this method we have lost the bulk of our (energy) spectral
information in the acceleration equation and we have added more spatial detail.

Thus, this method is best applied to situations where the transport solution
for ®k+%

0,8 contains most of the spectral information, as is the‘case for purely
downscatter problems. Then this outer iteration rebalance method is useful in
helping to converge the fission source that appears as a sum over groups. On
the other hand, this method is not very useful for problems with significant
upscatter because there the spectral information is important. Returning to
Eq. (209) and the fission problem, we note that when QQ = 0, we can solve for
the eigenvalue, keff’ by power iteration. This is useful, at least in the
early stages of transport iteration, in that one quickly obtains a good
estimate of the system eigenvalue. It is not so useful in later outer
iterations because there is a spectral effect that is more efficiently obtained
from the unaccelerated outer iteration than from Eq. (209).31

In summary, we have presented two outer rebalance methods that are
reasonably cheap computationally and, to some extent, are effective, at least
in the early outer iterations. The method represented by Eq. (205) focuses on
accounting for the energy spectral information in performing the rebalance;
that represented by Eq. (209) focuses more on spatial variations.

One can derive rebalance equations that account for both the spectral and
the spatial effects at the outer iteration stage. In developing this method,
we again use the definitions of Eq. (169) of Sec. IV.C to write the following

groupwise, coarse-mesh, rebalance equation:
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where we solve this at iterate k+1.
Quantities with bars are defined in Eq. (206), with the spatial integra-
tions performed only over the appropriate coarse mesh intervals implied by the

subscripts I,J. As before, to cast Eq. (212) in the ke eigenvalue form,

ff

simply replace Xg with Xg/keff and set QO,g,I,J = 0.

Equation (212) itself must be solved for the rebalance factors, fg,I,J’
by an iterative process before the rebalance factors can be applied to
accelerate the transport outer iterations. Thus, this groupwise, coarse mesh
rebalance method can be computationally much more expensive than the other two
methods above. Although groupwise, coarse mesh rebalance contains more
information than the other two methods and should thus be more effective, its
complexity has caused it to be used little in reactor analysis codes. Further,
the method is not being actively pursued because a more predictably effective
diffusion synthetic method has been developed. It is described next.

3. Diffusion Synthetic Acceleration of the Outer Iterations. As with

rebalance, The diffusion synthetic acceleration (DSA) method is readily applied
to the outer iteration of the transport equation. The DSA method is also
amenable to some analysis on a model problem that can help determine the best
way to apply the method to real problems. The attractive aspect of using DSA
over coarse mesh rebalance is that it uses the familiar diffusion equation. As
we show, this is much more convenient in an outer iteration acceleration scheme

because the solution methods for the multigroup diffusion equation are well
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developed and generally well understood by the reactor analyst. To demonstrate

our procedure, we write the outer iteration DSA equation from Eq. (176) as

N 0 k1, >
v Dg (r) + (Z zs,g+g)¢0,g(r)
G
}E: kel > }E: 0 kel >
Xg (vZf)g,oo’g,(r) + zs,g'*goo,g'(r) (213)
g'n‘l g'=1
g'#g
kil > +1
g - IV « D_veg HEON I I COD I

g=1, *=+, G .

This is a multigroup difusion equation with a source correction that comes from
the previous transport solution, designated with iterate k+4. For eigenvalue
problems [Qo,g(;) = 0 and xg replaced by xg/keff]’ this equation is modified by
changing the diffusion coefficient to a diagonal tensor with the following

components:
+%- Jk+%
k g,o a=1,2,3
RN = PR R (21h)
a 0

thus, the right-side correction is zero, and the diffusion equation is

homogeneous but nonlinear.

To demonstrate how Eq. (213) is used in the outer iteration scheme, we
write the companion transport equation as

> k+_§.-> ->k+_%.->
g - 3¢m’8(r) £ I (D)o E(E)

NM
0 >k > >
= Zs,g»g(”)°o,g(”) + E (28 + 1)2 (P)Rn(Qm)Qn’g(r) (215)
n=2

E;(F) ,
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where we have used the spherical harmonics expansion form as described in Sec.
II.D for the within-group scattering source, and Smg(;) represents the source
from fission and scattering into the group g. In the above transport equation,
we assume that only the scalar flux, oo’g(F), is updated from the diffusion
equation, and the anisotropic scattering components come from the previous
transport angular flux. With Eqs. (213) and (215), the following iteration
strategy is used:

a. At k = 0, solve the diffusion equation, Eq. (213), with the correc-

>
tion terms zero, for ¢ (r) to some desired order of convergence.

- 0,8
b. With the ok'o(F) solve the transport equation, Eq. (215), for

k z(r), using the most up-to-date information for the scattering

m,
part of S
m,g"
. .k . .
¢. With this om g compute the correction term (with the diffusion tensor
b4

or the source correction) and solve the one-group diffusion synthetic
equation, Eq. (177), for the scalar fluxes in each group g.

d. With the same correction term, set up the multigroup diffusion
equation, Eq. (213), and solve it for o (r), g=1, *++, G.

e. Repeat the outer iteration process [steps (b) through (d)] until the
source terms of Eq. (213) converge to a desired precision from one
outer iteration to the next.

f. With this converged source, Sm (;), iterate the energy group trans-

s 8
port equation, Eq. (215), on the within-group scatter source to the

precision desired for the convergence of the scalar fluxes o 2(r)
using the DSA inner iteration process.

g. With this final converged correction term, set up and solve the
"final"™ version of Eq. (213) and check to see whether the source is
still converged to the desired precision; if not, go back and repeat
steps (f) and (g).

The essential feature of the procedure is that one inner iteration [steps (b)
and (c¢)] per outer iteration is performed until the multigroup source has been
converged. Then the group transport scalar fluxes are converged to their
convergence criterion via the DSA inner iteration of Sec. IV.C. The success of

this strategy depends upon the inner iteration steps (b) and (c) being stable
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and convergent and the outer iteration equation being stable and convergent.
It has been shown that the first part of this is true in the discussion of Sec.
IV.C. Here we will indicate the stability and effectiveness of the outer
iteration DSA for a model problem,

To demonstrate the effectiveness of the outer iteration diffusion
synthetic acceleration procedure, we consider a problem without inner itera-
tion, that is, a fission problem with no scattering. This simplifies the
analysis while preserving the essential features of the acceleration

procedure.¥ Thus, our DSA procedure is reduced to the following equations:

> k-n-i.-» "k+‘%"’ k, > >
3 . 3om’g(r) Iy (PR = B v g () (216)

> o k+1 > > k+1,>
-V . Dg(r)Voo’g(r) + Zt’g(r)oo’g(r)
(217)
k+1,»> > . k-n-i.-» ->.->k-o-%-->
= ng (r) + Qo’g(r) v ngoo’g(r) +V Jg (r)] ,
G
k,»> K >
Fo(r) = Z (vZf)g,oo’g,(r‘) . (218)

g'=1

The acceleration equation, Eq. (217), can be put into the more convenient form,

G
_ K+ 1 kel K+ 1
Vo De"o,e * 20,5 T Xg Z (VIpdgifo, gt

g'=1
(219)
x (FKE _ pKy
g
where
=t
fé*é = ¢g+; - og 2 (220a)

*
This development was accomplished by E. W. Larsen.
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and where Fk+1 is now defined as

G
k+ +1 k+
AL Lo gt Q: (vZf)g,fo’;, : (220b)

g'=1

To do error analysis, we then take Eqs. (216), (219), (220a), and (220b) and
perform a Fourier analysis assuming an infinite medium and constant cross

sections. We quote the result for the iteration spectrum of convergence

2 2 1 ey
G [(© + 3zt,g)(vzf)g(_x—) tan (m) 3, OVEQ) g
w(r) = & P 18 .(221)
Z (1< + 3zt’g[zt’g - (vZf)g]}Xg
2 2
8=1 A * 3zt’8

The accelerated iteration spectral radius of convergence, B, is given by

b = S‘;p w(d) (222)

and the unaccelerated iteration spectrum, mO(A), is

G (vI.) b
wy (M) =Z xg[z f g][ f’g tan | (z—"—)] , (223)
t,g

g=1 t’g

so the spectral radius for the unaccelerated iteration, 50, is

- sup
po A mO(X) ’ (22”)

where A in the above is the Fourier variable. Thus, we have at A = 0,

G

B _ }E: . (sz)g
0 g Zt

g=1 ’g
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and since

= 1 ’
sz

g

we see that (vzf)g/z < 1 is sufficient but not necessary for convergence.

For the accelZﬁited iteration procedure, we note that w(0) = 0 from
Eq. (221). Thus, the acceleration method has suppressed the worst mode of the
unaccelerated iteration. To be more specific as to the accelerated spectral
radius, we have to specify the cross-section values. We present some
representative data in Table XIII and in Fig. 15 and note that the diffusion
synthetic acceleration of the outers is, indeed, very effective for this case;
that is, we have reduced the spectral radius from 1.0 to 0.225 by the
acceleration.

As in Sec. IV.C, for the inner iteration, we must ask whether this
analysis is valid for "real" problems with finite spatial dimensions, dis-
continuous cross sections, and scattering. Numerical exper'ienceu2 has
indicated that the analysis is, indeed, a good guide as to the expected
convergence of the outer iteration DSA. Actually, much of the superior
performance of codes using the DSA method over those using the Chebyshev
polynomial-based acceleration or the rebalance algorithm is due to this
excellent acceleration of the outer iterations.

To illustrate the effectiveness of the various acceleration methods, we
present in Table XIV some representative one-dimensional calculations of
multigroup systems. Three systems have been chosen, which we briefly describe

as

1) HTGR - a high temperature gas reactor eigenvalue (keff) problem with
9 energy groups, including 3 upscatter groups, 87 spatial
mesh points, and SM discrete ordinates quadrature in
cylindrical geometry.

2) SARAF - A test reactor eigenvalue (keff) problem for fast reactor
applications consisting of a thermal driver and a filtered
experimental test section. This problem was run with 20 energy
groups, 39 spatial mesh points, and 88 discrete ordinates quadrature

in cylindrical geometry.

142




TABLE XIII

THIRTY-GROUP DATA USED TO DETERMINE THE SPECTRA IN FIG.

Group (g)

—_

O W 00 ~N O 1 &= W N

15

Xg L g VIg SB o
3.04800E-05 8.82000E-03 1.00000E+00
7.94300E-05 5.15600E-03 1.00000E+00
2.36900E-04 5.32000E-03 1.00000E+00
1.16000E-03 1.01260E-02 1.00000E+00
5.87500E-03 7.61100E-03 1.00000E+00
1.75200E-02 1.05800E-02 1.00000E+00
1.02700E-01 1.43400E-02 1.00000E+00
9.06600E-02 1.44650E-02 1.00000E+00
1.08100E-01 1.56900E-02 1.00000E+00
1.14700E-01 1.61900E-02 1.00000E+00
1.10800E-01 1.57500E-02 1.00000E+00
1.81912E-01 1.56700E-02 1.00000E+00
1.20400E-01 1.60400E-02 1.00000E+00
7.06100E-02 1.7U4600E-02 1.00000E+00
3.73700E-02 2.02100E-02 1.00000E+00
2.88300E-02 2.48500E-02 1.00000E+00
6.98200E-03 3.38400E-02 1.00000E+00
1.56100E-03 4.40300E-02 1.00000E+00
3.74000E-04 6.15100E-02 1.00000E+00
7.61700E-05 9.27300E-02 1.00000E+00
1.76800E-05 1.51550E-01 1.00000E +00
3.81000E-06 3.10130E-01 1.00000E+00
8.50300E-07 4.85500E-01 1.00000E+00
1.89500E-07 1.00220E+00 1.00000E+00
4.23100E-08 1.03510E+00 1.00000E+00
9.45500E-09 6.43700E-01 1.00000E+00
2.10500E-09 3.62200E-01 1.00000E+00
4.74100E-10 9.94600E-01 1.00000E+00
1.05000E-10 2.50440E+00 1.00000E+00
3.03500E-11 7 .4T9UOE+00 1.00000E+00
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Fig. 15. Iteration spectra for 30-energy group problem.
TABLE XIV

TOTAL NUMBER OF TRANSPORT ITERATIONS TO CONVERGE THE
POINTWISE FLUX FOR VARIOUS ACCELERATION METHODS

Problem CHEBY CMR DSA Time Ratio
1. (HTGR) 12000 6400 124 0.08
2. (SARAF) 5047 * 188 0.06
3. (KTST) - ¥ 200 -

*¥ - divergence.
-- - results not available.
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3. KIST - A two—-group critical size search problem in slab geometry with
upscatter. This is a mockup of a water reactor with a water
reflector and was run with S16 discrete ordinates quadrature.

In Table XIV, we present the number of iterations required for each of the
three accelertion methods; CHEBY = Chebyshev, CMR = coarse mesh rebalance, and
DSA = diffusion synthetic. The time ratio is that of the DSA time to the best
achieved by either of the two other methods.

We note that in this selection of eigenvalue problems, DSA is clearly
superior; also, the coarse mesh rebalance algorithm can be quite unpredictable,
resulting in nonconvergence of the iteration.

Finally, we comment upon the computational effectiveness of the iteration
strategy outlined in steps (a) through (g) a few pages earlier. We note that
with one inner iteration per outer iteration in the transport sweep of the
acceleration procedure, we are, in fact, replacing transport sweeps in the
outer iteration with diffusion sweeps. Granted that the spectral radius of
convergence for this is excellent, good computational effectiveness of the
procedure depends upon an efficient solution of the diffusion equation. That
is, in Eq. (213), we are asking for the converged diffusion solution at iterate
k + 1; but to obtain this, we must iterate the multigroup solution for the
fission source. To complicate matters further, in two or three dimensions,
there is an inner iteration for each group of the diffusion solution. This
inner iteration is necessary for the efficient inversion of the diffusion
operator. The entire series of iterations for the diffusion solution can be
computationally expensive; hence, it may abrogate the excellent theoretical
performance of the transport DSA procedure. Fortunately, a great deal of work
has been expended in the past upon efficient diffusion solvers. Indeed, when
these are employed, good computational performance brought about by DSA
procedure is generally seen.)"9

Another facet of the DSA method is that it can be employed as a diffusion
improvement method for many eigenvalue calculations. In many cases, an
estimate is wanted of the transport effects upon the eigenvalue and power
distributions as computed using diffusion theory. This estimate can be made
from the DSA iteration strategy by terminating the overall procedure, described
by steps (a)-(g) above, before full transport convergence is achieved. Note

that steps (b)-(d) are concerned with converging the multigroup source to its
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final transport value before the final pointwise fluxes are converged.
Generally in this procedure, the eigenvalue converges first, followed by
convergence of the pointwise fission source, followed by the convergence of the
pointwise fluxes. Thus, depending on the particular need, the iterations can
be halted when the eigenvalue is well estimated but before convergence of
pointwise quantities, and the user obtains a good estimate of the transport
eigenvalue. 1In fact, even though in this example the pointwise fission source
and the pointwise fluxes are not fully converged, they can still be considered
as being intermediate between pure diffusion results and fully converged
transport results. This feature of the DSA iteration strategy results in a
very flexible computational tool that can be used to produce results ranging
from pure diffusion theory, through improved (by transport corrections)
diffusion, all the way to fully converged transport theory. With such a tool,
users can greatly reduce computational times on problems where fully converged
transport solutions are not necessary, but where "better than pure diffusion"
results are desired.

In summary, although many forms of outer iteration acceleration of the
transport solution have been employed in codes, the diffusion synthetic
accelertion method has been the most efféctive, both theoretically and

computationally, for a large variety of reactor analysis problems.

E. Search Capabilities in Discrete Ordinates Codes

In many general-purpose, discrete ordinates codes, it is possible to
perform eigenvalue search calculations. In these search calculations, certain
problem parameters, for example, dimensions or material concentrations, are
£re The

basic quantity used to alter the problem parameters is the eigenvalue of the

automatically adjusted to values that produce a desired value of ke

specific calculation. It is important to note that the term eigenvalue in a
search calculation takes on a meaning different from an ordinary keff
calculation. 1In the k calculation, the term "eigenvalue" simply refers to

eff
the quantity that approaches the value of keff as the iterative calculation is
converged. In search calculations, however, the "eigenvalue" is a quantity
used directly to alter the parameter (or parameters) being searched on. The

specific manner in which this is done is described below.
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1. Types of Searches. The most common types of eigenvalue searches are

the buckling search, the time-absorption (a) search, the spatial-dimension
search, and the concentration.search.

In a buckling search, the parameter to be determined in the search is the
geometric buckling, BZ. For example, in a two-dimensional (x,y) geometry
calculation, the z-direction leakage of particles can be simulated by adding
the term DB2 as an effective absorption term in the transport equation. The
quantity D is the diffusion coefficient, which is normally space- and energy-
dependent. The value of 82 is typically altered by means of the expression

8° = Ev*s} (225)
where EV is the search eigenvalue and Bf is a user-input buckling value, that
is, an initial geometric buckling guess.

For a time-absorption, or o, search the time-dependent angular flux is

assumed to be separable in time with respect to space, energy, and angle, viz.,
o(r,E,8,t) = o(r,E,)e*t . (226)

If this separable form is inserted into the time-dependent transport equation,
the exponential time dependence can be cancelled, and a fictitious cross-
section term of the form a/v8 appears as a "time-absorption" correction to the
total and absorption cross sections. Here, vg is the particle speed associated
with energy group g. The exponent o is the eigenvalue, EV, sought in a time-
absorption, a, search. Obviously, o = 0 for an exactly critical system and
o > 0 corresponds to a supercritical system.

In spatial-dimension searches, the dimensions of selected portions of the

eff* Although
various prescriptions for adjusting the dimensions are used, the following

problem model are adjusted to achieve the desired value of k

generic form displays the basic method. Let Adk denote the dimension of the k-
th region in a problem model. For two-dimensional geometries, this dimension
represents, in a general sense, either the height or width of a particular

region. The dimensions are altered by the general formula

= i* *
Adk Adk 1 + fk EV] , (227)
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where Adi is the "as input" dimension of the k-th region and EV is the
dimension search eigenvalue. The term fk represents a user-supplied quantity
that permits expansion, contracton, or no alteration of the dimensions for each
region in the problem. For example, fk can be selected such that one region
can be expanded while an adjacent region is contracted such that the total
dimension of the two regions remains constant.

With concentration searches, the user can selectively determine the
£re Specific

formulations for varying the concentrations differ among the various computer

nuclide concentrations that will produce the desired value of ke
codes, but all are typified by

i
Cz Cz 1 + fz EV] , (228)

where Cz is the adjusted concentration for nuclide (or material) &, Ci is the
user-input value of Cz, and EV is the concentration search eigenvalue. The
term fz represents a user-supplied quantity that permits an increase, a
decrease, or no alteration in the concentration. With such a formulation, for
example, uranium enrichment searches can be performed such that as the atom
density of U-235 is increased, the atom density of U-238 is decreased so the
total atom density of uranium remains constant.

2. Overall Search Strategy. Regardless of the type of search being

conducted or the computer code being used, the following search strategy is

generally used.50

The search is executed by performing a sequence of keff-type
calculations, each for a different value of the search eigenvalue. The search
is for a value of the eigenvalue that makes the value of A unity, where X is

defined as

(Fission Source)J

A= (229)

(Fission Sour'ce)‘]_‘I

for the Jth outer iteration.

In the following description of the search strategy, it is helpful to
refer to Fig. 16, in which the deviation of A from unity for each outer
iteration is plotted.

The user provides input values and data to define the initial system. An

input value for the initial eigenvalue is included. For this initial system,
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Fig. 16. Variation in X during a hypothetical eigenvalue search.

outer iterations are performed until two successive values of X differ by less
tha= some user-controlled convergence criterion. After the first converged A
sequence is obtained, the initial value of the eigenvalue (EV) is altered by a
user-supplied quantity denoted here by EVM. If X > 1 (multiplying system), the
new eigenvalue is equal to EV(initial) + EVM; if A < 1 (decaying system), the
new eigenvalue is EV(initial) + EVM. Thus, the sign and value of EVM should be
chosen such that the use of EV(initial) + EVM will reduce the reactivity of the
system. Conversely, the use of EV(initial) - EVM should increase the
reactivity of the system.

Basically, after two converged values of ) are obtained for two values of
the search eigenvalue, the computer code will effectively make a plot of the
converged value of A as a function of the search eigenvalue. A curve fit
extrapolated to a value of A = 1 is used to predict the next value of the
search eigenvalue. Depending on the amount of information available and the
size of |1 - A|, this curve fit proceeds in different ways. A parabolic fit
cannot be made until three converged values of )\ are gvailable for three
different values of EV. Even then a parabolic fit is not attempted unless

|1 - AI is greater than an input search lower limit (here denoted as XLAL) and
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less than an input search upper limit (here denoted XLAH). If a parabolic fit
is tried and the roots are imaginary, a straight line fit is used. If the
roots are not imaginary, the closest root is used for the new value of EV.
Once a bracket is obtained (change of sign of A - 1), the fit procedure is not
allowed to move outside the region of the bracket. Should a parabolic fit
predict an eigenvalue outside the bracket region, this value is rejected and
the new eigenvalue is taken as one-half the sum of the two previous
eigenvalues.

Whenever a parabolic fit is not used, a linear fit is used, and the new
eigenvalue is computed from

(EV)new = (EV) + POD*EVS*(1 - A) , (230)

previous
where POD is an input "parameter oscillation damper®™ that can be used to
restrict the amount of change in the eigenvalue and EVS is a measure of the
slope of the A versus EV curve. When |1 - A| > XLAH, (1 - ) in Eq. (230) is
replaced by XLAH (with the correct sign) to prevent too large a change in the
predicted new eigenvalue. After |1 - AI is less than XLAL, the value of EVS is
fixed and kept constant until convergence to prevent numerical difficulty in
the approximation of the slope when A is close to unity.

Because parametric search problems represent sequences of keff calcula-
tions, it is important that the user study this search strategy in order to
optimize his calculations. It is also important that the user pose soluble
problems. That is, there are many problems for which solutions are not
possible. For example, a dimension search on the critical size of a natural
uranium/ordinary water mixture is doomed to failure since even an infinitely
sized mixture remains suberitical.

Convergence in time absorption (a) calculations is typically one-sided.
If EV (the eigenvalue a) is negative, the effective removal cross section, ZR +
o/v might become negative. If this happens, the automatic search procedure may
fail dramatically. For this reason, a parameter oscillation damper, POD, of

0.5 or less is frequently used in such searches.
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V. CONSIDERATIONS IN CHOOSING A CODE

Numerous discrete ordinates computer codes have been written over the
years and can be acquired by potential users. If you do not already have a
discrete ordinates code capability at your facility or if you wish to acquire
new or additional codes, you will be faced with several choices. Should you
import someone else's code or should you try to write your own? Since the
writing of all but the simplest discrete ordinates codes is an expensive and
time-consuming task that requires a somewhat experienced programmer, it is
normally best to try to import an already-developed computer code. If you
decide to do this, which computer code should you choose? In this section we
present some of the considerations that should be addressed in answering this
question. Some of the considerations are quite obvious; others are more

subtle but are frequently just as important.

A. Code Capabilities

The first and most obvious consideration to be given to a candidate
discrete ordinates code is whether the code will solve the types of problems
that you need solved. Is the code one-, two-, or three-dimensional? Does it
treat the geometries you need? Is it time-independent or time-dependent? Will
it solve both forward and adjoint problems? Will the code perform the kind of
calculation you need, for example, keff’ inhomogeneous source, eigenvalue
searches? Does the code permit arbitrary anisotropic order of scattering? Do
the boundary conditions treated in the code match your needs? The basic
computational capabilities of a candidate code should first be compared with
your needs.

In addition to the comparisons of needs versus basic calculational
capabilities in the candidate code, there are several other considerations.
Discrete ordinates computer codes can generally be classified as either
general-purpose codes or specific-application codes. General-purpose codes, as
their names impiy, contain a broad range of problem-type calculational
capabilities. For example, a two-dimensional, time-independent, general-
purpose, discrete ordinates code usually solves the multigroup, discrete
ordinates equations in (x,y), (r,z), and (r,6) geomtries. Such codes also
usually solve keff (criticality), inhomogeneous source, and several types of
searches. They normally allow arbitrary anisotropic scattering order. These

codes are quite flexible; they usually contain good, reliable, numerical
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methods; they are normally well tested and documented. Because of their
flexibility, general-purpose codes tend to be quite large and may not be
computationally optimal for a specific type of problem. On the other hand,
specific-application computer codes are generally developed to solve a limited
class of problems specifically suited to the facility authoring the code. For
example, a specific-application code might solve only (x,y) geometry, time-
independent, shielding problems. Such codes are usually much smaller and may
be more computationally optimal than general-purpose codes; but, of course,
they lack the flexibility of the latter.

Another very important factor to be considered in choosing a code is
whether it is essentially free standing and self-contained or whether it
requires other auxiliary codes. A modern free-standing, discrete ordinates
code will contain a library of angular quadrature sets built into the code. It
will accept multigroup cross sections in several generally acceptable and
commonly used forms., It can be quite frustrating to acquire and implement a
computer code only to learn that one or more additional codes must be acquired
and implemented to generate or preprocess data before the main code can be
used.

Variable dimensioning and flexible data management are other highly
desirable features in a discrete ordinates code. Fixed dimensions on vectors
and arrays can unnecessarily restrict the range of problem sizes that

can be analyzed, as can inflexible data management.

B. Computing Environment

In choosing a computer code for implementation at your facility, it is
very important to consider both your computing environment and the computing
environment in which the desired code is operational. There are great
differences in computer architecture and computer operating systems, and these
differences can cause great difficulties in implementing an imported computer
code. In some cases known to the authors, the implementation of a discrete
ordinates code into a different computing environment has required man-months
or even man-years of effort, whereas other codes have successfully been
implemented into new environments in a few man-days.

Some computers, most notably IBM machines, operate with 32 bits per word.
Such machines are commonly called "short word™ machines. Other computers, for

example, CDC and CRAY computers, operate with 48 or more bits per word. These
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are called "long word"™ machines. On short-word computers, six-character
hollerith words must be "double precisioned"; on long-word machines such
hollerith words can be treated as single precision. Since 32-bit short words
with hexadecimal roundoff carry only the equivalence of some six decimal
digit,s,S‘I calculations requiring greater precision must be double precisioned.
On long-word computers, double precisioning is seldom needed. Because of these
word length differences, computer codes written for a long-word computer may
cause great problems when implementation is attempted on a short-word computer.
A well-written code, designed for exchange, will minimize or eliminate these
problems.

The memory hierarchy of computers varies with manufacturer, and computer
codes written for one form of hierarchy may not be compatible on a computer
with a different memory hierarchy. The two most notable memory hierarchies are
the two-level hierarchy and the single-level hierarchy. Two-level memory
hierarchy computers normally possess both small, fast core central memory and a
separate rapid access peripheral storage, which we shall refer to as extended
core. Control Data Corporation (CDC) computers, such as the CDC-7600 and
Cyber 720 computers, are the most common two-level hierarchy machines. Fast
core central memory on two-level machines is typically limited to about
60 00010 words; extended core memory may accommodate several hundred thousands
of words of storage. Single-level memory computers do not possess a separate
extended core, but instead have a single, large, fast central memory commonly
accommodating several hundred thousand words. IBM computers and CRAY-1
computers are widely used single-level memory hierarchy machines. It should be
quite clear that the data management/transfer procedures in a code written for
a single-level memory computer can be quite different from those in a code
written for a two-level memory computer. The memory hierarchy assumed in a
computer code must be considered in deciding whether to import a discrete
ordinates code.

In addition to central memory and extended core storage, virtually all
computer codes require the use of auxiliary storage devices or units. The
number and type of auxiliary storage devices required by computer codes can be
quite different, however. Nearly all codes will require the availability of
several sequential access storage units, and such units exist in most computing
environments. The number of sequential access units required by some computer

codes can be quite large, however, and some computing installations may not
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allow as many units as a particular code needs. In addition to sequential
access storage, many modern codes require the use of direct, or random, access
storage. Some computing installations do not support direct access data
storage devices. Even for those installations that do permit direct access
data storage, the rules for effecting direct access data transfers are both
manufacturer dependent and computing-installation dependent. Such local
dependencies make the interchange of codes between installations somewhat more
difficult.

These and other differences in computer architecture and computing
environments impact the portability of discrete ordinates codes. Although the
differences in computing environments are significant, it is by no means a
hopeless task to import codes. Well-written codes exist whose authors, aware
of computing environment differences, have written in such a manner as to
minimize problems involved in code implementation into different computing

environments,

C. Programming Language

In choosing a discrete ordinates code, it is imperative that the code be
programmed in a language usable at your installation. Fortunately, most codes
are written in FORTRAN. Currently, most codes are written in FORTRAN-IV, but
codes that use FORTRAN-77 are appearing. Some incompatibilities exist between
the two languages, so it is important that your facility has a compiler that
supports the language used in the code. Many codes, although written
predominately in FORTRAN, still contain subroutines written in assembly
language or require system library routines provided by the computer
manufacturer. These routines may have to be replaced with equivalent
subroutines for your computing environment. Be aware of the potential problems

associated with such local systems-dependent routines.

D. Efficiency and Accuracy

Both computational efficiency and numerical method accuracy are important
factors to be considered in choosing a discrete ordinates computer code.

Computational efficiency refers not only to the speed at which a given
calculation can be performed, but also to the data storage requirements and

data transfer/management techniques.
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The speed at which a calculation is performed is strongly influenced by
the manner in which instructions are programmed. A single IF-test in an
innermost loop of an iterative code can increase computer running times by
perhaps 5% or more. Good, clean programming can often be executed at least
twice as fast as a poorly programmed code. Structuring a code to take
advantage of vector operations on vector-processing computers can produce
factors of 2, 4, or even 10 in computational speed. Since most discrete
ordinates codes are iterative, iteration acceleration schemes are a virtual
necessity. A typical iterative discrete ordinates code with an effective
acceleration method will frequently run 10 to a 100 times faster than an
unaccelerated but otherwise identical code.

A discrete ordinates code should also manage and transfer data
efficiently. Large, multigroup discrete ordinates problems can require an
enormous quantity of data and information that must be stored, managed, and
transferred. The quantity of information managed can be minimized by clever
use of temporary, or scratch, data, by proper construction of phase-space
sweeping loops, and by storing only needed information. Time spent in data
transfers can likewise be minimized by constructing the program such that the
number of data transfers is minimized, by indexing vectors/arrays so they can
be transferred sequentially, by using record or block transfers instead of
transferring words individually, etc.

Unfortunately, computational and data storage/transfer efficiency in
discrete ordinates codes can conflict with the accuracy of the solution. For
example, the so-called "step" spatial differencing scheme for spatial
discretization requires a minimal amount of flux information to be computed and
stored, it is computationally simple and fast, and it is a positive scheme so
that there is no need for negative flux checks or fixups. For efficiency,
the step scheme looks excellent. As a spatial discretization scheme, however,
it is generally unacceptably inaccurate. 1In other words, for the step scheme
to provide an accurate solution to the transport equation, the spatial mesh
size must be made so small and the number of spatial mesh cells so large that
the net computational effort and the data storage requirements become
unacceptably large. Therefore, the step scheme is seldom used in discrete
ordinates codes. More accurate, or higher-order, difference schemes, such as
the diamond scheme and other more recent schemes, although more costly in terms

of calculational effort and/or data storage per mesh cell, may permit
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acceptable accuracy on sufficiently few mesh cells that the overall net
calculational effort and data storge required is quite good. Thus, an
acceptable compromise between efficiency and accuracy should be sought in a

discrete ordinates code.

E. User-Oriented Features

The acceptance and effective use of a discrete ordinates code is greatly
influenced by the extent to which user-oriented features exist in the code.
Included in user-oriented features are problem specification and data input,
interpretation of results, postprocessing or edit features, and documentation.
An otherwise excellent code can be used seldom if it is not user oriented.
Some of the desirable attributes of a user-oriented code are described below.

The input of problem specifications and data should be clear, easily
supplied, and easily checked. Free-field, card-image input is much easier and
less prone to error than fixed-field, card-image input. The use of hollerith
words to identify input parameters or data arrays is very helpful to the user.
For example, if a problem is to use 28 energy groups, it is much clearer for
the user to enter this parameter in a form like NGROUP=28 than it is to enter
the digits 28 as the fifth entry on the second card-image of the input "deck."
The ability of a code to use acceptable built-in default values for parameters
can reduce the amount of input required of the user but can still allow users
to override these defaulted values if they wish to provide the parameter in
their input. Cross-section data in several forms should be accepted to permit
flexibility. Redundant input should be minimized. Quadrature sets should be
provided as built-in libraries within the code, but users should still be
permitted to provide their own quadrature sets if they so desire. The code
should have the option of processing the user-supplied input and halting before
executing the solution of the problem. This option allows users to thoroughly
check their problem specifications before effecting the full, perhaps time-
consuming, transport calculation.

Results of a calculation are usually provided as printed output, remote
terminal output (printed or display), or both. The results provided by the
code should be easy to read and easy to interpret. Liberal use of descriptive
headings is a must. Results should be formatted to fit nicely on the output
page or screen. The user should have the option of supressing or displaying

input parameters/data. The user should also be able to control the printing of
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certain calculational results, for example, scalar fluxes, angular fluxes,
macroscopic cross sections, etc.

Editing or postprocessing of results is best done by an essentially
independent editing module or code. With such a construction, the actual
transport calculation can be performed once, with fluxes and other quantities
saved as files or tapes. Different edit calculations can then be run inde-
pendently without having to rerun the transport calculations. The ability to
present results in graphical form instead of simple tables of numbers is also
highly desirable. Since graphics capabilities and instructions vary widely
among computing environments, a graphics output capability is generally not
directly available in an as-imported code.

Adequate documentation is an essential part of user-oriented features.
Intelligent use of a computer code requires a clear and thorough users manual.
With an inadequate manual, the code will either be seldom used or, even worse,
it could be used incorrectly. The effective use of a code requires far more
than a "black box" treatment, and a good users manual will minimize this. 1In
addition to documentation in a users manual, it is important that the code
itself provide documentation in the form of error-diagnostic messages in the
code output. Comprehensive error checks and clear error messages are extremely

valuable features in a computer code.

F. Availability of Computer Codes

A major consideration in choosing a computer code is its availability.
Is the code available and, if so, from where? Several computer codes have been
developed but are considered proprietary and are unavailable for external use.
Codes developed for military applications or by private companies are
frequently in this category. Other codes are available only to a limited or
restricted community of users. An example of the latter are codes developed by
national governmental agencies or laboratories, which may be available only for
external distribution and use within that nation; export of the codes to a
foreign country may be prohibited. Fortunately, most discrete ordinates codes
are available for general export, distribution, and use.

If the desired computer code is available for external distribution,
one can acquire the code in two ways. The first is to obtain the code directly
from an installation where the code is operational. This installation may be

that of the code's author(s), or it may be that of a known user of the code.
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The second source for obtaining a code is through one of the major code
centers. The three principal centers are the Radiation Shielding Information
Center, the National Energy Software Center (both in the United States), and
the NEA Data Bank in France. These centers, in addition to providing computer
codes to interested users, offer additional related services. When they
acquire a computer code from an author, they compile and execute the code to
ensure its proper operation. They ensure that the code is adequately
documented, and they provide copies of code documents on request. These code
centers are, thus, a valuable resource to the interested user, both for
obtaining information on available computer codes and for obtaining the code.

The addresses of the three major code centers are provided below:

Radiation Shielding Information Center (RSIC)
Oak Ridge National Laboratory

P. 0. Box X
Oak Ridge, TN 37830
U.S.A.

National Energy Software Center (NESC)
Argonne National Laboratory

8700 South Cass Ave.

Argonne, IL 60439

U.S.A.

NEA Data Bank

Nuclear Energy Agency

Organization for Economic Cooperation and Development
91191 Gif-sur-Yvette CEDEX

FRANCE

G. Test Problems

A code imported and made operational in a particular computing
environment must be validated. Unfortunately, validating a version of a code
on one computer under one operating system does not mean that a different
version operating in a different environment is validated. Inclusion of test
problems with a computer code package that is being imported provides some
degree of code validation at the receiving installation. Normally, several
such test problems should be included. For each problem, the input
specifications and data should be provided, as well as a copy of the

calculation results from the sending installation.
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VI. TYPICAL DISCRETE ORDINATES TRANSPORT CODES

Many different discrete ordinates transport computer codes have been
developed since the discrete ordinates method was originated at Los Alamos in
the 1950s. To differentiate between discrete ordinates codes, it is helpful to
understand their origins. Figures 17 and 18 chart the genealogy of most of the
one- and two-dimensional, time-independent, discrete ordinates codes. These

charts are reasonably complete but are not intended to be exhaustive.

A. One-Dimensional, Time-Independent Codes

By far, the most common one-dimensional, time-independent, discrete

ordinates code used today is ANISN.52

To a lesser degree, DTF-IV®° is also
widely used. Both of these codes, developed in the mid-1960s, treat plane,

cylinder, and sphere geometries; they solve inhomogeneous source, ke £ and

several eigenvalue search problems with several boundary condition o;;ions.
Both codes perform both direct (forward) and adjoint calculations, and both
allow general-order anisotropic scattering. In other words, both are general-
purpose codes. Both have been used at installations around the world, and it
is common that a given installation may have its own special version of the
code. The popularity of these codes resulted in the creation of several
offspring codes in the late 1960s and early 1970s. The SN1D code53 of fers the
same general options as ANISN but allows free format input and group and zone
buckling options and contains other special features not available in the basic
ANISN code. The IDFXSM code represents an improved, more sophisticated version
of DTF-IV, especially in its improved iteration acceleration techniques. Both
the XSDRN55 (ANISN) and GTF56 (DTF-IV) codes are programs for calculating
space-dependent flux spectra for use in forming multigroup cross sections. The
ASOP code57 is an extension of ANISN to perform shield optimization
computations by solving sequences of transport calculations and dose constraint
equations. DTF6958 is a specialized version of DTF-IV for solving photon
(gamma-ray) transport calculations only. All of these computer codes use the
diamond difference spatial discretization scheme.

The PALLAS-PL,SP13’59 and ONETRANLl6 discrete ordinates codes represent
departures from their diamond-differenced forebearers. PALLAS-PL,SP uses short
characteristics for determining the spatial variation of the angular particle

flux, as discussed in Sec. IV.B. The code is limited to radiation shielding
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calculations in plane and spherical geometries and is, thus, not a general-
purpose discrete ordinates code. ONETRAN is a general-purpose, one-dimensional
code that employs the linear-discontinuous spatial discretization scheme
described in Sec. IV.B. An additional capability in ONETRAN is its two-angle
plane geometry option. {Recall that, in standard plane geometry, the angular
flux is independent of the azimuthal angle, ¢, so the angular dependence is
reduced to the u interval [-1,1].} The two-angle option in plane geometry
allows the angular flux to be dependent on both u and the azimuthal angle, a
very useful feature for some applications.

The ONEDANT code60 is a general-purpose code using the diamond difference
scheme. Its chief advantages are its flexible, free-format input capability,
its use of the diffusion synthetic method for iteration acceleration as
described in Secs. IV.C and IV.D, and its portability. The code is currently

finding increasingly widespread use throughout the world.

B. Two-Dimensional, Time-Independent Codes

For general-purpose, two-dimensional, time-independent, discrete
ordinates computer codes, the choice is basically between one of the DOT series
of codes or a version of the TWOTRAN series. These general-purpose codes treat

(x,y), (r,z), and (r,0) geometries; they solve inhomogeneous source, and

Keps?
eigenvalue search problems with several boundary condition options; both
operate in the direct (forward) and adjoint modes; and both accept arbitrary
anisotropic order of scattering. The DOT codes have been developed primarily
for radiation shielding analysis. The TWOTRAN codes have been developed in a
reactor/core physics environment. Thus, although similar, the two families of
codes embody somewhat different emphases and flavors.

In the DOT family of codes (Fig. 18), DOT-III61 and its improved
offspring DOT 3.5 have been widely used throughout the world. In the late
1970s, a significantly improved, new version in the DOT series was developed
and denoted DOT-IV28 although the first generally available form was released
under the name DOT 4.2. Subsequent changes and more efficient programming led
to the release of an improved version called DOT H.3u in the early 1980s. For
radiation shielding, the DOT codes have been without peer in terms of worldwide
acceptance and usage.

For reactor core physics application and, to a much lesser degree, for

shielding applications, the TWOTRAN codes have been widely used. The TWOTRAN
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code,“7 developed in the late 1960s, included several iteration acceleration
features. Such acceleraton is virtually essential for the inner and outer
iteration used in core physics applications. The TWOTRAN—II3‘I code represented
an improved, more easily exported version of the code and for nearly a decade
represented the standard for core physics applications. In the early 1980s, a
totally new offspring in the TWOTRAN family, TWODANT,62 was developed. Two
major improvements in TWODANT are its free field, easily understood input and
its use of the very effective diffusion synthetic iteration acceleration
method. TWODANT has replaced TWOTRAN in many institutions.

In addition to the DOT and TWOTRAN codes, several somewhat independent,
more specialized discrete ordinates codes were developed in the late 1970s.
The TRIDENT63 and TRIDENT-CTR29 codes represent discrete ordinates codes using
the linear-discontinuous, finite element method for spatial discretization on
somewhat arbitrary triangular mesh cells in (x,y) and (r,z) geometries. With
triangular mesh cells, rather general geometrical shapes, including toroidal
geometries, can be closely approximated. The DIAMANTZsLl and TWOHEX65 codes
also use a triangular mesh, but they are restricted to uniform equilateral
triangles in (x,y) geometry. They are designed specially for modeling fast
breeder reactor cores with hexagonal fuel assemblies.

The PALLAS-ZDCY13’66 code is a special-purpose, shielding-analysis,
discrete ordinates code. It is restricted to (r,z) cylindrical geometry and
shielding (inhomogeneous source) problems. It employs the method of short

characteristics described in Sec. IV.B.

C. Three-Dimensional, Time-Independent Codes

The extension of discrete ordinates codes to three dimensions has
proceeded somewhat slowly. The first known demonstration code was THREETRAN,67
which was written for (x,y,z) geometry. It was quite limited in its
generality, and its iteration procedures were virtually unaccelerated. The
code was not intended to be a practical production tool, but instead was a
demonstration-in-principle that data management strategies and procedures could
be devised and made to function efficiently on the computers and data storage
capabilities extant in the 1970s. 1In this latter respect, THREETRAN was a
successful demonstration code. Although a modest number of improvements were
made to the code at Los Alamos, and the code was subsequently renamed THREETRAN

(x,y,2) in the late 1970s, little work was done on iteration acceleration. As
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a result, calculations required so much computing time that when work on the
code was suspended, it could still be considered only a demonstration code.

The next three-dimensional code was THREETRAN (hex,z),68 developed for
the hexagonal-z geometries characteristic of fast-breeder reactor cores. This
code uses an equilateral triangular, right prism, mesh cell suitable for
describing hexagonal-z geometries. As with THREETRAN (x,y,z), THREETRAN
(hex,z) contained minimal iteration acceleration and, thus, it too can be
considered only a demonstration code.

The ENSEMBLE69 code, developed in Japan, is an (x,y,z) geometry discrete
ordinates code for radiation shielding applications only. The code permits
anisotropic scattering and uses the coarse mesh rebalancing scheme for
iteration acceleration. The code also contains a negative flux fixup routine
that uses a variable weight diamond difference scheme. A ray effect mitigation
option is also available. Although used locally by its authors, the ENSEMBLE
code has not received widespread attention or usage.

During the late 1970s, therefore, the technical feasibility of three-
dimensional, discrete ordinates codes was demonstrated. Their practical usage,
however, was not well established because of the expense involved in both
computer execution time and computer storage requirements. Many mesh cells are
required to adequately model most full-size, three-dimensional problems using
the diamond difference spatial discretization scheme. It is likely that more
accurate schemes will have to be developed and implemented so larger mesh cells
can be used to reduce the total number of mesh cells to more practical levels.
In addition, more modern and effective iteration acceleration schemes are

needed to reduce the time for iterative convergence.

D. Time-Dependent Discrete Ordinates Codes

Reasonably little work has been done in developing time-dependent,
discrete ordinates computer codes. In about 1970, a one-dimensional, time-
dependent version of the ANISN code was developed jointly by Oak Ridge National

Laboratory and Los Alamos National Laboratory and named TDA70

(Time Dependent
ANISN). This code used a weighted diamond difference scheme in space and time
with an optional exponential time-differencing scheme. As originally
formulated, the code did not treat delayed neutrons; however, more recent

versions of the code permit delayed neutron treatment.
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At approximately the same time as TDA was being developed, TRANZIT, a
two-dimensional, (r,z) cylindrical geometry, time-dependent code was developed
at Los Alamos.TI It employs a weighted diamond difference approximation in all
variables. TRANZIT does not provide for including a fission source, but a
time-dependent, inhomogeneous, distributed source separable in space and time
can be used. It also contains a first-collision source option. Essentially no
further development has been devoted to TRANZIT since it was first developed in
1970.

In 1976, the general one-dimensional, time-dependent code TIMEX72 was
developed. TIMEX‘is quite similar to the time-independent code ONETRAN in its
geometry and boundary condition capabilities. Like ONETRAN, it employs a
linear discontinuous finite element scheme for spatial discretization. The
time variable in TIMEX is differenced by an explicit, unconditionally stable
technique. Delayed neutrons are treated.

The above three computer codes are the only known, generally available,
time-dependent, discrete ordinates codes in use. Numerous other time-
dependent, discrete ordinates codes exist at local installations around the

73

world, for example, the French code EFD, but these codes are generally not

available for public use.

VII. GUIDANCE FOR THE USER

The ultimate reason for a discrete ordinates computer code is that it be
used. The work of the code developer, the considerations made in choosing a
particular code for use at a given facility, and the steps that were taken to
make the code operational at that facility all become history. It is now the
user's job to make effective use of this code as a tool in design or analysis.
How can this tool be used most effectively? How does the user know that the
code is giving good answers? Where does the user begin? This section

provides some guidance that should help answer these questions.

A. Familiarity with the Code

One of the first things you should do as a user is to get familiar with
the code. Three essentials are 1) the code users manual, 2) familiarity with
the actual execution of the code and the information it provides, and 3)

familiarity and understanding of the physics of particle transport.
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1. Code Users Manual. The code users manual is a valuable resource.

Use it! At a minimum, it should tell you how to provide the input to the code
and how to interpret the code's output. Many manuals provide much more
information. They will describe the numerical methods and approximations
contained in the code or will provide references where this information can be
found. The manual will give specific advice, cautions, and recommendations for
proper usage of the code. It will describe the error diagnostiecs and error
messages provided by the code. It is the authors' experience that most of the
mistakes and much of the misuse of a code could have been avoided had the user
only become familiar with the contents of the manual. Accordingly, our advice
to you, the user, is to take the time and effort at the outset to get familiar
with the code users manual. Remember, however, that a code users manual is a
guide and not absolute truth. It likely contains general recommendations and
observations covering a broad range of problem types, computers, and/or
applications. For your particular situation, these recommendations and
observations may not apply. Thus, you must acquire hands-on experience with
the code - the second area of familiarization.

2. Run the Code. Familiarity with the actual execution of the code

requires your running problems. You probably have already used other computer
codes and know how they perform; running several problems with your discrete
ordinates code will give you a feel for the relative running times. It is
quite easy to estimate the execution times of subsequent runs once a problem of
a particular type has been run. The execution time of most codes is
proportional to the total number of spatial mesh intervals or angular
directions. As a user, you should verify this proportionality and get a good
feel for the amount of time, hence the cost, of calculations. Similarly, the
number of energy groups will affect running times. If upscatter or fission
coupling is not significantly altered by changing the number of energy groups,
execution times are usually proportional to the number of groups.

In addition to acquiring a feel for the required execution times, get a
feel for the accuracy of the results. Vary the number of spatial mesh
intervals and the angular quadrature order to see if the results change
significantly. There is no sense in running a two- dimensional S16 calculation
with a 50 x 100 spatial mesh if you can get the same results with an 88
calculation on a 25 x 50 mesh. Similarly, although you find that a particular

mesh structure and quadrature order is required to yield acceptable accuracy in
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a given parameter, say keff’ accurate differences in the parameter caused by
changes in problem dimensions or material compositions can often be obtained
with a coarser (hence, less expensive to calculate) mesh structure and
quadrature order. As a responsible user, you should confirm this behavior by
running the code.

Code execution times and accuracy of results are affected by iteration
convergence precisions. Convergence precisions that are too tight will simply
waste computer time. The users manual will usually provide guidance on
acceptable convergence precisions, but you still should familiarize yourself
with the behavior of the code as a function of varying the convergence
criteria.

While you are becoming familiar with running the code and observing how
the code responds to various changes, you will likely find yourself wondering
why the code responds and behaves as it does. This leads us to the third area
of familiarization.

3. Learn About the Physics of Particle Transport. Familiarity with and

understanding of some of the physics of particle transport are important for
the knowledgeable user. An understanding of some of the whys enables the user
to better know the hows of correct problem modeling and execution. The value
of understanding some of the physics of particle transport can be illustrated
by considering the problem of a monoenergetic point isotropic source of
particles at the center of a uniform 10 mean free path (mfp) sphere of
nonscattering material. For such a problem, the scalar flux for source-energy
particles varies as [exp(-r)]/rz, where r, the radial distance from the center,
is measured in mean free paths. To model the point source as a finite sphere
for analysis with a discrete ordinates code, this source-containing sphere
could be quite tiny, say of radius 0.0001 mfp. clearly, such a choice models a
"point" source quite well, but such a choice is likely to cause significnt
problems in modeling the rest of the problem. The reason for this is that from
r = 0.0001 mfp to r = 1 mfp, the scalar flux will decrease by at least eight
orders of magnitude because of the 1/r2 behavior of the flux. An extremely-
fine-mesh spacing with a very large number of mesh cells will be required near
the origin. By simply expanding the source sphere to a radius of, say, 0.05 or
0.1 mfp, much of the 1/r'2 singularity is removed with little loss in accuracy
even at distances as close as 1 mfp from the sphere origin. Such modeling can

reduce dramatically the number of mesh cells. The "physics" of this problem
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also indicates that logarithmic variation in mesh spacing may be preferred over
uniform mesh spacing, especially near the source where rather fine mesh spacing
is necessary. Logarithmic interpolation options are available in several
general-purpose, discrete ordinates codes. Further, the "physics" of angular

redistribution in this problem dictates that a rather high S order is probably

N
32 or 848' In addition, although a "pure absorbing"

required, perhaps S
material may seem somewhat academic, an understanding of the "physics" of
multigroup cross sections shows that such materials do very nearly exist. For
high-energy neutron groups in which the energy group is fairly narrow, within-
group, or self-scatter can be quite small. Since any reaction other than self-
scatter removes particles from the energy group, materials will appear as
nearly pure absorbers (removers) for such groups. The above example shows that
there is a great deal of "physics" that, when understood, can be applied by
you, the user. There are many other areas where an understanding of the
physics of numerical particle transport is valuable. The unaccelerated inner-
iteration process used in most transport codes consists of generating the flux
solution by adding together the flux resulting from no self-scatter collisions
(first inner iteration), the flux resulting from one self-scattering collision
(second iteration), the flux resulting from two self-scattering collisions
(third iteration), etc. Understanding this process explains why in large
regions for energy groups in which the material is nearly a pure self-
scatterer, unaccelerated inner iterations converge very slowly and why an
effective inner iteration acceleration scheme is so important. Understand that
applying a negative flux fixup forces more particles to leak from the affected
mesh cell and determine whether such fixups are important to your calculation.
You should learn about the probable need for placing more than one mesh cell in
voids in curvilinear geometries where particle streaming occurs. Learn that
diamond differencing yields very accurate integral results, even when local
angular fluxes are poorly predicted. Learn to apply the correct boundary
conditions, especially in curved geometries., Far too frequently, cylindrical
cell calculations are performed using specular reflection as an outer boundary
condition instead of the "white" (isotropic return) boundary condition that was
developed for curved geometry cell calculations.

Remember that a computer code is inanimate and cannot analyze and correct
your input so that you will correctly solve a problem. It will solve, or

attempt to solve, only the problem that you have given it. Being familiar with
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the code and its users manual and understanding the physics of particle
transport will help you provide the code with meaningful, well-posed problems.
As a user with such familiarity and understanding, most of your problems should
be run acceptably. There will be times, however, when your problem is ill-
posed in that it causes trouble when the code attempts to effect a solution.

Below are some of the common indications of trouble and their causes.

B. Indications and Causes of Trouble

There are many causes for an unsatisfactory run of a problem by a
discrete ordinates code. Simple user input errors, bad or inappropriate
nuclear data, poor geometric modeling, an inappropriate angular quadrature, or
simply a very tough problem are examples of such causes. Indications of
trouble or unsatisfactory execution range from the glaring, obvious fatal error
through the more subtle, not-so-obvious indications, all the way to no
indication at all.

1. Obvious Indications of Trouble. The most obvious indication that

something is wrong in a computer code run is the fatal error in which problem
execution is abruptly halted, usually with a highly visible message to the
user. Fatal errors are normally caused either by input errors or by
deficiencies in the computer code. )

The most common fatal errors are those caused by user input error. These
are either detected by the computer code or by the computing system. The most
user-friendly codes will have extensive input data checking capabilities, error
diagnostics, and clearly understood error messages. Such codes make the
correcting of input errors quite simple. At the other extreme are computer
codes with virtually no built-in error diagnostics. Input errors in these
codes are usually discovered by the computing system, if discovered at all.
System error messages tend to be somewhat general, and pinpointing the input
error is significantly more difficult than with a user-friendly code.

Fatal errors caused by errors or deficiencies in the code usually
manifest themselves as computing system fatal errors. Examples of these are
system overflows where perhaps the code has attempted to divide by zero or
address-out-of-range errors. Errors of this sort usually occur because your
particular problem is exercising an option or a logical flow path that has not
been exercised before. In such a case, you normally must either fix the coding

error or deficiency, or the code author must be contacted for assistance. If
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the code being used is somewhat new, it is fairly likely that you may encounter
such a situation - we hope that you do not, but do not be surprised when this
happens. Large computer codes have many options, and the number of
combinations and permutations in the logic of the code can be very large. Only
through the running of hundreds or thousands of problems by many different
users will a code be thoroughly checked out. Keep this in mind, and be a
friendly - or at least an understanding - user when you encounter an error in
the code.

2. Not-So-Obvious Indications of Trouble. Many computer code runs do

not result in fatal errors but are, nevertheless, unsatisfactory. Such runs
commonly provide the user with indications that the run may be unsatisfactory,
but these indications are not as obvious as the fatal error. These not-so-
obvious indications of trouble usually appear in one or more of the following
forms: warning messages, iteration convergence problems, negative scalar
fluxes, and poor particle balance. User-controlled output and edit prints
and/or graphical displays also frequently indicate trouble.

The well-written, user-friendly production code will frequently provide
relatively visible warning messages when it detects conditions that may cause
the results to be questionable or unsatisfactory. One situation in which a
warning message might be provided is when a specular reflection boundary
condition instead of the white boundary condition is being used in a
cylindrical cell calculation. Another example might be the detection of
inconsistent nuclear cross sections in which the total cross section is not
equal to the sum of absorption and scattering cross sections. Still another
might indicate that the code reached the user-input limit on allowable run time
before full convergence was achieved. Such warning messages can be of great
value to you in your deciding whether the code results are satisfactory. If
warning messages are provided by your code, look for them. They have been
provided by the code author to help you.

Discrete ordinates codes virtually always use an inner- and an outer-
iteration method for effecting a solution. Convergence of these iterations is
usually considered a requirement for a satisfactory solution. Most codes
provide an iteration monitor print in their output to present a record of the
iteration convergence. You should always review this iteration monitor print
before accepting the results of a calculation. This monitor print will

indicate failure to achieve convergence, an important indicator of trouble.
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Before giving some of the reasons why a problem may fail to converge, we
should make some general remarks about discrete ordinates code iterations. The
more leaky or absorbing a problem is, the faster the iterations will converge.
Conversely, in diffusion-like problems with large, low-leakage, weakly
absorbing regions, the unaccelerated iteration convergence rate can be very
slow. Eigenvalue problems and search calculations require more than one outer
iteration. Inhomogeneous source problems with isotropic scatter and no
upscatter should converge in one outer iteration if the inner iterations for
each energy group are allowed to achieve full convergence.

Because of the iterative procedures used in discrete ordinates codes,
virtually all such codes employ techniques to accelerate the convergence rate
of both the inner and outer iterations. Earlier we described the Chebyshev,
rebalance, and diffusion synthetic acceleration schemes commonly used. The
great majority of the time, these schemes will perform quite adequately, and
full convergence wil be achieved. In some problems, however, neither Chebyshev
nor rebalance acceleration will work very effectively, and convergence will be
achieved quite slowly. It is inherent with certain problems that neither
method will perform well, and there is little that you, the user, can do to
prevent it. What you must do is be aware of ‘the difficulty of predicting the
final, fully converged result when the iterations are approaching the result
asymptotically. Even though the difference in results between successive outer
iterations will be quite small, the results may still be unacceptably far from
the true asymptotic result.

Occasionally you may encounter a problem in which the acceleration
method itself delays or prevents convergence. Fine mesh rebalance is most
likely to do this. If divergence of the iterative procedure occurs for a
problem using fine mesh rebalance, making the rebalance mesh somewhat coarser
may correct the situation. If divergence still occurs with coarse mesh
rebalance, the trouble probably lies elsewhere. The Chebyshev acceleration
method also, on rare occasions, can prevent convergence, in which case you
should simply turn off the acceleration and try rerunning the calculation.

Most discrete ordinates codes permit the user to specify the desired
convergence precision through user-input convergence criteria. Generally, the
more local the convergence criterion, the more slowly convergence will be
achieved. Thus, pointwise flux convergence from one inner iteration to the

next may be more difficult to achieve than convergence of a global quantity
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such as keff' Since inner iteration convergence criteria are commonly applied
to pointwise quantities, it is customary to limit the number of inner
iterations in any given outer iteration. This practice prevents endless
iterations in the event that convergence is not possible. It also saves
computation time. 1In a problem requiring several outer iterations, time can be
wasted doing many inner iterations during the early outer iterations. As the
outer iterations proceed toward convergence, inner iterations will converge
concurrently. Failure to reach inner iteration convergence can be caused by
the acceleration method, as previously mentioned, or it can be caused by too
tight a convergence criterion. It can also be caused by allowing too small a
limit on the allowable number of inner iterations. The appearance of negative
fluxes or the application of negative flux fixups can sometimes occur in an
oscillating "on-off" pattern between iterations for a given mesh cell. This
oscillatory behavior may prevent the pointwise fluxes from achieving full
convergence. Frequently, such oscillations occur in unimportant mesh cells,
and they have little effect on the overall results. In such cases, failure to
reach full inner-iteration convergence is not important.

Just as with inner iterations, outer-iteration convergence can be
prevented by too tight a convergence criterion. On some computers, a criterion
of 10_8 will fail simply because the result of subtracting two nearly equal
numbers may differ by more than this. 1In selecting convergence criteria for
your problem, you must understand the manner in which the criteria are used and
the effectiveness of the convergence tests in the code. Different codes use
different criteria. What may be a necessary convergence criterion in one code
may be gross overkill in another.

The third not-so-obvious indicator of trouble is the existence of
negative fluxes in the output from a run. Negative fluxes can occur because
the scattering source, as computed by the code, is negative. This can happen
when the scattering processes are highly anisotropic and/or the particle flow
is highly anisotropic. If the spherical harmonics expansion for the scattering
source is truncated at too low an order and the expansion is evaluated at the
discrete directions of the problem at hand, it may be negative. Normally, such
occurrences result in a few negative angular fluxes, but the angle-integrated
scalar flux remains positive. Such situations can usually be tolerated. If,
however, the situation is such that the scalar flux becomes negative, some

remedial action is probably required. Increasing the order of the scattering
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approximation may suffice if higher-order scattering data are available. The
most common cause of negative scattering sources lies with the higher-order
scattering cross-section data. Referring to Eq. (34) in Sec. II, the
scattering expansion for higher-order (anisotropic) terms contains a (2% + 1)
expansion coefficient that multiplies the higher-order cross sections, Zi.
Some computer codes explicitly perform this multiplication; other codes require
that the (2¢ + 1) factor be included in the Zi data. If the latter form of Zi
is used in the former type of code, the result is an erroneous increasing of
the higher-order contributions to the scatter source. This commonly causes the
resulting negative fluxes. It is, therefore, imperative that when performing
calculations with anisotropic scattering, you make certain that the (2% + 1)
expansion factor is being treated correctly.

If negative scattering sources are not the cause of negative fluxes in
your output, the probable cause is mesh spacing that is too large. The common
spatial-differencing schemes employed in discrete ordinates codes are the
diamond differencing and the linear discontinuous schemes described ecarlier.
Both of these schemes can produce negative angular fluxes if the mesh spacing
is too large. Most codes employ a negative flux fixup scheme to eliminate
these negative fluxest Occasionally, however, a multidimensional problem is so
coarsely meshed that even the negative flux fixup will fail, and negative
fluxes will remain. The only recourse you have for eliminating these problems
is to refine the mesh in the regions where the offending negative fluxes occur.

The final indication of trouble in a calculation appears in particle
balance and balance table summary prints in those codes that provide such
output. Particle balance is normally a global measure of the equality between
losses and sources. Particle balance suffers when one or more energy groups
are not fully converged. It also suffers when a low-order angular quadrature
is used in conjunction with high-order anisotropic scatter, in which case the
quadrature may not correctly integrate the spherical harmonic flux moments used
in the scattering source and may, thus, cause an erroneous addition to the
sources in the particle balance equation. Balance tables typically provide
certain space-angle integrated quantities for each encrgy group and for the sum
of the groups. Quantities typically provided are fission source rate,
absorption rate, inscatter, self-scatter, and outscatter rates, leakage rates
from each surface, etc. These tables provide valuable clues to the proper or

improper performance of a calculation. For example, they are a sensitive
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measure of cross-section inconsistencies. If the group sum of the
outscattering rates is not equal to the group sum of the inscattering rates
while particle balance is satisfied, there is either an error in the cross
sections or in the code itself.

In summary, there are many clues and indications of the satisfactory or
unsatisfactory performance of a calculation provided in the output of most
codes. Warning messages, the iteration monitor print, and the convergence
information it contains, flux prints or plots, particle balance and balance
tables are commonly available. While not as glaringly obvious as a fatal
error, they are there nevertheless, and they provide indications of trouble.
Get into the habit of using them.

3. Nonobvious Errors. There are, unfortunately, many nonobvious errors

that occur in running problems. The cause of many of these errors is the code
user. User inexperience, haste, simple carelessness, and honest mistakes often
result in invalid calculations, wasted computer time, and erroneous
conclusions. The wrong problem is often solved, and the error is not
recognized. Mistakenly entering the geometry option flag for (x,y) geometry
instead of the desired (r,z) geometry can easily go unnoticed. Using a fast
reactor multigroup cross-section set for a thermal neutron system can lead to
grossly incorrect conclusions. Failing to check that mesh spacing or
quadrature variations do not significantly affect calculational results can be
dangerous. Simply ignoring or not noticing the indications of trouble
discussed above can have serious consequences. Remember that the code will
attempt to solve the problem you give it. It cannot read your mind to
determine whether input specifications describe the problem desired. The
responsibility for minimizing such errors rests squarely on the user. Be
careful. Check the input carefully; review the output. Use discrete ordinates
codes intelligently. Recognize that a powerful tool is at the user's disposal

but that correct use of this tool is the user's responsibility alone.
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APPENDIX A

CONVERTING SPHERICAL HARMONICS EXPANSION INTO COMPUTATIONAL FORM

In Sec. II, we derived the spherical harmonics expression for the

scattering source as Eq. (30), which we reproduce here.

@ L )
ss(F,E,ﬁ) - de' Z Zi(;,E'*E) z Yzm(u,¢)<b[;(;,E') . (A1)
0 9=0 m=—%

Although this form is general and succinct, it is not computationally con-

venient because the spherical harmonics and the flux moments o? are complex

quantities. To convert Eq. (A1) into a more computationally convenient form,

we expand it as
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We note that

m *
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and thus the m summation in Eq. (A2) is converted to

A
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which is a real quantity. If we define real and imaginary parts of the flux

moments as
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then the above summation may be written as

L
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1

m=
Further, if we write the spherical harmonics in the form

Yz’m(u"b) = wz,m(u)eim‘b )

then the scattering source can be written in the following form:

L
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(A3)
1 2m
o (r,E') = du! do' Q(; E! 5')w (u') sin m¢
I,SL ’ ’ ’ z’m ’
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and the m summation is evaluated only when & > 1. To convert to our final
computational form, we define an index, n, which counts the number of separate

moments appearing in Eq. (A3). We then write the computationally compact form
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0 n=1

where NM is the number of moments.

To define the Zi, Rn’ and 6n terms, we make a one-to-one correspondence
between the terms in Eqs. (A4) and (A3). Clearly, for special geometrical
symmetries, the scattering source can still be reduced to Eq. (Ad) with
different definitions of each of the quantities therein (including the number
of moments NM). Some of these are presented in Table II. Note that we have
also included a 2% + 1 factor explicitly in Eq. (Al4) to be compatible with the
forms that are incorporated in existing transport codes. Note also that the

zeroth flux moment, denoted as QO using the notation of Eq. (A1) and as )

0 1
using the notation of Eq. (A4), is the scalar flux that we normally denote

simply as QO'
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INDEX

Acceleration methods; 53-54, 108, 129-130.
See also Chebyshev acceleration, Diffusion synthetic acceleration,
Rebalance acceleration.

Adjoint Boltzmann equation; 29.
boundary condition, 30;
sources, 29-30.

Angular quadrature. See Quadrature.

Angular redistribution; 16-17, u42-44, 49, 66-67, 87, 168,
ANISN code; 159-160, 164.

ASOP code; 159.

Associated Legendre functions; 23, 28.

Balance. See Particle balance.

Boltzmann transport equation; 6-10.
conservative form, U444, 46, 53-54, 87.

Boundary conditions; 18, 30, 46, 168.
albedo, 20-21;
ecylindrical origin, 19;
grey (see albedo);
periodic, 19;
reflecting, 18, 168, 170;
spherical origin, 19;
vacuum, 18;
white, 20, 168, 170.

Buckling; 147.

Chebyshev acceleration; 108, 171.
inner iterations, 108-111, 116, 129;
outer iterations, 130-132, 142;
stability, 111, 116, 132.

Coarse mesh rebalance. See Rebalance acceleration.

Code Centers; 158.
Argonne (see National Energy Software Center);
National Energy Software Center, 158;
NEA Data Bank, 158;
Radiation Shielding Information Center, 158.
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Computer memory; 153-154.
storage, 153-154;
direct access, 154;
extended core, 153;
random access (see direct access);
sequential, 153.

Computers, CDC 7600; 103, 153.
Class-VI, U;
CRAY-I, 4, 153;
Cyber 205, U;
Cyber 720, 153;
IBM, 152-153.

Convergence. See Iteration.

Deep penetration problems. See Shielding problems.
DIAMANT2 code; 163.

Diamond difference, in angle; 85, 88, 94, 96.
in space (see Spatial discretization methods).

Differential scattering cross section; 8, 21.
expansion in spherical harmonics, 21-22.

Diffusion approximation. See Spherical harmonics method.
Diffusion limit; 54, 55, 94-95, 100.
Diffusion synthetic acceleration; 4, 116-117, 162-163.
inner iterations, 116-129;
outer iterations, 137-1u6;
stability, 120-122, 125-126, 128-129.
Discrete ordinates method; 39-48.
accuracy, 46-UT;
angular coupling coefficients, U43-4i4, 67;
angular quadrature (see Quadrature);
boundary conditions, 46.

Discretization. See Spatial discretization methods, Discrete ordinates
method.

Divergence operator. See Streaming term.
DOT codes; 83, 86, 161-162.

Double precision; 153.

DTF-IV code; 159-160.

DTF69 code; 159-160.
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EFD code; 165.
Eigenvalue problems; 34, 45-46, 105, 107, 120, 129, 132, 134, 136-138, 145-
150, 171.
alpha (a), 147, 150;
g3 34, 79-80, 134-138, 142, 146, 150, 172;

tfme absorption (see alpha);
see also Search.

ENSEMBLE code; 164,

Fine mesh rebalance. See Rebalance acceleration.

Fission fraction; 9, 26, 28, 33-34.
source, 8-9, 26, 28.

Fixed source. See Inhomogeneous source.

FORTRAN; 154,

GTF code; 159.

Hexagonal mesh codes; 163.

IDFX code; 159.

Importance; 29.

Inhomogeneous source; 9, 28-29.

Iteration acceleration methods; 171.
See also Chebyshev acceleration, Diffusion synthetic acceleration,
Rebalance acceleration.

Iteration, convergence; 34, 57-58, 95, 145, 167-168, 170-172.
inner, 55, 57, 108-129, 168;
outer, 34, 58, 129-146;
power, 34, 129, 1363
source, 34, 53, 55-58, 117, 129.

Legendre polynomials; 22.

Linear discontinuous method. See Spatial discretization methods.

Long words; 153.

Memory. See Computer memory.
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Multigroup cross sections; 31-32.
method, 31.

Negative flux fixup; 93-95, 107, 126-127, 129, 164, 172-173.

Negative fluxes; 172-173.

ONEDANT code; 160, 162.
ONETRAN code; 160, 162.

OQuter iterations. See Iterations.

PALLAS codes; 55, 105, 159, 160, 161, 163.

Particle balance; 173-1T74.
tables, 173-174.

PN method. See Spherical harmonics method.

Quadrature, integration conditions; 40, 45, 59-68, 78.
sets, biased, 82-85.
definition, 40, 59;
even moment, 71-73, 78;
fully symmetric, 68-T4, 78;
Gauss-Chebyshev, TU-78;
Gauss-double Legendre, 64-66, T4, 76, T79-80;
Gauss-Legendre, 60-64, T4, 76, 79-80;
starting directions, 85-86, 89-90;
weights, 40, 41, 59, 61-63, 65, T71.

Ray effects; U46-U47, 164.

Rebalance acceleration; 53, 111-116, 132-137, 144-145, 171.
coarse mesh, 111-116, 129, 132-137;
fine mesh (see coarse mesh);
inner iterations, 111-116;
outer iterations, 132-137;
stability, 113, 116, 144-145;,
whole system, 113, 116, 132-134,

Removal cross section; 39.
Scattering angle; 21-22, U5,
laboratory coordinate system, U5,
Scattering function. See Differential scattering cross section.

Scattering ratio; 57, 108, 111, 116.
187




Scattering source; 8.
expansion in spherical harmonics, 21-26, 40, 172-173, App. A. (181-

183).

Search; 146-150, 171.
alpha (a), 147;
buckling, 147;
concentration, 148;
spatial dimension, 147;
time absorption. See alpha.

Shielding problems; 4, 46, 55, 102-105, 107.
Codes, 162, 163, 164.

Short words; 152.

SN method; 59. See also Discrete ordinates method.

SN1D code; 159.
Source-to-group; 56.

Spatial discretization methods; 48-55, 86-90.
common assumptions, 86-87;
desirable attributes, 5i;
diamond difference, 90-95, 100-104, 107, 123, 125-126, 129, 155, 159,
162, 164, 165, 168, 173;
linear discontinuous, 95-101, 102-104, 125, 162, 163, 165, 173;
linear nodal, 101-104;
positivity, 86, 92, 95, 100, 102, 107;
short characteristic, 104-107, 159, 163;
stability, 101, 102;
step difference, 91, 92, 93, 155;
weighted diamond; see Diamond difference.

Spectral radius of convergence; 57, 108, 110-111, 121-122, 125, 131-132,
111-142.

Spherical harmonics method; 35-37.
diffusion approximation, 37-39.

Streaming operator. See Streaming term.
Streaming term; 7-8, 10, 36-37, 39, 41-44y.
in rectangular Cartesian geometry, 7-8, 10-12;

in cylindrical geometry, 12-15, 41-44, 50;
in spherical geometry, 15-16.

TDA code; 164.
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THREETRAN codes; 163-164.
TIMEX code; 165.

Toroidal geometry codes; 163.
TRANZIT code; 165.

Triangular mesh codes; 163.
TRIDENT code; 163.
TRIDENT-CTR code; 163.
TWODANT code; 161, 163.
TWOHEX code; 163.

TWOTRAN code; 86, 161-163.

TWOTRAN-II code; 163.

Upscattering; 33.

Whole system rebalance. See Rebalance acceleration.
XSDRN code; 159, 160.

Yvon's method; 64.
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