
LA--12O2O

DE91008497

I StructureofShocksin Solidsand Liquids:
Six Reprintswithan Introduction

Duane C. Wallace

.

ABOUT THIS REPORT
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research LibraryLos Alamos, NM 87544 Phone: (505)667-4448 E-mail: lwwp@lanl.gov



ABSTRACT

Thismonographconsistsof sixpaperson the Iheoryof shocks
in solidsand iiquids,rcpnntedfromfh~’.icaf Review, together
withan introductionsummarizingthecomplctcshockthr..ry
and its limitations.
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NOTATION

p = massdensity

v= p-l s volumeper unitmass

T= temperature

U = internalenergyperunitmass

S = entropyper unitmass

i,j = Cartfxiancoordinates

‘qj=stresses

E=ij = elasticstrains

t; = plasticstrains

%= effectiveshw stress(non-negative)

v= effectiveplasticstrain(non-negative)

NOTATIONFORPLANEWAVEGEOMETRY

a = normalstress

‘T=shearSUCSS

E = totalcompression

y= plasticstrain



1 INTRODUCTION

In theearly 1980s,six papersconcerningthenat’meof sho.ks in solidsand liquidsappearedinPhysical Re-
view.Thesepapers,constitutinga comprehensiveanalysisof !~ hock structurein densematerials,are ,“cprintedin
thismonograph.The theoreti”dbasisof thisanalysis,and it’ [Imitations,are describedin thisChapter,anda brief
summaryof themainpointsof eachpaperis providedinChaplcr2.

In theclassictextof CourantandFrudrichs,] ir .,wk is treatedas a discontinuitysurface,. crosswhich
physicalpropertieschangediscontinuously.In orderto c1widate thecompleteshockprocess,whichis hiddenwithin
themathematicaldiscontinuityof CourantandFr” ~icns,onehasto beginfroman oppositepointof view:z stack is
a continuousprocess,and in factno discontil ISallowablein thephysicalsolutionfora shoci, In thepresent
work,thetermshockis usedLOmtxmth .oi Jetecontinuousprocessof a compressivewave,fromthe initialstateto
thefinal(Hugoniot)slat!’.

The materialcc’lsidcred Iysta.llinesolidor a liquid,initiallyisotropic,butpassingthroughz se-
quenceof misotropicstatesdwin. m, rick. lle materialis treatedas homogeneous,correspondingto localaverag-
es overmicroscopicheterogeneities, oservedin experimentssuchas VISAR measurementsof shockprofiles.
Plasticflowisdefinedasanytofa l>;slpat.ivevolume-consewingrearrangenwntOftheMornsin a solid,whichdoes
notarkzt the tl!crmoelasticmaterinl -uarneters.Whilemacroscopichetemgcricities,suchas cracks,are notexplicit-
ly acounti for, therearc twow.2> do soby extensionof thepresentshocktheory.The accurateway is to account
forali materialboundanesam?intc ~ces,andreso!tiethe n...-roscopicaliyheterogcnumsflow. The attemativcis to
treattheheterogcleitiesin an aven way,andhenceaccountfortheirpresenceby an appropriatemodificationof the
[herrnoelasticand plasticmaterialF ;Imeters.

Theshocictheoryoftiis m .]graphisbasedon U.eprinciplesofirreversiblethermodynamics,chamctcrized
as follows.FirsLin equilibriumthem, Iynamic,s,materialsare requiredto passthroughstateswhichlic on theequi-
libriumwrface. In irreversibletherm ,ynamics,materialspassthroughnonequilibriumstates,but onlythosestates
whichare close10the equilibriumsurfarc,specifically,those ratesfor whichtheequilibriumpropertiesof tempera-
tureandentropyare stillreasonablywelld$fincd.Toconstructan irreversiblethermodynamictheoryit is necessaryto
definetie variableswhichmeasurethedejw-mrefromequilibrium,to expresstheeffectof thesevariabhxby a mod-
ificationof the equilibriumthermodynamicequations,and to WIitean equationfor the (irreversible)entropygencra-
lion. Theseprinciplesare a[)pkd to pla.nz?rsho ..:;inthereprinl.scollc(’tedhere. Fwtherdiscussioris, coveringmany
smalldetails,can be foundin themonographTherrnoelastic-PlusficFlow in Solirtlr,2and in the 1985ShockConfcr-
ence.3

* R. Courantand K,O. Friedrichs,SupersonicFlow and Shock Waves (Intcrscience,NW York, 1948).
2 D.C. Wallace,Thernroelastic-PlasticFlow in Solids(LA 10119,Los AlarnosNationalLaboratory,Los

Ahrnos, 1985).
3 D c wal]aw, ~i~omphtcrsimulationof Noneq~libriumPrcz.’-:”;ses,”in Shock waves in f%ldeIJSedMUl-

(er.cd. b; Y. M. Gupta(Plenum,Ncw York, 1986),p. 37.

1



In an analysisstxh as this,thequestionarisesas to whetheror not irreversiblethermodynamicsis indeed
vaIid A ttxhn.iqueforansweringthisquestionconsistsof the followingthreesteps.

(a) Assumeirreversiblethermodynamicsisvatid, and use ittoconstruct athemy forthcmmequilibrium

Precessin question.

(%) Foragiven material,evrduatethe theory,andcatculatcthespati and temporalmtcs-of-changewhich
occurin theprocess.

;4 (c) Fromtheappromi,..erelaxationtimesand meanfreepaths,estimatewhethcrornot thematcriulwillitc-
tuallyremaiucloseto equi.~-” 17.. i:{ t!!ecalculatedratesof change.

Forshocksin solids~-~ %quids,steps(a) and (b)arecarriedout in the rvprintscollectedhere. Thc laststep
can be formulatedin termsof theelcmon-phononpictureof condensedmatter,leadingto the followingconclusions.
Relaxationtinmsamongelectronsand phononsare veryshort,anddo not indicatea failureof irrcvcrsiblcthermody-
namics(fora detaileddiscussion,see SectionV of the firstreprint). Whh increasingshockstrength,the firsttxar-
equilibriumconditionsto failare themean-free-pathconditions,namelythat therelativechangein temperaturebe
smallin thedistanceof an electron,or phonon,meanfreepath, ‘I%isfailureresultsfromthemassivedemandforheat
tmnsportin the Icadingedgeof theshock,forstronglyoverdrivenshocksin solidsand liquids. In metals,whereheal
iscarriedmainlyby theelectrons,theirreversiblethermodynamictheoryremainsvalidforshocksup to severalMbar.
Forstrongershocks,nonequilibriumhotclcarons willstreamforwardin the leadingedge;the theoryfor thisshock
processis beyondthesco~ of thepnxent monograph.
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2 SUMMARIESOF THE REPRINTS

IrreversibleThermodynamicsof Flowin Solids

Phys. Rev. B 22, 1477 (1980).

Thepurposeof thispaperis to constructthecompletesetof equationswhichgovernthcrmoclastic-plastic
flowin solids. Thecompletesetof equationscomprisesthreetheoreticaldisciplines,whosephysicalcontentsarc
summarizedas follows.

(1)Contimmmmechanics.This theoryprovidesdifferentialequationsexpressingconservationof mass,of
momentum,andof totaIenergy,throughouta continuousmovingmaterial.The totalenergyconsistsof thcrmoelastic
internalenergy,measuredin center-of-masscoordinates,plusuanslationalkineticenergy.

(2)71ermoelastichy.This theorygivestheequilibriumrelationsamongthethermoelasticstatevimiables,in
the formof equationsfor dU, d~u, and dT, in termsof dEfi and di$. l%: coefficientsin theseequationsare he
heatcapacity,GrWeisenparameters,and stress-straincoefficients.

(3)Thcrmoplasticity.Thereare threequations, axh approximate.

(i) ThePrandtt-Reussflowr~le(q. (19))relatesall componentsof def to the singleincrementd~, hence
eliminatesC; in termsof V. Underthisrule,plasticstrainis volumeconserving.

(ii)Thcconstitutiveequa:ion is supposedtoexpresstheactualflowsurfaceofagivcn material. It iswritten
in q. (20)as an expressionfor %,but is momtransparentwheninvertedto an equationfor thepiasticstrainratetjr:

This tellsus, forexample,that ~ = Oforan elasticprocess,and ~ >0 whenplasticflowis beingdriven.

(iii)The entropyproductionequation(q. (23))assumesplasticworkis entirelydissipated:

TdS = 2Vrdyr.

Thisis thekey to thecompletethcmy,sinceit closesthesystemof quations, and makesthe threedisciplinesmutual-
ly consistent.

The fomalism is validfor largestrains,bothelasticandplastic. Whent!!ecompletesetof equ~ions is spe-
cializedto planewav~geometry,so as to applyto shocks,the onlypan of thePrandtl-Reussflowrule whichentersis
thevolumeconservationof plasticflow:henceno assumptionsare madeabut the flowsurface,thegeometryof
strainhardening,and so on.
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Now Proce.wof WeakShocksin SolidJ

.“’/1}’S.~t?V. B22, !487 (1980).

Fromthe thexmoelastic-plastictheoryof thepreviouspaper,and knowingtheappropriatematerialparame-
ters,namelythe thennoelasticcoefficientsandtheplasticconstitutivedata, it is pmsibleto calculatea deformation
processfor thematerialinquestion.Forexamplc,onccan calculatetheevolvingstructureofashockas itpropagatcs.
On the otherhand,givenexpcrimentatdataon the s!!ockstructure,and knowingthe thennoelasf.iccocfllcients,one
can use the theimoelastic-plastictheoryto extracttheplasticconstitutivedata. ‘I%isis the pointof thepresentpaper.

The weak-shockpro!iledataof JohnsonandBarker? for6061-T6Al,areanalyzed.Thc profile..areapprox-
imatelyfittedwitha uniformthree-wavestructure,consistingof (1)theelasticprecursor,a steadywavetravelingat a
constantvelocity:(2) thepi~tic precursor,a nonsteadyregionconnectingtwosteadywaves;and (3)theplasticwave,
a steadywavemovingat velocityD, where D dependson theshockstrength. The fittingproceduresews twopur-
poses: itallowsus to averagesomesmallscatterhi theda@ and it makestheanatysissimpleenoughso that thebasic
concep~are fullyIcvcded.

FirsLthequations of motion(.quationsforconservationof massand momentum)arc integratedto give 6
and &througheachprofile. Second,the thermoplasticequationsare integratedto give 6 and ~ as powerseriesin the
strains&and V, to secondorder,andtheseequationsarc solvedfor z and yt througheachprofile. Third,makingusc
of the VISARtimedata, ~ isdculated througheachprofile. Andfinally,againfrumthcrmoelasticity,Tand S are
calculatedthrougheachprofile. It shouldbe notedthattheexpansionsdevelopedhere,beinglimitedto secondorder
in suains,shouldin generalbe accuratefor stminsto around0.1. Toapplythe shocktlmry at Iargcrstrains,onc
mexlsdata for theelasticconstantsat the correspondinglargestrains.

The analysisyieldsplasticconstitutivedatafor V in the range0-0.05, for $ in the range 1($ -107 s-l, for
Tin the range295- 380K,and forpres.suresup to 90 kbar. As in any analysisof experimcnraldata, the resultsarc
subjectto unce.rtaintks.However,the importantpointis that the resultsrevealthegenuine-plasticbehaviorof the
materialstudied,antiarc notconstrainedby any apriorimodelingof thisbehavior.

Equationof Statefrom WeakShocksin Solids

Phys. Rev. B22, 1495 (1980).

The purposeof thispaperis to defineandstudythe locusof quilibium thermodynamicstatesreachedbe-
hindweakshocksin an initiallyisotropicsolid. Thesestatesarc elasticallyanisotropic,and their locusiscallcd the
anisofropicHugoniot.

Shockexperimcnrshavebeenextensivelyusedto determineequationsof stateof solids. The experiments
measureshockvelocityand pari.icleveloci[y,and thedataare analyzedin termsof liquidHugoniottheory. Thisthe-
ory is basedon twoassumptions:theshockis a singlesteadywave,and thematerialbehindtheshockis in a stateof
isotropicpressure. Withth~ assumptions,theRankine-Hugoniotjump conditionshold,relatingchangesin E, CT,

and U acrosstheshock,and thestress-strainvariableson the Hugoniotare memlypressureand volume.

For a weakshockin a solid,bothof theaboveassumptionsfail seriously.Since‘&eweakshockis not a
steadywave,thechangesin e, cr,rmdU have*mbe foundby integratingtheconservationequationsalongthepathof
theshockproccss. Further,statesbehindtheshockarecharacterizedby twostressvariables,a and T, andby rwo
strainvariables,&and yr. Sincethesestatesarcequilibriumthermoplasticstates,it is appropriateto replace&and v
by an equivalentpairof pureiyelasticstrains(qs. (5)and (6)).

4J~. John~n ad L.M. BticT, J, Appl.fry.%*, 4321(1969).
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Withtheresultsof theweakshockanalysisfor6061-T6Al, theanisotmpicHugoniotis constructedfor c in
therange0- 10?kbar. FromthisI-iugoniot,by integmtingouttheelasticanisotropy,andintegratingout theshocken-
tropy,theprincipaladiabatis constructed.Thoughtheseresultsare subjectto uncertainties,as in any analysisofex-
perimentalda~ thesolidthwxyis in principlemoreamuratcthan is liquidHugoniottheory.

A significantresultis thatentropyon theHugoniot,in thesmallstrainregion,isof secondor&r in sbainsfor
a solid,but is thirdorderin thestrainfora liquid. ‘he reasonis thata solidhasnonzeroyieldstrengthat zem strain-
ratc,whereasa liquiddoesnot.

IrreversibleThermodynamicsof Overdh”venShocksin Solidk

Phys. Rev. 1124,5597 (1981).

‘his paperconstitutesa theoreticalstudyof thestructureofovcrdrivenshocksin solids. lle shockisas-
sumedto be a steadywave,and thesolidis consideredcapableof transpofi, heat,andof undergoingdissipative
plasticflow. Hencetheappropriatetheoryis thermoplastic-plasticflowin solids,withheattransportincluded. This
workis the logicalextension,tc solids,of Rayleigh’sstudyof thestructureof shocksin gases.s

l%e steady-waveconditionmakesit possibleto integratetheconservationequations,and thusto express&,
cr.and U throughtheshock. The cr(c) relationfora shockiscalledtheRayleighline,and fora stmdy waveit is a
straightline:

o = OaD2E

wherepa is the initialdensir]andD is the shockvelocity.The followingtheoremis proved: For an overdri”ven

shock in a solid, no solution i.rposs”blewi!hoti heat transport. The physicalreasonfor thistheoremis, for an over-
drive shockin the small-e tegion,theRayleighlineliesabovethe valueof u correspondingto a uniaxialelastic
compression,so heatmustbe tmnspomd to theshockfrontto increaseu there.

‘he coupledsetof equationsfor thermoplastic-plasticand heattransportvariablesis analyzedon theRay-
Ieighline,andseveraltheoremsare pxmdregarding thesolution.Upperand Iowerboundsforthesc variableson the
Rayleighlineare established,whenheat transportis governedby ordinaryconduction.‘he entireanalysisrestson
qualitativepropertiesof thermoplasticcoefficientsof solidmaterials,and nothingis assumedabouttheplasticconst.i-
mtivedata. A finaltheoremis proved: For an overh.ven shock in a solid with heat conductwn, no solution Lrpossi-

ble withoufpkmic dissipation. Thephysicalreasonfor thisthcommis, theheatwhichmustbc transportedto the
shockfront,accordingto the tirst theorem,has to be generatedby plasticdissipationin the laterpartof theshock,

Natureof thePr6cessofOver&ivenShocksin Metals

Phys. Rev. B24, 5607 (1981).

Thepurposeof thispaperis to estimatetheactualstructureof overdrivenshocksin metals,for SliOCkSup to
meltingon theHugoniot.

If sufficientmaterialsdataam known,it ispossibleto calculatetheshockstructurefora solid,by numcncal-
Iy integratingthe thcrmoelastic-plasticflowequations.Therequireddataare the thermoplasticcoefficients,the plas-
ticconstimtivedata,andforoverdrivenshocks,thethermalconductivity.SinceplasticConstitutivedabare unknown
forthehigh plasticstrainratesinvolvedin shocks,a differentapproachhasto bctaken. In thispaper,withthehelpof

s~rd Rayleigh,Pfol-..Roy.Soc.London,Ser.m, Wlw”



thetheoreticalanalysisof theprecedingpaper,an approximatesolutionis construct, independentof theplasticcon-
stitutivebehavior.

Anextensivestudyof thethcmmclasticcoefficients,in theregionof theRayleighlineforshocksup to a few
MM, is summarized.Thesecoefticientsaretheheatcapacity,includinglatticeandelectroniccontributions,theGru-
neisenparameter,and thebulkandshearmoduli. Numericalcalculationsof temperature,entropy,shearstress,and
plasticstrain,as functionsof compression,are shownforshocksup to aroundmeltingfor2024Al, and for Pt. Ilc
timedependenceof theprwess is controlledby dissipation,and two dissipationmechanismsare goingon simulta-
neously,namelyp!asticflowand heatconduction,Becausethewholepmccssis a steadywave,bothdissipation
mechanismshave[ooperateat thesamerate. Hencean estimateof thethcrrnalconductivity,whichis notdifficultfor
metals,givesan estimateof thepreviouslyinaccessibleplasticstrainratcwithintie shock.

Stronglyoverdrive shocksin metalshavethe followingcharacteristics:the shockentropyis generatedby
heatconductionin the leadingpartof theshock,theheatisgeneratedbyplastictlowin the lastpartof theshock,and
theshockrise timeis of order 10-12s.

Theoryof the ShockProcessin DenseFluids

Phys. Rev. A25, 3290 (1982).

In hispioneeringstudyof shocksin gases,Rayleigh5establishedtwo importantconclusions:(a)Whenthe
gashas heatconductionbutno viscosity,a continuoussteadywaveis possibleonly forweakshocks,and (b)When
thegas hasviscositybutno htnt conduction,a continuoussteadywaveis alwayspossible.

‘Ile presentpapcrextenc!sRaylcigh”sanalysisto liquids(densefluids). Irreversiblethermodynamicsis as-.
sumedvalid,and the liquidis characterizedby heatconduction,andby viscociasticresponse, Suchresponseis vis-
cousat lowstrainrates,and elasticat highstminratcs.The followingthreeresultsare establishedfor liquids. ,.,‘

(l)~erc is a maximumshockstrength,theinviscid1imiLforwhicha continuouss~dy sohltioncm exist.

with heatconductionbut withoutviscosity.Thisis Rayleigh’sfmt result,“&dfor liquidsthe inviscidlimitcGrrC-

spondsto veryweakshocks. .,
(2)Forshocksat theovcrdrivcnthresholdandabove,nocontinuoussteadysolutkmisPm4ble withoutboth,,,

heatconductionand viscosity.The physicalreasonis thatheat’mustbe transportedto theshockfront,to incre.asccr
there,and b5isheatmustbcgeneratcdby viscousflowbehindtheshockfront. ,

(3)Forshocksnearthc viscousfluid1imitandabov@:theliquidiespon’~atthcledingqigeofthe shcckis
elastic. The physicalreasonis *Aatth~:&inratc i,ncm.ascs as shockstrength~cr-, and at somestxainratctic liq-
uid rcspons?ceasesto be viscous,and b&omeseldstic. .: ~::”

,,

:, .!.“ \
The threethresholdsarc &Iculaicd’forwater,iwdformemry. ~~jt• .’
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Irreversiblethermodynamicsof flow in solids

Duane C. Wallace
&atAbmozScientt~cLdomtqy, LasAlama.r,NewMexico8iM

(lhxived 17Apii 197Q)

Dynamicdcfonmationof soiidmateriaisis describedin tenmof nomsnifomrmateriximotionandsimultaneous
therrnoelasticstrainandpidc flow.Fordcfomutionsof arbitratyformandmagnitudein an initiallyisotropic
solid,an approximateexpressionfor the entropyproductionis given,and the interrelationscmrongthe
thermodynamicv.xriableaofstmasea,eiasticandpiasticsuairmandtempcrotureandentropyamderived.Thetheory
is specializedto piane-wavegeometry,appropriatefordescribinga weakplanarshock,andiscomparedwiththe
relaxingsoiidmodelwhichh previouslybeersusedtoantdyzcplaneshocksinsolids.A quafitativcexaminationof
themcchaniaofelasticstrainandpiasticflowindicatmthata themrodynamicdescriptionisaccurateformanyfax{
defornrationpmcexseainsoiids.

1. INTRCIDUCflON

The dynamic flow processes of solids have come
under careful study in recent years with the devel-
opment and use of high-speed, high-stress diag-
nostic capabilities [ for a recent review see Ref.
l(a)]. The resulting data have in turn provided
the main basis ?or new developments iil both mic-
roscopic and macroscopic theories for the equa-
tion-of-state, trrmsport, and flow properties of
solids at high stresses. I)ielocation theory for ex-
ample has been extensively used in modeling the
flow properties of crystalline and ~lycrystalline
materials. However. it is first of all necessary to
obtain a clear macroscopic characterization of
material flow properties exhibited in the experi-
mental data. This necessitates af. extended contin-
uum mechanic flow formalism for solids, whose
genenl formulation and thermodynamic validity is
studied in this paper.

The purpose of this paper is to present a phys-
ical description of fast deformation processes in
solids. The description is mechanic and thermo-
dynamic; it is embodied in a coupled set of equa-
tione which governs the motion of the matertal and
the simultaneous thermoelaetic and flow processes.
Before going into the fOrII!dl theory, some discus-
sion of the nature of these proces~?s is useful.

In a thermoplastic process, the material passes
thrnugh a sequence of equilibrium states, i.e.,
states characterized by zero entropy production.
and the process is reversible. The variables are
the an~sotropic stresses and elastic strains, the
energy, temperature, entropy, and so on; these
variables are related in differential form by the
standard equations of thermoelasticity.[fbJ12 The
question arises: What are the limitations on the
space and time rates at which tqrstem variabies
may change and still be treated by reversible ther-
modynamics? An answer in the spirit of statistical
mechanics is that in space the system variables

22—

must change by a small amount over a region large
enough to contain many atoms, and in time the
variables must change slowly in comparison with
the characteristic rate (or rates) at which the sys..
tern approaches equilibrium. Such restrictions do
not rule out some rather fast thermoplastic pro-
cesees; in transmitting an adiabatic sound disturb-
ance with wavelength of oroer 10-’ cm .md period
of order 10-0 s, a solid can be described as a large
number of material elements, each passing through
a sequence of near-equilibrium states under the in-
fluence of slowly varying stresses imposed by nei-
ghboring material elements.

For the second type of procese, a general and for
the moment not complete definition is as follows:
Flow Is any dissipative rearrangement of the atoms
within a material. When thinking of solids, we us-
ually call this ~lastic flow, Such a process is by
definition irreversible. It cat] still be described in
thermodynamic te.-ms, however, If the rate-of-
change Iimitationa mentioned above are satisfied.
Then the material passes through a sequence of
states which are close to thermodynamic equilib-
rium states and, hence, the state of the material
is always described to a sufficient approximation
by thermodynamic variables. To complete the de-
scrtptio.. of the process, it is required to devise
an explicit expression for the entropy production.
These two requirements are at the base of the the-
ory of irreversible thermodynamics.3$4 For ex-
ample, imagine a polycrystalline material with a
shear stress r applied and slowly increased from
zero. At first the material deforms elastically,
and when r reaches the appropriah! static yield
value the fiow, as measured by a plastic shear
strain $, begtns. Ths flow is irreversible and en-
trupy production is positive. A phenomenological
relation’ of the form 7 a @does not hold &cause r
reaches a finite value while $ is still zero. This
essentiai nonlinearitycannotbe treated by standard
irreversible thermodynamics; nevertheless there

1477 @i980TheAmericanPhymxlsociety
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1472 DUANE C. WALLACE 22—

is a driving force and there is a reciprocal flow,
and it is possible in principle to relate these quan-
tities to the entropy production. Further, such a
relation can be determined, or verified, by experi-
ment.

It is interesting to compare time-rate effects for
the two types of process discussed. A thermoplas-
tic process is rate independent (up to some limit),
which means for example the stresses change “in-
stantly” in response to changes in the eiastic
strains and She entropy. Flow, however, is in-
trinsically rate dependent. In the plaetic shear ex-
periment mentioned ahove, there is a functional
relatiun, generally called the plastic constitutive
~elation, among the variables T, @, ad ~, where

ij is the time cierivatwe of @at a fixed material
point. Formally it is j(r, U,j) =O, which means the
driving stress 7 depends explicitly on how fast the
flow is being driven. We note in passing that the
indicated dependence on $ is to account for strain
hardening, and that the plastic constitutive relation
de-pendsalso on the thermoplastic state variables.

Now with regard to time-rate effects, a point of
some significance is as follows. A thermoplastic
process can be very fast and still be, to a good ap-
proximation, reversible. On the other hand, again
w.th reference to the plastic shear experiment, it
w possibl~ to control r so that $ is arbitrarily
small, but the flow is still irreversible. Entropy
production accompanies the process no matter how
slowly it proceeds. Hence the thermodynamic re-
versibility of a process is not determined by its
rate.

In the following section the general theory of dy-
namic deformation processes in an i~itially iso-
tropic solid is presented. The theory is special-
ized in Sec. III to plane-wave geometry, appropri-
ate for describing a planar shock, and the theory
is compared in Sec. IV with the relaxing solid mod-
el. In Sec. V we discuss in qualitative terms the
question of local thermodynamic equilibrium. In
applying the present theory to shocks in solids, we
limit considemtion to weak shocks, i.e., ones in
which the shock velocity is not greater than the
elastic precursor velocity, which means shock
Stre< ;es Up to one hundred kbar or SO.

11.GENERALTHEORY

A. EqL~tionsofmotion

We consider a spatially continuous isotropic sol-
id. The definition of isotropic solid is given in .Sec.
IV, but it should be noted in advance that such a
material can support anisotropic elastic strain and
in such a confi~~ration the material is physically
anisotropic. A any time f the location of a given
infini tesim lement of the material is ~(t)

in labomtory coordinates; at some initial (refer-
ence) time t, it is ~(t~)=~, soihat ~ is the Lagran-
gian coordinate of the mass element. The field
variable which denotes tJhewhole material configu-
ration is ~ti, t) for all X, t. The velocity field
~~, f) is the velocity in laboratory coordinates of
each mass element:

(1)

We also use ~ as an independent variable denoting
location in laboratory coordinates; for example,
div~ in the laboratory system is (8vl/ax, )t, where
i =1,2, 3 are Cartesian indices and repeated indices
are summed.

The material density is p, the stress tensor
components are 711, and both are functions of ~, t,
or equivalently of ~, t.The equations O(motion are
conveniently expressed in mixed Lagrangian-
Eulei”ian form as follows’:

Conservation of mass:

Conservation of linefw momentum:

P(-)z=(+#.
Cor2servation of angular momenturq:

(2)

(3)

(4)

There is also an equatitinfor conservation ofenergy.
We can write the total energy of each mass element
as a sum of two parts, the translational kinetic en-
ergy and the center-of-mass energy. It is easy to
show that the translational kinetic energy is equal
to the translational work done by the stresses, be-
cause of Newton’s law which is Eq. (3); the energy
balance for each mass element is then reduced to
center-of-mass contributions, which are discussed
below.

B. Thcrmoelasticityl@)~

Consider iin incremental process, in which the
material goes from the current state to the next
stats in an incremental time d. The incremental
displacement (motion) of each mass element is
given by the field variable C@ t);
mental displacement gradients are

()fill,,= *,,

related to the velocity gradients by

(h,, =V,,dt ,

where v,, = (8v,/8x, ),. The du,, are

the incre-

[5a)

(5b)

precisely the

—
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same as the displacement gradients u,, of Refs.
l(b) and 2, when those tJi, are limited to infinitesi-
mal magnitude and are alwa}.s measured from the
(continually changing) current configuration, in-
stead of from a fixed Lagrangian configuration. In
the incremental process, the work done by stres-
ses in a local center-of-mass system is dlV
=~-l~i, ~t~ijper unit mass of material, and by con-
servation of energy this equals the increase dfJ of
thermodynamic internal energy per unit mass (we
are neglecting heat transport):

dL”=d W’=/2-%,, dud,. (6)

This equation, as with all thermodynamic equa-
tions, is Lagrangia:l in the sense that it holds for a
given mass element, no matter how the mass ele-
ment moves; tience (6) is equivalent to

i“=p-l~i, Ui, =p -’T,, V,, ,

where the dot signifies a Lagrangian time deriva-
tive: ~ =(aL”/at~.

The strains may be expressed as symmetric plus
antisymmetric parts, where the symmetric part

dfij = ! (da, j +du,, ) (7)

measures the pure strain and the antisymmetric
part

d~,, = : (du,, - dU,i) (8)

measures the pure (rigid) rotation. Further, the
pure strain is presumed to result from a combina-
tion of elastic strain dcf,, and some ‘“flow” or
“plastir”’ strain d~fj which is due to an internal re-
arrangement of the atoms of the material. ;~s long
as the process is infinitesimal, the two strain con-
tributions are additive:

dci, =dc:j +dc;, . (9)

The meaning of the dc~, will be made precise a lit-
tle later. We first set out the thermodynamic the-
ory which is coupled to the elastic strains dcfj,
ignoring the explicit presence of the plastic
strains.

In the theory of thermoelasticity, a complete set
Gf\ariables which specify the thermodynamic state
of a material (the state variables) are the elastic
configuration and the entropy. In differential form
these variables are de:, and &, where S is the en-
tropy per unit mass. Then the differential of any
thermodynamic function, e.g., U, can be written as

(lOa)

Repeated indices are summed; in each partial de-
rivative with respect to a given variable, all other
independent variables are held fixed. Thermoplas-
tic definitions of the stresses and the temperature

at constant S, and

(lOb)

(1OC)

at constant c:). Hence Eq. (lOa) is

dU =P-17,, k;,+ TdS . (11)

In a similar way the variations dr,, and dT may
calculated and expressed as

&,, =B,j,, de:, + ~,- dw,, - Py,, TdS ,

dT =-Ty,, dt:, + ( T/C ~kfs .

be

12j

13)

where C, is the heat capacity at constant elastic
configuration, B,,h, are the adiabatic stress-strain
coefficients, which can be measured in stress-
stra% experiments or in adiabatic sound-wave ex-
periments, and y,, are the anisotropic Gruneisen
parameters defined b~

PYI] =- ?f-1 >.
as

(14a)

Derivatives at constant elastic configuration equi-
valent to (14a) are

(14b)

The rotation coefficient (a7i,/awa, ) in (12) is given
in Ref. l(b); this term in &i, accounts for simul-
taneous incremental rigid rotation of a mass ele-
ment and the stress tensor.

The thermoplastic equations (11)-(13) are not all
independent. In fact, they form a hierarchy of cou-
pled equations: The coefficients in dU, namely, ~tj
and T, are first derivatives of U with respect to
independent variables; the coefficients in d7,, and
dT, namely, BIIU, Yjj, and Co, are second del’iva-
tives of U wtth respect to independent variables;
and so on. In order to break the hierarchy at this
point, we “regard the second-order coefficients as
known functions of the state variables.

A comment is in order concerning the convenient
choice of thermodynamic state variables. In a the-
ory which includes both elastic and plastic strains,
the elastic configuration is a complicated nonlinear
integral function of the total and the plastic-strain
increments, dctj and dc~j. While it is easy to use
d<, and dll for differential state variables, as
above, if integrated state variables are desired, it
is most convenient to use the equivalent complete
set 7,, and s (equivalent because stresses are
elastically supported). The stresses are easily
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calculated by integratingdlij, and with Tfjand S sPec -
ified, all other thermodynamic functions, including
the elastic configuration, are uniquely determined.
To complete the thermodynamics, we need an
equation for dS; this is obtained below.

C. Thermoptmticity

The mechanical theory of plastic flow is well de-
scribed in textbooks. a-o It is based on two condi-

tions on the plastic-strain increments; the first is
the experimental observation that plastic strain is
volume conserving. To express this, note that Eq.
(2) for conservation of mass is precisely equivalent
to

cflnt’ =duji =dc{i, (15)

where V =p- 1 is the volume per unit mass. d lnV is
then a sum of elastic and plastic contribut!cms, and
the plastic contribution is set to zero:

dcf, = 0. (16)

The second condition is the Prandtl-Reuss flow
rule,” which requires some definitions. The aver-
age compressive stress is ~, and the stress devi-
ators are s,,:

P =-+ 7,, *

s,, =T,j +1%,,.

An effective shear stress T, w ‘ich is a measure of
the stress which drives the plastic flow, is defined
by

72=i s,, S,j , 7 a 0. (18)

The Prandtl-Reuss flow rule then allows the sev-
eral variables dcf, to be expressed in terms of a
single measure do of the plastic strain:

de;, =: (S,,/T )d~ . (19)

Since the definitions (17) imply s,, =0, then (1’7)
and (19) together contain (16). Equation (19) repre-
sents the intuitively reasonable idea that the plas-
tic-strain increments ought to be isotropicallv pro-
potiional to the stress deviators; it has some ex-
perimental verification for cases of complex
flow.’” Finally, the effective plastic-strain in-
crement d$ is determined by the von Mises cri-
terion10 in terms of a generalized flow function K:

(20)

This equation has the following meaning: If 7 c K,
the process is elastic and d$ =O; if 7 is on the flow
surface, d$ >0 and is determined by the condition
7 =K. $ =jd~ is the integrated plastic strain, and
the dependence of K on $ and &represent, re-
spectively, strain-hardening and strain-rate ef-
fects. K also depends on the thermoplastic state

variables rtj and S, as indicated.
The thermodynamic theory of plastic flow re-

quires, in addition to the above equations, a ther-
modynamic descrlptton of the energy associated
with the process. This energy can be identified as
part of the total center-of-mass enerW. In Eq. (6)
for the conservation of total energy, because Tlj
=7J~, tie antisYmmetric parts of du,, sum to zero,
giving

dW =P-lT,, A,)= d W*+dll’s , (21)

where dW’ and dWp are work increments done
against elastic and plastic strains, respectively:

dW” =P-’T,, dcf, , (22a)

dw~=p”17dj de;, =2Vrd& . (22b)

The last form in (22b) follows by using (17)-(19).
In a classic experiment on metals, Farren and
Taylo#l observed that 87-95%. of the plastic work
was dissipated; ‘weexpect this same qualitative be-
havior for deformations involving dislocation mo-
tion, twinning, or viscous rearrangement of atoms
in amorphous solids. Because it is a good approx-
imation, and because it simplifies the theory con-
ceptually, we assume that the plastic work d Wp is
entirely dissipated:

TdS =2 Vrd@. (23)

The plastic flow is now completely defined. It fol-
lows the flew rule (19) and is totally dissipative. It
inc!udes any process which approximates these
conditions. Further, the combinea thermoplastic
and thermoplastic theory is internally consistent,
since the energy partition given by (21)-(23) makes
the thermoe!astic equation (11) for dL’ identical
with (6).

As a matter of fact, in a real flow process in a
real solid, a small part of the plastic work may go
into creating a change in the defect structure of the
material; for example, energy may be stored in
the elastic strain field of an increased number of
dislocations. Such stored energy is presumably
responsible for work hardening (strain hardening).
This energy is not included in ordinary thermo-
plastic theory, hence an explicit accounting of it
will require a redefinition of the thermoplastic co-
efficients, Suppose, for t,xample, that 9M oi d W9
is dissipated in a give’ process, while the rest is
stored; the entropy-production and energy-conser-
vation equations then read

T&= o.9dW# ,

dfJ =p-17,,(dcf, + o.ldc;,) + TdS .

Comparison with (11) shows that the first-order coef-
ficients Ttiand T are no longer given bythe thermo-
plastic definitions (1Ob)and (1OC).The effect carries
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on to Eqs. (12) and (13), changing the definitions of
the secoild-order coefficients B,,.,, >,,, Cn, and so
on. Thus in making the total dissipation approxi-
mation (23), we obtain a significant simplification
of the theory, in exchange for introducing small
errors into our thermodynamic computations. On
the other hand, the major effect of hardening M
properly contained in the theory, through the de-
pendence of the fiow function K on the total plastic
strain W. It may also be noted that when a solid
melts, the defect structure anneals, and the ene~y
stored there is recovered as equivalent heat,

Ill. PLANE-WAVEGEOMETRY

The theory is much simplified when it is special-
ized to the geometry appropriate for describing a
plane compressive wave, such as a weak shock.
This is an example of “principal axis fiow”: The
principal axes coincide at ail ~, t with a single in-
variant orthogonal (not necessarily Cartesian) co-
ordinate system, Since the stress tensor is diag-
onal in this coordinate system, then for an iso-
tropic solid both the elastic and plastic strains are
diagonal; it is then convenient to express strains
in terms of the transformation matrix a which
transforms the initial configuration ~ to the cur-
rent configuration I at any time t (Refs. 1(b , 2):

().%
all ax, ,”

(24)

Eecause all strain measures are diagonal, we can
use 1A,.Voigt indices /.3=1, 2, 3 to replace ij
=11,22,33, respectively, and write

(25)

We now have drq =dc~, and the relation

dcfi=dlna,. (26)

The logarithm appears in (26) because the aa are
measured from a fixed (initial) configuration,
while the Cpare measured from a continually vary-
ing (current) configuration. Again because the
strain measures are diagonai, the total transform-
ation a is a matrix product of the elastic trans-

FIG. 1. Two-step transformation of a mass clement
in plane-wavegeometry.

formation ce’at~dthe plastic transformation uP,
as the following calculation shows:

Inu~=b,=JA~+J~c:
=lnoj +lna~,

or in matrix form

(27)

110, 0 0

u= o a, I-1

10 0 (I:J 10 0 C?:J

Ic plane-wave geotnetry, the wave propagates
aiong Cartesian coordinate 1, and coordinates 2, 3
are equivalent transverse directions. Hence, az
=a, and so on. The transformation of a mass t le-
ment is shown in Fig. 1, from the initial configura-
tion of density p,, to an intermediate configuration
of density o,. to the current configuration of dens-
ity p. No nhysical meaning is to be attached to the
intermediate configuration: it is not reached in the
physical process unless it coincides with the cur-
rent configuration. Th mass element has thick-
ness d in direction 1 and width w in the two t rans-
verse directions. The initial dimensions da,Mooare
presumed known, so there are four independent
strain variables in the transformation, namely
di, W,, d, W . In terms of these we can write

CIl=d/da, of= di/da , a:= ri/di ,
(29)

a2= w/u,~ , ~r = w ,/we, a:= W/W, ,

Piane-wave geometry requires the iwmdary cimdi-
tion that the total transverse strain O(each mass
element is zero:

(30)

The volume conservation of plastic fl~..w,Eq. (16),
can be written

p =p, . (31)

With these cor,ditions we are left oniy two indepen-
dent strain variables, and for these we introduce
the conventional plane-wave variabies c, J,, both
positive in compression and defined by

6 = 1- Pa/D= ] - V/V. , (32)

ij =-lna~. (33)

The flow strain $ is the same as the natural or
logarithmic plastic strain in simple tension or
compression experiments. The transformation co-
efficients now become
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u, =(1- ‘f), q =(1 - ck’ , a: =c’-@;
(34)

a2 =1, =:= ~-*I2, ~: =#12 .

The stress system is also simple in plane-wave
geometry. The conventional variables are the nor-
mal stress u and the shear stress 7, both positive
in compression and defined by

u = -71,

(35)
T=- :(7, - 72) .

These stresses are shown in Fig. 2. Note that the
above definitions are completely consistent with the
general thermoplastic theory of Sec. II: We have
incorporated the volurne-conserving condition (16),
the shear stress 7 of (35) satisfies the definition
(18), and the plastic strains d~~=dln~ satisfy the
flow rule (19). In fact the Prandtl-Reuss rule is
superfluous in the case of plane-wave geometry be-
cause here we have only OIJeindependent plastic-
strain variable.

Under the stress system (35), an originally iso-
tropic solid has tetragonal symmetry, and the
stress- strain coefficients Bop fVoigt indices) ha)”e
the symmetry

1

Bll Blz Bu

B21 Bzz B23 o 1

B,, B,, B=

Bti O 0 -

0 0 I?a#J o

(36)

The Gruneisen parameters, Eqs. (14!, have the
symme:rv Y{j❑ y~b,,. and the thermoplastic equa-
tions for stresses and temperature reduce to

du =py, TdS - B,,dln(l - c) - ( B,, - B,,)d@, (3’7)

fi = $P(Y, - Yt)TdS- ~(B,, - l?zl)d In(l - c)

dT =~,:~d~- j“y,dln(l - t)- T(Y1- yz)d$. (39)

The equations of motion (2) and (3) for conserva-
tion of mass and linear momentum, respectively,

rz v-2 r

0-0rl u

FIG. 2. Stresses in plane-wavegeometry.

are

(3==-’(+3,$
P($), =-(:),$

(40)

(41)

where x is the laboratory coordinate and v the ma-
terial velocity, both in the propagation direction.
The Eqs, (37)-(41), together with the entropy pro-
duction equation (23) and the flow criterion (20),
are sufficient to calculate any dvnamic flow pro-
cess in plane-wave geometry, provided the coef-
ficients Cn,y~,Bm8and the flow function
K(o, ~, a, r, S) are known. The conservation of en-
ergy equation, which is uncoupled from the above
system unless [r is taken as a state variable, re-
duces to

dU =- odV =Ok’n df . (I?)

IV. COMPARISONWITHRELAXINGSGLIDMOI

A. Expansionsforsmallaniswropy

In order to make a comparison with other rtmd-
els, we need to approximate the thermoplastic co-
efficients in the present theory. A systematic ap-
proximation can be based on the condition that the
stress system is always c!e~e to isotropic, or
equivalently that the anisotropic part of the elastic
strain is small, We first construct a working def-
inition of isotropic solid.

Consider an isotropic solid under arbitrary iso-
tropic pressure P; take V,S for state variables, so
P, T, U, and so on are functions of V, S. Through-
out this thermodynamic space, the solid is phys-
ically isotropic. Nowfrom any state, say state 1,
in the isotropic thermodynamic space, change the
stress system to an anisotropic T,j at constant .S;
this brings the solid to a state of anisotropic elas-
tic strains q:,, where 0:, = ~(af{s?fj- 6,, ) and all
strains are measured from state 1. The depen-
dence of any thermodynamic function on the strain
matrix # can be expressed in terms of the three
rotation invariants of V*, which are

11=nff ,

(43)

1, =detl]c,

where cofq:, stands for the cofactor of qfj. The
above observations constitute a definition of iso-
tropic solid. A strain expansion of the internal en-
ergy is given in Ref. l(b), and this serves to define
the second-order adiabatic Lam@coefficients x, V,
and the third-order adiabatic Murnaghan coeffici-
ents <, (, v:
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pl L“(V. q:,, s) =pi [“( v. o, .s)- PI, + [ $ (A+2/1)1: - 2/.lf2 ]

+ [1 (c +2$)1; - 2:1,/2 + VI, ] + ... ,

(44)

where p, is the density at state 1, and the coeffici-
ents ( of the strain functions) are all evaluated at
state 1. The adiabatic bulk and shear moduli, B
and G, respectively, at state 1 arel(~’

B = -l’(aP/a b’j =.4 + ; v + ~P . (45)

G =B,, = t (B,, - B,,)= u - P . (46)

For applicatbn to the present theory of dynamic
flow processes. it is convenient to restrict expan-
sions such as (44) to the condition of fixed V; !hen
t’, S are the same in the elastically anisotropic
state (the current state), as in state 1 whezw all
coefficients are evaluate,:. Hence V,S evaiuated in
the current state serve as state variables for the
coefficients. For the case of plane-wave geome-
try, we have expanded the second- ~rder thermo-
plastic coefficients at constant }“,S, and expressed
the results in powers of r/G, which should always
be small. Results for the stress-strain coeffici-
ents are

$(B,, - B,z ) =G - (A+44 + f + ~ u -+ P)(T/G) + 000 ,

\ ( Z,, - B,,)= ~ , (47)

; ( B,, + ~Bzz + ~B23- B,z - &I)

=G - (# + * u - ; P)i7/G) + “““ ,

where + . . . means terms of relative order 7‘/Gz
and higher. For the remaining coefficients, with
terms of order r/G represented by O(r/G),

cm=c“ [ 1 + o(r/G )],
YI - y* =o(T/G ), (48)

}, = }[ 1 + o(T/G)] ,

where C,. is the heat capacity at constant volume,
and Y is the ordinary Gruneisen parameter,

(49)

We now gather up the thermoplastic and thermo-
plastic equations of the preceding section for
plane-wave geometry, put in the above expansions,
and write each equation explicitly to leading order
only as follows:

da= - ( B + ~ G )dln(l - c) - 2Gd#J+ O(Tdln(l - c), Td$),

(50)

d7 =-G[dln(l - c)+ ~dt] + O(rdln(l - c), rdo), (51)

T s K(A i’,v, s) , (52)

TdS =2V72iJ . (53)

dT ❑ [C; ’Td S-yTdln(l - .)] [! . O(T/G)] . (54)

Note p’TdS=O(~dL); the terms O(7dln(l - c)) and
O(~d~) in (50~and (511Zre the TdS terms from
Eqs. (37) and (38), and the terms of first order in
r from i?qs. (47).

B. Relaxingsolid m,del

In 1867, hIaxwe1112wrote a constitutive equation
for a material which shows instantaneous elastic
response plus stress relaxation according to a :“e-
Iaxation time. Malvern, 13in studying plane-wave
propagation in infinitesimal strain theory, gener-
alized the ~Maxwellmodel by introducing a stress
relaxation function. T aylor]4 investigated the shape
of weak plane shocks with a ccmstitutive equation
which is a special case of Malvern’s. Herrmannis
has used the relaxing solid model extensively in
analyzing plane shocks; his equations are the most
general since they allow for finite strain and in-
clude the shear stress ~. Equations (6) or (7) and
(9) or (10) of Ref. 15, transcribed t~ the present
notation,’” are

do= - ( B + $ G)dln(l - 6) - 2Gd@. (55)

dr =-Gldln(l - E)+j d$] , (56)

J =g’(o, E), (57)

where g’ (u, c) is the stress relaxation fuuction,
with g’ for compressive loading and g- for unload-
ing.

By comparison with Eqs. (50)-(54), it is seen
that the system [55)-(57) neglects all effects due to
entropy, and neglects all terms O(7dln(l - 6)) and
O(rd$) in do, dT. In plane shocks we generally have
7 cc O; this means the terms of order 7 neglected in
(55) are formally small, and (55) should integrate
to give a reasonably accurate value of o throughout
the proc SS. Terms of the same order are not
negligible in (56), however, and the integral of that
equation will give a value of r with an error form-
ally of order r. With regard to the plastic-flow
constitutive equations, it is interesting to note
there is a formal equivalence between the von
Mlses condition and the relaxation function. Equa-
tion (52) can be inverted to ~ =~(~, J, i’, S), and
since ?, @,V are coupled by one equation, they can
be replaced by two variables, say o, c, giving J
=f(o, 6, S); finally, i! S is neglected as an indepen-
dent variable, a relation of the form (57) is ob-
tained.

V. THEQLIESTIONOF EQUILIBRIUM

A macroscopic treatment of a material process
without thermodynamics is conceptually difficult.

.— .— -
IEI.J



Theory has to be founded in mechanical variables.
which are specified In terms of atomic motions and
inter- tions. For a given mas: element containin~
a fi~ .t assembly of atoms, or at least a fixed num-

ber In the case where mass transfer is allowed,
the mechanical energy is always defined, and so
are mechanical stresses in the form of forces act-
ing across surfaces. Mechanical work is defined,
but tempemture and entropy are not. In order to
examine the ouestion of thermodynamic equilibri -
urn, we have to imagine that we are first able to
find a complete mechanical solution to the problem
of motion; then we can study the space and time
vari Miens of the solution.

We begin by :omstructing a picture of continuum
mechanics. T!le materiiil is divided into mass ele-
ments which are macroscopic allv small but which
still contain many atoms, The mass elements a:”e
considered as interacting mechanical systems, aml
the entire flout problem is expressed in terms of
variables which give total mechanical properties
of each n)zss element, for ~$xample, the position
of the center of mass, the configuration, the oner-
gy, momentum, and stresses. These are macro-
scopic variables because the}”average t)w atomic
properties o,”er all the atoms in a mass element;
they are functions or thr time. To help bridge the
WP between mecnanlcs and thermodynamics it is
useful to div ie rhe deit)rm.ation into two separate
parts, defined as follows at anv instant of time.
The homogeneous deforma:lon IS that part of the
deformation which IS essentially constant over a
mass elem~nt; this means the measure of strain
varies by only a small amount over I region large
enough to contain many atoms (at a flx~d time), and
he(.ce it applies to the st=l;l in any reversible
thermoelas:ic process such as an adiabatic one, or
a nonadiabat ic one where the heat flux is spatially
S1OW1Vvarying. The [,[her part of the deformation,
that .Iue to plastic flow, : heterogeneous on an
atom ic scale: this heterogeneity does not appear in
detail in the macroscopic mechanl( 1variables,
only the average appears, but it is I,evertheless
important in the question of them) odynamic equi-
librium. Incremental contributions to stresses,
strains, and energies from the two types of de-
fer mat ion are additive.

The next step is to construct a physical model of
an individual mass element as a mechatlical sys-
tem. A solid materi:,l is composed of ions and band
electrons; the choice of which electrons are to be
put in the ion cores and which in the bands is some-
what arbitrary and does not affect the present dis-
cussion. The mechanical s!ates are quantum
states. The ground state IS a function only of the
con: .juration. which is specified by the positions
of the ions, and It M the T =0 thermodynamic

~– .— .-

state. For Ngtven configuration, we may think c)f
a distribution of quantum stat~s with a uU)que
ground state.. such that the systems meet In ical
properties are represent! ,! by sol: ave=g~ over
the distribution. ‘I%emechanical \“iiriables are then
written as a ground-state cotltribut WI)plus an 1*x-
citation contribution. F~r a th~~rmodyn:t ICequi-
librium distribution of states, hc excitation con-
tribution: becomes a thermodynamic quantIti,~en-
erally called the Iherm:l 1 t$ontributII111,and is
characterized by the temperature and the configu-
ration. Thermodynamic variables are then w1‘.tton
as a ground-state (j ~~•O)contribution p,us :Ltht J’W
al contribution.

We now ask the following question” If the ~’on-
fig~rat ion is suddenly changed, at what strain rn:e
can th, ground state still be considc,red a the? tuo-
dynamic state? Or, how fast do the ground-state
e‘ ‘ctrons respond to a sudden n)otion of the ions?
If the ion motion is a homogeneous strain, i.e., it
is characterized by a wavelength lontzcompared to
the interionic distance. The band elect ro~.s respond
collective y in a time of the order of an inverse
plasma frequency, ’7’lasay in :ibout Io-’c S. The
polarization response of the ion cores should in
principle be fdster, but it will in practice be lim-
ited to the same rate as the collective response.
Finally, for a short-wavelength (Ioc:,lized I motio:l
of the ions, we expect the ground- state electron
response to be equally fast, so for all practical
purposes thermodynamic equilibrium car be as-
sumed for the ground- state cor,tributions to system
variables.

The response of the excited states can also be
estimated for near-equilibrium conditions. In the
customary approximations of solid-state physics,
the excitation modes oi the ion-electron system are
the phonons and the one-electron Fermi-Dirac ex-
citations. Among the phonons, in a dwtribution
which is at:ywhere near thermodynamic equilibrium
at room temperature and above, practically all of
the excitation energy is carried by short-wave-
length moticns, i.e., wavelengths of the order of
one or two interionic spacings. We may assume
that at room temperature and above, the lifetime
of such phonons 1s limited by phmon-phonon colli-
sions; experimental measurements for metals)g
give 7P, s 10-*2s, and Peierl<” has estimated Top
. 10- s for nonmetals at room temperature.
These lifetimes should decrease as temper:lture
increases. Long-wavelength phonons have much
longer lifetimes, but we should be able to neglect
their influence as long as we avoid low-iempera-
ture problems. For metals there are also elec-
tronic excitations. From the theory of thermal
conduction at temperatures of the order anti above
the Debye temperature, zo-22 and from the measured
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thermal-conductivity vnlues, the relaxation time
which describes the approach to equilibrium of the
electrol,:$ due to cllllisions with phonons in equilib-
rium is estimated a.<:Cp- 10-~’- 10-1ss. This
should decrease with increasing tempt~rature. The
electron-elect roil relaxation time is rather long at
room temperature,1a020.2i 7P,-10-12 s, but it is ex-
pected to decrease with temperature ds T-2.

We can now draw the following conr iusion: For
a homogeneous deformation process, the electron-
phonon system ought to be able to m?.intain itself
near equilibrium as long as the deformation at any
material point changes little in a time of order
10-1: s; this means strain rates of order 1010s-i
are easily allowed. Such strain rates are well be-
yond those induced by weak shocks. This result is
helpful because in many fast deformation proces-
ses the homogeneous part gives the major contri-
bution to thermal functions, and together with the
ground state it represents the dominant contriLw-
tion to thermodynamic functions. For the example
of a 100-kbar shock in Al, the ground-state de-
formation and the thermal adiabatic homogeneous
deformation account for 9@ of the increase tc In-
ternal energy and 9W of the increase in the stres-
ses.

The last barrier to a complete thermodynamic
description of dynamic deformation processes is
the heterogeneous nature of plastic flow. On the
finest scale, the flow is localized to atomic-sized
regions, as in dislocations, which act as dispersed
moving sources of mechanical excitations. The
problem is to determine how long it takes this
mechanical energy to become therm alized. We
might imagine that the higher the rate at which
plastic flow is driven, the finer the scale of this
heterogeneity, and that near thermal equilibrium
could be maintained for plastic strain rates up to
the same order as those which limit homogeneous
deformation processes. This argument then im-
plies approximately local equilibrium in the pres-
ence of heterogeneities on a larger scale, Evidence
for large scale tt.ermal and mechanical inhomo-
geneities in the fast deformations of very brittle
solids has been discussed.z]

If the assumption of thermodynamic equilibrium
fails, it is possible to identify the errors which
can result. To illustrate, consider the passage of
a plane compressive shock through a polycrystal-
Iice material; assume the material remains in lo-

cal thermodynamic equilibrium except for those
mechanical excitations generated by plastic flow.
The initinl and final states are equilibrium states,
and we will use the thermodynamic theory of Sec.
111to calculate thermodynamic variables in the fin-
al sti~te. The first step is to integrate the conser-
vation equations (40) and (41), to find the normal
stress a as a function of the normal strain f
through the process. The result for u(t) is Ille
proper thermodynamic value In the final stat- I’he
s:::ne is t rue for L’(t) in the iinal state, computed
by integrating Eq. [42). Through the process,
however, U(C)is a rt?echan .’alvnriab ie; its \’alue
is given ,’orr .tly by th~ conser~ .~tionequations,
but it does not reprosc material n thermctl vna-
mic equllib rwm. We thus ma..e :In error when we
use thernl~d)’nan~{CSto calcul.ite ~ and J from
u(<). But the err. jr should be small, at r %t of
the same orrf! r a: the colltributior of the entropy
to the stresses. For a 100-kbar hock \,] Al, this
is not greater than 1F. This Nowbecomes the
measure of the ei ror in all hermodynti,uic quan-
tities we calculate. AS for the increase in the tem-
perature from the initial to the final state, most is
due to h~mogeneous adiabatic compression. The
calculation of the entropy in the final state, and IJ[
the tempe mture increase due to dissipative heat-
ing, is based on integrating the inexact differential
TdJJ[ see Eqs. (22b) and (23)] along a path defined
by 7 and $, so the error in the integral is at most
of the same order as that in T and o along the path.
From this point of view the assumption of thermo-
dynamic equilibrium is seen as an approximation
of very good accuracy.

W. CONCLUSION

In this work we have shown that within the con-
ventional assumptions of plasticity theory, the
complete thermoplastic-plastic equations of flow
can be expected to have a wide range of applicabil-
ity. Evaluation of these equations for general flow
problems would require a large computer.z’ How-
ever, for one-dimensional strain problems a rela-
tively simple system of equations results. These
equations will be applied in the following two pa-
pers to experimental data on an extensively studied
Al alloy in order to obtain model-independent in-
formation concerning its flow function and equation
of state.
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Flowprocessof weakshocksin solids

DuaneC. Wsilace
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(Rcccivsxi 17 April 1979)

Expcrimentad meaxumanentxof sw.k-shock profiles in the alloy 6061-T6 Al are analyzed by irrcveisible-
therrnodymunic finite-strain thmry to obtain a complete description of the flow process through the shock
compression.including the xntropy production and the relations among the flow variables af shear stress,plastic
strain, and plastic strain rote. The primary quarttitica, the normal stressand the normal strain, are determined
entirely from the xquationsof motion and the shock-protlc data; the seemsdaryqusantitixa,the shear stress,plastic
swain, tempcmtum, and cotsopy, arx then detemmwxt by therrnodynarnies. It is shown that infinitesimal strain

thmry gives unreliable =rdts ax soon ax the plastic strain &comes of the same order of magnitude as the elastic
strain.

L UNTRODUCTION

A rich source of experimental information on
dynamic deformation processes in solids is shock
profiles in the weak-shock regionl; the term
u,ea& s)lock is here used to mean a shock whoge
velocity is not greater than the elastic precursor
velocity. The profile measurements are capable
of determining the particle velocity as a function
of position and time in a solid through which a
planar shock is propagating. This gives a one-
variable map of the shock-induced deformation
process, since the particle velocity is one of the
several variables which are coupled into the pro-
cess. The complete process is governed by three
coupled subsets of equations: the equations of
motion, which express conservation of mass,
momentum, and energy; the thermoplastic equa-
tions, which are relation among stresses, elastic
strains, temperature, and so on, and whose co-
efficients are reasonably weil known experimen-
tally its the weak-shock region; and the plastic
constitutive equation which relates the plasdc-
flow variables. The plastic constitutive relation
is experimentally the least-known material
property involved in the whole process, Experi-
mental shock profiles have generally been ana-
lyzed by construcUng parametrized dislocation
models to represent the piastic flow. The decay
of the eiastic precursor in irons was so analyzed
by Taylor4 and by Rohde,S and in aluminum by
Arvidsson et ale In a series of papers on single-
crystai LiF, the Washington State University
group developed a model based on nucleation and
growth of dislocation loops.’ A detailed numeri-
cal study of dislocation multiplication effects on
profile shapes has been carried out by Herrmann
and co-workers at Sandia.s

In the present work we take an alternative
approach: Given the weak-shock profiles and the
relevant thermoplastic properties of the solid

22—

under consideration, we set out to extract from
this information the constituiive relations govern-
ing the plastic flow. The results so obtained can
be considered experimental results, independent
of a dislocation-dynamics theory. A profile
analysis of the present kind is made possible by
the great increase in experimental precision in
recent years, as illustrated by the example of
6061-?’6 Al: The 1963 measurements of Lunder-
gan and Herrmann,g with a time resolution of
approximately 2 M, gave a value of 6.4 *0.7 kbar
for the Hugoniot elastic limit; the 1969 measure-
ments of Johnson and Barker10 with resolution of
a few ns gave 4.1 kbar.

The Johnson and Barker data are analyzed in
the following section, and the flow variabies,
which are the shear stress, plastic strain, and
plastic strain rate, are determined with respect-
able precision through each shock profile.

IL PROFILEANALYSIS

A. Shock veiocity 7. i particle vcioeity

We have chosen to study 6061-T6 Al because
there are available a set of shock , :ofiles and
also measurements of the polycrystal third-order
elastic constants. The S,rofile data of Johnson
and Barker’” are shown in Fig. 1, in the form of
the particle velocity as a function of time t,
where t = Owhen the elastic precursor arrives at
the aluminum surface, The measurements were
accomplished with a laser velocity interferometer
looking at the aluminum through a fused-quartz
window; a small impedance-difference correction
wae applied to transform surface velocity to
particle velocity.

The qualitative character of the profiles is
illustrated in Fig. 2, where the various states in
the shock compression process are lettered,
from the initial state a at zero stress and room
temperature to the final state e. The experi-

1467 01980 TheAmerican PhysicalSociety
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FIG. 1. Data of Johnson and Barker (Ref. 10)for six
impact experiments on 6061-2%Al.

ment supports the following description: The
front from state u to state b, called the elastic
precursor, is a steady wave; the region from
state b to state c, which we call the plastic pre-
cursor, is nonsteady; the plastic wave from state
c to state e is steady with velocity D. We gener-
ally refer to D as the shock velocity.

A precision method for measuring all three of
the adiabatic polycrystal third-order elastic ccm-
stants &,~, v was described by Clifton. i’ His re-

FIG. 2. Schesnatlcrepresentation of a ahock profile
movtng as two ateady waves and an intervening unsteady
regioo. particle velocity u aa a function of time t,

suits for these for 6061-T6 Al, and also for the
two adtabatic second-order elastic constants x,
p (the Lam6 constants), and for the initial-state
density pa, are

P,= 2.703g/cmS, g= -1.40 Mbar,

k= O.544Mbar, (= -2.82 Mbar, (1)

P =0.276 Mbar, v= -4.69 ~ar.

The first step in the analysis is to determine
the shock velocity for each profile. For the first
five shots of Fig. 1 (all but 926), the original
data time record runs from impact time; hence
it is possible to compute for these shots the elas-
tic psecursor velocity c, (in mm/w):

c,= 6.46 *0.01, (2)

where the *0.01 represents merely the experi-
mental scatter. This velocity is considerably
faster (1.4% faster) than Clifton’s valueli of the
longitudinal sound speed c1 (in mm/ps):

Cl= 6.37. (3)

The difference is mostly due to ftnite-~train
effectb fn the elastic precursor: The normal
strain on the precursor is c~= 0.0037 and this is
not exactly tnftnitesimal. Witis the elastic con-
stants of Eq. (1), I calculate a velocity of 6.43
mm/#s in finite-strain theory for a steady wave
of this strain amplitude,

Since the profile analysis is gohg to be based
on the treatment of the plastic wave of each pro-
file as a steady wave, the appropriate velocity D
has to be computed from the difference in arrival
times of two similar steady waves. This pro-
cedure eliminates any nonsteady effects which
may have been present in the time immediately
followtng impact. In this way we obtain one
velocity from the two shocks at 21 kbar and two
independent velocities from the three shocks ist
37 kbar. Compartng these results with velocities
determined from the arrival time of each separ-
ate plastic wave shows small differences (of order
1%) for the 21-kbar shocks and no differences
(random scatter of order 0.2’%)for the 37 kbar
shocks. It is therefore safe to compute the
shock velocity for the 89-kbar shock from the
precursor velocity (2) together with the profile
time record shown in Fig. 1.

A well-established experimental result for
shocks up to the Mbar range 1s that shock veloc-
ity is proportional to the final-state particle
velocity V,OIZIn the present work, where one D
is computed from two profiles, we assign the
corresponding value UCas the average for the
two profiles; there is no averagtng for shot 926,
The resulting collection of four D(v,) points is
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plotted in Fig. 3, along with the least-squares-
fitted straight line

D z 5.26 + 1.471s,mm/ps . (4)

Also shown for comparison is the result of Marsh
and McQueen13for 6061 Al of unspecified hard-
ness; they measured D for shocks of 70 to 680
kbar and fitted the data to the line D = 5.29
+ 1.38va. The agreement is good in the pressure
region of comparison. In the subsequent analy-
sis, we take D from the relation (4).

B. fmegration of the equations of motion

The equations for conservation of mass and
conservation of linear momentum in plane-wave
geometry are given in Ref. 2, Eqs. (40)and (41),
in a mixed Eulerian-Lagrangian form; it is con-
venient here to use the Lagrangian forms

au 21’—.-
?X “z- ‘

(5)

(6)

where X is the Lagrangian coordinate, i.e., the
position in the initial configuration of a material
plane, c = 1- p./p is the normal strain, c is the
normal stress, all variables are functions of X
and t, and z)(X,t) is the particle velocity, i.e.,
the velocity in the shock propagation direction

of that material plane whose Lagrangian coor-
dinate is X.

We define a steady wave as one which propa-
gates at a fixed velocity without changing its
Shape; in mathematical terms this means v(.Y,t)
is a function of only one variable, namely X - cl,
where c is the propagation velocity:

U(X, 1)= L’(X - Cf), (7)

U a wave is steady, or tf any portion of the wave
in a ffxed range of the particle velocity is steady,
then we can argue that the flow process is steady
in that range, i.e., each successive planar slab
of material passes aIong the same physical path
while the steady wave passes over tk material
plane. This means each thermodynami~ variable
is also a function of only X - cC, and in particular

c =C(x - d) ,

u =U(X- co .
(8)

Under the conditions”(7) and (8), the equations
of motion (5) and (6) become the total differential
equations

& = c“tdv , (9)

Equations (5) and (6) can now be integrated
through the profile illustrated in Fig. 2, as
follows.

I I 2’/ I
6.0 -

_ 5.8-

$

~ 5.6-
0

— D=5.26+1.47Ve
o 0 PROFILE VELOCITIES-
- - LASL (70-680 kbar)

5.2 1 1 i
o 0.1 0.2 0.3 0.4 0.5 0.6

ve(mmips )
FIG. 3. Shock velocity sersus particle velocity for 6061-T6 Al. Data points are from the Johnaonand Barker pro-

files, thestraight line is a least-squares fit to these points, the dashed line in the fitted result of Marsh and McQueen
:Ref. 13).
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Elastic precuvso?. The front is steady and
moves at velocity c~ the initial conditionsare
c, =0, u,=O; Eqs. (9)and (10)then gfve

c, = VJC,, (11)

a,= pacbvb. (12)

PZastic precursar. StaterI b and c are charac-
terfaed by constant values of Vband v. movtng at
the velocities c, and D, respectively; an approxi-
mation compatible with the experimental data for
v(X, t) between states b and c is the stt%light line

v=v,+(ve-vb)(5$#),~=c”;D. (13)

For this functton, (5) and (6) fntegrate to

(14)(y 1+
8(V- U*)

t =~, +
)2(VC- v,) ‘

‘=ub+p~c’(v’~v’)h(’ +:::=:~)” ’15)

Plastic wave. We can agafn use the steady
wave forms (9) and (10)to integrate from c
toward e and find

c =CC+D-l(v - uej, (16)

u = u. + p#D(v - UC). (17)

It may be noted tiat we have relied heavtly on
the experimental data in devisfng the above inte-
gration procedure. For the six profiles of Fig. 1,.
Vblies in the range 0,023.-CJ.O26mm/ps, wtth
nothing in the data to fndicate a dependence on
either the shock strength or the propagation dis-
tance. As for the value of UC,this can be chosen
somewhat arbitrarily, but all the profiles are
consistent wfth UC=0.050 mm/ps, whtch was
used in the present calculations. For the v(X, t)
curve in the unsteady regicm from b to c, we are
fortunate that experiment providee a simple ana-
lytic approximation. This also allows us to see
clearly a result which may be expected to hold
in general: For the unsteady flow region, the
Rayleigh line, which is the u(c) relation, is not
a straight lfne. The Rayleigh Ifne is straight for
a steady wave; thfs is obvious from the combina-
tion of Eqs. (9) and (10) to gfve do =p@&dc. But
for o and c on the plastic precursor, the combina-
tion of (14) and (15) produces a u(c) relation
which is slightly curved (concave downward) in
this regton.

We used the above equations to calculate o and
c as functions of v for each of the sfx profiles.
The raw data pofnta for v were used. The re-
sults for the two profiles at 21 kbar, and for the
three at 37 kbar are fn excellent internal agree-
ment.

C. Theflow behavior

The thermoplastic differential equathns for
the normal stress u and the shear streso r for
plane-wave geometry are gtven fn Ref. 2, Eqs,
(9’?)and (38). The independent strain variables
are the total nortfial stratn c and the plastic
atrafn ~. Sfnce the strains are small in weak
shocks, it is convenient here to fntegrate do, dr
and express G, r as power series tn c, ~. This
can be done fn either of the followfng two ways:
(a) Expand the strese-etrafn coefficients in pow-
ers of elastic stra!ns, convert to c, t, and inte-
grate du, dr or (b) expand the internal energy in
powers of elastic strains and calculate stresees
from their thermoplastic definition as strafn
derlvaUves of the internal energy,;4~iS We carry
the expansion of u, T only to eecond order fn
strafns because coefficients of third-order terme
fnvolve the fourth-o:der elastic constants, whose
values we do not know.

In addiUon to the atrafn terms, the equations
for &, d7 contafrr the following terms in the
entropy: pyiTdS tn da and $P(yl - ya)TdS in dr,
where T is the temperature, S is the entropy
per unit mass, and Ya are the anisotropic
Griineisen parameters. Since T& is propor-
tional to rdtJ,2 and sfnce r is of icwest-order
ltnear in etrafns, T& is a secorc waler quan-
tity, Hence to expreee the above Y’dSterms
corrsct to second order, yamay be evaluated to
lowest order fn etrafns, which means YBmay be
taken as the ordinary Griineisen parameter eval-
~ted in the initial state Y~. The completed re-
eults for u and .T to second order in strafns are

u = (A+ 2pk - 2jl@- (*X+ \ll+ &+ 2tk~

+ (4A+ 10K+ 4t)c@- (;X + 6# + ~t + +~)t

T= IL(6- ;$)-(A+ ;/l + t)d

+ (:x+ *JJ + +$++V)EIJ- (*P+*V)if . (19)

The fntegral in (18) is the entropy contribution to
o; an entropy contrlbutton to 7 would appear in
third order.

By integrating the equations of motion, we have
already determined the variables u, c through
each shock profile; note for a given profile the
variables correspond to a ffxed Lagrangian coor-
dinate, i.e., to a fixed planar slab of material.
With o, ( given, Eqs. (18) and (19) were then
‘Jolved for 7, IA Because of the ~Tdv fn (18), it
was neceseary to solve (18) and (19) simultane-
ously by numerical iteration. For Y., we used
the value for pure alumfnum,14
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Y.= 2.16. (20)

The results for ~ as a function of # through each
shock profile are sh~}wnin Figs, 4-6. Since tke
ttme variable through each profile is also known
from experiment, it is possible to calculate ~,
the Lagranghn time derivative of ~. These re-
sults are also shown in Figs. 4-6. The shaded
area at the top of each ~ curve is meant to indi-
cate the experimental scatter there; this scati.er
is not.significant in the overall analysi~ stnce we
have $ spanning a range of four orders of magni-
tude.

It is seen from Figs. 4-6 that the shear stress
increases rapidly, and drives up the f!ow rate, at
the beginning of the flow process; toward the end
of the process the plastic flow slows, and it
finally stops when the material reaches the
static state e, where U reaches its maximum.
For the 89-kbar shock the rise of the plastic
wave was possibly too fast to be foliowed by the
tnqtrumer.tzttion, so the observed rise time of
5 ns is an upper limit (see Fig. 1); therefore the
maxtmum plastic strain rate of 107S-*in Fig. 6
may be only a lower limit. The flow curves of
Figs. 4-6 support two qualitative conclusions for
6Ctil.-T6 Al, as follows:

(a) The rapid increase of the shear stress at
the flow front is due mainly to strain-rate effects.

(b) Except for possibly the weakest shocks, the
shear stress decreases tn the approach to static
equilibrium behind the shock.

We comment now on the errors in the 7, IJ

I

FIG. 4. Plastlc-fIow proceas for two shocka at 21
kbar.

25 T 1
0 SHOT937
● SHOT927
0 SHOT936

I ● a 0 I

*
FIG, 5. Plastic-flow process for three shocks at 37

kbar.

curves. At the front of each cur~e the error in
7 is small since the total strain there is mostly
elastic. Later, however, r no longer increases
even though E continues to increase strongly.
This is because the metal is flowing in such a
way as to keep the shear stress from increasing,
i.e., plastic flow is canceling out much of the
increase tn the anisotropic part of the purely

5

4

_/

v

v
b

0

e I

*

6. Plastic-flow processfor the 89-kbar sbock.FIG.
The four points indicated were interpolated es a straight
Mnein particle velocity veraus time on the pla6tlc wave
front (see Fig. 1).
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elastic strain. because of thic “:b ., cancella-
tion, the error in our compu. ~ :, v.h;ch comes
ultimately frfim e w- ,:”s in our thermoplastic
stre:; s-strain 1. iations. can be significant in the
late stage of each shuck compression profile
(war !he f]ral s’dw). The effect depends fn a
complicated way on the capling between the
e(.: -- c for : md T. To learn something about
th~s ue cuc:puted i and 7 at the final state in in-
finitesimal stmin theory; that is, from equations
(18) imd (19) with the second-order strain terms
omitted. The results are compared with the
second-order calculations in Table I. It is seen
that infinitesimal strain theory produces unac-
ceptable results for al! the shock gro”lps. It is
further nbvious that inclusion of the next-higher-
order strain terms, corresponding tn fourth-order
eiastic constants, would be desirable for the 89-
kbar shock.

D. Constitutive relations

In addition to the stead}--wave profiles analyzed

above, Johnscm and Barker10 also presented a

series of 9.5-kbar profiles which show the decay

of the elastic precursor through a material dis-
tance x of 4 to 38 mm. In these experiments they
measured the free surface velocity, which gives
quite accurately the particle velocity at the pro-
file point b thrcugh the relation: u, equals half
the free surface velocitj at b. These data can be
analyzed by Taylor’s theory,’ which is based on
the obser” ations that the elastic precursor travels
on the lead C. characteristic and that o = C there.
With the characteristic velocity co, the equations
of Ref. 4 give

&=o,

From this and (19),

Tb= Mb- (A+ ;#

(21)

the shear stress is

+ .%: , (22)

where Cbis given in leading order by (11). ‘I%usfrom
the elastic precursor data for u~(X),we can find the

TABLE 1. Final-state values v,, r, as calculated
in infinitesimal strain theory and in second-order
theoty. a“?eraged for each shock group. Also the en-
tropy contributtcms to :,, 7,. r, k in kbar.

Shock Iofizdtesimal Second order IIntmov contribution

21 0.010 2.6 0.013 1.6 1%, -4%
37 0.016 5 0.024 1.s 1%. -9%
59 0.016 19 0.055 3.5 3% -25X

7, J relation on the Mne 4= O.
The flow relations we have determined are

shown in Fig. 7 as curves of 7 vs J at fixed L
The O= Ocurve is from the elastic precursor
decay, Eqs. (21) and (22). The curves for I!,
= 0.001,0,002,0.004 are each romposed of three
pofnts; one from the 21-kbar shocks (Fig. 4),
one from the 37-kbar shocks (Fig. 5), and one
from the 89-kbar shock (Fig. 6). Though the
values of Vare very small, all of these curves
are quite accurate; recall that cancellation errors
in 7 are not important when Y is small. A set of
points at the largest plastic strains we could
determine were taken from near the end of the
89-kbar shock; these have J values of 0.048-
0.054, and we expect them to be accurate in J!and
~’but possibly in significant error in T. It should
also be noted that these points represent material
under a pressure of approximately 84 kbar and
at a temperature of about 380 K. Results re-
ported recently by Herrmann,lS based on analysis
of part t?!the same experimental data through a
relaxation function formalism, differ significantly
from the present results, presumably due to the
inclusion here of third-order elastic constants
and entropy effects (*he two methods are com-
pared analytically in Ref. 2). The plastic-flow
behavior of 6061-T6 Al was measured by Holt c1
~lol? for ~ up t. 0.08 and ~ from 10-3to 103s-i;

they observed essentially no strain-rate depend-
ence at all, and a mild strain hardening, The
curves of Fig. 7, extrapolated to low strain rates,
are consistent with the measurements of Holt
et al. Note that in the extrapolation to low strain
rates, the four curves for small d values will all
cross, @ving 1 ?S an increasing function of J at
a fixed # of say ~= 103S-l.

E. Temperature and entropy

The theory of Ref. 2 also enables us to calculate
the temperature and entropy through the shock
profiles by means of the equations

(23)

TdS = C#T + Ty,dln(l -t) + T(YI-y,)do] , (24)

where V = P-l is the volume per unit mass and Cn
is the heat capacity at constant elastic configura-
tion. The anisotropic Griineisen parameters may
be expressed as derivatives of the stresses r~
with respect to the internal energy U at constant
elastic configuration’ 14:

(25)

A set of approximations which simplify the
numerical integration of (23) and (24), and which
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FIG. 7. Shear atresa 7 as a function of pisatic strain rate i, for lines of constant $. The numbers label the value of

J for the lines and points.

are of acceptable accuracy for the present calcu-
lations, are

Y, = Y~= Y ,

c.= c,,

Cv= 0.88x 10’ ,
(26)

py= constant = pay. ,

where the Cv for 6061-T6 Al is measured in erg/
gm K. The first approximation expresses the
idea that the thermal energy exerts outward
forces in an essentially isotropic way, i.e., it
contributes nearly equally to all three principal
stresses [see Eq. (25)]. C. = Cv is the same sort
of approximation. To support taking Cv constant,
we note that for any characteristic temperature
theory, as e.g., the Debye theory, with charac-
teristic temperature 0 a function only of the vol-
ume, the relations hold:

s =s(e/~), e =e(V);

then S = constant implies e/T= constant, which
implies Cv = constant. Since entropy generation
is small in the weak-shock region, the thermody-
namic states are not far from S =S6, and Cv is
not far from its value in the initial state, which
is the value given for 6061-T6 Al in (26). Fin-
ally the approximation py = constant is in keeping
with dlny/dlnV= - 1 for pure A1,14and with the
extensive shock-related study of Nealia for Al

and Al alloys for compressions up to a factor
of 2.

The initial temperature for our calculations
was taken as T~= 295 K. The values of T and
S -Se in the final state, along with stresses and
strains at some intermediate profile points, are
listed for each shock group in Table II.

III. DISCUSS1ON

The application of the general thermoelastic-
plastic-tiow theory to accurate one-dimensional
strain experiments on 6061-T6 Al has been shown
to be relatively simple. With the velocity profiles

TABLE XI. Thermodynamic quantities at atate b and

at the final atate e. Averages are listed for each shock
group. Streas is in kbar, temperature in K. entropy in
IOS ~r~mKo T~. 29s K. The number in Parentheses
is the Iaat significant digit.

Quantity 21 kbsr 37 kbsr 89 kbar

Cb
u,

‘b
%
@*
$,
7*
T;

se- s.

0.0036
4.0
1.0
0.0240

21.0
0.0127
1.6

313
0.5

0.0036
4.1
1.0(6)
0.0414

36.7
0.0244
1.8

327
1.2

0.003s
4.1
1.0(6)
0.089

89
0.055
3.5

380
5.3

.— —.—,——— .— . ..... .- .—....-. —-——- —.-
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divided into steady and self-similar parts in the
stress range 20-90 kbar, only a!gebraic compu-
tations are required. For more general profiles
the analysis will be more complicated. A more
complex space- and time-dependent representation
of material velocities is required for the initial
evolution of shock profiles, as illustrated by the
data of Johnson and Barker~Oat approximately
9 kbar.

Lipkin and Asay19have recently reported veloc-
ity measurements on 6061-T651 Al at 20 kbar
which are apprommate!y self-similar throughout,
implying a very weak flow-rate dependence for r.
The present analysis also shows a small strain-
rate dependence at the 21-kbar stress level (Figs.
4 and 7). In addition, Asay and Lipkin20used ‘&e
same reshock and release measurements to esti-

mate the shear stress for 6061-T651 Al in the
shocked state at 20 kbar. Their result for Y=27
is 2.6 kbar; the present result from Fig. 4 at 21
kbar is 27= 3.1 kbar. The difference is not un-
reasonable tn view of uncertainties in either
analysis. A new experimental method for propa-
gating large one-dimensional shear waves at high
stresses21 should provide valuable new data for
improvtng our knmvledge of the flow functions of
metals.
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The Rankine-Hugoniot jump conditions for the increasesacrossa shock of the normal stress,normal strain, and
internal energy are not valid for weak shocks in solids. Correct Jump quauons for a solid can be oblaused by
integrating the quations for conservation of mass, momentum, and energy along the Rn).lelgh hne through the
shock process:thesejump quations then depend on the details of the shock profile. Further, !secausea uniaaiall!
compressedsolid supportsa nonzero shear stress,the locus of thermodynamic statesrcachcriLschmdplanar shocks,
which we call the anisotropic Hugoniot, rquircs for its description two stressvm-iablcsand two stmm tarmbles. In
the presentpaper the themrodynamic descriptionof the anisotropic Huger-uotis given, and for the example of 6061-
T6 Al the shock-profilejump quations are derived, Ihe weak-shock quation of state is computed, and the pressure
on the principal adiabat is found [odiffer from the results of Rankine-Hugoniot thcmy by set.eral percent m the
rangeL) I(K3kbar.

L fNTRODUCflON

Shock experiments have been e~tensively used
to determine equations of sta -mof solids. 1* The
quantities measureu are the shock and particle
ve 10Cities, and from these the Hugoniot equation
of state, a pressure -volume -energy curve, is
computed by means of the Rankine -Hugoniot jump
conditions. Since these jump conditions were
constructed specifically to describe shocks in
gases or liquids, s”’ their use to analyze shocks in
solids represents the neglect of differences in
solid and liquid behavior. This situation has been
recognized in the past,’+ but the theory and the
experimental data needed to correct for solid-
liquid differences were not available. h the pre-
sent paper we present the needed theory for the
case ~f weak planar shocks in initially isotropic
solids.

It is helpful at ‘he outset to identify the charac-
teristics of shocks in solids which are to be ac-
counted for in thi~ work. The Rankine-Hugoniot
jump conditions and related thermodynamic analy -
ses5-’ will be referred to as “liquid Hugoniot
theory. ” This theory assumes that the shock is a
single steady wave, which means the jump con-
ditions can be calculated by the black box treat-
ment: The entire shock front is considered a
black box of fixed thickness which moves at the
shock speed; ahead of the box is material in the
initial equilibrium state and behind the box is uni-
formly moving materiai in the fina! ,=quilibrium
state. Without knowing arty details uf the shock
structure it is still possible to apply conserva -
tion laws: Whatever flows into the box must flow
out. ht this way conservation of mass, momen-
tum, and energy give relations among the fol-
lowing three quantities: the normal strain from
initial to final state, the corresponding change

22—

in the normal stress, and the change in the in-
ternal energy. Since these are thermodynamic
quantities, by the assumption of initial and final
equilibrium, it is then possible to calculate the
increase in entropy through the shock, a very
appealing result of the theory. Unfortunately,
however, the black-box treatment does not work
for a weak shock in a solid. For since the elastic
precursor travels faster than the plastic wave,
the entire shock front is not a steady wave; it
spreads continuously and takes in an ever in-
creasing mass of material, and momentum and
energy. This means the shock is a sink for these
quantities, and the steady Rankine-Hugoniot jump
conditions across the shock do not hold: All of
what flows in does not flow out. Conservation of
mass, momentum, and energy still hold on the
local scale, but the total change in these quantities
across the shock will depend on the spreading of
the shock profile.

The other approximation of liquid Hugoniot
theory is that the material behind the shock is in
a state of isotropic pressure. This means there
is only one stress variable and one strain variable
on the Hugoniot, namely the pressure and the
volume, and the liquid jump conditions are suf-
ficient to specify these uniquely. A solid, how-
ever, after uniaxial compression by a planar
shock, presumably supports a nonzero shear
stress, so the final state is characterized by two
stress variables and two strain variables; jump
conditions on the normal stress and the normal
strain are insufficient to determine all four of
these stress and strain variables.

In Sec. II we set up a thermrxfynamic descrip-
tion of the anisotropic (tetragonal) Hugoniot for a
solid; this description is not limited to weak
shocks. h *c. III we show how the weak-shock
Hugoniot can be constructed from shock profiles,

1495 ‘51960?h~American Ph>.ijca]SIKICI)
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and carry out the construction for 6061 -T6 Al.
Once the anisotropic Hugoniot is determined, it
is possible to calculate isotropic pressure curves,
including the principal adiabat; the theory for this
is also derived in Sec. III, and the adiabat for
6061-T6 Al is compared with the corresponding
curve calculated from liquid Hugoniot theory.

11.ANISOTROPICHUCONIOTTHERMODYNAMICS

The term Hugoniot will be used here to mean
the sequence of thermoctynamic equilibrium states
reached behind each shock for a sequence of dif-
ferent-strength shocks from a given initial state.
Our first job is to specify the Hugoniot in terms
of thermodynamic variables. Since they are equili-
brium states, they may be reached by a thermo-
plastic (reversible) process from the intial state.
For an initially isotropic solid in plane-shock
geometry, the stress and configuration variables
=e shown in Fig. 1. Cartesian coordinate 1 is
the norma! (propagation) direction and coordinates
2 and 3 are equivalent transverse directions. An
element of mass in the initia 1configuration has
dimensions da, u,a, and densit}. pa, and zero ap-

plied stress; in the final configuration it has di-
mensions d, w, density p, and normal compres -
sive stress u and transverse compressive stress
g -27. The final shear stress is T. The con-
figuration transformation from initial to fmaI
state is given by the elastic transformat Ion matrix
ae,e’gwhose elements for the slmp le transforma-
tion of Fig. 1 are (Voigt notation)

a! =d/da, a; =a; =u Iue ,
(1)

@ =af =# =0 .

The conservation of mass equation for cd iss

Pa/? = V,’L’a=deta8 =a~a;a; , (2)

where V=P-* is the volume per unit mass. As
shown in Fig. 1, there is also an increase in the
entropy, from S. in the initial state to S in the
final state.

FIG. 1. Thermoelastlc transformation of a mass ele-
ment from the inltlal state to a final state which 1s on the
anlsotropic HugonioL.

There is a different process by which the ma-
terial can be brought from the same ,n:lml to final
states shown in Fig. 1. This is the dynanllc (ir-
reversible) process v.hich occurs during planar
shock compression.’” ‘“ It is characlvrized by
simultaneous elastic strain a’ and plastic flow
at s. there are four stra in-vnriable. s,but with-]
the restrictions that the totui tram ierw strain
is zero and the plastic flow is \“olume conserving,
there are only two independent strain \“ariables,
which can be taken as the total normal strain c
and the plastic strain $:

c =1 - v/va , (3)

~=- lnaf.* (4)

The elastic strains are then related tc c and i by

a:= (1 -c)& , (5)

a: = e-a ‘z. (6)

For the moment, however, let us forget about
shocks. We consider the Hugonlot to be an equili -
brium thermodynamic curve of states reached
through anisotropic elastic compression by a
tetragonal stress system, while some reversible
heat dQ =Tds is put in from an emenx-1 source.
For stress-strain variables on the Hugoniot we
take the set o, r, a!, a:, or what is equivalent
through Eqs. 2 and 3, 0, r, V or c, a:. Then we
proceed to find relations between these and other
thermodynamic functions. Note the use of the
variable V does not imply that the compression
is isotropic or that the stress system is isotropic.
Also note that there is no plastic flow on the Iiu-
g~niot; nevertheless the material must be pre-
sumed to be hardened in some way, so as to sup-
port elastically the shear stress T. This point
~ill be exiimined at the end of this section,

The thermodynamics of elastically anisotropic
materials is wel! described in textbooks. no** For
the geometry of Fig. 1, the combined first and
second laws are

T& =dU +odV -4 VTd lna; , (7)

where U is the internal energy per unit nlass, S
is the entropy per unit mass, and T is the tern -
perature. An independent equation for d’ is the
identity which results from considering T as a
function of S and the elastic strains,

TdS =C#T +TCn[yldln V - 2(Y, - y,)d lna~] , (8)

where Cn is the heat capacity at constant elast 14
configuration and y1, 72 are the anisotropic
Grffneisen parameters (Voigt indices, see Ref.
9 or 11 for definitions). Between Eqs. (7) and (&f),
T and S can be calculated by integrating up the
Hugoniot if the other quantities are known on the

——
28
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Hugoniot. The entropy is small in weak shocks,
but not as small as in liquid Hugoniot theory. In
particular, because u and r are of lowest-order
linear in strains [Eqs. (9) and (10) below], the
lowest-order terms in (7) and (8) are of second
order. and these terms do not cancel in ~dS, so
S -S. on the Hugoniot is of second order in strains.
fn liquid Hugoniot theory, s-’ because r =0 on the
Hugoniot, the second-order terms cancel and
S -SC is of order 63atsmall c.

Another useful set of equations results from
considering ~ and 7 as functions of S and the elas-
tic strains, and calculating variations:

do =p7,TdS -B ,,d lnV +2(B,, -B,z)d lnas, (9j

dr = $p(y, - yz)TdS - $(B,, -Bz, )d lnv

+(B,1+;Bzz +@23 -B,z -Bz, )d lnaf, (lo),

where B8, are the adiabatic stress -strain coef-
ficients. Equations (9) and (10) hold everywhere
for the configuration change of Fig. 1, i.e., they
hold for arbitrary strains and entropy, or for
arbitrary stresses and entropy. For the present
tetragonal geometry, two of the B@,are related by

B,, =B,, -27. (11)

If enough were known of the quantities on the ~, -
goniot, Eqs. (9)and (10)could be v=@dto find in-

formation about the 11~,coefficients; :his is ana-
logous to the calculation of the bulk modulus in
liquid Hugoniot theory. ’

fn the small strain region the B8, can be ex-
panded at constant S in terms of the two adiabatic
second-order elastic constants A, p and the three
adiabatic third-order elastic constanls g, f, v, ass

B,, = I +2P - (4x +8A+2g +4/)6 - (8A+20# +801na:, (12)

z,, -B,z =21.L- (4x+ lo~ +4t)c - (6A+241i+6t +u)lnn~, (13)

B,, -Bz, =2rA- (4A+8rA+4<)<- (6x+ 18u +66 +v)lna~ , (14)

B,, + ~Bz, + ~Bz, -B,: -B2, =3Y - (3A+9IA+3< +~v)c - (18~ +3@tu; . (15)

Equations (12)-(15) are correct to first order in
strains at constant entropy; they are also correct
tc first order in strains in the region of the Hugo-
niot, because entropy contributions are formally
of second order there.

We car now clarify the point of work hardening
on the A1.goniot. The Hugonict described by Eqs.
(7)-( lo; IS entirely thermoplastic; the elastic
strains are prewxr.ed homogeneous (or at least
slowly varying on an a ,umir scale), and the energy
stored In these s’~ains is recoverable by reduc -
ing the stresses to ZCL-O.fn the conservation of
energy, Eq. (7’, no energy has been allotted to
work hardening. However, when a real so?id is
shocked to the HIVoniot, a small amount of energy
is used to acc mplish the work hardening and re-
mains stored in the defect structure of the solid.
Such energy is elastic in nature, inhomogeneous
on an atomic sc:de, and recoverable by annealing;
it does not correspond to the same stress-strain
relation. or any other thermoplastic relation, as
does the energj” stured in homo~eneous elastic
strain. Now ir our dynamic theory of the shock
process, the energy associated with work harden-
ing Is accwmted for through conservation of
energy, but it is not stored in any “recoverable”
form; it is instead assigned as part of the dis-
sipation. Hence if we use the dynamic theory and
shock data to calculate the thermodynamic varia-
bles in the shock-compressed state, we construct
a Iiugoniot which is the same as the one described
by Eqs. (7)-(10) and which approximates the real

r
physical Hugcmiotby replacing energy stored in
the defect structure by heat. The error is small,
as discussed in Ref. 9.

Ill. THE SHOCKEQUATIONOFSTATE

A. Construction of the Hugoniot

We proceed now specifically for the case of
6061-7’6 Al and base our calculations on the pro-
file measurements of Johnson and Barker’2 and
on the methods previously developed for analy-
zing them. The experimental profiles are de-
scribed by three regions on the graph of particle
velocity u as a function of time (Fig. 2):

(1) The front from state a to state b is the elas-

9

f

D

“-’< c
FIG. 2. schematic representation of a shock moving

as two steady waves and an Intervening unsteady region,
Particle velocityv as u func[lonof time t,
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tic precursor, a steady wave moving at velocity
CP; Vb=constant.

(2) The ptastic precursor is an unsteady region
from state b to state c; Ve=constant.

(3) The plastic wave extends from state c to the
final Hugoniot state e, is steady, and moves at
velocity D.

The experimental profile data needed here are

va=66=Ua=0,

Vb=0.0236 mm/#s, VC=0.050 mm/~s ,
116),—.,

c,= 6.46 mm/#s ,

D = 5.26 +1.47 vemm/~s.

The jump conditions for c, u, U are obtained
by integrating the conservation equations through
the profile with the following results. io

At b:
c ~= Vb/cp ,

Ub=pec,l’b , (17

LJb- fla=+C;c:.
At C:

CC= C;*VC+ &j*(ZIC- zj)6 ,

0==pac,vc (v- $Pac, c - VJ6 + . . . . (18)

Ll, - L?a= *C; (: - \ DC, ((C- (b)% + . . . .
At e:

C*= CC~ D-l(rI@- vc) .

(7C= Oc + Je D(tl, - @ ,

L’,- L.e= ; D2(c; -#) + ~c;c;

+ Dc&C +~b)(~, - cc)

- $(cC-@2]6 + “-..

The small quantity 6(6<<1) is

6 = (C9-D) ‘D , (20)

and in (18) and (19) the + 000 represent term S
of second and higher order In 6 which arise from

(19)

a series expansion

~~—

of u(v) in the unsteady region
from state b to state c ‘.fheexpansion was made
to facilitate analytic Integration of the internal

energy dCl= I“ao&. The final-state particle ve-
locity v, may be elimlnatecf from Eqs. (19) m
favor of the shock velocity LJby the experimental
relation (16). The shock veloclty is not defined
for V,< VC.

Equations (17)-(19) constitute the jump condl -
tions for c, O, L/, from the lnltlal state a to the
final Hugoniot state e. Final-state values for
6061- T6 Al Uflto u : 100 kbar are llsted In Ta-
ble I.

The equations for thr shear stress 7 and the
plastic strain $ through the profile are the same
as Eqs. (9) and (10), with TdS replaced by the
dynamic entropy prw2uction2Vrdti and with dlna$
replaced by - ~dil according to (6) It is not pos -
sible in principle to find jump conditions for ~
and J because the equations for them at state J’
contain [ ~r di, the integral to be evaluated along
the path of the process. In practice this problem
can be eliminated by cons[ ruct ing an upprcxlmate
jump conditlcn for the Integral Itself We expect
the integral to be roughly p’.oportmnal to t: . since
SC-SO M of second order In strains For 6061-T6
Al the integral was evaluated numerically in
Ref. 10 for six shock profiles ranging from 21
to 89 kbar; a check of these integrations shows

(in kbiir) for all the profiles. We therefore cal-
culated r and lnag = - it on the Hugomot, from
integrals of Eqs. (9) and (10) with the expansions
(12)-(15) for the Ba, coefficients, the resulting
equations being the same as (18) and (19) of Ref.
10. We also used the function 32c~kbar as an
interpolation approximation for the integral (2! )
and the experimental elastic constants of Cllfton. 11

TABLE I. The anisotropic Hltgoniot for 6061-T6 Al in the weak-shock region.

D U-U* T T s-s. s-s,
c (rmn/#s) (l&r) (109 erg/g) -lna~ (kba:) (X) (lOs erg/g K) (Liquid the.ry)

o
0.0037’
0.0082b
0.020
0.040
0.060
0.060
0.100

0 0
4.1 0,003

5.3335 8.2 0.013
5.364 17.7 0.072
5.590 35.4 0,274
5.775 55.4 0.63
5.966 77.9 1.17
6.169 103.4 1.92

0
0
0.0009
0.0049
0.0117
0.0183
0.0247
0.0305

0 295 0
1.1 297 0
1.6 300 0.07
1.7 310 0.4
1.8 326 1.2
2.2 345 2A
3.1 368 4.3
4.7 398 7.4

0
0
0.003
0.04
0.31
1.l
2.7
5.4

● Corresponds to proffle pofnt b.
b~orre~p~s tO prOfile POint c.

30

-.—-



C) F.(. t 4 T 10 N O F ST A T }: F Rt) M W“E 4 K SH(1(: K S 1N S01, I 1)S— I VW

The results are lwted 111Table 1.
With the energy and the stresses and strains

known. t M pnsslble to Integrate Eqs (7) and
(8) up the Hu~uniot to flnl T nnd .S. The thermo-
dynam IC cuefflclenw in these eq~latlons were

el’aluated by - ~et of ~pproxlnuit IOIMwhose Just i-
flcatwn was Llscussetf m the prof:le an~l!”sls .10
and whwh are of sufficient accuracy here as well:

>, = >S= >. P:. = Pa;a. Y, = z 16.

(22)
C,= C,. =0.88 x 10- erg g K

Values of temperature and entropy on the Hugoniot
are also listed in Table I.

0. Constructmn of isotropic pmssurccurves

The next problem is the following: Given U, T,

CT:, a: on the Hugoniot, construct a P- I’ curve. This
can be done in different wa}’sbj. carrying out a ther -
moelastic s! rain from the anisot roplc Ffugonlot

co condlt Ions of lsoLroplc pressure. We could,
lor example, hdld u constant and increase the
t ransl”erse compressive sLress unt:i it t?(fuak

o, adiabatically. An alternate process, which we
use here because of its simplicity}’in plane-wave
geometry, M to bring the shear stress to zero
under conditions of constant density and entropy.
The thermoplastic process is described by equa-
tions of the preceding section, in particular
(7)-(1 o), specialized to dII = Oand dS = O:

db’= 4Vdlna~ , (23)

ffT= 2T(>, - ; ~cfha: . (24)

do= 2(BI, - B12kilna~ , (25)

fir =-Ixihm ~, (26)

where b is the combimtion

b z El, T ;B22 + ; Bzj - Btz - Bzl . (27)

For abbre~-lation, the P-V curve to be constructed
will be called the isctrope. Equations (23)-(26)
are to be integrated from a point on the Hugoniot
(denoted by subscript H) to the corresponding
point on the isotrope (denoted by subscript f).
The independent variable of the integration is 7,
which goes from 7,, to O; Eq. (26) may be used
to eliminate d ina: in favor of d7 in (23)-(25).
Since the integration tanges are small increments
(the isotrope is close to the Hugoniot), the Ba, are
taken constant for each integral. To integrate
dT, the approximations (22) for the anisotropic
Grheitien parameters are used, which implies
dT = O. The isotrope may then be calculated from
the Hugoniot Gythe equations

s, =s” , (28)

v, = \’N , (29)

[“,= 1!”- 2(V/’b)7: , (30)

TI = TN , (3L)

P, = o“ - 2[(BI, - Blz)/’/I17/,. (32)

The difference ON- 1), al o common value of V and
.>IS itpproxm~ittely ~ r“; Eqs. ( 12)-( 15) can be
used [o make a small-stram expansion of (32)
to find

U“- p, = $7// [1 - p - ‘(A + 2P +t - } ~,)

x (II+3 lnaf H)+ o00]

= ~7H[1- P ‘t(A+2# +<-~ v)

x (7”/# ) + “. . 1. (33)

The term of order rH/IAshould usually be quite
small.

To evaluate the isotrope for 6061-T6 Al, we
used the expressions (12)-(1 5) for the B~, and the
elastic -constant data of Clifton. *3 This constitutes
z neglect of contributions to the Bat from the en-
tropy on the Hugoniot and from fourth-order eks -
tic constants. The thermodynamic functions so
calculated are listed in Table H. Regarding the
principal elastic strains a; ~.,d & we have avail-
able two equations from which they may be evalua-
ted on the isotrope: the integral of Eq. (26),

ln(a~H/a~,) =6-*7H , (34)

and Eq. (2) for conservation of mass,

lnpl/P. =- lncv:, -2 Ina:, . (35)

However, as there is only one stress measure
to the isotrope, n~mely P!, there is for an iso-
tropic material only one strain measure, say
Vt or p,, and it is not necessary to evaluate a;
and N;. fn other words, af and a: become equal
on tne isotrope, and (34) and (35) are not inde-
pendent.’” The change in the material configura-
tion in going from the Hugoniot to the isotrope is

TABLE II. The isotrope and the principal adinbat
for 6061-T6Al.

Isotmpe Aditsbst

P P T P T
{g/cm]) fkbar) (K) (kbar) (K,

2.703 0 295 0 295
2.713 2.7 297 2.7 297
2.725 6.1 300 6.1 300
2,758 15.5 310 15.4 308
2.816 32.9 326 32.7 322
2.876 52.4 345 51,9 336
2.938 73.7 368 72.8 351
3.003 97.0 398 5.5.4 366

.—

—
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shown in Fig. 3.
It is now straightforward to calculate the princi-

pal adiabat, which is the pressure-volume curve
at constant entropy S =Se. A convenient process for
going from isotrope to adiabat is to reduce S from
S1 to S, at constant Vb~”extracting reversible heat
from the material. Ordinary P-V thermodyna-
mics givesl’

dU = T& -PdV , (36)

T& =C~T +pyCvTdV , (37)

()P?= g,. (38)

From these equations, the differentials at con-
stant Vare

dU = T& =CvdT = (py)”’dp . (39)

In going from the isotrope to the adiabat, the in-
dependent integration variable is S. Again stnce
the integration ranges me small increments, the
coefficients C,. and Py can be set constant for each
integral. The adiabat, denoted by subscript A,
may then be calculated from the isotrope by the
equations

S* =Se, (40)

VA=v, , (41)

T~ = T, exp[- (S, -Se)/Cv] , (42)

PA =Pt +pyCv(TA - T,) , (43)

UA= U, +C,.(Z’A - T, ) . (44)

The principal adiabat for 6061-T6 Al is listed
in Table II. The stresses on the anisotropic Hu-
goniot and the pressure on the isotrope and the

1 i ! 1 1 I
003-

/
-InafH

0.04

;/:

+Inp!h

z
; 003
a
t-In ‘in O:H

002

001

oK4L_---l
o 20 40 so so 100 120 140

-H, pl (kbar)

FIG. 3. Change in tie elastic-strafn variables in going
from the ~nlsotruplc Hugordot to the isotropic pressure
curve. The density PI on the fsotrope 1s related to the
elastic stratns on the lsotrope by Eq. (35).
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PH(LIOUlil)

PAILIOIJID)

‘H~
I I 1 I

0.01 002 003 004
a = I - po/p

FIG. 4. Stresses as a function of elastic strain: u“
and r“ are m the anlsotroplc Hugontot, P, 1s on the i so-
tropc, and PA Is on the principal adi abat, and represent-
ing llc@d Hugontottheory, PH (Llqufd) is on the Hugoniot
and PA (liquid) 1s on the prlnct,,al adlabat,

adiabat, ~s functions of the compression, are
compared graphically in Fig. 4,

C. Approximate P-k’ curves

Having carried out an accurate calculation of the
weak-shock equation of state for 6061-T6 Al, it is
interesting to calculate the same property by
means of liquid Hugoniot theory based on the same
experimental data, The difference of liquid Hu-
goniot theory 5.7from the present anisotropic ‘u-

goniot theory can be made clear in two separate
steps.

(1) Liquid Hugoniot theory says the elastic and
plastic precursors do not exist; jump conditions
for a single steady wave then follow. These jump
conditions may be obtained as a special case of
Eqs. (19) by eliminating the elastic and plastic
precursors, i.e., by setting Vb=r. =0:

<e= l-)-%, ,

a, =peDt’, , (45)

u, - Ua= ;D%: .

(2) Liquid Hugoniot theory then says 7,‘O, which
means lhe Eqs. (45) determine an isotropic pres -
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sare curve with

lye = Pe . (46)

When the shock velocity is a li~ear function of the
final-state particle velocity, the above equations
of liquid Hugoniot theory simplify to’

P, =pJ(”%e(l-s(, )-2, (47)

We used the experimental shock-velocity-par-
ticle-velocity relation (16) to calculate the pres-
sure and energy as functions of compression on
the liquid Hugoniot for 6061 -T6 Al. We also cal-
culated T and S on the liquid Hugoniot by inte -
grating Eqs. (7) and (8) and then constructed the
principal adiabat by means of Eqs. (40)-(44), all
using the same approximations (22) for y and Cv
as before. The liquid results are compared with
results of the anisotroplc theory in Fig. 4.

A w.ell-lmown approximation for the P-V curve
is due to Murnaghan*s; this is simply a first-
order Maclaurin expansion in pressure for the
bulk modulus and we will apply it here for the
adiabatic bulk modulus on the line of constant

entropy:

B(P,SJ =Ba +B;P , (48)

where B is the adiabatic bulk modulus, BO is B at
P ‘O and S ‘S., and B; is (3Blt3P)~ at P =0 and
s =Sa. Equation (48) i:ltegrates to the Murnaghan
form for P(V) in the present case along the prin-
cipal adiabat,

‘(VJJ=%[(3B’-11

For 6061-T6 Al at room temperature and zero
pressure, Clifton’s’y measurements give

BO=728 kbar,

B; =5.275.

(49)

(50)

The differences from our accurate adiabat of the
Murnaghan approximation and of the adiabat con-
structed from liquid Hugoniot theory are shown in
Fig. 5, in the form of ~~ at a fixed volume, de-
fined by

APA= “(v)-’”’-PA(V).
PA(V)

(51)

D. Errors

On the Hugoniot, the relations u(c) and fJ(c) -U.
are determined entirely from shock-profile data,
through the profile jump equations (17)-(19), and
these relations as listed in T~.b!e I should be quite
accurate, u to within l’%imd U - L.’eto ~. The

(110, I I I I r 1
MuRNAtHAN
ADIABAT

008-

006-
&
a LIQUIO

wGONIOT
004- THEORY

002-

0 20 40 60 80 100 120
PA (k bar I

FIG, 5, Relative difference APA In the pressure PA
on the principal adtsbat for two approximations as com-
pared with the accurate calculations of the present
paper. APA Is definaf by Eq. (51).

main source of error is expected to be the shock-
vo’m~ity-particle -velocity data. The error most
significant in ~pecifying the Hugoniot, and in de-
termining the isotrope and the adiabat, is the
error in r, This arises mainly from errors in the
C(C)relation and in the B~y coefficients. We have
not attempted to estimate the fo:rth-order -elastic -
constant contributions to B87; lt 1s hard to inla -
gine, however, that the r values listed in Table I
can be in error by more than 25($up to 50 kbar
and by more than 5Cf~up to 100 kbar. The error
in S =S~on the Hugoniot comes from our approxl.

mations for y and Cmand from evaluation of the
profile integral ~~rd$. The latter is determined
with good precision, say of order 10%, indepen-
dently of larger errors in 7 in the final state.
S -Sa should be accurate to within 2% on the Hu-
goniot.

fn transforming from the Hugoniot to the iso-
trope, the process is approximately equivalent
to replacing the stress system u, r at each den-
sity and entropy by a pressure PI z u - ~r. Hence
the error in P on the isotrope is essentially the
sum of the errors in u and ~ on the Hugoniot. .
Finally in going to the adiabat, the pressure
change PA -P, will be in error by about the same
percentage as is SM-S6, giving an error in PA by

at most a few tenths kbar at 100 kbar. All in all
the pressure on the adiabat, Table 11, should be
accurate to 1 kbar at 50 kbar and to about 4 kbar
at 100 kbar.

The error in liquid Hugoniot theory can be es-
timated with more precision, by comparing its
results with those of the anisotropic Hugoniot
theory, because the same shock-velocity-par-
ticle-velocity relation was used in both calcula-
tions, and the same approximations for : :ld Cq
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as well. There are two differences between the
two theories: The anisotropic Hugoniot has non-
zero r (the major effect) and it has a slit?htly lar-
ger entropy than the liquid Hugofiiot. The role of
these two effects is easily seen at the point where
the shockvelocity is equal to the elastic precursor
velocity because here the c, u, U jump conditions
are the same for both theories [compare Eqs.
(17)-(19) with (45) for the case D=ct]. At this
value of e, then, o is equal for the two Hugoniot
curves, at about 143 kbar for 6061 -T6 Al. Inte-
grating out the shear stress from the an!sotropic
Hugoniot, say at constant c, reduces the pressure
by about ;T below the liquid Hugoniot Integrating

out the entropy from either curve to reach the
adiabat also reduces the pressure, but more so
in the case of the anisotropic Hugoniot because it
has the higher entropy. Both effects work in the
same direction, although in the present aluminum
calculations the entropy effect is only about 5%of
the $7 effect. These comments, and our numeri-
cal results, are summarized as follows:

(a) For shocks in the neighborhood of D ‘c,,
liquid Hugoniot theory produces a pressure which
is too high by about $r.

(b) For the 6061-T6 Al adiabat from Oto 100
kbar, liquid Hugoniot theory produces a pressure
which is too high by several percent (Fig. 5).

The Murnaghan adiabat (49) was evaluated en-
tirely from elastic constant data, Eq. (50). In the

—

low-pressure region this represents the most
reliable determination of the PA(V)curve. It is
gratifying to find that the anisotropic Hugoniot,
which is mainly determined by shock data, gives
a PA(V), after integrating out the sizable shear
stress, in agreement with the Murnaghancurve
in the low-pressure region.

E. Stronger shocks

The relative error in using liquid Hugoniot
theory for solids depends primarily on the value
of T/u on the anisotropic Hugoniot. In the present
analysis this ratio is ro$~gitlyconstant in the range
50-100 kbar, but !* M reasonable to expect it
eventually to decrease as a function of s! Jck
strength, and hence to expect liquid Hugoniot
theory to become more ~cmtrate for stronger
shocks.

IV. CONCLUSIONS

A method for extracting true thermodynamic
information from a wave-profile analysis has been
illustrated with data on 6061-T6 Al. In addition to
obtaining proper thermodynamic variabies of the
material undergoing fast one-dimensional deforma-
tion, an equation of state for the material can be
measured at stresses intermediate between the
low values obtained in static experiments and the
higher values in shock experiments where strength
corrections presumably become smaller.
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Irreversible thermodynamics of overdrive shocks in solids
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An Isotropicsolid, capabieof transporting heat and of undergoingdissipativeplastic
flow,is treated. The shock is isssumedto be a steady wave,and wry phase changesor
macroscopicinhomogenelticswhich might be inducedby the shock are neglected. Under
these conditionsit is establishedthnt foran overdrivenshock, no solution is possible
without heat transport. and when theheattransportisgovernedby thesteadyconduction

equamrn,no solutionispossiblewithoutplasticdissipationas well. Upper and lower
boundsare establishedfor the themmdynamicvariablm, namely the shear stress, tempera-
ture, entropy, plastic strain, and heat flux, as functionsof compressionthrough the shmk.

L INTRODUCTION

We have recently discussed the irreversible-
thermodynamic theory of flowprocessesin
solidsI-J me Prwm consideredincludesimul-

taneous elastic strain and plastic flow,where plas-
tic flowis any dissipativerearrangementof the
atoms in a solid. The theory is expressedin three
coupledsubsetsof equations: the continuum-
mechanicequationsfor conservationof mass,
momentum,and energy;the thertrmelasticequa-
tions which relate variationsin the elasticstrains,
stresses,entropy, temperature,and so on; the ther-
moplasticequationswhich defineplastic flowand
Specify the entropy generation. When the thertnoe-
Iasticcoefficients,which are the stress-straincoeffi-
cients, the anisotropicGriineisenparameters,and
the hear capacity at constant elasticconfiguration,
and the plasticconstitutiverelationsare known,
the equationscan be imegrated from initial condi-
tions to find a generalflowprocessof a solid.

When applied to the problemof weak shocks in
salids,i [his work providesan improvementin the
descripuonof the shock processin two ways:En-
tropy terms in the stress equationsare properly in-
cluded (insteadof using Hooke’slaw)and the en-
tropy production is properlyexpressedin terms of
plastic flow(insteadof using viscousfluid dissipa-
tion).i Further, the themy can be used to determine
the plastic flowbehaviorin the weak-shockpro-
cess,from measurementsof the shock profilesand
the polycrystallinethermoplasticcoed%cients.zFi-
nally, a solid-stateHugoniot theory has been given
for the first time, from which it is possibleto
determineaccurate equation-of-statedata from
weak shocks in solids.’

For overdrivenshocks,4there is very little exper-
imental informationabout the nature of the shock
process, The shock is generallytoo fast to be ex-
perimentallyresolved;an experimentalupper limit
for the rise time for shocksof severalhundred kbar
in severalmetals is 3 ns.$ Howeter, by applying
the same principleswe have previouslyused in the
weak-shocktheory, it is possibleto learn a great
deal about the processof overdrivenshocksin
solids,even without knowingdetailsof the plastic
constitutivebehaviorof the material. The purpose
of the presentpaper is to developthis theory of
overdrivenshocks in solids.

The solid material is assumedto be isorropic,ac-
cording to the definitionof Ref. 1,and capableof
transportingheat and of undergoingdissipative
plastic flow. Polycrystalliiseeffectsare neglected;
somejustificationfor this is given in the Appendix.
Shock-inducedphase transitions,such as melting
~zd other structural changes,artd shock-induced
macroscopicinhomogetwties,such as cracks and
local hot spots, are a!so neglected. The shock is
assumedto be a steady wave. The Iheory has been
developedwith applicationto polycrystallinemet-
als in mind, but it might be valid for some non-
metals as well.

11. RAYLEIGH-LINEEQUATIONS

A. The conservationquations

The shock is a plane wavewhich propagatesin
the x direction;y and z are equivalenttransverse
directions. Lateral edgeeffectsare eliminatedby
specifyingthat there is no material motion in
transversedirections. Mass elementsof the materi-

5597
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al are pianar slabs of infiniteaimidthickness,nor-
mal to the propagationdirection. The Lagrangiart
coordinateof each mass element is X, which is
equal to the Iaboratnrycoordinatex of the mass
elementbeforethe shock arrives, i.e., at the time
t= – s. The mechanicand thermodynamicprop-
erties of each mass elementare functionsoft, so
for the wholematerial these prope~ieaare func-
tions of X and r. The densityis p, the volumeper
unit mass is V=P- 1,the material velocityis u,
compressivestressesin the normal and transverse
directionsare, respectively,u and u–27, so the
shear stress is r. Quantities in the initial state (&-
fore the shock)are denotedby subscriptu, and
6= 1—V./V. m=ures the total compressionfrom
the initial state. The heat flux is J.

The shock is assumedto be a steady wave, mov-
ing at constant velocityD. The steady-wavecondi-
tion is that any propefiy F(X, C)dependsonly on
the Lagrangiansteady-wavevariableZ= X–Dr:
F(X,t)=F(Z). Equivakntly, with z =x –Dt the
laboratorysteady-wavevariable,the condition is
F(x,r)=F(z). The two variablesare related by

dz=(p/pa)dz.
Bec..xe of the steady-wavecondition,the entire
space and time dependenceof any functionF(t)

(1)

on the Rayleighline is specifiedby a singlevari-
able.

The initial conditionsare that the stresses,the
material velocity,and the heat flux are zero in the
state ahead of the shock,

Ua= Ta= Ua=Je =0 . (2)

First integralsof the equationsfor conservationof
mass and conservationof momentumare, respec-
tively,

E=v/D , (3)

u=pah . (4)

The Rayleighline is the a(c) relation through the
shock process;from (3)and [4) this is

u=p~D2c . (5)

Sincetne transversestressesdo no work, the in-
crementalcenter-of-masswork done on the materi-
al is dW= –c7ffV per unit mass. The incremental
heat transfemd to the material is dQ per unit
mass, so conservationof energyrequires

dU= –udV+dQ . (6)

This equation includes arbitrary entropy genera-

tion, correspondingto whateverpart of the work
dW is dissipated,in addition to the entropy genera-
tion due to heat flow. It is convenientto eliminate
Q for J, becauseJ is the functioncustomarily relat-
ed to the material heat-transport properties. For a
steady wave the continuityequation is simply
a’Q=oY/paD, and the energy is integrated on the
Rayleighline to give

u– u.=+D22+J+p.D. m

B. The thermodynamic quations

The thermodynamicequationsincludeboth ther-
moplasticand thermoplasticsubsets;the derivation
proceedsas follows.1 Total symmetric strain mea-
sures may be taken ~ &ij= ~ (uij+ Uji), where uij
are velocity gradients; Elj increments are composed
of elastic and plastic parts: dqj =d~fi +dqf; the
dc~ are related in the usual way to variationsin
stresses,energy,entropy, and so on, and dcf are
related to plastic constitutivebehaviorand to the
entropy production. Note that all these thermo-
dynamic equationsare Lagrangian, in that they re-
late variouspropertiesof a given mass element. In
the presentcase of plar.e-wavemotion there are
only four independentstrain variables: d~~, dc~
=dc&, dc~, and de~=d~~. The boundary
conditionof no transversemotion requires
d~m =dc= =0, and the assumption that the plastic
flow isvolume conservingmeansde~ +2dEJ =0.
There r~mtainonly two independentstrain vari-
ables,which may be taken as the total compression
e and the plastic strain 4, wheredv= –de~. It is
also convenienton occasionto use V or p in place
of c.

The thermoplasticequationsmay be derived in
completetenscxform, appropriate for arbitrary
elastic strains, by taking dc~ and dS as indepen-
dent variables, whereS is the entropy per unit
mass. Theseequationsmay then be simplifiedfor
the presentgeometry. The results for the energy
U, the stresseso and ~, and the temperature T are
the following):

dU= TdS–udV–2Vrd@ , (8)

da=pyl TdS–Bl ,dlnV–(Bl, -Blz )dt , (9)

dr= ;p(y, – . 2)TdS – ~(Bll –Bzl )dln V

– :(BI1 < ;B22+;BZ3–Blz –B21 )dd , (10)

dT=C; ’TdS – Tyldln P”–T(yl --y2)dt11. (I1)
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Here the Voigt indicesare 1=XX,2=yy, 3=z?.
BdBare the adiabaticstress-straincoetlicients.yd
are the amsotropicGruneiseilparameters,and CV
is the heat capacity at cons[antelasticconfigura-
tion.b We also have to specifythe entropy produc-
tion. There are rwo sourcesin the present theory:
dQ contributesto TdS, and also the plastic work
dJV~=2V’rddt,which is assumedto he totally dissi-
pative,

TdS =dJ/p.D + 2Vrdti . (12)

Concerningthe energyequation,we no[e that
the continuummechanicform (6)and the thermo-
dynamic form (8)are the same when (12)for TJS
k used. Becausewe have used the emropy as an
independentvariable,:he energyw;uationis not
coupledto the other thermodynamicequations
(9)–( 12), and so the energyequation does not have
to be solvedsimultaneouslywith them.

To completethe descriptionof the process,two
more equationsdescribingdynarmcresponse
characteristicsof the mat~rialare need~. The
plastic constitutivebehavioris expressibleas a
dependenceof the stress which drives the plastic
flow,namely the shear smss r, on the plastic
strain and strain rate and on the thermodynamic
stare, approximately

r= M@,i, V,s) . (13)

The heat transport behaviorrelates the heat
current J to the temperaturegradient and other
variables

J= J(grad T, V,S,... ) . (14)

The completeset of Rayleigh-lineequationsis
then (5) togetherwith (9)–( 14). We assumethe
therrnoelasticcoefficients1.?aB,y8,Cvare known as

functionsof the thermoplasticstate.There are

then sevencoupled Rayleigh-lineequationsin the
sevenvariables: u,r, T,S, IJ,J,al:d one space-time
variable,z, for example. These equationsare in
principlesolvablefor the shock process. On the
other hand, if one of the Rayleigh-linevariables
were known from experiment,e.g.,z(c), or T(f), or
far exampleu(() at a fixed1’, then these equations
can in principlebe used to determinethe plastic
constitutiverelation (13)through the sha.k. An
altcmate point of view,which we pursue in the fol-
lowingbecausethere is no experimentaldata on
the Rayleigh-linevariables,and txxause the plastic
constitutivebehaviorin overdrivenshocks is entire-
ly unknown,is to omit the last two equationsof
the set, and to study Eqs. (5)and (9)– (12),which

are fiveequatmns in the sixvariables,J,r,“rS,IJ,J.
Followingthis, some informationon the heat
transport mechanismwill be used to extend ilie

study to the space-timedependenceof the process.

III. THEOREMSON THE SH~.;CKPROCESS

A. Necessity of heat transport

Theorem 1. For an overdnven shock in a solid,
no solution is possiblewithout heat transport.

The proofdoes not dependon :ne mechanismof
heat transport. Heat transport is neededat the be-
ginningof the shock, ;Obring a up to the Rayleigh
line, as shown in Fig. 1. The elastic line corre-
spondsto adiabatic (dS =01 uniaxiidelasticcom-
pressionof the material under plane-waveboun-
dary conditions(no transversemotion). The slope
of this line at 6=0 is pdc~, wherec1is the longitu-
dinal sound velocityin state a. The elasticprecur-
sor velocityis CP~ Cf,whereCPcan be greater than
c1by only very small finite-straincorrections. The
definitionof an overdnven shock is D > CP,the
slope~f the Rayleigh!ine for a steady-waveshock
is pdD2, so for an overririvenshock the Rayleigh
line is steeper than the elastic line, as shown in
Fig. 1. If plasticflow takesplacein the small-cre-
gion, it can only reducea belowthe elastic line at
small c. Thereforeheat must be transported to the
material in the initial stageof the sh~k.

WOONIOT —
/

RAVLE16H

u
LINE

FIG. 1. Showingthe proofof Theorem 1. The elastic
linehasa fixedslopeofpee}at c=0; theRayleighline
hasslopep.D2 whichincreaseswithshockvelocityD.

37



5600 DUANEC. WALLACE 24—

The proof may be shown directly from the
Rayleigh-lineequations. We set the h~t transport
to zeru: dJ =0. Then from (12),TdS =0 at state
a, since Ta=0. Also at state a, p=p., B1I=pac/,
B,, -Bll =2G, where G is the adiabatic shear
modulus,so (9)at state a is

du=p,c:de–2Gd$ .

Differentiatingthe Rayleigh-lineequation (5) for a
fixedD gives

SincedO~O by definition,no solution is possible
when D >C1. When heat transport is included,
dJ >0 and a solutionis possible.

B. Family of part~al solutions

Considera givenmaterial with specifiedproper-
ties and a fixedshock strength correspondingto a
shock velocityD. The state behind the shock is
the thermodynamicequilibriumHugoniot state,
denotedby subscriptH, where the Rayleighline
reachesthe Hugoniotat •~. The thermodynamic
variableshave the valuesc~,r~, TH,SH,IJH,and
becauseof equilibriumthe heat currentvanishes:

JH=0 . (15)

Becausethe shock is a continuousprocess,the
Rayleigh-linesolutionis continuous,i.e., all the
variablesare continuousfunctionsof c for
0< E< 6//.

We definea partial solutionas a setof sixfunc-

tionsu(c),tic),?-(c),S(6), ut(~),and J(c) which
are continuouson t)g cs ~fl, which take on the
correct valuesat 6=0 and •~, and which satisfy
the five Rayleigh-lineequations(5)and (9)–(12).
A partial solutioncan be constructedby taking any
function for one of the variables,for exampleS(e),
which is continuousand which takes on the corrert
valuesat c= Oand ●fl,and by solvingthe five

Xayleigh-lineequationsfor the other five functions.
Given S(E), c “’vtionfor the other fivefunctionsis
unique,beca. for the tetragonal symmetryof the
material under plane-wavecompressionthere are
three independentthermoplasticstate variables,
which can be taken as S,c,u, and u(~) is fixedby
Eq. (5). Becauseone functionof a partial solution
is arbitrary, the family of partial solutionsis infin-
ite. Among these, many will be unacceptableml
simplephysicalgrounds, as we wi:l see shortly;
among the physicallyacceptablepartial solutions,

one is the correct solutionfor the material under
consideration.

It is possibleto establishan importanr ordering
of the partial solutions. Starting from one partial
solution,we generateanother one infinitesimally
removedby adding to S(6) an increment&S(d,
which is continuousand which does not change
sign on Og cs ~fl, and which vanishesat c=0 and
at ~“. From one givenpartial solution,all partial
ioluticns can be generatedin this way. Functional
relationsamong the variations6S(C),6T(c), and so
on, at a fixedvalueof 6, can be found from Eqs.
(5)and (9)–(12) evaluatedat &=O:

6U=0 , (16)

tia=pylT~ –-(BII –Blz )b# , (17)

– ;(BII +;B22+;B23–Bll –Bzl MI ,
(18)

tiT=C; ‘TN – T(y, –y~)bo , (19)

These relationswill eventuallybe useful in estab-
lishingbounds for the Ray]eigh-linesolution
throughout the sh.ck.

The coetlicientsIn these equationsare complicat-
ed, but a consistentuse of the small-anisotropyex-
pansion is std%cientto determine the relativesigns
of the variations5S(6), bT(c), and so on. The
small-anisotropyexpansionis definedas followsl:
Throughout the shock proctm, the shear Stiess r
should be small compared to the shear modulusG,
so any thermodynamiccoetlicientf =~(c,S, r) can

be expandedin powersof T/G at constant c,S:

/(~, S,r)=~(~,S,O)+( coetllcient)(~/G)+ o““ .
(21)

For the neededcoefllcientswe write explicidy the
leadingterm in the expansion,which is defi:d in
isotropicthermodynamicspace (r= O),and denote
by + - “- all terms of relativeorder r/G and
higher:

y,=y+ , . . ,

y2=y+ . . . ,

B,,=B++G+ o“ “ ,
(p)

B,, –B,~=2G+ “““ ,

Cq=c”+ ““ “ ,

.JU
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where y is the ordinary (koti~pk) Griineisen
parameter. B is the adiabaticbulk modulus,and
C} is the heat capacity at constant volume.

Relativesigns of the variations /3S, tiT, and so
on. are givenby the leadingorder evaluationof
Eqs. [161–(20). In viewof (16)and (17),the first
term on the right of (181may be neglectedbecause
it is of order r/G times the second term. Alsobe-
cause K}. ~ VGfor shocks in solids,’the second
term on the right of (19)is ~(r/G) times the first
term. Then to leadingorder the functionalvaria-
tions at fixede are relatti by

bd~(~)=(pyT/2G)bS(e) , (23)

6T(c)=( T/C). )N(c) , (24)

&fiE)=pJms[E) , !25)

Me)= – ;pyTbS(c) . (26)

Therefore,givenany partial solution,functional
variation to a new partial solutionhas 6S(d,
5T(E), &J(E),tif(c) of the same sign everywhere,
and brtd of the oppositesign everywhere. The
next step is to introducephysicalrestrictionsthat
will limit the range of partial solutionswhich are
acceptable.

C. The minimum-r partialsolution

For a solid, r cannot be negativeduring shock
compression,hence?=0 is a lower bound for r(e)
on the Rayleighline. We can construct a partial
solution,the minimum-r partial solution,by speci-
fyingf(~) as follows: dc)=O for 0<6 <efi –5,
where b is a positiveinfinitesimal,and T(6)in-
creasescontinuouslyto r~ at c~. If we want to set
~“ =0, i.e., to approximatethe solid Hugoniotby a
fluid Hugoniot,then the minimum-~partial solu-
tion has r(~)=0 everywhere. SpecifyingT(C)deter-
minfi a partial solution,whosepropertiesfollow
directly from Eqs. (5)and (9)–(12), and from the
orderingof the familyof partial solutions:

Theorem 2. The minimism-~partial solution
represents,in the regicn where T(C)=:0, an inviscid
tluid with heat transport, and it constitutes a
bound for physicallyacceptablesolutions,in which
T(E), S(E), ti(d, J(c) are al! upper bounds.

The qualitativeforms of T(c) and ~(c) for the
minimum-r partial solutionare shown in Fig. 2.
The Rayleigh-lineequationssimplifyin the region
where ~=0. The stress becomesan isotropicpres-
sure P, and all the thermodynamiccoefllcientsare
evaluatedat T=O, which is the state corresponding

Tl# )

FIG. 2. Behaviorof T(c) andJ[d on theRayleigh
Iir,efor an inviscid fluid with heat transport or ~ soiid
with r!E)=0.

to the leadingterms in (22). Equation (10)is

o= –G(dln V+ ~d$) , (27)

which allowsd@to be eliminatedfrom the set.
Equations(5),(9), (11),(12)then become

u =P =pa D% , (28)

dP=pyTdS+p VoBdc , (29)

dT=pyV. Tde+C; ’TdS , (30)

TdS=aV/paD . (31)

D. The minimum-#partialsolution

The plastic strain must be nondecreasingby de-
finition: drjzO. Hence 0=0 is a lowerbound for
$(c) on the Rayleighline. The condition$=0
representsthe responseof an elastic solid with heat
transFort and with infiniteyieldstrength;we refer
to this hypotheticalmaterial as a nonplasticsolid.
If we set 0(6)=0 the Rayleigh-lineequationscan
be solved. Figure 3 shows the behaviorof~(c) and
T(c) in this case: J(d has a maximumat some
point ~b,and T(c) has a maximumat cd> ~b.
This solutionis not a partial solutionbecausethe
variablesdo not reach the Hugoniotvaluesat ef{;
we find, in particular, T(cH ) < Tfl and J(cfl )c O.
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c
FIG. 3. Behaviorof T(c) and J(6) on the Rayleigh

line for a solid with heat transport and with rJ=O (a
nonplasticsolid).~(cl has a max:mum at ~band T(c)
has a maximumat t,j > eb.

in other words, the nonplastic solid does not pos-
sess a steady-wave shock wlution. But we are only
interestedin this solutionin the region0< c < cd;
beyondthis, one of the thermodynamicvariables
can be arbitrarily continuedto the Hugoniotstate,
generatinga partial solution. This partial solution,
with LO(6)=0 for Og cs Ed,is called the mini-
mum-t partial solution. Propertieswhich follow
at once from Eqs. (5)and (9)—(12)and from the
ordering of the familyof partial solutionsare the
following.

Theorem.?. The minimum-~ partial solutionin
?h.zregionwhere d(c)= Orepresentsa nonplastic
solid, and constitutesa bound for physicallyac-
ceptablesolutionsin which T(6), S(c), J(6) are
iower boundsand T(E)is an upper bound.

The conditiondrJ=O simplifiesthe Rayleigh-line
equationzconsiderably. Combining(5)and (9)
givm

PY[Td~=(P#2-PV#, , )d~ , (32)

and (11) and (12)become

dT =py, V. Tdc + C; ‘TdS, (33)

TdS=dJ/poD . (34)

These are three equationsin T(E), S(c), J(c). The
equation for T(C)is then uncoupledfrom the above
Set:

dr= +p(~l –yZ)TdS+ ;pVa(B, , –f312)dc . (35)

E. Solutions continuous in space and time

To study the space and titne dependenceof the
shock process,we need to know somethingabout
the dynamic responsecharacteristicsof the materi-
al. There is currently no sound basis for estimat-
ing plastic flowbehaviorunder conditionsof over-
drive shocks. However,a respectableestimateof
the heat transport mechanismcan be made, and we
will do this specificallyfor metals.

For an ordinary metal, solid,or liquid phase, un-
dergoinga shock to the few Mbar range, the
compressionis about a factor of 2, and the tem-
perature rises to the order of 104K. These
changesare mild for most metals, so the nature of
the electron-phononsystem in its simplestapproxi-
mation is not significantlychanged. We can still
think of electronscarrying the heat, and beingscat-
tered by electronsand phonons. Further, if irrever-
siblethermodynamicsis approximatelyvalid, the
heat current should be givenapproximatelyby the
steady conductionequation J = –K gradT.

Elementary solid-state themy for electroniccon-
duction at high temperatures(Tz Debyetempera-
ture) expressesthe conductivityK asa- t1

where C is the electronicheat capacity per unit
volume,uF is the Fermi velocity,and rt is the
dominant electronicrelaxationtime, The
electron-phononrelaxationtime is (CP-10-14 s at
room temperatureand should decreasethrough the
shock approximatelyas T- The electron-
electron relaxationtime is TC,-10- ‘z s at room
temperatureand should decreaseapproximatelyas
T ‘2. Hence f- will becomedominant at sutll-
ciently strong shocks,but up to a few Mbar, (CP
should ordinarily IKdominant. With ICPas the
electronicrelaxationtime, the aboveexpressionfor
K has the followingpropertiesg- ]1: K is indepen-
dent of T, and K has only a small densitydepen-
denceof order p top 2. So in the shocksunder
consideration,A-is roughlyconstant.

The thermodynamicvariablesa, r, T, S, d, J
should be continuoussingle-valuedfunctionsof
spaceand time through the shock, or what is
tquivaient, they should be continuoussingle-valued
functionsof z. This requirementleads to a condi-
tion on the behaviorof T(E) and J(6), which we
will derive. The heat-conductionequation for a
steady plane waveis

~= –K(tlT/itx),= –K(dT/dz) , [36)
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or with dc >0,

(37)
dz /d6

For overdrive shocks,Theorem 1 impliesJ(6)
and dT/dc are both positiveat small c. As c in-
creasesEq. (37) allows the following possibilities.
If dT/dc=O on a finite intervalwhileJ(c)> O,
then ●(ZI is discontinuous. If dT/dc <0 on a finite
interval while J(E) >0, then E(Z)is double valued.
If J(6) =0 on a finite intervalwhiledT/dc >0,
then z [E) is undefined. If J(c) <0 on a finite inter-
val while dT/dc >0, then c(z) is doublevalued.
All of thesecasm can be rejected,becauseif c is
discontinuousor doublevalued in z, then the ther-
modynamicvariablesare also discontinuousor
double~alued in z. Then either J(c) and dT/dc
both remain positiveon 0< c < •~ or elseboth are
zero at somec’< efl.

In fact, both J [c) and dT/dc must remain posi-
tive, as can be shown from the Rayleigh-lineequa-
tions. In (11)the last term on the right is of order
f,/G relative to the secondterm, so the sign of the
last two terms together is the sign of the second
term, from which it followsthat T(d.S/dc) c O
when dT/dEs O. Then because r(dU/d6) ~ O,(12)
implies dJ/d~ <0 when dT/dcs O. Now suppose
J and dT/d6 are zero at E’c EH. Then if
dT/d~s O all the way to CM,dJ/dc CO all the way
to c~, and J (CN)<O, which violatesthe final con-
dition (15). If insteaddT/d6s O for c’sc s6”,
wherec“ <●“ and dT/de >0 for a finite interval
of c > ~“. then J(6) <0 for a finite intervalof
c > 6“ and 6(z) is doublevalued. Hence we have
the followingtheorem.

Theorem 4. For an overdrivenshock in a solid
with heat conduction and dissipativeplastic flow,a
stead}.-wavesolutioncontinuousand singlevalued
in z is possibleonly under the conditions~(c)> O,
dT/d~ >0, on O<e, s 6M,where either equality
can hold on a sum of intervalswhosetotal length
is zero.

F. Bounds throughout the shock

It is now possibleto construct upper and lower
bounds for the temperature through the shock pro-
cess. The constructionis shown in Fig. 4, where
the curv= are thosecomputed for a 0.8 Mbar
shock in 2024Al, with the approximationrfl =0.
The inviscidfluid curve is the 7=0 partial solution

[Theorem 2 and Eqs. (27)–(31)]; it reaches TH at
C*and so, becausedT/dc >0 for 0< c <En by

-.
2024AIO8 Mbor / \ I

/
/
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/ \
\
1// \

// \\;‘“:%’0 \-: \/ \/.-
‘r-Td -- -+‘fNONJ:5TIC
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“o 01 03~, 02

FIG. 4. Solid lines show upper and lowerbounds for

T(E) on the Rayleigh line. Curves plo!ted are for a 0.8
Mbar shock in 2024Al, where r,, =0 has beentaken for
approximation(61{= 0.324, TH= 2365 K).

Theorem 4. an upper bound for T(E) on 6“
s cs CHis TH. The nonplasticsolid curve is
the IJ=O partial solution [Theorem 3 and Eqs.
(32)– (35)];it has a maximumof Td at cd and so,
becausedT/dc >0 for Oc 6c ~“, a lower bound
for T(c) on cds c g cl{ is T~.

For the real shock processin a solid with heat
conductionand dissipativeplastic flow, the T(c)
curve must lie within the bounds illustrated in Fig.
4, must be a nondecreasingfunctionof c, and must
reach TH at 6H. Further, with the upper bound
for T(E! prescribed as in Fig. 4, a partial solution
of the Rayleigh-lineequationscan be found, in
which S(6), ~(c), J !c) are upper boundsand T(C]
is a lowerbound. Also for the lowerbound T(c)
shown in Fig. 4, another pm tial solutioncan be
found, in which S(c), O(c),J(c) are lowerbounds
and r(c) is an upper bound. This givesa great
deal of informationa’wut the shock process.

G. Necessityof plasticdissipation

With referenceto Fig. 4 and with fn =0 for ap-
proximation,we considerthe possibilitythat the
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invisuld fluid solution for T(c) remains less than
TH for Os E< EH and reaches TH at ~H. In his
classicpaper on shocks in gases,Rayleigh’:has
shown that this is the case for sufficientlyweak
shocks, but not for shocksstronger than a certain
limit. We expressthis limit in the form D
=(1 +x)cE, whereCBis the “bulk sound veloci-
ty,”’gwen by PC;=B. For densesystemssuch as
pa ~ I g/cm’, and correspondingvaluesof y. and
C}, we find x - 10-Z. This valueof D is certainly
less than the longitudinal sound velocity, so we
conclude that for overdnvenshocks the inviscid
fluid cume of T(c) passesabove TH at some
C*< ~~, u shown in Fig. 4. It is thereforepossible
to establishthe followingtheorem.

Theorem 5. For an overdrivenshock in a solid
with heat conduction,no solution is possible
without plastic dissipation.

The theorem is most easilyproved from Fig. 4.
The inviscidfluid T(c) correspondsto T=O; there-
fore, in order to have T(c)< TH for c> c*, we
must have T(E)>0 for c > ~“. The nonplasticsolid
T(E) correspondsto 0=0; therefore,in order that
T(c) z Td for E> cd, we must have t(c)> O for
c > cd. Thus in the last part of the shock process,
for c > ~“ and c > ~d. the plastic dissipation
dW~=2Vrd$ is greater than zero.

This result is approximatelythe counterpart for
solidsof Rayleigh’stheorem’zfor viscousheat-
conductinggases. Physicallyit arises becausethe
heat which must be transported to the initial re-
gion of an overdtivenshock, in order to bring v up
to the Rayleighline according to Theorem 1, has
to be generatedby plastic dissipationin the later
stage of the shock.

IV. SUMMARYAND DISCUSSION

We have studied the irreversible thermodynamic
processof overdrive shocks in an isotropicsolid
with heat transport and dissipativeplastic flow.
Shock-inducedmacroscopicinhomogeneitiesand
shock-inducedphasechangesare not considered.
The theory developedis expectedto apply to poly-
crystallinemetals, and possiblyto ductile non-
metals as well. Argumentscan be givenfor the
neglectof pdycrystallineeffects(the Appendix),
but more experimentalinformationon this question
is needed.

Somecommentscan be made concerningthe
steady-waveassumption When a shock is initiat-
ed, for exampleby a plate impact, the wave front
presumablyevolvesas it moves. The assumption is

that it approachesa steady wave (evolutionap-
proacheszero),and that for all practwal purposes
the real shock ISwellapproximatedby [he Iimitlng
steady wave,after a distanceof travel of mmy
shock widths. The steady-waveassumptiondoes
not hold for weak shocks in sohds~”’becausethe
elastic precursor travels faster than the plastic
wave and the entire shock continuesto spread in-
definitely. Also, for overdrivenshocksa phase
changecould split the wave into two components
travelingat differentvelocities Obviously,then,
the steady-waveassumption implifi some re-
strictionson the dynamic responseof a material.
We note that heat transport according to the
steady conductionequation is compatiblewith a
steady wave.

The conceptof the familyof partial solutionsis
quite usefulin analyzingthe shmk processbecause
these solutionsdependonly on the Imt-known ma-
terial properties,namely. the therrnoelasticcoet%-
ciutts. F“ora given material, with thermoplastic
coefficientsknown as functionsof the therrnoelastic
state, the familycontains all continuoussolutions
with the proper initial and final values,which are
consistentwith the therrrmt%tic coefficientsand
consistentwith arbitrary (unspecified)dynamic
responseproperties. Membersof the familyare or-
dered by observingthat givena partial solution
functionalvariation leads to a new partial solution
with 5S(6), bT(6), bd(c), W(6) of the same sign
everywhere,and &tc) of the oppositesign every-
where. Then becauser must be non-negative,
r(c)= Odefinesa uniquepartial solutionwhich
givesupper boundsfor S(c), T(E), O(c),J(c)
(Theorem2). And because@must be non-
negative,tJ(6)=0 definesa partial solution,unique
up to EdwheredT/cf~=O, which giveslower
bounds for S(6), T(E), 4(6), J(6), and an upper
bound for tic), for Os 6s cd (Theorem3). Fur-
ther, the condition that the solutionbe continuous
and singlevalued in z, coupledwith the steady
heat-conductionequation, requires~(t) to be non-
negativeand T(E) to be a nondecreasingfunction
of 6 (Theorem4). This theorem then narrows the
boundson T(E) and on the other variablesas well
(Fig. 4). Finally, it is establishedthat for an over-
drive shock in a solid no solution is possible
without the operationof both dissipativemechan-
isms, heat transport and plastic flow (Theorems I
and 5).

An observationis in order on the use of thermo-
dynamicsin the theory of shocks. In the present
work, irreversiblethermodynamicsis assumed

—— —
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valid: this means

IRREVERSIBLE THERMODYNAMICS OF OVERDRIVEN SHOCKS . . .

thermodynamic functions are de-
fined throughout the shock, and [hey are reiated by
irre~wsiblc-thermodynamic relations. [t is then
possibleto solvefor, or at least to estimate, the
space~nd time depe[ldence of the shock process,
and from this solution it is possibleto determine
whether or not irre~wsible thermodynamics is in
fact valid. We will pursue this line of investigation
in the fu!ure. [n the followingpaper, the present
theory is used as basisfor numericalcalculations
for some representativemetals, and it is found that
the Rayleigh-linesolutionis narrowly boundedand
the nature of the shock processis revealedin some
detail.
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APPENDIX: POLYCRY”STALLINEEFFECTS

The question is, for overdriven shocks in soiids,
is the shock width ior rise time) influencedby po-
lyc~stalline effects;more specifically,does the
polycrystalstructure give rise to a significantdissi-
pation in the shock process. Such dissipation
could result if the shock ~elocityis differentin dif-
ferent crystallographic directions and if the shock
thickness is small compared to the grain size.
Then in any two neighboring grains of different
orientmion. the shock will move faster in one and
will Iransfer energy sideways to the other grain
ahead of the shock front there; this is dissipative,
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and it broadensthe shock front. We note thal dif-
ferent sh~xk velocities in differentcrystal directions
can result if there is a noticeableshear stress in the
shockedstate, isndespeciallyif that shear stress is
differenrfor the dit~erentdirtivions. On the other
hand, if the Hugoniotshear stress is insigniticisnt
for shocks in all crystal directions,and if the shock
is a steady wave, then the Hugoniot lies in isotrn-
pic thermodynamicspace (stresssystem is isotrc,pic
pressure]and the shock velocitymust also be iso-
tropic.

As for experimentaldata, there is very little to
help resolvethe question. Grains in metals ritnge
nominallyfrom 10-3 to 10-~ cm. According to
the present theory, the width of ovcrdnven shocks
in metals is of order 10–6cm, so the shock thick-
nessis small compared to the grain size. The same
should be true for any nonmetalsto which the
present theory might apply. For very weak shocks
in NilCl(3—15kbar), a largedifferencein plastic
wave %elocitiesin differentcrystal directionshas
beenobserved.I) This has beenexp]isinedby ~tlri-

buting the plastic flowentirely to primary slip.’4
For stronger shocks,driving higher order slip,
dependenceon crystal orientation is expectedto be-
come weaker. Shock velocity-particle\’clocity
measurementsfor NaCl in different crystal direc-
tions all lie on the same curve up to 230 tibar IRef.
IS);a phase change which beginsM 230 kbar in-
troduceseffectswith which we are not concerned
here. This result suggeststhat polycrystisleffects
should not be important in NKJ up to 230 kbar.
For metitlswe might speculatethat rl~<< all for
shocks in the Mbar range, so that shock velociry is
insensiti~e to crystal direction and polycrystal ef-
fectsare correspondinglynegligible, Any experi-
mental informationwhich bears on this question
would be welcomein the future.
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Nature of the process of overdrive shocks in metals
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(Received6 Februa~ 1981)

Within the bounds established by the formal theory of cwerdriven shocks in solids,an
approximatesolution is constructed,and a consis~erttsetofapproximationsforthe ther.
modynarniccoetlicientsis described. Numerical calc~lationsof the temperature, entropy,
shear stress. and plastic strain, as functions of compression, are shown for shocks up to
0.8 Mbar in 2024Al, and up to 3.0 Mbar in Pt. For well-overdnvenshocks in metals
the shock entropy is generaredby heat conductionin the front part of the shock, the heat
is generatedby plastic flowin the last pan of the shock, and theshock nse time is of or-
der 10- s.

L INTRODUCI’ION

We have obtainedextensivetheoreticalinforma-
tion about the irreversible-thermodynamicprocess
of overdriven shocks in soiids. ’ This theory was
developedfor an isotropicsolid with heat transport
and dissipativeplastic flow,and a steady-wave
shock which d= not induce phase changesor
macroscopicinhomogeneitiesin the solid. The
purposeof the present work is to carry out numeri-
cal calculationstc see what can be learnedabout
the detailsof the shock process, without assuming
anything about the plastic flow behavior. Calcula-
tions are done for 2024Al for shocksof 0.4 and
0.8 Mbar, and for Pt for shocksof 0.5 – 3.0
Mbar. Informationi: obtained m temperature,en-
tropy, shear stress, plastic strain, and heat current,
as functionsof compression,and the space and
time dependenceof the processis esumated.

All the approximationsused in the numerical
evaluationsare describedin Sec. II, and their phys-
ical basesand implicatirrns are discussed. Results
are tabulated and . 1 in SK. III, and the
salient featuresof OVU. shocksin metals are
summarized in Sec. IV. i ... ,tatus of an investiga-
tion into the validityof irreversiblethermodynam-
ics in shock theory is mentionedin Sec. IV. For
the two metals s!udiedhere, propertieson the
Hugoniotare tabulated in the appendixes.

11. AN APPROXIMATE SOLUTION

A. The conduction front

In general,except for shocksnot far abovethe
overdriventhreshold, the shock processis narrowly

.x

boundedby the theory of Ref. 1. The bounds for
the temperature T(c) for a 2.5 Mbar shock in Pt
are shown by the solid lines in Fig. 1. Our aim is
to conswuctan approximate T(E)curve within
thesebounds,thus defininga parzialsolution,and
then to solveas far as possiblethe Rayleigh-line
equationsfor the other functionsof this partial
solution,the entropy per unit massS(c), the heat

‘r

1 [ 1 I I

P9 2 5 Mbw ~.-=

/“ \

/ \

/ \
/ INvISCIO \

> FLUIO \
\

//

/““

NONPLASTIC

OJ 1 I ~–
01 02

FIG. 1. Solid lines show upper and Iover boundsfor
T(f) for a 2.5 Mbar shock in Pt. Our a~proximatesolu-
tion takes the lowerbound (nonplasticsolid curve)up to
point c, and the linear interpola:~on(dashedline)from
T,(C.) to T~.(E/,1).
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cumentJ(c), the plastic strain d(~), and the shear
stress f(E~.

At the beginningof the shock,in statea, T and

~ are zero. As the uniaxial compression begins, r
increasesdue to elastic response of the material but
dI remains zero unit] r reachesthe static yield
value. When ~ increasesabovethe static yield,
plastic flow proceeds. However,since the shock
processis quite fast, its timescalebeinggoverned
by heat conduction,the plastic flowwill be of
negligibleimportanceuntil r rises high enough to
drive d)ai a very high rate, a rate commensurate
with the shock rise time. Thus in the leadingpart
of the shock we should havedti=O to a good ap-
proximation,i.e., we have nearly the responseof an
elastic solid with infiniteyield strength, as de-
scribedin Theorem 3.1 We take this approxima-
tion to hold up to a point c, at CC,to be determined
later. The region0< ~< Ct is called the conduction
front becauseheat must be transported to this re-
gion, accordingto Theorem 1.l The Rayleigh-line
equationsfor the conductionfront as functionof 6
are I@. (32) – (35)of Ref. 1. These equationsare
accurately representedby their leadingterms in the
small-anisotropyexpansion,and this representation
is used in the presentcalculations.

B. Tbe flowregion

After the point c the plastic flowgets goingat a
high rate, and the temperature risessignificantly
abovethe nonplasticsolidcurve. From ECto ●M,
T(6) goss from the nonplasticsolid cume to TH,
increasingmonotomcallywith c, as illustrated by
the dashed line in Fig. 1. The regionCC< ~s 6Mis
called the flow region,becausehere the dissipative
plastic flowis essentialto the process. Beforeap
proximating T(c) in the flowregion,we will study
the Rayleigh-lineequationshere in some detail.

In the flowregion, it is necessaryto keep both
dissipativemech:mismsin the equations. First
considerthe equation for dC in the small-
anisotropyexpansionthis is written

dr= –G(dln V+ ~d~)+ “““ . (1)

The leadingterms in dr are thus of order Gdc.
There are a host of first-orderterms, indicatedby
+ . . . in (1),of relativeorder T/G, which means
of order (r/G)Gdc in dr. These terms involvethe
third-order elasticconstants, the anisotropic
Gruneisenparameters,and so on. From Eq. (1)we
learn two things:

(a) Since dr is of order rdc, the leading terms
must cancel to relativeorder r/G, which implies

dd~ – ~tfln~ . (2)

(b) dr dependsessentially on the first-order
terms in (1),

In practice it is not possibleto make respectable
fitimates of all the coefficientsappearing in the
first-orderterms in dr along the Rayleighline for
overdrivenshocks in solids. If we cannot estimate
all the coe~lcientsin the first-order terms in dr,
we cannot make a meaningfulevaluationof d7 in
the flow region. We concludethat we cannot use
Eq. (1) in the flowregion.

There are three equationswhich couple the nor-
mal stressu(c), and T(e), S(c), d(c) on the Ray-
Ieighline, namely Eqs. (5),(9),and (11)of Ref. 1.
When cd~) is eliminated,the resultscan be written
as two equationsfor S(c) and d(c) in terms of
T(6). Neither of these equationsdependscritically
on the terms of relativeorder r/G; meaningfl:l
evaluationsof both are obtained in zeroth order in
the small-anisotropyexpansion. In this order the
equationsare the following:

7iiS=Cv(dT-pyV.T dc) ,

d#t=(2G

(3)

“1 pyTdS

B+ ;G)]d~j . (4)

Thus if we have an acceptableapproximationfor
T(E) in’,lheflow region,(3)can be integrated to
find S(6), then (4)can be integmttxlto find IJ(6).
The cod%cientsin (3)and (4) can be evaluated
with respectableaccuracy on the Rayleigh line for
real metals.

Finally there is the equation for the entropy pro-
duction,’

TdS =d/p6D +2V7d$ . (5)

This cannot be solvedbecauseit contains two un-
knowns,J and 7. However,becauseof the initial
and final conditions~a=JH =0, wg have an in-
tegral conditionon d.1,namely ~ “d~ =0. Hence
~aHTdS= ~aH2Vr d$, and this i: ~C~2VTdti be-
causedtl=O on Os cs 6,. This last integral is
used to definea mean shear stress (7) in the flow
region:

(6)
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Then (r) can be evaluatedfrom

(r) = L“’”
[Vc+ Vff)d~~

(7)

To emphasizean important point, this estimateof
(r) is not basedon Eq. (1)for dr, which is essen-
tially a first-orderequationand hence is extremely
diflicult to evaluate,but is basedon an integral
conditionfor TdS, namely the requirement that the
shear stress must do the correct amount of work in
the flowregion to generatethe corrmt amount of
hea, so the material reachesthe correct Hugoniot
state at the end of the shock. A reasonablyaccu-
rate evaluationof (r) can be made for real metals.

The aboveresults for S(6) and 0(6) in the flow
regionand for (r) do not dependstronglyon the
curve of T(c) in the flow region. We take simply a
straight line interpolationfor T(6) from TC(CC)to
TH(6”), and definec as the point on the nonplastic
solid T(c) curve which is tangem to the straight
line drawn from T~(c~ ). This approximationis
shown for a 2.5 Mbar shock in Pt by the dashed
line in Fig. 1. There is a technicalpoint which
should be mentioned: The approximationfor T(c)
in the flowregionshould be consistentwith the
physicalrequirementthat dtJ/d6 be non-negative.
Now dJ/dc=O at c~, and for the nonplasticsolid
partial solutionboth terms on the right side of (4)
are zero at c~, and CCk cbse t9 ~b so d$/de k zd-
ways small at Et, but it can be negative. In the nu-
mericalcalculaticmsof the present work, d@/d6 is
found to be essentiallyzero at 6,.

C. Tbe Hugoniot

We are studying shocks upwards from a few
hundred kbar, where nothing is known of the shear
stresson the Hugociot. While the shear stress dur-
ing the shock becomeslarge, driving plastic flowat
a high rate, all strain rates go to zero at the end of
the shock, and the final-stt.teshear stress is the
static yieldstress on the Hugoniot. For overdriven
shocks in metals r~ /a~ should be at most a few
percent, so neglectingr~ should not introducea
significanterror in the presentcalculations. We
thereforeset r~ =0, which reduca a~ to an isotro-
pic pressurePM.

The Hugoniotjump conditionsare the first in-
tegralsof the equationsfor conservationof mass,
momentum,and energy,evaluatedat the final state
H [see, e.g., Ref. 1, Eqs. (3) – (5)].

Sinceour approximateHugoniot lies in isotropic

thermodynamic space, the thermoplasticcoe!ll-
cients on the Hugoniotare reduced to isotropic
coefficients,e.g., yl= Y1= y, where

dP

I
py= ~.

1’
(8)

Equations for calculating T and S on the
Hugoniotand the adiabaticbulk moduluson and
ofTthe Hugoniotare wellknown.~ A well-
~tablished experimentalresult for shocks in solids
up to a few Mbar, and exceptingcases where phase
changesoccur, is that the shock velocityis a linear
functionof the final-stateparticle velocity~-~:

D CC i.SvH . [9)

The constant c and s are commonlymeasuredfor
overdnvenshocksin solids.

D. Thermodynamic coeff’rcients

In the small-anisntropyexpansions,’anisotropic
coefficientson the anisotropicRayleighline at
V,S,r are given in lowestorder by isotropiccoetli-
cients at V,S;for example,

c+ V,S,T)=C”( V,s)+ “ “ “ . (IOa)

This relation is to be understoodwhen we say “’C}
on the Rayleighline.” In the presentwork we w;I’
need y, Cv, B, and G on the Rayleighline. Fur-
ther, because.the relation betweenT and S is
evaluatedto lowestorder in the small anisotropy
expansion,which is Eq. (3), the T, V,S relationon
the Rayleighline is in fact the isotropic-space
T, V,Srelation,so (lOa)can also be written

Cq(V,T,r)=Cv( V,T)+ “00 . (lOb)

For the Griineisenparameter we use the approxi-
mationspy= const:

PY=P. Y. . (11)

The heat capacity is the sum of a lattice part Cl
and an electronicpart CC. The lattice part is
describedin terms of a characteristictemperature
(9, e.g., the Debyetemperature,where for most
metals @is less than or equal to room temperature
at P =0. If Ta~@ then the Hugoniotand Ray-
Ieigh lines211 lie in the region T~O, where
Cls 3Nk, with k = Boltzmann’sconstant, For the
conductionelectrons,degenerateelectron theory
givesCC=rT. We will neglectthe explicit
temperature-dependenceof r,b and use low-
tsmperature measurementsfor r.’ The volume-
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dependence1s8g =dlnr/dln V= 1–2, and we take
g= const for a given metal. The total heat capaci-
ty is then approximately

C},= 3.Vk~-; T , (12a)

r= ra[vivaF. (12b)

The shear modulus is entirely unknown in the
moderate shock region. The common behaviorof
pdycrystaliine materialsat P =0 is G/B = con-
stant in T, exceptnear melting, We will assume
this holds for shocks in the solid phase, and calcu-
late G on the Rayleigh line from B,

G/B= GG/Ba . (13)

As a point of curiositywe calculatedB and G for
Al from ultrasonicdata,9in the form of expan-
sions linear in T and P from state a, and found the
remarkableresults that B(ultrasonic)s B(shock),
and G/B(ultrasonic) = const, up to 2 Mbar
(negltxtingmelting)on the Hugoniot. These calcu-
lationsare tabulattxiin AppendixB.

The thermal conductivityK is neededonly to
compute the explicit spaceand time dependenceof
the shock process,from the equation’

dZ =
–KdT

(1–Cu ‘
(14)

whereZ =X —Dr. For electronicconductionin
the region T/@~ 1, we expectK to be nearly in-
dependentof T, and to have a densit$dependence

2I This densitydependenceis nesli-of orderp top .
giblefor the present purposes,and we simply take
k= COnStaIItand use the measuredvalueof K at

T/@~ 1,P =0.

E. Shockthicktms and plasticstrain rate

The Lagrangianshock thicknessAZ, r% same as
AXat a fixedtime, is usuallydefinedin terms of
the compressionc(Z) (Ref 10);we call this the
compressionthicknessAZ(C):

ik 1dc—= —
AZ(6) dZ ~x “

(15)

The temperatureprofile T(Zj is noticeablybroader
than the compression,so we definealso the tem-
perature thicknessAZ(T):

AT dT—= —
AZ(T) dz ~,, “

(16)
,

Either derivative Idc/dZ I or IdT/dZ I is near

its maximum at point c, and this givesa simple
approximationfor the right sidfi of (15)and (16).
For example,

Ki TH– Ta)
AZ(T)= ~)- .

cc

The Lagrangianrise time is then Alx=.W/D,
The plastic strain rate ~ is approximatedas foi-

Iows: d+ is givenby (4),dJ is approximatedin the
flow regionby (5)with 2Vrd#~( VC+ VH)( r)dtJ,
then dZ is givenby (14),and

(17)

A usefulmeasureoofplastic strain rate in the shock
is the averageof d in the flow region,definedby

F. (h the eledronicecmtributiom

There are severalimportant points to note re-
garding the electroniccontribution to thermo-
dynamiccoefllcients.

(a) For shocks in the Mbar range, electronic
contributionsto thermal energyand thermal pres-
sure are not alwaysnegligibleanti should at least
be estimated. This was pointed out by A1’;shuler.ll

(b) !n shock analysis,if the electronicheat capa-
city CC=rT cannot be neglected,ther, ,he volume
dependenceof r also cannot be neglectedbeeause
of the significantcompression. IncludingCC= rT
with a constant valueof r seriouslyoverestimates
c,.

(c) The Griine]senparameter y is not simply the
sum of a lattice part yl and an electronic part yc
(Ref.6.,p. 287). Specifically,Eq. (8),canbe
Cransfonnedto py= -C; ‘(~2F/~Vt)T)rv, whereF
is [iieHelmhohz free energy,the sum of a lattice
and an electronicpart, F =Fl +F,, from which it
follows:

y=(c//cv)y/ +!c, icv)yt .

It is y we want for shock antilysis,to calculateIOMI
P,U relationsfrom Eq. (8),and it is y which satis-
fiespy= const in Ned’ss compilation.

(d) Degenerateelectron theory is satisfactoryfor
kT/~~ is less than or equal to a few tenths, where
IEFis the Fermi energy. For sufficientlystrong
shocks,which may be abovethe melting tempera-
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ture on the Hugoniot, the temperature will rise so
high tha! the electrons arc no longerdegenerate.

111.RESULTS AND DISCUSSION

The ~~p~ri~i~l:td informationfor the prment
shock calculationsfor 2024Al and Pt is listed in
Tab;e I. The Hugoniotwas calculated first, and
resultsare tabulated in AppendixA. Severalobser-
\“ationsfollowfrom the Hugoniotcalculations.

(a) The elasticprecursorvelocityCPis very close
to the longitudinalsound velocitycl, so the over-
drive thresholdat D =CP is close to D =Cl; we
find

P~(D =Cl )=0. 145Mbar for 2024 Al ,
(19)

?H(D =Cl )=0.308 Mbar for Pt .

(b) From the Kraut-Kennedy melting rule,”
melting on the Hugoniot is found to occur at

TW= 2715 K. P.,f=0.88 Mbar for 2024Al ,

T,W= 5800K, P{,= 3.04 Mbar for Pt . (20)

To the extent this approximation is in error, we ex-
pect it to be low for Tw, P,$~.

(c) Neglectingthe electronicheat capacity gives
a calculated temperatureon the Hugoniottoo high
by about 4VC at 0.9 Mbur for 2024.41, and too
high by about 339c at 3 Mbar for Pt. For details
see AppendixA.

The approximate solution for the shock process
was computed for 2024Al for shocksof 0.4 and
0.8 Mbar, and for Pt for six shocksof strength 0.5
– 3.0 Mbar. The main results are listed in Table

TABLE I. input data for shock calculations. Shock
measurements Ic,s) are from McQueenet al. (Ref. 2) for
2024A 1and from Morgan(Ref. 12)for Pt; Gd/B~ are
from the pol}- crystal averagesof Simmms and Wang
(Ref. 91: and g are from White and Collins(Ref. 8).

Quanti[y 2024 Al Pt

T. ( 10’ KI 0.293 0.293
pa (g/cm’) 2.785 21.44
c (cm/psi 0.533 0.363
s 1.338 1.472

2.05 2.66
& /Ba 0.34 0.23
r. (10-’ cal/mole KJ) 3.30 16.4
g 1.8 2.28
~ (cai/cms K) 0.48 0.20

11. The shape of the shock processas a functionof
the compressionc, and M a functionof shock
strength, is shown by the Pt sequencein Figs,
2–:. Note that as the shock strength increases,
,Ie width cc of the condmtion front becomes

largercompared to the width cl{of the entwe
shock. In the weaklyoverdnven shock at 0.5
Mbar, only about a quaner of the shock tempera-
ture rise Tll – T* cxcurs in the conductionfront.
and the entropy continuesto incretisein the flow
region. In the well-overdrivenshocks, 1 Mbar and
stronger, at least three quarters of :he shock tem-
perature rise occurs in the conductionfront, and
the entropy decreasesin the flow region. The re-
sults for 2024Al show the same qualitative
behav”or. We concludethat for well-overdriven
shocks, in the presentcalcuhionsat shock pressure
around three times the ovcrdriventhresholdor
greater, heat conductionis a major part of the pro-
cess, and most of the shock temperature rise occurs
in the conduction front. For weakershocks the ef-
fect of heat conductionbecomessmalleras the
shock strength decreasestoward the overdriven
threshold. In fact since the initial compressionof
the solid is presumablyelastic. in the small t re-
gionJ(E)--.0 as D 4c; , and for Ds c1 a solution
can be obtaind without heat transport. We con-
sider the effectof heat transport to bc general!y
negligiblefor underdrivenshocks in solids.’~

Becauseof the shape of T(E) on the Rayleigh
line, i! appears that for shocksnear meltingon the
Hugoniot,but still in the solid phase there, T(6)
will rise abovethe equilibriummelting temperature
for a time in the center of the shock, When T
passesthe melting temperature, the material should
begin to respondas a fluid after a time of order t,.
the shear relaxationtime of the fluid phase. For
most monatomicfluids,t,- 10-l J s at zero pres-
sure, and should decreaseroughlyas (V/Va)Yin
compression. However,fluid behaviordependson
the presencvof vacancies,and during the shrxk
there may not be time to developthe equilibrium
concentrationof vacanzim,since this is presumably
a diffusionprocess. The time required for fluid
responseto occur during a shock is an interesting
open question.

As mentionedbefore,our approximatesolution
for T(c) is reasonablyaccurate becauseof the nar-
row boundsimposedby the formal theory’ (see,
e.g., Fig. 1;also Fig. 4 of Ref. l), In the flowre-
gion, thesebounds limit T(c) to within a deviation
from the mean of t20V0 frx the two weakest
shocks in Table II, namely0.4 Mbar for 2024Al
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TABLE II. Results of the shock processcalculations,

Quantity 2024 Al Pt

PM (Mbar)
6H
D lcm/ps)
TM(10’K)
SM-S. (ca5/moleK)
cc
Jc/p.D (10’ cal/mole)
T. (10’K)
Sc-S. (cal/moleK)
7C(?.ibar)
tin
(?) [Mbar)

(d’) ( 1O’:/s)
AZ(c) ( 10-6 cm)

AZ(T) (10-6 cm)

0.4 0.8
0.2363 0.3241
0.779 0.941
0.930 2.365
4.10 8.83
0.0565 0.1130
1.81 8.17
0.648 1.903
4.15 10.I9
0.019 0.048
0.162 0.226
0.027 0.064
0.06 0.27
1.30 0.48
2.23 1.41

0.5
0.1290
0.441
0.534
1.84
0.01S5
0.34
0.359
1.06
0.011
0.081
0:021
0,011
2.47
2.90

1.0
0.1863
0.500
1.132
5.79
0.0544
3.61
0.919
6.79
0.044
0.126
0.053
0.12
0.32
0.90

1.5
0.231I
0.550
2.032
9.29
0.0825
8.77
1.755

11,23
0.075
0.158
0.086
0.32
0.18
0.71

2.0
o.2tM2
0.594
3.138

12.1
0.1044

15.0
2.699

14.5
0.107
0.182
0.121
0.43
0.17
0.65

2.5
0.2903
0.634
4.374

14.5
O.I21O

21.9
3.685

17.1
0.136
0.202
0.16
0.48
0.18
0.61

3.0
0.3114
0.670
5.697

16.5
0.1355

29.2
4.680

19.3
0.167
0.219
0.19
0.51
0.19
0.58

and 0.5 Mbar for Pt, and to within a deviationof
~ 10% for the other shocks. The T(e) boundscan
be transformedto boundson de), from the vana-
ticmalrelationl

br(c)= – +py-C”5276),

From this we eatimatethat our computed valuesof
(~) have error boundsof t23% for the two WA.
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FIG. 2. Shape of the shock processfor a 0.5 Mbar
shock in Pt.

est shocks in Table II, and of t 10– 15% for the
other shocks.

The space-timedependenceof the Pt 2.5 Mbar
shock is shown in Fig. 5, whereZ =0 is at point c
in the shock. The differencein behaviorof the
temperatureand entropy,as compared with the
compression,is clearly seen: Becauseof the mas-
sive long-rangetransport of heat in the conduction
front, the profilesof T and S extend far ahead of
~wintc, and the increasesof T and S are large

6

FIG. 3. Shape of the shock processfor a I.OMbar
shock in Pt.
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FIG. 4. Shapeof theshockprocessfora 2.5Mbar
shockin Pt.

there; then behind point c, T and S change little
while most of the compressiontakes place. Note,
however,that in the limits Z-: ~, all three func-
tions T,S, E have formally the same Z dependence.
In particular, for Z-m, T – T~, S –S., and c all
approach zero as e ‘az, with a a constant;and for
z -. – Z, IT–T” t , ~S–SM 1, and 1•–EH I all

Z(10-6cm)
FIG. 5. Shockprocessas functionof Z fora 2.5

Mbarshockin PI.

approach zero as eez, with /? apo[her constant.
In the same w~y, V-OH and $.-oO behind the
shock.

Concerningthe plastic constitutivcLxhavior
through the shock process,we note that (r) IS

larger than rt for ail the shocks, This is consistent
with setting ~=0 up to point c. [n a reitlsolution,
of course, plastic flowwill start at a much lower
valueof T than rC, but d should still be small in
the conduction front, and should increasesignifi-
cantly around point c, so the qualitativebehavior
of d and d should be still as shown in Figs. 2– 5.
Since the total dlis small in a planar shock, strain
hardeningshould be correspondinglysmall, and the
high shear stress we find in the flow region is
presumably due to the high strain rate d. Finally,
while we expectour estimatesof ( r ) and rf4c) to
be reasonablyaccurate. it is ditlicuh to establish
bounds for tli~), and only order-of-magnitude
meaning can be claimed for our valuesof ( 0).
For all but the weakest Pt shock in I“able11,the
ratio (r) /(~) lies in the range 0.2–0.4 g/cms.

IV. NATURE OF THE SHOCK PROCESS

We review the nature of shocks in solids, for dif-
ferent rangesof shock strength. Recall that the
elastic line is the a(c) relationcorrespondingto
isentropicuniaxialelasticcompressionof the solid
(see,e.g., Fig. 1 of Ref. 1). In a weak Iunderdriven)
shock, the initial compressionis on the elastic line;
this signal travelsas the elastic preeursor. Follow-
ing this initial elastic compression,the normal
stressu falls below the elastic line;hencea solution ‘
can be obtainedby allowingplastic flow to occur,
to relax a belowthe elastic line.14 The effect of
heat transport on the shock processis presumably
negligible. Since the elastic precursor travels faster
than the plastic wave, the entire shock is not a
steady wave.

For an overdrivenshock, we assume the shock is
a steady wave. The normal stress rises abovethe
elastic line at small c, so heat transport is neces-
sary to obtain a solution in the leadingedge. As
the shock strength increasesfrom the overdnvcn
threshold, the quantity of heat which must be
transported to the conductionfront increasesfrom
zero. Also in the vicinityof the overdriventhresh-
old, as shock strength increases,there is a dramatic
decreasein the shock rise time, a deereaseof a fac-
tor of order 10’for metals.

As a qualitativedefinition,a well-overdriten

-.
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TABLE 111. Hugoniotfor 2024Al. Units are the
following:P (Mbar),T (K), S [cal/moleK).
= .—
c P T s –Sa Tton

o 0 293 0 293
0.04 0.035 319 0.018 319
0.09 0.079 354 0.157 354
0.12 0.135 411 0.56 41I
0.16 0.205 507 1.35 509
o.~o 0.295 67S 2.59 679
o.~4 0.412 962 4.27 974
fJ.28 0.566 1446 6.30 1474
0.30 0.662 1799 7.41 1842
0.32 0.774 2252 8.58 2319
0.34 0.905 2835 9.79 2938
0.36 1.060 3583 11.04 3741
——

shcck is one in which most of the shock tempera-
mre ri%”occurs in the conductionfront. For well-
overdrivenshocks in soiids,the theory we have
deve;opedis characterizedby the followingproper-
ties:

(a) Essentiallyall of the shock en:ropy is gen-
erated in the conductionfront, by heat conduction.

(b) The heat is generatedin the flowregion,by
pktsticflow.

(c) For metals the shock thicknessis AZ -10-6
cm, the risetimeis At-10- IZs.

(d) For shocksnear meltingon the Hugoniot,
but still in the solid phase there, T(c) risesabove
the equilibriummelting temperature for a time in
tht center of the shock.

Once the detailedspaceand time dependenceof
the shock processis found,it is possibleto examine
conditionson the validityof irreversiblethermo-

TABLE IV. Hugoniotfor Pt. Units are the follow-
ing: P [~barl.~ (K),S (cal/moleK).

E P T s -s. Ttoll
——

0 0 293 0 293
0.0$ 0.128 329 0.067 329
0.08 0.290 395 0.56 398
0.12 0.500 534 1.84 546
0.16 0.773 816 4.00 859
0.20 1.135 1348 6.81 1478
0.24 1.621 2283 10.03 2646
0.26 1.928 2967 11.7 3557
0.28 2.289 3839 13.5 4782
0.30 2.718 4942 1s.4 ~*27

!).32 3.231 6327 17.3 8630

\

TABLE V. E’hslicmodulicalculated on the Hugo-
nin~for A1, neglectingmelting. Llnitsare the following:
# \..fbar),T (K], /3(Mbar),G (Mbar).

f’” TM– T, B“ 8. IB,, G. IBU
— .—

0 0 0.79 0.96 0.345
0.2 207 1.55 :.04 0.37
0.4 637 2.20 I.lo 0.37
0.6 1274 2.80 1.15 0.37
0.8 2072 3.37 1.18 0.36
1.2 4015 4.47 1.21 0.35
1.6 6270 5.54 1.23 0.34
2.0 8730 6.58 1.25 0.33

—

dynamics, in terms of the relaxationtimes and the
mean fret paths of electronsand phonons. The
preliminarycoficlusion from this study, for steady-
waveshmks in solid or liquid metals, is that the
present theory is a valid approximationfor shocks
up tc a definitelimit and is invalid for all stronger
shocks. The breakdowno!’irreversiblethermo-
dynamics results from the massivedemand for heat
transport and the consequentinabilityof electrons
and phononsto remain near equilibrium. The lim-
it is in the range of a few Mbar for metals.
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APPENDIX A: THE HUGONIOT

Thermodynamicfunctionson the Hugoniot for
2024Al and for Pt are listed in Tables 111and IV,
respectively.The effectof neglectingthe electronic
contributionto Cv is shown by the column Tl,,n,
which is computed by taking for Cv only the ion
vibrationalpart, 3Nk per mole.

APPENDIX B: ELASTIC MODULI
ON THE HUGON1OT

A linear expansionof B from state a (P =0,
T = T.) is

B =Be +(aB/aP)~P +(aB/aT)Pi T – T. ) ,

where the coefficientsare to be evaluatedat state a,

41L
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A similar eqtumonmay be written for G. Evaluis-
tions of theseequationsfrom ultrasonicdata are
denotedB., G.. For single crystal Al, Thomas’$
measuredvanatlons in ultrasonictransit times due
to variationsin aniso[roplcstressesup to -25 bar,
variationsin P up to -50 bar, and variationsin T
of -10 K. Polycrystallineaverages9of Thomas’s
resultsgive

G“ =0.262+ 1.82P–O. 14(10-~)( T-. T.} ,

in Mbar, with P in Mbar, T in K, and T. =293.
The bulk moduluscomputed on the Hugoniot

from shock data is denoted BI{. we ignore melting

and the presenceof the liquid phase, iind we also
ignore the differencebetweenpure Al and 2024Al
in order to compare the ultrasonicand shock re-
sults, Table V. It is seen that B“= B!i and

B. =0.759 +4.42P–0. 16(10-3)(T – T. I , G. /BU = const to 2 Mbar on the l-iugoniot.

ID. c. Wake, preceding paper, Phys. Rev. B ~, 5597
[1981).

~R.G. Mc@en, S. P. Marsh, J. W. Taylor, J. N. Fritz,
and W. J. Caner, in High-Veloci~yfmpac? Pherrome-
na, edited by R. Kinslow(Academic,New York,
1970),p. 293.

JL. V. Al”[shu]er,N. N. Kaiitkin, L. V. Kuz”mina,and
B. S. Chekin, Zh. Eksp. Teor. Fiz. ~, 317 (1977)
ISOV. Phys.–JETP ~, 167(1977)].

~w. M. IS&II, F. H. ShiDman,and A. H. Jones,RePofl

No. MSL-68-13(GeneralMotors, Warren, Michigan).
~T.“Neal,phys. Rev. B ~, 5172(1976).
fJD.L’.w’a]lace,Thermodynamics of Cryskds (WileY,

New York, 1972).
7c. Kltte], ~herma~ Physics(Wiley,New York. 1969),
BG.K. White and J. G. Collins,J. Low-Temp.PhyS. ~,

43 (1972):G. K. White, J, Phys. F ~, L30 (1972).
‘G. Simmonsand H.Wang,SingleCrysrIJlElastic Con-

stants and Calculated Aggregate Properties [MIT,
Cambridge,Mass., 1971).

IoYa.B. Zel”dovichand Yu. P. Raizer, Physicsof ShOCk’

Wavesand High-Temperature Hydrodynamic
Phenomena (Academic,New York, 1966),Vol. 1, p.
82.

IIL. V. A1’tshuler,Usp. Fiz. Nauk u, 197i1965)ISO~’.

Phys.–Uspekhi & 52 (1965)].
12J.A. Morgan,HighTemp. High pressures6. 195

(1974).
l~E.A. Kraut and G. C. Kennedy,Phys. Rev. ~. 668

(1966).
l~D.C. Wallace,Phys. Rev. u, 1477,1487~1980).
lsJ. F. Thomas, Jr., Phys. Rev. ~, 955 (1968).

Erratum: In eq. (17), the second equals sign was incorrectlyomitted in the
original Physical Review publication.



PHYSICAL REVIEW A VOLUME 25, NUMBER 6 JUNE 1982

Theory of the shock process in dense fluids
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A shock is assumed to be a steady plane wave, ‘nd irreversiblethermodynamicsis as.
sumed valid. The fluid is characterized by heat conductionand by viscousor vistmelastic
response,accordingto the strain rate. It is shownthat setting the viswity zero produces
a solutlon which constitutes a lowerbound through the shock processfor the shear stress,
and upper boundsfor the temperature, entropy, pressure, and heat current. It is shown
that there exists an upper bound to the dynamic streaseswhich cm be achievedduring
shock comprmion, that this boundcorrespondsto a purely elastic responseof the fluid,
and that solution for the shock processalong this bound constitutes lowerboundsfor the
temperature and entropy. It is shown that a continuoussteady shock is pmsibleonly lf
the heat current is positiveand the temperature is an increasingfunction of u)mpression
i lost eve~here. In his theory of shocks in gases, Rayleighshowedthat there is a
maximum shock strength for which a continuoussteady solutioncan exist with heat con-
duction but without viscosity. Two more llmits are shown to exist for dense fluids, baaed
on the fluid responsein the leadingedge of the shock: for shocks at the overdnven
threshold and above,no solution is possiblewithout heat transpoti; for shocks near the
viscousfluid limit and above,viscousfluid thrsxy is not valid, and the fluid responsein
the I=ding edge of the shock is approximatelythat of a nonplasticsolid. The viscous
fluid limit is estimated to be 13kbar for water and 690 kbar for merctq.

L INTRODUCTION

The nature ~f the shock pr- in a viscous
heat-conductinggas was clarified in detail by P.ay-
leigli in 1910.1 He examinedthe conditionsunder
which a compressive shock can propagateas a con-
tinuoussteady wave. When the gas has heat cm-
duction but no viscosity,this is possibleonly for
weak shocks,with shock compression~ 1.4. With
viscosity but no heat conduction,the continuous
steady wave is alwayspossible,and the same is
presumablytrue with both viscosityand heat con-
duction.

For dense fluids, say with density ~ 1 g/cm3,
there are two main differencesfrom a gas: (a)
thermodynamiccharacteristicsare markedly dif-
ferent, and (b)at sufficientlyhigh frequenciesa
dense fluid exhibits elastic solidlike reapmse.
When these propertiesare taken into account, we
discoverthat the nature of shocks in dense fluids is
quite different from that in gases.

In the present paper we examinethe conse-
quencesof an irreversible-thermodynamictheory of
shocks in dense fluids. The theory considesssim-
ple fluids, characterizedby viscousand viscoelastic
responsesat the appropriate frequencies,and by
heat conduction. We neglectionization,radiation,

~

chemical reactions,and any other degreesof free-
dom which might be excitedby the shock; such to-
pics are treated in detail for gaseaby Zel’dovich
and Raizer.2

The questionarises as to whether or not irrever-
sible thermodynamicsis valid, i.e., whether or not
the temperatureand other thermodytsamicfunc-
tions can be defined through the shock process.
One might expect that thermodynamicsis va!id for
shocksup to some critical strength, and not valid
for stronger shocks. In a recent study of
Lennard-Joneasystems,Hoove# has shown that
Navier-Stokestheory agreeswith rnolecular-
dynamicscalculationsfor shocksof approximately
12and 30 kbar in liquid Ar. Holismand cowork-
ers’ have further shown that for a shock of 400
kbar in liquid Ar, just belowthe strength of shock
which ionizesthe Ar, Navier-Stokesstill providesa
qualitativelycorrect representationof the process
but givesa slightlynarrower shock profile than
doesmoleculardynamics The molectdar-
dynamicstmhttique is promisingbecauseit can in
principletreat problemswhere irrevemibletherm-
dynamicsfails. In the present paper, we simply ss-
sume irreversiblethermodynamicsis valid because
there are still somenew results which castbe
learnedfrom this theory.
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II. VISCOUS FLUID SHOCKS

A. Viscous fluid themy

We summarize the irrevemibl~thcrmodynamic
flow theory for a compressibleviscousheat-
conducting fluid. The mmplete systemof equa-
tions is organized into three subsets: cantinuum
mdrm.ics, the viscousstress, and thermodynamics.

Location in the laboratory referenceframe is 1,
and the Lagrangiancoordina~eof an infinitesimal
mass elementof the fluid is X. The fluid velocity
is V, the density is p, the stress tensor is rjj = rfi,
subscripts i,j, . . . are (krteakn kdic.cs and repeated
indicesrareto be summai. The ~ntinuum-
mechanicunwemation equationsares

Ch.remntion of mass.-

Cimserwrion of Iinmr momentum:

(1)

(2)

To write conservationof energy we define the velo-
city gradients v,, and thar symmetric parts &ll:

[1au,
Iq = — ,

ax, J,
(la)

&J= +,, +.vfl ) . (3b)

The rate at which work is done by the stresses on a
unit mass of fluid is

W=p- ‘r,,ii,, (4)

and the rate at which heat flows into a unit mass
of fluid is Q. Then subtracting out the translation-
al kineticenergy of the fluid leavesonly the
center-of-massenergy U per unit mass, and there
results~

Cm.renxrtionof ene~:

u=W+Q. (5)

The total stress tensor is
- –P13iJ+<’ ,ri, - (6)

whereP is the pressure,determinedby equilibrium
thermalyrusrnics,and f’ is the viscm stress,
presumedto be linear in velocitygradkntsb:

(7)

The shear and bulk viscosities,q, and q,, respec-

tively,are functionsonly of the thermodynamic
state and are non-negative. From conservationof
mass, the sum ~11is given by

ku= –p/p = tiiv , (8)

where V=p -1 is the volumeper unit mass. While
the umservation equationsare valid for any dissi-
pative continuum flow. includingplastic flow in a
solid’ or viscoelasticflow (Sec.IIIbelow),the
stress (6) representsspecificallya viscousfluid, and
the combinationof (6)and (2) is the Navier-Stokes
qnation.

To completethe sys;em of equationswe assume
the variableaU, V,S,P, T are related by equilibrium
thermodynamicrelations,where !$ is entropy per
unit mass and T is temperature. There are dif-
ferent (but equivalent)ways to proceed. One can
take V,U as independentstate variables,elimlnate
S from the system,and determine P and T from
the equations of state, which are formally
P =P( V,U) and T = T( V,LO. Or one can take V,s
as independentstate variablesand generatea
hierarchy of differential equationsas follows.

Zeroth order:

dU = –PdV +TdS . (9)

First order:

dP = –pBdV +pyTdS , (10)

dT = –pyTdV +Cv’TdS , (11)

whereB is the adiabatic bulk modulus, y is the
Griineisen parameter, and CV is the heat capacity
at con~tantvolume. We generallybreak the hierar-
chy a; this point by assuming the second-order
coefficientsB,y,Cv are known functionsof VS.
We also eliminate U by combining(5)and (9) to
give

TdS =dQ +d W“ , (12)

where

dW”= V<,dci, . (13)

Hence the work done by the viscousstreas is en-
tirely di~sipated.

The heat flux ~ is assum~ to tK @venby the
steady conductionequation, J = –tr VT, where~ is
the thermal conductivityy, with K==K( V,S)and
K >0. It is conven~entto eliminateQ in favor of ~
by the relationpQ = – V“”j.

——
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B. Rayleigh-line equations

The shock is a plane wave traveling in the x
direction, fluid mass elementsare planar slabs nor-
mal to the x diremon, and edgeeffects are neglect-
ed. Quantities in the initial state (before the shock)
are denoted by subscripta, the initial time is
ta = – co, and the compressionfrom the initial
state is measuredby c:

E= 1– v/J’ a. (14)

In the following,s, V,and p are used interchange-
ably as a singleindependentvariable. Compressive
stressesin the normal and transversedirectionsare,
respectively,u and u – 27, so the shear streas is r.
The stress equations(6)and (7)simplify to

o = P + ~ar , (15)

7= –qj( ti/v), (16)

where

(17)

The shock is assumed to be a steady wavewith
velocityD. Any fluid propefiy F(x, r) within the
shock is a function only of the variablez:

Z =X —Dt .
(18)

F(x, t)=F[z)

The steady-waveconditionallowspartial deriva-
tives to he transformed to total derivatives. The
heat flux lies in the x direction and is

~ – Kg
– – dz ‘

(19)

while the Lagrangian time derivative V/V becomes

II-1- ilv
=D~ .

Vzx

Theri the shear stress (16)

q,DJ

‘= ddT/dc) “

(20)

may be written

(21)

With the steady-wavecondition,the conservation
equationscan be integratedalor.g the shock pro-
cess. The initial conditionsare that the fluid
ahead of the shcxk has zero stress, zero velocity,
and is in thermodynamicequilibrium. Thermo-
dynamicequilibriumrequires V/V=J =0, so the
initial conditionscan be written

(J. =T. =U= =J. =0 . (22)

First integrals of conservation of mass and
momentum give the equations c=u/D and
U=pa Du, respectively. Hence the Rayleigh line,
which is the c(c) relation, is

u =p~D2c . (23)

This and five more coupledequationsdescribethe
shock processfor the case of V,S variables;they
are (12)for the entropy production,which &omes

TdS =dJ/p. D + ~arVad~ , (24)

the thernmtynarnic equations(10)and (11),and
the stresses(15)and (21). We call this set the
Rayleigh-lineequations, They are six equationsin
the six variablesu,P,r, T,S,J and they can be
solvedin principlefor these variablesas functions
of c. From this solution, the space and time
dependenceof the processcan h computed with
(19). The final state of the shock is the Hugon.iot
state, denotedby subscriptH. This is also a ther-
modynamicequilibriumstate, so the final condi-
tions are

( ti/V’)M=JH =0 . (25)

The Hugoniotstate is preaumedknown as a func-
tion of D.

C. Familyof partiat solutiona

Considera viscousheat-conductingfluid, with
givenvaluesof the thermodynamiccoefficients
B,y,Cv,a,q, /K as functionsof V,S and a given
shock velocityD, with correspondingvalueof Cfl.
There is presumablya uniquesolutionof the
Rayleigh-lineequations,for which the six vmiables
u,P, T,T,S,J are continuousfunctionsof c,
Os ~SCH,and for which the initial and final con-
ditions are satisfied Considerthe subsetof equa-
tions obtainedby omitting (21)for ~. This subset
is five equationsin the same six variablea,and the
subsetdoes not contain the coefficientq, /~. Any
solutionof this subsetfor which u,P, r, T,S,J are
continuousfunctionsof 6, Os cs c~, and for
which the initial and final conditionsare satisfied,
is called a partial solution. The family of partial
solutionsis infinite. It is a one-variablefamily be-
cause if one of the six variablesis specifiedon
O<CgcH, the subsetof equationscan be solvedfor
the remainingfive variables,and the solution is
unique. The family can be viewedas solutionsfor
a family of fluids, each fluid havhg the given
valuesof B,y, cv,a as functionsof V,S and having
its own characteristic q, /K as a function of V,S.
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Among the family of partial solutions,some are
unacceptableon physicalgrounds, as will be shown
Mow. This will allow us to find bounds for the
correct Solutioil for the shock process,independent
of the coefficientq, /K.

For illustration, take T(c) as the generatingvari-
able for partial solutions. For any prc-‘ribed T(c)
continuouson Os c g CH,and taking un the values
T, at 6=0 and TH at c~, there correspondsa
unique partial solution. From one partial solution,
to generateanother one infinitesimallyremoved,
we add to T(c) the infhitesimal variaton tiT(d,
which is continuouson Os cs CH,and which van-
ishesat c=O and at ●H. Continuing in this way,
all partial solutionscan be generatedfrom one ini-
tial partial solution. From the definingsubsetof
fiylagh-line equations,relationscan be found
among the variations5T(d, 6S(6), and so on, at a
fixed c. These relationsare

6C7(6)=0 , (26a)

6S(E)=(Cv/T)6T(E) , (26b)

6J(E)=p#C”6T(E) , (26C)

6P(E)=pyCVtiT(c) , (26d)

@a7(c))= –8P(C) . (26e)

NOWW> O,CV> QD >0, so 6S(E), ~(c), ~md
tiP(E) are everywhereof the same sign as tiT(E),
and Nur) is everywhereof the oppoaitesign.

The shear stress cannot be negativeduring shock
compression,hencer =0 is a lowerbound for
physicallyaucptable values of dc) on the Ray-
Ieigh line. Since the constant T(c)=O is continuous
in c and takea on the correct initial and final
valuesfor a fluia, this conditiondefinesa partial
solution. Sin- a >0 for a viscousfluid, the r=O
partial solution is also a lower bound for ar on
the Raykigh line;hence from the variationalrela-
tions (26b)–(26e), the r=O partial solutionconsti-
tutes upper bounds for T(t), S(c), F’(d, andJ(6).

In the subsetof Rayleigh-lineequationswhich
defines partial solutions,if one sets r=O, one has
five equationsin the five variablesa, P, T,S,J.
These are preciselythe Rayleigh-lineequations for
an inviscidheat-conductingfluid, which is a fluid
with the propertiesq, = qu=0 and a = finite, N>0.
The propertiesof the ~=0 partial solutionare
summarized in the followingtheorem.

Theorem 1. For a viscousheat-conductingfluid,
the r=(3 partial solution representsthe same fluid
made inviseid,and the r=O partial solutiongivesa

co ‘- ————.-..——

lower bound for tic), and upper boundsfor
T(C),S[E),P(E),J(E), on Os c g Cll.

D. Solutions mntinuous in space and time

1. a continuoussteady wave, the material state
musl 4 a continuoussingle-valuedfunction of
space andtime, or equivalently of z, and the in-
veme function must also be continuous and single
valued. The Rayleigh-lineequationsensure that
the material state is continuousand singlevalued
in c, and c is continuousand singlevalued in the
material state. Henct we require c(z) and z(6) to
be continuousand singlevalued. Sincec increases
in the shock,as z decreases,then c must be a
nonincreasingfunc;ion af z:

(27)

where either equality can hold on a finite number
of points at mmt. In fact, for a viscousfluid we
can rule out the possibilitydc/dz = – m, because
by (16)and (20)this makes ~ infinite.

With finite D, the variablesU,P,7,?-,S,J, and
their first derivativeswith respect to 6, are finite
on Os cs CM.From (24)and (11)it follows

i28)

The heat-conductionequation (19)can be written

(29)

Equations (27)and (29)require that J and dT/dc
must have the same sign, except possibiyon a fin-
ite number of points. This result, togetherwith
(28)and the final conditionJ(cH )=0, rules out the
possibilitydT/d~ sO, except possiblyon a finite
number of points. Hence we have the following
theorem.

Theorem 2a. For a viscousheat-conducting
fluid, a continuow,st~dy-wave shock is possible
only under the conditionsJ z O,dT/d6 ~ O,on
0< E< EM, where either equality can hold on a fin-

ite number of points at most,
The aboveargument was used by Rayleighl to

show that for shocksbeyonda certain strength, a
continuoussteady-wavesolution is not possiblefor
an inviscidheat-conductinggas.
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111. VISCOELASTICITY

An itn:ymant physicalproperty of viscousfluid
responseISthat, at least under some conditionsof
flow, includlngshock compression,viscousflow is
a relaxauon process,which can only act to reduce
the stress that drives it. At sufficientlyhigh strain
rates, there is not time for significantrelaxationto
take place;under this condition the stressesare
sup+on~ by elastic forces,and are strain-rate in-
dependent. Thus, viscous stresses cannot rise arbi-
trarily high. In order to include this behavior, ap-
proximately, in the theory of shocks in dense
fluids, we will construct Rayleigh-lineequations
for st-dy-wave shocks in a viscoelasticfluid.

A. Viscoelastic stress (Ref.8)

In the low-frequency(lowstrain rate) region,a
viscoelasticfluid is characterizedby the adiabatic
bulk modulusBo=fl, the shear modulus GO=0,
and ordina~ viscousstressesare supported by
velocity gradients,with shearand bulk viscosities
q, and qo, respectively. At high frequencies(high
strain rates), the fluid exhibitsadiabatic bulk
modulus B= > Bo, adiabatic shear modulus
G. >0, and stressesare supported elastically.
Crossoverbetweenthe two types of responseoccurs
at st:am rates around t,- or tU-1,where t, aiid CU
are, respectively”,the shear and bulk relaxation
times and are defined by8

q, = LG= , (30)

n, =L(~m –~o ) . (31)

Litowtz and Davisafind many fluids satisfy the
apprommate relations,includingtemperature
dependence,

t -ru- s ~ (32)

B= –Bos ;G. . (33)

The5erelationsImply qV/q, is approxii,latelytem-
perature independent. An estimate which we
might expect to hold crudel] for monatomicfluids,
e.g., liquid metals, at arbitrary temperaturesand
Pressur~ 1s~1= to= one atomic vibration time,

The viscoelasticstress tensor is

71)= – Phi;+ l; . (34)

Here P is the pressure,determinedby equilibrium
thermodynamics,and r; is the dynamic stress,
which vanishesat equilibriumand is determinedby

the cmstltutive equation

Under approtmtte conditions,this equation can
reduce to the ordinary viscnusstress, or to an elas-
tic stress-strainrelation,or it can display stress-
rclaxationbehavior,or strain-relaxationbehavior.
The equation for P k

dP = –Bod lnV +pyTdS , (36)

the same as (10) because130kere is the same as the
viscousfluid B. Note (36)has no rate dependence,
which means P is always instantaneouslyin equili-
brium with elasticand thermal forces. This ap-
proximationwill fail at sufficientlyhigh strain
rates, where irrevemiblethermodynamicsfails.

B. Plan-wave geometry

For uniaxialmotion in a viscoelasticfluid, there
are two independentcomponentsof the dynamic
stress tensor, namely, the shear streas r and the
dynamic pressureP, where

P*= – :T; . [371

The constitutiveequation for each componentis
obtainedfrom (35):

r+ f,+= –q,( tim, (38)

(.39)
p, +f,~o= –qo( v/v) “

The nonmd stress is

U=P -#-P*+ :? . 0$0)

Let us examinethe viscoektsticstressesin plane-
wavegeometryunder limiting txmditionsof slow
and fast response. For slow responsewe have

Viscousresponse limit:

t,+ <<T , t“P*<<P’ . (41)

With these conditions,Eqs, (38)and (40)are re-
duced to the viscousfluid stresses Eqs. (16)and
(15),respectively. In the oppositeextremewe have

Elastic response limit:

T<< t,+ , P*<< t“ia. (42)

With the+ conditions, + and P* becomepropor-
tional to V/V. We write the relationsas differen-
tials for d7 and dP’ and includeMO)and (36)to
expressda as well:
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dT= –C=d 1nV, (431

dPS = –(B- –Bo)d lnV , (44)

du= –(B= + ~Gm )d lnV+pyTdS . (45)

The expressions for dr and dcr are the same as for
an elastic solid with infhite yield strength (a non-
plastic solid), when for the solid ?he therrnoektic
coefficientsBa8 and y8 are evaluatedto lowestor-
der in the small-anisotropyexpansion,and B,G are
then replacedby B. ,G..9 The variable P does
not appear in elastic-solid themy.

C. Raylagh-lineequations

The dynamic stress is linear in variableswhich
measure the depart-urefrom the fluid equilibrium
state; in the viscousregimeit is linear in strain
rates and in the elastic regime it is lin~ in strains.
Nonlinear effects arc not included. In uniaxial
motion, the viscoela.sticfluid has elastic tetragonal
symmetry and the elasticanisotropy is measured
by the small quantity T/G=. The smrdl-anisotropy
expansionfor a solid consistsof expandingthe
thermoplasticcoefficientsin powtm of r/Gin; the
cxmeapondingexpansionfor a viscodastic fluid is
in powersof both r and P*. Consistentwith the
neglectof nonlineareffects in the dynamic stress,
we evaluate the transport coefficientsand the
second-order thermoplastic coefficientsat
r=PO =0. This redu~ ~] the ~a~tic str~.

strain coefficientsto combinationsof B. ,Ga, as
in (43)—(45),reducesthe anisotropicyBto y as in
(36),and allowsus to use the fluid equation (11)
for dT.

Another point should be mentio d. If there is
m cimtic pr~wr in a viscoelasticfluid, it will
travel at (or near) the longitudinalsound velocityc1
g’iVejY by

pc:=B. + +G. .

For slmckswith D < c1 the present theory, by as-
suming a steady wave,neglectsthe elastic precur-
sor. To include precursoreffects, the theory has to
be generalizedalong the linesof the theory of weak
shocks in solids.10

We continue under the assumption that the
shtxk is a steady wave. For the viscoelastic
Rayleigh-lineequationswe list sevenequationsin
the sevenvariablescr,P,P@,r,T,S,J, although some
of the equationscan be easilycombinedwith the
eliminationof variables. The Rayleigh line, Eq.
(23),remains the same. The entropy production is

(46)

where dWO is the work dissipated, dWO is compli-
cated becausein a given time increment only part
of the work done by the dynamic stresses T and PO
is dissipated,and the rest is stored elasticallyand
dissipatedlater. However,an important property
can be observed:

dW* ~ O . [47)

There are four equations in P,r,PO, a, namely, Eqs.
(36) and (38)– (40), and the last equation is (11) for
dT.

J~st ~ in the viscousfluid case, we can define
the family of partial solutionsfor a viscoehstic
fluid. Thrse are solutionsof the viscoehstic
Fbyleigh-lineequationswith (38)and (39)omitted:
the remainingsubset is five equations in the six
variablesa, P,PO+ ~r,T,S,J. Given one variable,
say T(c), continuouson Os cs c~ and taking on
the correct values T. at c=O and T~ at 6H, the
equationscan be solvedfor the remaining five vari-
ables,givinga partial solution. A new partial solu-
tion is generatedby the infinitesimalvariation
6T(6), continuouson Os c g EHand vanishingat
6=0 and at c“. Correspondingto &T(c) are the
variations6S(6)given by (26b),6P(E) given by
(26d),and

fjpq~)+ +67(6)= –6P(6) . (48)

Hence6S(e)and 8P(E) are everywhereof the same
sign as fiT(c), andNPO + ~ d is everywhereof the
oppositesign. In the absenceof a more detailed
specificationof dWS, we are not able to determine
the relativesign of the variation N(6).

Co*’:der Theorem 2a proved for a viscousheat-
conductingfluid. We still have (27)and (29)for a
viscdastic heat-conductingfluid, and (28)holds
becau-ckdW” is non-negative,so the prwf goes
through as before.

Theorem 26. For a viscoelasticheat-conducting
fluid, a continuoussteady-waveshock is possible
only under the conditionsJ ~ O,dT/dc ~ O,on
Oscs 6H,where either equalitycan hold on a fin-
ite number of points at most.

D. The elasticbound

During s%k compressionof a viscoelastic
fluid, the dyrcmic stressesmust be non-negative;
also becauseof (20)and (27), V/V is nonpositive:
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I

(49)

With these conditionsit is possibleto show that
there are upper bounds for r and P* during shock
compression. Rewrite (38)in the form

I-+ r,[; + G~ ( ti/ V)] = O . [50)

f can be positiveor negative. If : i I
<<G= ~’,/V ,we have viscous fluid &havior,

and we also have d: << G ~ :d lnV: , which
mems dr is small. On the other hand, for (50)to
have a solution with r >0, we must have
is – G~~V/!’). Hence – G- d inVis alwaysan
upper tmund for df during shock compression.
Note that as long as r >0, dr never reaches this
upper tmunci. Also, (39)can be written

P“ + f,,[i” + (Bm –B~ )(tile’)] =0. (51)

It followsthat –(B= –Bo)d lnV is always an
upper bound for dP* during shock compression,
and as long as P* >0, dPO never reaches this upper
bound. These upper boundsare just the expres-
sions (43)and (44)for dr and dP* in the chstic-
responselimit.

As noted above,the entropy generationduring
viscoelasticflow is complicated in genertil. How-
ever, in the ehstic responselimit there is not time
for viscousflow to occur, so there is no viscous
dissipation;dW” =0, and the entropy generation is

dJ
TdS = —

p.D “
(52)

We make the followingdefinition.
Definition. The elastic bound is the solutionof

the Rayleigh-lineequationsfor a viscoelasticfluid
in the elastic-responselimit.

This set of equations reducesto six equations in
the six variablesU,r, PO,T,S,J. The equationsare
(231for the Rayleighline, (52)for TdS, (43)–(45)
for d:,dP*,du, and (11) for dT. Since the solution
givesupper bounds for T(6)and P“(c), it gives
lower boundsfor Tfd and S(e). Omitting the
equation for dP”, the remainingfive equationsare
the same as :he Rayleigh-lineequations for a non-
plastic solid,”evaluated to lowestorder in the
small-anisotropyexpansionand with B,G replaced
by the high-frequencymoduli B- ,G~. The results
are summarizedas follows.

Theorem J. For a wscoelastichat-conducting
fluid, the elastic bound is an upper bound for T(C)
and P* (d and a lowerbound for T(E) and S(6),
and the elastic bound representsa nonplasticsolid

in lowestorder in the small-anisotropyexpansion
with 13,G given by B~ ,G~.

It should be noted that the elasticbound cannot
constitutea partial solutionof the Rayleigh-line
equationsbecauseit doesnot reach the correct
Hugoniotstate at c~. In other words, the nonplas-
tic solid does not possessa steady-waveshock sGlu-
tion,9 However,just as in the theory for solids,we
will be interestedin the elastic bound only in the
initial part of the shock, up to the point where the
T(c) curve has a maximum.

E. Bounds for fluidshocks

A real fluid will display viscousresponsewhen
the strain rates are not too high. Under this condi-
tion we refer to the fluid as a uiscousj7uid, and use
the uiscousj7uid theory of Sec. 11. At sufficiently
high strain rates, a real fluid will display approxi-
mately elastic response. When it is riecessaryto in-
clude this behaviorwe work with a uiscoelasric
j?uid, as representedby the theory of this sedion.
An important propefiy of viscoehusticfluid theory
is that it establish= a limit on the range of validity
of viscousfluid theory, at least in the treatment of
the shock process. This followsfrom the existence
and propertiesof the elasticbound. Denoteby
r&(c) the elastic-boundshear stress. Now suppose
we solvethe viscousfluid Rayleigh-lineequations,
and find T,S, r, and so on. We then know that,
viscous-fluidtheory is valid when T(6)<<~&(~).or
strictly when ; c< iE; tha! viscous-fluidtheory is in
error when T(C)is near r~(c); and that viscous-
fluid theory is strictly invalid if it gives
l-t~)~ T&(c).
Itis possibleto construct curves of the thermo-

dynamic variableswhich are kunds for physically
acceptablefluid shock solutions. We construct in
particular the bounds for T(c); curvearepresenta-
tive of a Mbar shock in a liquid metal are shown
in Fig. 1. The lowerbound is the elastic bound for
Os ~g cd, where the elastic-boundT(c) curve has
a maximum at Ed. Since T(c) is a nondecreasing
function of c, accordingto,.Theorem 2b, a lower
bound in the regionc > cd MTd. For 6 well
beyondcd, T(c) has to be much higher, and T(C)
has to & much lower than the corresponding
valuesof the elasticbound;we therefore must
have viscous-fluidbehaviorin the final part of the
shock. A viscousfluid partial solution is defined
by J(c)=O. From Theorem 2a, J(c) is non-
negative,so from the ordering of the viscousfluid
family of partial solutions,the temperature corre-

1
61
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FIG. 1. Sotid lines show utmr and lowerbounds for
T(c) through thesbc;k proce& Shape of thecurxs
representsqusditati$‘Iya I-Mbarshockin a hquidmet-
al.

spending to J(c) =0, denotedby T(J =0), is a
viscousfluid lower bound. As shown in Fig. 1,
T(J =0) lies above Td in the last part of the
shock, and p= throu@ TH and c~.

From Theorem 1, the solution for an inviscid
heat-conducting fluid gives an upper bound for
T(c). This solution has the followingproperties,
as shown by Raylaghl for gasea: for stilciently
weak shocks, T(c)s TH on O<C< EH;ki sh~ks
stronger than some limit, T(c) passesabove TH at
some # <CM. The latter case is shown in Fig. 1.
For densefluids, the inviscidsolutionhas
T(c)s TMonly for very weak shocks, as shmvnin
Sec. IVA below. The completeupper bound for
T(t) is the inviscidfluid curie for 0s6 <c’, and
7’Hfor c>c’, as shown by the solid line in Fig. 1.

IV. BEHAVIOR AT SMALL c

Much information can be obtainedby studying
the Rayleigh-lineequationsin the small-c reeion.
The results will apply to weak shocks,where CMis
small, and also to the leadingedgeof arbitrarily
strong shda. We write the shock-velocity–
particle-vekity relation as

D =C +S, VH+ ;S2V; + e-- , (53)

whereC,sl,s2 are experimentallydeterminedquan-
tities. This castbe con~%.edto the followingex-
pansion in cH:

D =C[ 1+sle~ +(s; + :csz )~~+ oc“ ] . (54)

Relationswhich hold at state a, for fluids, are

B*=pac’ ,

Ialti

II

——
d lnV ~

= 1–4s, <

(55)

(56)

Formal expansionsof the thenrmdynamicvariables
on the Rayleigh line are

s =sO+s,6+ +s2@+ “ “ “ , (57b)

J=J,6+ “ “ o , (57C)

7=716+ ‘ “ “ . (57d)

From (43),rl on the elasticbound is

TI =Gma , (58)

and this is an upper bound for rl.

A. Inviacidfluid

Dejlnition. The inviscidlimit is the maximum
shock strength for which a continuoussteady-wave
solution is possiblefor a fluid with heat conduc-
tion but without viscosity.

The inviscidlimit was shown to exist by Ray-
leigh,’who calculated it numericallyfor gases.
For dense fluids, the inviscidlimit correspondsto
very weak shocksand so it can be estimated
analytically. For the r=O partial solution,which
representsan inviacidfluid, the Raykigh-lineequa-
tions can he solvedfor dT to give

dT =[pyVc T +(p~v)- 1(p@D2-pV#)]dc .

The prmxxiureis to expand the right side in
powersof 6 and Cfl,then find the coefficients
TI, T1. . . of i57a),each coefficientas a power
seriesin EM.

(59)

The quantity pcD2 –pV# is of first order in
C,cn. From this together with (11)it followsthat
S–S* is of secondorderin c,c~. Hence in expan-
sionsof thermodynamiccoefficientson the Ray-
Ieigh line, the entropy changedoesnot contribute
in first order. We have the generalexpansion

IIB(v,s)=Ba+(v-va) #
s

II+(s --s. ) g + “ “ “ .
v

62
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On the R:,yleighline for an inviscidfluid this be-
comes

B(c) = lld[ 1+(4s , – 1k+ “ “ “ ] . (60)

In the same way,

py =pa}’a(1+ ;6 + “.“ ) , (61)

where J = – (~ lnpy/iltInV)~is evaluatedat state a,
Magnitudesof the ‘mriousparameters for dense
fluids are commonly

Y. -.$ I- Cs: - 4“- 1 . (62)

The natural small parameter of the theory is

(63)

The range of interest for the inviscidfluid is
6H<$, and in this range the followingmagnitudes
hold:

T, -T. ,

T3 - Tl

From these resu!ts it followsthat expansionof (59)
to first order in ~,~His sufficient to find the invis-
cid limit to the leadingorder in ~H.

A continuoussteady-wavesolution requires
dT/dc >0 for Os cs eH. For a fixed D, hence
fixed 6H, we find dT/dc >0 at 6=0, and dT/de
decreasesas 6 lnCr~, and so IS mlnimUM at ~ff.

For variable6H,dT/df IH>0 at 6H=0, and de-
creasesas f/j increases. Hence a continuous
steady-wavesolution is possiblefor EMs61,and is
not possiblefor ~H> cl, wheredT/dc I~ =0 at
CH=61. The inviscid-limitshock pressure,corre-
spondingto c!, is PI. To lowestorder the solution
is

,,= —-4L-=-L+ . . . ,
2s, –(y. +g)g 2s,

(65)

p\ =po D=cl =pOCIC[+ “““ . (661

B. Fluid withoutheat transport

The shock strength is now arbitrary; the only ex-
pansion parameter is c. The condition of no heat
transport is J =0. We consider first a viscous
fluid and use (24)to show that S –Sa is of order
/. Then eliminatinga from Eqs. (15),(23j,and
(10)givesthe followingcondition in leadingorder:

=

paD2 =Be + ~a.rl . (671

Thus for a viscousfluid, 71 must increaseas D in-
creases. But there is an upper bound for rl, given
by (58),so (67)implies

paD1 < Ba+ ~aaG_a . (68)

These reaultsof viscousfluid theory are summa-
rized in a definitionand a theorem.

Definition. An overdrivenshock in a viscous
fluid is one for whichp.D2 ~ B. + ~a.G~a.

Theorem 4a. For an overdrivenshock in a
viscousfluid, no solution is possiblewithout heat
transport.

Now considera viscoel=tic fluid. TdS is given
by (46). At small c, dWO must be of order cdc at
the loweatkause dW@ is driven by the dynamic
stressesr and P*, which are zero in state a. Hence
for a viscoelasticfluid with J =0, S –Sd is again
of order # or higher. Then eliminatinga from
Eqs. (23),(36),and (40)giveathe followingcondi-
tion in leadingorder:

paDz=Bti+P~ + ;rl . (69)

As D increases,the right side must increase. But
the right side cannot increaseindefinitelybecause
both P; andr, are bounded. From (43)and (44),
the elastic bound is

P: + ;rl =Ba. –Bh + ;G.. . (70)

HenceEq.(69)impliea

paD’ < B.a + +Gma . (71)

These results are summarized as follows.
Definition. An overdnven shock in a viscoclastic

fluid is one for wh~chp.Dz > B=. + ~G~a.
Theorem 4b. For an overdrivcnshock in a

viscoelasticfluid, no solution is possiblewithout
heat transport.

The existenceof this theorem for a fluid results
from the same physicalpropertiedas doea the cor-
respondingtheorem for a solid.9Without heat
transport, there is an upper limit to the normal
stress u which can be developedby uniaxial
compressionof a material; this upper limit come-
spondsto p’.;elyelasticcompression,without any
plastic flow or viscousflow to relax the shear
streas. If u is required to go above this limit in the
leadingedgeof a shock, it can only be accom-
plishedby carrying heat to the leadingedgeand in-
creasing the thermal pressurethere.

In practice, the viscousoverdriventhreshold is
about the same as the viscotdasticone, since the

.—.
63



~ THEORY OF THE SHOCK PROCESS IN DENSE FLUIDS 3299

right sidesof (68)and (71)are abou! the same.
For both a viscoelasticfluid and a solid,qthe over-
drive threshold is at D =C1, with c1 the appropri-
ate longitudinal sound velocity.

C. Viscous heat-mnducting fluid

The viscous-fluidRayleigh-lineequationscan be
reshwd to three equationsin r(f), T(6), and J(c).
We expand these functions as in (57a)–(57d), and
equate the fht-order terms in the three equations
to find

rl = (qmD/~a )(JI /T1 ) , (72)

~aarl =po D: –BU – (yd /D)J1 , (73)

TI =ya T. +(pa~Va )-’~1 . (74)

This set of equationsidentifiesthe minimum shock
strength, namely zero, as correspondingto JI =0,
?1=0, D =C. We want to solveunder the condi-
tion J1 >0, which implies71>0, TI > Y. T., D > c.
From (73),the presenceof the heat current acts to
reducxTl;thus for a viscousfluid with heat con-
duction, the range of shock strengths for which a
solutionexists (a solutionwith rl < G-. ) is extend-
ed beyondthe viscousfluid overdriventhreshold.
However,J, is not arbitraty, and there is still a
limit to the range of shock strengths for which a
physicallyacceptablesolutionexists. To discuss
this limit, we will solveexplicitlyfor rl.

Equations (72)–(74) producx a quadratic qua-
tion for 71:

+a.~–(f + ~aag +11)71+~g =0 , (75)

where

f=paD2—Ba~ O , (76)

g =PaD:(%aCVa /Ka ) >0, (77)

h =pa~CvaTa >0. (78)

The two solutionsare denoted r~ and r;. They
are real and distinct for D 2 c and are positivefor
D > c. We want the branch which approacheszero
as D+c; this is r;, which is called simply 71hen-
ceforth. Propefliesof rl are summarizedas fol-
lows.

Limit D-c

+aafl = f +... . (79)
1+(h /~aag)

The expansionis in powersoff. As D+c, rl -.0,

and h / ~aeg --.const.
Limit D< m
[a) Litrge-viscosity case: ~aa ?]MC“va/K~ > I .

This implies ~aag >f as D - oc. Then r, gca as
D~, and the expawion is in powers of D ‘::

4
yaorl = f 1- +~- . ~“ [80)

iaog —f+ “

This implies ~aag c f as D + m. Again rl goesas
Dz, and the expansion is in powersof D ‘2:

TI =g l– h (81)f – :aag + “““ “

For all D > c

f – +a.rl >0, (82)

g –71 >0, (83)

rl is monotoneincreasingwith D , (84)

TI is monotone increasingwith q= /Ka . (85)

Qualitativebehaviorof r, as a function of D: is
shown in Fig. 2, for the two casesof large and
small viscosity. Implicationsof the solution for rl
are discussedbelow.

D. Interpretation

The abovereaultsof viscousfluid theory have
severalimportant consequences, First, because
rl~O as D~c, accordingto (79),viscousfluid
theory is alwaysvalid for sufficientlyweak shocks.
On the other hand, supposewe use viscousfluid
theory to deacribea sequenceof shocksof increas-
ing strength in a given fluid. Since rl increasesas
D increases,by property (84),and rl is not bound-
ed, then rl always reaches the elastic bound at a
finite shock strength.

Definition. The viscousfluid limit is the shock
strength for which viscousfluid theoty gives
71= G-a.

The significantpoint is that for shocksof
strength near the viscousfluid Iimlt and stronger,
viscousfluid theory is not valid at small c. Note
that without heat transport, the viscousfluid limit
is the same a“ the viscousfluid overdrive thresh-
old; with heat coricluction,the viscousfluid limit is
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FiG. 2. Qualitative behaviorof rl as a function of
D: –c:. Case (al is large viscosity,case (b)is small
viscosity,as defined in the text.

alwaysgreater than the viscousfluid overdriven
threshold.

Consider again a sequenceof shocksof increas-
ing strength in a given fluid. As the elasticbound
is approached, the fluid in the leadingedge of th:
simck will no longer respond as a viscousfluid; rl
will not continue to increasestroriglywith D, but
will remain approximatelyconstant somewhat
belowG.d, as D increases without limit. For
shocks in this region, the initial responseof the
fluid is approximatelythat of a nonplasticsolid,
according to Theorem 3. One has to say “approxi-
mately”” here, becausethe elasticbound is never
quite reached. We therefore have the theorem:

Theorem 5. For shocks in a viscoelasticfluid, of
strength near the viscousfluid limit and above,the
fluid behavesapproximatelyas a nonplasticsolid
in the leadingedgeof the shock.

It is of interest to considera fixed shock
strength and iet the coefficientq= /ua be varied.
From property (85),r] increases as TM/Ka in-
creases,hence there is a uniqueelastic-boundvalue
of q= /Ko, which correspondsto rl =G_d. For
q= /Ka well belowthe bound we have viscousfluid

TABLE I. Data needed to calculate the smalk
behavior of water and mercury.All quantitiesare
evaluatedat statea: P =0, T=293 K.

Quan!ity Water Mercury

p(g/cm’)
Cv(cal/gK)
c(cm/ps)
s,
Y
K(C2d/C2t2 S K)
q,@/cms)
q,/1),
G-(kbar)
6
l),cv/K

h(kbar)

1.00
0.99
0.148
2.0
0.11
0.0014
0.010
2.8

10
00067
7.1
0.15

13.55
0.0290
0.146
2.1
2.75
0.020
0.0155
1.2

50
0.126
0.0225

36

responsein the leadingedgeof the shock, while for
qm/Ka near the bound and aboveit, we have ap
proximatelynonplasticsolid response. The bound
is a function of D. For shocksbelowthe viscous
fluid overdriventhreshold, i.e., when (68) holds,
the bound is infinite. As D-. m, the condition
r] =G~. impliesthat the solution is case (b), the
small viscositycase;then the bound is

HenceasD+ m, the elastic-boundvalueof
qm/Ka -d as D ‘2.

E. Water and mercury

Data neededto crdctdatethe srnall-~behaviorof
water and mercury are collectedin Table I. The
shock measurementsof Wa!sh and Rice’1were
used to determineSI. Litovitz and Davissgave
valuesof qv/q,, and they also estimated G- for
water at 273 K. We used the followingmethod to
estimate G@. for mercury. In the solid phase,
G/B =0 is nearly independentof temperature for
most materials, ext.sptnear melting. With asdeter-
mined from this constant range,@=O.17for mer-
cury, we set G.a =tOJBain the liquid czhase.Such
an estimate may be accurate within a factor of 2;
the proceduregives9 kbar for Gmain water. To
caictdate the overdnven threshold,we used the ap-
proximationt,/t,= 1 in state a, so the viscoelastic
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overdriventhresholdisthe same as the viscous
fluid overdrive threshold.

For a given fluid, we generally have to solve (75)
numerically for rl VSD:, to find the viscousfluid
limit. For water, however,the entire solution
range rls G=. is in the D ~c limit, Eq. (79). This
circumstanceresults from a number of factoi~, the
most significantbeing that q,Cv /K is large corn.
pared to 1 for water a! 293 K. For water, we find
the inviscidlimit is at a shock pressureof 0.040
kbar, the overdrivent~reshold is at 13kbar, and
becausethe factor h l~a.g in (79)is extremely
small, the viscousfluid limit is barely beyondthe
ovcrdriventhrmhold; the shock pressureat the
viscousfluid limit is 1.(XIO3times the shock pres-
sure at the overdriventhr=hold.

For merc~, the inviscidlimit is at 9 Abarand
the overdriventhreshold is at 33 kbar. The solu-
tion of (75)for rl when the viscousfluid limit is
reacbed is in the D-m limit, small-viscositycase,

Eq. (81). This situation is probablyrepresentative
of liquid metals in generaland is due to a number
of factors, the most significantbeingq,Cv/~ << I
in state a, Our calculationgives690 kbar fo: thr
viscousfluid limit of mercury.

As mentionedin Sec. I, we expect irreversible
thermodynamicsto be valid for shocks up to some
critical strength, and not valid for stronger shocks.
For metals, solid or liquid phase, our preliminary
estimate places this critical limit in the regionof a
few ~tio12 Hau the pr~t computations for

liquidmercury sliouldbe in the range of validity

of irreversiblethermodynamics.
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