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" PREFACE -

, '<oh March 22 through March 26, 1982 I gave a short course at
£05‘ Alamos on radiation hydrodyhamics{ The notes which
constitute this report wére prepared for use in that course. The
course consisted of 14 unclassified lecture hours, and two
separate classified discussion sessions. The wunclassified
lectures were videotaped and these tapes are availadble for
viewing thfough'the Los Alamos Traning Office. ‘

. Much of the material in these notes was taken from my book:
The Equationé'o} Radiation Hydrodynamics, Pargamon Press, Oxford,
'1973. This book was distributed to the persons attending the

course. References for this material as well as general reading
references can be found in the book. Some new material not found
in the book was 1included in the class and in these notes.
References for this material are givan at the end of the notes.

It 18 a pleasure to acknowledge the hospitality of the
Laboratory, and the help of Gloria Cordova of the training office
in arranging this course. Keith Taggart (X-7) very kindly
offered to érrénge for the typing of these notes, and Bod Weaver
(X~7) undertook the task of arranging the classified discussion
sessionse. A very special thanks 1s due Tessa Lippiatt. She
delivered on Keith's offer and prepared this typed version of the
notes.s As 1s evident, she did a beautifql jobe I offered her a
job at UCLA, but she prefers the clean air of Los Alamos.

Gs C. Pomraning
September, 1982



1.

II.

III.

1v.

ii

TABLE OF CONTENTS

INTRODUCTORY MATERIAL .

The fluid equations without radiation

A

Be The fiuld equations with radiation

Ce The radiation field

D. The interaction of radiation with matter
THE . EQUATION OF RADIATIVE TRANSFER

A Assumﬁtions and limitations

Be An Eulerian derivation

C. A Lagrangian derivation

D Boundary and initial conditions

E« Specific geometry representations:

Fe - The integral form

Ge Peierls' equation

He 1Induced processes; Local thermodynamic equilibrium
I. Black bodies —~ emissivity

Je Transport in a vacuum

Ke Relativistic corrections

APPROXIMATE MODELS OF RADIATIVE TRANSFER

A. The Eddington (diffusion) approximation

Be Asymptotic diffusion theory

C. Variable Eddington factors and flux limiters
D. Equilibrium diffusion theory

E. Marshak waves

Fo« The spherical harmonic (P=-N) method

Ge The discrete ordinate (S-N) method

He The Monte Carlo method

I. The method of characteristics

Je The multigroup treatment

THE INTERACTION OF RADIATION WITH MATTER

A. The absorption coefficient and source function
Be The scattering coefficient

C. Inverse Compton scattering

Do The Fokker-Planck treatment of scattering
References

f—

O Ut W

75

76

80

86
114
124
130
140
144
148
149

156

156
160
163
173

180



© ' ABSTRACT OF COURSE '

This course was intended to provid ﬁﬁe participant with an
introduction to the theory of radiative transfer, and an under-
standing of the coupliag of radiaﬁive_processes to the equations
describing compressible flow. At moderate tempavratures
(thousands of degrees), the role of the radiation is Primarily
one of transporting energy by radiative processes. At higher
temperatures (millions of degrees), the energy and mnomentum
‘densities of tHé radiation field may beconme comparable to or even
dominate the corresponding fluid quantities. In thié case, the
radiation field significantly affects the dynamics of the fluid,
and it is the description of this regime which is generally the
charter of "radiation hydrodynamics”. The course provided a

discussion of the relevant physics and a derivation of the

corresponding equations, as well as an examination of several

simplified models.,
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'RADIATION - HYDRODYNAMICS
Los Alamos National Laboratory Short Course

March 22 - March 26, 1982

. by

G. C. Pomraning

I. INTRODUCIIO&

We will be cohcernéd~with the propagation of thermal radia=
tion through a fluid, and t.he, effect of this radiation on the
hydrodynamics describing the fluid .motion. The term “thermal
radiation” means electromagnetic radiation of atomic, as oprsed‘
to nuclear origine Such radiation is g8enerally emitted bdy matter
in a state of thermal excitation, thus accounting for the
designation of the radiation as thermal. The energy dengity of
this type of radiation in an enclosure whose walls are maintained
at a constant and uniform temperature is glven by the well=-known
Planck formula. More generally, however, the energy distribution
of the radiation field is not described by the Planck function.
Under certain rather unrestrictive conditions, the stéte of the
radiation can be described by a kinetic ,(transport).equatior};
referred to historically as the equation of radiative transfer.
This introduction to'radiation-hydrodynamics will, in large part,
concentrate on various formulations of the equation of transfer
describing the propagation of thermal radiation.

The importance of thermal radiation 1in physical problems
increases as the temperature 18 raised, Primarily because the
radiation energy density associated with a Planck distribution
varies as the fourth power of the tenmperature. At low tempera-
tures (say, room temperature) radiation can generally be
neglected entirely in most problems. At moderate temperatures
(say thousands of degrees) the role of radiation 1is primarily one



of transpbrting enéfgy'$§ rédiative ﬁroéesses. At higher temper-
atures (say, millions.of degr°es) the ~energy and. momentum dengji-
ties of the radiation field may become ‘comparable: to oy even
dominate the corresponding fluid_quantities. In this case, the
radiation field significantly:affects the dynamics of tha fluid. .
Hydrodynamics with explicit account of the radiation energy ang

momentum contributions constitutes the charter of radiation-

hydrodynamies. Such consideratidné find their practical _applica=-

tion in the understanding of certain astrophysical and nuclear

weapons effects phenomena.
These notes are roughly -divided into four major topics:

l. Introductory Material, which includes a summary of the

basic fluid dynamics equations without radiative contributions,
an introduction to the radiation field and its interaction with
matter, and the fluid equations in the presence of radiation.

2. The Equation of Radiation Transfer, which includes both
an Eulerian and Lagrangian derivation, boundary and initial

conditions, specific geometry representations, an integral
equation formulation, Peierls® equation, induced processes, the
concept of local thermodynamic equilibrium, Kirchoff's 1law,

transport in a vacuum, and relativistic corrections.

3. Approximate Models of Radiative Transfer, such as the

Eddington (diffusion) approximation, asymptotic diffusion theory,
variable Eddington factors and flux limiters, equilibrium diffu-
sion theory, Marshak waves, the spherical harmonic (P-N) method,
the discrete ordinate (S-N) method, the Monte Carlo method, the
formal solution (methods of characteristics), and the multi-group
method, introducing the Planck and Rosseland means,

44 The Interaction of Radiation With Matter, including a

discussion of the absorption coefficient, Compton and inverse

Compton scattering, and the Fokker-Planck treatment of

scatteringe.
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A The Fluid Equations Without Radiation . |
The non-relativistic, ideal fluid equatipne are, din the

Eulerian conservative form:

Conservation of mass (continuity)

3% + Ve(pu) = 0 , a | : (1)

Conservation of momentum (force balance)

3t puu) + VF = » (2)

Conservation of energy

] 1 1 T y*

5;-(7‘pu2 +E_) + 3-[(5 puZ + E + P )i] =0 (3)
where

p = fluid density

; = fluid velocity

Pm = fluid (material) pressure

Em = fluid (material) internal energy density.

These three equations are supplemented by an equation of state

such as

p_= P_(p,T) , | (4)



’hﬁdga&thefﬁqdynamié?éxpféééioh/fbr”the‘ipﬁérnél'eperéy such as
’ Eh =-Em(p’T), Ty ’_-» : . = . ,‘ (5)
where
T = fluid temperature . ‘ . | (6)

Equations (1) through (5) represent seven equations for the seven

unknowns:
p, & (three components), P E»T .

Note that the right hand sides of Eqs. (1) through (3) will not
be zero if external sources of mass, momentum, and energy are

presente.

B.  The Fluid Equations With Radiation
If radiation is important ({ee., 1f the temperature {isg high

enough), these balance equations need be modified to include the
radiation contributions. We define

E = radiation energy density
o= radiative flux of energy
ﬁ& = radiation momentum density
% - radiative flux of momentum

Hh

The balance equations for momentum and energy, Eqs. (2) and (3),

then become

9 +> + +4 1
3T (pu + M) + Ve(pua + o) + $pm =0 , (7)
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We have now introduced several new dependent variables, namely E,
. R > A
F, #,
that these new variables are simply angular moments of a distri-
bution function of the radiation field.

and ﬁf. We vaiously~need more equationse We now show

C. The Radiation Field

'We consider the radiation field to consist of ‘point,
massless partlélés called.ghotons. (We discuss the validity of
this descriptiqn later). With each photon we. associate a

frequency v such that -the energy of a photon is hv, where h 1is
Planck's constant. It is known that such a massless‘particle
'carries momentum of magnitude hv/ec, where ¢ is the vacuum speed
of lighte. ]

At any time t, six variables are required to specify the
position of the photon in phase space, namely three position
variables and three momentum variables. We denote the three
position variables by the vector r. In radiative transfer work
it 1is conventional to use, rather than the three momentum
variables, three equivalent variables. These are the frequency v
and the direction of travel of the photon 5. We then define the
distribution function f A

£ = £(7,v,8,t) (9)
such that
dn = fdrdvdd |, (10)

>
where dn is the number >f photons (at time t) at r,v,ﬁ, in

the six-dimensional differential volunme d;dvdﬁ. In radiative



dtransfer, it is conventional to introduce the specific 1ntensity

of radiation, defined as
‘i(;,v,ﬁ,t) = chvf(?!v,ﬁ;t)“. ‘ ~" A (11)

In terms of f (or I), we can compute the radiative terms in
the fluid egquations. We have

CE = [Tav [ afithv)s ==-‘1:- J® av [ 431 , (12)
. o , um " o Lo
F=["av [ a8(ch)(hvd)f = [ av [ afd1 (13)
o 49 ° 4 ‘
i - ® d 5 .}}—\ﬁ - -1_.. @ = -1— B
i, £ v Ju da(2=)s > £ dv {“ dfdI = Fo, | (14)

e [Tav ) adcedy e oy awnaF oL as)

o hq

where‘the radiation pressure, §, is defined by the 1last equality
in Eq. (15). Hence the nonrelativistic i1deal radiation-hydro-

dynamic equations are:

32+ Yool =0, (16)
3 + 1 > 3 "
= (¥ +-:; F) + Ve + Ve(old + F) =0 , (17)



which are supplemented by the thermodfnéhic'relaﬁionships

Py = By (PT) B : (19)

E, = E_ (p,T) , | " (20)
> >
and the definitions of E, F, and P as
=2 f%ab [ afz , | (21)
o 'Y

Fw=[av [ afif1 | (22)
o un - .

+l°° ‘ ‘

P == [Tav [ alddr . (23)
o b :

Thug, the 4inclusion of radiation in the fluid equations has
introduced one new dependent variable, namely I(;,v,ﬁ,t). We need
derive an equation (a conservation equation for photons) which
yields I. We do this shortly. '

If I is independent of f, 1t is saild to be isotropic. If it
18 independent of both r and 5, it is sai& to be homogeneous and

isotropic. The most i{important example of a homogeneous and
isotropic radiation field is that which coexists with matter in
complete thermodynamic equilibrium at temperature T. In this
case, I i1s the Planck function B(V,T) given by

3
I = B = .gh.\.,_. (ehv/kT - 1)-1 , (24)
c
where k i1is the Boltzmann constante. The corresponding energy
density is



ol - A
- BTk™'T £” dxx3 z o TRX (48ﬂk T“) z

or

- 8ﬂ5kk. T

. (25)
15h3,3

This 1is often written

E = aTh , (26)

where a, the radiation constant, i3z given by

8moRh :
a4 = ——, (27)
15h3¢3 :

or

4 ,
E =274, (28)

where 0 = ac/4 1is called the Stefan-Boltzmann constants The
radlative flux and pressure tensor corresponding to a Planck

function are

+* +>
Fa0; Po2I1i (29)



+ : - . N -
where ,f ie the unit (diagonal) tensor. We mnote the general
~relationsh;lp, for any I, ‘ -

e .
Tr(¥) = E . S | (30)

We also note that for streaming fadiation (i.e¢, all photons

going in one direction, say the z direction),
P = E " (31)

>
and all other eight components of P are zeroe.

Ds Interaction Of The Radiation Field With Matter
We consider three interactions of photons with matter:
(1) absorption; (2) scattering; (3) birth in the matter.

le Absoxrption., We define the macroscopic absorption coefficient,

or cross section,

o, = o (F,v,t) , | | (32)

such that the probability of a photon being absorbed in a

distance ds 1is

probs. of abs. = aads . (33)

In writing Eq. (32) we have assumed no angular dependence for 0,
(1.e., the matter is isotropic = has no preferred direction).

Thie 1is always true except 1in crystals (of no importance in



'radiation-hydrOdynamics), for; ifﬁﬂene‘;considers relativistic

" effects, which can be important., We considerx relativistic

10

effects later on{} The function Oa’ is often decomposed ag
+ ‘ +.
0 (Fav,t) = p(F,t) k(F,v,t) (34)

where K is the mass absorption coefficient, or opacity. Another

decomposition is
> : > > :
ca(rg\’;t) = N(r,t) U(r:v:t)_ » (35)

where N 1is the atomic density and Bg 1s the ni¢ troscopic

absoxrption coefficient.

2. Scattering. Similarly, we define the scattering coefficient

or cross section

o, = o _(T,v,t) , | | (36)

such that, in a distance of travel ds,

probe. of scatt. = dsds . ‘ (37)

As with absorption, og 1is independent of R (except'for relativi-

stic effects). In a scattering event a pho;on does not disappear
as in absorption, but continues to exist with another direction
of travel and frequency, in general. That is, scattering changes
a photon's characteristics from V' and Q' to Vv and R. We describe
this by dintroducing the differential scattering coefficient or

the differential scattering cross 0s(v'+v,§-5') such that the

ot

LRS-

T e
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probabilit of a photon being scattered’ from’ v! to V contained in
dv, and f: - g to & contained in dﬁ, in traveling a distance ds

is given

Note the argument 9'°§ rather than Q' and 2 separately. That/is,
the scattering depends upon the scattering angle only, not 2' and
) separately. This is a consequence of the assumnption of iso-
tropic matters He also note the identity between the scattering

cross section 0g(v') and the differential scattexing cross

gection os(v'»v,ﬁoﬁ')

o (V') = [7 av | dﬁos(v'+v,§'-5) , (39)
. o b
or
o 1
os(v') = 2% f dv f du os(v'»v,u) . (40)
o - -

>+
Often one decomposes os(v'+v,n'°n) as
os(v'+v,5'°§) - os(v!) K(v'+v,§'-§) ; (41)

where K is the normalized scattering distribution, i.e.;

[ av [ af kQurtev,dreR) =1 . (42)
o hae

1f
R(v' v, fref) = K(ATed) s(v'-v) (43)

11

R
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where

f ab k(@B - 1 , - ‘ (44)
be - -

the scattering is called coherent or conservative. 1If

K(v'+v,§'-5) = %? K(v'+v) ~ (45)
where

[ dv K(vtav) =1 , (46)

o

the scattering 1is called isotropic. The simplest Scattering
distribution is both coherent and isotropic, i.e.,

R(vr v, B0 ell) = 2= s(vr-v) )

and is widely used in radiation-hydrodynamic calculations.

Total Cross Section - Mean Free Path

We define the total interaction coefficient or total cross

gsection o as

C = oa + O, . _ (48)

The symbol o generally denotes the probability of scattering
given that a collision has occurred, i.e.;

e el A (42)



T

;‘u 0 is . a purely ~absorbing problem, _and w =1 is a purely

scattering one.
We ask the question: If a photon of frequency V. 1s traveling

in a’homogeneous medium (no ;4énd t depéndences)‘of ‘total cross.

gsection o(v), how far, on the average, will this phaton stream

before suffering a collision? : This distance is called the mean

free path and denoted by A = A(v).

ds
No ——b
: i
N(s)
» S
s=0
We have
dN(collided) = -Nods , 7 (50)

frdm the definition of the total cross section 0. Hence

dN '
T No (51)

or

N = Noe-os . ‘ . (52)

That 1is, Np photoné initially in a beam will be exponentially
reduced to N photons in the beam after traveling a distance s.

The number of photons that collide in a path length element ds at
g is then given by

|an| = Noe'°80ds . (53)

13




fﬁisiynuhberﬁjof photonsA have .traveled ~a distance & before.:
Hsuffering a- collision and hence the average distance s, or A, to

a collisioﬁ is just s averaged over 'dN! i.e.,

, £ s(ﬁoe-dsoas) ) _

8 = )\ = = _  2 - (54
T (N e84y - 9] ‘
o

6r, displaying, the frequency argument,

A(V) = . - (55)

1
ag(v
That 1s, the average distance a photon travels between collisions

is just the inverse of the total cross section (in a homogeneous

medium).

3. Birth. Consider the emission of photonse. Since neither

absorption nor scattering creates photons, how are photons intro-
duced into a system? One way this can be accomplished is by
shining light into the matter through its bounding surface. We
discuss this shortly.

The other possibility 4s that photons are born in the
matter, through the process of spontaneous emission. That is,
all materials spontaneously emit photons characteristic of the

state of the matter. We quantify this source by introducing

q = q(;»"at) ’ | (56)

such that the number of photons emitted per unit time and volume
at frequency Vv in dv and direction 9 in 40 is given by

photons emitted = q(r,v,t)dvdd . (57)

14




This source of ‘pﬁdfohs‘ié taken to be independent of 5, which

again followsvfrom‘the aésumption of isotropic matters

II. THE EQUATION OF TRANSFER

We derive an equation satisfied by I(;,v,ﬁ,t), the equation

of radiative transfer. This 1s just a conservation equation for

photonse.

A. Assumptions and Limitations

In order to obtain a relatively simple kinetic (transport)
équation'we need to approximate the underlying physics of radi-
ation processes., These approximations fall into two classes -
those that are inherent in any kinetic equation description of
radiation energy transport, and those that can be incorporated
into such an equation at the expenses of simplicity. It should
be emphasized that the question of the inherent validity of a
kinetic equation for photons is by no means settled, but is still

beiny actively researched.

Inherent Limitations

l. Photon density is large, so that fluctuations caused by
individual photon dynamics can be ignored - it suffices to deal
with averages, as 1is inherent in characterizing the photon
distribution in a statistical way with a single particle distri-

bution function.
2. The wave packet we call a photon is small, in both

physical and momentum space. That is, the spreads in these vari-

ables must be small compafed to the resolution of interest in

15



’space (r) and momentum (represented by v ‘and %). This is clearly
required since we assume in writing I as a function of r, v, and
§ that 1t 1s sufficient to specify the phase space coardinates of
" the "center" of - the wave packet, and that any information con-

cerning the disttibution-about the center is irrelevant. Becausge

of the uncertalnty principle, which limits the wave packet spread
in r and p, these considerations impose a minimum on the spatial

and momentum resolution possible in the equation of transfer.

3. Intesference ieffeets are 1ignored, since the transport
equation is éniequation.for intensities rather than wave ampli-
tudes. Hence, the photon density must be low; 1.e., low enough
so that the overlap in the tails of the wave packets is
negligibly small. This“restriction is somewhat too strong since,
given a time resolution of interest, photons of sufficiently
different frequencies do ‘not interfere even if they coincide
spatially. This fact 1s needed to be able to treat the source

photons as incoherent.,

4. Collisions occur instantaneously, and spontaneous
emission occurs instantaneously. This imposes a minimum on the

time resolution that a kinetic equation can supply.

5. No diffraction or Teflection 1s ©possible. These
phenomena depend upon interference among the waves arising from
different scattering centers, which scatter the same photon. For
interference of this type to occur, two conditions must be
satisfied. First, the scattering centers must be correlated (as
in a crystal) and secondly, the spatial extent of the wave packet
must be such that several scattering centers are encompassed by a

single photon.

16



Simplifying Assumptions.

1. ‘ﬁolarizéﬁion igvnegléctéd. Four parameters are required
to specify the state of polarization of a beam of light. Further,
the state of polarization and hence these four parametars change
when a photon is scatteréd. A proper description of vadiative
transfer involves four'coﬁﬁled transport equations. The single
'equation we deal with can be considered as the result of
averaging this set of four eqhationé over polarization states,
assuning the light to.be natural (unpolarized). The fact that -
four paramete;é. are needed 1is easily demonstrated. They are:
(a) the intensity; (b) the prpportioh of unpolarized light and
elliptically polarized .1ight, a decomposition that Jis always
possible and 1s unique; (c) the plane of polarization of the
ellipse (its orientation in space); (d) the ellipticity (the

ratio of the axes)e.

2., Refraction and dispersion is neglected. That is, the
refractive index is taken as unity. If this index 1s mnot unity,
photons will not move at the vacuum speed of light. In addition,
if this index depends upon space, photons will not stream in
straight lines between collisions but will undergo (continuous)
refraction. In addition, if the index depends upon time, a
photon will (continuously) change its £frequency as it streams
between collisions (dispersion). The origin of these effects is
interference between the scattered wave (from a single scattering

center) in the near forward direction and the incident wave.

3. The medium is assumed isotropic. That 1is, in the fluid

rest frame there 1is no preferential direction in the matter.
Hence, 04(v), og(v), and B(v,T) do not depend on 5, and
os(v’+v,5’-5) depends only upon 5'03, not 2 and E separately.

4., Moving medium effects are neglected. The fact that the

fluid is moving does, to an observer at rest, introduce a

17



: préfefféd' &ifebﬁidﬁ’ iﬁ thé mafter~ Then Oa, Osy, and B depend

. ‘upon 5 and the differential. scattering cross section depends upon

g ana & separately. These are relativistic effects, ‘of the order
of u/ce , \ ‘ |

These four effects can be, and have been, incorporateg into

a2 kinetic description of radiative transfer. With the possible

exception of v/c terms, they are generally unimportant.

Be An Eulerian Derivation of the Equation of Radiative Transfer
We write -

df = dxdydz |, (57)

dff = 5inB dO dé = dpds (58)
and consider a six-dimensional "cube" dV fixed in space such that
the nunber of photons in this cube at time t is

# of photons = f£(r,v,8,t)drdddv = £4v . (59)

The time rate of change of the number of photons in this cube is
given by

3 Y '
change T3 (£4Vv) (dv) 3 ° | (60)

We equate this change to the time rate of change of sources and
sinks, namely: streaming, absorption; outscattering, inscatter-
ing, and emission. We have, for each of these terms,

net streaming _ [3

out of cube (x£) + = (y£) + = (2£) + (Vf)

A ° 3 .
+ gy (uE) + T3 (¢£)]av ., (61)

i8
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Cabsorption = o fdV , I L (62)

‘outscattering = cdV [ dv' f<d§} 6s(v+v',ﬁ'°ﬁ)f(v,3) , (63)
o o = - -

inscattering = cdV [T dv?
' ° b7

emission = qdV . . (65)

Thus, the conservation (photon balance) equation is:

OB, e, B) = a(v) - co, (VEW, D)

+ fwdu' / dﬁ'[os(v'ov,ﬁ-ﬁ')f(u',ﬁ') - os(va',ﬁ-ﬁ')f(v,ﬁ)],(66)
° b

where we have neglected refraction and dispersion, i.e., set

Vep=$=0 , | | (67)
and set

[ ) L [ ]

X = cﬂx; y = cﬂy; 2z = cﬂz . (68)

1f we rewrite Eqe (66) in terms of

I(v,ﬁ) = chvf(v,ﬁ) R (69)
defining
S(v) = hvq(v) , (70)

19

J dﬁ"os(v'+v,§'-§)f(v',§') , (64)
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we have
121000 4 88100, 8) + 0 (I8 = s(v) + [ av' | ad
c 3t a ) by

[57 o viv, BBy evn, 8 - o (vavr, Belin1v, D] . (71

Using

o (v) = gf:gv- {ﬂ dﬁ"os(v+v',§o§') , (72)
and
, o =0 +o9o (73)

we can rewrite Eq. (71) as:

% 32%%L§l + §-$I(v,§) + o(v)I(v,ﬁ) = S(v)

+ [T av [ ol 5 o (v'sv,Eed)I(v, A L (74)
° b

C, A Lagrangian Derivation of the Equation of Radiative Transfer

As a packet of photons travels in matter, its number would -

be conserved except for the processes of absorption, scattering,
and emissione. We have just computed these three processes, and

we can immediately write

I&

T (£dV) = qdv =~ coade - cosde

(=¥

+ cav [© dv' [ a% o (v'sv,hreB)e(vr, B . (75)
o b
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| Here, d/dt”isrthe totél,'or'Lagrangian, time derivative, téken
alonglthg natural bath of the stréaming packet of phoﬁons. That
is; the term d(£dV)/dt means the difference between. the value of
-£dV at 8 +.ds and its value at s (where ds = cdt is én elemeﬁc of
length along the pheoton path) divided by the transit tipe dt.
This difference in value comes, in general, from both an explicit
timé dependence of fdV and an implicit tinme dgpendence through

the other variables involved.
It should also be stressed that dV here 4s not fixed in

space, but travels along with the packet of photonse. Its size
varies in time in just such a way that at any instant of time it

encompasses the photons of interest. Hence,
d_ (av) # 0O (76)
dt *

but the change in dV with time must be calculated.
The rule for diffecentiating a product gives (at this point
it 1is convenient to use AV rather that dV, and let AV+d4V as

appropriate in the manipulations)

L (£4V) = S (£ BxByAzAvAuAd) = AxdybzAvAuAg &<
+ £ AyAzAVAuA¢ (Ax) + five similar terms , (77)
or, introducing AV,
S (£4V) = AV g%
+fAV[%;-§-—E-(Ax)+i—y-——(A)+22dt (8z) + « o 2)] . (78)

Considering Ax = x5 - x;, we have
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hence, Eq. (78) becomes

d_ y 4 +

o5 (£4v) = &V g& + fAV[ tap e N (80)

Using the chain rule of differentiation on the df/dt term in
Eq. (80) then yields:

d of e Jf s of
I (£4V) = AV[;— Xgx Pyt .]
' ax , 3y .
+ fAV['a—x-+ 3y T o o] ’ (81)

or, combining the terms on the right hand side of Eq. (81),

d
T (£aV) = INA

gi (xf) + 3 (yf) +aoe ] (82)

Using this result in Eq. (75) and cancelling the common dV term
gives

) | AGE) 4 268 4, L L = g(v) - cof
+c [Tavt [ aR o (vrev,Rredde(vr,B) (83)
0 b &

Taking into account that photons stream in straight 1lines and
introducing I = chvf, Eq. (83) becomes




S

1 axg:,ﬁ) £ B0, B) + o(WI,B) = S(v)
+ fw’dv' f afe %T os(v}+v,§-§')1(v'.§') , (84)
(s] N .

which is identical to the Eulerian derivation result [see
qu (74)].

D. Boundary and Initial Conditions

Since the -equation of transfer is a first order differential
equation in space and tiﬁe, we require boundary conditions in
both variables.

We assume that the system of interest, which is arbitrary in
composition and shape, is non-reentrant, by which we mean that
any photon that escapes through the surface will not re-anter the
system through another part of the surface. If the body 1is
re-entrant, we enclose it in a non-reentrant hypothetical surface
(sucﬁ as a spherical shell) and consider the system to be bounded
by the imposed, rather than the real, surface. The new system is
then non-reentfant, but consists in part, of vacuum (o = § = 0).

On physical grounds, we know it is suffiéient to Specify
the specific intensity at each surface point in the incoming

direction. Thus we have the boundary condition

1(?8,v,§,t) = r(?s,v,ﬁ,t), neR <o, (85)

>
where T is a specified function of all arguments, rg is a surface
point, and ; is an outward normal vector at this point.

A special case of Eq. (83) is the so-called vacuum Or free

surface boundary condition.

1(§s,v,§,c) =0, ne<o0 , (85a)
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‘which merely states ;hatfnb‘pﬁéidné gﬁﬁéfvthe system through its
bounding surface. N D
The d1initial conditibn;is,,wi;h A a known function of all

arguments,

1(Z,v,8,0) = AE,v,T) - (86)

Es« The Equation of Transfer in Vafious Geometries

To write pﬁe equation of .transfer in any given coordinate
system, we need ‘interpret f.VI as a directional derivative in the
8 direction.

Slab (Planar Geometry)

24
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" In ﬁhie' geometry; I is a function 'only“ of z and u;.;ﬁhe

cosine of the angle between the z azis and Q. We have

31 9L (dzy , 91 (dwy |
35 = 3z (3—) em (55) . | 77 (87)

From the fugure we see

[nR =N
(11§ =4
L]
o

= cos® = pj; ’ (88)

0.
oiN

and the equation of traﬁsfer, Eq. (84), becomes

% alg:,u) oy aIg:,u) + 0(VIT(v,u) = S(v)

+ [T ave [ alir =5 oB(v3+v,§-§')1(v',u') . (89)
-9 57

To simplify the scattering term, we expand os(v'*v,§~§‘) in

Legendre polynomials according to

o_(viav,fited) = 1 (Bt Ly o (vievip (Bedi) (90)
where
1
o (VI*V) = 2m {1 dE o_(v'+v,E)P (&) . (91)
We use

P8y = 2 ()P _(0')

n
{(n - m)! om m _
+ 2 mzl m Pn(LI) Pn(U')COS m( ¢ ¢') . (92)
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Using hq. (92) in Eq.,(90),'and this result in Eq. (89) gives,
noting that the cosine m (¢ - ¢ ) terms integrate to zero,

1 3I(v,w)

: - + u iiégLﬂl + b(;)I(v,ﬁ).n S(V)

+ 20 (zﬂfi‘l)P fu) f dv' %T o (V'+v)
nn

1 .
_{1 du' B_(u)I(v,u') . (93)

Spherically Symmetric Geometry

In this geometry, I depends upon the radial coordinate r and
B, the cosine of the angle between r and . We have

31 31 ,dry . (9L, (d

= =5 (Go) * (33) (=) (94)
and

dr 6wy . du 1 -m? :

.d—s- = CcOo8 ['H) u H -d—g- = T —— . (95)

(Note that du/ds # O since O is not measured with respect to an
axis fixed in space).
The scattering term can be treated just as in planar

geometry, and heance we have

1 31(v,u) +‘u AL(v,w) . (1 - u?) 3I(v,u)
c ot or T u

+ (I, = S+ 1 (22 2y (W
n-

' )
= avt 2o _(viev) [ oaut B (uOI(VL D+ (96)
0 -1
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YUCylindrically Symmetric Geometry

In ‘this geometry, T depends upon the single 8patial coordi-
nate T (the usual cylindrical coordinate), but two angles de-
_ fining % are needed.‘ These may be taken as 6, the angle between

the -projection of % in thefx-y;plane and the cylindric¢al coordi-

nate r. Then

or _ 3L (dry , L (d8y , 3L (déy | A
5s = 3r @) t35 (&)t (&) (97)
One finds

dr dé 1 - de

o sind cos¢ 3 BT sin6 sin¢d 3 Pl o (98)
and hence the transport equation is

1 3I(v,o 91 1 9

E'_~i§%—Lil + sine[cos¢ 3F T T sin¢ 3%] + o(v)I(v,8,9¢)

= s(v) + [T avr [ aflt g o (vIav,BeRNI(0,07,9) . (99)
o bu

In this case no simplification in the scattering term is possible

since the angular dependence of I is as general as in the

original equation of transfer (i.e., two angles are required).

3-D Geometries

In general 3-D geometry, wé have:

Cartesian
31 31 31 31
38 - Yk 3x T ny 3y T B, 3z ° (100)

27

| e e it bt d s = ot



with

“~

e 2 aed oy N , BRI
RZ + aZ 4+l = 1, o (101)
SEQErical‘
9T _ 8L . n 3L & A1 _ (1 =~ u2) 31 _ fcot®.91
es “3r ¥ T 30 HETICCIL + r u T Y » (102)

where r, 0, ¢ are the usual spherical spatial coordinates,

g = coge;‘,n = gin6 cosd; £ = sin® siné , (103)

with
W2 EnZ4EZel . (104)
Here 6 is the polar angle betwen r aund 5, and ¢ is the azimuthal

angle between the projection of § in the plane perpendicular to r

and any reference axis in this plane.

Cylindrical
21 _ 31 . n 3l 3L _n 3l
Y T + r 90 + & 9z r 3¢ °? A (105)

where r, ©, and z are the usual cylindrical spatial cooxdinates,

£ = cog8; u = sinB cos¢; n = sind sind , (106)

with

Here 6 18 the polar 'angle between the axis and 5, and ¢ is an

azimuthal angle between r and the projection of ® in the X-y

plane.

28



F. The Integral Form 6f the Equation of- Transfer
We fitstféonsider fhe,tiﬁggiﬁéépendent equation of transfer.
We have, from Eq. (84), S '
> > oa . ‘
ReVI(E,v, ) + o(F,V)I(FHv,H) = or,v, ) (108)
where Q(;,v,ﬁ) is the tdtalj(emiséion7+ sgattering) source

Q(;,V,ﬁ) = S(;,\))

# 17 avr [ oalit Yoo (v, Bl v En (109)
o b

The boundary cendition on Eq.'(108) is

1(¥s,v,§) =fr(¥8,v,ﬁ) , neR <0 . (110)

We interpret GV as a directional derivative in the direction 5,
and introduce the distance s from the point ; in the -5

direction.

29



”\We write Eq. (108) at the -point r < s§ s, supﬁre§sing the

,frequency variable ,lf

- 31(r - 35 ﬁ)

£ o(r‘- sﬁ)x(r'- sh, 5) = Q(F = s8,8) . (111)

This 1s a first order\'eqﬁation‘_that"can "be integrated by
introducing an integrating factor. The result is:

I(; - sﬁ,ﬁ) = I(; - soﬁ)exp[gs ds"o(; - s"ﬁ)]
. ~ o)

8

+ g ° ds'Q(; - s'ﬁ,ﬁ)exp[gf ds"o(? - 8“5)] > (112)

where 8, 1is an ‘arbitrary point along s. Setting s = 0 in
Eq. (112) gives

, s .
I(;,ﬁ) = I(; - soﬁ)exp[- £ ° ds“o(; - 5"5)]

8 ‘ '
+ f ° ds'Q(; - s'ﬁ,ﬁ)eXp[- fs ds“o(; - s“§)] « (113)

) o
To apply the bouddary condition, we choose s, muéh that
> > + :
r - s d =7 = 8, ™ 'r - rsl . (114)

. Then

+ &
Bo=|r-rg

I(; - soﬁ,ﬁs

= Nz, . (115)
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3
r- rsl

I(F,B) = T(T, n)exp[ [ ads" o(f - s"%)]
. (o]

';-;s l . s-' . R
+ £ ds'Q(r - s'ﬁ;ﬁ)exp[- £ ds"o(r - s"ﬂ)] ’ (116)

which 1is the_.integral form of the eqﬁation of transfer. We
see according.io Eqe (116) that~1(;,§) is the sum of two terms:
(1) the 1intensity - incident upon the surface exponentially
attenuated by collisions along the path; and (2) a contribution
due to emission and scattering into the beam from each path
‘length element ds' along 5, also exponentially attenuated.

The quantity

+ >
r~rg

(T,T) £ ds"a(z - s"8) , (117)

ﬁhich occurs in Eq. (116) is referred to as the optical depth or

optical path léngth between the points ; and ;8. It is clear from
Eq. (116) that it is the optical depth between two points that is
the relevant quantity in calculating the exponential attenuation

of a beam of photons in traveling from one point to another.
One could repeat this derivation in the time dependent
. casee Omitting the details, the result is:

fr-7, |

I(;,ﬁ,t) = [g ds'Q(; - s'ﬁ,ﬁ,t - s'/c) .

8'
cexp[~ [ ds"o(f - s"f,t - s"/c)] +
o
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.éxp[- / .‘ ds“O(; - s"ﬁ,t -‘s"/c)]
o - '
#AE - el ([T - F ] - ct) .

“' .exp[- JCt ds"d(; - S"ﬁ,t - S"/C)] ) (118)

where H(z) is the Heaviside function

0 z {3
H(Z) = ’ .
1 2z >0

This equation, the so-called formal solution of the eqhation of

transfer, is algebraically quite complex, but the physical
interpretation is simple; namely, photons of direction 3, which
are at a point T at time ¢t must have originated at some point
; - sﬁ at time t - s/c, due to the finite speed of 1light. One
must also account for the exponential attenuation, based upon the

optical depth between f and ¢ - s8. This is the entire content
of Eq. (118).

G. Peierl's Equation
We consider the special case of time independent radiative

transfer with isotropic scattering and no incident photons
(T = 0)e In this case Eqe. (116) becomes

I(;,ﬁ) = fm ds'Q(g —‘s;ﬁ) exp[~ fs ds"o(; - s"ﬁ)] « (119)
o o
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‘Ih"writiué; qu'(119); we: have used:the fact that Q(;,a) is, in
cht;,~iﬁ§ependent of 8 begause'the‘ emission and scattering (by
assunption) are isotropic. We have further taken the upper limit
.of’integration as @ since Q is zero for g > '; - ;s,'

Integrating "Eq. (119) over all 5, recalling that the ragj-
ative energy density is givén by

B =2 [ dfid,h (120)

b

[the function'\_f} in Eq. (120) is really the energy Vdensity per
unit frequency since no integral over v iS»involved], we obtain
the result ‘

cE(F) = [ af [7 astaE - 3rdexp[- 1% asno(t - s"8)] .(121)
b 0

We define

ES

;' = r - '@ , (122)
and hence

s' = |F - ¥'| . (123)

Then Eqe (121) beconmes

cE(F) = [ 4% [ d|r - ez .
b o

+ &,
r-r

.exp[~ J ds"o(; - s"ﬁ)] . (124)
o

Recognizing the exponent 1in Eq. (124) as the optical depth

+
7(r,r') and grouping terms, we have
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,_c‘;(r,s‘ ,. dlr -‘r'”r - r'|2 f d?i ’ an

We now recognize that lr - r'lzdlr - r'ldﬁ is just 8 Yolune ele-

ment. in spherical coordinates, centered around the polnt r. One

can rewrite this volume element as simply dr' without reference

to .any particular coordinate system. Hence Eqe« (125) can be
rewritten '
: . >, LI
CE(T) = [ air Q(r') -t(r,r?) , (126)

.V r-r'l2

where the integration extends over the volume of the system.
The function Q(r) in:Eq. (126) is given by

Q(z) = Q(F.v) = S(x,v) + [T av' Lo o (F,vrau)eE(D, v) , (127)
: 5 v' g ,

and hence Eq. (126) becomes

cE(;,V) =
+> o v +> + -T(; *v)
4n[S(r',V) + f dv! — o0 (r',v‘+v)cE(r',v')]e » T
[ dr* , ———— . (128)
v ~ 4mjr-x'|2

Equation (128) is an integral equation for E(;,v) and is known as
Pelerls' equation. We have introduced a factor of 4m in both the
numerator and dendominator of Eq. (128) to aid in the physical
interpretation of this result. The term 4n Q(;') is just the
angle integrated total (emission plus scattering) source at a
point T's To obtain the contribution of this source to cE(i ’
one must attenuate it by the proﬁer exponential, namely e-T(r r')
which 1is the noncollision probability. One must also introduce
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‘the geometric attenuation due to spherical divergence,r amely the'

area of the spherical shell at point r with ‘center r . This is
“just 4w'r - rlz the denominator in Eq. (128).
'If one considers Peierls' equation in the standard ;hreeA

one-~dimensional geometries, one finds from Eq. (126):

Planar'Geomet;y

CE(z) = 27 gR dz' Ei(| - t'])atz") (129)
where "
© -zt 1 _ _ _
E (z) 5 [ -dt = - [ ar 72 2/t (130)
n 1 2 0 .

is the standard nth order exponential integral, and

1(z) = [? dz"o(z") . (131)

o

The slab here extends over the range 0 . 2z { R, and ¢ = 0(z), an
arbitrary function of space.
For spherical and cylindrical systems, one obtains rela-

tively simple results only for homogeneous systems (a cross

section © independent of space). These results are:

SEherical

cE(r) = 27 JR dz’ %l [El(olr-r'l] - E1(0|r+r'|)]§(r') «(132)

Cylindrical

cE(x) = 4ro fR dr'r'Q(r') fm don(or<y)K (or.y) (133)
ks ] o ">
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oonost o

" where I (z) and Ko(z) are Eﬁé'ﬁéﬂéizﬁéégél fthtions, and
= min (r,x') ,

Ty

x, = max (r,xr') 1 (134)

He Induced Processes and Local Thérmodyhhmic Equilibriunm

The equation Qf transfer considered thus far may properly be
termed the classical equation of transfer since its dexivation
was based solely on classical physics conceptse. We now'modify

this equation to account for so-called induced processes, a

non—-classical concepte.

Specifically, we consider the manifestation in the equation
of transfer of the quantum statistics obeyed by photons. Since
photons are bosons, both the processes of emission and scattering
are enhanced by the number of photons already in the final state
following the interaction. This enhancement 1s generally
referred to as resulting from iﬂduced processes. The quanti-
titive statement of this enhanéement is simply stated as: If P
represents the basic rate of a photon event (emission or

scattering) then, due to induced effects; the actual rate P' is

given by

P' = P(1 + n) , (135)
‘'where n 18 the number of photons in the final state of the
transition. In the present context, the final state corresponds
to the basic, or unit cell, of phase space. In terms of the

distribution function f(;,v,ﬁ,t) introduced earlier, the number
of photons at time t in a unit cell of ;,v,ﬁ space is given by

no= [ dr [ av [ 4R £(F,v,R,t) (136)
A .
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(138)

dp - (h/c)3v2dvd§

! L Introducing the specific“iniensi;y I JééﬁvainJEq);(I3§)'§ﬁd‘
. making use of Eq-A(138), e’ obtain Afﬂﬂ}g'ii _-[,ﬂ,igé_ﬂ.' S

omom S faE T i(E, v Beyv3 o (139)
- cht A ST e L u A

T

>

where A now denotes the basic cell in r, p space- This basic e1e->
‘ment e '

A= AKA?;s hdfz o, (140)
with the factor of 2 arising because each h3 of phase space can

accommodate two photons, ope~of each polarization state. Hence
Eq..(139) yields =~ - Eh;;‘5¢g4_,-,w |

1A =2 gl - (141)

“énd:thusu" |
P' = P[1+ c21/2mv3]) . ¢ | | (142)

i
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1- _ ‘q,ere 5the ‘frequency‘ and_ angle arguments of‘ the
"specific intensityfcorrespon”

the emission - 0T scattering process has occurred.1, :uith

this\
change, the claasical equation of transfer, Eq-.(71). beeomes
1 _a_;%i)_ ¥, 5 ‘v’uv 5) i s(v)[l + -“-lil’ﬁl] - g (D)I(v 5)
. R RPN - " 2hv3 ,
”jf#~l”}d§@fjﬁéaﬁl,37 o v'+v 5 5')I(v' 3 )[l TR c I(“ § ]
SRR P | IR S
- f dv' v dﬁ' 6 (v+v' Be ﬁ )I(v 3)[1 ; g I(“ 5')] ‘(1z3)e
L9 o um ' _ ‘ 2h .
Equati . (143) the 4equation of radiatiV‘X transfer'

‘including the effects of induced processes. It can be -seen that

induced scattering severely complicates the equation of transfer"

in that it leads to nonlinear terms, quadratic in the intensity.i

It ahould be noted that if the scattering is coherent, i.e.,

then the induced inscattering and outscattering ‘terms identicalLy

cancel one . another,,and the equation of transfer ‘again becomes‘

linear.' The induced contribution to emission remains, - however,u

fbutl this term is always linear in- character. As. will be
Idiscussed later, these -induced, scattering terms are necessary in
the equation of transfer for the scattering operator to. give the .
correct equilibriun distribution, namely a Planck function. ~The
'neglect of 4nduced procesaes leads to the Wien, rather than the
Planck function ag the equilibrium distribution for the specific

intensity. A final note of interest concerning induced processes
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:“is that they result from a physical principle closely connected
'with the Pauli exclusion principle. The Pauli principle reduces
the probability of fermion events by the factor 1 - .n, and hence
“1f the specific intensity described fermions the Appropriate
" factors in Eq. (143) would be 1 - c?1/2nv3,
Another item of interest to consider here 18 the Concept of
local thermodynamic equilibrium (LTE), With reference to

Eqe (143), the source term S represents the source of photons
due to spontaneous emission from atoms, and the cross sections
Oa and 05 determine the interaction of Photons with the
matter. . In general, these three quantities depend upon the

~microscopic °‘description of the atoms that compose the mnmatter,
i.e., the population of the various states of the atoms, and

there 1s no simple relationship between the three quantities. A
8inplifying assumption in this regard often invoked in radiation-
hydrodynamic work is the LTE assumption. It 1is assumed that the
properties of the wmatter are dominated by atomic collisions,
which establish thermodynamic equilibrium at position r and time
t, and that the radiation field, even if it deviates substantial-
ly from the equilibrium Planck distribution,.does not affect this
equilibriume That 1s, at a given instant of time and point in
space it suffices to specify, in addition to the atomic compo-
sition, two thermodynamic quantities wuch as temperature and
density in order to compute the source term S, absorption coeffi-
cient Ca, and scattering coefficient Oge Equilibrium
statistical mechanics, together with quantum mechanics, can then
in principle be used to compute S8, 0,, and Oge In particular,
the Saha and Boltzmann laws, appropriate to thermodynamic
equilibrium, can be used to determine the reiative abundance of
the fonic species and the population of the states within a given
ionic species. The LTE assumption also 1leads to a simple
relationship between S and Oaqy a8 we now showe.

As 1t stands, Eqe. (143) is not restricted to LTE situations,
but describes a more general class of problems. To see the
effect of the LTE assumption on the equation of transfer, it is
convenient to eliminate S and Og in Eqe (143) in favor of B and

Oa, defined by the relationships
39



o, = ol(l + e2B/20v3) . . ' (146)

At this point, B is ﬁg&}to be interpreted as the Plangk functon,
but 1is 'merely a new variable Adefined in terms of o, and s
according to Egs. (145): and (146). 1In terms of B anpg ol,
Eq. (143) is written

_i. 31;:2‘?)_.!_ §.$I = qa'.(\))r[B(V)’ - I(Vtﬁ)]

# [T avr [ oalit Yoo (viav, Bednyreer, i1+ £210NH))
° ar vooe 2hv3

- [T avr [ af o (vwy', BBy, M1 + °21(“"§')] . (147)
0 by ‘ 2hv'3

For simplicity, we take og = 0 4in Eq. (147), although the
argument we are about to make can &also be made with scattering
included, using the detailed balance relationship to be discussed
later.

Now, in complete thermodynamic equilibrium, the radiation
field 1is 1independent of space and time and hence, in this
situation with the neglect of scattering, Eq. (147) reads

ol(v)[B(v) - I(v,)] =0 . (148)

It is well known that in complete thermodynamic equilibriuvm, the
equation of transfer must give the Planck black body distribution
for the specific intensity 1I. For this to be the case, 1t is
clear from Eq. (148) that B must be the Planck function as wells
Since the LTE assumption states that the radiation field does not

affect the properties of the matter, in particular the source
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fﬁnction:B we conclude that under the LTE simplification, B is
the Planck function no matter ‘what the radiation field is. That
is, under LTE we haVe

B(v) = 2hv <ehv/kT -

" H-t A (149)
(o4 .

where T is the 1local temperature of the matter. Further, use of
Eqe (149) in Eq. (146) gives
GI(v) = g (v)(1 = e RV/KT) (150)

Here 04(v) 1is the absorption coefficient appropriate to thermo-
dynamic equilibrium and the exponential factor is the effective
decrease in the absorption coefficient due to stimulated
emission. ,

The form of Eq. (147), involving emission and absorption in
the form oJ(B - I), is the conventional way of writing the transg-
port equation in radiative transfer, even if the LTE assunption
is not invoked (in which case B is not the Planck function).
However, the LTE assumption is generally made in vradiation
hydrodynamic work because of the vast sinplification it
introduces; namely thernodynamics can be used to describe the
matter. In the absence of the LTE assumption, rate equations
involving radiative and collisional transitions for the various
ionic species and related energy levels for the atom must be

solved simultaneously vith the equation of transfer.

' I. Black Body ~. Enissivity

We introduce the concept of a black body and the emissivity
of a grey (non-black) body. We assume the scattering is
coherent, in which case the quadratic induced scattering terms

drop out, and we have as the equation of transfer in the steady
state limit
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CORFIE D + o (BT, D) = 0w [B0n,D) - Tdh v, 6]

e oal o (v, Eedn1cE,v, 8 . (151)
by '

We envision a convex body' of arbitrary shape, whose character-
istic size L and characteristic radius of curvature R is 1large
compared to 1/0;. Then 1locally, near any surface point, this
body can be treated as a semi-infinite halfspace, and the

equation of transfer becomes

. aI(;év,u) * 0g(2,9)1(2,9,1) = 01(2,9) [B(v,T) - I(x,v,u)]

+ f ad? os(z,v,ﬁoﬁ')l(z,v,u') , (152)

4

where z is a coordinate perpendicular to the surface.
A black body 4s a large (Lod >> 1, Roj > 1) purely

absorbing system, i.e., o5 = O.

We compute the radiative flux leaving the surface of a black
body with a constant temperature. The equation to be solved is
Eq. (152) with o5 = 0 and B constant in space, l.e.,

3 ' .
w A L), 0C T (153)

with boundary conditions
I(O,u) = 0 w>o |, (154)
I(wo,u) < = . (155)

Here we have suppressed the frequency variable and introduced the

optical depth
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T o= [F d£'°6;(z*) R . | (156)
3 | T |

The solution to this'pfoblem is

I(t,u) =B(1-e /¥y, u>o ,
I(T,u) = B w<o . (157)

The flux leaving the surface is defined as

Four = zﬂ'!: du|u| g“ dv I(0,n) , (158)

and we find

= 4
Fout: oT ’ (159)

where ¢ is the Stefan-Boltzman constant.

If this halfspaca had a scattering component (°s ¥ 0), the
outscattering flux would be smaller (we prove this shortly) and
€, the emissivity, defined as

F t
e = —2%— , A ‘ (160)
oT

1s less than unity (and obviously greater than zero).
We now define, and proie, Kirchoff's law. We consider two
halfspace problems, each with the same absorption and scattering

cross sectionse.

Problem #1 - A constant temperature halfspace with a vacuum

boundary condition. The transport problem is then

91

"'521 Ol o (B - I)) 4 Jﬂ dﬁ'Us(ﬁfﬁ')Il(u') ) (161)
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with béqndary condigions?:?"‘.
11(0,\’,“) =0 ’ 1—' >‘0 ).
I1(=,v,k) < = B<O0 . (162)

The emissivity is given by

21 [° du|u] g“ dvI, (0,v,u) |
e = -1 . (163)
, UT!* ' .

Problem #2 - A zero temperature halfspace with a Planckian

boundary condition. This transport problem is

-

91
" 323 + 01, = =0l + {ﬂ afro (RANT, (0N (164)

with boundary conditions
12(0,v,u) = B u>0

and the probability of absorption is

F - F F
p = in = out _ ; - Fout , (166)
in in

or

27 f: dulu| gm dvI,(0,V,n)

p=1-
21 [ dup [° dvB '
o o

(167)
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or

20 [° aufu] [7 avi,c0,v,w
p =1 - — "1 — . : (168)
' oT* \

A comparison of these two problems shows that
12(2,",11) =B - II(Z,V,H) ’ (169)
and using this in Eq. (168) shows

€ =p 3 , (170)
This 1s Kirchoff's Lawe. The emissivity of a non-black body is
equal to the probability of absorption of an incident Planck
distribution. Since it 1is clear that 0 L p <1, it then follows

that
0<e<1 . (171)

That 1s, no body at a constant temperature can radiate more than
a black body.

We can also define frequency dependent emissivities €y and
absorption probabilities Py as

2m fj duuf1,(0,v,m)

2 (o

~ 2 e d 0’ 9 7

v 2n [ duju|s B £1 #[u]z, 00, W (72)
-1

and

2
Py = 1 =% {: dufuj1,(0,v,u) . (173)

The same analysis just performed immediately shows that

(174)
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and hence

0<e, L1 & T | : - (175)

Je Transport (Steady State) im a Vacuum

In this case, the transport equation is simply

5. 91(F,v,) =0 , (176)
or '

91 : '

38 0 => I = constant . ‘ (177)

That 1is, in a vacuum the specific intensity of radiation along

any ray is a constant.

Lambert's Law

Consider black body radiation from a surface:

gl

Black
Body

Eé;:: ' =¢;{"¢n)

zn(

Define the directional flux at z = 0 as

F(O,p) = [ dvpI(0,v,u) . (178)
(o]
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But 1(0,v,n) 1 just B [see Eqs (157)]. ‘Hence
‘cos® o : . (179)

F(O,u) = [ dvuB = U:
o . T

This is a Lambert's Law. The total flux radiated by the black
body is then

F(0) = 21 ' QuF(0,3) = oT% (180)

a result we've seen befored

View Factors ,
Consider two differential areas dA; and dAp separated by a

distance T,,, each radiating as a black body.

In this picture n is a vector normal to dA, and 8 is the angle
between * and the line separating dA; and dAze. Let dQy3 be the
radiative energy, per unit time, leaving dAj, which stikes dAj.
We have, by Lambert's law;
oT?
dogy = (== cosBl)dAld?i , (181)
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wHere’dﬁ 1s the solid ghgié ?pép;ésehtgdibiQ'the'dotted lines in

the figure. Usihg”

(dA,)
- 22l

2
12

. : (182)

where (dAz)J.is the projection of dAz on a plane perpendicular to
the line connecting dA; and dAz, we have

(aa,) |

y
Qg3 = (2%_ cosel)dA1 5 s (183)
N ri,
But
(dAz)l.- cosesz2 . (184)

Thus we have

OT? cosB1 cosB2
dozt = (=) ( ” Jdi dA, o : (185)
T

Similarly, the radiation from dA, which strikes dA; is

OT; cose1 cose2 v
aQzt = (= ) ( = )dA dA, (186)
12

The net £lux from dA; to dAp is then

cosB1 c0592

2
T12

dq,, = dag3 - 40z = 2 (1} - 13) dA dA, . (187)

1f one considers radiative transfer between two bodies of finite

area, say A) and Ay, we then have for the net energy transferred,

48




g, =S (x4 - [ aa, [ ah, (— ) R (188)

”"

where the integration is over all dA; and dA2, which "see" each -
othere.

This result is conventionally written

Q, = AFy2 o(t} - T3) (189)
or
Q,, = A,Fy o(T} - 3) (190)
where
cos® ., cosb
- 1 1 2
F,,.S A £ dA, £ dA, - , (191)
1 2 T12
1 cose1 cose2
F,, © FK; £ dA, [ aa, ( ” ) . (192)
1 T12
The Fj2 and. F2) are dimensionless view factors = also called

shape factors or configuration factors. The physical interpretac
tion is that Fi12 gives the fraction of radiative energy emitted
by body 1, which is {ntercepted by body 2. We nunote the symmetry

relation

AJF , = A,F, (193)

and the inequality
F,, <1 o (194)
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-bodies mneed not
be “"straight"

In the above' picture, n = 8. Since they form a complete

enclosure, we -have

n

Let Qi be the net radiative energy from body i per unit time.
Then

n
- y o
Q = Ao T jzl Aja TgFji . _ (196)
Using
Aiji - AiFij , » (197)

this becomes
= b
Q, Aio[Ti 2 Fy 4T j] . (198)

Equation (198) represents n equations for 2n “unknowns”, Ty and

Qi Hence n of these unknowns must be specified, and the other

n can be solved for. We note that any specification or solution,

however, must satisfy

50



:'Xl”Qi = 0 ‘o S (199)
1= SRR S ,

'This follows from summing’ Eq.- (196) .over ail i, making use of

) EQo (195—)0
Three common uses cof Eq. (198) are:

l«. Compute Heat Fluxes

All the Ty are given, and the Qi are évaluated from
Eq. (198);

2, One Driving Temperature

One of the Tj, say T, is specified, and all ﬁalls except
wall #1 are specified as insulated (Q = 0, 1 # 1). Equation
(198) is used to solve for Qp and T4, 4 # 1. We obviously
find, in view of Eq. (199),

Q, =0 . (200)

Since the equations are linear in T“, we will also obtain
T = K, T3 (201)

i i

where X3, 4 # 1, depends upon all of the Fi4 and the Ag.

3+ Heat Transfer Between Two Surfaces

We sgpecify T; and Tp, and all walls except 1 and 2 are
specified as insulated. Equation (198) is used to solve for Q;
and Q2 and Ty, 4 # 1,2, 1In view of Eq. (199) we f£find

Q, = -Q, | (202)
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‘aﬁdf‘

- gA bl oohy
Q, = oA F (T} ‘T )

where F12 depends upon all of the Fij and the Aj.

Non—Black Bodies

(293)

This problem is more difficult than black bodies because of

multiple reflection of radiation.

two infinite slabse.

T . Ta

We have

F12'F21“1 .

If the bodies were both black, then we would have

4,, = net flux (per unit area) from body 1 to body 2

= - 4
U(T'I Tz) .

Consider now grey bodies, with emissivities €] and €j.

the picture:
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To demonstrate this,

tonsider

- (204)

(205)

We have
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In drawing this. picture,,we have used Kirchoff's law, which says
the probability of bsorption is 3equdl to ‘the emissivity.

Accounting for the absorption in wall 2 on each pass, W¥e have:

ap3 = fiux (péf:unit_étéa)ﬂébéofbeo byibody 2 due to
emission from body 1 .

o L - -
oT [ele2 + elez(l el)(l uz)
- 2 - 2
+ elez(l el) (1 ez)
: ; - 3¢(1 = 3 4
5182(1 el) (1 82) ooo]

£1%2
1 [1 -(l-¢ )(1-52)] )

(206)

Similarly,

E E

azt = o7 li=(i=s )(1 e )]

(207)
Hence the net flux (per unit area) passing from body 1 to body 2,
q12, 1is

€,€,
932 © qT? - qET = O(T: - T;)[1-(1-5 )(1 E )] (208)

Let us consider an enclosure of n bodies just as before, except

now the bodies are grey rather than biack. Define

qI s flux (per unit area) leaving the ith surface.

qI = flux (per unit area) impinging upon the jth gsurface.
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We have the. statement that fthef energy 1mpinging upon the ith

surface is the ‘sum of the contributions from all of the surfaces,

i.ee,

Ajay = j:)%l ijjiq-; . , - ‘ . | (209)
Using

AjFey = A5Fy | (210)
this becomes'.

a4 = j-z-l Fijq:;; . (211)
Now, we have

qT = &, oI} + (1 - e)q; (212)

! T

emitted reflected

and hence Eq. (211) becomes

n
- 4 _ -
a, 321 Fij[ej oT + (1 ej)qj] , (213)

or, rewriting,

n n
- _ _ - .-
94 jzl Fy (1 = g9)qy 121 Fy48497] (214)
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We caun- obtain an alternate form of this result in texmg of the

Qi, defined as the 'net energy transfer from body i per unit
time. We have

Qi it Ai\qi = qi) ]

(215)
and using Eq. (212) for qI, this becomes
Q = Alegory - eqr] (216)
or
: Q
- 4 1
q, = OT} = —= (217)
i i eiAi

Using this result in Eq. (214), we obtain as

the generalization
of the black body result:

E € Ai
Q, - (l-e) Q
1 =1 1 €34y 3

= ¢ A ofT4 - 2 F

17000 7 L) Ty 3] . (218)

Just as in the black body case, one can
Eqe (218) implies

easily show that

(219)

We note that if all bodies are black (ey = 1), then Eq. (218)
reduces to our previous result, Eq. (198).
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‘..If’wé cénsﬁder’twd,lﬁfiﬁitéjplaneé; we have
Fi1a = Fyy =13 Fj - =F,=0. : (220)
If we set Ay = A; = 1, then we have,
where q,, and q,, are the notation previously used in discussing

the two parallel plane problem. Setting i = 1 in Eq. (218) then
gives

€

1 - b oo ol
e 9pp = €yo(Ty - 13) (222)

q,, = (1 ~ €,) >

But from Eqs. (219) and (221), we have

1921 © 932 » (223)

and Eq. (222) then yields

€
a,,[1 + (L =€) Ei] = e o(T¥ - TY) (224)

which, when solved for 9y gives

5182

- b b
q12 O(Tl TZ)[EI - elez -+ ez] . (225)

This is the same result [see Eq. (208)], which we obtained by
summing over an infinite number of reflections.

Just in the ©black body case, Eq. (218) represents n
equations in 2n wunknowns, Ty and Qj. Thus n of these
unknowns can be specified and the remaining n solved for, with

Eqe (219) being one result of the solution (any specification
must not violate this condition).
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Ko Relativistic Radiation Hydrodynamics o |
- IfT the fluid speed u.i§ an. appreciable fraction of the speed

of light cc it is necessary to formulate the equation of radi-
ation hydrodynamics relativistically. These "u/c¢ corrections
are important in many astrophysical applications and marginally
important in nuclear weapons effects calculations. As we shall
discuss Jlater, there 1is one important case where, although u/c
may formally be very small, it may be necessary to carry u/e
terms to obtain the correct equations of radiation hydrodynamics.
We begin our discussion by considering the Lorentz trans-
formation of the equation of transfer. We consider this equation
as seen by an observer in an inertial frame of reference., We’
call this the sero frame and subscript all quantities with a
zero. The equation of transfer is, rewriting Eq. (143) with zero

subscripts,

1 axo(vo,ﬁo)
c 3t°

+ §°°$°Io(vo,§o)

c2I (v ,5 )
(o) (o] (o] i
- [1 + — ]so(vo,ﬁo) - oao(vo,ﬁo)lo(vo,ﬁo)
0

2Io(vo,ﬁo)

2hv3
(o]

+ gm dv! {ﬂ dﬁ; oso(vé+v , '+§ ) I (v!, Ik )[1 +

- b o 3 ?1,(vg,0,)
- g av! {, ai! o (v ! DI (v, 1+ T ] +(226)

Equation (226) is a slight generalization of Eqe (143) 1in that
the source S5 and absorption coefficient are allowed an O de~
pendence and the scattering kernel Os can depend upon ) and '

separately. The same generalization of Eq. (147) is
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31 (v ,5 )
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_ o
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O30 (%8 [, 003 0) - 1, <}’;f§;‘>'] o

: - ' c2I (v ,5 )
@ gyt ﬁ! ' ' § o I 1 A + 0O 0" o
+ £ dv! J“.d>0»°sg(?o+vo’§ + ) ol (v 50)[1 P
© ' 5; ' ﬁ a . 2],: ( 0) )
- £ dv? Jﬂ d o-osq(vo+v 0t )I (v )[1 + 2hvé3 ] «(227)

In both Eqs. (226) and (227) we have not expliéitly written the r
and t arguments of all quantities; but these dependences .are
understood. ‘ ’

We'now consider a2 second inertial frame of reference moving
with velocity 3 with respect to the zero frame. In this second
frame we leave all quantities unddorned. Hence to an observer in
this frame, Eq.r(226) or Eq. (227) is the equation of transfer,
with all zero subscripts dropped. By demaﬂding that the equation
of transfer be invariaﬁt under a Lorentz transformation, we can
relate all of the components in the equations in the two frames.
Omitting the details, the results are:?

If we define '

A= (1 - v27e2)71/2 | (228)
D=1+ fiev/e , | o (229)
D' = 1 + 8'ev/c , (230)

then we have the transformations:
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e (231)

z:t(zsg)

‘ (?33)

y '(54’551 a2 L Si‘fﬁ ﬁ' :¢ . ;}iv; - : :  “(234)
 1'0<?°'.5<;5:;‘- (AD)3I(v§) »_ . ‘(‘235‘)
so(vo’ao)'. (59)2§(?;§$m“;;:1 u-i"lus. ‘ V,<(236)
v o(vo,.i-So) --,%3 aa‘(\é,iﬁt)" , | | R © (237)
,n‘;cvo'?zo')f'?-",(Ap.)i'n(’v-.?,)1 . ‘, E | | (238)
a o(“o'aé) --i-— '(v 5)‘1 . | ‘ (239)
aBo(vow;,ﬁ;ﬁ;)p‘f‘%—'—. ‘6.8(.:\:%?';5-@') N | |  (240)
duodﬁo - -}lﬁ-;dvdﬁ | - | | (241)

. We now use these results to account for relativistic effects

in the equation of trangfgry- It was pointed out earlier that

there

is no preferred ‘direction in the fluid for radiation

hydrodynamic 'prbblems} Hencé _Ogs O3> S, and B, which describe
the absorption and source of photons' should be independent of 9,
the flight direction of a photon. Further, 0g the scattering
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f;bcosine

[~;qkernér;%

’lfrately. [ Lhe
,”problems the fluid 13 in general in motion changes the situation..f

‘Eqe (143), should be written ,;ﬂ

R

‘:‘.\

W
PR

the.~scattering angle,‘ whose

\'“‘Ein radiation hydtodynamic

,The fluid 1s still 1sotrop1c, but, as seen by an inertial frame
’fobserver, this motion does introduce a preferred directioh in the

matter, namely the direction of motion of the- fluid:f“ This in ‘
turn,'in* tne relativistic_ limit; introduces an 5 dependence in :
Oys o! a? Sy and B.‘and separate 5 and 5' dependences in c “ N

Taking this ‘into,.account, Ethef equation"of_ transfer;?

n]wnf

aI('v,ﬁ_.)" ;f’a.ﬁ(‘b.ﬁ‘>’_f-_s'(.'\;‘."ﬁ_):‘['jx"+ 210N o v, By 1y, B)
-} AR T e 2hv3 ST & . A

T

# [ avt [ afit Yo o (vrav Beadyzeen, 80 (1 4 210y, By
0 - &ﬁ . 'thHB - c . 2hv3 .

- [T ] i (“*“' 5*5 )I(v B+ 2IOvVLEDY (42

) u . ’Zhv'3

and Eq. (147) becomes
%:3$%§L§l7é*§-31(9,§);Z;ogfé,ﬁi[r(u,ﬁ) - (v, 1))

+ Iu dv' ad XTVdZ(V'+v §'+ﬁ)1(v' gyl + E_I(Vga)]
° hw o vl~ ° , 2hv3

S [P av [ dl o (uevt, BelT(v, B [1 + & 21080 a3y
o - 4n 8 N 1 2hv '3 '
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inrelative motion betﬂeen the fluid and the observer.; chce ‘Wwe can
: “use the Lorentz transformation results just presented o compute

:fthese dependences. This is argued as follows._ \

| We\consider an.- observer in- an, inertial frame of reference
' observing%radiative*transfer in a moving fluid. At a Patticular
'space point r and time t the fluid ‘has a*‘macroscopic velocity

3u(r.t) as . seen by this observer.' We call the frame of reference

tJin which the fluid is at rest the zero frame, and the frame of

»»the observer the unadorned frame.‘, The transformation Velocity v
'of the Lorentz transformation of Eqs. (228) through.(241);ie then

Vo mu(E,e) e R ¢.L7))
“Since ,fhe'(observer 'is in -an inertial fraume ‘of reference,
'Eq. (242) or- Eq.‘(243) is the appropriate transport ‘equation. We
agsume the source functions S and B, the absorption coefficients
OA'and o' and the’ scattering kernel o, are known in the»zero
frame. (the fluid rest frame), ‘and use the Lorentz transformation
results to obtain these functions in the unadorned frame..

f It must be noted that the zero frame, defined .as the frame
for which the fluid is .at rest, is not in general an inertial
frame since the fluid velocity is ‘a function of both space and
 timee. Hence Eq. (226) or - (227), valid only in an inertial frame,
is not a proper description of radiative transfer in the f£luid
rest frame. Hore to the ooint, the fact that the fluid rest
frame 'is ‘not‘,} inertial frame implies that the; Lorents
'transformation between frames cannot be used. However, certain
of .. these transformations can be used in the present context.
 That is, even though the fluid rest ~frame is not an ‘inertial
frame, one can, envision an inertial frame that instantaneously,
at time t &and space point r, coincides with the fluid rest frame.

Since the source~terms (by source terms here we mean all terms
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ﬂexcept/\‘the ‘ streaming terms,“;i.e;,‘ffthe ’ emission source;
| bsorption, and scattering terms) in the equation of transfer are
well defined at a single time t and Space point r (Le2s, t and r‘d
are only parameters in the source terms, no operatots involving
_time or space appear in these terms), the Lorentz transformation:
can indeed by used to relate the source terms 1in the fluid rest
frame to those in the unadorned (observer) frame. The Streaming
terms, on the other hand, ‘involve derivatives with respect to
space and time. To define these derivatives via a Lorentz
transformation the fluid rest frame must be an inertial frame for
an arbitrarily small, but nonzexro, interval of space and time.
Since, in'general, such an interval does not exist for & fluid in
non-uniform motion, the ' Lorentz transformation is not valid for
the streaming terms. Fortunately, we need concern ourselves here
only with the source terms since we wish to write the eguation of
transfer in the unadorned frame and in this frame, since it is
inertial, the streaming terms are already known.

We first consider the terms S, B, G, and o;. Since the
fluid is isotropic, all of these functions are Independent of E+!
and hence depend only upon frequency in the fluid rest (zero)
frames. From Eqs. (228), (229), (231), (236), and (244) we obtain

s(v,f) = ez Sl (245)
where

v, = AEV (246)

A= (1 - u2/e2)7 2%, | (247)

E = 1~ fea/c o (248)

For u/e << i, it is sensible to expand S(v,ﬁ) in powers of u/ce
Correct to first order, we find
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E e T RRIEE ds°<v) | .
S(v 5) = s (v) + (n-—)[zs (v) - —_Eg_f] . (249)

Similarly, from'Eqse'(237); (238);}ahd:(239) we obtain

B(v,ﬁ) = (AE)szo(vo)i , o | (250)
0 (v, H) = (AB)o, (V) » | (251)
a;(v,ﬁ) =;(AE)o;o(vo) ’ ‘ (252)

which, correct to the first order, gives

> g dBo(v)
B(v, ) = B (V) + (@-2)[38,(v) = v —55—] (253)
5 = ( - (ao.‘: [ ( + ._...8_9...(_—-)-]
oa(v, ) %a0 v3 c %a0 v) v dv ’ (254)
' S do' (v)
a;(v,ﬁ) = ol (V) - (5-%][o;°(v) + v ——%%———] , (255)

In addition, from Eq. (240) we can deduce the scattering kernal

in the unadorned frame. We have
E X ’
oB(v+v',§+§') - = oso(vo+v;,§°-§é) , (256)
where E is given by Eq. (248) and

E' = 1 - f'eu/c (257)

64



'In writing Eq.-(256) we have explicitly shown that in the ‘zero
frdme. the scattering kernel depends ‘only. upon the - scattering
anglee. . For small u/c; Eq. (256) yields '

08(9*”';§*§')>"°g6ﬂ“*“'»§f§')

do

- d
(8e2) [o, + v —353 + (1 = Re@r) "o ]
c 8o v. acded")
> . do - 7 |
SR - oy e (- Gedir) d(Q,Q.)] . (258)

As a concrete example of putting these considarations
together, we consider the simple case of an equation of tranmsfer,

neglecting induced effects, in which the scattering is grey (the
scattering cross section is independent of frequency), isotropic

and coherent, ' i.e.,

g
o o(€;+3o,§-5') = 22 8(v: = v) . ‘ (259)

-’
In the absence of u/c terms, the equation of transfer in the

inertial (unadorned) frame would be written

% 31%¥Lﬁl + BeF1(o, B + [o,,(0) + OSO]I(v,ﬁ)

g
=5 (v) + Z%B {, abriee, B, (260)

or, introducing,

CE(v) =2 ahe,dn (261)

b

65



U EQL(260) can be written

G}

1a10v,8) , 89100, 8) + [0, () + o 100, B

-vso(v) + Z%E cE(v) .. (262)

With the inclusion of relativistic terms, correct to order 3/c,
Eqe (260) becomes

1

- axg:,ﬁ) + ﬁ-?I(V,ﬁ) + [oao(vj + gso]I(v,ﬁ)

) |
= 5 (v) + 722 [ africv, dr)

47
+ do_ (v)
+ (22)[o, (v) + 0o + v —2—]1(v,])

dSo(v)
dv

+ (50%)[286(v)1- v

- ;%2 {“ dﬁ'(ﬁ'-g)[l(v.ﬁ‘) - v 2££§6§Ll]

o + .
+ 4:0 (5°%) / dﬁ'[ZI(“’a').' v aI(gva )]~ ’ (263) |
Yq
or, using Eq. (261) and introducing {
F(v) = [ ad'dr 1(v,81) , (264)
4
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—-————3,13: 2?) + § VI(v ﬁ) +;,:[o . (v)+aso]1(v,§)

‘Oh-‘

, o o, do (\))
. = 5 (v) + 22 © E(v) + (5-—][o< (v) o+ 11(v, &)
> ds (v) o > %
* (EQ)[25,000 - v —g—] - g2 [Eepey - v 2]
o *> :
+ 7222 (Be2)[2eE(v) = cv 2BV . (265)

[The 8E/3v and a¥/0v  terms arise from integrating by parts to

elinminate derivatives of delta functions that arise from using
Eqe (259) 1in Eq. (258)] We note the complexity that has been
introduced Sy retaining terms of order u/c.

We now turn to the question of relative hydrodynamies. The
relativistic hydrodynamic equations in the absence of &8 xradiation
field are given in many texts on relativity and fluid mechanies.
The approach universably used to derive these equations is to
employ the energy-momentum tensor. This tensor 1s obtsined by
arguing that it must have a certain form to undergo the proper
Lorentz transformation and to reduce to the correct diagonal
tensor for a f£fluid at rest. In our discussion of the rela-
tivistic hydrodynamic equations including radiative contributions
we use kine;ic theory arguments rather than an energy-momentum
tensor containing radiation terms. This avoids the use of the
transformation properties of tensors and seems to be a more basic
starting point. In particuiar, our discussion emphasizes the
assumption needed to obtai.n a hydrodynamic description of the
motion of an ideal fluid. Further, the concept of fluid pressure
enters naturally.

We consider a fluid composed of narticles of rest mass mg
having various momenta p and described microscopically at time t

by a distribution function per unit volume and per unit momentum
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| W(r, p)- 'Fo ; simplicity, ye‘.drop fElif”é;éﬁheots r dnd“tjand
‘simply deoote this distribution function by w(p) Thus the number
of particles at  time t in & . differential volume element df
centered at T and in a differential " momentum element dg centered
at ; is given by ¢(p)drdp. The macroscoplc velocity of the fluid

is ‘denoted by u; i.e., if ¥ denotes the velocity of a particle

+ =¥

with momentum p, then

. | . (266)

That is, the ‘fluid velocity u is just the velocity of the indi-
vidual particles that make up the fluid averaged over the distri-
bution functions

We introduce a second frame of referenoe, namely the frame
moving with the fluid. We refer tc this as the fluid rest frame
and subseript all quantities in this frame of reference with a
zeroe. In particular, we denote by *o(;o) the particle distribu-
tion function in the rest frame, with ;o denoting the momentum in
this frame. It is important to note that the fluid rest frame is
not in general an inertial frame of reference since the fluid can
undergo accelerations 'at any point in space and time.

The basic assumption that leads to ideal fluid hydrodynamics
18 that the momentum dependence of the distribution function is
isotropic in the fluid rest frame. That 1is, wO(EO) depends upon
only the magnitude of the momentum, and not its direction.

In the fluid rest frame, we define three macroscopic quanti-

ties Ny, Eto, and Ppo by the equations
+ + .
N,o= [ ap ¥ (p)) (267)

+ » .
E., =~ J dp E v (p)) (268)
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Pm;}§[ffd3;t$o}§)<565§5}o<§;) TR (269)

Here E, is energy, including the rest energy, asociatod with a
particle of momentum po, and v° is the velocity assoclatud with a°
particle of momentunm po. ~The vector- n 1s an arbitrary wunit
vector - since wo(go) is isotropic by assumption, Pro does not
depend upon the choice of ne The physical interpretation of N,
and E¢, 1is immediate. No is Jjust the particle density and
Eto is the total energy density, both in the fluid rest frampe.
From its definition, Pp, is just the rate of transfer of the
momentum component parallel to n across a surface of unit area
whose normal - direction 15 e This quantity 1is convanticnally
called the material pressure, again defined in the fluig rest
frame.

We now define the six quantitlies needed to derive the
hydrodynamic equations, namely the nunber, mnomentum, and energy
densities and fluxes, all in the unadorned, or observer frame
(whieh is an inertial frame). We have

Number

= [ dp v(p) , (270)
Density
Momentum
= [ dp p vp) , (271)
Density ‘
Energy :
=/ EVE) (272)
Dengity : A
Number
F1 = [ & v () ’ (273)
ux .
Momentum
o =f[dp VP W) , (274)
ux
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(275)

We evaluate these six integ:élé'by changing variabies from ; to
';o» i.e., we perform the integratioﬁé‘in the fluid raest frame.
The results are that these six quantities in the observer frame
can be expressed in terms of the three quantities in the fluid
rest frame given by Eqgs. (267) through (269), in addition to the
fluid velocity U and the relativistic factor

Az - u2fe2y M2 (276)

We sketch the details for Eq. (270), and merely quote tha other

five results. ‘We have

N = [dp w(p) - (277)

To evaluate this integrai, we change variables of integration
from E to ;o, the rest frame momentume. Since ; and iB8/c form a
four vector, they transform according to the wusual Lorentz

transformation. The result is

(Bep )(A-1)  AE__,
e t [ (278)

+ +
E = A(Eo + quo) K (279)

The variable ; and E are not independent, but are related by

E2 = p2¢2 + zncz)c'* . . (280)
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- with 1#l?éfﬁiiéf}-:elatibnéhip{ivéiiﬁ?ﬁ1#1{;ﬂé'féé#o frame. From
‘Eqse,(278)‘thfdugh (280) one'ééﬁ'tompute the Jacoblan between

- . . L
;;Vand ;o that relates the differentiﬁlsidg‘and dpo. The result is

.+ _E o+ - - '
dp = g~ dp, - : ‘ (281)
[o] .

Futher, it 1s well known that the distribution function is a

Lorentz invariant, i.e.,
> L
V) = ¥ B | (282)
Using Eqs. (281) and (282) in Eq. (277) gives

No= [ dp A[L + (Fe3 )/E v (B) (283)

where we have used Eq. (279) for the ratio E/Eoe Since ¢°(;°) is
isotropic (or, more generaliy, by definition of the fluid rest
frame), the term involving ;o in Eq. (283) has a zero integral
and hence, recalling Eq. (267),

N o= AN_ . (284)

In deriving this result, we have used the Lorentz transformation
to transform to the fluid rest frame. As we noted earlier,
however, the fluid rest frame is not an inertial frame. Never-
theless, the Lorentz transformation can properly be used, as we
argued in connection with our discussion of the equation of
transfer. A

Similar manipulations allow us to evaluate the other five
integrals defined by Eqs. (271) through (275). We find, including

Eq. (284), the six results in the unadorned (observer) frame:

Number density = ANO ’ ~ (285)
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Momentum dgnsi;y_ ::; gEtol+f?mo)u +-:; R . (286)
ang ; 2 Py - )
qurgy density A KEto,+ Pmo) ,Pmo + E , : (287)
- . ° + . .
Number flux_é AN(y > (288)
o s
Monentunm ?lux =p 1+ :; (Eto_+ P o luu + > (289)
= A2 ' (
Energy flux A <Eto + Pmo)u +F . (290)

In writing Eqs. (285) through k290), we have included the radi-~
ative contributions yhere E (the radiation energy density) F (the
radiative flux) and § (the radiation pressure tensor) are defined
by Eqs. (21) through (23).

With these results, it is straightforward to derive the
Eulerian equations of £fluid dynamics, including effects of a
radiation field. We let D(;,t) represent the density of the
quantity under . consideration (particle number, momentum, or
energy) and let f(;,t) denote the corresponding flux. The con-

servation equation is simply

Dy bF-o | (291)

(If an external source is present, the rhs of this equation would
not be zero.) Applying Eq. (291) to the three conserved quanti-
ties, namely particle number, momentum, and energy, we obtain,‘
using Eqs. (285) through (290) for the relevant densities and
fluxes,

3 (AN )

—r + Pean B =0 | (292)
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3 - ' + F 1.0 %0
5T [f; (E,, + P )0 + —;] f‘$Pmb,_
[ o . c‘_
s A2 PO S . s
_+_${[:;_(Eco + P uu + ] =0 , (293)

3 - CIA2E. 42 %
2t [Az(Eto+Pmo) ~ Pao E] + 6'[Az(Et:o-H)mo)u + ﬁl = 0 .(294)

_Eguations (292) through (294) are the Eulerian form  of the
relativistic  ideal fluid equationss

- We canApﬁt these equations in a somewhat more useful fornm by
redefining some of the variables. In particular, we eliminate

N6 in these equations in favor of Py, defined as
p =mN_ . | (295)

The quantity p, 1is just the rest frame density. We also define

Epo as

E, = E, - p°c2 . ’ (296)

so that Ep, 1is the fluid energy density (in the £luid rest
frame) i1in excess of the rest energy. Then Egs. (292) through

{294) become:

a(Aoo)

5e— + ﬁo(Apog) =0 , (297)
2
%— A ¢p c2 +E_+P )3+ E-J + VP
t c2 o mo c2 mo
2 +»
+ Vo[ﬂ— (pc2+E +P Juu +P]=0 , (298)
C2 (o) mo mo -
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X [4;(903,;f73mbf»
) \» N . ’ - N ' oo i . ) 3
<+«$‘[A2<Pb°2 +E o+ P+ F] =0 . : (299)

An alternate form of the energy equation follows by multiplying
Eq. (297) by c? and subtracting the result fronm Eqe (299), This
has the effect of deleting the particle rest energy contribution
from the energy equation and makes the passage to the nonrela-
tivistic limit easier. Hence an equivalent set of ‘relativistic

hydrodynamic, equations, our final fornm for the Eulerian @quation,
is: ’

3 (Ap ) >
— >+ $-<Apou) =0 , | (300)
2
%— A o c2+E +2 )2+ E—] + Vp
t c2 o} mo mo 62 no
P N )au + §] = 0 30
o2 P ot mo no ’ ‘ (301)
o - 2 2 -
5T [ACA Dpye? + A2(E  + P ) P, * E]
+ Ve[A(A - 1p c2d + A2(E_+ P U+ F] =0 . (302)

In the limit u/c+0, Eqs. (300) through (302) reduce to the non-
relativistic equations, Eqs. (16) through (18).
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III.. 'APPROXIMATE MODELS OF RADIATIVE TRANSFER

tThe"équétiqn of fradiaﬁivé' tranéfﬁr is obviously quite

" complex; the specifié intensity, which is the dependent variable

in this equation, depends ’in‘ general -upon seven' ' independent

‘'variables (;,V,ﬁ,t). Even in the simplest physically interesting

situation of time and frequency independent transport in plane
geometry (then only 'two independent wvariables 2z and u are
involved), one can obtain analytic solutions in only a very small
number of limiting cases. Hence in general one must approximate
the equation of- transfer, either analytically or numerically, in
order to obtain.,a solution. ‘

Most approximate descriptions of radiative transfer are 

based upon the 1ntegro-differentia1 equation rather than the
integral gquation." The frequency and angle dependences of the
specific intensity, which give rise to the integral terms in this
equation, are generally approximated analytically. This leads to
a finite (ane hopefully small) number of coupled differential
equations in the space and time variables. These equations are
then conventionally solved numerically via more or less standard
finite difference techniques.

We discuss here a limited number of analytic approximaticns
employed in frequency and angle. The methods we shall consider
certainly do not represent the totality of all methods that can,
and have, been used 1in radiation hydrodynamics calculations.
They are, however, the techniques most commonly used in practice.
The finite difference methods used in space and time will not Be
considered. Such techniques, especially with the advent of high
speed computers, can be very sophisticated and represent a
discipline within themselves. For simplicity of exposition, we
consider the simple case of an equation of transfer which
neglects induced effects, and involving scattering which is both

isotropic and coherent. The equation of transfer is then

D

-
5t + BV1 + 01 = 7 (ob + o E) (303)

1
c
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where

- 4nﬁf .
- (304%)

is the energy densi;y associated with the Planck distribution,
and E is the radiation field energy density ‘

E =2 f d§1(§)  . | (305)

ha

Integration ' of Eqe (303) over all solid angle yields the
conservation equation

et VeFmco -5 , ‘ (306)

where f 18 the radiation flux

F = [ adf1(d) . | (307)

ha

A. The Eddington or Diffusion Approximation

For Eq. (306) to be useful, we need a second relationship
that gives F ags a functional of E. The basic assumption under-
lying the classical diffusion, or Eddington, description of
radiative transfer 1s that the angplar dependence of the specific
intenéity can be represented by the first two terms in a

spherical harmonic expansion. That is, it is assumed that

(R = %; [cE + 38.F] . (308)

Use of Eq. (308) in Eq. (303), multiplication of the result by 5:

and the subsequent integration over & vyields
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-C-I:- . + -.:15-:‘\‘3(.1':?3)’-!-«0?' = .'VOi S : S ‘ o 1 (309)
_Eéuatidns (306) aﬁd‘(3o9),f§rm a closed set of equations for E
. and fi 6f-the telegraphefs \form. They yield a finite speed of
propagation, but of value c/Y3, rather than the correct value c.
This apprcximatidn,is>often referred to as the P-~l approximation.

For these equations to reduce to a diffusion-like
description of radiative transfer, we must demand, to bhe
consistent with normal usage of the term diffusion, that Eq (309)
reduce to a ?iék'srlaw of diffusion, i.e.,

F = -DU(cE) , (310)

where D = D(;,v,t) is the local diffusion coefficient at fréquen-
cy Vo This 18 accomplished by neglecting the 3?/3: term in
Eq. (309), arguing that for the specific intensity of radiation
to be almost i1sotropic as assumed in writing Eq. {308), the
problem must be collision dominated, i.e.,

> 1 oF
oF >>-E-a—t" . (311)
Our Fick's law of diffusion is then
* 1
Fe-as Y(cE) (312)

and use of Eq. (312) 4in Eq. (306) gives the diffusion equation

?.% - ﬁ-é—& ¥(cE) = co (b - E) . (313)

Any diffusion equation such as Eq. (313) has an infinite speed of
propagation.
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diffusion descriptions ﬁi;h(""iﬁitial - é‘nd‘ ‘boundary conditions.

' From the initial condition on the éqgaﬁipn of transfer, Eq. (86),

we compute

E(T,v,0) =-§ f a& A, v, (314)
Ly ’
F(¥,v,0) = [ afd AE,v,B) . (315)
4y '

These are the. appropriate initial conditions, with only Eq. (214)

required for the diffusion description.

The boundary conditions are not as‘straightforward'to write

down. The structure of the P~1 or diffusion equations requires a

>
*e

single condition between cE and F at each boundary point ;s- It'

i8 clear that, because of its simple angular dependence, the
Eddington representation of the specific intensity, Eq. (308),
cannot satisfy the iptegro-differential boundary cbndition,
Eq. (85), for an arbitrary incoming distribution I'. The best one
can do is demand that Eqe (85) be satisfied in an integral sense.
That is, we use Eq. (308) in Eq. (85), multiply the result by a
weight function w(ﬁ), and integrate over all incowming directions.
This gives

i af w(B)[3= (cE + 3hF) - r(] =0 , (316)
<0

where n 1s a unit outward normal vector at the surface point ;s.
Equation (316), once w(ﬁ) has been specified, 1is the required
boundary condition.,

We consider two choices for w(ﬁ) that are commonly used in

practice. The first choice is

w(R) = ned , (317)
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- ne Q<0 - : o

This bouhdary condition, referred to as the Marshak 6t Milne
condition, has the physical interpretation that tha normal

component of the incoming flux is the integral quantity conserved
in passing from the exact condition, Eq;‘(85), to the integral
condition, Eq. (316). . The second choice leads to the so-called
Mark boundary ‘condition. To obtain this boundary condition, we
repfesent ) by a polar angle ] E'cos’l(p), measured with respect

to the normal 3, and a corresponding azimuthal angle ¢. If we set

w(u,9) = 6(u - u'o) ’ ' (319)

and, in addition, choose uy = ~-1/Y3, Eq. (316) gzives

Lee@) - 5 a-F(E) = (f)_z" a9T(x om = ~1/V3) . (320)

Equation (320) has the interpretation that the exact boundary
condition is satisfied at a single polar angle point, n = -1/Y3.
This particular angle 1is chosen because of considerations such as
the following. Consider time independent transport in a
homogeneous, purely absorbing, plhnar system. According to the
equation of traﬁsfer, photons incident upon the surface will be
absorbed such that, at depth =z from the surface, exp-~(ogzz/u)
represents the probability of survival for photons of polar angle
6 = cos'l(u). On the other hand, the Eddington P-1, or diffusion,

approximation gives exp-(V¥3 g,z) as the survival probability for
all photonse Hence, uz-- 1/3 can be considered as the average

angle associated with the Eddington approximation. Experience
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indicates\'that ‘the Marshak Milne;'cchdition;' Eqkzd(318), 4s -
‘generally more accurate than the Mark-condition, Eq. (320). ‘

o In radiation hydrodynamics problems, the quantities of
interest are the radiative energy, flux, and, pressure temnsor.

. The equations discussed here give 3 and 3 and ? follows from

+ - : + .

Bz, t) =—;-I E(T,t) - ~ (321)
Although the classical diffusion or Eddington approximation 1is
much simpler than the transport description from which it was
derived, it should describe the energy flow due to radiative
procesaes in a semi-quantitative gense. This description will be
particularly accurate if the specific intensity of radiation is
almost isotropice Of course, the angular detail of the specific
intensity has been lost since the essence of the Eddington
approximation ig the simple angular dependence assuned in
Eq. (308).

B. Asymptotic Diffusion Theory

The critical assumption 1n reducing the equation of
transfer, Eq. (303), to the diffusion description, Eq.: (313), is
that the specific intensity of radiation is almost isotropic, as
expressed quantitatively by Eq. (308). This leads to a diffusion
coefficient D = 1/(30).

One would find other diffusion coefficients if other angular
distributions were assumed. We consider the effect of one such
distribution here, namely the asymptotic angular distribution of
the equation of transfer. This time independent distribution is
that found deep within (a few mean free paths from all
boundaries) a source free (b = 0) homogeneous medium in which

photons of different frequencies diffuse independently (the

scattering is coherent).
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" The equé;ion'of ﬁran#fé?'fofiﬁﬁiﬁ)proﬁlémvis} from Eq. (303)
GeVI + I = %; [ a&r 1¢hy (322)
. by .

where we have set © w 1 (we measure distance in units of the mean
free path) and defined

W= == . (323)
We look for a solution of the form

+ 3
1¢F,8) = p(hek T |

(324)
where w(ﬁ) and K

are to be
Eq. (322) gives

determined. Use of

Gk + Dyh) = 2= [ alr oy,
L 3]

(325)
which gives

1{)(5) = = )
(1l + Keh)

(326)

where we have normalized the solution such that

[ af w(h) =1

b

Use of Eq. (326) 1in Eq. (327) and performing

the i1ntegration
gilves the dispersion relationship for K = 'i' as
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el T (328)

.We note that only the magnitude of i is‘détermined; it8 direction
is arbitrary. Thus an aéymptotic solution of Eqe. (325) is

o L I .
g, ‘
1(z,8) = S e, (329)
4a(l + Ku*ﬁ) ]
where 3 is an arbitrary unit vector. Since the wequation bf

transfer is. linear, the general asymptotic solution is obtained
as an arbitrary superposition of these solutions for different 3,

i.e.,

+* >
w Ruer

1(T,#) = [ aug(d) — e
4m(l + Eued)

. (330)

Integration of Eq. (330) over all 3 gives the energy density E as

E(X) = % { ad 1¢E,8) = [ af £(@)efuTr (331)
T

where we have made use of Eq. (327), i.e.,

a8 @ =1 (332)
b 4a(l + KueR) -

Applying the Laplacian operator to Eq. (331) we find

V2(cE) - K2(cE) = 0 (333)

However, the conservation equation is, by integrating Eq. (322)

over sll solid angle
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FoE@) + (1= @)cE(F) =07 . (334)
A comparison of Egse. (33?) and (334)‘implies,
> > - T :
F = -DV(cE) , (335)
with
1 -
D = ° ‘ (336)
cK?

[Note that in.writing Eq. (336) we have introduced ¢, which ﬁeans
the gradiént in Eq. (335) is in real, not optical, spaee]. This
asymptotic diffusion coefficient has the limiting values

OD"I’ (:)80’

oD = 1/3 , w =1 ,

gD -+ s y W@, ' (337)
(rw)? :

and varies monotonicaliy with ©

This result is used to formulate a diffusion-like approxima-
tion to the equation of transfer, Eq. (303), in the following
waye. The zeroth angular moment of Eq. (303) is just

3% + Ve = co (b - E) (338)

As stated earlier, we require an additional result relating F to

E for Eq. (338) to be useful, The assumption in asymptotic
diffusion theory i1is that Eq. (335), derived under quite re-~

strictive circumstances, is generally valid. We then have the

diffusion equation
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with @ = 0g/0 and K given by

w

' + K ,
1=3x ‘“(1 =% - ~ ©(340)
Two variations of this result have been suggested.

Variation #1 ,
We rewrite ‘the equation of transfer as

cow

% %% + ReVI + oI = ey E , (341)
where we have defined
oab + oBE
w = SE o (342)

Aside from the time dependence, Eq. (341) looks like the equation
ve anélyzed to obtain our asymptotic results. Thus suggests that

w, rather that ;, be used to compute the diffusion coefficient.

Variation #2 .
In this case, an attempt 1is made to account for the time

dependence by assuming

91

9(cE)
5T (343)

it ’

1
¥ Gw
.and the equation of transfer can then be written

BT + oI = E , (344)
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with v defined by.
- 7 1 3Eq . . : ‘
o= -—i.: [0 b + 0 E - -c—'s—t'] . (345)

- ) -
The parameter ® is then used to compute D according to

D = 346
with'
o b+ K A |
1 = oz fa(y—= ) (347)

The boundary condition on asymptotic diffusion theoxy can be
obtained by employing the Marshak-Milne philosophy, namely
demanding that the asymptotic angular distribution give the
correct incoming flux. Omitting the details, the result is

~2. Zn( )cE(r ) - 1 SOf(; )
4K2 1 - K2 2 8
r(?s,ﬁ) , (348)

- f ali |n-B
a+h<0

where, &s before, rs denotes a surface point and a is a unit out-
ward normal vector at the point rB. In the two varlations of
asymptotic diffusion theory just mentioned, one would replace ©
in Eq. (348) with either ® or ;, and use the corresponding value
of K. '

As © approaches unity (pure scattering, or effective pure
scattering) all aspects of asymptotic diffusion theory agree with
those of the Eddington approximation. Ir particular, oD goes to
1/3, and the asymptotic boundary condition, Eq. (348), goes to
the Eddington condition, Eq. (318), For this reason, it is often
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said that the Eddington approximation is only strictly valid for
almost pure seattering problems.i This - statement is only true as
far as asymptotic solutions 1in a source free medium are
concerned. "~ The accurate ‘statement concerning the Eddington
approximation is that it is only. strictly Qaiid when the specific
intensity of’ radiation is almost isotropic, without rega¥d to the
amount of absorption present., Asymptotic diffusion theory is a
strictly proper description of radiative transfer when the
specific intensity ijg in a nearly asymptotic state, as 18 clear
from its derivatione ' ,

Finally, Wwe consider the pressure itensor, accoxding to
asymptotic analysis. This is obtained Dby analysis similar to
that which led to Eq. (335) for the radiative flux. OCmitting thé

details, the ij component of the pressutz tensor is given by

1 >
P, E'i dﬁﬂinjl(n)

- ( )(BOD - 1) 33 E + (1 ; OD)E Iy

. (349)
02K2 2 Xy 9% 4

i3]
1t can be shown by direct computation from Eq. (349) that

>
YoP = oDVE ‘ (350)

in the asymptotic regime, with D being the asymptotic diffusion

coefficientos

C. Variable Eddington Factors and Flux Limited Diffusion
One of the difficulties with both the Eddington diffusion

description and asymptotic diffusion theory 1is that they often
predict too large a radiative £lux. That is, since
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CeE = f @b T o, w0 | (351)

Pefoatid o, (352)

by

we must have

N o .
|F] < eE ., o (353)
with the equality holding only in the streaming limit {when I(ﬁ)
is a Dirac ~delta function in some direction]. In the two

diffusion theories just described, one has

¥ o —pU(eE) , | (354)

and hence for large gradients, one can obtain a £lux that
violates Eqe. (353).

We discuss various methods that have been suggested to
remedy this problem; or more generally, to obtain an approximate
description of radiative transfer, either a telegrapher or dif-
fusion description, which is more accurate than Eddington or

asymptotic theory.
He begiﬁ with the equation of transfer

1 91 e '
=T * Re¥1 + oI = £= (o b + o E) , (355)

which has as the first two angular moments

-3—':1 + Ve = co (b - E) , | (356)
and

1 aF o

E‘“% + VP + oF =0 . (357)
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The variable Eddington factor approach to. radiative transfer

18 to define the Eddington tensor T as

12 ¢

&>
>
= P

/E T (358)

rewrite Eq. (357) as

+ cVe (TE) + ofF = 0, © (359)

%

13
c

¥ ¥

and postulate-éﬁ apriori expression for T in terms of E, ?, Oq)

0g, and b, The vast majority of Eddington tensors have been
assumed, or derived, to be of the form

> l - x -1 ff A
L __i_l.f + Lo = , (360)

&>
where 1 is the identity tensor, and

f = F/ecE , (361)

with £ = ifl. The scalar ¥ is referred to as the Eddington
factor. Equation 4360) follows uniquely if one assumes that the
only vector that T depends upon 1is z. An equivalent assumption
is that the angular distribution is azimuthally symmetric about
the direction defined by f, and X 1s then given by

1
[ ame21(d)

X = ‘11 , (362)
f dpI(h)

-1
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 uwhere u o= 5 f/f. The Eddington approximation previously discussed
'correspongs to- x . 1/3. ‘We' note from’ its "definition that the
trace of T must be. unity, and Eq. - (360) has this property.

One also has the Lnequalities'f

0<£<L1 , : o _ (363)

£2 < x <1 . | (364)

Equaticn (363).13 just a rewriting of Eq. (353), and Eq. (364) is
just an application of the Schwartz ineqhality. The prescriptions
that have been suggested, or derived, fqt’x are generally of the

functioﬁél form
x = X(£,0) o : ' (365)

That 1is, the Eddington factor depends upon the magnitude of the
dimensionless flux f and the effective single scatter albedo w de-

fined as

b + o E
a 8

oE * (366)

W =

1f I(ﬁ) in Eq. (362) 1s 1isotropic, we obtain X = 1/3, the
Eddington result. '
Since isotropic intensity corresponds to f = 0, we expect

all reasonable functions X to have the limiting form
x(0,w) = 1/3 . (367)

At the other extreme, 1f I(ﬁ) in Eq. (362) is a Dirac delta
function 8(1 - u) or 8(1 + u), which corresponds to unidirectional
streaming, we obtain x = l. For this angular distribution, £ = 1,

and hence we should have
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)(L0) =L v e R (368)

Since ¥ and (to a lesser extedt)'_f; afer‘boch measures of the
anisotropy of the specifip,~intgnsiﬁy of radiation, one would
qdalitatively expect that ¥ wouidrvary-monotonically betw2en these

two limitse. .
The flux limiting approdch tp_fadiati?e transfer is to re-
place Eq. (357), the first moment, with a Fick's law of diffusion

F == 3 Ven) B (369)

where the (di;ensiohless) diffusion coefficient is postulated, or
derived, as a functional of E, as;l dg, and b, The 3Idea here
18 to choose a functional form of D such that the resulting
diffusion theory is fully flux limited, i.e.,

.
M { cE , (370)

as stated in Eqe. (363). In general, the suggested forms for D

have depended upon the dimensionless gradient

Ve| - '
X "-"‘LO,—E'- ’ (371)

and the effective albedo w, or equivalently,
D = D(R,w) , (372)

where

Vel '
Rn%--’—ﬂ. (373)

owE

On qualitative physical grounds, one would expect any raasonable

prescription for the diffusion coefficient to reproduce classical
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‘diffﬁéion:thébrj‘;n the .1imit: of péar*ihgrmodynhmic éﬁuilibriuﬁ
(R =0, 0 = 1), dees, S

DCO,1) = 1/3 . | | S (374)
In addition, oné‘mhst have

D(R,u) —> 0 , | | | (375)

R

for Fick's law, Eqe. (369), to yield a finite flux in the limit of
infinite gradieﬁps- One would also expect D to be a monotonically
decreasing function of R to properiy maintain flux limiting.

We note that Fick's law, Ege (369), could be generalized to

involve a tensor diffusion coefficient of the form

Y .
cDeVE + oF = 0 (376)

This complexity is probabdly unwarranted since any Fick's 1law is

approximate in any evente.

Two Examples
Before proceeding mnore generally, we give two exanples, one

assumed (as did the originator) and one derived (as did the
originator) of flux limited diffusionm coefficients and Eddington

factorse.

Example #1
J. Wilson of Lawrence Livermore Laboratory proposed a diffu-

sion éoefficient of the form

1
D =403+ Ry ° (377)

which gives a Fick's law of the form
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- 3wg + '$E|/E

V(eE) o (378)
We note the threé ﬁréperties;

(1) 1In near thermodynamic equilibrium (R = 0, w.~ 1), this
‘réduces to the Eddington result

Fo= -2 (eE) . (379)
(2) Fo;'ihfinite gradients, we obtain the streaming result
fF] = c& . | | | | (380)

(3) D decreases monotonically with R.

This model was proposed in an adhoc manner, as a simple functional

form having these three properties,

Example #2

By contrast, Levermore of LLL used the ideas of the Chapman-

Enskog theory of @gases to derive a flux 1limited diffusion
coefficient and a corresponding Eddington factor. We give here a

simplified derivation. We begin with the equation of transfer

1 91 c )
-E -ﬁ + 5‘61 + ol = -4—11’. (oab + USE) ] (381)

and its zeroth moment

9E
5=+ Vo = co (b - E) . (382)

We introduce the normalized specific intensity w(;,v,ﬁ,t) by the

equation

92

s

- R e LR

A e




I ='cBy -
where Y is normalized .to

(385)
[ af wd) =1 .
e

(384)
The function ¢ is known in two limiting cases.
(isotropic) limit we have

In the Eddington
v =~ [1 - 8.¥E/0E]
4n L ’

have

(385)
where 'VE'/GE is assumed to be small. 1In the streaming limit, we

EENCEN B

where

§o(8 = fg)

(386)
1s the angular Dirac delta function indicating
streaming in the direction 35. Use of Eq. (383) in Egs. (381)
and (382) gives '

0l

3(EY)
at

O0E

t

ol

+ BeV(EY) + oEy = %? (o,b + o E) ,

+ Ve(EE) = o (b - E) .

(387)
(388)
Here f is the normalized radiative flux defined by
F = cef , (389)
or equivalently

\0
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We now use Eq. (388) to eliginateAaE/Q?‘in Eq. (387). This gives
@ 28 4 feTv)E + (3% - Fo9E - E¥F + 0 B + o b)Y

-.%; (o b + 6 _E) . (391)

Equation (391) {'s exact. To proceed, we make the assumption that
the normalized intensity is a slowly varying function of space

and time. Specifically, we set

L3, By - |
E'a'E“"ﬁv* o . (392)

The justification for Eq. (392) 1is that it is true in the two
limiting case just discussed, and hopefully introduces a small
error in intermediate situations. Use of Eq. (392) in Eq. (391)

gives

(8eTE - £-VE + owE)Y = %‘;‘:—E , (393)

where w is the effective albedo given by

oab + asE
W =—F  ° (394)

In obtai-ing Eq. (393) we have used

Yot =0 , (395)

which follows from integration of Eq. (392) over all solid angle
and Eq. (384). If we define the vector R as
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‘ﬁ- VE . S ~(396)

we can solve:Eg. (393) for ¥ as

1 1 1 ' '
““_;1 + FeR - ReRT (337)

From Eqs. (390) and (397), 1t is clear that the vectors ? and ﬁ

are in the same,direction, and we write
f-amiR , » (398)

where R = 'ﬁl- The proportionality function A(R) between ¥ and R
follows by demanding that Y be properly normalized. We find,
using Eq. (397) in Eq. (384) o

Solving this for A(R), we find

A(R) = x (coth R - 2) - (400)

Alternately, one could obtain this game result by using Eq. (397)

in the defining function for f, namely Eq. (390). Use of
Eqs. (398) and (400) in Eq. (397) gives the angular distribution

in terms of the vector ﬁ as

W (d) = = 1 1. (401)
4 [R coth R - Gok
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It is easily seen that in the two limits previously discussed
'[see Eq. (385) "and (386)] which here corresponds to R+0 nnd R+e,

Eq.'(401) gives the proper angular distributions-
To obtain a Fick's law, we combine Eqs. (389), (396), (398),

and (400) to obtain _

Fa-2¥em , | (402)

where the dimensionless diffusion coefficient D is given by

D =%§‘(c;th R - 3) . | (403)
We see this Fick's law has thelp;operties:
(1) In near thermodynamic equilibrium (R = 0, w = 1)
D+ 1/3 . (404)

(2) For any value of R and ®

[F| < cE , (405)

and, in particular, as R + =

rs
‘Fl = ¢cE . (406)
(3) D is monotonically decreasing with R.

To obtain the corresponding Eddington factor x, one uses the

angular distribution, Eq. (401), in the expression for X given by
Eq. (362)s Performing the integrations, one finds

(407)

[
J

o] e

X = coth R[coth R -

(la)
[
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1f one wishes }éénVa -ﬁgﬁ¢£ibnl’of.lf;t;rather ~than. R ‘as - iq
‘Eq. (407), one‘uséé~Eds;'(398)'ahﬁn1500)“t6 obtain '

£ = coth R-="1/R . o | (408)
Elimination of R between Eqs. (407) and (408) gives y as a-
function of f. It 1is easily shown that x(f) has the three
properties: ' ‘

(1) x(0) = 1/3 ,

(2) x( =1 ,

(3) x(f) is monotonically increasing with £, (409)

A Relationship Between Eddington Factors and. Flux Limiters

Returning now to more general considerations, we derive an
(approximate) relationship between % and D in a fairly general .
way. We begin with the first moment equation given by Eq. (359),
lee.,
af
ot

1 3 2
S ge+ cle(¥E) + oF = 0 (410)

+

with T given by

+> + :
fal-g-xf+§x-§_lf_f. (411)

We eliminate the a%/ac term in Eq. (410) by writing

-:—%-%3—5 . (412)
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The justification fbr Eq._ (412) s{»tHAt >is éofréct in- the .
‘isotropic (£ = 0) and streaming (£ = 1) limits, and hopefully is

reasonably accurate in general. lWe‘then have

%—%?ﬁ+c$(fs)+of=0 . (413)

We use the conservation equation, i.e.,

9E * ’
T + VoF = poa(b - E) , ‘ (414)

to eliminate 3E/3t in Eq. (413). This gives

..1 +« .
cVe(TE) , (415)

with w once again given by

°ab + oBE
w -'-’-—-——-TE——-— . (416)

To obtain a Fick'’s law of diffusion of the form

fa- %»ﬁcFE) , (417)

&>
it is necessary to assume that the Eddington tensor T is gslowly

varying in space so that one can write

+ > '
Ve(tE) = To¥E . (418)
From Eqs. (411), (415), and (418) it 1s easily shown that the
vectors ? and $E are proportional to one another. Then, using

Eqe (411) in Eq. (418) we find
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EALE R U (419)

andrhence qu~(4}55‘beceeesr
- --X- [1 och] 3(cE> . (420)

Equation (420) is a Fick's law of diffusion with the diffﬁsion

coefficient D, in dimensionless form, given by

R |
D -.X [1'-'0—a-c—§ . ) R (421)

Now, by assumption, x depends upon £ and w, and we want D to de~-

pend upon only R and wy;  This means we must eliminte the unwanted

functional dependence VeF from Eq. (421). We do this by writing
F =t (422)
and assuming fsis slowly varying in space. We then have
VoF = cg~$E = -cf'ﬁE' . (423)

with the last equality following from the fact that the vector ¢

and 33 are in opposite directions [see Eq. (417)] We the obtain
from Eq. (421)

D= o+ 1D _ (424)

where
R = oE . : (425)
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f.; -2 Fer) o “‘ . . O (426)
by cE and takihg»the absolute valoe. This‘gives
£ ] DuR o | : (427)
\Given x = x(£,0), elimination of f between Eqs. (424) and (427)

gives D = D(R,w). Conversely, given D = D(R,w), elimination of R
between Eqs. (424) .and (427) gives x = X(f,0)e.

A Comparison of Various Flux Limiters and Eddington Factors

We examine the properties of certain flux limited diffusion
coefficients and Eddington factors that have been proposed and
are currently in use. In this examination we pay attention to
~ the inequalities given by Egs. (363) and (364); the limiting
expressions given by Egs. (367), (368), (374), and (375); and the
monotonicity properties, discussed earlier. ~ We consider the
various prescriptions in roughly chronological order of their

introductione.

1, The Eddington Approximation

The classical Eddington approximation corresponds to

D = 1/3 , ’ | (428)

which clearly viclates the large R 1imit given by Eq. (375).
This is just a manifestation that classical diffusion theory is
not flux limited. ©Equations (424) and (427) give ac the corres=
ponding Eddington factor
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Except for © = 0, Eq. (429) violates the inequality X < 1 in
particular, Eq. (368) is not catisfied. Hence we conclude, as is
well known, that the classical Eddington approximation is limited
in its region of validity. »

2. The Wilson (Sum) Flux Liniter

As previously mentioned, Jf Wilson of LLL suggested the form

1 ,
D33+ R ° (430)

as a means Of {ntroducing flux limiting ijnto diffusion theory.
This form has all the desirable properties for a diffusion
coefficient as previously discussed. From Egs. (424) and (427),
we f£ind the corresponding Eddington factor is given by

x =& (1 -£+ 388 . : (431)

Although Eq. (431) gives the correct limiting behavior at £ =0
and £ = 1, it is mnot a monotonic function of f. X, as given by
Eqe. (431), has’a ninimum value of 11/36 at f = 1/6. Rence, from
an examination of the Eddington factor corrasponding to the
diffusion coefficient, .we conclude that the diffusion coefficient
jtself may be 1less than satisfactorye. In particular, one can
conjecture that this diffusion coefficient probably introduces
too much flux limiting, thereby underestimating the flux.

3., The Wilson (Maximun) Flux Limiter
One can avoid the minimum in X Just discussed by replacing

Eq. (430) by




D= 7§432§»»

3

w[max(B,R)]nff“
Tnis gives for theicbrresponding Eddingtoh factor
| 1 2 A
x =7t £4 , R X 3 . . (433)

For R > 3, Egse (424) and (427) cannot be solved for x. In
particular, Eq. (427)  simply givéé f = 1. If we interpret
Eq. (433) to hold for all £ in the physical range 0 L £ X1, we
see the inequality x < 1 is violated for £2 > 2/3. Since ¥ is
too large for f near unity, one can conjecture that the diffusion
coefficient may in y»neral overestimate the flux, 1.e., mnot give

enough flux limiting.

4., The Wilson (Fit) Flux Limiter
By fitting to certain transport calculations, Wilson has

suggested a diffusion coefficient given by

1
3 + wR[l 4+ 3exp - (mR/Z)]

‘D - ’ (434)

which has all of the desired properties discussed earlier. For
this complex functional form, one cannot analytically solve
Eqs. (424) and (427) for x(£,w). However, in the limits of small

and large R, one finds the results

X = % (1 - 4E) + 0(£2) , £ <1, (435)

% [w(1-£) + 3£2] + O(exp - [7TT%?T]), (1-£) << 1 . (436)

e see that X = 1 at £f = 1 in accord with Eq. (368). However,
only for w = 1 do we recover the £ = 0 limit given by Eq. (367).

We also note that
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£=0 ST

o'

which implies that the curve X vse £-is- not monotonic but goes
through a pinimum at some poxnt. Once aeain, this suggests that

the corresponding diffusion coefficient, Eq. (435), nay
snderestinate the fluXe '

5. Asymptotic Diffusion Theopy

As previously discussed, in asymptotic diffusion theory
the diffusion coefficient is given as a function of w (ox w or w)

alone according to

p = 222 ' (438)

K2

where K satisfies the transcendental equation

2K

1 + K
o = 4n (l )

— K . (439)

This diffusion coefficient has the limiting forms
D(w = 0) = 1 3 D(w = 1) = 1/3 & (440)

WHe see that Eq. (538) gives the proper thermodynamic 1limit,
Eq. (374), but clearly violates the large R limit, Eqe (375). The
corresponding Eddington factor is found from Egse (424) and (427)
to be

w(l = w) 4 g2
K2

X = . ’ (441)
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This éxéreésion,~ror a- general w, éﬁfiéfieggneither the £ = 0
limit, Eq. (367), nor- the £ = 1 limit, Eq. (368). Thus it
appears that asymptotic diffusion theory is of limited validity.

6. The Winslow Flux Limiter ‘
To improve upon asymptotic diffusion theory, A« Winslow
"(LLL) suggested a flux limiter of the form

DA
D = v - -
max[1l,0tR] ’ R (442)

where Dp 1is the asymptotic diffusion coefficient given by
Eq. (438) and £ = %(w) is the linear extrapolation for the Milne

problems Limiting values are
2w =0) = 1 ;3 2(w=1) = 0.7104 . (443)

This function has the desired properties for a diffusion
coefficient; in particular, this D vanishes for larges R, as
contrasted with the pure asymptotic diffusion "form given by
Eq. (438). From Egs. (424) and (427) we find

2&1_5_21 +£2, wiR <1 . (444)
K

For w&R > 1, Egs. (424) and (427) cannot be solved Yor ¥Xe
Specifically, Eq. (427) simply gives’

PR S S RS S S (445)
K2%

If we interpret Eq. (444) to hold for all £ in the range

0 £ <1, we see that the inequality X <1 is violated for 1large
f. We also note that the £ = 0 limit, Eq. (367), is not satisfied
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 ek§épt‘forfw,=\1é ’Thué'therﬁpfmiquiﬁfgiﬁeﬁ by an (442), while
' introducing flux limiting into asymptotic.diffusion theory, gives

a somewhat'nqnfphysical Eddington,factor.

7. Kershaw's Eddington Factor

Applying the theory of moments, D. Kershaw (LLL) developed a .
series of inequalities which the angﬁlaf‘moments of the specific
intensity 1(5) must satisfy. Examples of these inequalities are
given by Eqs; - (363) and (364). On the basis of these
inequalities, he suggested an Eddington facﬁof'given by

X "‘%- (1 +*2f2) ., . ' (446)

which has all the proper behavior previously discussed. The
corresponding diffusion coefficient 1is, £from Egs. (424) and
(427),

_ Y9 + 4R2 - 3
2uR2

D . (447)

This diffusion coefficient 1is monotonically decreasing as a
function of R, and gives the correct behavior for small and large
R [see Eqs. (374) and (375)]. Thus, Kershaw's prescription gives
both an Eddington factor and diffusion coefficilent with all of

the qualitatively correct properties as discussed earlier.

8. Minerbo's (Statistical) Eddington Factor
Treating photons as a statistical ensemble with E and F pre~-

gscribed as constraints, G. Minerbo, LANL, computed the most
likely angular distribution for the specific dintensity. From
this distribution he deduced an Eddington factor as a function of

f given parametrically by
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cot c e o (449)

Eliminating C Dbetween thesé two  equations gives X = X(E).
Setting C = 0 and C = m,'respectively;'in Eqs.. (448) and (449)

gives the proper limiting values
X(f = 0) = 1/3 5 x(£= 1) =1 . : : (450)

Further, this x increases monotonicaily,betweeﬁ these two limitse.

The corresponding diffusion coefficient can be written as

A(R a |
D(R,w) = i ) R (451)
. where the function A depends only upon Re. This functional

dependence 1is obtainéd by eliminating C between the two equations
2 1 -2
(AR)2 + (g + £) (R) = 1 =0 (452)

AR = coth C - % . (453)

Setting C = 0 and C = », respectively, Eqs. £{45Z) and (453) gives
the limiting behavior ‘

A(R = 0) = 1/3 3 A ——— 1/R (454)

b4
R+
The function A(R) decreases monotonically as R increaseSe. Thus

the Minerbo treatment also gives both an Eddington factor and

diffusion coefficient that are qualitatively correcte
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9.; Minerbo s (Linear) Eddington Factor 3H

: As an approximation to ‘the-’ angular distribution resulting
from his_statist;cal arggments, Minerbo gonsidered.a linear (in
W) angﬁlapédistributioh £o?Athe;specific intensity of fadiation,
with the constraint that this distribution be non-negative.‘ This

gave an Eddington factor
x = 1/3 , 0L /3, (455a)
L_ g 432 1/3 < £ < 1 »
X =5~ T 7 ’ Y A ’ (455b)

which has the. cofre@t monotonic behavior and limiting values.
The corresponding diffusion coefficient can be writtem in the

form given by Eq. (451) with

+ 2 -
A(R) = /9 z;g 2, o0<RZ<32 , (456a)

ARy = SBE 1) - vVARFL 5 ¢cRc (456b)

RZ

It 4is clear from Eq. (456) that A(R) 1s a monotonically
decreasing function of R, with limiting behavior

MR = 0) = 1/3 ;3 A ———> I/R . (457)

H
R+

Thus, Minerbo's linear' treatment gives qualitatively correct

results for both the Eddington factor and the diffusion
coefficient, although the Eddington factor has a somewhat
unrealistic flat behavior for £ £ 1/3.
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10."Levermotefsi(ChébméﬁﬁEnskdéf‘Diffﬁsion Coefficient
As p:eviéuély described, Levermore obtained a diffusion

coefficient given by Eq. (451) with
= L (cotn X .-A'i] | | 2
A(R) = ¢ lcoth =) | (458)

which is propetlyrmdnqtdﬁiCally decreasing from a value of 1/3 at
R = 0 to a I/R‘Vibehaﬁior for large R. The Eddiﬁgton factor
associated with Eq. (458) follows from Eqs. (424), (42?), and

(451) as

X = coth R(coth R - %) ’ (459)

f = coth R - % . (460)

Elimination of R betwéen Eqs. (459) and (460) gives X as a
function of f£f. We note'that Eqe (459) is the same result one
obtains by computing the Eddington factor directly from the
angular distribution associated with the Levermore theory [see
Eq. (407)]. The above functional form for X has the 1limiting

values
x(f = 0) = 1/3 3 x(£ = 1) =1 , (461)

and varies monotonically between these two limits. Thus we see

that the Levermore treatment gives proper behavior for both D and

Xe

1l Levermore's (Lorentz) Eddington Factor

In a separate approach, Levermore applied a Lorentz trans-
formation to the equation of transfer, transforming to a frame in

which the radiative flux 1is =zero. In this frame he assumed thsat
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the Ed&iﬁgton factéf_ls:1/3Q7‘Tféhsforﬁiﬁgfback to the original

frame,'he'obtéinéd

2. | S |
X = %’i 25 ) (462)
£ = - 1852 , (463)

where B = Iz]/c; with c the speed of light and 3 the velocity of
the transformed f£frame with respect to the original frame.

Eliminating 8 betwveen these two equations gives X explicitly as a

function of £, ie.ee.,

————————————

x =& (5 - 2/4 - 3g%) . (464)

We note that this functional form has all of the qualitative
properties that an Eddington factor should have. We find that
the corresponding diffusion coefficient is given by Eq. (451),

with A(R) determined by eliminating B between the two equations

- a2 '
y = 385, (465)
3 + g2
2
R ow 4B(3 F BT (466)
3(1 - 82)°

In the limits of B ~ 0 and g =~ 1, one obtains

A(R = 0) = 1/3 ;3 A — /R , (467)

R+
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skmonotenic. \'Hence,;

thefﬁddington factor:and the;diffusion coefficient.»i
We can summarize these results as follows. Of the eleven

different '-treatments ; fA*“Eddington?} factors ‘~sa - diffusion
coefficients, five were shown to be qualitatively correeta ‘These

—
RS

five treatments areofp}"ﬂ‘,kifquﬁ?‘ ';53.‘1 o J:‘:_«Q;,jl"fw

. "l.% Kershaw 5. L T e R

'k{2.- Hinerbo's (statistical) - o N
'34‘ Minerbo 8. (linear)

-4.~ evermore s (Chapman-Enskog)

'f5,‘ Levermore s (Lorentz)

¢ *\.,

,Inrall‘fiﬁehcasesgithe:ﬁiffusion}toefficient can beihritténﬁf‘

'and Figure 1 plots A(R) for these five different approaehes.v“’e"
see that all. five curves have a very similar behavior, decreasing>

monotonically between the limits common to all five curves

A(0) = 1/3 3. A(R) ""_'""li a -  caesy
A T Ree N | |

' R -
. s, o

[

These. five curves .also. have the common characteristic

3 L - k
T (1

'R=0

-Similarly, Figure 2 plots“the Eddington factor ¥, which ih*
all five cases is ' a function of £ alone. Again we see that all
- of the ‘curves behave similarly, increasing’ monotonically as f

increases, and sharing the common characteristics
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’ "fwe.\note that hEZ?‘. ”V: 3 gtbn:7fact6rchurves=‘isI}

“somewhat greater than in theJdiéﬁiaioﬁgébéfffcigng;(af;k)*curveé;;

H_indicating ‘that - D is a Weaker functional of" X, than X is.of D.looi-

'fn It is probably difficult, if not impossible, to’ single out"

‘“any of these five treatmente:ae\"best t Which of the five will
'perform the best is. undoubtedlyfproblem dependent.» 0n the- ogher,

hand, since the curves are' allf quite eimilar, ,it probably is.

relatively unimportant wnich of the five treatments 1s ad0pted.

. ‘One. can’ conjecture that all will give comparable accuracy wheg»

,T,applied to afvariety of problems;~a1though the linear treatment”

of Minerbo could perhaps be expected to be somewhat less accuratel,

because of ‘the: unrealistie fIat behavior ‘of 'x for £ < 143, One .

can alao conjecture that‘f’h other six treatments have"

discussed are probably inferior over a’ wide range of ptoblems in;
that ‘they each display at ieast ‘one qualitatively incorrect

characteriatic. “;ﬁ. e -

gy
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" D. 5E¢u11£351uminiffuéiéﬁ Theory. .

"’Thelsimplest'tfeatmgh;'of\radiétive;fpd

sfer, and radiation-

hydrodynamics,. is what Aishgenerally referred to as equilibrium
diffusion _theory. This is a- further‘-siﬁplificaﬁion of the

Eddington;approximation discﬁssedrearlier,Land really conatitutes
an approximate solution of the Eddington equatlons. That 1is,

given the "material temperature distribution within a gpecific

JLL -

_system, -the équilibriuﬁ diffusion approkimation provides an

explicit expression giving the speéific intensity as a function

of all its . variables, namely space, frequency, angle, and time.
In partiéula:,'it gives the energy density,Aradiative flux, and
pressure tengon as functionals of the material temperature, and
hence as implicit functions of space and time, as required in the
equations of hydrodynamics when a radiation £field 1is present.
Although-equilibrium diffusion theory corresponds to & very low
order approximation_in both frequency and angle (as well as space
and time) it 1is, because of its simplicity, a widely used
calculational scheme in many radiation-hydrodynamic problens.
Surprisingly ensugh, in view of all the approximations made, it
turns out to be a reasonably accurate description for many
problems, giving gross features of the radiation flow correctly,
in a qualitative and even a semi-quantitative sense.

We begin with the Eddington moment equations, namely [see
Eqs. (306) and (312)]

agév) + Vof(v) = coa(v)[b(v,T) - E(v)] ,‘. (472)
?(V) = ——5-3—:'-;—)—3[03(\))] " (473)

where ? and t dependences of all quantities is understood. The
underlying assumptions in these equations are: (1) the specific
intensity 1is almost isotropic as expressed quantitatively by
Eq. (308), i.e.,
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~1(9;§);% %?j[éﬁ(v)'+;3§°f(;)]”f;f | | (474)

and (2) the prqbléﬁ is collision dominated so that ‘aﬁlat can be
neglected compared to coféA We aésﬁme, that the left hand side of
Eq. (472) is sufficiently small so that it can be neglected. The
-Eqe (472) becones |

coa(v)[b(v,T) - E(v)] = 0 , ' (475)

which 1mp11eé that the radiation energy density is locally

Planckian at the local material temperature, i.e.,

E(T,V,t) = b(v,T) = %1 B(v,T) & (476)

Use of this result in Eq. (473) gives

F(E,v,t) = = ——— ¥B(v,T) , (477)
3o0(r,v,t)

where T = T(;,t). The gradient operator acts on the Planck

function through the temperature, and we can rewrite Eqe. (477) as

47 8B(v,T)
8T

F(E,v,t) = - VT(E,t) . (478)

30’(;,\,’1;)'

Use of Eqs. (476) and (478) in Eq. (474) gives

12, v,h,t) = B(v,T) - — BOLT) fdr(E,e) o (479)
: o(r,v,t)

Equation (479) is the primary result of the equilibrium diffusion
approximation and allows an explicit (albeit approximate) calcu-

jation of the specific intensity once the temperature distribu-

tion is known.
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The quantities of primary interest in ‘radiation hydrodynamic
problems are the radiative energy density, flux,r and pressure
tensor as defined by Egs. (21) through (23) In equilibrium
Jiffusion theory these are given by, from Eq. (479),

E(T,t) = %1. ® 4uB(V,T) = aT*(T,t) (480)

Oty

F(T,t) = - %ﬂ Src,e [°avy — 98(v,T) (481)
° .c(;,v,:) oT
. 4 e S | -+ -
pEpyy =3 | VBT =3 aT*(r,t) (482a)
=0, 1%*3, i (482b)

where a is the radiation constant given by Egq. (27).
The expression for the radiative flux, Eq.A (481), 1is
frequently written in a somewhat different forme. By grouping

terms, this equation can be rewritten as

f“ v % ; 3B(v,T)
o(v aT ©
F(T,t) = - %— ¥r(r,e) |2 3309, D) J o av EE%%LEL . (483)
[7av = |°
o
If we recognize that
© oB(v, T
[7 av ——%Tl—l ac 73 (484)

(o]

and define a mean or average (over frequency) total cross section

K
cR(r,t) as

=t
| aadd
[« 1)




B almm (485)
"o . ~o(v) . aT.. ) ' :
Eqe (483$>¢én ﬁg rewtitﬁen,és,
@,y = -8 L pE,oiny O (486)
L oR(r,t)‘ ‘ ‘
or |
B2,y mm RS ¥TH(F, ) = - —S— VEG,0) . (4sT)
e SOR(r,'t) : 30R(r,t) o

The coefficient °R(;at) is genéfally referred to as the Rosseland
mean, and 18 widely used in radiative transfer work as we shall
discuss in some detail laters '

~ The (non-relativistic) hydrodynamic equations, with radia-
tion terms, in the equilibrium diffusion approximation result
(presumably) from using these results for E, f. and P in the
" equations of hydrodynamics given by Eqs. (16) through (18). This

gives
2L 4 Ge(om) 0, (488)
2 (ody + Bpy + B) + Fe(oui) = 0 (489)
2 (Lou2+E_ +E)+ Fe[(2 pu2 +E_+ P yu]
9t ,2 P m 2 m m
[~
- 6.33_ VE (490)
R
‘where
E = 3P = aTh (491)

s
|
~

v ¥R adthi * kS W oR R 1 T



'f'In writing Eq. (489) we - have neglected a term 3[§/c2]/3t as ‘being
negligibly small compared to a(pu)/at. .
This set of Eulerian equations can be put in another form by

introducing the Lagrangian derivative

Yo, . (492)

=+

D _ 9o
pc =3¢ T

and deleting the time derivaﬁive of the kinetic energy in
Eq. (490). This is accomplished ' by dotting Eq. (489) with u to
form the mechanical energy balance and subtracting this result

from Eqe (490). The result of these algebraic manipulations is

the equivalent set of equations

(3) - Fd =0, (493)

ko]
cqu
(2]

©
UIU
rled

+ (e +P) =0 , (494)

[- (E, + E)] + p(P_ + P) 3T Dt (-)

©
UVd
t

= 3-35; VE + ¥-[(E + P)u] . (495)

Equations (493) through (495) are Eresumabiy the equations of
rediation-hydrodynamics "in the 'equilibrium diffusion limit.

However, they are not! This set  of equations is incorrect. The

.correct equations are:

ppr (3) -Ti =0, | ~ (496)
D+
P Tp V(pm +P) =0 |, (497)
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b%—-[—f;(z +E)]+p(P +P)~ () RVE . (498)
. Comparing. tqs.':(49e>‘ thrOUgh (498), the correct set, with
Eqss (493) through (495), the incorrect set, we see that {t is
the energy equation, Eq. (495), which is incorrect. It contains
a term V;[(E + P)u] not present in the correct equation. 4

That Eos. (496) “through (498) constitute, in fact, the

correct set can be argued on physical grounds as follows. Equi-
librium diffusion theory corresponds to the assumption of 1local
thermodynamic: equilibrium between the radiation. and the matter.
Thus in the hydrodynamic equations formulated as force and energy
balances in the reference frame moving with the fluid (i.e.,
formulated with Lagrangian time derivatives), one would account
for the radiation energy and pressure terms by simply adding
these terms to the corresponding material terms. This 1s seen to
be the case in Egse. (497) and (498). The only other effect of
radiation is the flow of energy by radiative processes, and this
is accounted for by the diffusion term on the right hand side of
Eq. (498).

Since Eqs. (496) through (498) are the correct equations, we
should be able to obtain them in a consistent mathematical treat-
ment. This, of course, implies that the derivation which led to
Eqs. (493) through (495) is ﬁrong. The error in this derivation
was the use of an incorrect equation of transfer. We used the
non-relativistic equation of transfer, Eq. (303), as our starting
point. To obtain the correct equation, Eq. (498), it is necessary

to use the relativistic equation of transfer containing certain

u/c termse
To demonstrate this explicitly, we rederive equilibrium

diffusion theory starting with the relativistic equation of
transfer. For simplici:y of exposition, we neglect scattering,

in which case the equation of transfer is simply

1 81;:25) + 6'61(\),5) = o(\)’ﬁ)[B(v’ﬁ) - I(\’,ﬁ)] , (499)

[
[
w



where,,according “to Eqs. (253) and (254) [or (255)], ue have, to

first order in u/c,'

L L ' e aB (v)
B(v,R) = B (v) + ﬁ- [3B (v) = v 3v . (500)
' : , > 3g_(v)
s, ) = o (v) = & [0, (V) + v ——] . (501)
Thus Eq. (499) becomes, correct to first order in Glc,
. > 3g_{v)
i El%%igl + Qe VI(v ﬂ) = {up(v) -_ﬁo% [uogv)_- v gv .
: : aBo(v)
{8 (v) + Beg [3B,(V) = v ——] - (v, )} . (502)

Forming the first two angular moments of Eq. (502), we obtain
E) | FuF(y) = -
st + FoF(v) = o (v)[4mB (v) - cE(V)]

3c (v) =+

+ [o (v) + v ] SeF(v) (503)

12E09) 4 gocB(v) + o (0)FC)

. 9B (v) =»
= %1 ao(v)[3B°(v) -V v %
s ¢ do (v)
- [T _(v) - LecF(w)] [o,(») + v o —] . (504




“In 'ﬁq. (503) we recognize that e fcﬁnf-aiwaysr neglect . the
(2/e)e f\V) term since lF(v)l < cE(v), “and we are assuming u/c

smalls If we introduce the Eddington approx;mation, namely

BV (505)

wlo-é

»4+ 1 : _,*’-»
$oB(v) =1 FE(W) 5 BBV =3

and neglect.the 3F/3t term (by assuming the problem is c¢ollision

dominated), we then have the two moment equations

3%%21 + YeF(v) = oo(v)[AnBo(y) - cE(V)] (506)
: ‘ 3B (v) =
L 4er) + o (WFQ) = dr g (3 v - v ——] ¢
3g (V) 3
-5 [o () + v —33 ] [4mB (V) - cE{W)] 3+ (507)

To complete the equilibrium diffusion approximation it is assumed
that locally radiation emission and absorption at each frequency
are in equilibrium. This implies that the right hand side of

Eq. (506) should be set to zero, l.e.,

cE(v) = AnBo(v) e (508)
Using this result in Eq. (507), we obtain
3B (V) 9B _(v)_ =
N & o my 9 1%
F(v) 35_(v) o7 ¥ + 2 [38_(v) = v —5—] g+ (509
Integration of Eq. (509) over all frequencies, introducing
(510)

E « 3P = aT% ,
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> T e 2l & + ' L : ' '
R 4 . . : .
or, equivilently,
> c * |
¥ - " Fox VE + (E + P)u . : (512)

The convective. term in Eq. (512), d.e., that dinvolving the
velocity u is, the vresult of having retained the relativistic
terms‘in thé.equation of transfer. >Tﬁis terﬁ is clearly seen to
be formally of the order ule compéred to the gradient térm.
Because of this, the terms in the equation of transfer which give
rise to the velocity term in Eq. (512) [that is, the G/c terms in
Eq. (502)] can generally be dropped as negligibly small if, in
fact, G/c is negligibly small. However, in a true equilibrium
diffusion problem, the two terms on the cight hand side of
Eqe (512) can be of comparable magnitude; since it is the essence
of an equilibrium diffusion problem that the gradient term in
Eq. (512) is small. Further, this additional term is needed to
obtain the correct energy equation, Eq. (498).

If we use Eqe (512) for F in the general non-relativistic
energy equation, Eq. (18), we find

3l 1 ;
-5?(7pu2+Em+E]+$~[(—2-pu2+Em+Pm+E+P]-\:]

= 3..3.3_1{. JE . | (513)

Combining this with the momentum equation, Eq. (489) to eliminate

a(pu2/2)3t and introducing the Lagrangian time derivative,
Eqe (513) can be rewritten as
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D ey e s e s R
P e [5 (B, '+ E)] +p(Ry +P) g (3) =¥ 7o VE (514)

which is .the qorrect’ energy equation [compare Eqé- (498) angd
(514)]. ' | |
In summary, in any problenm other than one described by
.the Vequilibrium ‘diffusion 1limit, one can, assuming 3/& small,
properly neglecﬁ Elc terns in the equation of transfer. However,
if one wants the gener31 equation7bf transfer to properly liﬁit
to the equilibrium diffusion description, one needs earry‘ﬁlc‘
termse. '[It should be noted that in the material terms in the
relativistic pydrodynamic equations, the lowest order corrections
are O(uzlcz)}.. it should also"be noted that the ﬁlc correction
terms' to the material rest frame absorption cross section
cancelled out in the development of the equilibrium diffusion
limit. This suggests a simpler eduation of transfer, namely

3
1 %A 4 Fo¥1(v, D)

s 2 aBo(v)
= o _(v){B_(v) + &L [3B (V) -~ v —55—] ~ 1(v,])} . (515)

In the non-diffusion limit, this is a correct equation since the
glc terms can properly be neglected and hence the exact form of
these terms is irrelevant. In the diffusion liwmit, this equation
of transfer is also correct in that it again leads to Eq. (512).

An even simpler equation with these same properties is

1 31(v,8)
"c‘ ——5?2-—-— + ﬁ'vl(\’,ﬁ)

= o _(v{B (v[1 + 48.3] - 1(v, D} . (516)
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ZObviously,\other forms are also possible.‘ Thus, With reshect toi
the - derivatiov of the correct equilibrium diffusion desctiption
of radiation hydrodynamics, Eqse. (502), (515), and (516), as well
as other possibilities, should be equally valid- Equation (502)
ig8 c¢learly the most complex, although asthetically it is to be
preferred since it follows most directly from basic physical

considerations.

E. Marshak Waves

An interesting physical phenomenon in radiative traunsfer is

- that of Marshah_waves. If a local source of energy is introduced

into a cold absorber, and the only mechanism for energy transfer
is via‘radiative processes, the bulk of the energy propagates as
a thermal wave. Ahead of the wavefront (distinct from the speed
of light wavefront), the material temperature is essentially
Zeroe This phenomenon 1is described remarkably accurately by
equilibrium diffusion theory.

We consider uniform matter with a constant heat capacity

cy so that the material energy density is given by

Em - ch . (517)

We assume that the scattering cross section is zero, and that the
absorption cross section is proportional to V©8 (for real cross

sections, an idealization is s =~ 3). Then the Rosseland mean,

OR» defined by Eq. (485), will be propurtional to T™S, and
we write
op * 2= | (518)
T
where b 18 a constante Neglecting hydrodynamic motion, and

assuming the material energy density dominates the radiative
energy density, the equilibrium diffusion theory energy equation,
Eq. (513) or (514), becomes
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e KEge B -c—g—- VaT'*‘ y oo T (519)

v 3t . 3
ox |
oo™, (520)

where XK is a composite constant

bac
K = 332: ’ (521)

and n = 8 + 3. We consider two problems described by Eq. (520)
and demonstrate the existence, according to this wuodel, of

Marshak wavese.

Problem {#1
This problem corresponds to an instantaneous release, at

t = 0, of an amount of energy cyQ [We include the factor cy
here to simplify a subsequent formula, namely Eq. (525)] at a
point r = 0 in an 2th dimensional infinite medium. Because of
the symmetry of this problem, Eq. (520) becomes one dimensional,

ioeo,

~

9T

3T . 3_
t £-1 9r
r

AT
™ 32) s t20, (522)

where £ = 1,2,3 corresponds to plane, cylindrical, and spherical
geometry, respectively. The initial and boundary conditions on
Eqs (522) are

T(x,0) = 0 , (523)

T(o,t) = 0 ; T(0,t) < @ . (524)
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[In plane geometry, 2 = L;whq;‘(524)‘is're§iaced with T(=e,t) =
p(e,t) = 0l. The _source in this problem implies a Dirac delta
function, in both space and time, source should be added to the
:fight hand side of Eqe (522). An equivalent treatment is to

léave "Eq. (522) as it {s, and impose the integral energy

conservation condition

Q= g‘” drA, (£)T(r,t) (525)

where Ag(r) is the surface area of a sphere of radius r in

gth dimensional "space, i.e.,

ﬂzlz 2~1

Az(r) = T T ’ (526)

with I'(z) denoting the usual gamma function.
We seek a similarity solution of the form

1
r 7D
] £C5) (527)

T(r,t) = l—q——z-
(Kt)

where the similarity variable £ is defined as

. (528)

1
[ n ]-(2+n2)
E = r{Q Kt

Then Eqe. (522) becomes
(2fak) & (g df g™y L4 ety -0, (529)

and the subsidiary conditions, Eq. (523) through (525), become

IS
(=)

b n gt € ol AR TR T R ARS e e
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£ <m5 £ =0, . (530

L/2 ' . : ‘

27 o - 2-1 )

TRy 4 dg &7 “£(&) . (531)
[We note that £(») = 0 is redundant since 1t is 1wplied in
Eq. (528)]. ' ’

A first integration of Eq. (529) gives

n+l

+ nf =1 o 2
(Bratyett bt g w0, (532)

'n + 1

where the constant of integration has been set to zero by
considerations at & = 0 (Li.e., at r = 0). A second integration

gives

1/
26 = by (83 - o1 (533)

where £§ is a constant of integration. For the solution to be
well behaved at « (namely, vanish), we take Eq. (533) to be the
solution for £(&) for 0 £ § < §,, and set

£(§) =0, E2&_ . (534)

It 1s easily verified that thié solution has the proper continui-
ty conditions at & = E, as required by Eq. (529), namely £(E)

and dfn+1/dE are continuous at £, Thus Eq. (533) must yield
n+l
daf
£2(E)) = dE = 0 , (535)
E-Eo
and it does. We determine the constant &, from the integral

conservation equation, Eq. (531). This gives



(2 + z)(1+“) 2(1 ") B (-'+f%)
n2/2 i ( )

(2¥n2)
gy

s

(536)
nr

Combining all of these reéults, we obtain as the solution

for the temperature

T(r,t) =0, r>r (t) , ‘ (537a) :

JT. . 2ee) - 27" .
T Kt | T s (537

T(r,t) =

where the position of the wavefront, r,(t), is given by

(2 + ng) 1) ,(1-n) r“(% + %)ant
n_ﬂn.?./Z'I.n (%)

ro(t) =

We note that for n = 6, a reasonable value for realistic cross
sections, that T(r,t) is essentially flat behind the wavefront.

We also note that for this value of n, the wavefront moves quite

slowly, i.e.,
[ ¢1/8 (planes)

r (t) a ) g1/14b (cylinders) . ‘ (539)

t1/20 (spheres)
‘ .

For n = 0, the original equation, Eq. (522), is linear. 1In

this case, as is well known, there is no wavefront, i.e.,

ro(t) + @ {540)

and the solution, Eq. (537), limits to
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22(n'xt)2/2 exgi,r(?:!ﬁK?)f??_i : (541)

- T(r,t) =
the well known heat transfer conduction resulte

Problem #2 ,
This problem corresponds to a source_free halfspace cccupy4

ing 0 £ z < =, with a prescribed température T, applied at the
boundary at z = 0 for all t > 0. The equilibrium diffusion
equation, Eqs (522), becomes, since L =1,

3T ) n oT . . '
=t “ X3z T 3z | (542)

with initial and boundary conditions
T(z,0) = 0 , (543)

T(0,t) = To 3 T(eo,t) = 0 (544)

In this case an appropriate similarity solution is

T(z,t) = g(n) ‘ | (545)
with
Z
n = — o (546)
't

Then Eqs. (542) through (544) become

n 3 3 n 3
3 = = K 33 =, (547)
g(0) =T ; g(=)=0 - (548)
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’Uﬁfbrﬁﬁﬁafeiy;,ﬁac (547) éndﬂ(Séﬁ}’do hdf;admiﬁ aréimpla>closed
form soldtiéﬁ{:Nkuévéf,qby‘ééémininé;tﬁis equation at n w “,‘one
can dembn#traté‘thaﬁ g(n) =0 forlsufficiently large N. MNence a
waQeftont‘ekists, aﬁd ﬁe égain obtain a Marshak tﬁermal wave. We
/,ﬂbte that in this case, Eqe. (546) implies thét the positlion of

the wavefront is pfopoftional to Yt, a much faster wave propaga-

tion than in the previous problem.

High Order Approximations

The diffusion approximations to the equation of transfer we
have discussed "have one overriding characteristic in “tonmmon:
they are all of limited accuracy. If, for a given problem, their
error is unacceptable, there 1is no way, within the framework of
the approximations, to systematically lmprove their accuracy.

- We now briefly discuss three types of approximations to the
equation of transfer which are capable of estimating the solution
to the equation of transfer to within any desired accuracy

criteria. These are:

1. The Spherical Harmonic (P-N) Method;
2. The Discrete Ordinate (S-N) Method;
3. ~The Monte Carlo Method.

In radiation-hydrodynamic problems, the Monte Carlo method

has been used mich more than the P-N or S-N meihod.

Fo The Spherical Harmonic (P-N) Method
The basis of this method is the expansion of the specific

intensity in a complete set of angular functions, called spheri-

cal harmonics, or surface harmonics. These are

n n |m], | ime¢ '
YO = ¥0Cu,6) = B H(u)e , (549)
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- where the<p:(u) afélthéféssdgiétédﬂﬂégehdté1fdhctiona defined as

, ‘n/2 DA, B . : \
P(u) = (1 - u2) i?%¥~.‘0<msn»4 (550)
T ,

and P,(n) 1is the usual Legendre -polynomial. These functions
are'complete on the unit sphére, whiéh means that any Zfunction
defined in the intervals =1 < u £ 1 and 0 £ ¢ _<_'21r can be

expanded as

A ' v § m em yume
g(f) = £Cu,¢) = L L ap £ ¥ () (551)

n=0 m=-n

where the f:

" normalization coefficients assoclated with the orthoganality

are the expansion coefficients and the aﬁ are the

condition
é .§
[ ah ¥o(d) ) - BiEk (552)
Lo n 3 am
n

where the asterisk implies complex conjucate. Explicitly, we have

(2n + 1)(a - [m] )
(n + lml)l

n 1
al = 77 |

] . (553)

Using the orthogonality relationship, we have

£ - [ af 2 . | (554)

. ua

The basie of the P-N approximation is to expand the specific

intensity of radiatien in spherical harmonic according to
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CD 'n’_v'

IE b0 = ] ] &l 1 @y,end (555)
' n=0 m=-n _ | n» '
where
1D (r,v,t) = [ aff YE*(ﬁ)I(?,v,ﬁ,t) . (556)
bn )

This leads to an infinite set of coupled equations for the
-expansion coefficients 12. The P-N method consists of truncating
this set of equations by setting

Iiuo, an >N . | (557)

We will see that the P-1 approximation is, in fact, the Eddington
description, in telegrapher's form, we have already discussed.
We also note that since the functions-Y:(ﬁ) are complete, the P-N
method approaches exactness as N + =, Hence the P-N method can
be considered as- the systematic extension of the Eddington
approximation to the higher order descriptions.

We note also that the radiative energy density and three
components of the radiative flux are related to the first four

expansion coefficients according to

E=21% | | (558)
F_ = % [17% + 1] (559)
F, = 57 (17t -1y, (560)
F_o= 1] . (561)
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'Similarly, fhe components of the pressure are linear combinations
of I and IZ L - o :
We carry out the- details of the P-N met:hod only in plane

geometrye. Other geometries‘are treated in a similar fashion, but

the algebraic details’ are somewhat more complex. In plane
geometry, all of the I: are zero if m # 0 since We have azimuthal

symmetrye. In this case, Eq. (555) becones

I(z,V,u,t) = 20 (-‘1’3—-—?——-1-)1 (z,V, £)P () (56;"-)
| ne

where we have set Ig ’>Ine. In plane geometry, - the transport

equation we are considering, Eq. (303), is

1 31(w) 31(u) . s
= it +on =5 + ol(y) oaB+ T Io N (563)

where we have set cE = I,. We use Eq. (562) in Eq. (563),

employ the recurrence relationship

H Pn(u) = (2n++ll)Pn+l(") + (EE_%—T)Pn-l(") ’ (564)

and equate the coefficients of Pn(u) to obdtain the infinite set

of equations for the expansion coefficients

1 an I1
E- -5—{—- + 3z + Uan = 41!038 s (565)
91 sl R
2n +°1 n n-1 n+l
= T 4+ n s 4+ (2n + I)OIn + (n + 1) 57 0

where 04 £ 0 = 0Ogo
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Let ﬁé'ﬁbhﬁiﬁérTEq. (565) and the first N eQuations of the
infinite'sgt gi§eh by Eq. (566).. This amounts to N + 1 equations
in N + g‘unknowns, nanely Io, l""’IN+l' - Hence it 1s necessary
in order to close this set to somehow reduce the number of
unknowns by one. Since Eq. (562) is presumed to be a convergent

expansion, the I, must decrease with increasing n, and the

natural and simplest truncation procedure 18 to make the

approximation

Ine1(ZsY t) =0 . - (567)

We then have hs'the last equation in the P-N set

91 al

2N + 1 °°N N-1 .
—= g+ N —— + (28 '+ 1)ol = 0 . (568)

Equation (565), the first N-1 -equation of Eq. (3588), and
Eqs. (568) constitute N + 1 equations in N + 1 unknowns 10,11,...,
IN’
plane geometrye. ,

As N becomes infinite, the solution of the P-N equations

and are the equations of the Nth order P-N approxination in

approaches the solution of the equation of transfer. However,
experience shows that even in very low order the P-N method is

quite accurate. For example, for N = 1 we have as the P-N

equations
1 810 811
T + 57 + O‘aIO - 41\'0’aB ’ (569)
3 811 810
-E-a—t_:—+_3;—+ 3011 = 0 . (570)

Recalling that Io = cE and-I1 = F, these are just the Eddington
equations, Eqs. (306) and (309). It is well known that the even
order P-N approximations, (i.ee, N = 2,4,...) have difficulties
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which are not suffered in odd order, and that ‘the succeeding even

order approximation is generally less accurate than the one lower

odd order approximation. For these ‘reasons, only 0dd order

approximations are used in practice, and“for the remalndeyr of our
digcussion we restrict our attention to N odd. We note that
Eq. (565) is extant in all P-N approximations, i.e., for any N.

Since this is just the continuity (conservation) equation, the

P-N- method is conservative of photons.

The d4initial conditions for the P-N‘ approximation follow

inmediately from the initial condition on the equation - of

transfer, Eq. (86). We have

1 (z v,0) = 2n f duP (U)A(zgv ) , no= 1,2,00¢,N + (571)
‘1 :

Concerning boundary conditions, we require (N + 1)/2 conditions
on each face of the planar systeme. If we consider the left hand
surface, say z = Zgs these conditions can be taken as (N + 1)/2
welghted -averages of the exact boundary condition, Eq. (8Y%)
That 1s, we write

1 o
2n £ du W_(w) [I€z,,v,u,t) = T(z,,v,u,t)] =0,

mo= 1,200, (X + 1)/2 , (572)

where the Wp(u), arbitrary linearly independent functions, are
the weight functions, Since the P-~N approximation consists of
setting I, (z,Y,t) = 0 for n > N, we use a truncated version of
Eqe (562) in Eq. (572) and write

N 1
2n + 1
nzo (—2—5—-)In(zz,v,t) g duW ()P (u)

1
= 21 | dui_(W)T(z,,v,1,t) , m = 1,2,000,(N + 1)/2 . (573)

o
135

B O U o ™

P

e g e



s f

" Once thé ’Wﬁ(u)v:hév§; béén5 S§§éifi§d,iiﬁq;l (573) 1is the 7required
(N + 1)/2 relatidnbhips émdhg‘ﬁhe In(z,v,t) at 2z = =zg. The
so—-called Maishak. or Milne boundary conditions consists of the

cheice

W () = Paae1(W) s m = L2, (B4 /2, (574)

or equivalently

W = P, me 2,00+ /2 (575)

The Marshak/Milne condition for m = 1 has the physical 3iInterpre-
tation of preserving the incoming flux per unit frequeney. The
¥ark boundafy conditions <correspond to choosing the weight

functions as Dirac delta functions

Ho(u) = 8Cp = pp) 5 mo= 1,2,00. (N + 1)/2 (576)

where the up are the positive roots of the (N + 1)th Legendre
polynomial, i.e., ‘

PN+1(um) =0 , B >0, m=1,2,eee(N + 1)/2 . (577)
It can be shown that in the special case of no inconmning f£flux
(I = 0), the Mark conditions are equivalent to surrounding the
gsystem with a source free, pure absorber and carrying out the P-N
calculation over all space, assuming I (z,v,t) to vanish at
z = =, Similar considerations give the Marshak/Milne and Mark
boundary conditions at the right hand surface of a planar system.
The only difference is that the integrals in Eq. (573) cover the
range =1 < p < 0 rather than 0-< uw £ 1, and one uses the nega-
tive, rather than the positive roots from Eq. (577). In prac-
tice, the Marshak/Milne conditions generally prove to be more

accurate than the Mark conditionse.
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‘ It should be remarked that other truncation schemea, rather
than setting IN+1(Z v,t) Qi}O have been proposed within the
context of the P-N method. - What ris‘_recuired in geweral to
truncate the infinite set of equations is a method of relating
N+1(z v,t) to the lower expansion coefficients- This can be done
with some generality in the following way. Suppose that one
expects the angular distribution to be approximately described by
a specified function f(z,v u,t). For the purposes of trumcation,
we then assume that the specific intensity of radiatiom can be

represented by

. N-2
I(z,v,u,t) = z Cn(z)“,t)Pn(u)
n=0

F e (2, E)E (2,9, 1,t) + e (2,V,8)F (z,v,1,8) (578)

where f, and £, are the odd and even (in u) parts of f£{z,v,u,t)
respectively, and the cp, ¢g, and co are expansion coefficients.

Multiplying Eq. (578) by PN-I(") and integrating over all
solid angle, we find (we assume N odd)

1
l(z,uat) - Zﬂce(Z,V,t) {1 duPN_l(U)fe(z,“)u,t) . (579)

Similarly, one can obtain an expression for IN+1(z,v,t).

Taking the ratio of these two results, we sbtain

i
-

[y e

duPy (wE ()
(z,v,t) = q 1(z v,t) , (580)
/ duPN_l(u)fe(u)

N+1

as the truncation condition. Hence Eq. (566) for n = N becomes
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— 3t ,+”3; {[N + (N + 1)R ] w-l}
+ (2N + oIy =0 , (581)

where Ry = Ry(z,v,t) is the ratio of integrals appearing in.
Ea. (580). The modified P-N approximation then consists of
Eq. (565), the first N-1 equations of Eq., (566), and Eq. (581) as
the truncating equation.

As an exgmple‘of this type of truncation, we could choose

f(z,v,u,t) as the asymptotic distribution [see Eq. (330)]

1
fe(u) = ——— (582)

1 - K2p2
whera K satisfies

2K
-‘;)—ﬂln(

1 K)

i~ K’/ ° ) (583)

-~

[w in Eq. (583) could also be © or w.] From Eq. (580) we then
find

Tyer _ Quer (1K)

Ry 2 = > (584)
NIy Qe (UKD
where
P (&)
Q,(z) = —-I e (585)

is the nth order Legendre function of the second kind. This
"asymptotic” P-N approximation reproduces correct asymptotic

moments in all orders N when the specific intensity is, in fact,
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in an ésymptﬁpiéiétatég{lln'gdq;tiﬁﬁ;rﬁqf_N > 1, this approxima-
tion " will, din ali-ﬂordéré, ‘éccuréiéiyA‘describe the almost
isotropic transport problem. 4 “ ‘ '

One could also envision using other angular distributioﬁs,
such as those due to Minerbo aﬁd .Levermore as previously
discussed, to truncate the sphefical harmonic equations. This
procedure, 1in essence, extends the notifon of flux limiters and
Eddington factors to Higﬁer order (than diffusion) approximations
to the equation of transfer. |

The energy density, radiative f£flux, énd pressure tensor
needed in the hydrodynamic equations are given in the P-N or
modified P-N method as

1 s
E(z,t) =3 [ avi (z,v,8) | (586)
Fo(z,0) = [7 dvI (z,v,t) (587)
Fx(z’t) = Fy(zat) =0 , (588)
1 (= . ord 3 a2
Pa(zt) =g [0 dv[3 I (z,vit) + 3 L(zv,0)] (589)

Pxx(zat) = Pyy(zat)

1 ¢ 1 1
- g dv[3 I (z,v,t) =3 Iz(z,v,t)] , (590)
Pyy(2,€) =0, 1#3 o (591)
We note that
Py t Pyy +p,, =E > (592)
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" a p:obefty true in generéi:aé discussed earlier.

G. The Discrete Ordinate (S=-N) Method
] One of the appealing features of the P-N method is that it

ig in fact an entire set of approximations, which, by choosing N
large enough, can be used to estimate the solution to the equa-
tion of transfer to within an arbitrarily small error. Another
get of approximations with the same feature is tha discrete
ordinate, or S5- N, method, with N again denoting the oxder of the
approximation. For N infinite, the S=N solution 1is 2zhe exact
solution to thé'equation of transfer, just as in the PR method.

Restricting our discussion to plane geometry, Eq. (303), the

equation of transfer, is

O
.% agéu) +u agiv> + oI(w) = R fl du'I(u') (593)

where we have explicitly written the integration over angle in
Eq. (593). The basis of the S-N method as applied to this
equation of transfer 1s extremely simple. One uses an integra-
tion quadrature scheme to approximate the integrals over the u
(angle) variable. If we consider an N point scheme, denoting the
quadrature points by uj and the corresponding weights by wj, we

make the replacement

1
[T du'i(u') 2 WICe) . (594)
-1 3=1

'The equation of transfer, Eq. (593), then becomes

1 3I(u) 3I(w) - 25 y
22 by S oI(w) = 0 B g jzl WTC) (595)
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To’obtainvghéfs4ﬁ_gqhétions, one me;éiy'évaldates this equation
at the quadréiurefpoints ﬁi. Hence, the Nth order discrate ordi-

nate approximation in plane geometry consists of the N equations

p 8TCw)  al(uwy) o, N
< 5% + e P + oI(ui) -.oaB + 5 jzl le(uj) ’
1 = 1,2,...N » (596)

for the N unknoyns I(z,v,ui,t).

The N initial conditions required for the S-N approximation
follow immedigtély from the initial condition on the equation of'
transfer, Eq. (86), by evaluating the condition at the quadrature

points ui. We have

I(Z’V’uiao),' A(z’v’ui) ] 1 < i S_ N e (597)

At the 1left hand face of the planar system, 8ay 2z = 2,, we
obtain the N/2 boundary conditions required (we assume N even

with an equal number of positive and negative ui) by
evaluating the transport boundary condition, Eq. {85), at the

positive quadrature points. This gives

I(Zz.v,ui.t) = T(zz,\’,ui.t) ’ "i >0 . (598)
Similarly, at the right hand fgce, say z = z_, ve have
I(z_,vyuy,t) = T(z,v,ugt)s By <0, (599)

as the N/2 boundary conditionse.
The quadrature scheme used in the S~N method 1is arbitrary,

although it generally employs quadrature points which occur in
pairs, one being the negative of the other. This retains the

symmetry of the exact equation of transfer and leads to an equal
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number of boundary ¢Ondiﬁidn§”bn é£§ka§pé‘bf:tﬁe system as just
discussed. ' Since the qﬁadfa;dré~s¢ﬁ¢me‘is érbifrary, it can be
chosen to accurateiy integraté’the?eﬁﬁécted éngdia: dependence of
the spécific intensity.  For exampie, if the angular dependence
is highly peaked around u = il; oné:can use a quadratute ﬁhich
has 1ts points concentrated near the endpoints of the w range
-1 {ufl. Alternately, one could use a quadrature schame which
would integrate exactly the asymptotic distribution. Ox, one
could base the quadrature points on an angular distribution such
as that derived by Minerbo or Levermore, ags previously discussed.
This could be Ehought of as introducing flux limiting and/or
variable Eddington factors into S-N calculations. If one has no
apriori knowledge of the angular distribdbution, the usual choice
is the Gauss-Legendre quadrature scheme, in which the Wy are
chosen as the zeros of the Nth Legendre polynomial, i.e.,

PN(ui) = 0 . (600)

This quadrature scheme 1integrates a polynomial in yu nore
accurately than ‘any other quadrature scheme. With this choice
for the quadrature points and the assocliated weights it d1s well
known that the S~N method is closely related to the P-N method of
one lower order (in systems with plane geometry). Many aspects
of the Gauss—Legendre S—-N approximation have been examined in
detail 1in plane geometry by Chandrasekhar 1in his classic text
"Radiative Transfer"”.

The energy density, radiative £lux, and pressure tensor
according to the S~N method are obtained by again employing the
same quadrature scheme used in deriving the S-N equations to
perform the integrations over the yu variable. We have

N

E(z,t) = 2L [® qv ] WI(z,v,m,,t) (601)
J i=]
. N

F,(z,t) = 2n g dv 121 Wou Iz, v,u,t) (602)
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©.(603) "

. b
'fgrgiJ

121 W (ll- uf)l(z v, ui,t) . “k604)_

4 N

‘The other components of the radiative flux and pressure tensor‘

.- -
Ly

are_aero.'\ . = R S
The modern S~N method in other geometries, in partieular in '

' curvilinear systems, is much more involved than it is in plane

'geometry.' Specifically, , thJangular 4variab1e treatment is
intimately associated with the finite differencing methods used:‘
to treat the spatial variable.- Another difficulty in geometries'
-other than one dimensional planar and spherical is problemsb
'1associated with a .two dimensional quadrature scheme to integrate
over . - i ' ' , . |
TheA P-N and S-N methods in some‘sense compete with each
other in that both methods are rather general approximations tov
the' equation of transfer which arep capable of giving 'an"
arbitrarily small €rrore. In neutron transport, the S=N method isf
more widely used than. the P-N method. ‘This is primarily because'
the' S-N method ‘is. more easily adaptable Nto large digital

',computers. However, in certain geometries/the S-N method suffers

from 'a- defect not. present in the P-N method, namely the so-called

"ray effect which distorts, in a qualitative as well as a .
quantitative sense, the S=N. aolution. The origin of this effect’
is that the discrete rays (ordinates) may not, if they are sparse’
‘enough in- number,'sample an important region of the problem. Of
course, the ray effect becomes less pronounced as N, the order of
the approximation,"is increased. In radiation-hydrodynamics,

neither the P-N nor S~N treatments have been used to any extente.
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'bﬁ‘statistical one.‘iin wﬁich individual photon‘8 are. followed

o L

successive collisions until the photon is. either ahsorbed

v
Ry
"'- . . N TN

the appropriate“distributions.' ‘,; ,‘;‘ ' ’A;, - 335‘;

s,

Where the collision oceurs, the
or ’absorption), and he;

The basis”offthis sampling is’ the ‘use of random numbers..

Consider ‘a random number ‘€ 1in the interval 0 < £ £ 1. ‘.'Th‘e'

probability for E ‘to lie between E and E + dE. is{ if the ‘number
is . random, just proportional to the width of the interval dE, and
is independent of the value of E. For a general distribution.
with a density function p(E). we would write

s
=

For raniom numbers, p(E) is Jjust a constant, say.pJ Since 5
i *nprobability, e somewhere in the interval

“ . 5y N
~ [
,'..‘4 [ N 4

Y

-.\

e

.......

» ';ﬁfroﬁébilityupffﬁ lying between £ and § + df = dE .  (607)
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';Carlo process, consider
ive transfer  _with

w

direction of a source

(608)

Sinde. o £ £, g 1, we. have'©0 <acizn and lwgl ,thei
inbroﬁef*“rﬁnges. ‘ Further 'l;”.‘ }(608) and (699) " imply ,uniform
distributions in both é and u. which 15 correct for an isotropic
distribution., Having chosen a direction, we need determine where
: ché first coliision occurs. Let the total‘cross section 1in this
direction at a distance 8 from the source point be denoted by

ﬁﬁ a(s).. For a beam of photons traveling in this direction, the

uncollided photon density N(s) is given by

galoy

]
PP
L
s e

Lo T

Sasto(an)lds . (611
o . .

| '“kﬁence thenprobabiiity,that;e:source"pnoton'wili make a collision
between.s and 8 + ds is ‘ B
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ey

(613)

”iil:fuf": change' variables from ' the variable & to a variadle’

. 63’ ’

,A.‘ . s . . L - . o
o An gy -.;;:"f{ ds'a(s') . o (6la)

:;'i, {fy ﬂ‘ffﬁ)ﬁﬁ‘ff?ﬁ‘fs>daa e - ‘.. ' '(6i5)

[We have introduced the minus ~sign .dn~ Eq;' (6155 since: 53
decreases as s increases]. We wish to compute 5(53). From
Eq.'(614) we -have A ' '

1, dE = -o(s)ds ’ - ‘ | 'f : | ] | "(616) -

- SHe

-

Tl . PR Y
e ~ JORPERN . . A

s,result together with Eq. (613)‘@@jsq; (615) gives the ..

1t

Hence choosing ‘the distance P from the physical distribution p(s)
given by "Eqs:'(613) -1s equivalent to choosing a randon number in
the interval 0 < 53 £ 1 [by "Eqe (614) this corresponds to the
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‘ determined,
“ffurther random number'ﬁ is used to determine if the eollisionu

‘is scattering or absorption. If E lies in the range ,9‘ j.‘g“fr;

(621)

PO

'the collision would be taken as a scattering collision. and if Eq

C622)

1f the collision‘l
g event, further random number

o r'r ¥ - ot

from” the source point.

"._v,., ‘,_,.\,: AN
PN

sampling from the appropriate source andﬁa‘

'photons~ entering the 'system through the -

boundaries (P # 0) and non-isotropic scattering and sources.
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S In the Monte Carlo method, the results of each collision are
Hfﬁallied, and from this information ~ﬁ_h'j specific intensity
‘;I(r v, 5 £) can be constructed.- 1f one ran an infinite number of
"photons, the result for I(r,v 5 t) would be an exact solution to
tﬁe equation of transfer. In practice, of course, one runs only
a,fiﬁite number of pﬁotons; and this introduces a stat{stical
. fluctuation into the answer. Monte.Carlo codes not only produce
an answer, but generally glve variance information.which gives
.some idea of the statistical uncertainty of the answer. A myriad
of schemes are in use to reduce this statistical variance. These

generally go under the name of biasing.

. I, _The Integral (Formal) Solution Method.
One could envision solving the equation of transfer by em-

ploying the integral formulation, which is just following photons
along their characteristics. This 1is concepteally very eimple.
One would pass a multitude of rays through the system, in suffi-
cient number to adequately sample all spatial regions and angular
directionss One would then evaluate the fetmal solution to the
equation of tranefer. In‘steady State;'this is just Eq. (1l16),

i.e., -
3%, |
;(?,ﬁ) = Iz ,f) exp[- ‘s ds"o(x - s"f)]
+
lr'fs = ’ . g'. ,
4 £ B ds'Q(; - 8'5,5) exp[-'i ds“a(; -'s”ﬁ)] , (623)

"where .Q(;,v,ﬁ) 1s the total (emission plus scattering) source
given by Eqe. (109), i.e., - ‘ '

Q(;svsﬁ) - S(-{'sv)

+ f@ dv' [ da" %7 os(;,v'+v,§-§')l(;,v',§’) . (624)
o by
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"ZfThe‘scatteringﬁzﬂ

ld havedto,be handled iteratively. In tine de-

_inendent problems, the formal'solution to be evaluated is given by

(118). In this case,nscattering could ‘be treated explicitly
'in time, ‘or iterated for increased accuracy ‘and stability.

. Jo The Multigroup Method

Thus far we have discussed various approximate methods for

dealing with the angular variable. We conclude our discussion of
approximation methods by considering ‘the frequency variable. The
generally used"® procedure for handling the frequency variable in
the equation of transfer 1s the multigroup method, which really
‘amounts to a discretization of the frequency variable. Rather
than treating the frequency as a continuous variable, one assigns

a given photon to one of .G frequency groups, and all photons

. within. a given group are treated the same, -assigning average

properties, such as the absorption coefficient, to these photonse.

. To introduce the multigroup method, we consider the equation
of transfer with no scattering, and with an absorption coeffi-~-
cient c which is independent of frequency. We then have

c.. 9t

‘According @; Eqs. (21) through (23), the radiative energy
.density, flux, and pressure tensor, the quantities of particular
;interest inf radiation hydrodynumic problems, all 'involve"”
integrals of*. the specific intensity over the frequency variable. .
Thus 1t is reasonable to integrate ‘the equation of transfer,

(625). over frequency. We find, since oa is independent °£,f

frequency,

c

PO ] " . '
K %‘t(;'&')' + Ge¥1(h) = o [GF TH - ®] (626)
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.’wnere we‘havETdefinedf:

I(T,8,t) = £ aVICE,v,8,e) .. | o (627)
Equation (626) is exact, ‘and 1is referred to as the grey, or one
group, equation of transfer since all photons are treated to-
gether in a single frequency group extending from v = 0 to v = «,

Let us again consider the -equation of transfer with no

scattering but with an absorption coefficient which depends upon

photon frequency, i.e.,

% El%%zél + §.§1(v,§) -noa(v)tB(v) - I(v,ﬁ)] . (628)

The grey equation of ‘transfer associated with Eq. (628) is
generally taken as, in analogy to Eqe (626), ‘

131 |, gududy = 5 (38 4 - 1] o (629)

where I(ﬁ) = I(r,8,::) is again defined by Eg. (627).  Here 9y is
some kind of mean atsorption coefficient averaged over frequency.
If o, is allowed ‘to be a function .of space and time only, as is
_generally the case in practice, Eq. (629) is an approximate equa-
tion for I(r 5 t) no matter what choice is made for °a°~ This is
leaaily seen by integrating Eq. (628) over all frequency. One
indeed finda a result 1like Eg» (629), but with the important
_difference that G, 18 a. .function of 5 as well as and t. In
fact, Oy must’ be defined as |

[ av o (v)[B(v,t) - 1¢E,v,8,0)]
° (:,ﬁ,t) =2 ps + ’ (630)
& |~ dv[B(v,T) - I(z,v,8,t)]
o ~
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ne group ‘equation._ﬁ of course,;
-usef ;i;iust know oa which, according to
.:z’the.tunknown specific intensity. [1f the
’ ~_ty were known, the radiative transfer problem(
would. be solvedr] We return to this . point shortly. We re-

emphasize 'e £ 4 time,. however, that in practice °a is uni-
' versally chosen'as independent of § which in general iuwplies an.
"approximation“ }:' a '

With this introduction, we- now consider the equation of
'transfer with scattering (however, for simplicity we neglect
induced processes) and construct the more general mnultigroup-
e4uations. ]t,ﬁe; shall discues the' utility of the multigroup
equations, eVEn though one may only be interested in one group
results . (thefspecific intensity integrated over all frequency),
following Tr;fderivation of “the multigroup equations. The-

equation: of transfer we consider is

1 3I(v ‘ﬁﬂ‘)fl‘-- |
is'——sngf»+ ﬁ-ﬁl(v,ﬁl

}::g oa(v)[B(v) - I(v,ﬁ)] - os(v)I(v,ﬁ)

+ijrrd§’ [© dvfj%T'os(v'+v,§'-§)1(v',§‘) . (631)-

“frequency range into G groups with boundarieé"
, . & .2"'°VG 1, G_n;“i and define the gth group spe-ﬁ
' cific inteneity ae"' - ' : -

. \,;V,, .

| Ig(;,ﬁ/,ft')“‘-:h[ 8 avi(F;v,Be) , 1:£8<K6 o (632)

Vg_l

Integration of :Eq. (631) over the éth group yields
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P e e oS-

M-&-ﬁﬁ (?2)

dgé(§)~[sgb%% T* - 1 (5)] - o, (5)1 (@)
f T | % | 8,4 v

+ da’ ' ! »
b é'-l B 8 *8( )I “n

1<gs6G , (633)

where by 1s ﬁéfined as that fraction of acT"/4m which 1lies
within the gth group, i.e., ' ‘

v

v .
J 8. dvB(v) [ & dvB(v)
g-l Vgl
e - . (634)
& | g» dvB(v) - acTh/4n

Equation (633) -is exact 'providing we define the gth group

interaction coefficients as

Vo . : h
f’g dvaa(v)[s(v) - I(v,ﬁ)]
- v ~ . N
94y (B = E—— ———— . (635)
1B av[Bv) = 1w, ] ~
,.ngl.' . .
Vg | ‘
/ dvas(v)I(v,ﬁ)
v , . -
asg(ﬁ) - S'Iv , : (636)
[ & dvi(v,) '
\Y
g~1
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f g dv ;-o (v'+v;§ 5 )I(v' 5')

vl

v ..'1. : :

= —— — + (637)
- 'avfx‘c'v_",ﬁ.y) |
Ygre1

The G equations given by Eq. (633) represent the general form of

jthehmultigroup equations. ~ These equations are couplead. through

the scattering interaction and must. be solved simultaneously,
For the multigroup equations to be useful, one must be able
to- compute or® estimate the group constants defined by Eqs‘ (635)

‘through (637).‘ An exact calculation of these constants involves

a complete knowledge of the specific intensity which, of course,'

. 1s. unknown. .The underlying. assumption in the nultigroup method

is-  that these ‘group constants, -since they are homogeneous -
functionals of the specific intensity, are relatively insensitive
to 'the weighting function I(r v, 8 st) [or B = I in the case of

. .(635)] used {in computing these averages over frequency.

.Hence one hopes that a relatively crude estimate for the speciiic

intensity will lead to reasonably accurate group constants.: As
the group width becomes smaller, of course, the group constants
become increasingly less dependent upon the estimate made for
I(r,v 5 t)e . This is the reason that a multigroup formulation of
the frequency variable is preferable to a ome group, or grey,
treatment even though the ultimate goal may be to compute ‘one
group results (energy density, flux, and pressure tensor).

:‘To evaluate the group constants involving the scattering

Akernel, Eqs._(636) and (637),Va reasonable choice for I(r,v 5 t)i

would be the Planck function . at the.’ local material temperature.
This ensures correctness as one approaches equilibrium, i.e., at

‘thermodynamic equilibrium the specific intensity is in fact given

’ by the Planck function. ‘Away fronm ‘equilibrium, the only justifi-

cation for the use of ‘the Planck function 18 that the scattering

cross section is a relatively smooth function of frequency, and
hence the choice of the weighting function in these group
constants i1is not crucial as long as a reasonable function is
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the.. averag_

ﬁ?used.;é In the case of °ag» abs°rpti°n coeff1°ie“t;

"Jmore care should be taken.~ Absorption coefficients encountered

“fin practice are generally complex and widely varying functions of
'frequency, and the use of different weighting functions ¢an lead
‘to quite different results £6r" °ag' In. practice, Oag is generally

,taken as- either a group Rosseland ‘or group Planck mean.

"The Rosseland mean, similar to that introduced earlier [see

- Eqe. (485)] follows - from ;he' assumption that the $Specific

intensity is given by the equilibrium diffusion approximation,

B(v,T) - I(T,v,8,t) = +1' ‘ ang; D) godrcE,e) (638)
' . : o(r,v,t)

where ¢ = o5 <+ Oge Use of .this result in Eq. (635) yields a
Rosseland-like result ‘

Vg dﬁ'da(v) 9aB(v,T)
o(v) oT
g=-1
= - - . (639)
a8 ('8 gy L 2BT) '
: : o(v) oT
v
g-1 4

The Planck mean 1is appropriete'in the case of time independent
‘tadiative tranéfer in ‘an optically thin, enission dominated,
,system. Once can easily shou that in an- optically thin system,

the’ specific intensity I is. small compared to the Planck function
'fB.' “That’ is, in this case we have

?(ﬁ.r).-'I(EQvéﬁ) BT . - (640)

'andqu.r(635)'then gives

dvaa(va(v,T)

e

g = . . (6[‘1)
ag I\)g . g

v
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ayerage nerally referred to as- the gth group‘
\~or“P1anck‘averaged absorption coefficient. '
As the above“discussion indicates, the use of the Rosseland'
‘andi’Planck mean fabsorption~ coefficients' is only strictly
'appropriate in limiting circumstances. Nevertheless, one or the
‘other mean 1is generally used in the multigroup method, For
realistic absorption coefficients, these two means can differ by
an, order of magnitude or more, and thus the results of the multi-‘
| group method can vary widely depending upon which mean 138 ysedq,
In- truth, neither mean is correct in general. For most problens
of - radiation hydrodynamics, experience indicates that the use of
the Rosseland mean is the more accurate of the two. " In fact,
(639) - 48 often® ‘approximated by arguing the 9B/3T is guf-
ficiently slowly varying over a group, so that Eqe (639) can be
replaced by '

o =822 (642)

\ ‘For completenese,‘ weA give’ expressions for the radiative
energy density, radiative flux, and radiative pressure tensor in
the - multigroup approximation. _ From Eqs. (21) through (23)-and
Eq. (632) we have Ae’A - .l |

LLE(F, ) m & e dﬁ: @, ﬁ ) S (643)
) c g=1 g,.l ) )
n : R G . s ' ’
F(r,e) = 1 4551 (r 5 t) . . (644)
gfl hw
N 1 G N '
B(r,e) =2 ¥ [ atddz (f,R,e) . (645)
¢ g=1l btn g
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The multigroupascheme is'comhined with one. of the angular?
fapproximations previously discussed _together with some kind of -
treatment - in space and time (finite difference, Monte Carlo,

" formal solution, etc.) to yield a Practical. calculational schepe

for radiation- hydrodynamic problems.

IV.. THE INTERACTION OF THE RADIATION FIELD WITH MATTER

Thus far we have discussed the equation of radiative
transfer and the equations of radiation hydrodynamics 1in various
'forms., For the most part, all of ‘these results followed fronm the
simple notion of conservation of photons, mass, momentun, and-
energy on a. macroscopic level. The underlying physics of
radiative transfer i8 contained in the absorption coefficient
°a(“)o the scattering kernel ogg(v'sv ,8e8') and the spontaneous
emission source S(V). We now give a very brief discussion of
this aspect of radiative transfer. The only topic we treat in
any detail is Compton scattering frou free electrons.

A. _Absorption and Source
. "The calculation of the absorption (and scattering) coe-

fficient and " the source function involves two conceptually
distinct steps. _In the first place, assuming LTE, given the
‘temperature, density, and atomic composition of a plasma, one
:'requires a quantitative statemenf .concerning the population of
the various ionic gspecies- present. In addition, for each . ionic}
,species ‘one needa the population of each quantum energy state.

Secondly, given the populations one requires the probability
that a photon will induce a transition from one quantum state.to
another. This. requires a study of atomic and molecular processes
together with the quantum theory of radiation (quantum electro-
dynamics). '

The mechanisms of absorption of radiation by matter are

bound-~bound (1ine) absorption, bound-free (photoelectric
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Lbsorption,A and free-free ;(congiﬁu m) a sorptiono;'f In 1ine%

"iynebsorption, ‘an- electron in . a bound state is»excited to another

.ﬂ'bound state .of higher energy by the absorption of a photon. The
5;Efrequency of the absorption: line is given by Bohr's relationship
ih“nm = E, - Ep, where Ep and Ep ere the higher and lower emnergy
states, respectiiely. In.photoelectric absorption, the electron
is ejeEted ‘from the atom or don _and goes .into one of the
continuum of free energy'statee. Photoelectric absorption occurs
whenever the energy‘of the incident photon is greater than the
binding energles of the electrons of the _atomé or iomns. In
free-f;ee ehsorétiog; an electron in ; free state. nakes a
transition to -another free 'state of- higher energy. with the
absorbtion of a photon. This is’shoﬁn schemetically below.

T I contineum
AT
ilb
Epe0 _
E, :
"’m
. Ep eiwm sttes
El qround sfate

Atomic energy Jevels and transitions.
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-TB Scatteriggf_,.\ﬂ

_.,,:'. e
LA .

The most 1mportant scattering process in radiation hydroav
,idynamic problemsifis‘ scattering “from free electrons, called.'

Compton scattering- In the low frequency limit, 1.e., when

hv

n_c?
o

K1 o, | (648)

where hocz = 0.511 MeV (mg is the rest electromn mass), <Compton

scattering limits to Thomson scattering, given by

N g2 ) , A
o (v+v',E) = N 52 (1 + E2)8(v = v') , : (649)

where 5.5»305', N is the electron density, and T is the c¢lassi-

cal electron rad;us

. - | (650)

Integration of Eq. (649) over all v' and .solid angle glves the

scattering cross -section as?

S T I S R R

" We cote”threefcharacteristice of Thdmsqﬁ.scattering:‘
1. It 13'cohereht‘(no frequency change wupon ‘gcattering);

2. it.is symmetric in the forward and ‘backward hemispheres

of the scattering angle;
3., The scattering cross section is independent of frequencys
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tEquation (651)518 thefrlassical result of scattering from free
; electrons afterﬁaveraging over polarization states.
. The quantum mechanical result for the scattering of photons
by free electrons is given by the Klein-Nishina fornula. As 1in
the classical result, the scattering kernel actually depeunds upon
the state of polarization of the incident photon. If one
averages over polarization states (assumes natural, unpolarized,
11ght), the scattering kernel is given by, for electrons at rest,

. 1 + g2
o (vav',E) .= N 5= .

[1+ vy - 8)]2

(1 +E2)[1 +v(1 - 8)]

v o v
',{1'+ (\’ 1 + y(1I - ;.)) » (652)

where Y is a dimensionless frequency

y =2, (653)
mocz

The Dirac delta function in Eq. (652) states that, given an
initial photon frequency, the scattering angle and final photon
energy. are correlated. This correlation results from simple
conservation of energy and momentum in the scattering process.
We see: from the argument of thn delta function that hv', the
. final energy, is always less than hv, the initial energye :lhief?

.energy- difference 18 'the . recoil energy given to the free ;v.:

electron. ‘

Another widely eeen form of ‘the Kleia-Nishina formnla .
follows from Eq. (652) by changing the delta function from one in
v' to one in E. Suppressing the algebraic detail, we find
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Y
(654)
.with T‘given by Eq. (653) and
Y'.; hv; « - (655)
m et '

PR

A third.fqrm for og(v+v',E) follows vefy simply from Eq. (655).
This is |

T e2
5
o (v-w',E) = N —--— [1 + €2 4 Yy'(l1 - g) ]

cae- 1+ -4y (656)

For low inéideﬁt energies, leee, v <K 1, it is sensible to expand
Eq. (652) in powers of Y. To second order, we have

2 |
' 2
K CV*v'.E) = -32 (1+en[1 - 2101-) + y2 (1- i) (::35 )]
' +

'

e §( v ;iy[1 ;~y(1 =B +¥2(1 - B)R]) .- (65T

'Sett;né Y = inn;Eq;~(652),'we obtain

1‘2
0 (V+v',E) = N o= (1 + EZ)G(v' -v) , (658)
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;whi ‘ just ,tne"classical Thomson scattering kernel [seej;‘
‘15?62}(649)] Integration of Eq. (652) over all 5' and V' gIVes the‘f
. scattering cross section os(v). We find ' ' A

: 3Ny, ' « ,
08(\‘,) - 4Th_,{(1 -;- Y)[ZI(i ';YY) - (1l + 27)]

: +~%7 zn(l + 2Y) - —i—i-él-} , ‘ (659)

(1 + 27)2

where uih is the Thonmson microscoplc scattering cross section

' 2 _ 8mel o
1} WM o Y B e ] ) (660)
Th 3 0 3m§cl’ . o .

Correct to second order in Y, Eq. (659) gives
o (v) = Nup, (1 - 2v + 28 42) - - (661)

For small 7,‘Eq. (661) shows that'the‘Compton scattering cross
section is smaller than the classical Thomson value. It can be
shown from _Eq. (659) that this inequality 4is true for all ¥
(iees, for all incident photon energies).

o8y

_ Ce_ Inverse Compton Scattering :
The Klein—Nishina ‘formula describes Compton scattering from*x
free electrons at - rest. and exhibits the. characteristic thati

.photons cannot gain energy upon scattering (this is the so-called:f.
'Compton shift). _If the interaction is between a photon _and a:l
moving electron, honerer. the electron can impart some or all of
its energy to the photon and increase the photon's. frequency upon
scattering. Such an event 1is often referred to as inverse

Compton scattering. We now derive the scattering kernel in the
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The elements of the deriyation,

to the more general case of" photon

.ﬁlscattering from an arbitrary distribution of ‘moving, particles.

i Before proceeding analytically, it is worthWhile to brief1y
discuss the nature of the scattering kernel expected {n  thig
case. The kernel will have three rather distinct Chnracter-

:istics.z In- the first place,'a . photon will, wupon Scnttering,

':have its wavelength increased due . to the usual Compton shife
associated with scattering from an. electron at rest. Secondly,
it will undergo broadening due to the classical Doppler effect of
scattering from a- distribution of moving electrons, Finally,
there will be a reduction in the wavelength upon 8cattering due

‘to the relativistic éffect that the - photon density will appear
more intense ‘to .an electron moving toward .the photon than awvay
from i1t This -lasgt 'effect, " the blue shift, 18 needed to
“balance the Compton red shift, for, if black body radiation at

a certain temperature scatters from a Maxwellian gas of free
electrons at the Bame temperature, the scattered radiation nust
have, the ' same distribution in. wavelength as the incident

~radiation.‘ A ' - o
' Since the Maxwellian distribution is the thcrmodynamic
equilibrium distribution for the electrons, the scattering kernel
as (v!+v ﬁ'-ﬁ) must also satisfy the detailed balance condition.

'This condition states that in complete thermodynamic equilibrium

E theﬂ number:of photons which -8catter. from dv'dﬁ' about v!', 5"to

,dyd i;about"véﬁ must equal ‘the number scattered .from dvd5

v'dﬁ' Quantitatively, this candition takes the form

l
Ed

SRRICRRL IO B '°5>B<v'>./hv', |
. - [1 + c.zB(:V'-)/Z‘hV"3]68(V¢v',§°§')3(§)/$v , . (66?)
where h(V)nis the”Planck function given by
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) '.‘.‘.:':\,; e . .:-A'- ) Zt;(;’\s ;:—qh' : ;1' ] "-‘c.‘;‘j R s - R . ‘ . ) '_‘:: . ) T,
;ng)*?«~—;~‘ e - ;)- o0 e . - (663)

Equation (663) relétes,”the scattering kernel, at a given
gscattering angle, to the‘kernel with the frequency variables v
and V! intercha1ged, at the same angle. Explicit use of Eq{
(663) in Eq. (662) yields ‘

os(v'+?,§'-§)W(v')/hV' = o (vav', & du(v) /hy (664)

where W(v) is _the Nien approximation to the Planck function-.

Aside from a normalization, we have

W(\)) - \J3 -hv/kT . ) ) (665)

" This result can be interpreted as the detailed balance condition
in the absence of induced scattering and shows that the neglect’
of .these induced terms in the scattering description leads to the
Wien law, rather than the Planck function, as the equilibrium
disttibotion of the scattering operators

To- compute the. scattering kernel we have just discussed, we .
consider a frame of reference in which a group of electrons is at
reste. We call - this the e frame and subscript all quantities in,
this frame with an e. We take these electrons to have a densityf.
Ne in this frame. If the unadorned frame moves with velocity r;fi
with’ respect to the e ‘frame l\go that, -as observed from’ the:i
unadorned frame, the . electrons Hhave velocity ¥) we have- fromfi
Bas (240), I R

c;koivi;§+§') éi%%'dse(ve+v;.§ef§;) ~.‘j '(666)T7
where

D=1-fe¥/c; D' m1-AreV/e . (667)
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velocity -v with respect to the'e frame._ The e frame hevre is toi
be identified with the zero frame in Eqs. (228) through (241) ]
In the e frame, the scattering kernel Ose(Ve*“e'ﬁe*ﬁa) is just
the Klein-ﬂishina formula, B (656), ‘with' - feflt and all
quantities subscripted with an e. The independent variables,
frequency and engle,‘transfotm as, from Eqs. (231) and (234)

Ve m ADV ., - : (668)
v to= ADV' . ,"' | (669)
L - By = (1= RO, (670)

with D and D' given by Eq. (667) and

A= (1= v2e) R | (671)

Also, due-tofthe Lorentz contraction, the electron density in the

unadorned frame is given by
N = xne~:; - ‘ (672)

iwith A given by Eq. (671).*3Ccﬁbining_all of .these results, we
obtain N '- N : - . " « % % .

er"

1 ]
[ (v+v' §+§ ) = 3773 6(5 -1+ %2 - 32—

i

e {141 - Qa-8) ]2 P A € 5)2} . (673)
A2DD! A2DD*
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where E .- 5 5' R R .
Equation (673) is,f'* scattering kernel corresponding to all
electrons moving with a velocity V'I To account for the fact that
tle electrons have a velocity distribution (namely, a Maxwellian)

as seen by the observer- in the unadorned frame, wWe replace N in

(673) by

N + NEC(UIAY . - - (674)

where £(v) 1is the isotropic ‘Maxwellian distribution function

normalized according to
.-+ Co c ' : .
[ avE(v) = 47 [ dwvdf(v) =1 - (675)
) . <

and integrate the resulting expression over all Ve [We note that
gince the Maxwellian is isotropic, the distribution function
depends only upon the speed V rather than the velocity v-] This

gives

Nr2 xn AD'y .
o (vv',8) = 535 [ dvf(v) s(s -l4y-)
{1+ [1- =82, YY'(1'“<5)2} . (676)

._Aznonf.f;_‘-_;. . -A2pD'

':as the scattering kernel describing scattering frdm free
"electrons of density N,'and with en isotropic velocity distribu=
tion £(v). In writing the left hand side of Eq.,(676), we have
nticipated the fact that this kernel will depeund only upon
E = 5 5" rather than & and L .separately, since the electron
distribution is isotropice :
To compute the (relativistic) Maxwellian distribution of
free electrons, Wwe use the fact that ¢(p), the distribution
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":ﬁdistri ution ?’fi;”if' _ _-;5 ;“fjﬁﬂf"'"”

":ﬁ(?);w.Ce E(k s T T : (677)
wnere'cwia a normaiization constant. To transform from @(g) to

f(v), the distribution function per unity velocity, we need
uintroduce the Jacobian of the transformation from p to v, fee.,

3G f»%z’%% . . o (678)
Sincei
p = moiv B | (679)
and:
Bemgetr , | | | (680)
. né éi;d.-
#{vi,f,C'A§ exp -'(n°c2§/§1) Yy . | ~ (681)

fwhere C' is another constant "and as Séforé. A is". the Lorentz"
'Tfactor given by Eqe (671). If we demand that "£(v) be normalized~
'to have an integral of unity according to Eq.'(675), the constant

C' is easily evaluated. Our final result for the normalized
Haxwellian distribution is then‘

5 ~mgc2A/kT ,
m_ATe ‘
f(v) = =2 . : (682)
: 4wckTK2(m°c2/kT) ’
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: where Kz(z) is the modified Bessel functioné f{the eecond kind of
) order two, and mo is the rest mass ot the‘electron- e
Performing the triple integral indicated in Eq. (676), with

f(v) given by Eq. (682), gives ‘the scattering kernel for Compton
and inverse Compton scattering. One of these three integrals can

be petformed analytically because of the presence of the delta
function. The remaining two .integrals _must be evaluated
numericallye. The Legendre moments of this scatteringlkernel are
.defined in the usual way as ' ‘

,asn(v+v') - ;y jl dEP_(8)o_(vsv',E) . (683)

Typical results for these moments are shown in the *following
figures: h
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‘Do The Fokker-Planck Treatment Of‘Compton and Inverse Compton
'ZScatter14& f”' ) Bt S R i

‘The _scattering kernel {fbff Compton “and 1inverse Conmpton
effects just derived, while accurately describing the physics of
photon scattering from a Maxwellian gas of free electrons, is
rather complex in that is defined in terms of a multiple integral
[see Eq. (676)] In addition, the use of this kernel in the
equation of transfer introduces further integrals over frequency
and angle [see Eq. (147)]._ We now_describe a simplification of
this scattering description which leads to the elimination of all
integrals defining the scattering kernel as well as the integrai
over frequency in the equation of transfer. The assumption
required to achieve this result Kthe Fokker~Planck approximation)
is that the -electron ~temperetures and photon frequencies

(neasured as energles) are small compared to the rest energy of

an electron.
In order to effect this simplification, we first expand
I(v',ﬁ') in Eqe (147) in a Taylor series about V' = v, feee,

I(Q',ﬁ') ) ﬁT 3.2&2;@.1 (vt = w)® . (684)'
. .3-0 3\’

Inserting Eq. (684) into Eq. (147) and integrating term by term

over v', we obtain : .

101008 fgree, By - ;,;(-\-,_;_[uv) - 1(v, )]

/'-

] abr zo N (v, et 3 ilmﬁ_-l - o (v, B
Lin n- .

+ 2 1ev,E) [ ale Z u_(v,# 5') n 3_l£2A§l_ ,  (685)
2hv3 4 . n"O ,

where we have defined

17:
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:??ggvi‘.'if dvf I’“dﬁiagéwh“ﬁh j

. 3 T R (686)
4y AT ‘ :
N (V’ﬁoﬁ') =~;]1;t— !)ﬂ dV' :' (\)':':f-._v').n_0.8.,(‘,"-".\",’§|.§) ’ (687)

v : 3 . )
[T o oo, Bedt) - (57)° o (vovr, B8] L (o88)
The formal Taylor series expanéibnA has converted the integral

‘operator in frequency in Eq. (147) into an infinite order
differential operatore. The usefulness of this procedure ig that
for small electron temperature '

kT
m_c

]
]

K1 , (689)

and small photon energies

Y = hY

K1 , - ' ‘ ' (690)
moc2 . :

ithis infinite order operator effectively truncates itself to one

"f%of finite order.' In- particular, to first order in a and Y, we

-

g:fhave the ‘explicit results

ﬁ°s‘“) “op - . e

N (BB = o [ =y + 200 + ey - da)

+ (B892 - vy - 6a) + (Refi)3(y + 4a)] ,  (692)
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s op[L = Y D2 S @D (2e) (693
N, (v, BB = o o [1 - (6;5') %‘(§3§35? - @A @), (694)
3

'r_aocv.ﬁ,'ﬁ")* = - Toz oml[l - B4Y + hediny? - @B)7]21) |, (695) |

Ml(v,ﬁoﬁ') =

o[l = (B8 + (@eln? - @49°%en . (696)
Here °Th is thexThompéon scattering cross section given by
Opy = o— Nr2 . - (697)

All of the other N,(v) and M (V) are of higher order in « and
Ye .- Introducing 'these results into Eq. (685) and employing a
somewhét more compact notation, we can write the equation of

transfer with séattefing described to first order in a and Yy as
%-ilégxﬁl + Be¥1(v, ) = o1()[B(V) - 1(v,])]

1 - ZY)I(V ﬁ) + 0

( i dﬁ' 2 (2n )p (5 fit)s LIV, § )
Th L Th ba n-O -
-43’. Th YI(V ﬁ)(l _ -a— l‘ .b_
'%6? ,2hv A
S alir[ = (oY) + e - AN, En (698)
LY | .

Here Pn(z) is' the usual nth order ~Legendre polynomial and the

scattering operators S5, are defined as
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" -onto! the basis elem”

(699)

. .- - “ N 2 )
- [vu - v —) R T M §~)1 . (700)

s, =45 [1 = v(1 - v iy -ale-2v -2 9] o

) Sy Ay . o a_._-,p 82 ,
5 =g 10 ',W’ R

Equation (698) ie the result ‘0of the formal expansion of the
scattering operator to first order in « and Y We see that :ﬁe
integral operator in the exact description of scattering has been
replaced by a second order ‘differential operator. It can be
verified by ‘direct substitution that the small « and Y expansion
"has not destroyed the equilibrium solution of the scattering
operator, That is, vith the induced (quadratic in I) scattering
terms retained, the equilibrium solution of Eq. (698) {s the
Planck function,-and -with .the neglect of the induced terms the

7 Wien- distribution, Eq.~(665), is the equilibrium solution.

Equation’ (698) _can be simplified substantially without
'introducing _any further assumptione. A straightforward way to
effeet’this simplification is to consider Eq. (698) projected

its of a s herical harmonic function space.

ORI
e

‘For?; implicity we‘ work in pJane geometry (the arguments are

.wlid in general geometry) and momentarily neglect the:
induced ﬂscattering (nonlinear terms)o . We then have from

A (698), generalizing the Legendre polynomial expansion which
’Jed to Eqa. (565) and (566) to anisotropic scattering, '

oI - 3I,;

1 %% I - _ .
et t !t (T, = 4nB) + og (1 - 2y = §)I =0 , (703)
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it "§§¢55&f151::?5’5‘ 31 'ff'~;
. e 2 + v A - o e
. ':'.(nl) 3t - n atzl1"'(“"'1)~‘_'lz1_+l

[T

S ¥ (2 # 1)[0; + o (1 =2y -8)]1 =0

. 31 91 91

"+ (20 + 1)[0' + op, (1 =

n24 (705)

where

1 : .
I = 21 {1 durn(u)z(z,v,u,:) . (706)

We focus our attention on the scattering terms in Eqs. (704)
through (706). In Egs. (704) and (705) we make the replacements

O (1 = 2Y =:5)) + 0

Th °
P Y27 710 Tt !

o d e CTh

ZEFOTh(l‘f 2y - Sa? + ?Th Cy

qTﬁ(;”-,Zy):#,th . (707)
.The justification 1is that each term on the left hand side of
Eq. (707) has a dominant zeroth order (in Y and a) term, which we

’ retain, and first order terms, which we neglect, compared to the
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_$l§§L§- + 5 61(» ﬁx'- o'(v)[B(v) i(é;ﬁ)j

i[av2 2_; g (- 2y)v + Y]I(V 5') .
' y av '

-, L

--1

Since these terns are of

DY

they can be neglected in all . but: the zeroth alngulat
the,‘equation of transfer, just as we neglected_all

A

"terms ‘of » _order .a,.:
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which ie' simplified, but apriori just as accurate form “of -
B Eq. (698).u In particular, Eq. (710) contains far fewer scatter-

henm 3

el ‘1n§ terms than does Bq. (698), and the terms which account for

5' ":gegeigyfj">" _5.: ( the scattering interaction,i i.e.,
‘ ’proﬁortionaI’ isotropic in Eq. (710), whereas they

(698)"' Since the zeroth angolar3‘

angularly"

2(698) and (710) are identical, ' yield“tﬂeff
¢ " _‘ . ‘s Rty ~.*“ _’3’”“ ¢ N

),.

ilibri :
" AR
temperature

<’f‘}“-'{ ’?v Y
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