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SPHERICAL COMPRESSION OF A MAGNETIC FIELD

C.M.Fowler

Los Alamos National Laboratory, Los Alamos, NM, USA

Introduction

In an interesting paper, Rutkevich [1] obtained the electromagnetic wave solution for the
compression of a magnetic field contained by an imploding, perfectly conducting cylindrical shell
or liner. The magnetic and electric susceptibilities were taken as constant. The solution was
obtained by Laplace transforms. in his paper, he also considered the corresponding plane
problem when driving together two perfectly conducting, parallel plates that confine a magnetic
field. He compared the method of solution obtained by Laplace transforms with that obtained
by the method of characteristics which was used to obtain the original solution [2]. He
concluded his paper by noting that the transform method is more versatile than the
characteristic method. Somewhat later, Bodulinskii and Medvedev [3] obtained a solution for
the wave structure generated when an initial magnetic field is compressed by the implosion of a
conducting spherical liner. Again, the solution was obtained by transform methods.

In this paper we outline the solution to the spherical problem using the method of
characteristics. The utitity of this method is described for some other situations.

Imploding Liner

Figure 1. gives the details of the idealized problem solved by Bodulinskii and
Medvedev. A perfectly conducting sphere, initial radius a, implodes with radial velocity v. An
initial azimuthal field is set up by a total current / passing through the thin, non-resistive
diametral filament from A to B, and returns over the surface of the sphere with current density j.
The authors found a solution in spherical coordinates when the field has only an azimuthal
component, By = B, and the electric field only a 6 component, Eg = E. Both components are

assumed to be independent of the azimuthal angle ¢. Maxwell's equations show that the
combinations B sin 8 and E sin 8 depend only on R and {, and lead to the following relations:

A

B

Fig. 1. Cross-section of a sphere imploding with velocity v. Current | flows from A to B through a diametral
filament and returns on the spherical surface with areal density |.
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B 1 o¢ de  dp
—_— e = C ——=
R EaH " R A ™
where c is the velocity of light and
B=BRsin@ ; e=ERsInG. 2)

As noted the dependent variables in (1) are functions only of R and t Egs (1) can be
rearranged as follows:

(3)

These are the characteristic equations for the field variables, e+c¢f, cast in the form of
directional derivatives (£c). Thus the quantity £+cB is constant along “characteristic lines” of
slope +c, and e£—cf along lines of slope —c.

Figure 2. shows characteristic lines of slopes *1/c, along which the quantities &+cf
are constant. The boundary and initial conditions for the idealized problem described above
are:

£=0at A=0; e=vf atthe moving boundary

4
£=0, I=lpand p=20 att-0 )
2r

The solution proceeds in a straightforward but tedious fashion, as follows:
We divide the space time region into zones as shown in Figure 2., with the aim of
finding the values of £ and B on the boundaries. This is sufficient information to find the values

of € and B at arbitrary interior points, as follows:

For points in the interior zones, such as z, on the plus characteristic, &, +¢f3, = ¢; +cf;,
while on the minus characteristic, €, —¢f, = g;_y—cff;_;. Here the zone subscripts are used to
denote values at the spherical boundary. With these equations and the relation £=vg at the
boundary, we find for point z:

£ =';‘C[(1"’)ﬂi “(1+’)ﬂi—1]

p 5)
B, = ‘2‘[(1‘")ﬂi +(141)B;4]

with
r=-v/c. (vis negative here.)

For points in the right zones, such as W, both € and S have the same values as those
on the boundary zone, i. This follows immediately with use of the two characteristics, WR and
WR'.

For points in the left zone, such as Y, a similar analysis gives values of £ and § equal

tothatat R=0. Since ¢ is zero at this boundary, there are no electric fields in these zones.

The next step relates boundary values on zone ito those on zone i- 2. First, from
Eq(4), g =vB;; €,_, =vB;_,. Following the negative characteristic from Q to P, and with g, =0
(Eq(4)), we obtain —cfi, =¢;_, —¢B;_,. Then from the plus characteristic from P, we have
+cfp = g; +cf;. If we substitute r =—v/c (vis negative), then these equations give:

Br=grBia = 1Bz ©
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Once the values of § for the first two zones are known, f; for the remaining zones can
be obtained from Eq(6). For a point A in zone i = 0, from the characteristic OA we have
CBy =cCluglf2n=€s+CBa=(Cc+V)By=c(1-r)B4. A similar analysis, using the two
characteristics OC and CB gives the same value for 8g. Thus

_p __ Hob
ﬂ1 "ﬁZ - 27[(?'_,,) (7)

The solution of Eq(6) with the initial values of Eq(7) gives:

Bi= -27[—!1(‘1’%(\/7)’ ; feven

l i
ﬂsE%_T)(\/?) " jodd

(8)

From EQq(8}, if j is even, then i- 1 is odd and the values of 8 that go into Eq(5) tor the central
zone are

__ Holo o _ Moo -2
hi= 2x(1-r) Wr) s B 2n(1—r)(*/7)
Similarly, when iis odd,

b= (V7) s b= g ()

" 2n(1-1) T 2n(1-1

With these values substituted in Eq(5), we obtain the following values for the central space-time
zones:

£,=0; ﬁz=£2°:[—°(\/7)i ; feven

/ i- / -1

©)

Values of B for the inner zone, as at point Y, are the same as those at R =0 (& for these points
is zero). To obtain these values we have on the characteristic lines from P that ¢ = ¢; +¢f3; or
Bp = B;(1-r), and from Eq(8), for the inner zones:

i i .
ﬁp=ﬂy=-l12°7°(\/7)' ; &y =0 jeven

B =By =E2(\7) " s &y =0; iodd "
P Y ox s LY ’

Equations (8), with £=vj, (9) and (10) give values for ¢ and § for the outer, central,
and inner zones, respectively. Figure 3 shows pairs of § and gfc values obtained from these
equations where we have set yyf,/2z=1and r=0.1 (v=-0.1c). B is the upper number; &/c
the lower.

The space-time zones are a natural consequence of the method of characteristics,
although it is also natural to use the same zoning system when the wave equation is solved by
other means, such as by various transforms. The characteristic method is particularly useful if
there is a change of velocity of the boundary, such as shown at point A of Figure 3. The
velocity change is felt above the characteristic AB. Although field values along characteristic
EF are computed from the original boundary condition, values along ED are influenced by the
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different boundary condition along AC. The field values above AB are still determined
algeprancally, but close attention must be paid to the more complicated structure in ABJ where
the influence of both boundary conditions is still felt.

Figure 2. D :
B Figure 3.

i

t=0 : = 1.222 1.111 i
radius R=a 0.000 0.111 =1
Fig. 2. Characteristic lines, slopes 1/c, for the interior of _10'111111
a sphere whose surface moves inward with a velocity v ;
from an initial radius a. 1.000 1.111 =0
. . 0.000 1,000 -0.111
Fig. 3. Normalized values of 3 (upper values) and ¢ for ’
. . . 0.000
the space-time zones. Note the change in liner velocity 3
atA. t=0 radius R=a

Analytic expressions usually require knowing the time at the various zone boundaries.
No matter what method of solution is used, finding these values is usually a very tedious matter
— even for the simple case shown on Figure 3 before the velocity change at A. For example,
consider the flux contained by the sphere. For the diametral plane of Figure 1, the flux ¢ when
the radius has reached an arbitrary radius Ry, is

6, AR, 4 A, 9, R,
¢=jdejBRdR=jd9j£,d—%= D par
5 o 5, 0SNG ;sindy

The 0 integral diverges for 8, and 8, equal to £90°, the ideal case treated here and the flux is

therefore infinite from this factor. ‘However, the radial integral can be shown to be independent
of time. Since this is also true of the 8 contribution, there is a kind of “flux conservation.”
Although specialized, the easiest radial integral evaluations occur along lines such as GH
where f is constant. The problem thus reduces to finding the radius at H for the particular time

G. Graphically, the problem is simple. Initially 8 = 1.00 and R = 1.00 and the radial flux
integral ¢, = 1.00 in these units. We estimate that H = 0.73. Thus the radial fiux integral is
@ =(1.358)(0.73) =0.99", in essential agreement with ¢,. However, it is a rather messy job to
obtain R, in terms of time analytically. The problem is much messier for arbitrary times, where
more than one zone is involved with different values of 8 in the zones. However, numerically
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the solution still proceeds in a straightforward manner, even with velocuty changes such as
shown at A on Fig 3.

The non-linear plane problem

In Reference 2 it was shown that, in vacuum, the combinations E +¢B were invariant
along lines of slope +c. Here, the only space variable was the Cartesian variable x. The
corresponding non-linear case was considered in Reference 4. Since the distribution of that
report is somewhat limited, we reproduce here some of the resuilts.

When the field variable D is a function only of £, and B is a function only of H, the
following relations are obtained

o o\ ¢\ aB\"” . a0 9B\
(b}*sa“fjmyéj o (53) "”}‘)'“(ﬁéiﬁ) A

Thus, the bracketed terms are invariant along the characteristic curves with local derivatives in
the direction of s. With appropriate given boundary values, the equations may be solved
numerically by standard iterative techniques. It may be noted that, in vacuum, the characteristic
directions are constant (straight lines) with slopes *c, and that the invariants reduce to E +cB,
as they should.

The power of the characteristic method is illustrated by another exampie in Reference
4. The constitutive relations linking B and D to E and H were chosen to make all the
characteristic curves with negative slope be straight lines of the same slope ¢. This condition
led to the result that the characteristics with positive slope were also straight lines, but with
varying slopes. In the interest of obtaining an analytic solution to the problem a special (and
highly unrealistic) form was adapted for the constitutive relations. Interesting wave propagation
results were obtained, reminiscent of some hydrodynamic situations, such as the existence of a
centered simple wave and a shock-like envelope.

Summary

Transform methods are exceedingly versatile in solving problems of the type considered
here, provided the problems remain linear. The characteristic method is basically restricted to
problems with a single space variable (at least at present) and then mainly in plane situations.
However, the method has advantages, particularly in numerical computations, in handling
changes in boundary velocity and particularly in situations where the constitutive relations are
non-linear.
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