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Abstract

Theusefidness of logistic discrumination was examined in an effort to learn how it
petiorms in a regional seismic setting. Logistic discrimination provides an easily
understood method, works with user-defined models and few assumptions about the
population distributions, and handles both continuous and discrete data. Seismic event
measurements from a data set compiled by Los Alamos National Laboratory (LANL) of
Chinese events recorded at station WMQ were used in this demonstmtion study. PNNL
applied logistic regression techniques to the data. All possible combinations of the Lg
and Pg measurements were trie~ and a best-fit logistic model was created. The best
combination of Lg and Pg frequencies for predicting the source of a seismic event

(earthquake or explosion) used Lg3.O+j.Oand PgMM.Oas the predictor variables. A cross-
validation test was run, which showed that this model was able to correctly predict 99.7%
earthquakes and 98.0°/0explosions for this given data set. Two other models were
identified that used Pg and Lg measurements fi-omthe 1.5 to 3.0 Hz frequency range.
Although these other models did a good job of correctly predicting the earthquakes, they
were not as effective at predicting the explosions. Two possible biases were discovered
which affect the predicted probabilities for each outcome. The first bks was due to this
being a case-controlled study. The sampling &actions caused a bias in the probabilities
that were calculated using the models. The second bias is caused by a change in the
proportions for each event. If at a later date the proportions (a priori probabilities) of
explosions versus earthquakes change, this would cause a bias in the predicted
probability for an event. When using logistic regressio~ the user needs to be aware of
the possible biases and what affect they will have on the predicted probabilities.
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Introduction

In 1996 PNNL examined the theoretical applicability of various statistical classification
rumination (Anderso~ et al., 1996). The methods tested were: Linearmethods for seismic disc

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Variably Regularized
Discriminant Analysis (VRDA), Flexible Discrirninant Analysis (FDA), Logistic discriminatio~
Kth Nearest Neighbor (KNN), Kernal discrimination, and Classification and Regression Tree
(CART). The methods all possessed different strengths and weaknesses.

This study takes another look at logistic discrimination using seismic event measurements
from a data set compiled by Los Alamos National Laboratory (LANL) of Chinese events,

rumination provides a fairly easily understood method,recorded at station WMQ. Logistic disc
works with a user-defined model, works with few assumptions being made concerning the
population distributions, and handles both continuous and discrete data. The need for analysts to
specfi the model and the number of terms (linear, quadratic, etc.) is a desirable level of control
over event identification. The drawbacks to logistic discrimination are: it becomes unstable
when populations are widely separated; sequential decisions are not allowed; and it does not
handle missing values.

PNNL applied logistic regression techniques to the LANL seismic data measurements in an
rumination performed in a regional seismic setting. All possibleeffort to learn how logistic disc

combinations of the Lg and Pg measurements were tried and a best fit logistic model created.
Cross-validation was then used to test the efficiency of the model. The method of cross-
validation used is further explained in the Statistical Methodology section later in this report.
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Seismic Background

Historically, seismic event identification has been accomplished using measurements from
seismic events at teleseismic distances. Effective discrimination has been done using a linear
division of earthquakes ~d explosions, based on the ratio of P-wave to S-wave measurements.
Seismic ray paths for events at teleseismic distances extend down into the mantle and even into
the core. The travel time in which the signals spend in the crusGrelative to the time spent in the
mantle and core, is relatively short. The Earth’s core and mantle are much more homogeneous
than the Earth’s c- resulting in a “smoothing filter” being applied to the seismic signals.
Another factor in teleseismic discrimination is that at these long distances, only the larger events
were generally seen. Empirical studies have shown that we separation of large earthquakes and
explosions is better defined than for smaller events (Taylor, 1996; Taylor, et al., 1989).

As closer study is made about the signatures of small seismic events measured at regional
distances, the linear division between earthquakes and explosions becomes questionable. At
regional distances, many of the seismic signals used for event identification travel entirely within
the crust. However, because the earth’s crust exhibits a great degree of variatio~ the signals
from which the discriminan ts are measured also exhibit more variability and identification
becomes more challenging. Monitoring smaller magnitude events results in fewer stations
recording useable signals, thus compounding an already problematic situation. Discrhnhation
methods that are effective for these small, variable events must be able to handle complex
population distributions, and must be able to correctly estimate the error for any given event.

DOE’s current CTBT Research& Development monitoring program is working to better
define the critical corrections to the recorded seismic signals by better modeling the earth’s crust.
A complimentary effort is also underway - acquiring as much regional seismic data as possible,
so as to better estimate the variability of the discriminant populations and to allow for empirical

ts. This report makes use of preliminary results from one regionanalysis of potential dismiminan
being studied by LANL seismologists.

The LANL seismologists found that two discriminants were most usefi.d: a high frequency (f
>4.0 Hz) P/S ratio vs. mb, and a short period (f> 1.0 Hz) P to long period (0.05 <f <0.1Hz)
Rayleigh wave ratio vs. mb (I%rtse, et al., 1996). Predictily, the ratios show the least amount
of variability when the measurements were taken as windowed averages, rather than as discrete
seismic peak measurements.

In this study, PNNL used Pg and Lg amplitudes at the three windowed frequency ranges
supplied by LANL, 0.75 to 1.5 ~ 1.5 to 3.0 Hq and 3.0 to 6.0 JiIz. The ratios formed by the Pg
and Lg measurements provide a good example of how logistic analysis performs in a regional
seismic setting.
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Data

Seismic phase measurements for 409 events recorded at the Chinese seismographic station
WMQ, from the period 1988-1996, were made by LANL staf?and provided to PNNL. The data
set was composed of 243 known earthquakes, 139 probable earthquakes, 26 nuclear explosions,
and 1 mine collapse.

The measured phases used in this study were Pg, Lg, and the pre-event (I%) noise level,
taken at three windowed frequency ranges (0.75 to 1.5 ~ 1.5 to 3.0 ~ and 3.0 to 6.0 Hz).
Throughout the remainder of this report Pg (3.0 to 6.0 Hz) will be refetied to as Pg3.~.o and the
other measurements referred to likewise as: seismic phsefiquenq ~w The pre-event noise
measurements were made in window lengths comparable to the window length for the respective
signal measurements (personal communication with Dr. Hans Hartse). In some cases, this
resulted in quite different noise levels for the two phases. Since these noise levels were pre-
even~ and not pre-phase, and in order to simplify this demonstration of logistic analysis, we
chose to use the noise measurement associated with the Pn measurement for both phases.

No distance corrections were applied to these dam since Iow-fkequency Pg and Lg amplitude
ratios show very little dependence on distance in Western China (Hartse, et al., 1996). Data
measurements are in mh (velocity). Missing Lg measurements maybe due to short waveform
records, and do not necessarily indicate censoring. However, in this study any missing
measurement is treated as censored.
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Statistical Methodology

Logistic discrimination uses logistic regression to find predicting variables to help forecast an
outcome. The principles used in logistic regression are similar to those used in Iiiear regression.
The major difference with logistic regression is that the outcome (response) variable is binary
instead of continuous, which causes the assumed distribution of the errors to be binomial, not
normal as in linear regression

In this case, the outcome variable is the seismic event, earthquake or explosion. The possible
predictor variables in this study are the foUowing seismic discrimtik pgo.w-ls, pgls-s.o,

Pgw.o, Lgo75-1.5,Lgls.q.o, ~d Lgmj.o.

The logistic regression model is:

Pr (explosion] x) = 1- Pr (earthquake Ix)

(1)

(2)

where x represents the chosen predictor variables (dlscriminants), and ~ is a vector of regression
coefficients. Logistic regression can be viewed as tossing an earthquake/explosion coin, where
the probability of an earthquake is a fimction of ~x. An event with seismic measurements x
could be classified as an earthquake if Pr (earthquake Ix)> Pr (explosion Ix), e.g., Pr
(earthquake Ix) >%. The use of% as the “discrimination” rule is not mandated, and this
“discrimination” rule could be adjusted according to the error and biases in the predictions.

If we form a log-odds ratio, we have,

Log (Pr (earthquake Ix)

Pr (explosion Ix) )
=g(x)=p’x

which is the rationale for the term “logistic” regression. The log-odds ratio between

(3)
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Pr (earthquake 1x) and Pr (explosion Ix) is a model reformulation known as a logit

transformation (McLachlzq 1992). The regression coefficients, ~, are calculated using an
iterative maximum likelihood estimation procedure.

The predictor variables, % can consist of any of the seismic discriminants, and/or any
interaction terms. These predictor variables are analyzed to determine which combination of
them are most related to the outcome. Only those variables that are significantly related to the
outcome variable are kept in the model. Keeping variables in the model that are not helping with
the prediction can lead to a model that maybe overfitted and is too dependent on the observed
data. Moreover, it may produce numerically unstable estimates (Hosmer and Lemeshow, 1989).
A stepwise method using forward selection with a test for backward elimination is employed to
add or remove variables sequentially to the model. These tests are based on statistical
procedures and criteria.

In order to test the model, cross-validation is used to estimate the error rates. This is done by
separating the data randomly into two sets, the training set and the prediction (holdout) set. The
training set consists of 80% of the data for each outcome, while the prediction set contains the
other 20°/0for each outcome. The training set is used to calculate the regression coefficients for
the model and then each prediction set data is plugged into the model and the prediction made.
The prediction is then compared to the actual outcome, and the percent of correct and erroneous
predictions calculated. The whole process of randomly separating the daa calculating
regression coefficients, and making predictions was simulated 100 times. The overall estimated
correct and error rates are reported in the following section.

5
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Results

A forward stepwise selection procedure was followed, with all six seismic discriminants and
all interactions considered for inclusion into the logistic regression model. This procedure
indicated the best-fit model was as follows:

(Model 1) g(x) = p’ x = – 16.74– 84.97 Pg~.O-G.o+ 79.27 Lg3.o-6.o (4)

Because this model depended only on the higher frequency measurements (3.0 to 6.0 Hz) and
there may be times when higher frequency measurements are not possible, another selection
process was run that did not allow the model to pick Pg3.04.0and Lg3.W.otogether. This selection
chose the following two models:

(Model 2) g(x) = ~ X= 9.35– 17.47Pg1~_J40+ 17.45Lg~.wG.Oand (5)

(Model 3) g(x) = ~ X = –1.60 –13.33 Pgl.93.0+ 12.65Lgl.s.s.o (6)

Plots from the three models are shown in Figure 1. These plots show the separation between
the different events. The separation between the explosions (plotted in black) and the
earthquakes (plotted in gray) is best shown with the 3.0 to 6.0 Hz frequencies (Figure la).
Figures lb and 1c illustrate that the other two models are less capable in separating the events in
all instances. Figure Id shows the discrimination at the 0.75 to 1.5 Hz frequency window and
the difficulty to distinguish events at that level.

As previously mentioned, cross-validation was used to test the effectiveness of the model in
correctly predicting the events. Table 1 lists the percent of correct predictions from the 100
simulations using holdout data. Any probability of over 0.5 was classified as an earthquake, and
probabilities less than 0.5 were classified as explosions. All three models were effitive at
predicting earthquakes correctly. They differed in their abilities to correctly predict the
explosions. The 3.0 to 6.0 Hz frequency windows were effective in predicting explosions
correctly (980/0). However, the models using the 1.5 to 3.0 frequencies were not nearly as
effective (65.8V0and 73.OYO).
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Figure lb
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Table 1. Percentage of Correct R-edictions from Cross-Validation Testing

Percentage of Correct Predictions for each Outcome

Best Predicting Variables Earthquakes Explosions

Model 1: Pg3.cMo& Lg3.M.o 99.7% 98.0%

Model 2: Pgl.s.s.o& Lg3.M,o 98.7% 73 .0’%0
Model 3: Pg].s.s.oc%Lgl.s.s.o 98.4% 65.8%

One concern about this analysis is that the coefficients and standard errors for the pgq.@G.()and
Lgs.O.G.Omodel were kuge in comparison to the other models. Table 2 shows that the coefficients
for Model 1 were considerably larger than the coefficients for the other models, and the standard
errors were about 10 times larger. A possible explanation for this is that each of the seismic
discriminants were highly correlated with one other, and therefore, the model maybe
experiencing instability due to the multicollinearity among the predictor variables. This

7
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Table 2. Regression Coefficients (~) and StandardErrors (GD)for Each Model

I Model 1 I Model 2 I Model 3 I

Term p’s G* Term ps a* Term ps Op

Intercept -16.74 21.68 Intercept 9.35 3.69 Intercept -1.60 1.98
Pg3.~.o -84.97 35.22 Pgl.&3.o -17.47 3.75 Pglj.s.o -13.33 2.11

Lgw.o 79.27 32.10 L~.04.0 17.45 3.79 Lgm.o 12.65 2.11

bother concern is that this study is a case-controlled study (Hosmer and Lemeshow, 1989).
Beeause the sampling design could not allow for the events to be sampled randomly, a bias is
introduced in the regression equation. Thus, the predicted probability of an event is biased from
the actual probability of the event. This bias is found in the titercept, ~., and tiects any

Werences made using the ~..

Corrections can be made to ~owhen certain information about the sampling fractions for both
events is known. This correction of POis done with the following equation:

mukicollinearity ean be viewed in the information matrix with correlations close to one off the
diagonal. The Mormation matrix was then used to construct the coefficient estimates and the
standard errors of the estimates. This, in turn, could be causing an inflation in the resulting
estimates.

8

where: ~0*is the new, corrected intercept

~1is the probability of the sampling design selecting an earthquake, given that the event
was an earthquake and given x;
Tois the probability of the sampling design selecting an explosion, given that the event
was an explosion and given X, and

~ois the biased intercept in the calculated regression equation.

Lfthe proportion of earthquakes sampled was equal to the proportion of explosions sampled

during the sampling time frame, then Z1= Toand (ilO”= ~~,meaning that there would be no need
for a correction in the intercept.
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Further investigation of the ~’s show that ~1= nl 1N1, where nl is the number of earthquakes
sampled for a given sampling timeframe, and N1 is the number of total earthquakes during the

same time fiarne. Other equations demonstrate that N1 = N * ml, where N is the total number of

events (earthquakes and explosions) for the given time frame, and Xl is the proportion of all
events that were earthquakes during the same time frame. Putting these equations together
shows thati

Likewise, the equation for TOis:

TO=nO/(N*zO)

(8)

(9)

where: M is the number of explosions sampled during a given sampling timeframe;
N is the total number of events (earthquakes and explosions) for the same time frame;
and no is the proportion of all events that were explosions during that same time &rune.

These equations show that Z1and to are directly influenced. by the prior proportions, X1and

no, and that a change in the proportions will directly affect ~1and Zo. A change to TI and Towill

change the intercept, ~0,which, in ~ changes the predicted probability from the logistic
regression model. This is a key concept for this study, because if at a later date the proportions
of explosions change, this would cause a bias in the predicted probability for an event.

Although the above concerns show that the predicted probability could be biase~ the
prediction can still be useful, relative to other predictions. If Event 1 has a 0.60 probability of
being an earthquake and Event 2 has a 0.90 probability of being an earthquake, we know that
Event 2 has a better chance of actually being an earthquake. However, we need to remember
that each probability has a bias attached to it, and with certain information that bias can be
estimated.

9
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Conclusions

Logistic discrimination has an easily understood algorithm and few assumptions. Under the
tion method. For this da~ the best logisticright circumstances, it is a viable discrimina

regression model used the high frequency window PK.W,O and L~.04.0 predictor variables.
Cross-validation methods showed that this model was able to correctly predict the earthquakes
99.7% of the time and the explosions 98.0% of the time. Although this appears to be extremely
effective, the model did show characteristics of being unstable. Because the model is dependent
on the daa caution should be used when making decisions based on this model.

Two biases were also introduced with the predictions as possible concerns in using logistic
regression k this particular problem. The first bias was due to the sampling design. The case-
controlled study allowed for sampling that was conditional on the outcome variables, not a
random sampling. The second bias would only be introduced when the proportion of each
outcome changes. This is only pertinent when the percentage of explosions in the area of interest
were to significantly increase or decrease, relative to the number of earthquakes. These two
biases are important and need to be accounted for when using this data for predicting the source
of fiture events. With the right information about the proportions for each event, and/or
information about the sampling fictions, these biases can be estimated and accounted for.
Without this correction, the predicted probabilities should not be considered as actual
probabilities, but more as a ranking score @at can be usefid as a ranking of events. Scores on
one end of the scale would more likely be an earthquake, and scores on the other end more likely
to be an explosion. Even if the biases cannot be estimate~ relative comparisons can be made
between the scores.
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