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Abstract

NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation
utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality);
eigenvalue adjoint; external fixed-source steady-state; or external fixed-source or eigenvalue
initiated transient problems. The code name NESTLE originates ffom the multi-problem solution
capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The
eigenvalue problem allows criticality searches to be completed, and the external fixed-source
steady-state problem can search to achieve a specified power level. Trans;ient problems model
delayed neutrons via precursor groups. Several core properties can be input as time dependent.

Two or four energy groups can be utilized, with all energy groups being thermal groups
(i.e. upscatter exits) if desired. Core geometries modelled include Cartesian aﬁd Hexagonal.
Three, two and one dimensional models can be utilized with various symmetries. The non-linear
iterative strategy associated with the NEM method is employed. An advantage of the non-linear
iterative strategy is that NESTLE can be utilized to solve either the nodal or Finite Difference
Method representation of the few-group neutron diffusion equation. |

Thermal-hyraulic feedback is modelled employiﬁg a Homogenous Equilibrium Mixture
(HEM) model, allowing two-phase flow to be treated. However, only the continuity and energy
equations for the coolant are solved, implying a constant pressure treatment. The slip is assumed
to be one in the HEM model. A lumped parameter model is employed to determine the fuel
temperature. Decay heat groups are used to model decay heat.

The thermal conditions predicted by the thermal-hyraulic model of the core are used to
correct cross-sections for temperature and density effects. Cross-sections are parameterized by
color, control rod state (i.e. in or out) and burnup, allowing fuel depletion to be modelled. Either a
macroscopic or microscopic model may be employed. All cross-sections are expressed in terms of

a Taylor’s series expansion in coolant density, coolant temperature, effective fuel temperature,
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and soluble poison number density.

Memory management is accomplished utilizing a container array to facilitate efficient
memory allocation. In this manner various problems with different dimensionality: can be
executed without code re-compilation. To facilitate the understanding of coding, procedures are
used extensively and an electronic dictionary program, NESTLE.DICT has been created to define

the meaning of code variables.
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I Introduction

NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation
utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality);
eigenvalue adjoint; external fixed-source steady-state; or external fixed-source or eigenvalue
initiated transient problems. The code name NESTLE originates from the multi-problem solution
capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The
eigenvalue problem allows criticality searches to be completed on one of the following variables:
soluble boron, coolant inlet temperature, control rod position or core power level. The external
fixed-source steady-state problem can also search on these same pa:arneters; now in regard to
achieving a specified power level.

Two or four energy groups can be utilized, with all groups being thermal groups (i.e.
upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three,
two and one dimensional models can be' utilized. Various core symmetry options are available,
including quarter, half and full core for Cartesian geometry and one-sixth, one-third and full core
for Hexagonal geometry. Zero flux, non-reentrant current, reflective and cyclic boundary
conditions are treated

The few-group neutron diffusion equation is spatially discretized utilizing the Nodal
Expansion Method (NEM). Quartic or quadratic polynomial expansions for the transverse
integrated fluxes are employed for Cartesian or Hexagonal geometries, respectively. Transverse
leakage terms are represented by a quadratic polynomial or constant for Cartesian or Hexagonal
geometry, respectively. Discontinuity Factors (DFs) are utilized to correct for homogenization
errors. Transient problems utilize a user specified number of delayed neutron precursor groups.
Time dependent inputs include coolant inlet temperature and flow; soluble poison concentration,
and control banks’ positions. Time discretization is done in a fully implicit manner utilizing a

first-order difference operator for the diffusion equation. The precursor equations are analytically



solved assuming the fission rate behaves linearly over a time-step.

Independent of problem type, an outer-inner iterative strategy is employed to solve the
resulting matrix system. Outer iterations can employ Chebyshev acceleration and the Fixed
Source Scaling Technique to accelerate convergence. Inner iterations employ either color line or
point SOR iteration schemes, dependent upon problem geometry. Values of the energy group
dependent optimum relaxation parameter and the number of inner iterations per outer iteration to
achieve a specified L, relaﬁve error reduction are determined a priori. The non-linear iterative
strategy associated with the NEM method is utilized. This has advantages in regard to reducing
FLOP count and memory size requirements versus the more conventional linear iterative strategy
utilized in the surface response formulation. In addition, by electing to not update the coupling
coefficients in the nonlinear iterative strategy, the Finite Difference Method (FDM)
representation, utilizing the box scheme, of the few-group neutron diffusion equation results. The
implication is that NESTLE can be utilized to solve either the nodal or FDM representation of the
few-group neutron diffusion equation.

Thermal-hydraulic feedback is modelled employing a Homogenous Equilibrium Mixture
(HEM) model, allowing two-phase flow to be treated. However, only the continuity and energy
equations for the coolant are solved, implying a constant pressure treatment. The slip is assumed
to be one in the HEM model. The fuel temperature is determined utilizing a lumped parameter
model. The SETS method is used for the temporal treatment to overcome the material Courant
limit on numerical stability. A conventional staggered mesh formulation is used in spatially
discretizing the fluid’s equations. Flow is assumed to be parallel to the axial direction within a
closed channel. A user specified number of decay heat groups are used to model decay heat.
Direct deposition in the coolant of fission energy is accounted for. Equation of State information
is provided via polynomials, whose coefficients are provided as input. it should be recognized that

the thermal-hydraulic model was developed with a pin-cell geometry as its basis. Adoption to



other geometries, such as appear in gas-cooled reactors, would likely require some source code
modifications.

The thermal conditions prediéted by the thermal-hydraulic model of the core are used to
correct cross-sections for temperature and density effects. Cross-sections are parameterized by
color, control rod state (i.e. in or out) and burnup, implying fuel burnup modelling capabilities
exist. Either a macroscopic or microscopic fuel depletion model may be employed. A Predictor-
Corrector formulation is used to solve the depletion equations. With the election of the
microscopic option, depletion equations for the U4 through U6 and U8 through Pu?4?
depletion chains, two lumped fission product groups, and a simple burnable poison are solved and
used in conjunction with burnup dependent rnicroscbpic cross-sections to construct the
macroscopic cross-sections. The I-Xe and Pm-Sm chains are also modelled, with various options
to determine their number densities (i.e. equilibrium, transient, peak Sm-no Xe, no Sm nor Xe, or
frozen). All cross-sections are characterized in terms of a Taylor’s series expansion in coolant
density, coolant temperature, effective fuel temperature, and soluble ‘poison number density. -
Taylor’s series terms utilized (e.g. linear or quadratic in coolant density) are specified via input.

Output edits include predicted values of the key core attributes, such as power, flux,
temperatures, isotopic number densities and burnup spatial distributions, in addition to
documenting key input options and convergence behavior parameters. The output information is
biased towards the sort of information a nuclear designer of a power reactor requires. A restart file
is written, allowing restart for branch cases, re-initiation -of core depletion, continuation of
iterations towards a tighter convergence, or re-initiation of a transient.

Memory management is accomplished via a container array. Code determined container
array pointers are used to facilitate problem specific memory allocation (e.g. trading off of spatial

and energy detail within a fixed total memory size).



II Theoretical Foundations

I1.1 Nodal Model - Cartesian Geometry

I1.1.a Eigenvalue Problem
The following section describes the standard NEM formulation for the solution of the

three-dimensional, Cartesian geometry, multi-group, eigenvalﬁe neutron diffusion equation [1,2].
The principal characteristics of the polynomial nodal method are its quartic expansions of the
one-dimensional transverse-integrated flux and quadratic leakage model for the transverse
leakage.

Consider the general form of the steady-state multi-group neutron diffusion equation,
written in standard form and with the group constants (i.e. properly weighted cross-sections and

discontinuity factors) already available from a lattice physics calculation forg =1, 2,..., G
R G x. G
DV = Le
VD,V +Z 0, lesgg,%, + 2 Zl VeZp 0 (1)
g'= g'=

where the dependence of each quantity on the spatial coordinate 7 has been suppressed, and,

Dg = diffusion coefficient [cm]

¢g = neutron flux [cm'zsec‘l]

2 = total IMAacroscopic cross section [cm™!]

Zge’ = group-to-group scattering cross section cm™!]
Xg = fission neutrons yield

k = multiplication factor (i.e. critical eigenvalue)
Vg = average number of neutrons created per fission
ng = macroscopic fission cross section [cm'l]

As with most modern nodal methods, we begin by intergrating the multi-group neutron



diffusion equation over a material-centered spatial node which has homogenized properties. For

Cartesian geometry we rewrite Eqn. (1) for the arbitrary spatial node /,

92 92 ! a l I3
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For simplicity, in cases where redundant equations exist in all three directions, the
illustrating equations will be only given in the x-direction. Using Fick’s Law, which in the x-

direction can be expressed as,
.l 2 _ l a I r>
Jex (A = Dol () 3)

where,

jfg . (r) = x-component of the net neutron current

allows Eqn.(2) to be rewritten as:




axlgx(") + a);gy(r) +2 ~ Jg () + A0, (1) = 0 () @)

Integration of Eqn. (4) over the volume of node / generates a local neutron balance equation in

terms of the face-averaged net currents and the node volume average flux.

" ,(Lgx) +— Ay  (Lgy) + ™ L Ly +ALSL = O 6)

where, assuming node ! is centered around the coordinate’s origin, the volume integrated

quantities are defined below:




where,

!
. ‘ x
= Average x-directed net current on node faces + -

2

Eqn. (5) is known as the nodal balance equation. Now for the neutron diffusion equation
written in this form, in order to obtain the spatial neutron flux distribution, one must devise some
relationship between the node average flux and the face-averaged net (surface) currents. It is the
equations used to compute the surface currents in Eqn. (5) which distinguish one nodal
formulation from another. In NEM, the vs}idely used method of transverse-integration is used,
where the three-dimensional diffusion equation is integrated over the two directions transverse to

each axis. This generates three one-dimensional equations, one for each direction in Cartesian

coordinates, of the following form,

d ~ - 1+ 1 -
L e (1) + A0 (1) = Oge (0 —Z;,L;y (x) —Zz—,L;z (x) 6)

d




2 2 _
I—,;z (x) = — J J 582 jé , (F) dzdy = Average z-direction transverse leakage
Ay 1 !
Ay Az
2 2

In NEM, the one-dimensional averaged flux that appears in Eqn. (6), is expanded as a
general polynomial,

N
by () = 0+ Y ap,, [, (®) )

n=1
where q?é is the node average flux, implying for Eqn. (7) to be true that fn (x) must be chosen

such that the basis functions satisfy

AxX
2

j f,(x)dx =0forn=1,.,N
Ax!

@)
—T ’
Note that for quartic NEM, the method used in NESTLE, the summation extends to N = 4. The

first four basis functions in NEM can be expressed as follows [1],

h f2 \ f Jfa
?:?); 3(%}{,)2—%; (ﬁf—%(fx,); (5)4—%(%#)2‘*‘8‘16 )
which can be shown to also satisty the following,
Ax!
A (iT) =0 for n=3,4 (10)

At this point it is appropriate to consider the elementary concept of accounting for the total

number of equations and that of unknowns. For a three-dimensional Cartesian geometry, the node



avera.ge ‘and N expansion coefficients in each direction appear per node per energy group,
implying a total of 3N+1 equations are required. The nodal balance equation, Eqn. (5), provides
one equation, where now Eqgns. (3) aﬁd (7) are used to eliminate face-averaged net currents from
this equation. Surface current and flux continuity provide 6 more equations per node per energy
group. So for N=2, there would be an equal number of equations and unknowns withou‘t any
further development. However, for N= 4, two additional unknowns are introduced for each
direction per node per energy group. This is addressed by using a weighted residual scheme [3]
applied to Eqn. (6), which in essence provides the additional equations (referred to as the moment

equations) needed,

2l 151 =1 T+ T+
< m,, (x) ’ 24; Jgx (x) > _qu)gxn = ngn - A_yngyxn - A_Z’Ingxn (11)

where the two weighting functions for n = 1,2 are chosen to be the same as the basic functions,
namely ®,(x) = f(X), as those used inh the one-dimensional flux expansionl. Here, the first and

second (actually linear combination of zeroth and second) moments of the flux, source, and

leakage for each group g are defined by,

. oL =1 o
o gxn Q gxn L gyxn L gzxn

<o (x), 6;, (x) > <o (x), Opx (x) > <o, (x), Liy(x) > <o (x), L. (x) >

The first term in Eqn. (11) is evaluated by using Eqns. (3) and (7) and the definition of the
expansion coefficients, and completing the integration (i.e. inner product) analytically.
One last point which needs to be addressed before Eqn. (11) can be solved are the

transverse leakage terms appearing on the right hand side. Their spatial dependency is unknown,

1. This constitutes a moments weighting scheme; if one uses w,(x) = f,,,(z) for n = 1,2 it is known as Galer-
kin weighting. Numerical experiments favor moments weighting




so their “shape” must be approximated. The most popular approximation in NEM is the quadratic
transverse leakage approximation. For example, the x-direction spatial dependence of the y-

direction transverse leakage is approximated by,
=1 =l
Lygy (x) = Lgy + Py ify () + Pgyof (%) (12)

where Z; is the average y-directed leakage in node [, and the coefficients p, , and p; .2 can be

expressed in terms of average y-directed leakages of the two nearest-neighbor nodes along the x-
direction (i.e. nodes /-1 and I+1) so as to preserve the node average leakages of these three nodes.

The quadratic expansion coefficients can be shown to be given by,

Pl =g AN I Ly ax+2ax) a5+ + LyyLey ) (ax+28 ") @ +ax"h) (13)

=l+1

2 =1 - =1-1 =l
plo = 8 (AN 1Ly ~Lyy) (A +Ax'") + (L - L) (Ax'+Ax* D] (14)

where,

g = [(Ax+Aax ™y (Axt+Ax=1y (ax =T+ Axl+ Axtt 1)) (15)




I1.1.b Non-Linear Iterative Strategy
The most common manner of solving the matrix system associated with NEM is the

response-matrix formulation. To minimize computer run time and memory requirements, and to
facilitate the capability to solve either the NEM or Finite Difference Method (FDM) formulation,
the non-linear iterative strategy is employed in NESTLE. This technique was developed by Smith
[4, 5, 6] and successfully implemented into the Studsvik QPANDA and SIMULATE code
packages. The documentation available on this technique is scarce, but it turns out to be rather
simplistic and almost trivial to implement in a FDM code which utilizes the box-scheme (i.e.
material-centered).

The basic idea is applicable to the standard FDM solution algorithm of the multi-group
diffusion equation. Solving the FDM based equation utilizing an outer-inner iterative strategy,

every A N, outer iterations (where A N, is somewhat arbitrary but can be optimized) the so-called

“two-node problem” calculation (a spatially-decoupled NEM calculation spanning two adjoining
nodes) is performed for every interface (for all nodes and in all directions) to provide an improved
estimate of the net surface current at that particular interface. Subsequently, the NEM estimated
net surface currents are used to update (i.e. change) the original FDM diffusion coupling
coefficients. Outer iterations of the FDM based equation are than continued utilizing the updated

FDM coupling coefficients for a N, outer iterations. The entire process is then repeated. This

procedure of updating the FDM couplings is a convergent technique which progressively forces
the FDM ‘equation to yield the higher-order NEM predicted values of the net surface currents
while satisfying the nodal balance Eqn. (5), thus yielding the NEM results for the node-average
flux and fundamental mode eigenvalue. The advantages of this technique come in many forms;
the storage requirements are minimal because the two-node problem arrays are re-usable
(disposable) at each interface, the rate of convergence is nearly comparable to that of the base

FDM algorithm being used, the number of iteratively determined unknowns is reduced by a factor

11




of 6 (node ﬂu'xvvs. partial surface current), and the simplicity of the algorithm and ease of
implementation, compared to any other nodal technique, is far superior.

The two-node problem produces an 8G X 8G linear system of equations whic:hv can be
constructed by applying the standard NEM relations to two adjoining nodes. For simplicity,

consider two arbitrary adjoining nodes in the x-direction. Denote these notes as / and [+1:

< Node| Nodel 4.
- 1 I+1 x*

Substitution of the one-dimensional expansion, Equation (7), into Fick’s law yields
expressions for the average x-direction net surface currents at the left(-) and right(+) interfaces of

node /,

4 Dyr NN o

Joxt = E[ b1 300+ 3Gtz } (16)

Now, assume the node average flux, criticality constant, and all transverse direction terms

are known from a previous iteration; then, the total number of unknowns associated with the x-
direction two node problem is 8G, which corresponds to the 4 expansion coefficients/group/node
(x) G groups (x) two nodes. The 8G constraint equations are obtained as follows. We begin with
the substitution of Eqn. (16) into the nodal balance equation for node , to yield the zeroth moment
constraints (G equations/node),

- =D, L2 . . S
! _ ! 1 =1 =l o=l
! [éa < m} = ——Ly—LeAlS+ 3 0L (17)

A similar substitution into the moment-weighted equation, Equation (11), yields the first and

second moment constraints (2G equations/node),

D! G G
Lo 1o qaal i rod I 1
[_—_x +Ag]agx3 Y, Qopgre—10A,a, 1 +10Y QO ap ) = IO(Aypg”+—,pg21) (18)
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[_;' :+A] Ggxds™ Z st‘ag’x4 35Ax 312+35 Z ng g'x2 — 35( lpgyZ A ngzz) (19)

g'=g gz
Similar equations can be written for node /+1, producing a total of 6G equations. The
continuity of net surface current constraints at the interface (G equations) are obtained by using

Equation (16) at the adjoining interface of the two nodes,

1 i 1 1 I+1 I+1
-D a a -D a a
gl 1 l gx3 | Tgxd | _ 8 | gltlggi+l, “8x3 _ "gx4
——Axl l:agxl +3agx2+ > + 5 :I = A Ay 3agx2 + 5 5 (20)

Last, the continuity (or discontinuity) of surface-averaged flux constraints (G equations)
are obtained by equating the surface-averaged fluxes of the two adjoining nodes by using

Equaﬁon N,

4 4 g+l gitl
gx+ liq)l gxl g2x2:| - di,:_l [¢1g+ 1_;%1_ + g;Z} @1)
where 4;,, and 4);; are the Discontinuity Factors (DFs) obtained from lattice physics
calculations. Do note that continuity conditions are never imposed on the outside surfaces of the
two-node problem, since the two-node problem is deliberately formulated to be spatially
decoupled. Continuity is assured in the formulation of the FDM based equations.

Equations (7) through (21) constitute the 8G system of equations needed to be solved at
each interface. This matrix system, after taking advantage of its reducability and by noting that
the even—moment\ expansion coefficients don’t change whether the node is on the left or right of a
two-node problem, can be reduced to smaller systems which can be solved quite efficiently [7].

The following table illustrates this more efficient arrangement of unknowns for the case of G=2.

13




Table 1: Non zero entries in the 16 by 16 two-node NEM problem

Equation Gp Nd a b ¢ d e f g h i j k I m n o p
0th Moment I ! ix X
0th Moment 2 1
2nd Moment 1 l X
2nd Moment 2 Il x{x}x
Oth Moment 1 41 X X
Oth Moment 2 I+l
2nd Moment 1 41
2nd Moment 2 +1
1st Moment 1 l
1st Moment 2 l
1st Moment 1 +1 ; X x| x|x
1st Moment 2 1 . X | x| x| x
Cur Con 1 X X X X X X
Cur Con 2 X X X X X X X X
Fix Dis 1 X X X X
Flx Dis 2 X X X X
UNKNOWN NODE GROUP EXP. COEE*
a l 1 2
b 1 2 2
c { 1 4
d l 2 4
e +1 1 2
f 1+1 2 2
g i+1 1 4
h I+1 2 4
1 l 1 1
] { 2 1
k l 1 3
I l 2 3
m i+1 1 1
] n I+1 2 1
0 i+1 1 3
p i+1 2 3

*Refers to order of polynomial that transverse

integrated flux expansion coefficient is associated with.
In NESTLE, the two-node problems are solved by utilizing the analytic solution to the 8G X 8G
matrix system. This was accomplished by employing symbolic manipulator software to produce

the FORTRAN code segment used in NESTLE. This approach is computationally more efficient




than utilizing a direct matrix solver (e.g. LU decomposition); however, it limits the values of G to
those directly programmed for. Also note that on boundaries special treatments of the two-node
problems are required. Depending‘ upon the specified boundary condition (BC), one-node
problems may originate (e.g. zero flux BC), or on interior axis geometry unfolding may be
required to create a two-node problem (e.g. cyclic BC).

Solutions of the two-node problems provide NEM evaluated values of the currents on all
surfaces for specified values of the node average fluxes [recall they were assumed known in
solving the two-node problems). To correct the FDM based expression for the surface current, the
following approach is utilized. The coupling coefficient update to the FDM equation can be

implemented by simply expressing the FDM net surface current at the x+ face of node [ as

follows,
ph FDM plk NEM
=L, FDM _ gx+ —l+1_—1 _ ax+ -I+1 =
T = A B R (B 48 @)
— —
The first term on the RHS is the normal FDM approximation for a box scheme, where D;’xF +D M is
the actual FDM diffusion coupling coefficient between nodes / and [+1,
D1D1+1 (Ax1+Ax1+l)
éfoM = § 8 (23)

l l I+1, I+1
D Ax'+D," Ax
The second term on the RHS represents the nonlinear NEM correction applied to the FDM
scheme. The (+) sign between the flux values in the second term of Equation (22) is purposely

there to improve the convergence behavior of the nonlinear iterative method [8]. Note that if

- NEM . ) e . L ) . .
Dy is zero, which it initially is in NESTLE’s implementation, then Equation (22)

corresponds to the standard FDM definition of the net surface current. This is the basis for the

FDM option within NESTLE, where now two-node problem solves and coupling coefficients
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updates are never completed. The value of 13;:] +E M is determined by setting Equation (22) equal
to the NEM two-node predicted surface current value, using the associated»node average flux
values in Equation (22) and solving for this quantity.

Summarizing, to apply a NEM update after AN, outer iterations of the FDM routine, one

solves the two-node problem at a given interface, then (with the expansion coefficients known for

that interface) one calculates the NEM estimate of the net surface current using Equation ('1 6)

. . . =1, . . '
Finally, one equates this result to Equation (22), and solves for the value of Dg]fvf M which will be

used in the subsequent set of FDM iterations.
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I1.2 Outer-Inner Solution Method for FDM Equations
The only large matrix that requires solution for the non-linear iterative method is the FDM

representation of the multi-group diffusion equation. Much work has been done on formulating,
understanding and implementing the iterative solution of this large, sparse matrix system.
NESTLE takes advantage of this wealth of knowledge in its iterative solution implementation,
utilizing an outer-inner jterative strategy.

The “Outer-Inner Method” refers to outer iterations to update the fission source term and
inner iteration to approximately solve the resulting fixed source probiem.'The outer iterations
correspond to a “Power Method.” This method can be applied to both Fixed Source Problems
[FSP] and the Associated Eigenvalue Problem [AEVP]. Shortly it will be shown that both the
4ﬁxed source steady-state and tfansient problems are representable as FSP in NESTLE’s
formulation. Although the AEVP involves additional calculations for the eigenvalue, basically the
iteration schemes for both problems are similar. We will discuss the AEVP first.

Returning to Equation (5), the FDM representation of this equation in three-dimensional
Cartesian geometry within homogenous mode / can be expressed as follows:

L
LU=l 15l _ =l
2 C, 6, t4,0, = O, (24)
I'=1

where the non-zero values of the coupling coefficients {C;’ l,} are obtained via Equations(22)

and (23) and L denotes the total number of nodes. Substituting in the definitions for A; and Q;

into Equation (24) and rearranging terms we obtain

L G G
,l'-I' 1 ! i1 ~1 U _ Iy
)y C:; g + (Zzg—“:s“"'cg LEDY zsn.‘i’g' = = 2 VL0 (25)

Izl g'#g g

This equation can be written in terms of matrix notation spanning the spatial domain as
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= _ 1= 7
Oy = 2% > VT 0y (26)

where the “bar” over the node average flux value now denotes a column vector. Matrix A, has a

seven-banded matrix structure for three-dimensional Cartesian geometry. In turn, the G (L X L)
matrix systems expressed by Equation (26) can be collected to write the following single (GL X

GL) matrix system.

F§ | @7)

11

5:

el

The matrix 71 is block lower triangular in structure for that portion applicable to the fast groups.

The outer-inner iteration process is summarized as follows: For the AEVP specified by
. . . . = (0 . . .
Equation (27), given an arbitrary initial vector ¢( ) , the outer iterations generate successive

estimates for the flux vector ¢ by the process

() _ 1 =-1= 1

o7 = A (Fo'™) (28)

where how the criticality constant (i.e. eigenvalue) is updated will be discussed later. The iterative
matrix associated with the outer iterations is

—=l=

0=A F : 29)

The properties of the iterative matrix O has a significant role in determining the convergence rate

of the power iterations [9, 10].

In solving Equation (28), advantage is taken of the structure of the A matrix. For the fast
groups, solving from low to high energy group number results in energy group decoupling. This

implies that we may solve a system of linear equations of the form

= (@ < (9)
qu)g =Sg (30)
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where,

G
@9 _ vy 9, 1 = )
S = X Tyt + Xe D, VorZp g 31

For the thermal groups, NESTLE assumes the group fluxes for all other thermal groups
except the one being updated are known. This produées energy - group decoupling, allowing
Equation (30) to be utilized. So called “scattering” iterations are then completed after all thermal
groups’ fluxes are updated. Stationary acceleration is employed to accelerate convergence éf the

scattering iterations.

11.2.a Inner Iteration Acceleration

To solve Equation (30) we introduce the inner iterations. In this work we employ a Multi-
Color Point or Line SOR Method, depending upon problem geometry, for the inner iterations.
Specifically, a Red-Black Point or Line SOR method is used in NESTLE for two or three-
dimensional Cartesian geometry, respectively. For one-dimensional Cartesian geometry, a direct
matrix sélve is utilized since the group-wise A matrix is triangular allowing employment of
Gaussian elimination.

Mathematically, this approach is a multi-spliting method and can be expressed as follows.

"o It

b= @ q";p where vector Eﬁp spans nodes of color "p

_ 1 —1! _ p_l ;-(m+1) P :(m)
¢1§m+ ' = B, {S-*- Z pp' ®pr + 2 CopOp for p=12..F (32
=1 p=p+li

Hon

A= ®A p and non-square matrix A p equals rows of A that span nodes of color "p

19




A, =

Wil

P _

= Z'pp, for p=12..P (33)
p'#p

and

(m+1) = (m)

= (m) ~(m+1)
=9, +0@""" -0, ) (34)

Y

p

Note that the group g and outer iteration count (q) indices have been suppressed for clarity in the

above equations. The matrix Ep is square and has either a diagonal structure for the point scheme

or block diagonal structure composed of tridiagonal blocks for the line scheme. This implies that

=-1
the action of B, indicated in Equations (32) is simple to evaluate. A total of AN, inner iterations
per outer iterations are completed, this value determined such that the specified relative error

reduction from the O iterative error for the inner iterations is achieved.

To a priori determine the value of the optimum relaxation parameter, ® and AN, [which

are energy group dependent but dependence notation has been surpressed], it is assumed that the
iterative matrix associated with this inner iterative method is symmetrizable. This is not true since
the NEM corrections to the FDM coupling coefficients invalidate symmetry; however, these
corrections have been found to be relatively small so the symmetrizable assumption is acceptable.
Making this assumption, we can express ® in terms of the spectral radius of the associated Guass-

=G-§S
Seidel iteration matrix, p (L ), as follows,

) .
0 = (35)
L+ [1-p LSSy
=G-S  =SOR ‘
Clearly L =L (o) with ® = 1. Therefore, calculation of the spectral radius of the

associated Guass-Seidel iterative matrix is the heart of this procedure. The following summarizes
the details of the computational procedure used in NESTLE to obtain an estimate of the value of

o, which is based upon the DIF3D methodology [10]. These steps are completed for each energy




group.

(0)

Step 1. Starting with an arbitrary non-negative initial guess vector x* ', complete at least ten

Gauss-Seidel iterations in solving the following equation.

Ax =0

Step 2. Following each iteration with m >10, estimate the upper and lower bounds of the spectral

radii using the following equations.

—(m) —(m)
K(m)E X s X )
=(m) =(m-1)

(x" 7, x )
_ (m)
A" =pmax| b
(m-1)
X;
(m) x'('")
A =MIN| T
(m-1)
X
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Compute the corresponding relaxation factors given by

o™ = 2

1+ [1-20m) 17
o™= 2

1+ 1-2"
@(m)_ 2

1+ [1-2m 1

Step 3. Terminate iteration when either

2—p™

=(m) (m)
p— <
|03 [0} 3

or m equals a specified upper limit [10,11]. The optimum factor @ is then set to ™. This

test forces tighter convergence of ® when p (LG'S) is close to unity to ensure the required

numerical accuracy is achieved.

Step 4. Determine the number of inner iterations required for each outer iteration AN,, such that
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the value of AN, satisfies the following equation:

' =SOR AN, :G—S“ 2 2 12
Z () L = [Ban-1+t1an]  SE,

where

AN,-1
2

[ =G-S§

12 . —Gs__In
tyy, = [0-1] p(L )] [1+(AN,—1)(1-P(L )) ]

and € denotes the desired relative error reduction from the initial iteration to the end of
AN -th iteration. It is suggested that a very small number for g, not be used since it may

force excessive inner iterations [10].

The advantages of these accelerations strategies are clear. The automated determination of
the optimurn overrelaxation factors relieves users of the burden of the trial and error manner of
specifying optimum parameters for a large class of reactor models. In addition, substantial
computational time can be saved since the need to check the convergence of inner iterations has
been removed by using a fixed number of predetermined inner iterations for each energy group.

The outer iterations defined by Equation (28) are slow to converge, since the dominance
ratio of the iterative matrix, Equation (29), is close to one. Two complementary acceleration

techniques are utilized in NESTLE to accelerate the outer iterations of the AEVP.
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I1.2.b Outer Iteration Acceleration

The outer iterations for the AEVP are accelerated by using lihear combinations of the
previous iterative vectors as now described. The Chebyshev polynomials are used to obtain the
best linear combinations when there is no knowledge of higher eigenvalues [12]. The method
implemented is the Chebyshev Semi-Iterative method [9,10,11,13]. In this method, the error
vector associated with the acceleration method is expressed in terms'of a linear combination of
the error vectors of the underlying interactive method. Acceleration of the iteration is achieved by
minimizing the error vector by appropriate selection of the expansion coefficients, which is
determined to be those associated with Chebyshev polynomials. Further details of the

mathematical background of this method can be found in the related references [9,10].

Since the rate of convergence in the AEVP is dependent on the dominance ratio ¢ (——Q_) ,
the Chebyshev acceleration method detailed in Refs. [9,10,11,13] can therefore be applied to

iterations,

(@ _ 1 Z=(g-1

provided that a suitable estimate of ¢ (E) is obtained. NESTLE follows the DIF3D approach to

solve the AEVP in which we accelerate the fission source ‘P [13], where ¥ is defined as

¥ = Zlvg,zfg,¢g, (37)
g =

The accelerated iterative procedure can then be expressed as follows:

_—t 1 :-:(n'+p—1)
N BT} & (38)
k(" +p-1)
where
=@ +p T +p-1 n ey =0 +p=1) = +p-1) =(n +p=-2)
¥ =¥ +ap[‘}l‘ g T ]+Bp[\}' T ] (39)
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[e 2]

)7(n‘+p-1)

g+ _ 0 +p-1)

@™y )
alz—zz“
2-0(Q)
B,=0
4 cosh[(p-1)v]
% =500 " comlpyl

Bp= (1—@)0&1)—1

Y = cosh ‘1( 2: —1)
_ 6 (Q)

* . . - . .
n = outer iteration index where acceleration begins

and p denotes the successive fission source iterations employed (p =1) within a Chebyshev

cycle (i.e. since last updating the estimate of & (5) ). Note the dominance ratio ¢ (E) needs to be

estimated in order for the scheme to work. This is accomplished using the procedure implemented

in DIF3D [10] as now outlined.

Since an accurate estimate of 0(@) is not known when the outer iterations are

commenced, a “boot-strap” process is required. By performing a limited number of power
iterations, a reasonable initial estimate of & (@) is obtained. Only when all but the first overtone

mode are essentially damped out, high-order cycles based on accurate estimates of ¢ (E) are
utilized [10,14]. More precisely, the algorithm can be described in terms of four basic steps:

Step 1. A minimum of three power iterations are performed initially. The first Chebyshev
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. . . . * .
acceleration cycle is begun on outer iteration (n + 1), where (n* + 1) is the smallest

integer such that n" 23 for which the dominance ratio estimate, & satisfies the following

criterion:

where

172

=(n") 5((n")
o= {_ELRTD
— oD —(n -
®" VR

sy =(n" -1
R =9") g

Step 2. Using & as the dominance ratio estimate for ¢ (Q) , the accelerated iterative sequence

given by Equations (38) and (39) is carried out for iterations (n* +p) with p21. At first

low degree polynomials are applied repeatedly with estimates of the dominance ratio

being updated continuously according to

cosh = (7) } oD
P

o - o]
0‘—§COS 1
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2-0
Y= Cp -1 (T )En"‘,p-l

5 ' e = +p-1)
| ”lp(n ) _5 “2

n*p-1 "~

. = (n)
”‘P(n +1)_lP )

Cp_1 (y) = Chebyshev polynomial of degree (p—1)

'=cosh[(p—1)cosh —1}’],}’>1

The polynomials are at least of degree 3 and are terminated when the error reduction

factor E,. ,_,is greater than the theoretical error reduction factor:

The theoretical error reduction factor is the error reduction which would have been

achieved if & were equal to 6 (Q) , the true dominance ratio. If R is greater than
this, the acceleration cycle has not been as effective as it should have been, so a new cycle

is started using the updated dominance ratio estimate, 5.

Step 3. After the estimates for © (5) have converged higher degree polynomials are applied.

Step 4. The outer iterations are terminated at outer iteration » if the following three criteria are

met:
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(n) (n-1)
k™ -k Vl<e,

- =(n-1)
[z -5"7",
=(n-1) 172 _ewz

(n)

SO S
s (n) \P(n_l)
——)Ymax,| ! { <€
(T mex g () o

where € , and Ey_are input parameters.

v &y
It should be noted that a modification to this basic scheme is made in the actual

implementation in NESTLE of the Chebyshev polynomial acceleration. Due to various thermal-

hydraulic feedback effects, to be discussed later, the coefficient matrices A and F in Equation
(27) are changed whenever such effects are accounted for in the system. That is, since feedback

effects change cross sections and are dependent upon the flux solution, our matrix problem is truly
non-linear since A and F depend upon the flux solution. Since the non-linearity is weak, one can

guess a flux solution, determine the feedback effects and appropriately modify A and ?’ and

solve for the flux. This updated flux solution can then be used to reinitiate the cycle until both the

feedback and flux solutions converge. One way to handle these effects is to update the Z and F
matrices after complete termination of the outer iteration process. This approach has a clear
disadvantgge in that it requires large computational time to obtain converged solutions for
feedbacks and flux. An alternate approach is to update the coefficient matrix for feedback effects
during the Chebyshev acceleration process. In doing so, a substantial reduction in computation
time can be realized. The latter approach can be justified by observing that the feedback effects

are relatively small perturbations to the original system from a reactor physics point of view and




hence, the entire Chebyshev acceleration scheme is not jeopardized. This modified scheme is
incorporated in our work in such a manner that the matrices are updated just before a new
Chebyshev polynomial acceleration cycle begins. The same approach is taken in regard to
updating the NEM corrections to the coupling coefficients. Figure (1) summarizes the overall
nested iterative solution strategy used within the NESTLE code. This strategy has been

demonstrated to be efficient and robust.

-

NEM Non-Linear Iterations
—-

Thermal-Hydraulic Feedback Iterations
o
FDM Outer Iterations

>
FDM Scattering Iterations

__——+
FDM Inner Iterations

Figure 1: Overview of NESTLE nested iterative solution strategy
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I1.3 Steady-Stéte Fixed-Source Problem

Real reactors utilize fixed neutron sources to facilitate start-ups and assure high enough
count rates for nuclear instrumentation used for control and protection. We refer to the analysis of
this situation as a Fixed Source Problem [FSP]. Mathematically, the multi-group diffusion
equation for a steady-state FSP is as follows,

G G :
-V DV, +%,0, = lesgg,¢g, + xggzlvg,zfg,¢g, + S (40)
g = =
where 7 dépendence has been surpressed and S, xt, denotes the extemai neutron source

This equation can be solved utilizing nearly exactly the same method as utilized for the

AEVP, except now S,,, appears on the RHS in the NEM equations associated with the AEVP.

tg
This applies to both the FDM equation and two-node problem equations. The biggest difference
in the solution of the FSP versus AEVP originates because the FSP does not involve determining
the fundamental eigenvector. This impacts the outer iterations of the FDM equations in the

following manner. For the AEVP, the rate of convergence of the Power Method is determined by
the dominance ratio of the outer iterative matrix, ¢ (5) ; by contrast, for the FSP the rate of
convergence is determined by the spectral radius, p (5) , where note that, p (-_Q-) = keff. The
implication for the Chebyshev Semi-Iterative method is whenever G(_—Q—) appeared in the
governing eciuations, it should be replaced by p (5) . The other implication is that the FSP versus

AEVP outer iterations will converge much slower since G (5) <p (5) =k eff = 1 for problems

of interest. A special implementation of the Coarse Mesh Rebalance method, as now described, is

utilized for the FSP to accelerate convergence.
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11.3.a Fixed-Source Scaling Factor Method

When the FSP is near-critical (i.e. p (5) approaches unity), convergence rates even with
Chebyshev acceleration are unacceptably slow. This convergence is slow even when the iterative
: flux shape is correct but the magnitude is in error. To accelerate convergence of the flux
magnitude, a global coarse mesh rebalance [12] is propoéed. Application of a single scaling prior
to the start of a new Chebyshev acceleration cycle sometimes can significantly reduce the
required number of outer iterations. This reduction is achieved by an approximate procedure that
attempts to scale the current iterative flux vector to the exact flux vector.

For steady-state the FDM based matrix equation analogous to Equation (27) is
(3-8 = 5. (1)
Now assume that the qm outer iterative estimate of the flux has the correct shape but is off only in
magnitude by a factor of ¢@ from the exact solution, i.e.
o= C(q)a)(q) ‘ (42)

Then it follows that an improved q‘h iterate is given by

= (@) -
= 95 (43)

or in terms of the fission source

—(q) y= (@)
Y

= c(q y (44)

= (q)
where W is the Chebyshev accelerated fission source. The fixed source scaling factor, @ s

defined so as to preserve neutron balance in an integral sense. Utilizing Galarkin weighting

defines ¢ as follows

=(9) <
KON 0, Sexr) @)

@7, @A D) -F(c")8')
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This method does differ from the fundamental mode contamination adjustment approach used in
DIF3D [10].

The dependence on the scale factor of the matrix operators indicated in Equation (45)
originates because of thermal-hydraulic (T-H) feedback, implying the solution of Equation (45)
for ¢@ involves a non-linear root search. Difficulty in this search originates because the Equation
(45) RHS has a singularity, which is addressed as follows. It is known that when the reactor is
close to critical, the flux can be approximated by the AEVP flux. This implies that the Equation

(45) RHS can be approximated as

WG NONS
- o(c™) (Q)_ » Sext) (46)
1—7\.0(6((1)) (6(4)’F(c(q))$(l])>

where 7\,0 is the eigenvalue (i.e. 7\,0 =k eff). Since the second bracketed term varies much slower

than the first bracketed term as ¢@ varies for a near critical system, the second term is treated as

constant. We next assume that 7\,0 (c @ ) varies linearly with @,

by (C(Q))_x (C(Q))
@) = g (@ 4 082 011 @) _ (@
A (cP) = Ay (c[P) + CROR (¢ =e;®) (47)
2 1

The values of A, (cl(q)) and A, (cz(q)) are obtained by explicitly evaluating the Equation

(45) RHS for the two scale factor values and using the resulting values in Equation (46) to solve

for A, values. Substituting Equation (47) into Equation (46), and using this equation as the RHS

of Equation (45) produces a quadratic equation in terms of 9, with one root denoted céq) being

the desired value. For a steady-state problem the following steps are completed to implement the

just noted procedure:

. . . = = —(0
Step 1: Calculate 0'" outer iterative operator estimates Ay and Fy, based upon flux = ¢( Y fux

used in T-H feedback calculations and accounting for external parameters (e.g. control rod
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position).

Step 2 Solve the FSP iteratively for a fixed number of outer iterations (g) .

Step 3: Set ¢ l(q) = 1 and calculate the following: operator estimates A; and F, by repeating

Step 1 using flux = (Step 2) flux, Equation (45) RHS, and A, (cl(q)) .

Step 4: Set céq) = (Step 3 Equation (45) RHS) and calculate the following: operator estimates

A, and '}2 by repeating Step 1 using flux = céq) x Step 2 flux, Equation (45) RHS, and

Ao (céq)) .

()
3

Step S: Solve quadratic equation fof c,”’ and calculate operator estimates :_&3 and ?3 by

repeating Step 1 using flux = céq) x Step 2 flux.

This basic process is repeated every so many outer iterations as specified by user input.
The just noted method scales energy groups equally, thus it does not account for the
energy spectrum shift that occurs as a result of T-H feedback. This is important in water reactors

due to the dependance of moderating power on water density. This effect can be approximately

accounted for as follows: Assume that leakage can be approXimated byaD ng treatment and the

Prompt Jump approximation can be used to estimate the flux energy spectrum shift. The values of

B; are spatially dependent and obtained from the current estimate of the flux distribution and

prior to the scale factor impact on cross-sections via T-H feedback (i.e. after Step 2). Specifically

for a two-group problem, suppressing spatial dependance notation, we obtain

32—(1)2 07 > 48
2‘1“)_2 rl@ a2 (48)

Now an improved estimate for the flux ratio can be obtained as follows, where cross-section
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values now reflect the scale factor via T-H feedback (i.e. during Steps 3-5).

D ( i(q))B2+E i(‘]))
(¢1) B 49)

% J; z, (?)
We are now free to set either ¢, or ¢, to the Step 2 flux value, and using Equation (49) solve for

the other group flux. NESTLE selects ¢, in its implementation and solves for ¢, . The above

method can be generalized to a multi-group formulation and is done so in the NESTLE
implementation for the case G=4.

The scaling process car; be very effective in obtaining the correct flux magnitude. This
avoids a serious problem associated with FSP type problems, which is particularly troubling when
the initial guess of the flux is higher than the converged value (i.e. approaches from above).

However, when the reactor is very close to critical, the scaling process may break down. This is

because with high neutron multiplication, fﬁ) and F¢ are nearly equal and are much larger than

S, which implies that to get an accurate estimate of (A — F) ¢ a very accurate estimate of the

shape of ¢ is required.
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I1.3.b Nodal Model - Hexagonal Geometry
I1.3.c Eigenvalue Problem

Utilization of NEM for Hexagonal (Hex) geometry introduces several cornplicétions not
encountered for Cartesian geometry, originating because the surfaces of the Hex do not all align

‘with the Cartesian axis. This can be seen in Figure (2)..

S
-
|
]
<

] Sl
.
=0

~ i

Figure 2: Hex geometry dimensions and axis orientation.

R.D. Lawrence addressed these difficulties in implementing the Hex NEM option in DIF3D [15].
NESTLE utilizes this earlier work, now adapting it for implementation within the context of the
non-linear iterative method which facilitates utilization of a higher order transverse leakage
treatment.

The derivation of the governing equations for Hex-Z geometry follows the same general
approach as for Cartesian geometry. Introducing the transverse directions u and v noted in Figure
(2), the nodal balance equation over a Hex is given by

() [Lg +Lg +Lg) +(L)Eb+alsl =0 (50)
3h “ v A7 % eTe
where the L’s denote as before face-averaged net leakages. Let us first consider the radial plane.

By transverse-integration of the diffusion equation over z and y, the one-dimensional balance
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equation in direction x is obtained.

A y, (x) ¥, (x)
dj“m’q;’ ® = 0. D—2j. x| - | &L, &y (31)
2z 8%, %) T L, ﬁ’x,, 24 NP 8
] ‘)’,

where y_ (x) denote the upper and lower boundaries of the Hex for a given x value; that is,

1

Y, (x) = ﬁ(h—lxl) for x e [—E I—’J B (52)

2’2

jé (x) denotes the transverse-integrated current in the x direction

AZ
2 W™

b = [ dz [ ay-DiLel(xy2) (53)
-AZ -y (x)

2
j; (x, 2y, (x)) denotes the z-integrated, surface-normal components of the net current across the
Xy

u and v directed surfaces

AZ

2
Jg, 5%y, (0) = F [ deDjhy VoL (a3 2y, o (54)
A7

2

and L; (x,y) denotes axial leakage defined by

B>

z
I4

! __plod 2
Ly, (%) = —DyZ-6, (%,%.2)| | , (55)
2

Two additional equations can be defined in a similar manner for the u and v directions.
Note that these quantities are neither volume nor surface averaged, which differs from the earlier

derivation for Cartesian coordinates. This difference arrises since taking the derivation of the
surface-averaged x-directed current appearing in Eqn. (51) would involve derivatives of y L (X)),

which introduces algebraic complexity as now discussed.
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To solve Eqn. (51) using NEM the one-dimensional surface-averaged flux is expanded in
terms of a polynomial expressed as indicated in Eqn. (7) with N=4. The expansion functions f;(x)
for n = 1 and 2 are selected as béfore, indicated in Eqn. (9). However, due to the behavior of

¢g (x) with x, the functions f,(x) for n = 3 and 4 must be selected differently for Hex. To see this

need, evaluate the transverse-integrated current in terms of the transverse-integrated flux, utilizing

their definitions and Fick’s Law to obtain

!

d
Jg, (0 = ~DF 4+ Dy (D) [0 (55, (0)) +8 (=Y ()] (56)
where
A7
2
l = ! :
o, (xy) = [ dzg(%%.2) (57)
-A7
2
Now
’ 1 ' '
Y5 (%) = ——=sgn (%) (58)

J3
is discontinous at x = 0, the node’s center-line perpendicular to the x-direction. Since the

transverse-integrated current and flux must be continous everywhere, Eqn. (56) implies that the

first derivation of the transverse-integrated flux must be discontinous at x = 0; in particular

: ld¢lg 2Dlg ! l
E@OL_D@ ) = 0 () + 4 (5, ()] (59)

To capture this discontinuity and satisfy Eqns. (8) and (10), the functions fj,(x) for n = 3 and 4 are

selected as follows.
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10 x2 1. 3 % g 1. (60)
- +§§ (E)(E_i)

B & © 2107

We again have a problem with five unknowns per node and group. Continuity of
transverse-integrated current, discontinuity of surface-averaged flux, and the nodal balance
equation provide three of the required five equations. The jump discontinuity condition given by

Eqn. (59) provides an additional equation, which can be shown to produce [15]

I _ gl
ang) - ng(O) (61)
where
E, () = 0L (x,y,(0) +0. (x, =y, () =28, (%) (62)

Assuming expressions for q); (x,ty,(s)) in terms of node average flux and expansion
coefficients can be obtained, one then has five unknowns and four equations implying one
additional equation is required. This is provided by a Weighted Residual Method, where the
weight OR (x) is defined as

®, (x) = sgn(x) (63)
Using this weight in a Weighted Residual Method in conjunction with the nodal balance equation

can be shown equivalent to preserving half-node nodal balance on each half of the Hex node. The

Weighted Residual Method equation that results is

D! ' D,
. g l=l =l 2 - =l = 1 = 405,
AR, = O R T T T - s 90,

where the following definitions have been introduced

=1

.q_);x] a;xl : Lgul
! ! 1 ! Az 7 (65)
V (0, (), ¢Sx (%)) N (0, (x}, ng (x)) T (o, (x), j dyL;z (x¥))

-y, (x)




7 - 3k

= -—-((o (x), ]g (x,5) |y’( %) [u directed component ] )

Az ~h!2

hi/2 ‘
=[ 1 }[ [ axil, (x-y, ) + j dxfl, (x,ys(x))] (60)

-1 -l
= Jou (=h12) +]gu (h/2)

Substitution of the polynomial expansion for the transverse integrated flux into Eqn. (65) gives

=1 —=l1 . . .
and in terms of the expansion coefficients.
gxl gx1 p

. . . =l .
To solve the above equations, we require expressions for E;x (0) and L, in terms of

the node average flux and expansion coefficients. As with Cartesian geometry, the transverse
leakage in the z-direction will be approximated by a quadratic polynomial. Specifically, following
Eqgn. (12) one makes the following approximation

¥ (8)
~1
[ avLy, (xy) = Lee+pL,fy () + 04 afy (0) (67)
=¥, (x)

2
J3h
where f; (x) and f, (x) are defined as previously for Cartesian geometry.

To obtain the expression for Efgx (0) it can be shown that via a Taylor series expansion

about y = 0 that

E, (x) = —E%T [2y, ()12, (x) +0 (K% (68)
g

where the y-directed leakage is defined as follows.

¥, (x)

L,(x) = (x)[ DLa xy(x,y)}

(69)

-y, (x)
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Using the “two-step” approximation (i.e. assuming constant transverse leakage over each half-

node) produces

L;y_ for xe [~h/2,0)
£ (x) ( . (70)
Lgy+ for xe (0,h/2 ]
where
2 ¢ 9 *) '
1 ! v, (x
8)’- ;I J dx-D _—‘q)gxy( y) i—ys(x) (71)
—hi2
5 hi2
! = _ I ¥, ()
Ley+ = Vv J dx D ¢gxy( %) I—y,(x) (72)
0

Using this approximation and ignoring the 0(h%) term in Eqn. (68) gives

EL(0) = S[EL(0T) +EL 0 *)] 73)
L (0 Ly ’ 74
— 1 £ + L
Ey, (0) = ng[ - Ly 79,
To complete the evaluation, expressions for Léy _ and L‘Igy + In terms of node average flux and

expansion coefficients must be determined. This is done via manipulation of previously
introduced equations and definitions resulting in the following expression, recalling Eqn. (61)

26 h

189 Dl
Dy

d = EL(0) = [Ty +LL) __@g (;./2)+q>g (-hl2) - 28] (75)

Since the transverse integrated flux is a function of node average flux and expansion coefficients,
Eqn. (75) involves only the unknowns being sought except for the leakage terms.

To complete the formulation of the Hex problem, from Eqn. (56) one recognizes that
expressions for ¢; (x,xy,(x)) at x = £h/2 in terms of the working unknowns is required to

evaluate the surface currents. From Eqn. (56) the expression for the face-averaged transverse-

integrated current can be obtained
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. - y, (x)
for = ~ D%, (x) +Drs XE) E,. (%) (76)

X

Again an expression for E;x (x) in terms of the working unknowns is required, this time

evaluated at x = +h/2. Using the “two-step” approximation produces

! _ 11
Ey(#h/2) = g Ly

8

(17

and substituting in the expression for Li,y 4 gives the following resul;s..

E (W) = —%iz {17 Ggu (W) =Jgy (=h D] +2 gy (W12) ~ju (D)
o (78)
-1 i )
[179¢ (h12) +49¢,, (=h/2) ~ 228¢ 1+ 130 gx3

1235
and

1

d
Eex (h12) = ~g5— o

{2 [Jgu (h'2) ng (-W2)1+17 [ng (h12) Jgu (-h/2)1}
(79)

[4% (h/2)+179¢gx(—h/2) 228¢]+130 g3

1235
By combining Eqn. (76) and either Eqn. (78) or (79) we obtain an expression for the
surface-averaged transverse current in one direction in terms of currents in the other Hex

directions. This does not succeed in eliminating current as an unknown as we desire. This can be

addressed as follows:

Since Ei,x (x) at x = xh/2 are truly continous since the fluxes defining it via Eqn.(62)

are continous, and the surface averaged transverse-integrated current is continous everywhere,
Eqn.(76) implies that the flux derivative appearing in this equation must be discontinous at

x = th/2. Employing the above noted properties, the current continuity condition produces the

following.
I ni+1 i i+ 1
i (h12) = _ﬂ @8 +iq_)8 (80)
Jex Dl pitl| dx dx
g+Dg hi2 —hi?2
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This expression for current is in terms of the expansion coefficients as desired.

Utilizing Eqgns. (50), (64), (75), (76) through (79) in the surface-averaged current
continuity equation, surface-averaged flux discontinuity equation, and various auxiliary equations
relating currents and leakages to flux, we arrive at 13 equations for the 13 unknowns per node per
energy groups when considering the x, u, and v directions. Deferring the two-node problem
formulation, the z-directiog transverse integrated equations will be now developed.

The z-direction transverse integrated equations development follows that for Cartesian
geometry- except for the transverse leakage terms in the radial plaﬁe. The transverse balance
equation is given by

1

< —1
Lo (2) + A, () = Vg (2) = V, L@ ‘ (81)
where the radial plane transverse leakage is defined as
R2 ¥ (%)
L, ()= [dx | dy[ Ljien (5,3,2) + yzgy<x %) ] (82)
=hi2 -y (x)

This equation is solved assuming a quartic expansion for the transverse integrated flux as
used in Cartesian geometry. The nodal balance (Eqn. (50)), first and second moment Weighted
Residual, surface-averaged flux discontinuity, and surface-averaged current continuity equations
provide the required number of equations.

The moments of the radial plane transverse leakage that enter the Weighted Residual

equations are evaluated utilizing the quadratic approximation to obtain the within node shape; that

18

=1 =1
Lgxy (2) = Lygxy+ Py f1 (2) + Py 2 (2) (83)
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(84)

and hence

I, =L +To,+1h (85)
The expansion coefficients in Eqn. (83) are defined as before [see Eqns. (13)-(15)]. Since the
derivation of the Weighted Balance equations is identical to that presented for Cartesian geometry
except as noted above in regard to transverse leakages, the interested reader is referred to the

earlier presentation.
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I1.3.d Non-Linear Iterative Strategy

For Hex-Z geometry, the non-linear iterative strategy is applied the same as for Cartesian
geometry. For each surface of a node, a two-node problem is solved to obtain the NEM predicted
surface-avéraged current based upon the FDM flux solution utilizing corrected coupling
coefficients. The corrected coupling coefficients are determined demanding that the FDM and
NEM predicted currents agree. In the radial plane for Hex geometry, Equation (23) is modified to

read as follows.

phFDM 2D éD i’H (86)
gx+ D!+ pi*l
g g

Hex Directions (Example - x direction):

Flux Discontinuity

I I I [+1 , I+1 _ I+1 I+1 gl+1 _ 4l !
dgx+ (agx1+agx2)+dgx— (agxl gx2) z[dgx— g+ —dgx+ ¢g] (87)
Current Continuity
T (3306 1
Dy ) e * (a3 et ( )“m (")a;ﬂ‘}
1+17,2340 41 3306 2] I+1 I+1
Dy [(247 ex1 ~ (1233) Gex (65) xx3+( 24 3*41 (88)
~(302) (17 iy (W12 =Ty (h12) +igs (1255 (i) ]
+2Ugu(h/2) -jgv(—h/Z) +jgv (n/2) —jgu (-n2)]1)
Center Node Jump Condition
8 26 hY =1 =
(37) Bhaa+ by = = (133) [;;,)(Lguugv) (89)
g
Nodal Balance
D' 7068 & -
‘[ ) 572 [(1235 Gex2 ™ (845 gﬂ] =-A0+ T Qply
g =g - (90)

2 1 Nzt
- () g9 Lgu+ Ly - (A—Z—,)ng




0Odd Moment Balance

(S 3 (B bt pm o)

2‘, 0Ly [ - (g aln] = 1)

g'#g
~G )( ) L= () (5 (T -Taul
These equations are supplemented by the following auxiliary equation obtained from

Equation(80)
& (i2) D;D;H (1) (@ 'y 36)( ! 11y
x =T gy x1 T ag2) T {53 x2~ %gx +
s (D;+D‘g+‘) h [“8 1+8g:2) * (33) (G2~ gm :l 92)

< 55) (ders =) * (5 1) (@ +3ald)

Do note that for the u and v directions, the following mappings of surface currents occur, which
impacts the signs of the leakage terms on the RHS of the current continuity and odd moment

balance equations:

u direction: XU V==X, U~V
v direction: XDV, U—>—X, VU
Axial Direction:
Flux Discontinuity
! ! [+ 1 I+1 [+1 I+1 7I+1 ! =1
ng+ [agZl +ag22] +ng_ [agZl gz2] 2[ng_ -d 22+ ¢g] (93)
Current Continuity
Dl Dl+1
e ! 1, V. " 141 _atet e 1 e _
N I:agzl +3ag22+ 5a323+ gagz4:| F[anl 3agZz + 2ag23 'gagz4:| =0 (94)
Nodal Balance
D, 1 2 2 -1 =1 = PR !
_|_& v ! ey - (2N (T 7 T _aly ! 7
5 Z,](A [tk @atee] = - G TaoTour B =435+ X 03,80 (95)
g 2g

First Moment
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60 D; 11
(D)(Az) g 323 2 Qgs gz3 10Ag gzl+102st gzl T 10(3h)pg.tyl (96)

g g'=g
Second Moment
140 ( Dj ¢
g 11 11
[:(A_')(A_) s] Ggza™ 2 ng “4-3514303224'35 2 Qpegn2 = ( )pgxyZ o7
z z g'*z - g'*g

For the z-direction, the same matrix structure as for Cartesian geometry results allowing
rearrangement of the associated two-node problem coefficient matrix to achieve reducibility. For
the x, u, and v-directions, the two-node problem for two groups can be reduced from a 16 X 16
matrix problem to four 2 X 2 matrix problems and one 8 X 8 matrix problem. For four groups the
32 X 32 matrix problem can be reduced to eight 2 X 2 matrix problems and one 16 X 16 matrix
problem. The associated matrix problems are solved analytically to reduce floating point
operations required. Having solved the two-node problems, the corrections to the coupling

coefficients can be obtained as previously indicated in Equation (22).




I1.4 Transient Problem

Under transient conditions, both the multi-group diffusion equation and delayed neutron

precursor equations must be solved. These equations, accounting for an external neutron source

and utilizing six precursor groups, are given by (suppressing r and t dependences for clarity):

G G I(D)

1 a¢g P (» o o

o T 2 IOt (BT X VBt DX MOV DV R0yt S, 8)
g"_‘] . g'= i= -

and

(D)

aC; G .
5 =B zlvnggq)g—xic,. for i=1.. (99)
g=

where the notation is identical as before except as now noted.

Vg = neutron speed for energy group g
xg(P ) = fraction of prompt neutrons born into energy group g

(D) = fraction of delayed neutrons for precursor group i born into
Xei y! P

energy group g

C; = NEeutron precursor concentration in precursor group i
li = decay constant for precursor group i
Bi = fraction of all fission neutrons emitted per fission in

precursor group i
B = total fraction of fission neutrons which are delayed

Alternately, the ‘eigenvalue initiated” transient equations can be obtained from Equations (98) and
(99) by setting S ext, = 0 and by replacing vg}:fg with (ng fg) /k everywhere.

The neutron kinetics equations, Equations (98) and (99), involve differentials in space and
time. The time dependence is a difficult problem to treat in neutronics modeling due to the

stiffness of the associated equations. The time constants range from very small, associated with

prompt neutrons, to very long, associated with the longer lived precursors. NESTLE numerically
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treats the temporal dependence in a manner that results in a FSP, which can be solved utilizing the
methodology developed for the steady-state FSP.
The first step in this conversion to a FSP is to discretize the time domain into discrete

times {t,}and to approximate the time derivative of the flux at time t,,; by a backward difference.

30, 0, (t,,1) —0, (1)
i - - (100)

n

n+1

This assures unconditional stability. Do note that spatial dependance notation has been and will
continue fo be suppressed in the equations.
To develop an expression for the precursors’ concentrations at time t,,; in terms of the
flux q>g (7, 4+1) » Equation (99) is solved utilizing the Integrating Factor method over time span [t,,
t,+1] to obtain
iy G

Ci(tyey) = Cyt)e 4B, | Zug .0, (1) e

tg-

-A, -y .,
=0 gy (101)
To solve the above integral, a functional form for the time dependent neutron fission source must

be assumed over time span [t;, t,,;]. Consistent with the backward difference operator

approximation for the time derivative of the flux, the fission source is assumed to vary linearly

between time-steps,

¢, (tn 1) o, (1,)
Ve fgq) (0 = Ve fg¢ (7,) + i fg 1At = fg (t=1,) (102)

n

Incorporating this approximation into Equation (101) and rearranging terms, we obtain

G
-AA
Ciltyy) = Cilie "+ F) Y v,T

g=1

¢,(1,) +F; zv ¢ (1, ) (103)

g fevg g fgts




(104)

B

2 (1= (105)

[4

F(.’=—F3+

Now substituting Equations (100) and (103) into Equation(98) one obtains

1

G
m—¢g(tn+l) _V ’ ng¢g(tn+l) +El‘¢g(tn+|) = 2 Esgg'¢g'(tn+|)
2 g =1

(106)

@ G
P D 1
+ {(1 -B)X; ) + Z xg(l )A'iFin} 2 vg'zfg'¢g’(tn+l) +S¢ffg(tn+1)
i=1 g'=1

where

2 G "m :
D (D ')‘iA‘n !
Segr, Una1) = [Z x )).iFﬁ Y Ve E e (1) + ngi INCit)e ]+—_A[ Og () *+Soy (1) 107)
i=1 i=1

8t v
g =1 ne
In Equation (106) all cross-sections are evaluated at time ¢, ;. Inspection of Equation (106)

indicates it to be a FSP, with modified operators and source from the steady-state FSP. We refer to
Equation (106) as the transient FSP. Hence the application of NEM to the transient FSP and the
iterative solution of the resulting coupled equations can proceed exactly the same as for the

steady-state FSP. As would be expected, the values of flux and adjusted FDM coupling
coefficients at time ¢, , for the 0 outer iterative step are based upon their values at time ,,.

If we proceed in this manner, in the two-node problems spatial moments of S eff, (t,+1)

would appear. As Equation (107) indicates, Seffg(l‘Hj) is dependent upon {¢g(tn)} and
{C;(z,) } . The implication is that the expansion coefficients associated with the transverse

integrated fluxes, obtained from solution of the two-node problems, at the previous time #,, must

be saved. The same is true for the precursor concentrations, which are treated like the flux for time

dependent problems solved by NEM. This would substantially increase the computer memory
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requirements.

" To overcome this difficulty, further approximations are required in formulating the two-
node problems. Recognizing that the within node spatial dependence of S, (#,,1) is associated

with the contributions from the delay neutrons and the external neutron source, that the external

neutron source is assumed to be constant within a node, and that these contributions of neutrons

are small, one would expect Seffg (t,.1) within node spatial shape to have little impact on the

solution. This justifies treating S eff. (tns1) spatial dependence approximately. In NESTLE this
g -

approximate treatment is done in the same manner as for the transverse leakages; that is, using a
quadratic polynomial as indicated in Equation (12). Now oniy node average values of the flux and

precursor concentrations at time £, must be saved. The node average precursor values are solved

for via back substitution using Equation (103) after the node average flux has been computed.
This implementation does create one problem that must be addressed. Since different

spatial treatments are used at times ¢, and ¢ the solution of the steady-state FSP and the

n+1°
transient FSP, now for steady-state conditions, will not agree. The practical consequence is that
when one utilizes the steady-state FSP solution to determine initial conditions for the transient
FSP, the flux will undergo a very mild transient with time even when the initial steady-state

conditions are preserved. This annoyance can be avoided by regrouping terms in Equations (106)

and (107) as follows.
VoD VO (1, 1) +,.0,(4,,) =
G G _ (108)
,lesgg’q)g'“n“) T Zlvg'zfg’q)g'(tnﬂ) MEC/AUY
g = 8§ =
where
I(D)
X = =B+ x> (109)

i=1
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Seff, (1,41) = {27(;. )XiF,.n-B,.x;i )3 z VgL b (1, ,1)
- g'=1

i=1

(110)

1

Atnvg

¢g (tn+l) +Sefg (tn+ l)
Equation (108) is recognized to be identical to the steady-state FSP except for the replacement of

S

ext, with the modified effective source S’eﬁg. Under steady-state conditions, S'effg equals S ext,

since all the additional terms in Equation (110) cancel. This is true even for the moments of

Seffg (t,,,) that appear in the two-node problems provided the within node spatial dependence is
treated consistently for the variables appearing in Equation (110) at times ¢, and #,,;; in
particular, when they are all treated by a quadratic polynomial as previously indicated by
Equation (12) for the transverse leakages. The implication is that the transiént FSP under steady-
state conditions will produce the same solution as produced by the steady-state FSP. This
approach has been implemented in NESTLE.

Since the values of node average flux at time ¢, ;, the unknowns, now appear in the
modified effective source, an iterative approach is required. This is easily accomplished within the
context of the non-linear iterative method of solving the NEM equations. Recall when solving the
two-node problems, node average fluxes are assumed known based upon the latest outer iterative
values available for the FDM equation’s solution. For transient problems, this corresponds to

node averaged flux values at time ¢, ;, which are precisely the values requires to evaluate the

moments of S eff, that appear in the two-node problems. This approach 1s utilized within NESTLE

to assure the steady-state FSP solution does not “drift” when used as an initial condition in the

transient FSP.



I1.5 Adjoint Problem

The adjoint solution to the few-group neutron diffusion equation for the eigenvalue
problem is of interest. This follows since the adjoint flux can be used to estimate the effect on the
reactivity of perturbations via the Raleigh quotient, derived from perturbation theory; and, can be
used to estimate kinetics parameters utilizing point-reactor kinetics theory. For these reasons, the
ability to solve for the adjoint flux of the eigenvalue problem has been incorporated into the

NESTLE code.

For the FDM solution, the development of the equations that need to be solved and their
solution are straight forward. The matrix system that needs to be solved for the adjoint flux is
obtained by transposing the matrices of the matrix systerﬁ that is solved for the ‘forward’ flux.
Since the matrices on a per energy group basis are symmetric in space, the only non-symmetric
components occur because of energy group coupling originating from scattering and fission. The
transpose of the matrices associated with fission and scattering are easily taken and the resulting
matrix system solved. Since down-scatter now becomes up-scétter for the transposed scattering
operator, one solves the few-group diffusion equation by sweeping from low to high energies (i.e.
from high energy group number to low energy group number) in the outer iterations. Thermal
scattering iterations are completed if up-scatter exists in the ‘forward’ problem.

For the NEM solution, the situation is more complicated. Mathematically the adjoint
solution we seek should not only include the group fluxes but also all the expansion coefficients
for the transverse integrated fluxes. This implies that the matrices we should be transposing not
only correspond to the nodal balance equations, but also include all the transverse integrated flux
constraint equations. These matrices never really appear in the nonlinear NEM iterative method
like they would in a more traditional surface current response NEM solution methodology. To
overcome this incompatibility and to greatly simplify the adjoint flux solution for the NEM, it is

assumed that the diffusion coupling correction coefficients that originate in the nonlinear NEM




iterative method do not change when the core is perturbed. When using the Raleigh quotient to
estimate reactivity changes due to core perturbations, this implies that the resulting perturbations
to the matrix operators do not include perturbations to the coupling correction coefficients. Since
the coupling correction coefficients can be thought of as corrections to the normal FDM diffusion
coupling coefficients, this approximation should be acceptable for many applications involving
estimating core reactivity.

Having made the above assumption, one need no longer be concerned with evaluating the
adjoint, transverse integrated flux expansion coefficients, since the& only couple to the flux
solution through the coupling correction coefficients. Therefore, to obtain the adjoint flux for the
NEM one follows exactly the same procedure as for the FDM, except that the coupling conécfion
coefficients determine by the ‘forward’ solution appear in the matrix operator. A'Since these
coupling correction coefficients make the spatial originated component of the matrices non-
symmetric, this must be treated in addition to the non-symmetry in energy groups. This causes no
practical problems within NESTLE, where now the transpose of the energy group dependent
matrices that appear in the inner iterations are utilized.

A final point needing discussion in regard to solving for the adjoint flux concerns the
treatment of cross-section feedback corrections. In NESTLE all feedback effects due to thermal-
hydraulics and the transient fission products are frozen at their ‘forward’ solution determined
values. This implies that before an adjoint solution can be completed, a ‘forward’ solution needs
to be completed to obtain the feedback corrected cross-section values. This is done automatically
by NESTLE when the adjoint solution option is selected.

To facilitate subsequent utilization of the adjoint flux solution, NESTLE contains the
option to write out to a user specified file its values as a function of spatial node and energy group.
In this manner other computer codes can utilize this file as input to evaluate, for example, the

core’s reactivity response to perturbations employing the Raleigh quotient.
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I1.6 Cross-Section Model

NESTLE has the option of utilizing a macroscopic or microscopic cross-section model.
The macroscopic model determines the macroscopic cross-sections used in the diffusion equation
solver by characterizing them as a function of the following: node burnup; color (where color
refers to the initial composition of the material within the node), rod in or out, coolant density,
coolant temperature, effective fuel temperature, and soluble poison concentration. The only
isotopic number densities éalculated are for the I-Xe and Pm-Sm transient fission products. When
used in conjunction with microscopic cross-sections, these isotopes’ effects can be directly

accounted for. The microscopic cross-section model also determines the isotopic number densities

for the UZ3*-U236 and UZ38.Pu*? fuel chains, two lumped fission product groups, and a single
isotope depletable burnable poison. The relative advantages of both approache$ are reduced
computational resources and increased accuracy for the macroscopic and rnicroséopic models,
respectively. We now discuss the macroscopic model, to be followed by a discussion of the

microscopic mode.

I1.6.a Macroscopic Model

The macroscopic model represents macroscopic cross-section for a given fuel color,
burnup and rod insertion as a Taylor series expansion in terms of coolant density, coolant
temperature, effective fuel temperature and soluble poison number density as follows

(suppressing fuel color, burnup and rod insertion notation):
2

3
=a + D sy, (Bp)"+ay AT +as ATy + D @isy (AN™ (11D

n=1 n=1

A

xg

where

>

- = macroscopic cross-section for reaction type x and energy

group g without transient fission products corrected to local
conditions

a; = expansion coefficients




Ap . =p,.~ pc(o) = change in coolant density (g/cm3) from reference condition
AT, =T~ éo) = change in coolant temperature (°F) from reference condition
T, = [T, -1 = i ive fuel t ture (°F) f
A TF:;/ T,;dJr T F g charge in square root of effective fuel temperature (°F) from

reference condition
AN, = Nsp—Ns(I? ) = change in soluble poison number density (em™ x 1024

from reference condition.

The soluble poison number density change accounts for both soluble poison concentration (PPM)

and coolant density (p.) changes. The effective fuel temperature is evaluated by

TFeff =T+ WelW,Tp+ (1-W) TFW—TC] (112)
where
W, = pellet weighting factor, which accounts for resonance flux depression in the
interior of the pellet
W, = core statistical weighting factor, that compensates for the lack of detail in the
spatial description of the core
T, = volume average fuel pellet temperature (°F)
T, = surface average fuel pellet temperature (°F).

To obtain the macroscopic cross-section for node / free of transient fission products, one
employs Equation (111) using the expansion coefficients for the fuel color of node / quadratically

interpolated to the node / burnup, accounting for control rod effects as follows

ol ] ol
ng = _f{Rodded) (ng) Unrodded +JdR0dded (ng) Rodded (113)
where fR odded 18 the fraction of node I rodded. This treatment, for coarse axial meshing, produces

the artificial behavior of control rod “cusping” when plotting integral rod worth versus insertion

depth. Finally correcting for the transient fission products’ effect on the absorption cross-section



we obtain

I .yl ! !
):ag = ):ag+A2Xe“+A25m“ (114)
where,
I =gl N
AEXeag = Oxe, Nxe -

l - ¢l 1
AZg, =0f, N,

with Ner and Ném denoting the Xe!35 and Sm!3> number densities for node .. The Xe and Sm

microscopic absorption cross-sections are represented and évaluated in exactly the same manner
as the macroscopic cross-sections. As implied by the above equations, the reference conditions
for the macroscopic cross-section input are xenon and samarium free.

The following options exist in NESTLE in regard to establishing xenon and samarium
number densities: equilibrium, transient, no xXenon nor samarium, no xenon and transient

samarium, and frozen at restart values. When the option requires, the number de::sities are

" determined by solving the 1135-Xe!35 and Pm'%-Sm!*? chain depletion equations. The time-
dependent depletion equations for the iodine-xenon chain are given by (again suppressing spatial
dependence)

G
INL (1) = 1Y, 2L (004 (1) =~ MN () (115)
g=1

G
%Nﬁ(e () =AN (D) +7, Y > OLAOR Ay Nye (1)
=1
) g (116)
=Y, S, (D0} ()Ng, (1)

g=1

where subscripts 7 and Xe denote 1135 and Xe!33 , respectively, and




nuclei number density of isotope i

cﬁu (2) = microscopic absorption cross section of isotope i
Ef‘ §)) = macroscopic fission cross section

¢; (2) = node average flux

'yf = effective yield (atoms/fission) of isotope i

A, = decay constant of isotope i -~

Likewise, the depletion equations for the Promethium-Samarium chain are given by

AN (1) = Y, 2 Zf (1) 0, (1) = Ap,, Ny (1) (117)
g=1 .
G
INGn () = Mp,Npm (D= X, 05, (D0 (D) N, (1) (118)

where subscripts Pm and Sm denote Pm!* and Sm!®, respectively. The pseudo steady-state

solutions of Equations (115) through (118) are given by

G
z Zl q)l
NL = =}i (119)
x,NLw‘ ZZ’ ¢’
Ny, = BTl (120)
)\'Xe+ z Gé(e ¢l
g=1

for the Iodine-Xenon depletion chain and,

G
’YIPm 2 ZI ¢I

') = '
Ny, = —51—o (121)
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g=1

Nfsm_ = (122)

for the Promethium-Samarium depletion cﬁﬁn. Note that the equilibrium isotopic number
densities and flux are coupled. This is addressed by updating the number densities and
subsequently cross-sections during the outer iteration process associated with solving the multi-
group diffusion equation for either the eigenvalue problem or steady-state FSP.

For the transient solutions, forward differencing over the time-step produces

G
Ni(t+Ar) = N (1) +Ar[y§ Y z}{ (1) ¢§(r) —A,Nﬁ(t)] (123)
. g=1 g

G
Ni, (t+ A1) =Ny, (1) +A{y’Xe RO AC +7»1N§(t)j}
g=1 .

c (124)
Ay Nie (1 = 3, O, (D9} () Ny, (1)
=1 :
G
NL (1+A1) = N5 (1) +A{y’Pm 3 Z}g(t) ¢, (1) ~Ap, N, (t)} (125)
g=1
G
NL (t+A1) = NS (1) +A{kPmeDm(t) - Gfgmag(t) ¢;(z)1v’5m(z)} (126)
=1
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where At is the time-step associated with transient fission product conditions. In general, it is

selected smaller and larger than the time-steps used in the core depletion and neutron kinetics

solutions, respectively.
I1.6.b Microscopic Model
The microscopic model only differs from the macroscopic model in that the number

densities of the U234-U%36 and U238.Pu?4? fyel chains, two lumped fission product groups, and a

simple burnable poison are explicitly calculated and used to determine the macroscopic cross-




sections. This implies that the macroscopic cross-section for node / is determined from

5, =207+ T ol N (127)
i€,
where
5 ifk)l = macroscopic cross-section for the background (Bk) isotopes (i.e. without
isotopes in set G)
Cr . = set of fissile and fertile isotopes, lumped fission products and simple

burnable poison (i.e. U234.u236 and U238_py242 chains, two lumped fission
product groups, and simple burnable poison)
As before, the macroscopic and microscopic cross-sections appearing on the RHS of Equation
(127) are determined by interpolating expansion coefficients for the fuel color of node / to the
node ! burnup and using the results in Equation (111).
| The computational effort associated with the microscopic cross-section model is
associated with evaluating node dependent microscopic cross-sections and solving the isotopic

depletion equations, which can be expressed for the fuel isotopes in general form as follows

AN{(1) = p{(DINi_y () =i (D N;(1) (128)

where

pi = | ¢ = production coefficient

PLANCIAG

g=1
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G
di( = A+ Y o (D) ¢é (¢) = destruction coefficient
g=1

Do note that Plutonium isotopic production is assumed to occur instantaneously upon
neutron capture. Equation (128) is solved utilizing the Integrating Factor Technique, assuming the
cross-sections constant at the end of time-step values and flux constant, set equal to either the
beginning of time-step value (PREDICTOR option) or time-step averaged value (PREDICTOR-

CORRECTOR option) producing

H

n+l
’ _df(;w (n+-’ ’
T ap ) [Nyt G0 g (129)

t

r

=i (g}~

Nty = Ni(1)e

When using the PREDICTOR-CORRECTOR option, the time-step averaged flux value is given

by

(o!)

= 1o !
Dt = 5 OL () +6L (1, 1)) (130)
The end of time-step value of the flux appearing in this equation is periodically updated during the
flux iterations, resolving the depletion equations for new number densities and subsequently

updating cross-sections each time this occurs. The periodicity of updates is specified via code

input. For the fissile and fertile chains and simple burnable poison, the integral on the RHS of
Equation (129) can be analytically evaluated, since the solutions {Nf(t)} are composed of

linear combinations of exponentials. The analytic solutions of Equation (129) have been

determined and used in NESTLE. Ref. [16] provides further details on the analytic solutions.
Two lumped fission products are used to model all fission products except I-Xe and Pm-

Sm. Their pseudo number densities are determined by solving the associated pseudo depletion

equations. In terms of Equation (128) notation, the lumped fission products production coefficient

is given by
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G
PLe, (D) = Yp 3 Zp (D6, () 131
g=1

where fL - is the fission yield for Lumped Fission (LF) product j. Destruction is assumed to not

exist.

I1.7 Control Option Searches

Various options exist in NESTLE to adjust a certain control parameter such that the core is
made critical for the AEVP or achieves the desired specified core power level for the steady-state
FSP. Either control rods’ position, coolant inlet temperature or soluble poison concentration can
be selected as the control parameter to adjust. For the AEVP, core power level can also be
selected. NESTLE adjusts the selected control parameter by contrasting the desired eigenvalue

(i.e. kegr = 1.0) or core power level with the current outer iterative predicted value. This data is

used to develop a linear expression for the value of the desired core attribute as a function of the
selected control parameter, from which a new estimate of the value of the selected control
parameter to achieve the desired core attribute value can be estimated. This process is repeated
every so many outer iterations until both the convergence criteria on achieving the desired core
attribute value and neutronic solution are mutually satisfied. For slowly convergent FSP this
approach may fail if the predicted core power level used in developing the linear expression is not

adequately converged.
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I1.8 Hydrodynamic Model
I1.8.2 Field Equations

The hydrodynamic model used in NESTLE models single and two phase coolant flow up
closed coolant channels. A Homogenous Equilibrium Mixture (HEM) model is employed,
limiting model applicability to low quality fluids where slip does not occur. The system of
equations which describe the average conditions within the flow channel are obtained from the
mass continuity and energy conservation equations, assuming pressure to be: constant. The
constant pressure assumption removes the need to consider the momentum equation. In addition,
an Equation of State is used to provide closure.

The one-dimensional, mass continuity equation along a specified channel for a radial node
ij is

op(z, 1) J . .
< = ——Gl(z, 0 Al(2) (132)

R

Similarly, the energy conservation equation assuming constant pressure is given by

AL @S (ol ) UL(z0) =—L(GL(z 0 AL ULz 1)

0z
ij ij (133)
P [Gc (z.)Ac(2) ] ij S, ij
-po _ +g3(z, ) SE+ql(z, ) AL (2)
oz pl(z, 1 S FT4c C
where

pl = coolant density
Gg o= coolant mass velocity
U g = coolant internal energy
q’é = volumetric power density from heat deposited directly in the coolant
97 = fuel rod surface heat flux into the coolant
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A'Z; = total cross-sectional area for coolant flow within the node

S

total fuel rod surface area per unit axial length within the node

P = coolant pressure

Note that the field equations contain only the single spatial variable z due to the assumption of a
homogenous, closed channel. -

The heat flux gg is obtained using Newton’s Law of Cooling as follows

gz 1) = hlp(z, ) (Th(z. ) - TE (2 1) (134)
where |
T‘g = coolant temperature
’I‘} = lumped (i.e. radially averaged) fuel temperature
hi,jff = effective heat transfer coefficient

The effective heat transfer coefficient, heﬂ is defined so as to provide the correct heat flux when
the lumped versus surface fuel temperature is used in Newton’s Law. The coolant temperature 7,
is evaluated in terms of coolant internal energy U using an Equation of State.

These two partial differential equations contain three unknowns: coolant mass velocity,
coolant internal energy and coolant density; a third equation is required to form a closed system of
equations. This third equation is provided by an Equation of State expressing coolant density as a
function of coolant internal energy. For the steady-state analysis, the field equations are used

setting the temporal derivative terms equal to zero.

I1.8.b Equation Discretization

In general the field equations are integrated over the flow stream from 172 10 X172, This

axial spatial mesh defines the volume of a radial node ij, as shown in Figure 3, equivalent to the
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neutronic node /. This spatial discretization results in node centered values for the fluid properties

pc and Ug, and node boundary values for the mass velocity Gc.

Discretizing the mass continuity equation by integrating over the staggered mesh produces

Z p (z,t) zk+lf2
jA‘f() S—dz = - j £(G¢ (2. AL (D)) dz (135)

Z

Now the Mean Value Theorem is used to approximate the time derivative term to obtain

zl(+ll‘2 ’t d_l {
[ 4 pc(z LD AR

—a (136)

Zl(ll.’

where the bar over a variable denotes a node average value. Note that the axial mesh has been
selected such that A, is constant for z € (24— 1,20 Zk41,2) and V’C = A%Azk. The integral of the

spatial dertvative term yields
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Figure 3: Thermal-hydraulic mesh notation
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| .g’-z-(Gg(z, )AL (2))dz = G2 (1) AL V2 - G 12 () Al 12 (137)

k—- 12

Finally a backward difference time advancement scheme is employed producing

-lLn+l1 —=ILn
p —

ve

= + GVt I4Lr IR _ G121 41012 g (138)

n.

The energy conservation equation, Equétion (133) is discretized in a similar manner by
integrating along the flow stream to eliminate the spatial derivative, and a semi-implicit time
treatment is employed. The convective term is linearized by using new time-step level mass
velocity and past time-step level for the other parameters. Furthermore, the coolant density is

assumed to be constant over the time-step interval. The result of this discretization scheme is

zfn+l zﬁn
=Ln -

12 g U1 2+ 1/2n = /2 n ] g1~ 1720704 1/2n
Vepe AL =-(Gc Ac TTUc G Ac "Uc )
n
Gl 1/2ngl 4172 =172 41172 (139)
P o C o C -i_—l,n+l's,;A 1+—l,n+l
I+1/2n I-1/2,n s FRLT4cC F
Pc Pc

where the time averaged terms appear as a result of the central difference time advancement

treatment and are defined as

iLn Ln+1l
_ q’ +q’
T (140)
and
Ln Ln+1
—Ln+1 dc *49¢
9" = (141)

Note the convective and work terms in the energy equation contains fluid property. values
at the node boundaries. However, as stated previously, the fluid property values are to be
calculated as node averages. An intuitive approach would be to spatially average adjacent node

average property values along the flow direction to obtain the node boundary values. However, it
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has been found that a donor cell averaging technique is necessary for numerical stability [17]. The

donor cell average is defined for the coolant internal energy as

U1C+1/2,n - T/l(}" and UIC-1/2,n - -01(:— Ln (142)
and for the coolant density as

plc+1/2n = Bln and plC—l/2n - plC—l n (143)

for flow in the positive direction, the only modelling capability within NESTLE.
To solve the two coupled discretized equations, the Equation of State for coolant density

in terms of coolant internal energy is linearized as follows

pet2pet+ L | (T =T (144)
BUIC "

This equation is then substituted into Equation (138) to solve for the coolant mass velocity in

terms of coolant internal energy to produce

) v B B
GIC+1/2,n+1 -1 {Gzc—1/2,n+1A1C-1/2_(__£)(£75C|t)(Uzénﬂ_ujén)} (145)
C n

A1C+1/2 At

Finally, the above equation is substituted into Equation (139) to produce an equation only in terms

of coolant internal energy

(Vlc) —in ch
Atn pC a C

A1+1/2U1 JUJ"H—G"VZ"”AI"VZ(UI _&")

(146)
G1C+l/2,nAl+l/2 GIC——I/2,nAlC—1/2 Vl
) - (o IR
—P( —In - “I-1,n )"’qfnﬂsi“Azl'*'qlénHVlc"’( )pcnUl
Pc Pc

. L. —ln+1 . N .
This equation is solved for Ulcn+ at each radial node by sweeping in the direction of coolant

flow. The following auxiliary relationships are used to evaluate terms appearing in the above

equation:
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Coolant Volume: V(l; = f,éodded- v!
Total Fuel Rod Surface Area Per Unit Axial Length: S% = 217 zNs, . 1pins

Coolant Volumetric Heat Source: 72"Vi. = (1-dp)g:"V!

where

fft odded = wet fraction for the node when rodded

re = fuel rod radius

N}u elPins = number of fuel pins within the node

dp = distribution fraction of energy directly deposited within the fuel
5’7’." = total volumetric power density for heat deposited within the node.

Having obtained values for the coolant internal energy at the new time-step, the coolant
densities are evaluated at the new time-step using an Equation of State for the liquid if coolant
internal energy indicates sub-cooled conditions for the node. If bulk boiling is indicated, the void

fraction is first determined as follows (suppressing superscripts)

. pCL (—[—]C - UCL)
o= — — (147
pe,We,~Uc) —pe (U, ~To)

where

U c, = saturated coolant liquid internal energy
U c, = saturated coolant vapor internal energy
Pe, = saturated coolant liquid density

Pe = saturated coolant vapor density

from which the coolant density is determined as now indicated

Pc=ap, + (1-0)p., (148)




d . .
These same equations are utilized in determining —%C— introduced back in Equation (144). Having
C

evaluated the coolant density, Equation (138) is used to solve for the coolant mass velocity at the
new time-step.

The above approach is not unconditionally stable and must satisfy the Courant material
limit due to the degree of semi-implicitness introduced in linearizing the equations. This stability
limit for certain transients restricts the time-step sizes to values smaller than required to control
truncation errors. The Stability-Enhancing Two-Step (SETS) Method developed at LANL [18] is
used to allow a Courant material limit violating treatment. Since this method was originally
utilized within the context of the six-equation model used within the TRAC code, a slight

modification of the SETS method is required for the current application.

e . . =Ln+l. .
The stabilizing energy conservation equation used to solve for U Cn is given by

—lLn+ 15l n+1 5hn
Vl Pc UC —Pc UC __(Gl+1/2’n+]A[+]/2'l7l,n+l
1+1/2,n+1 41+1/2 1-1/2,n+1,4,1-1/2
_GlrV/ant gl 12pio ety p Gc Ac " G¢ Ac (149)
c c ¢ —Ln+1 —I-1,n+1
Pc Pc
ln+1 —lL,n+1

StAZ gt VL

Do note the increased degree of implicitness of this equation. Estimates of the current time-step
values are determined solving the previous introduced set of equations. Having stabilizing
predicted values of coolant internal energy, they are then utilized to update the coolant density as
noted before. Also, the coolant temperature is determined based upon coolant internal energy,
using an Equation of State for sub-cooled fluid and the saturation temperature for saturated fluid.
This approach has been shown to allow large time-steps without stability problems, as indicated
by solving the transient equations at steady-state conditions and observing no drift.

The SETS process is repeated as new estimates of the volumetric power density become

available, associated with the iterative solution for the flux. To initiate the process, the volumetric
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power .densities at the new time-step are set equal to the old-time step values. This provides an
initial estimate of the coolant and fuel conditions at the new time-step, used to correct cross-
sections and commence the flux iterations.

For the feedback correction of cross-sections with respect to coolant density, coolant
temperature, and effective fuel temperature, all must be evaluated as node average values.
Likewise, the coolant temperature appearing in Newton’s Law requires node average values.
Previously we stated that we are solving for node average values of coolant properties, so all
would seem in order. However, thinking about the steady-state solution of the energy balance
equation it becomes clear that coolant internal energy is really evaluated at node boundaries. In
this sense donoring is done counter-flow from the node boundary value to the node average value.
Therefore the node average coolant temperature is determined using an Equation of State based
upon the average of the coolant internal energy at axial elevations k-7 and k. The node average
coolant density used to correct cross-sections follows a similar approach, now directly averaging

densities. This subtlety becomes important for large axial meshing (e.g. 2D radial geometry).

I1.8.c Fuel Temperature Modél

The lumped (i.e. radially averaged) fuel temperature is obtained by utilizing a lumped
parameter heat conduction model, in which a simple energy balance for each radial node is
performed. This approach should be valid for transients where the fuel pin-wise radial profile of
the fuel temperature stays-close to the steady-state profile. The rate of energy change in each node,

ignoring axial heat conduction, can be expressed as the difference between the node heat source

(}j{; (r,z,t) and the energy lost due to heat transported radially:
L(pU(ranULnsn) = gh(nan =9, 35(nz 1) (150)

where r denotes the radial coordinate for an average pin in node ij and

U;l = fuel internal energy




pf,{-' = fuel density
qi{l = volumetric power density from heat deposited directly in the fuel
gl = heatflux within the fuel

Using Fourier’s Law of Thermal Conductivity expresses the heat flux within the fuel as

ge(r, ) = ki(r, 2,0V Ti(r,2,1) | (151)
where kF denotes the fuel’s thermal conductivity. Substituting Equation (151) into Equation (150)
produces

LEirnanUinen) = gine) +V, kno 0V Té(nay  (52)
The enthalpy is now expressed in terms of the fuel specific heat (ch) and temperature, density is

assumed constant, and fuel specific heat is assumed slowly varying in time allowing Equation

(152) to be rewritten as

. 8T’}(r,z, 1)) 3 I .
ch;f,F (r,z,1) —5— = gt () +V -ki(r,z,) V. Ti(r, 2, 1) (153)

Integrating over the node / volume occupied by fuel, denoted,
vl = fly vt
r=JfpxV (154)
where f;- indicates the fraction of node !/ occupied by fuel, applying the central difference time

advancement scheme, and rearranging terms yields the final expression for the node average fuel

temperature.

PrVE hy pnet _ (hef Te"+ T
[ C:,_n+1+( eff)SzFAthTg” =[ eff)Sﬁ,Az’(Tlé"+ e

Ar, Pr
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(155)
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In obtaining Equation (155) the volume integral over the heat conductioh term is converted to a
surface integral via Green’s Theorem, and the resulting expression for the surface heat flux is
evaluated using Newton’s Law of Cooling given by Equation (134). Do note that the effective
heat transfer coefficient is treated explicitly in both the coolant and fuel energy conservation
equations. Also the fuel volumetric heat source that appears in Equation (153) has been replaced

in Equation (155) using the following expression.

44"Vy = dpgz"V' (156)
Since V’F only appears in the ‘heat sink’ term in Equation (155) and is a function of f} (see

Equation (154)), the value of fll,- may be varied by fuel color to account for fuel density variations

by color to overcome the input lirnitaﬁon of only inputting the core average fuel density. The
depletion equations will also correctly reflect fuel density variations captured by the fuel volume
fraction.

In addition to lumped fuel temperature, the surface fuel temperature is required to evaluate
the effective fuel temperature used to correct cross-sections for Doppler broadening, as indicated
in Equation (112). This is obtained by characterizing surface fuel temperature as a function of

linear power density for a reference coolant temperature, TCR fin terms of a polynomial. The

spatially dependent linear power density is given by

Sl —l,n
g = [————F ] q—‘?—j (157)

L d
NFuelPins F

The surface fuel temperature is then determined using

=1, ._l, =/,

Thn, = fr, (@™ + (Te"-T¢,) (158)
where fTS , (:]in) denotes the polynomial function.

11.8.d Steady-State Model
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For steady-state conditions, the governing equations used to solve for the coolant and fuel
conditions are obtained by setting the temporal derivative to zero. When this is done in the
coolant’s mass continuity equation, Equation (132), it is seen that the product of coolant mass
velocity and cross-sectional flow area must be constant up the flow channel. Also the concept of
donoring no longer enters since node average coolant values only appeared because of the

temporal derivative terms. These implications lead to the following discretized equations:

Coolant Mass Continuity

1-1/2 ij
Glr172 _ Ac Gl-172 = Ac, Gl (159)
C - A1C+ 172 |°C A1C+ 172 )7 Cp

where subscript In denotes the inlet to radial node ij associated with node L

Coolant Energy Conservation

1+1/2 _ 17d-1/2 _ paij Aij 1 1
Uc = Uc PAC,,.GCM( 1+1/2 1—1/2)+QCVI +QFVI (160)
Pc Pc
Fuel Energy Conservation
V"
7= 7 +( )2/ (161)
C hl A F

Surface fuel temperature is evaluated as indicated for the transient conditions. These equations are
iteratively solved as new estimates of the flux become available, providing new estimates of the
surface heat flux and volumetric heat densities. During these iterations the effective heat transfer
coefficient is also updated, producing consistent values for the effective heat transfer coefficient

and lumped‘fue] temperature as now described.

I1.8.e Effective Heat Transfer Coefficient Evaluation
For the lumped fuel temperature model to be utilized, the effective heat transfer coefficient

must be evaluated. For steady-state conditions we can select the effective heat transfer coefficient
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such that the correct values of the lumped fuel temperature result, these temperatures determined

utilizing a more detailed fuel pellet model. This implies the following:

arAf = hoSp(Tr =T, ) (162)
One can now solve for hg given values of Ty and g for a fixed coolant temperature as follows.

. qrAp
eff SF (TF _ TCRZ )

(163)

Note that h.ghas been characterized as a function of Ty since the fuel thermal conductivity and
gap closure, both functions of fuel temperature, are the main reasons why A changes. This

characterization is captured using a polynomial representation.

For steady-state calculations, an initial estimate of fuel temperature is obtained by
characterizing it as a function of linear power density in terms of a polynomial. Given this initial
lumped fuel temperature estimate, the effective heat transfer coefficient can be evaluated. Now
Equation (161) can be used to calculate a new estimate of the lumped fuel temperature once the
node average coolant temperature and volumetric heat density have been evaluated. As the flux
solution is iterated, this sequence of calculations is repeated. The iteration of the thermal-
hydraulic equations not only addresses feedback between its solution and the neutronic solution,
but addresses the non-linearities in calculating the lumped fuel temperature due to effective heat
transfer coefficient dependency on fuel temperature.

For transient calculations, the same iterative sequence is employed; however, now the fuel
specific heat is also updated due to fuel temperature dependency. In addition the surface heat flux,
which appears in the transient coolant energy conservation equation, is also updated utilizing the
updated effective heat transfer coefficient, coolant temperature and lumped fuel temperature in
Newton’s Law.

I1.8.f Decay Heat Model

When the reactor shuts down, the reactor power does not immediately drop to zero but
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falls off rapidly according to a negative period, eventually determined by the half-life of the
longestélived delayed neutron group. Even then, the transuranics and fission products existing in
the fuel continue to decay (B and .'y) at decreasing rates for long periods of time. The heat
generated from isotopic decay of these isotopes following reactor shutdown is called decay heat.
Although there are many isotopes involved in the complex decay chain, it is customary to fit a
measured decay heat curve for a high burnup reactor with a series of decay heat groups. Thus, the
model is analogous to the handling of delayed neutrons.

Accounting for decay heat, the total volumetric heat density is given by

G 10
ar (i) = (1-ay) ng T, (ho (7,0 + ZlcsD (1) (164)
&= i=
where
D;(1,1 = concentration of decay heat group i [Me;’]
cm
G; = disintegration rate (decay constant) [sec’]
a, = fraction of the total fission energy appearing as decay heat for decay heat
group i
I(DH)
o = z o, = total fraction of the fission energy appearing as decay heat .

i=1

The concentration of decay heat precursors can be expressed by the following differential

equation.

aD, (r, 1) ;D)

= a, 2 KZ, (L6 (0 -¢D; () for  i=1., (165)

To develop an expression for the decay heat precursor concentrations, a time-integrated

expression is derived by integrating Equation (165) from ¢, to ¢, ;. This integration results in
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(suppressing 7 dependence for clarity)

ths1 G

Dit,,) =Di(tye v [ Tk, fg(t)q, (1) &Sl

t, 8=1

a4y (166)

To solve the above integral, a functional form for the time dependent neutron fission source

density must be developed. Assume the fission source density is constant over the time interval

t'e [t,t,,,]  atthepasttime-step value, Le.

G G
zlxngg ()0,(F) = 21 K,Z (1) 0,(2,) (167)
g= g=

Incorporating this approximation into Equation (166) and rearranging terms we obtain the desired

expression.

-Q,’A I, a
D;(t,y1) = D;(1)e +— g A Z Kz, (t )0, (t,) (168)

13

In steady-state it is generally assumed that even the longest—lived group is in equilibrium.
The steady-state concentration is calculated by setting the time derivative to zero in Equation

(165) and solving for the precursor concentration producing,
o, G
_t (169
=g 25 )

This equation is utilized to determine the initial conditions required for the transient solution.
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IV User’s Guide

The NESTLE code has been written with a view to minimizing the input preparation effort
as much as possible. A brief description of the function of each subprogram in NESTLE is given
in the Programmer’s Guide section along with the flow diagram of the code. By separating the
type of input (e.g. cross section, geometry, or program control) into distinct input files, it is
possible to setup widely varied problems with little input preparation effort. All input data except
for restart files are on disk and in free format (except the alphanumeric strings). Thus quick
editing is possible and comments to identify each input data can be attached to each data with a
double blank between the input and comment. The alphanumeric string variables for file names
generally have enough length (A40) so that file names can be assigned to them for later quick
identification of the files. Due to the large amount of data written in the restart files, these files are
written unformatted to save on storage and facilitate fast retrieval of the data by the code.

The logical units assigned to each file, file name if not free to select, and the contents of
the files are as follows. Users specify all “Free to Select” ﬁle names in the NESTLE.CNTL file,

the exception being Unit 33 files which are specified in the Unit 3 file.

Logical Unit 1/O File Name Contents

1 I NESTLE.CNTL Code Control Parameter Data

2 I Free to Select Geometry Data
Free to Select Cross Section Data
Free to Select Kinetic Data
Free to Select Solution Method Control Data
Free to Select Restart Data-Read (Binary)
Free to Select Restart Data-Write (Binary)
Free to Select Cross Section Data (Optional) -
Free to Select Hardcopy Output
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