DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

Government. Neither the United States Government nor any agency thereof, nor any of their

process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recomand opinions of authors expressed herein do not necessarily state or reflect those of the

mendation, or favoring by the United States Government or any agency thereof. The views

United States Government or any agency thereof.

TECHNICAL AREA STATUS REPORT **FOR** LOW-LEVEL MIXED WASTE FINAL WASTE FORMS

Volume II **APPENDICES**

August 1993

Prepared by:

J. L. Mayberry T. L. Huebner Science Applications International Corporation 545 Shoup Ave. Idaho Falls, ID 83402-3575

and

Wayne Ross, PNL Ron Nakaoka, LANL Ray Schumacher, WSRC Jim Cunnane, ANL Ross Darnell, EG&G Idaho, Inc. Wilbur Greenhalgh, WHC Dileep Singh, ANL

Prepared for: Mixed Waste Integrated Program Office of Technology Development U.S. Department of Energy under contract DE-AC01-EW30030

MASTER

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the help and support of the entire Final Waste Form Working Group. This group provided direction for this Technical Area Status Report and reviewed and provided valuable comments on the report. They also provided a national perspective on the questions of final waste form. In addition, the following individuals provided support: Larry Klingler, EG&G Mound; Chris Chapman, Pacific Northwest Laboratory; Ray Geimer, Science Applications International Corporation; Dennis Bickford, Westinghouse Savannah River Site; Ray Richards, Stir-Melter, Inc.; Pedro B. Macedo, Catholic University of America; Don Fisher, Savannah River Laboratory; J. A. Wood, Westinghouse Hanford Company; Paul Kalb, Brookhaven National Laboratory; and Virginia Oversby, Lawrence Livermore National Laboratory. We want to thank Paul Lurk, the MWIP Program Manager for DOE-HQ EM-50, and Jan Berry, the MWIP Project Coordinator, for their support of this report.

CONTENTS

ACRO	ONYMS vii
NOM	ENCLATURE ix
INTR	ODUCTION xi
APPE	NDIX A. LLMW Characterization Code Descriptions from MWTP A-1
APPE	NDIX B. Final List of Pertinent Final Waste Form Characteristics B-1
APPE	NDIX C. Summary of Current Status
	Glass
	Hydraulic Cement
	Sulfur Polymer Cement
	Ceramics
	Organic Binders
	Organic Biliders
A DDE	NDIX D. Summaries for Final Waste Forms
AIIL	Glass Summaries
	Hydraulic Cement Summaries D-99
	Gulfan Dalaman Coment Commercial D. 154
	Sulfur Polymer Cement Summaries
	Ceramic Summaries
	Organic Binder Summaries D-173
	FIGURES
A-1	Mixed waste matrix characterization categories A-3
C-1	High-bay ceramic melter
C-2	Advanced test melter (ATM)
C-2	High temperature melter
C-4	Liquid fed ceramic melter
C-4 C-5	Pilot scale ceramic melter
C-6	HWTF melter
0	EDW 10 10505

ACRONYMS

°C degrees centigrade °F degrees Fahrenheit

ANS American Nuclear Society

ASME American Society of Mechanical Engineers
ASTM American Society of Testing and Materials

AVM Ateliers de Vitrification de Marcoule
BNL Brookhaven National Laboratory
BNWL Battelle Northwest Laboratory

BWR Boiling Water Reactor

CFR Code of Federal Regulations
CIF Consolidated Incineration Facility

CRT cathode ray tube
DOE Department of Energy

DOT Department of Transportation
DWPF Defense Waste Processing Facility
EDTA Ethylene Diamine Triacetic Acid

EP Extraction Procedure

EPA Environmental Protection Agency

FWF Final Waste Form

HEME High Efficiency Mist Eliminator
HEPA High Efficiency Particulate Air
HLRW High Level Radioactive Waste

HLW High Level Waste

HWTF Hanford Waste Treatment Facility
IAEA International Atomic Energy Agency
ICPP Idaho Chemical Processing Plant

ID inner diameter

IFR Integral Fast Reactor

INEL Idaho National Engineering Laboratory

ISV In Situ Vitrification

LANL Los Alamos National Laboratory

LDPE Low Density Polyethylene LLMW Low Level Mixed Waste

LLW Low Level Waste

LLRW Low Level Radioactive Waste
LOMI Low Oxidation State Metal Ion
MCC Material Characterization Center

MW Mixed Waste

MWIP Mixed Waste Integrated Program
MWTP Mixed Waste Treatment Program

N/A Non-applicable

NDT Non-destructive Testing

NRC Nuclear Regulatory Commission
OTD Office of Technology Development

PCB Polychlorinated Biphenyls
PCC Portland Cement Concrete
PCT Product Consistancy Test
PNL Pacific Northwest Laboratory
PWR Pressurized Water Reactor

QA Quality Assurance

RCRA Resource Conservation and Recovery Act

RFP Rocky Flats Plant

SA/V surface area over volume
SLS Soda-Lime-Silicate
SPC Sulfur Polymer Cement
SRL Savannah River Laboratory
SRP Savannah River Plant

SRS Savannah River Site

TASR Technical Area Status Report

TBP Tributyl Phosphate

TCLP Toxicity Characteristic Leaching Procedure

TRU transuranic

UF Urea Formaldehyde VES Vinyl-Ester Styrene

VRS Volume Reduction and Solidification
WERF Waste Experimental Reduction Facility

WG Working Group

WHC Westinghouse Hanford Company

WIPP Waste Isolation Pilot Plant

WSRC Westinghouse Savannah River Company WVDP West Valley Demonstration Project

NOMENCLATURE

silver Ag Al aluminum aluminum trioxide Al_2O_3 aluminum phosphate AlPO₄ americium Am arsenic As boron В boron trioxide B_2O_3 barium Ba beryllium Be bromine Br **British Thermal Units** BTU calcium Ca calcium oxide CaO cadmium Cd chlorine Cl cobalt Co CO carbon monoxide carbon dioxide CO_2 CoS cobalt sulfide cobalt selenide CoSe chromium Cr chromium dioxide CrO₂ cesium Cs copper Cu electro-chemical potential Eh F fluorine iron Fe iron trioxide Fe₂O₃ grams per square centimeter g/cm² gallons per minute gpm hydrogen H_2 sulfuric acid H₂SO₄ mercury Hg nitric acid HNO₃ horsepower hp hour hr kilogram kg kiloWatt kWpound lb lithium Li

MGy

millions of Gray (100 rems)

Mn manganese
MnO manganese xide
Mo molybdenum
MPa megaPascal
mph miles per hour
Na sodium

NaCl sodium chloride
NaK sodium potassium
NaNO₃ sodium nitrate
Na₂O sodium oxide

Ni nickel

NiS nickel sulfide
NiSe nickel selenide
NiTe nickel teluride
NL normalized log
NO nitrogen oxide
Np neptunium

 $\begin{array}{ccc} \text{Np} & \text{neptunium} \\ \text{Pb} & \text{lead} \\ \text{PbI}_2 & \text{lead iodide} \\ \text{Pb}_3(\text{PO}_4)^2 & \text{lead phosphate} \\ \text{PO}_4 & \text{phosphate} \end{array}$

psi pounds per square inch

Pu plutonium Ru ruthenium

scfm standard cubic feet per minute

 $\begin{array}{ccc} \text{Sb} & & \text{antimony} \\ \text{Se} & & \text{selenium} \\ \text{Si} & & \text{silicon} \\ \text{SiO}_2 & & \text{silica} \\ \end{array}$

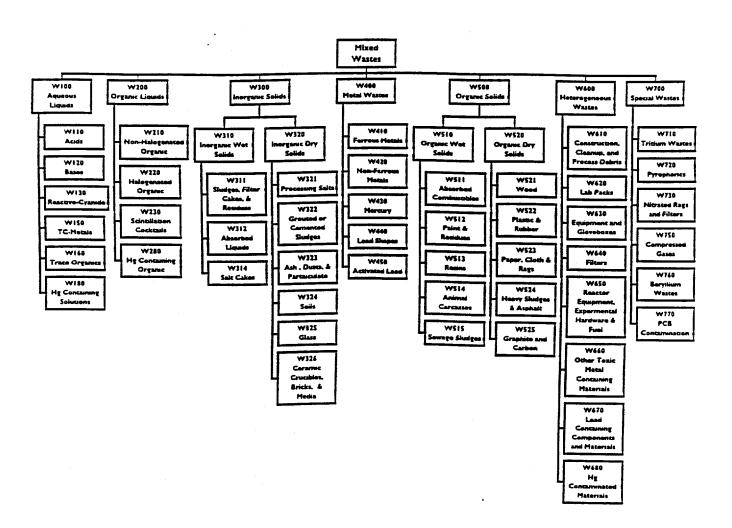
SO₂ sulfur dioxide

 SO_4 sulfate Sr strontium

SrO₃ strontium trioxide

Tc technetium
TiO₂ titanium dioxide

U uranium V vanadium


INTRODUCTION

The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFs. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

APPENDIX A LLMW CHARACTERIZATION CODE DESCRIPTIONS

Wayne Ross at PNL has developed the following waste code descriptions for the Mixed Waste Treatment Project sponsored by DOE EM-30. The descriptions include LLMW streams from some of the DOE sites that store or generate LLMW. The waste has been divided into seven general waste categories and 52 subcategories. See figure below for a matrix of the categories described herein.

Fig. A-1. Mixed waste matrix characterization categories

CODE #	TITLE	DESCRIPTION
W100	Aqueous Liquids	Aqueous solutions with less than 1% organic content. Solids must be pumpable but can be up to about 35-40% of the mass. Wastes in this specific category could not be assigned to a subcategory because of lack of information or because of multiple characteristics of the waste stream. Streams contain some of the following: As, Cd, Cr, Pb, Hg, and Ag. Contains trace hazardous organics.
W110	Corrosive acids	Principle sources of these wastes are general waste water cleanup, plating line solutions, and electropolishing activities. Streams contain some of the following: Cr, Pb, Hg, and Ag. Contains trace hazardous organics.
W120	Corrosives Bases	These are solutions with a high pH generated from a variety of activities. Streams contain some of the following: As, Cd, Cr, and Pb.
W130	Reactive-Cyanide	Any stream that contains cyanide as a significant component. Solutions will generally be basic. Streams contain some of the following: As, Cd, and Cr.
W150	TC-Metals	Streams containing toxic metals. Streams contain some of the following: Cd, Cr, Pb, Hg, and Se. Contain trace hazardous organics.
W160	Trace Organics	Streams with organic levels of less than 1%. Some streams also contain some lead.
W180	Hg Containing Solutions	Any of the 100 series solutions that may contain Hg. Streams may also contain some lead.
W200	Organic Liquids	Liquid streams containing more than 1% organic. Solids must be pumpable (except for code 230) but can be comprise of up to about 35-40% of the mass. Wastes in this specific category could not be assigned to any subcategory because of lack of information.
W210	Non-Halogenated Organics	Solvents free of F, Cl, Br, (e.g. oils, hexone, methanol). Wastes may contain Cd, Cr, Pb, Hg, and Se as trace contamination.

CODE #	TITLE	DESCRIPTION	
W220	Halogenated Organics	Solvents containing F, Cl, Br, etc. Contaminated freon is one specific stream. Streams may contain Cd, Cr, Pb, Hg, and Ag as trace contaminants.	
W230	Scintillation Cocktails	Solutions used for scintillation counting. Solutions may be contained in the original glass or plastic analysis bottles. Streams may contain Cd, Cr, and Pb as trace contamination.	
W280	Hg Containing Organics	Any 200 series waste that may contain Hg. Streams may contain Se as a trace contaminant.	
W300	Inorganic Solids	This category includes all inorganic solids except metal wastes. The inorganic materials are generally oxides, but also include salts. The major category is divided into wet solids, dry solids, and soils.	
W310	Wet Inorganic Solids	A solid mass, non pumpable, that contains liquids within the pore structure of the solid. Liquid fractions should be more than 5% of the mass of the material. Wastes in this specific category could not be assigned to any subcategory because of lack of information.	
W311	Sludges, Filter Cakes and Residues	These materials are generally from wastewater cleanup or from settling ponds. They may contain organic materials in limited quantities from laundry or other sources. Heavy metals are present in some sludges. Cemented sludges are W322 wastes. Streams may contain Ba, Cd, Cr, Pb, Hg, Ag, V, and cyanide as trace contamination. Contains trace hazardous organics.	
W312	Absorbed Liquids	Aqueous or organic liquids absorbed onto a solid such as vermiculite or clay.	
W314	Salt Cakes	Evaporated salt solutions, either nitrate and chloride, that may contain a high residual water content. Streams may contain Ba as trace contamination.	

CODE #	TITLE	DESCRIPTION	
W320	Inorganic Dry Solids	Inorganic solids without notable free liquid. Most wastes will contain some combined water or absorbed water. Liquid fractions will generally be less than 5% of the mass of the material. Wastes in this specific category could not be assigned to any subcategory because of lack of information. Streams may contain As, Ba, Pb, and Se as trace contamination. Contains trace hazardous organics.	
W321	Processing Salts	Salts that have been used in processing; mostly F, Cl, NO ₃ based salts. Streams may contain As, Ba, Cd, Cr, Pb, and Se as trace contamination. Contains trace hazardous organics.	
W322	Grouted or Cemented Sludges	Sludges that contain cement either as a water absorber or that are mixed with cement to produce a homogenous solid waste. Streams may contain Cd, Cr, and Pb as trace contamination. Contains trace hazardous organics.	
W323	Ash, Dusts, and Particulates	Fine particulate wastes. Typical wastes are ash from incinerators, dusts, and paint chips. Cemented particulates are included in code W322. Streams may contain As, Cd, Cr, Pb, Ag, and Se as trace contamination. Contains trace hazardous organics.	
W324	Soils	Contaminated soils from spills, leaks, cleanups, and waste burial. Streams may contain As, Ba, Cd, Cr, Pb, Hg, Ag, and Se as trace contamination. Contains trace hazardous organics.	
W325	Glass	Items composed primarily of glass, including process equipment, laboratory equipment, window materials, vessels, bottles, light bulbs, or glass beads or forms used within process equipment or for abrasion of surfaces. The glass may contain small amounts of organic or other inorganic materials. Streams may contain Ba, Cd, Pb, and Hg as trace contamination. Contains trace hazardous organics.	
W326	Ceramic, Crucibles, Bricks and Media	Oxide materials generally used as crucibles or refractories. They may also be beads or shapes used for catalysts, reactor beds, or for milling or grinding. Streams may contain As, Cr, Pb, Hg, and Ag as trace contamination. Contains trace hazardous organics.	

CODE #	TITLE	DESCRIPTION	
W400	Metal Wastes	Inorganic solids classed as metals. This category includes wastes that are mixed ferrous and nonferrous metals or other defined metals. Streams may contain Cd, Cr, Pb, and Hg as trace contamination. Contains trace hazardous organics.	
W420	Nonferrous Metals	Nonferrous metals are the principle component, such as aluminum, copper, and cadmium. May have trace Pb contamination.	
W430	Mercury	Liquid mercury pourable from containers.	
W440	Lead Shapes	Lead bricks, shipping casks, or shielding materials. The lead should only be surface contaminated. May have some Cr contamination. Contains trace hazardous organics.	
W450	Activated Lead	Lead activated from its use in radiations fields, such as from a reactor or accelerator.	
W500	Organic Solids	Waste streams that are predominately organic materials and candidates for direct treatment most likely by incineration. Wastes that are mixtures of the various subcategories or undefinable beyond this category are included.	
W510	Organic Wet Solids	These are organic solids that have significant content of liquids generally combined with the waste matrix. Streams may contain As, Ba, Cd, Cr, Pb, Ag, and Se as trace contamination.	
W511	Absorbed Combustibles	Rags or paper used to wipe up spills. Organic liquid spill cleanup materials. Streams may contain Ba, Cr, Pb, and Se as trace contamination. Contains trace hazardous organics.	
W512	Paint and Residues	New or removed paint. The paint may be liquid or have a liquid content either as original paint or a paint stripper. It may also only be paint chips. Streams may contain As, Ba, Cr, Pb, and Hg as trace contamination. Contains trace hazardous organics.	

CODE #	TITLE	DESCRIPTION
W513	Resins	Spent organic resins including spent carbon filters used in waste water cleanup. Streams may contain As, Ba, Hg, Ag, and Se as trace contamination. Contains trace hazardous organics. Some resins are not compatible with cement or grout systems.
W514	Animal Carcasses	Dead animals or parts of animals. Most animals will have been used in testing and may contain agents to stabilize the remaining materials. Streams may contain As, Ba, Hg, Ag and Se as trace contamination.
W520	Organic Dry Solids	These are organic solids that do not have significant content of liquids. Streams that may contain a variety of solid organic wastes such as mixtures of wood, plastic, and paper. Streams may contain Ba, Cd, Pb, and Ag as trace contamination. Contains trace hazardous organics.
W521	Wood	Wood timbers used for packaging or temporary structures similar to construction debris, however this would be wood as the single principle component. Some noncombustible tramp materials such as nails is to be expected in concentrations of less than 5%.
W522	Plastic and Rubber	Plastic sheeting or components such as benelex or plexiglass. It also includes glovebox gloves. Leaded gloves would be included in W670, but this stream may include trace Pb. Contains trace hazardous organics.
W523	Paper, Cloth, and Rags	Contaminated clothing and wipes. May include traces of metals. Streams may contain As, Ba, Cd, Cr, Pb, Hg, and Ag as trace contamination. Contains trace hazardous organics.
W524	Heavy Sludges and Asphalt	Heavy sludges are organic based materials that have such high viscosity that they can not be poured from a drum. Asphalt roadways or walkways that become contained with radioactivity. It would contain rock and organic binders. Streams may contain Cr, Pb, Hg, Ag, and Se as trace contamination. Contains trace hazardous organics.
W525	Graphite and Carbon	Crucibles or components of graphite or carbon.

CODE #	TITLE	DESCRIPTION
W600	Heterogeneous Wastes	Solid materials that may contain a mixture (either as manufactured or from packaging) of organic, inorganic solid, and/or metallic materials. Wastes in this specific category could not be assigned to any subcategory because of lack of information or because they are a mixture of other waste types. Streams may contain Cd, Cr, Pb, Se and Ag as trace contamination. Contains trace hazardous organics.
W610	Construction, Cleanup, and Process Debris	Construction debris is generated from the remodeling of radioactive facilities and could include piping, wiring, wall materials, and flooring. Also includes wood and plastic sheeting used for temporary radioactive particulate containment and cleanup and process debris that are mixtures of various types of material that were commingled for disposal. A mixture of combustible organic, metal, and ceramic materials. Streams may contain As, Ba, Cd, Cr, Pb, Hg, Se and Ag as trace contamination. Contains trace hazardous organics.
W620	Lab Packs	Mixtures of chemical in drums. Chemicals are mostly solid, but can contain liquids. Packing materials such as vermiculite are commonly included. Streams may contain As, Ba, Cd, Cr, Pb, Hg, and Se as trace contamination. Contains trace hazardous organics.
W630	Equipment and Gloveboxes	Process equipment generally metallic, but that may contain oils, grease, or process materials. The equipment may include some associated electrical wiring and piping. Packaged gloveboxes that may contain equipment, windows, gloves, and other organic materials. They may also be contaminated with oils or sludges. Since many gloveboxes have been used with TRU materials some level of alpha contamination may be expected. Leaded gloves may be present. Streams may contain Cr and Pb as trace contamination.

contaminated with fine particulate. HEPA filters may be either wood or metal frame. Streams may contain As, Ba, Cd, Cr, Pb, Hg, Se and Ag as trace contamination. Contains trace hazardous organics. W650 Reactor Equipment, Experimental Hardware and Fuel Reactor equipment may contain listed chemicals and toxic metals. They can become highly radioactive during neutron irradiation in reactors. These materials may need special care as they contain activated metals and radiation that can not be removed by decontamination. Streams may contain As, Cd, Pb, and Hg as trace contamination. Contains trace hazardous organics. W660 Other Toxic Metal Containing Materials As, Ba, Cd, Cr, Se, and Ag contaminated materials. Lead may be present as a trace contamination. Contains trace hazardous organics.	CODE #	TITLE	DESCRIPTION
Experimental Hardware and Fuel toxic metals. They can become highly radioactive during neutron irradiation in reactors. These materials may need special care as they contain activated metals and radiation that can not be removed by decontamination. Streams may contain As, Cd, Pb, and Hg as trace contamination. Contains trace hazardous organics. W660 Other Toxic Metal Containing Materials Lead may be present as a trace contamination. Contains trace hazardous organics. W670 Lead Containing Glovebox gloves or shielding aprons containing lead or lead oxide in a rubber or plastic binder, which includes lead acid batteries. May also be lead wool or lead base solder materials. W680 Hg-Contaminated Materials contaminated with Hg. Materials may be of any general type. Streams may contain Ba, Cd, Cr, Pb, Se and Ag as trace contamination. W700 Special Wastes These are waste streams that will require extra care for treatment. They may require specific treatment equipment or processes not consistent with current radioactive materials handling guidance. W710 Tritium Wastes Waste streams contaminated with tritium. They may be liquid or solids. Streams may contain Cr and Hg as trace contamination. Contains trace hazardous organics. W720 Pyrophorics Reactive metals. They are typically sodium metal or sodium metal alloys, but can also be particulate fines of aluminum, uranium, beryllium, zirconium, or other pyrophoric materials and may be mixed with	W640	Filters	metallic, organic or ceramic are included. Filters are contaminated with fine particulate. HEPA filters may be either wood or metal frame. Streams may contain As, Ba, Cd, Cr, Pb, Hg, Se and Ag as trace
Containing Materials Lead may be present as a trace contamination. Contains trace hazardous organics. Glovebox gloves or shielding aprons containing lead or lead oxide in a rubber or plastic binder, which includes lead acid batteries. May also be lead wool or lead base solder materials. W680 Hg-Contaminated Materials contaminated with Hg. Materials may be of any general type. Streams may contain Ba, Cd, Cr, Pb, Se and Ag as trace contamination. W700 Special Wastes These are waste streams that will require extra care for treatment. They may require specific treatment equipment or processes not consistent with current radioactive materials handling guidance. W710 Tritium Wastes Waste streams contaminated with tritium. They may be liquid or solids. Streams may contain Cr and Hg as trace contamination. Contains trace hazardous organics. W720 Pyrophorics Reactive metals. They are typically sodium metal or sodium metal alloys, but can also be particulate fines of aluminum, uranium, beryllium, zirconium, or other pyrophoric materials and may be mixed with	W650	Experimental Hardware	toxic metals. They can become highly radioactive during neutron irradiation in reactors. These materials may need special care as they contain activated metals and radiation that can not be removed by decontamination. Streams may contain As, Cd, Pb, and Hg as trace contamination. Contains
Components and Materials or lead oxide in a rubber or plastic binder, which includes lead acid batteries. May also be lead wool or lead base solder materials. W680 Hg-Contaminated Materials contaminated with Hg. Materials may be of any general type. Streams may contain Ba, Cd, Cr, Pb, Se and Ag as trace contamination. W700 Special Wastes These are waste streams that will require extra care for treatment. They may require specific treatment equipment or processes not consistent with current radioactive materials handling guidance. W710 Tritium Wastes Waste streams contaminated with tritium. They may be liquid or solids. Streams may contain Cr and Hg as trace contamination. Contains trace hazardous organics. W720 Pyrophorics Reactive metals. They are typically sodium metal or sodium metal alloys, but can also be particulate fines of aluminum, uranium, beryllium, zirconium, or other pyrophoric materials and may be mixed with	W660		Lead may be present as a trace contamination.
Materials of any general type. Streams may contain Ba, Cd, Cr, Pb, Se and Ag as trace contamination. W700 Special Wastes These are waste streams that will require extra care for treatment. They may require specific treatment equipment or processes not consistent with current radioactive materials handling guidance. W710 Tritium Wastes Waste streams contaminated with tritium. They may be liquid or solids. Streams may contain Cr and Hg as trace contamination. Contains trace hazardous organics. W720 Pyrophorics Reactive metals. They are typically sodium metal or sodium metal alloys, but can also be particulate fines of aluminum, uranium, beryllium, zirconium, or other pyrophoric materials and may be mixed with	W670	Components and	includes lead acid batteries. May also be lead wool
for treatment. They may require specific treatment equipment or processes not consistent with current radioactive materials handling guidance. W710 Tritium Wastes Waste streams contaminated with tritium. They may be liquid or solids. Streams may contain Cr and Hg as trace contamination. Contains trace hazardous organics. W720 Pyrophorics Reactive metals. They are typically sodium metal or sodium metal alloys, but can also be particulate fines of aluminum, uranium, beryllium, zirconium, or other pyrophoric materials and may be mixed with	W680	_	of any general type. Streams may contain Ba, Cd,
be liquid or solids. Streams may contain Cr and Hg as trace contamination. Contains trace hazardous organics. W720 Pyrophorics Reactive metals. They are typically sodium metal or sodium metal alloys, but can also be particulate fines of aluminum, uranium, beryllium, zirconium, or other pyrophoric materials and may be mixed with	W7 00	Special Wastes	for treatment. They may require specific treatment equipment or processes not consistent with current
sodium metal alloys, but can also be particulate fines of aluminum, uranium, beryllium, zirconium, or other pyrophoric materials and may be mixed with	W710	Tritium Wastes	be liquid or solids. Streams may contain Cr and Hg as trace contamination. Contains trace hazardous
	W720	Pyrophorics	sodium metal alloys, but can also be particulate fines of aluminum, uranium, beryllium, zirconium, or other pyrophoric materials and may be mixed with

A-11

CODE #	TITLE	DESCRIPTION	
W730	Nitrated Rags and Filters	Rags that have been used to absorb nitric acid and then been left in storage.	
W750	Compressed Gases	Aerosol cans and gas cylinders of any type of composition.	
W7 60	Be Wastes	Be metal chips, dusts, or materials contaminated with Be. Contains trace hazardous organics.	
W770	PCB Contamination	Solids and liquids contaminated with PCBs. A wide range of material types. Streams may contain Cr and Pb as trace contamination.	

APPENDIX B FINAL LIST OF PERTINENT FINAL WASTE FORM CHARACTERISTICS

One of the activities of the Final Waste Form Working Group was to determine the characteristics that a final waste form should possess. A list of 21 pertinent waste form characteristics was initially generated, and is shown in Table B-1.

Table B-1. Initial List of Pertinent Final Waste Form Characteristics

Compressive Strength	Homogeneity	Handling
Thermal Stability	Particle Size	Melting Point
Radiation Stability	Chemical Durability	Solubility
Biological Stability	Compositional Flexibility	Volatility
Leach Resistance	Gas Generation	Criticality
Immersion Stability	Aging/Time Dependence	Void Fraction
Free Liquid	RCRA Compliance	Waste Loading

The above list of 21 characteristics was later revised to include only the eleven characteristics which are discussed in the TASR. Ten of the characteristics shown in Table B-1 were deleted due to redundancy, lack of methods for measurement, and inappropriateness considering the charter of the technical committee. A short description of these discarded characteristics and the rational for deleting them follows:

<u>Homogeneity</u> - This characteristic refers to the degree of homogeneity of the waste and the binder. Although this characteristic may be important when considering representative sampling and the characterization of the final waste form, it does not address performance.

<u>Particle Size</u> - This characteristic was originally included to prevent the possibility of respirable particles being present and thus creating safety issues during storage and handling. A baseline was established that would only include "monolithic" waste forms, thus restricting the physical form and removing the need for this characteristic. This requirement is indirectly included in the compressive strength characteristic.

Aging/Time Dependence - This characteristic refers to the long-term performance of the waste form. Although it is an important characteristic, it was felt that it was too broad and could be more effectively quantified by more specific characteristics such as chemical stability, and leach resistance.

<u>Handling</u> - This characteristic was included to address the safety issues and the physical considerations associated with handling the waste form. This characteristic is not considered a performance criteria.

Melting Point - This characteristic addresses the need for the waste form to maintain its physical dimensions and to remain in a solid form at high

temperature. This characteristic is important under accident conditions and is addressed by thermal stability.

<u>Volatility</u> - This characteristic refers to the generation of volatile species under normal storage and disposal conditions. It was felt that this characteristic was covered under the gas generation and RCRA non-characteristic criteria.

<u>Criticality</u> - This characteristic addresses the potential for formation of a critical mass. Based on the concentration limits established for LLW the potential for criticality does not exist.

<u>Void Fraction</u> - This characteristic is referred to in the NRC guidance for LLW. It is, however, a consideration that addresses structural stability and economics. It was felt that the stability requirement is covered by the retained characteristics; the economic concern is beyond the scope of this report.

Waste Loading - This characteristic refers to the ability of the binder to effectively isolate large quantities of waste. Although this is an important characteristic of the final waste form, it primarily effects the economics of the process and therefore was outside the scope of this report.

Solubility - This characteristic refers to the "equilibrium" concentrations of species in solution. It is a major factor in leach resistance and, for the purposes of this review, is included in that characteristic.

APPENDIX C SUMMARY OF CURRENT STATUS

GLASS

TITLE:

Electrically Heated Glass Melter Connected to a Wet

Scrubber Offgas System

EQUIPMENT:

Joule-Heated Glass Melter

LOCATION:

EG&G Mound Applied Technologies

Miamisburg, Ohio

CONTACT:

Larry Klingler: (513) 865-3078

EG&G Mound

CAPABILITIES:

Thermal Capacity -- 400,000 Btu/hr

Temperature -- 730°C to 1,350°C Maximum Throughput -- N/A

Treatable Waste -- RCRA hazardous and low-level

radioactive wastes

VERSATILITY:

N/A

DESCRIPTION:

The system under study at Mound consists of an electrically heated glass melter connected to a wet offgas scrub system. The glass furnace was purchased from Penberthy Electromelt, Inc. The unit is equipped with feed systems designed to provide the flexibility to introduce a variety of waste types in

accurately metered quantities.

OFFGAS SYSTEM:

The offgas system features a primary and secondary wet scrubbing by means of a spray tank and a high efficiency venturi scrubber. The scrubber system is followed by a cyclone demister and several stages of HEPA filtration. A scrub liquid recycling system provides caustic solution for

the scrubbing operations.

STATUS:

Has operated but shutdown pending environmental

assessment review.

<u>GLASS</u>

TITLE:

High Bay Ceramic Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Hanford Site

Richland, WA

CONTACT:

Chris Chapman: (509) 376-6576

Pacific Northwest Laboratory

CAPABILITIES:

Thermal Capacity -- ~1,500,000 BTU/hr¹

Temperature -- 1,200°C

Throughput -- Inorganic Solids: 570-710 kg/d; Combustibles:

850-

1,714 kg/d¹; Slurries: 630-1,050 kg/d

Treatable Waste -- Non-radioactive RCRA hazardous waste

VERSATILITY:

Waste feeding systems will handle slurries (acid, bases, neutral), sludges, solids (soils, combustible trash, tramp metals). Device is not suitable for wastes with large metal

pieces.

DESCRIPTION:

Melter has a cylindrical melt cavity 2 ft in diameter and is 2.83 ft deep with a flat floor. Reaction chamber above the melt can be maintained at temperatures up to 1,000°C with unit's plenum heaters. Unit has a batch bottom drain and a conventional bottom take off, overflow discharge. Melter is enclosed in a water cooled stainless steel jacket. Electrodes are side entering plates (2 sets) made of Inconel 690. The refractory lining is made of Monofrax K-3. Feed ports are 6-in. ID on the current lid. Larger sizes can be achieved with a new lid. Control and data logging equipment are associated

with the system. The melter is shown in Figure C-1.

OFFGAS SYSTEM:

800 SCFM offgas treatment capacity

Submerged bed scrubbers

High efficiency mist eliminator (HEMEs)

Packed column

Hydrosonic scrubber

Existing blower limits this to about 1,200,000 BTU/hr and 1,280 kg/d of 22,000 BTU/kg feed.

High pressure drop venturi scrubbers Activated carbon absorption High efficiency metal fiber filter HEPA Thermosyphon evaporator, concentrator

Offgas characterization equipment includes particulate size fraction characterization (0.3 to >10 μ m) and compositions. Volatile organics and gases with mass spectrometry.

STATUS:

Current being upgraded for a new slurry feed system and an independent off gas system.

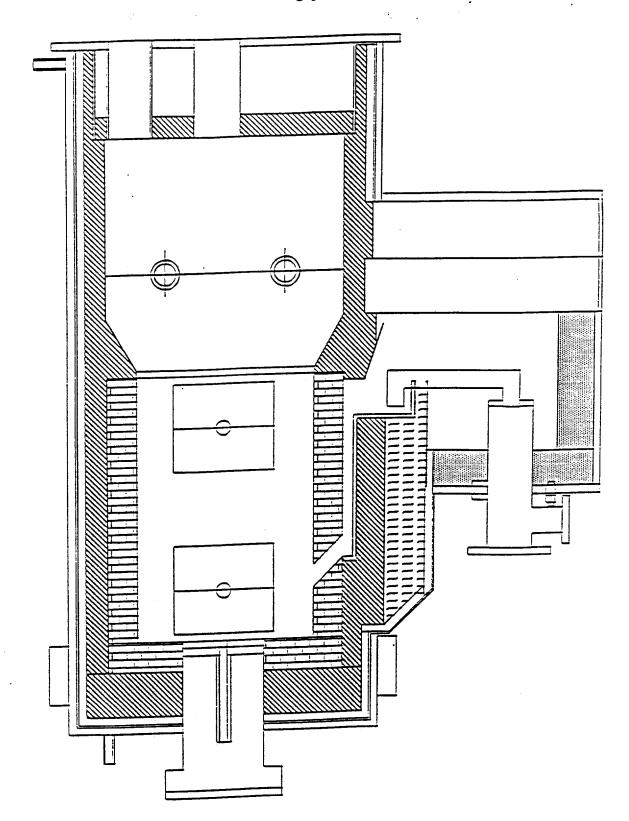


Fig. C-1. High bay ceramic melter

GLASS

TITLE:

Advanced Test Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Hanford Site Richland, WA

CONTACT:

Chris Chapman: (509) 376-6576 Pacific Northwest Laboratory

CAPABILITIES:

Thermal Capacity -- ~750,000 BTU/hr¹

Temperature -- 1,550°C

Throughput -- Inorganic solids: 270-340 kg/d; combustibles:

400- 800 kg/d¹; slurries: 300-500 kg/d

Treatable Waste -- Non-radioactive RCRA hazardous waste

VERSATILITY:

Waste feeding systems will handle slurries (acid, bases, neutral), sludges, solids (soils, combustible trash, tramp metals). Devise is suitable for wastes with large metal

pieces.

DESCRIPTION:

The Advanced Test Melter, shown in Figure C-2, has a rectangular cavity 1.5 ft long by 1 ft wide and is 1 ft deep with a flat floor. The unit has a controllable, freeze valve bottom drain and a conventual bottom take off, overflow discharge. There is a tilt pour mechanism for drain control. The melter is enclosed in a water cooled steel jacket.

Electrodes are top entering molybdenum rods with oxidation resistant sheaths. Refractory lining is Monofrax K-3 and E. Feed ports are 6-in. ID on current lid. Larger sizes can be achieved with new lid. Control and data logging equipment

are associated with the system.

¹Existing blower limits this to about 1,200,000 BTU/hr and 1,280 kg/d of 22,000 BTU/kg feed.

OFFGAS SYSTEM:

800 SCFM offgas treatment capacity

Submerged bed scrubbers

HEMEs

Packed column

Hydrosonic scrubber

High pressure drop venturi scrubbers

Activated carbon absorption High efficiency metal fiber filter

HEPA

Thermosyphon evaporator, concentrator

Offgas characterization equipment includes particulate size fraction characterization (0.3 to >10 µm) and compositions.

Volatile organics and gases with mass spectrometry.

STATUS:

Constructed but not in operation.

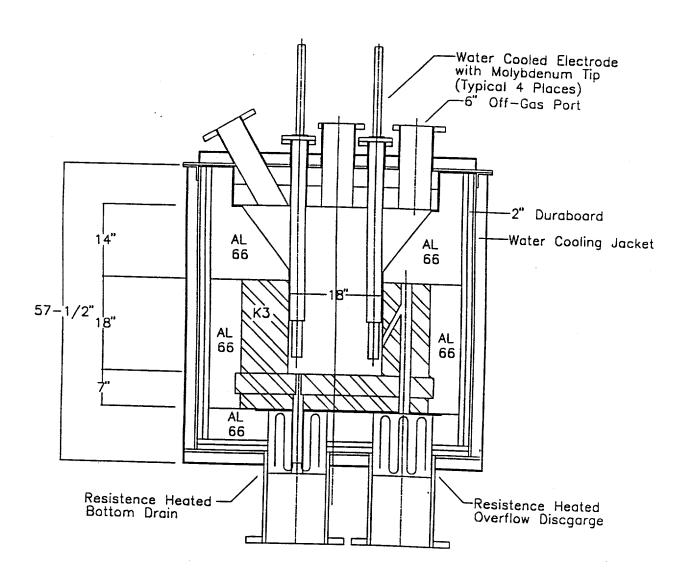


Fig. C-2. Advanced test melter (ATM)

TITLE:

High Temperature Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Hanford Site Richland, WA

CONTACT:

Chris Chapman: (509) 376-6576 Pacific Northwest Laboratory

CAPABILITIES:

Thermal Capacity -- ~6,000,000 BTU/hr1

Temperature -- 1,550°C

Throughput -- Inorganic Solids: 3,800-4,700 kg/d;

Combustibles: 5,700-11,400 kg/d¹; Slurries: 4,200-7,000

kg/d

Treatable Waste -- Non-Radioactive RCRA Hazardous Waste

VERSATILITY:

Waste feeding systems will handle slurries (acid, bases, neutral), sludges, and solids (soils, combustible trash, tramp metals). Device is suitable for wastes with large metal

pieces.

DESCRIPTION:

Melter has a cylindrical cavity 5.2 ft in diameter and is 3.5 ft deep with a sloped floor. Unit has a controllable, freeze valve, bottom drain and a conventional bottom take off, overflow discharge. Reaction chamber above melt can be maintained at a temperature up to 1,000°C with plenum heaters. Melter is enclosed in a water cooled stainless steel jacket. Electrodes are top entering, molybdenum rods (2 sets) with oxidation resistant sheaths. The refractory lining is made of Monofrax K-3 and E. Monofrax electrodes are also tested. Feed ports is up to 24-in. ID. Provision for a central arc boosting or high capacity joule electrode is present. Control and data logging equipment is associated with the system. A diagram of this melter is provided in Figure C-3.

Existing blower limits this to about 1,200,000BTU/hr and 1,280 kg/d of 22,000 BTU/kg feed.

800 SCFM offgas treatment capacity

Submerged bed scrubbers

HEMEs

Packed column

Hydrosonic scrubber

High pressure drop venturi scrubbers

Activated carbon absorption High efficiency metal fiber filter

HEPA

Thermosyphon evaporator, concentrator

Offgas characterization equipment includes particulate size fraction characterization (0.3 to >10µm) and compositions.

Volatile organics and gases with mass spectrometry.

STATUS:

Under construction; due to be in operation 1st quarter of

1993.

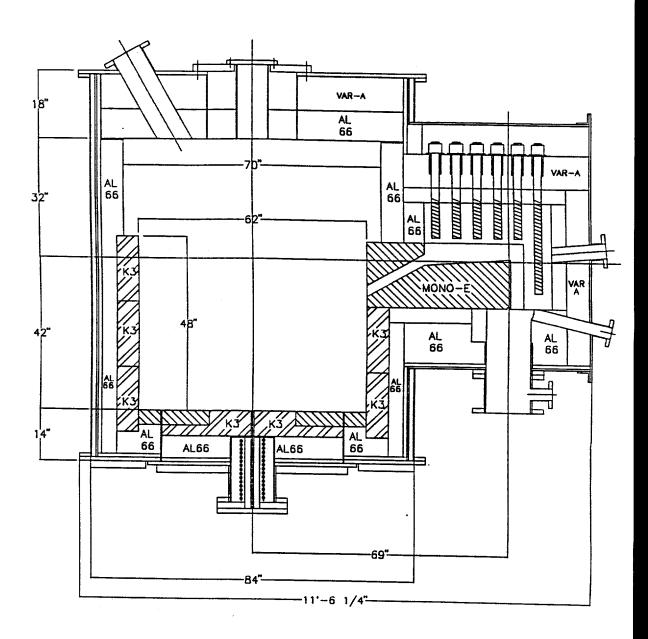


Fig. C-3. High temperature melter

TITLE:

Liquid Fed Ceramic Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Hanford Site Richland, WA

CONTACT:

Chris Chapman: (509) 376-6576 Pacific Northwest Laboratory

CAPABILITIES:

Thermal Capacity -- ~5,600,000 BTU/hr¹

Temperature -- 1,200°C

Throughput -- Inorganic solids: 2,000-2,500 kg/d;

combustibles: 3,000-6,100 kg/d¹; slurries: 2,250-3,750 kg/d Treatable Waste -- Non-radioactive RCRA hazardous waste

VERSATILITY:

Waste feeding systems will handle slurries (acid, bases, neutral), sludges, solids (soils, combustible trash, tramp metals). Device is not suitable for wastes with large metal

pieces that can not be oxidized in the feed pile.

DESCRIPTION:

The Liquid Fed Ceramic Melter, shown in Figure C-4, has a rectangular melt cavity 4 ft long by 2.8 ft wide and 1.8 ft deep with a 46° sloped floor. Unit has a batch bottom drain and a conventional bottom take off, overflow discharge. Reaction chamber above melt can be maintained at a temperature up to 1,000°C with plenum heaters. The melter is enclosed in a water cooled stainless steel jacket. The electrodes are side and bottom entering plates (3 total) made of Inconel 690. The refractory lining is Monofrax K-3. Largest feed port is 10-in. diameter. Control and data logging equipment are associated with the system.

¹Existing blower limits this to about 1,200,000 BTU/hr and 1,280 kg/d of 22,000 BTU/kg feed.

800 SCFM offgas treatment capacity

Submerged bed scrubbers

HEMEs

Packed column

Hydrosonic scrubber

High pressure drop venturi scrubbers

Activated carbon absorption High efficiency metal fiber filter

HEPA

Thermosyphon evaporator, concentrator

Offgas characterization equipment includes particulate size fraction characterization (0.3 to >10 μ m) and compositions. Volatile organics and gases with mass spectrometry.

STATUS:

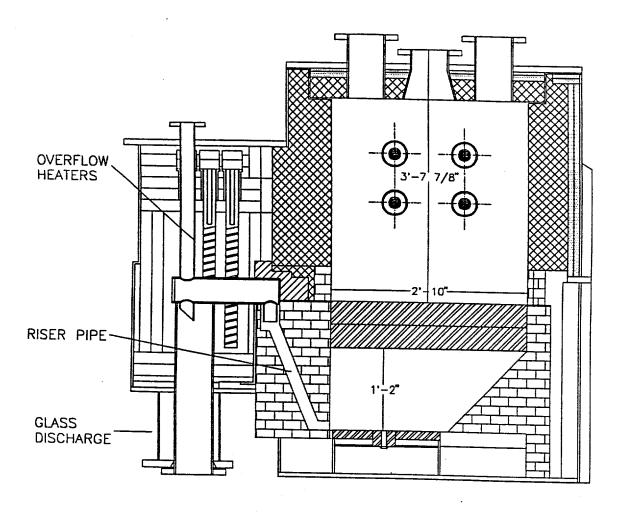


Fig. C-4. Liquid fed ceramic melter

TITLE:

Pilot Scale Ceramic Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Hanford Site Richland, WA

CONTACT:

Chris Chapman: (509) 376-6576 Pacific Northwest Laboratory

CAPABILITIES:

Thermal Capacity -- ~1,800,000 BTU/hr1

Temperature -- 1,200°C

Throughput -- Inorganic solids: 1,450-1,850 kg/d;

combustible: 2,200-4,500 kg/d¹; slurries: 1,650-2,700 kg/d Treatable Waste -- Non-radioactive RCRA hazardous waste

VERSATILITY:

Waste feeding systems will handle slurries (acid, bases, neutral), sludges, and solids (soils, combustible trash, tramp metals). Device is not suitable for wastes with large metal

pieces that can not be oxidized in the feed pile.

DESCRIPTION:

The Pilot Scale Ceramic Melter, shown in Figure C-5, has a rectangular melt cavity 3.4 ft long by 2.4 ft wide and 1.2 ft deep with a flat floor. It has a batch bottom drain and a conventional bottom take off, overflow discharge. The melter is enclosed in a water cooled stainless steel jacket. Electrodes are side entering plates (1 set) made of Inconel 690. The refractory lining is Monofrax K-3. Largest feed port is 12 in. wide by 18 in. long. Control and data logging

equipment are associated with the system.

¹Existing blower limits this to about 1,200,000 BTU/hr and 1,280 kg/d of 22,000 BTU/kg feed.

800 SCFM offgas treatment capacity

Submerged bed scrubbers

HEMEs

Packed column

Hydrosonic scrubber

High pressure drop venturi scrubbers

Activated carbon absorption
High efficiency metal fiber filter

HEPA

Thermosyphon evaporator, concentrator

Offgas characterization equipment includes particulate size fraction characterization (0.3 to $>10\mu m$) and compositions. Volatile organics and gases with mass spectrometry.

STATUS:

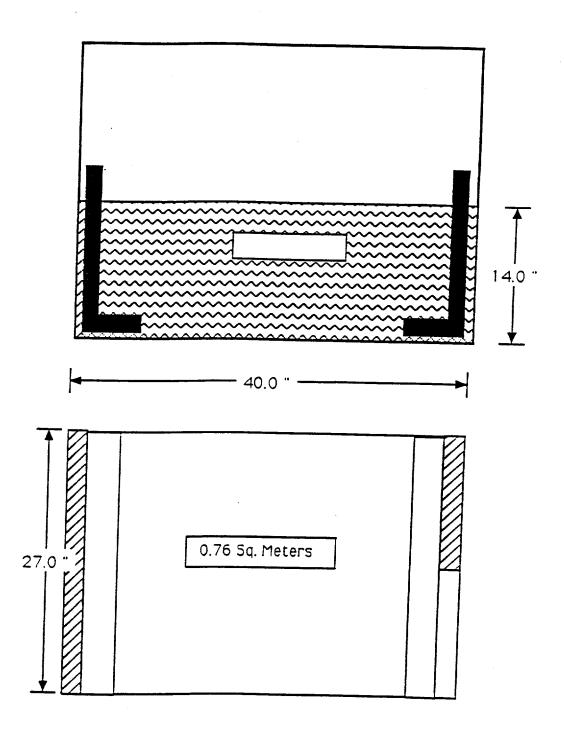


Fig. C-5. Pilot scale ceramic melter

TITLE:

HWTF Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Hanford Site Richland, WA

CONTACT:

Chris Chapman: (509) 376-6576 Pacific Northwest Laboratory

CAPABILITIES:

Thermal Capacity -- ~3,400,000 Btu/hr¹

Temperature -- 1,550°C

Throughput -- Inorganic solids: 1,450-1,850 kg/d;

combustibles: 2,220-4,500 kg/d¹; slurries: 1,650-2,700 kg/d Treatable Waste -- Non-radioactive RCRA hazardous wastes

VERSATILITY:

Wastes can be solutions, slurries (acid, basic or neutral), or solids (soils, combustible trash or mixtures). Device is

suitable for wastes with large metal pieces.

DESCRIPTION:

The HWTF Melter, shown in Figure C-6, has a rectangular cavity 4 ft long and is 3.5 ft wide, with a glass depth of 2 ft and a sloped floor. The unit has a batch bottom drain and a conventional bottom take off, overflow discharge. Melter is enclosed in a water cooled steel jacket. Electrodes are side entering molybdenum rods (2 total). The refractory lining is Monofrax K-3 and E. Feed port is up to 24 in. wide and 24

in. long.

¹Existing blower limits this to about 1,200,000 BTU/hr and 1,280 kg/d of 22,000 BTU/kg feed.

800 SCFM offgas treatment capacity

Submerged bed scrubbers

HEMEs

Packed column

Hydrosonic scrubber

High pressure drop venturi scrubbers

Activated carbon absorption High efficiency metal fiber filter

HEPA

Thermosyphon evaporator, concentrator

STATUS:

Design completed; shell fabricated.

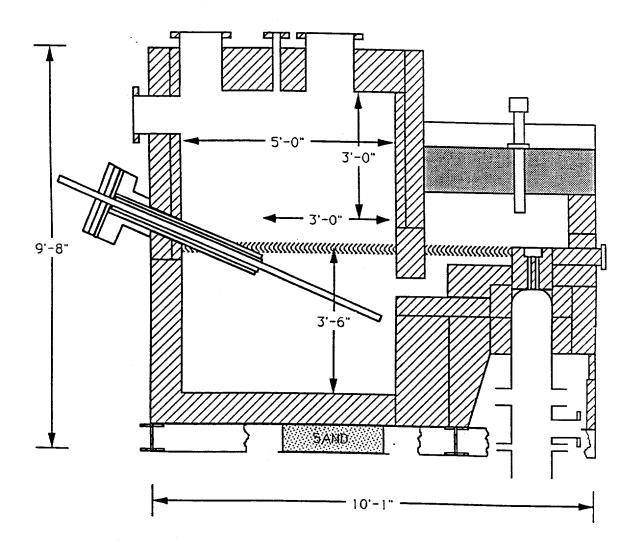


Fig. C-6. HWTF Melter

TITLE:

Fixed Hearth Plasma Process

EQUIPMENT:

Plasma Arc Furnace

LOCATION:

Retech, Inc. Ukiah, CA

CONTACT:

Ray L. Geimer: (208) 528-2144

Science Application International Corporation

CAPABILITIES:

Thermal Capacity -- 3,000,000 BTU/hr

Temperature -- 1,800°C

Maximum Throughput -- 300 kg/hr

Treatable Waste -- Bulk metals, soils, sludges, solid

combustibles, ash, cemented sludges, solid graphite, bricks, concrete blocks. Can perform RCRA Treatability Tests.

VERSATILITY:

Wastes can be non-homogeneous mixtures of metals, inert solids, and combustibles. Wastes can be feed in whole in 30-gal drums (55-gal drums can be used with some modification to the feed system). Waste with any heating value (0-20,000 BTU/lb) can be treated by this system. Waste can include solid such as bricks, concrete, or bulk metal objects. Sludge wastes and partially (or completely) solidified sludges can be

processed.

DESCRIPTION:

The primary furnace chamber has a 1.2 MW plasma torch that can be operated on He, Ar, N, O, air, or mixtures of these gases. The feed chamber is large enough to accommodate whole 30-gal drums and could be easily modified to accommodate 55-gal drums. The system operates in a batch mode and can operate for 2-4 hrs depending on feed

composition. The primary furnace is a water cooled, refractory lined chamber capable of vacuum tight operation at temperatures up to 1,800°C. The secondary combustion chamber is a water cooled, refractory lined vessel capable of operating at temperatures up to 1,400°C. The secondary combustion chamber has an auxiliary natural gas burner that will deliver up to 1,000,000 BTU/hr. Combustion air is supplied to the primary and secondary chamber by a 7.5-hp

blower rated at 1,000 scfm.

Gases exit the secondary combustion chamber and are immediately quenched by an air atomized water spray. Warm dry gases (200°C) exit the evaporative cooler and are filtered in a high temperature baghouse (51 m² of filter area). Flow of gas is induced by a 20-hp fan with a capacity at 5,000 scfm at 10-in. water column.

STATUS:

TITLE:

Joule-Heated Research Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Savannah River Site

Aiken, SC

CONTACT:

Dennis Bickford: (803) 725-3737

Westinghouse Savannah River Company

CAPABILITIES:

Thermal Capacity -- 8.4 kW

Temperature -- 1,200°C

Maximum Throughput -- 2 lb/hr (dry feed @ 50%)
Treatable Waste -- simulated waste slurry and hazardous

materials

VERSATILITY:

Installed in chemical hood to permit handling of various toxic materials. Full lid heating capacity. Normally used with mercury, silver, lead, selenium, etc. Frequently used for waste solubility, waste form quality, glass redox control measurements. Major changes in batch chemistry are tried

here before tests in pilot scale melters. Tilt to pour

mechanism. Third generation, 15 yrs experience, repaired

and replaced as necessary.

DESCRIPTION:

The Research Melter is used for electric Joule heating of slurry which can contain hazardous materials, including mercury for melting temperatures up to 1,200°C. The enclosed melter system utilizes Inconel 690 electrodes and includes the compete offgas system. The melter produces 1-3

lb/hr output. No additional permits are required for

experimental simulated waste.

OFFGAS SYSTEM:

Fully scaled down DWPF system:

Venturi scrubber

Steam atomized scrubber and cyclone

Condenser and demister

HEPA filtration

Filter disk and bubble scrubbers for special offgas analysis

STATUS:

TITLE:

High Level Caves -- Joule-Heated Research Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Savannah River Site

Aiken, SC

CONTACT:

Dennis Bickford: (803) 725-3737

Westinghouse Savannah River Company

CAPABILITIES:

Thermal Capacity -- 8.4 kW

Temperature -- 1150°C

Maximum Throughput -- 2 lb/hr (dry feed @ 50%)

Treatable Waste -- Radioactive waste slurry and hazardous

materials

VERSATILITY:

Full lid heating capacity. Installed in high-level cell to permit handling of high-level waste and various toxic materials. Frequently used for high-level waste verification tests. Third generation, 15 years operation, rebuilt and

replaced as necessary. Tilt to pour mechanism.

Same facility has capability of performing leach testing, ICP-

AES for elemental analysis, and radiological testing.

DESCRIPTION:

Can vitrify radioactive waste slurry in a Research Melter; very similar to the Joule-Heated Research Melter described

above.

OFFGAS SYSTEM:

Venturi scrubber

Condenser and demister

HEPA filtration

Filter disk and bubbler scrubbers for special offgas analyses

STATUS:

TITLE:

High Temperature Melter

EQUIPMENT:

Induction Melter

LOCATION:

Savannah River Site

Aiken, SC

CONTACT:

Dennis Bickford: (803) 725-3737

Savannah River

CAPABILITIES:

Thermal Capacity -- N/A Temperature -- 1,900°C

Throughput -- 20 lb/hr

Treatable Waste -- Low-level mixed waste

VERSATILITY:

Rapid heating to desired temperature, with maximum temperature about 2,000°C. Replaceable melt container. Has been used with depleted, natural, and enriched uranium. Tilt to pour. Especially applicable for tests where molten steel, stainless steel, iron, etc., are produced. Ideal for metal recycling and reclamation test. Temperatures are better controlled than with arc or plasma melting, minimizing volatilization of low boiling point metals such as cadmium and zinc. Can be fitted with air lance or oxygen lance for

oxidation of organics. Has induction stirring for

homogenization and improved metal recovery. A similar unit

was used for production of plutonium alloys (design of

containment facility available).

DESCRIPTION:

Used for the induction melting of electrically insulating or conductive materials, and their mixtures. Equipment is located in a lab with a 2-in. metal shear and other furnaces operating from 1,000-1,600°C. Permitted for low-level radioactive testing and hazardous materials, with a limit of 500 grams enriched uranium. Similar unit could be made transportable. Off the shelf scale up to 50 tons/day.

OFFGAS SYSTEM:

Exhauster, double HEPA filtration and stack. Licensed for

use with LLMW.

STATUS:

Installed and available. Offgas upgrade scheduled for

January 1993.

TITLE:

Pilot Scale Joule-Heated Melter at the TNX Area

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Savannah River Site

Aiken, SC

CONTACT:

Dennis Bickford: (803) 725-3737

Westinghouse Savannah River Company

CAPABILITIES:

Thermal Capacity -- 56 kW Temperature -- 1,150°C

Throughput -- 10 lb/hr

Treatable Waste -- Simulated waste streams and hazardous

materials

VERSATILITY:

A \$16,000,000 fully integrated melter system duplicating DWPF process. All major feed preparation and offgas scrubbing equipment are run using instrumental controls similar to those of the DWPF. Most feed preparation and offgas system components are made of Hastelloy C-276, permitting full flowsheet amounts of corrosive acids, halides, sulfates, etc. Normally operates with Hg, Ag, Se, Cd, Pb, Cr,

Cu, H₂SO₄, HNO₃, etc.

DESCRIPTION:

Complete pilot-scale facilities are available for preprocessing the waste stream, Joule-heat glass melting, process control, and waste glass evaluation. Expertise includes process design and modification, process evaluation, process evaluation, process control, process modeling and offgas design. Permits include mercury and hazardous

materials.

OFFGAS SYSTEM:

Extensive instrumentation of offgas system and feed

preparation offgas allows monitoring for CO, CO₂, H₂, NO,

N₂O, SO₂, and organics.

STATUS:

Operating now.

TITLE:

High Temperature Glass Melter

EQUIPMENT:

TECO Joule Heated Melter

LOCATION:

DOE Industrial Center for Vitrification

Clemson, SC

CONTACT:

Dennis Bickford: (803) 648-6317

Westinghouse Savannah River Company

CAPABILITIES:

Thermal Capacity -- 100 kW

Temperature --1,600°C

Maximum Throughput -- 120 lb/hr

Treatable Waste -- Simulated wastes and hazardous materials

VERSATILITY:

Especially designed for rapid and inexpensive disassembly and reconfiguration (one week turn around time). Is being modified to permit recovery of molten copper alloys form circuit boards. Will be used to examine alternative electrode materials, and a range of oxidation reduction conditions.

DESCRIPTION:

The melter was especially designed for hazardous waste vitrification by one of the world's largest suppliers of commercial electric melter. It is portable and has been used at 3 different sites for pilot scale tests. The manufacturer can supply similar unity with capacities of over 10 tons/day. A

high intensity electric field provides locally high temperatures, while maintaining the low pollution

characteristics of a cold top melter. Necessary permits are being obtained by Clemson University to operate for Sandia National Laboratories and Savannah River Site simulated

waste.

OFFGAS:

Portable and fully integrated DWPF system with

Quencher/scrubber Offgas condensate tank

Atomized supersonic scrubber and cyclone

Condenser and mist Eliminator Reheater and HEPA Filtration

Exhauster

Stack (not portable)

The offgas system is arranged with the necessary taps for

particulate and gas emission measurements.

STATUS:

Ready to ship to Clemson November 1992.

TITLE:

Lab Scale Stirred Glass Melter

EQUIPMENT:

Glasstech 1/4 ft² Stirred Melter

LOCATION:

DOE Industrial Center for Vitrification

Clemson, SC

CONTACT:

Dennis Bickford: (803)648-6317

Westinghouse Savannah River Company

CAPABILITIES:

Thermal Capacity -- 15 kW

Temperature -- 1,200°C

Maximum Throughput -- 8 lb/hr

Treatable Waste -- Simulated wastes, wastes slurries, and

hazardous materials

VERSATILITY:

Highest throughput per unit size of any joule heated melter. Especially designed for low cost, rapid and inexpensive disassembly and reconfiguration (one week turn around time). Is being used to investigate direct vitrification of wastes under a range of oxidation reduction conditions, and

for development of melter sensors.

DESCRIPTION:

The melter was especially designed for hazardous waste vitrification in cooperation with the Savannah River Site. The manufacturer can supply similar units with capacities of over 6 tons/day. Stirring provides exceptionally high melting rates while minimizing the temperature and surface area available for volatilization of waste components. Can be operated as a batch process to partially maintain the low pollution characteristics of a cold top melter. Necessary permits are being obtained by Clemson University to operate for Sandia National Laboratory and Savannah River Site

simulated waste.

OFFGAS SYSTEM:

Normally vented to laboratory hood, can be fitted with

necessary scrubbers and samplers for specific tests.

STATUS:

Ready for shipment November 1992.

TITLE:

Production Scale Stirred Glass Melter

EQUIPMENT:

Glasstech 9 ft² Stirred Melter

LOCATION:

Savannah River Site

Aiken, SC

CONTACT:

Technical -- Dennis Bickford: (803) 648-6317

Westinghouse Savannah River Company

Commercial -- Ray Richards (419) 536-8828

Kenneth Wetmore (419) 661-9500

Stir-Melter, Inc.

CAPABILITIES:

Thermal Capacity -- 600 kW

Temperature -- 1,200°C

Maximum Throughput -- 228 lb/hr slurry; 500 lb/hr dry feed Treatable Waste -- Simulated wastes, wastes slurries, and

hazardous materials

VERSATILITY:

Highest throughput per unit size of any joule heated melter. Especially designed for low cost, rapid and inexpensive disassembly and reconfiguration (one month turn around time). Is being used to investigate less expensive and more easily repaired melters for high level waste. Is available part time for non-HLW programs. Will be used for direct vitrification of wastes under a range of oxidation reduction

conditions, and for development of melter sensors.

DESCRIPTION:

The melter was especially designed for hazardous waste vitrification in cooperation with Savannah River Site. The manufacturer can supply similar units with capacities of over 6 tons/day. Stirring provides exceptionally high melting rates while minimizing the temperature and surface area available for volatilization of waste components. Can be operated

batch-wise to partially maintain the low pollution

characteristics of a cold top melter. Necessary permits are in place to operate for Savannah River Site waste simulants,

including actual hazardous components.

A \$16,000,000 fully integrated melter system duplicating DWPF process. All major feed preparation and offgas scrubbing equipment is run using similar instrumental controls as the DWPF. Most feed preparation and offgas system components are made of Hastelloy C-276, permitting full flowsheet amounts of corrosive acids, halides, sulfates, etc. Extensive instrumentation of offgas system and feed preparation offgas allows monitoring for CO, CO₂, H₂, NO, NO₂, N₂O, SO₂, and organics. Normally operates with Hg, Ag, Se, Cd, Pb, Cr, Cu, H₂SO₄, HNO₃, etc.

STATUS:

Finalizing purchasing contract.

TITLE:

Lab Scale Rotary Calciner/Melter

EQUIPMENT:

Custom Laboratory Rotary Calciner/Melter

LOCATION:

Savannah River Site

Aiken, SC

CONTACT:

Dennis Bickford: (803) 648-6317

Westinghouse Savannah River Company

CAPABILITIES:

Thermal Capacity -- 3 kW

Temperature -- 1,300°C

Maximum Throughput -- 0.5 lb/hr

Treatable Waste -- LLMW, waste slurries, and hazardous

materials

VERSATILITY:

Very small unit for chemical characterization of waste and offgas. Especially designed for low cost operation and inexpensive disassembly and reconfiguration. It is being used to calcine wastes prior to vitrification in crucibles, and

for offgas sampling.

DESCRIPTION:

The melter was especially designed for hazardous waste

oxidation and vitrification by Savannah River Site.

OFFGAS SYSTEM:

It is normally fitted with condenser and vented to hood. Can

be fitted with glass pouring, offgas sampling as required.

STATUS:

Built and ready for installation.

TITLE:

WV-0.25 Stir-Melter, Inc.

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Stir-Melter, Inc. Perrysburg, OH

CONTACT:

Technical: Ray Richards -- (419) 536-8828

Commercial: Kenneth Wetmore -- (419) 661-9500

CAPABILITIES:

Thermal Capacity -- 10 kW Temperature -- 1,050°C

Maximum Throughput¹ -- 120 kg/d (glass output from dry

feed); 80 kg/d (glass output from 60% slurry) Treatable Waste -- RCRA hazardous waste

VERSATILITY:

Stir-Melters are highly driven refractory or metal lined Jouleheated glass melters. They are much smaller in size than most other melters; quickly started and stopped, and offgases can be limited to those emanating from the feed materials. Feed materials tested include 60% water slurries, dry feed including modest amounts of organics, and light materials such as fiberglass scrap. The operating temperature limits for the metal lined melters in 1,050°C. A second stage non-stirred superheater operating at 1,150°C can be provided. The refractory lined units can operate at over 1,600°C.

DESCRIPTION:

This is a 0.25 ft² area melter, designed specifically for simulated radioactive and hazardous wastes. It is an all metal, partially sealed unit with an upper temperature limit of 1,050°C.

OFFGAS SYSTEM:

The size of this unit lends itself easily to glove-box enclosure for offgas containment. Stir-Melter, Inc. can perform melting trials. Stack sampling and testing can be obtained locally. Other testing and characterization is provided by other vendors.

¹Lab EPA permit limits 250 kg of waste per day and a total limit of 1000 kg for any one waste stream. Radioactive materials cannot be accepted.

STATUS:

The piece of equipment will be available in the fall of 1992 for demonstration through Stir-Melter, Inc. in its laboratory facility.

TITLE:

WV-1 Stir Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Stir Melter, Inc. Perrysburg, OH

CONTACT:

Technical -- Ray Richards: (419) 536-8828

Commercial -- Kenneth Wetmore: (419) 661-9500

CAPABILITIES:

Thermal Capacity -- 60 kW Temperature -- 1.050°C

Maximum Throughput¹ -- 500 kg/d (glass output from dry

feed); 350 kg/d (glass output from 60% slurry) Treatable Waste -- RCRA hazardous waste

VERSATILITY:

Stir-Melters are highly driven refractory or metal lined Jouleheated glass melters. They are much smaller in size than most other melters; quickly started and stopped, and offgases can be limited to those emanating from the feed materials. Feed materials tested include 60% water slurries, dry feed including modest amounts of organics, and light materials such as fiberglass scrap. The operating temperature limits for the metal lined melters in 1,050°C. A second stage nonstirred superheater operating at 1,150°C can be provided. The refractory lined units can operate at over 1,600°C.

DESCRIPTION:

This is a 1 ft² area melter, designed specifically for simulated radioactive and hazardous wastes. It is an all metal, sealed unit with an upper temperature limit of 1,050°C. It has been tested for over 3,700 hrs. Much of this time was spent on simulated high-level waste from the Savannah River Site. This was a 60 weight % water/solids slurry and the melter produced over 14.5 kg/hr of glass output. A dry feed of similar composition was also tested and produced a melting

rate of over 21.4 kg/hr.

¹Lab EPA permit limits 250 kg of waste per day and a total limit of 1000 kg for any one waste stream. Radioactive materials cannot be accepted.

Stir-Melter, Inc. units are equipped with an offgas port which is typically connected to offgas handling equipment specifically designed for each application and supplied by the client or other vendors. Stir-Melter, Inc. can perform melting

trials. Stack

sampling and testing can be obtained locally. Other testing and characterization is provided by other vendors.

STATUS:

This piece of equipment is available for demonstration through Stir-Melter, Inc. in its laboratory facility.

TITLE:

MiniMelter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Vitreous State Laboratory of Catholic University of America

Washington, DC

CONTACT:

Pedro B. Macedo: (202) 319-5329

Vitreous State Laboratory

CAPABILITIES:

Thermal Capacity -- 8 kW Temperature -- 1,150°C

Throughput -- 10 kg/d to 30 kg/d

Treatable Waste -- RCRA hazardous and low-level

radioactive waste

VERSATILITY:

Waste feeds can be dry, semi-dry, slurry, or liquid.

DESCRIPTION:

MiniMelter is the smallest vitrification furnace with nominal capacity of 10 kg/day. This is an electrically heated furnace allowing small scale studies on various feed materials. The MiniMelter operates at temperatures not higher than 1,200°C. It is equipped with a system for continuous feeding of dry and semi-dry materials as well as wet sludges. It possesses an off-gas system for full capture of evaporation products.

The MiniMelter operates in the batch mode.

For some typical waste processed at Vitreous State Laboratory, this furnace could process up to 30 kg/day.

OFFGAS SYSTEM:

Oil bucket particulate collector

HEPA filtration system

STATUS:

TITLE:

MicroMelter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Vitreous State Laboratory of Catholic University of America

Washington, DC

CONTACT:

Pedro B. Macedo: (202) 319-5329

Vitreous State Laboratory

CAPABILITIES:

Thermal Capacity -- 12 kW

Temperature -- 1,150°C

Throughput -- 30 kg/d to 100 kg/d

Treatable Waste -- RCRA hazardous and low-level

radioactive waste

VERSATILITY:

Waste feeds can be dry, semi-dry, slurry, or liquid.

DESCRIPTION:

MicroMelter is a larger unit with all characteristics of a pilotplant installation. Its nominal capacity is 30 kg/day and it allows quick, inexpensive vitrification studies on all kinds of feed materials at temperatures not higher than 1,200°C. The MicroMelter is also an electrically-heated furnace. It is equipped with a proprietary mixing system which ensures rapid and uniform mixing of waste materials and glass formers. The MicroMelter can safely handle low-level radioactive wastes. It operates in the continuous mode and

possesses a relatively sophisticated offgas system.

For some typical wastes processed at Vitreous State

Laboratory, this furnace could process up to 100 kg/day of

waste.

OFFGAS SYSTEM:

Quencher

Scrubber Bag filter

HEPA filtration system

STATUS:

TITLE:

100 kg/day Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Vitreous State Laboratory of Catholic University of America

Washington, DC

CONTACT:

Pedro B. Macedo: (202) 319-5329

Vitreous State Laboratory

CAPABILITIES:

Thermal Capacity -- 42 kW

Temperature -- 1,150°C

Throughput -- 100 kg/day to 900 kg/day

Treatable Waste -- RCRA hazardous and low-level

ladioactive waste

VERSATILITY:

Waste feeds can be dry, semi-dry, slurry, or liquid.

DESCRIPTION:

When operational, the 100 kg/day Melter will posses all of the advanced features of the MiniMelter, but will allow vitrification studies at a larger scale. It will be capable of

handling low-level radioactive wastes.

For some typical wastes processed at the Vitreous State Laboratory, this furnace is capable of processing up to 900

kg/day of waste.

OFFGAS SYSTEM:

The offgas system consists of a quencher, packed bed

scrubber, mist eliminator, bag filter, and HEPA filtration unit. Both liquid and gaseous waste streams are fully recyclable.

STATUS:

100 kg/day Melter is currently in the construction stage and

will become operational at the beginning of October 1992.

TITLE:

1,000 kg/day Melter

EQUIPMENT:

Joule-Heated Melter

LOCATION:

Vitreous State Laboratory of Catholic University of America

Washington, DC

CONTACT:

Pedro B. Macedo: (202) 319-5329

Vitreous State Laboratory

CAPABILITIES:

Thermal Capacity -- 125 kW

Temperature -- 1,150°C

Throughput -- 1,000 kg/day to 5,000 kg/day

Treatable Waste -- Asbestos-contaminated and simulated

radioactive wastes

VERSATILITY:

Waste feeds can be dry, semi-dry, slurry, or liquid.

DESCRIPTION:

The 1,000 kg/day Melter will provide yet another

intermediate step in the cost-effective scale-up studies which will lead to the construction and utilization of the full-scale vitrification plants. The 1,000 kg/d unit will be able to process asbestos-containing waste streams and simulated

radioactive wastes.

It is expected that for the typical wastes processed at Vitreous

State Laboratory that the furnace would be capable of

processing up to 5,000 kg/day of waste.

OFFGAS SYSTEM:

The offgas system consists of the following major components connected in series: film cooler, quencher, packed bed spray tower, horizontal mist eliminator, reheater, bag filter, and HEPA unit. Both gaseous and liquid wastes streams are generated. The gaseous stream is either recycled or disposed of directly or after ion exchange depending on composition. The offgas is constantly monitored on the operational, safety and environmental levels. Sensors are wired through the A&B PLC controller with safety level

being interlocked to the system feed.

STATUS:

1,000 kg/day Melter is in the final stage of design and will

become operational in the late fall of 1992.

HYDRAULIC CEMENT

TITLE:

Ashcrete Process

EQUIPMENT:

End-over-end drum tumbler from Stock Equipment Company

LOCATION:

Savannah River Laboratory

CONTACT:

Don Fisher (803/725-6428)

CAPABILITIES:

The Ashcrete Process solidifies ash generated by the Beta Gamma Incinerator at Savannah River Plant and produces a cement waste form acceptable for burial. It processes ash within the same drum received from the incinerator.

VERSATILITY:

The in-container mixing system used makes the equipment versatile and amenable to also solidify liquid and slurry wastes with minor modifications.

DESCRIPTION:

At Station 1, the ash-filled drum is weighed and two iron mixing bars are placed inside it. The requisite water addition is made at Station 2 and cement and sand are added at Station 3. The cap is replaced at Station 4 and the end-over-end tumbler mechanism at Station 5 clamps the drum and rotates it at 18 rpm. This mixes the ashcrete without any physical contact between the process equipment and the contaminated ash.

OFFGAS SYSTEM:

Other than the routine air-balance control, there is no offgas

system required.

STATUS:

HYDRAULIC CEMENT

TITLE:

Transportable Grout Equipment Facility

EQUIPMENT:

Twin-screw variable speed in-line mixer and progressive

cavity grout pump

LOCATION:

Hanford Site

CONTACT:

J. A. Voogd (509) 373-5642

CAPABILITIES:

Provides for the remotely-operated mixing of selected liquid wastes with the dry grout solids and delivery at 30-70 GPM

of the resulting slurry to the disposal vaults where

solidification occurs.

VERSATILITY:

Like most cement systems, this Grout Facility can adjust its dry grout-forming solids ratios to match the needs of changing input waste streams. All process control is performed by a programmable logic controller. There is an optimum balance of automatic control and operator initiated control. The operator interface with the control system consists of a set of keyboards and CRT monitors. The CRTs provide menus to assist the operator in performing the control actions and in selecting different screens for monitoring

different portions of the process.

DESCRIPTION:

The grout facility was constructed in eight modules which provide for the remote waste mixing and pumping and all necessary process support and control. Inside the Mixer Module the dry blend material is mixed with the radioactive waste stream in a twin-screw variable speed in-line mixer. Liquid process additives are metered into the waste stream just prior to its entry into the mixer. The mixed grout slurry is deposited in a surge tank which provides a constant supply

of material for the grout pump.

OFFGAS SYSTEM:

The exhaust system draws air at 850 scfm from the Mixer Module and the baghouse dust collection system which ventilates the grout surge tank. After passing through dual HEPA filtration trains, the filtered air is sent to a stack for

monitoring and release.

STATUS:

SULFUR POLYMER CEMENT

TITLE: Modified Sulfur Cement Encapsulation Process

EQUIPMENT: Modified Sulfur Cement Process Equipment

LOCATION: Brookhaven National Laboratory

Upton, NY

CONTACT: Paul Kalb: (516) 282-7644

Brookhaven National Laboratory

CAPABILITIES: Thermal Capacity -- N/A

Temperature -- 120 to 130°C

Maximum Throughput -- 1 to 2 kg/hr for bench-scale process

Treatable Waste -- RCRA hazardous and low-level

radioactive waste

VERSATILITY: Treat a wide variety of waste streams including salts and

other aqueous wastes, sludges, incinerator ash, evaporator concentrates, dry solids, and ion exchange resins. Can be

easily scaled to pilot or production scale.

DESCRIPTION: Bench-scale processing equipment for the modified sulfur

cement encapsulation process include a double planetary orbital mixer with jacketed heating/mixing vessel, vacuum hood, oil bath circulation heater, and hydraulic platen

discharge unit.

OFFGAS SYSTEM: A HEPA filter enclosure has been constructed to enhance

capabilities to process radioactive and hazardous materials.

STATUS: Bench-scale process operational.

C-44

CERAMIC

TITLE:

Ceramic Fabrication Equipment

EQUIPMENT:

LOCATION:

Lawrence Livermore National Laboratory

Livermore, CA

CONTACT:

Virginia Oversby:

Lawrence Livermore National Laboratory

CAPABILITIES:

Thermal Capacity -- N/A

Temperature -- N/A

Nominal Throughput -- N/A

Treatable Waste -- RCRA Hazardous and Radioactive Waste

VERSATILITY:

N/A

DESCRIPTION:

The equipment available at Lawrence Livermore National Laboratory for waste form production and testing includes controlled atmosphere glove boxes for handling radioactive and hazardous materials, high temperature furnaces for sintering operations, presses of various sizes and pressure capabilities for both hot and cold pressing, and the full range of chemical analysis capabilities required to support EPA test

protocols.

OFFGAS SYSTEM:

N/A

STATUS:

ORGANIC BINDER

TITLE: Polyethylene Encapsulation Process Equipment

EQUIPMENT: Polyethylene Screw Extruder

LOCATION: Brookhaven National Laboratory

Upton, NY

CONTACT: Paul Kalb: (516) 282-7644

Brookhaven National Laboratory

CAPABILITIES: Thermal Capacity -- N/A

Temperature -- N/A

Maximum Throughput -- N/A

Treatable Waste -- RCRA hazardous and low-level

radioactive waste

VERSATILITY: Treat a wide variety of waste streams including salts and

other aqueous wastes, sludges, incinerator ash, evaporator

concentrates, dry solids, and ion exchange resins.

DESCRIPTION: Polyethylene encapsulation process equipment include two

bench-scale single screw extruders, several volumetric

feeders for precise metering of waste and binder, waste form specimen molds and miscellaneous pre-treatment equipment. A production-scale extruder has been procured and will be sinstalled at BNL for the purpose of scale-up studies and full-

scale process demonstration.

OFFGAS SYSTEM: A HEPA filter enclosure has been constructed to enhance

capabilities to process radioactive and hazardous materials.

STATUS: Bench-scale operational. A full scale test facility is planned

for FY-93.

(This page left blank)

APPENDIX D SUMMARIES FOR FINAL WASTE FORMS

•				

(This page left blank)

GLASS SUMMARIES INDEX

NO. 1 AUTHOR:

TITLE:

Summary of Properties of Borosilicate Waste Glasses

PUBLICATION:

DATE:

NO. 2 **AUTHOR:**

TITLE:

A State-of-the-Art Review of Materials Properties of Nuclear

Waste Forms

PUBLICATION: USDOE, PNL-3802 UC-70

DATE:

4/1/81

NO. 3 **AUTHOR:**

TITLE:

Vitrification Technologies for Treatment of Hazardous and

Radioactive Waste

PUBLICATION: EPA/625/R-92/002 U.S. EPA, Center for Environmental

Research Information, Cincinnati, OH 45268

DATE:

NO. 4 **AUTHOR:** Andrews, M.K.; Bibler, N.E.; Jantzen, C.M.; Beam, D.C.

TITLE:

Initial Demonstration of the DWPF Vitrification Process and

Product Control Strategy Using Actual Radioactive Waste

Ceramic Transactions, Nuclear Waste Management IV, Vol PUBLICATION:

23, p. 569-576

DATE:

4/29/91

NO. 5 **AUTHOR:** Bates, S.O.; Bowen, W.M.

TITLE:

Interim Milestone HWVP-86-V1122C-Report on Composition

Variability Testing Conducted for the HWVP

PUBLICATION:

HWVP-86-V1122C Final Report

DATE:

3/1/87

NO. 6 AUTHOR: Bates, J.K.: Jardine, L.J.; Steindler, M.J.

TITLE:

The Hydration Process of Nuclear Waste Glass: An Interim

Report

PUBLICATION:

Argonne National Lab Report ANL 82-11

DATE:

1/1/82

NO. 7 **AUTHOR:** Bates, J.K.; Jardine, L.J.; Flynn, K.F.; Steindler, M.J. TITLE: The Application of Neutron Activation Analysis to the Determination of Leach Rates of Simulated Nuclear Waste Forms **PUBLICATION:** Argonne National Lab Report DATE: 1/1/81 NO. 8 AUTHOR: Bergsman, T.M.; Shade, J.W.; Farnsworth, R.K. TITLE: Fifth In Situ Vitrification Engineering-Scale Test of Simulated **INEL Buried Waste Sites** PUBLICATION: Battelle, PNL-8152, Prepared for USDOE, DATE: June 1992 NO. 9 **AUTHOR:** Bibler, N.E.; Jantzen, C.M. TITLE: The Product Consistency Test and its Role in the Waste Glass Acceptance Process for DWPF Glass Waste Management '89, Vol. 2, R.G. Post Ed. p 743-749 PUBLICATION: DATE: 1/1/89 **AUTHOR:** NO. 10 Bibler, N.E.; Jantzen, C.M. TITLE: Materials Interactions Relating to Long-Term Geologic Disposal of Nuclear Waste Glass **PUBLICATION:** Scientific Basis for Nuclear Waste Management, X J.K. Bates (Ed), P. 47-66, Materials Research Society, Pittsburg 1/1/89 DATE: NO. 11 **AUTHOR:** Bickford, D.F.; Smith, M.E.; Allen, P.M.; Faraci, J.P.; Langton, C.A.; Wolf, K.Z. TITLE: Application of High Level Waste-Glass Technology to the Volume Reduction and Immobilization of TRU, Low Level, and Mixed Wastes Proceedings "Waste Management '91" RG Post Ed. ANS PUBLICATION: Tucson, AZ p. 537-545 DATE: 1/1/91 NO. 12 **AUTHOR:** Bickford, D.F.; Ramsey, A.A.; Jantzen, C.M.; Brown, K.G. TITLE: Control of Radioactive Waste Glass Melters: I, Preliminary General Limits at Savannah River PUBLICATION: Journal of American Ceramic Society, Vol. 73, 10, p. 2896-2902 DATE: 10/1/90

Bickford, D.F.; Hrma, P.; Bowan, B.W. NO. 13 AUTHOR: Control of Radioactive Waste Glass Melters: II, Residence TITLE: Time and Melt Rate Limitations Journal American Ceramic Society, Vol. 73, 10 p. 2903-2915 PUBLICATION: 10/1/90 DATE: Bickford, D. F. NO. 14 AUTHOR: Advanced Radioactive Waste-Glass Melters TITLE: PUBLICATION: Presentation to American Ceramic Society, Tutorial Lecture on Novel Ceramic Processing/Nuclear Division, WSRC-RP-89-1174 4/22/90 DATE: Bickford, D.F.; Probst, R.C.; Plodinec, M.J. AUTHOR: NO. 15 Control of Radioactive Waste-Glass Melters: Part 3 - Glass TITLE: **Electrical Stability** Advances in the Fusion of Glass, D.F. Bickford, ed., American PUBLICATION: Ceramic Society Westerville, OH, June 1988 6/1/88 DATE: Bickford, D.F., Pellarin, D.J. NO. 16 AUTHOR: Large Scale Leach Testing of DWPF Canister Sections TITLE: Savannah River Laboratory, DP-MS-86-72 PUBLICATION: 12/1/86 DATE: Cantale, C.; Castelli, S.; Donato A.; Traverso, D.M.; NO. 17 **AUTHOR:** Colombo, P.; Scarinci, G. A Borosilicate Glass for the Italian High-Level Waste -TITLE: Characterization and Behavior PUBLICATION: Radioactive Waste Management and the Nuclear Fuel Cycle, 16 (1), pp. 25-47 1/1/91 DATE: Chandler, G.T.; Wicks, G.G.; Wallace, R.M. AUTHOR: NO. 18 Chemical Durability of SRP Waste Glass - Saturation Effects TITLE: and Influence of SA/V Savannah River Laboratory, DP-MS-84-37 PUBLICATION: 4/29/84 DATE: AUTHOR: Chapman, C.C. NO. 19 State-of-the-Art of Waste Glass Melters TITLE: 3rd International Symposium, Advances in Fusion and PUBLICATION: Processing of Glass 1992, New Orleans 1992 DATE:

NO. 20 **AUTHOR:** Chapman, C.C. Evaluation of Vitrifying Municipal Incinerator Ash TITLE: PUBLICATION: Ceramic Transactions, Nuclear Waste Management IV, G.G. Wicks, Ed., p. 223-231 DATE: 4/22/91 NO. 21 AUTHOR: Chapman, C.C.; Pope, J.M.; Barnes, S.M. TITLE: Electric Melting of Nuclear Waste Glasses, State of the Art PUBLICATION: Journal Non-Crystalline Solids, No. 84, p. 226-240 DATE: 1/1/86 NO. 22 **AUTHOR:** Coordinated Research Programme of the Evaluation of Solidified High-Level Waste Form TITLE: Chemical Durability and Related Properties of Solidified High-Level Waste Forms PUBLICATION: IAEA Technical Report Series No. 257 DATE: 1/1/85 NO. 23 **AUTHOR:** Covington, J.F.; Wicks, G.G.; Molecke, M.A. WIPP/SRL In-Situ Tests: MIIT Program - The Effects of TITLE: Metal Package Components PUBLICATION: Ceramic Transactions, Nuclear Waste Management, Vol. 23, pp. 723-732 DATE: 4/29/91 NO. 24 AUTHOR: Curti, E. TITLE: Modeling the Dissolution of Borosilicate Glasses for Radioactive Waste Disposal with the PHREEQE/GLASSOL Code: Theory and Practice PUBLICATION: PSI-Bericht Nr. 86 DATE: 1/1/91 NO. 25 Czuczwa, J.M.; Farzan, H.; Vecci, S.J.; Warchol, J.J. AUTHOR: TITLE: Cyclone Furnace for Vitrification of Contaminated Soil and Wastes PUBLICATION: 1991 Incineration Conference Proceedings, pp. 613-620, Knoxville, TN DATE: May 1991

Delege, F.: Dussossoy, J.L. NO. 26 AUTHOR: R7T7 Glass Initial Dissolution Rate Measurements Using a TITLE: High-Temperature Soxhlet Device PUBLICATION: Material Resource Society Symposium Proceedings 212, pp. 41-47 1/1/91 DATE: Ewing, R.C.; Jercinovic, J.J. NO. 27 AUTHOR: Natural Analogues: Their Application to the Prediction of the TITLE: Long-Term Behavior of Nuclear Waste Forms Material Research Society Symposium Proceedings, 84, pp. PUBLICATION: 67-93 1/1/87 DATE: **AUTHOR:** NO. 28 Gafney, J. Chemistry TITLE: Science News, p. 173 PUBLICATION: DATE: 3/14/92 Grambow, B.; Lutze, W; Ewing, R.C.; Werme, L.O. NO. 29 **AUTHOR:** Performance Assessment of Glass as a Long-Term Barrier to TITLE: the Release of Radionuclides into the Environment Material Research Society Symposium Proceedings, 112 PUBLICATION: 1/1/88 DATE: Harbour, J.R. NO. 30 AUTHOR: TITLE: Demonstrating Compliance with the Waste Acceptance Preliminary Specifications on Foreign Materials within DWPF Canistered Waste Forms PUBLICATION: Proceedings of the 2nd International Seminar, Radioactive Waste Products, E. Warnecke, et al., ed., KFA Research Julich, FRG, WSRC-MS-90-98, 1990. 5/28/90 DATE: Harbour, J.R.; Miller, T.J.; Whitaker, M.J. NO. 31 AUTHOR: The Determination of Pressure, Dewpoint, and Composition of TITLE: the Gas Within the Free Volume of Canistered Waste Forms PUBLICATION: WSRC-RP-90-1167 DATE: 1/1/90

NO. 32 AUTHOR: Hazelton, R.F.; Thornhill, C.K.; Ross, W.A. TITLE: Evaluation of the Potential for Gas Pressurization and Free Liquid Accumulation in a Canister from the West Valley **Demonstration Project** PUBLICATION: Ceramic Transactions, Nuclear Waste Management, IV, Vol. 23, pp. 491-500 DATE: 4/29/91 NO. 33 AUTHOR: Janke, D.S.; Chapman, C.C.; Vogel, R.A. TITLE: Results of Vitrifying Fernald K-65 Residue PUBLICATION: Ceramic Transactions, Nuclear Waste Management, Vol. 23. pp. 53-61 DATE: 4/29/91 NO. 34 AUTHOR: Jantzen, C.M. TITLE: Solidification of Consolidated Incinerator Facility (CIF) Wastes in Soda-Lime-Silica (SLS) Glass: Use of Reactive Additives to Retain Hazardous and Heavy Metal PUBLICATION: Savannah River Lab, WSRC-TR-92-214, Rev. 0 DATE: 4/30/92 NO. 35 **AUTHOR:** Jantzen, C.M. TITLE: Thermodynamic Approach to Glass Corrosion PUBLICATION: Corrosion of Glass, Ceramics, and Ceramic Superconductors, Principles, Testing, Characterization and Applications, D.E. Clark and B.K. Zoitos, eds., pp. 153-215, Noves Publications, Park Ridge, NJ DATE: 1/1/92 NO. 36 **AUTHOR:** Jantzen, C.M. First Principles Process-Product Models for Vitrification of TITLE: Nuclear Waste: Relationship of Glass Composition to Glass Viscosity, Resistivity, Liquidus Temperature PUBLICATION: Ceramic Transactions, Vol. 23, pp. 37-51, Nuclear Waste Management IV, G.G. Wicks, et al., eds. DATE: 4/29/91 NO. 37 AUTHOR: Jantzen, C.M. TITLE: Systems Approach to Nuclear Waste Glass Development PUBLICATION: Journal of Non-Crystalline Solids, 84, No. 1-3, pp. 215-225 DATE: 1/1/86

Jantzen, C.M.; Bibler, N.E. **AUTHOR:** NO. 38 Nuclear Waste Glass Product Consistency Test (PCT) TITLE: Savannah River Site PUBLICATION: 1/1/90 DATE: Jantzen, C.M.; Bibler, N.E. NO. 39 AUTHOR: The Product Consistency Test for the DWPF Wasteform TITLE: Proceedings of the 2nd International Seminar on Radioactive PUBLICATION: Waste Products, E. Odoj, et al., eds., pp. 609-622 6/1/90 DATE: Jantzen, C.M.; Clarke, D.R.; Morgan, P.E.D.; Harker, A.B. NO. 40 **AUTHOR:** Leaching of Polyphase Nuclear Waste Ceramics: TITLE: Microstructural and Phase Characterization Journal American Ceramic Society, Vol. 76, No.6, pp. 292-PUBLICATION: 300 6/1/82 DATE: Jantzen, C.M.; Plodinec, M.J. **AUTHOR:** NO. 41 Thermodynamic Model of Natural, Medieval and Nuclear TITLE: Waste Glass Durability Journal of Non-Crystalline Solids, 67, pp. 107-223 PUBLICATION: 1/1/84 DATE: Jercinovic, M.J.; Kaser, S.A.; Ewing, R.C.; Lutze, W. NO. 42 AUTHOR: Comparison of Surface Layers Formed on Synthetic Basaltic TITLE: Glass, French R7T7 and HMI Borosilicate Nuclear Waste Form Glasses-Materials Interface Interactions Tests Material Research Society Symposium Proceedings, 176, PUBLICATION: pp.355-362, 1990 DATE: 1/1/90 Jercinovic, M. J.; Ewing, R.C. AUTHOR: NO. 43 Basaltic Glasses From Iceland and the Deep Sea: Natural TITLE: Analogues to Borosilicate Nuclear Waste-Form Glass **PUBLICATION:** JSS 88-01 1/1/88 DATE: Lutze, W. NO. 44 **AUTHOR:** Silicate Glasses TITLE: PUBLICATION: Radioactive Waste Forms for the Future, W. Lutze and R.C. Ewing, Elsevier Science Publishers, B.V. 1/1/88 DATE:

AUTHOR: NO. 45 Lutze, W.; Ewing, R.C. TITLE: Radioactive Waste Forms for the Future PUBLICATION: Book, Elsevier Science Publishers, B.V., pp.699-739 DATE: 1/1/88 NO. 46 **AUTHOR:** Lutze, W.; Grambow, B. TITLE: Chemical Corrosion of Lead-Iron Phosphate Glass PUBLICATION: In-process DATE: NO. 47 AUTHOR: Marples, J.A.C.; Lutze, W.; Kawanishi, M; Van Iseghem, P. TITLE: A Comparison of the Behavior of Vitrified HLW in Repositories in Salt, Clay, and Granite, I: Experimental PUBLICATION: Material Research Society Symposium Proceedings, 176, pp. 267-274 DATE: 1/1/90 NO. 48 AUTHOR: McDonell, W. R. TITLE: Comparison of SRP High-Level Waste Disposal Costs for Borosilicate Glass and Crystalline Ceramic Waste Forms PUBLICATION: DuPont, Savannah River Laboratory, DPST-82-346 DATE: 4/1/82 NO. 49 AUTHOR: Mertens, L.A.; Lutze, W.; Marples, J.A.C.; Van Iseghem, P.; Vernaz, E. A Comparison of the Behavior of Vitrified HLW In TITLE: Repositories In Salt, Clay, and Granite, I: Experimental PUBLICATION: Material Research Society Symposium Proceedings, 176, pp. 267-274 DATE: 1/1/90 NO. 50 AUTHOR: Namboodri, C.G.; Wicks, G.G.; Lodding, A.R.; Hench, L.L.; Newton, R.G. TITLE: Surface Analyses of SRS Waste Glass Buried For Up to Two Years in Limestone in the United Kingdom PUBLICATION: Ceramic Transactions, Vol. 23, Nuclear Waste Management IV, G.G. Wicks, ed., American Ceramic Society, Westerville, OH, p. 653-662 DATE:

NO. 51	AUTHOR: TITLE: PUBLICATION:	Pegg, I.L.; Greenman, W.; Guo, Y.; Muller, I.S.; Mohr, R.K.; Macedo, P.B.; Grant, D.C.; Mullik, P.R. Development of a Combined Soil Wash/In-Furnace Vitrification System for Soil Remediation at DOE Sites First International Mixed Waste Symposium, ASME				
	DATE:	8/1/91				
NO. 52	AUTHOR:	Petit, J.C.; Mea, Della G.; Dran, J.C.; Magnathier, M.C.; Mando, P.A.; Paccagnella, A.				
	TITLE:	Hydrated-Layer Formation During Dissolution of Complex Silicate Glasses and Minerals				
	PUBLICATION: DATE:	Geochim-Cosmochim. Acta, 54, pp. 1941-1955 1/1/90				
NO. 53	AUTHOR:	Phinney, D.L.; Ryerson, F.J.; Oversby, V.M.; Lanford, W.A.; Aines, R.D.; Bates, J.K.				
	TITLE: PUBLICATION:	Integrated Testing of the SRL-165 Glass Waste Form Material Research Society Symposium Proceedings, 84, pp. 433-446				
	DATE:	1/1/86				
NO. 54	AUTHOR: TITLE:	Plodinec, M.J. Viscosity of Glasses Containing Simulated Savannah River Plant Waste				
	PUBLICATION: DATE:					
NO. 55	AUTHOR: TITLE:	Pye, L.D. The Physical and Thermal Properties of Simulated Nuclear Waste Glasses and Their Melts				
	PUBLICATION: DATE:					
NO. 56	AUTHOR: TITLE: PUBLICATION: DATE:	Ramsey, A.A. EPA Tests of Simulated DWPF Waste Glass-U WSRC-TR-90-22, InterOffice Memo to M.J. Plodinec				
NO. 57	AUTHOR: TITLE:	Ramsey, W.G.; Taylor, T.D.; Jantzen, C.M. Predictive Modeling of Leachate pH for Simulated High Level Waste Glass				
	PUBLICATION:	Ceramic Transactions, Vol. 23, Nuclear Waste Management,				
	DATE:	pp. 105-114 4/29/91				

NO. 58 AUTHOR: Roberts, F.P.; Turcotte, R.P.; Weber, W.J. TITLE: Materials Characterization Center, Workshop on the Irradiation Effects in Nuclear Waste Forms - Summary Report PUBLICATION: US DOE Report, PNL-3588, Pacific Northwest Laboratory, Richland, WA DATE: 1/1/81 NO. 59 AUTHOR: Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westik, J.H. Comparative Assessment of TRU Waste Forms and Processes. TITLE: Vol. I Waste Form and Process Evaluations PUBLICATION: US DOE Report PNL-4428 Vol. 1 DATE: 9/1/81 NO. 60 AUTHOR: Savannah River Laboratory TITLE: Environmental Assessment, Waste Form Selection for SRP High-Level Waste PUBLICATION: US DOE, DOE/EA-0179 DATE: 7/1/82 NO. 61 AUTHOR: Schreiber, H.D.; Sisk, E.D.; Schreiber, C.W.; Burns, J.K. TITLE: Solubilities of Nickel and Cobalt Chalcogenides in a Nuclear Waste Glass PUBLICATION: Ceramic Transactions, Vol. 23, Nuclear Waste Management, pp. 213-222 DATE: 4/29/91 NO. 62 AUTHOR: Schumacher, R. F. TITLE: DWPF Batch 2, Waste Glass Investigations PUBLICATION: Ceramic Transactions, Vol. 23, Nuclear Waste Management. G.G. Wicks, ed., pp. 453-463 DATE: 5/1/91 NO. 63 AUTHOR: Shade, J.W.; Thompson, L.E.; Kindle, C.H. TITLE: In Situ Vitrification of Buried Waste Sites PUBLICATION: Ceramic Transactions, Vol. 23, Nuclear Waste Management, G.G. Wicks, ed., American Ceramic Society, Westerville, OH. pp. 633-640 DATE:

Shenkler, E.S.; Graham, S.; Greenhut, V.A. NO. 64 **AUTHOR:** Secondary Lead Smelter Slags: Minimizing Lead Release TITLE: Levels PUBLICATION: Ceramic Transactions, Vol. 23, Nuclear Waste Management IV, G.G. Wicks, ed., American Ceramic Society, Westerville, OH, pp. 75-84 4/29/91 DATE: Slate, S.C.; Ross, W.A.; Partain, W.L. NO. 65 AUTHOR: Impact Testing of Vitreous Simulated High-Level Waste in TITLE: Canisters PUBLICATION: USDOE BNWL-1903 5/1/75 DATE: Smith, D.K. NO. 66 **AUTHOR:** Mineralogical, Textural and Compositional Data on the TITLE: Alteration of Basaltic Glass From Kilauea, Hawaii to 300°C: Insights to the Corrosion of Borosilicate Glass Material Research Society Symposium Proceedings, 212, pp. PUBLICATION: 115-121 1991 DATE: Smith, M.E. NO. 67 AUTHOR: Travel Report - Summary of Talk Given at the SAIC OTD TITLE: Thermal Working Meeting in Salt Lake City Savannah River Lab, WSRC-RP-91-1092 PUBLICATION: 10/30/91 DATE: Smith, T.H.; Ross, W.A. NO. 68 AUTHOR: Impact Testing of Vitreous Simulated High-Level Waste in TITLE: Canisters **PUBLICATION: USDOE BNWL-1903** 5/1/75 DATE: Soper, P.D.; Walker D.D.; Plodinec, M.J.; Roberts, G.J.; NO. 69 AUTHOR: Lightner, L.F. TITLE: Optimization of Glass Composition for the Vitrification of **Nuclear Waste** PUBLICATION: American Ceramic Society, Bulletin, Vol. 62, No. 9, pp. 1013-1028, DP-MS-81-108

9/1/83

DATE:

NO. 70 AUTHOR: Stone, J.A. An Experimental Comparison of Alternative Solid Forms for TITLE: Savannah River High-Level Wastes Scientific Basis for Nuclear Waste Management., Annual PUBLICATION: Meeting of the Materials Research Society, DDP-MS-81-102 DATE: 11/16/81 NO. 71 AUTHOR: Stone, J.A.; Allender, J.S.; Gould, T.H. TITLE: Comparison of Properties of Borosilicate Glass and Crystalline Ceramic Forms for Immobilization of Savannah River Plant Waste USDOE Savannah River Lab., DP-1627 PUBLICATION: DATE: 4/1/82 NO. 72 AUTHOR: Taylor, R.F. Chemical Engineering Problems of Radioactive Waste TITLE: Fixation by Vitrification Chemical Engineering Science, Vol. 40, No. 4, pp. 541-569 PUBLICATION: DATE: 1985 NO. 73 AUTHOR: Van Iseghem, P.; Grambow, B. The Long-Term Corrosion and Modeling of Two Simulated TITLE: Belgian Reference High-Level Waste Glasses PUBLICATION: Material Research Society Symposium Proceedings, 112, pp. 631-639 DATE: 1/1/88 NO. 74 AUTHOR: Vernaz, E.Y.; Gordon, N. TITLE: Key Parameters of Glass Dissolution in Integrated Systems PUBLICATION: Material Research Society Symposium Proceedings, 212, pp. 19-30 DATE: 1/1/91 NO. 75 AUTHOR: Volf, M.B. TITLE: Chemical Approach to Glass PUBLICATION: Book, Glass Science and Technology, 7 Elsevier, New York DATE: 1/1/84 NO. 76 AUTHOR: Weber, W.J.; Turcotte, R.P. TITLE: Materials Characterization Center, Second Workshop on Irradiation Effects in Nuclear Waste Forms, Summary Report PUBLICATION: USDOE, PNL-4121 DATE: 1/1/82

NO. 77 **AUTHOR:** Wicks, G.G.

TITLE:

Nuclear Waste Glasses

PUBLICATION: Treatise on Materials Science and Technology, Vol. 26 Glass

IV, pp. 57-118

DATE:

1/1/85

NO. 78 **AUTHOR:** Wicks, G.G.; Bickford, D.F.

TITLE:

High Level Radioactive Waste - Doing Something About It

PUBLICATION:

DuPont Savannah River Lab DP-1777

DATE:

3/1/89

NO. 79 AUTHOR: Wicks, G.G.; Stone, J.A.; Chandler, G.T.; Williams, S.

TITLE:

Long-Term Leaching Behavior of Simulated Savannah River

Plant Waste Glass

PUBLICATION: Savannah River Lab, DP-1728

DATE:

8/1/86

NO. 80 **AUTHOR:** Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

TITLE:

Analyses of SRS Waste Glass Buried in Granite in Sweden

and Salt in the United States

PUBLICATION: Ceramic Transactions, Vol. 23, Nuclear Waste Management

IV, G.G. Wicks, et al., eds., pp. 663-674, American Ceramic

Society, Westerville, OH

DATE:

5/91

TITLE: Summary of Properties for Borosilicate Waste Glasses

AUTHOR:

PUBLICATION:

DATE:

ORGANIZATION:

SUMMARY:

Waste Form: Glass, borosilicate

Waste Type: High level radioactive defense waste

Waste Loading: Nominal 28 wt% from insoluble waste, 8 wt% from soluble

Development Status: Mature after extensive testing

Compressive Strength: 550 MPa (80,000 psi)

Thermal Stability: Control cooling to limit fracture, little change at T<500°C.

Radiation Stability: No change due to self irradiation for 1 million years

Biological Stability: Inert

mert

Leach Resistance: See conclusions

Immersion Stability: --

Free Liquids: No free liquids Chemical Durability: Excellent

Compositional Flexibility: Limits on certain oxides, metals, redox, and salts

Gas Generation: No gas release-simulated waste

RCRA Compliance: Passes TCLP - all species below detection limit

Conclusions: MCC-1, < 1 g/m² day PCT norm. Release boron <1 g/l; leach resistance influenced by glass composition, pH of leachate, temperature, SA/V and environment. Not affected

by canister. Identical results for radioactive glasses.

TITLE: A State-of-the-Art Review of Materials Properties of Nuclear

Waste Forms

AUTHOR:

PUBLICATION: USDOE, PNL-3802

DATE: April 1, 1981

ORGANIZATION: Pacific Northwest Laboratory, Battelle

SUMMARY: Report is a state-of-the-art review of materials properties of

nuclear waste forms for HLW. Physical properties include density, thermal conductivity and expansion, mechanical, chemical durability, radiation effects, thermal stability, etc.

Waste forms include cement, ceramics, and glass.

Waste Form: Glasses, high and low fire ceramics, composites,

Waste Type: High level radioactive waste

Waste Loading: --

Development Status: -Compressive Strength: Tensile: cement ~8, ceramic 8-30, glass 50 MPa

Thermal Stability: --

Radiation Stability: Density change: glass ±1 %; no change in leach rate

Biological Stability: -
Leach Resistance: Cement 10⁻³, ceramics 10⁻⁷ to 10⁻⁸, glass 10⁻⁴ to 10⁻⁷ g/cm²day

Immersion Stability: --

Immersion Stability: -Free Liquids: --

Chemical Durability: -Compositional Flexibility: -Gas Generation: --

RCRA Compliance: -Conclusions: -A review of literature on waste forms prior to 1981.

TITLE:

Vitrification Technologies for Treatment of Hazardous and

Radioactive Waste

AUTHOR:

PUBLICATION:

EPA/625/R-92/002 U.S. EPA, Center for Environmental Research

Information, Cincinnati, OH 45268

DATE:

May 1, 1992

ORGANIZATION:

U.S. Environmental Protection Agency, Office of Research and

Development

SUMMARY:

This is a handbook on the theory of vitrification processing and provides an overview of the applications and limitations of vitrification waste treatment. Chapters cover glass structure, vitrification processes, waste types, product characteristics, offgas treatment, capabilities and limitations, physical and chemical

testing, and process evaluation.

Waste Form:

Glass

Waste Type:

Hazardous and radioactive waste

Waste Loading: Development Status: Varied

Compressive Strength:

Varied

Thermal Stability:

Radiation Stability:

Biological Stability:

__

Leach Resistance:

--

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

. --

Gas Generation: RCRA Compliance:

Conclusions:

A good review of vitrification technology and products for

hazardous and radioactive wastes. Strong on ISV.

TITLE:

Initial Demonstration of the DWPF Vitrification Process and

Product Control Strategy Using Actual Radioactive Waste

AUTHOR:

M.K. Andrews; N.E. Bibler; C.M. Jantzen; D.C. Beam

PUBLICATION:

Ceramic Transactions, Nuclear Waste Management IV, Vol. 23,

pp. 569-576

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

To test the DWPF control algorithms, actual radioactive waste was melted in a shielded joule-heated melter facility at SRS and the resulting glass evaluated. Algorithms were used to control glass properties. Predicted values agreed reasonably well with

measured values.

Waste Form:

Glass, borosilicate

Waste Type:

High level radioactive defense waste (actual)

Waste Loading:

Nominal 28 wt%

Development Status:

Mature

Compressive Strength:

--

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

See summary

Immersion Stability:

--

Free Liquids:

See summary

Chemical Durability:

--

Compositional Flexibility:

--

Gas Generation:

RCRA Compliance:

Conclusions:

PropertiesPredictedMeasuredViscosity64.8 P<100 POISE</td>

Liquidus 1005°C <1050 °C. Boron Rel. 26 ppm 69-48 ppm

Sodium Rel 50 ppm

122-88 ppm

The glass algorithms can be used to control actual radioactive glass vitrification. The glass was pourable indicating its viscosity was < 100 Poise as predicted. There were few spinel crystals indicating that the glass liquidus was less than 10,500°C as predicted. The durability of the glass was less than that predicted by the free energy of hydration model

TITLE: Interim Milestone HWVP-86-VIl22C - Report on Composition

Variability Testing Conducted for the HWVP

AUTHOR: S.O. Bates; W. M. Bowen

PUBLICATION: HWVP-86-Vl 122C Final Report

DATE: March 1, 1987

ORGANIZATION: Pacific Northwest Laboratory

SUMMARY: Scoping studies were conducted on the variation of certain oxides

within a reference HWVP borosilicate glass.

Waste Form: Glass, borosilicate

Waste Type: High level radioactive defense waste

Waste Loading: 20 to 30 wt% Development Status: Intermediate

Compressive Strength: --Thermal Stability: ---

Radiation Stability: --Biological Stability: ---

Leach Resistance: MCC-1 @, 90°C 28 day < 1 g/m² day

Immersion Stability: --

Gas Generation: --RCRA Compliance: ---

Conclusions: Scoping tests confirmed that wide variations in composition

can be accommodated in the reference glass. The following components will be included in future glass studies: waste level, zirconium, sodium, iron, aluminum and silicon.

TITLE:

The Hydration Process of Nuclear Waste Glass: An Interim

Report

AUTHOR:

J. K. Bates; L. J. Jardine; M.J. Steindler

PUBLICATION:

Argonne National Lab Report ANL 82-11

DATE:

January 1, 1982

ORGANIZATION:

Argonne National Laboratory

SUMMARY:

Reaction of glass in water vapor at 120-240°C results in

formation of secondary phases.

Waste Form:

Borosilicate glass (SRL 211, SRL 131)

Waste Type:

Waste Loading:

Development Status: Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Decreases as secondary phases form

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Hydration - aging of glass in repository important prior to

possible contact with liquid water. Aging will decrease

glass durability.

TITLE:

The Application of Neutron Activation Analysis to the Title:

Determination of Leach Rates of Simulated Nuclear Waste Forms

AUTHOR:

J.K. Bates; L. J. Jardine; K.F. Flynn; M.J. Steindler

PUBLICATION:

Argonne National Lab Report

DATE:

January 1, 1981

ORGANIZATION:

Argonne National Laboratory

SUMMARY:

Leach tests on borosilicate glasses that were neutron-activated and analysis of activation products by gamma spectroscopy (plus

alpha-beta spectroscopy)

Waste Form:

Borosilicate glass (PNL 76-68 SRL 211)

Waste Type:

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Stable after neutron activation

Radiation Stability:

Biological Stability: -Leach Resistance: --

Leach Resistance: Immersion Stability: -

Free Liquids:

Chemical Durability: -- Compositional Flexibility: --

Gas Generation:

RCRA Compliance:

Conclusions:

Technique not suitable for B or Si analysis.

NO. 8

TITLE:

Fifth In Situ Vitrification Engineering-Scale Test of Simulated

INEL Buried Waste Sites

AUTHOR:

T.M. Bergsman; J.W. Shade; R.K. Farnsworth

PUBLICATION:

Battelle, PNL-8152, Prepared for USDOE

DATE:

June 1, 1992

ORGANIZATION:

Battelle, PNL

SUMMARY:

An in-situ vitrification of assorted sealed cans containing

hazardous materials was carried out. The vitrified glass product passed the TCLP. Soil samples were also analyzed. No soil sample contained hazardous levels of organics and only one soil

sample contained mercury above TCLP limits.

Waste Form:

Glass

Waste Type:

Soil and cans of hazardous waste

Waste Loading:

.

Development Status:

--

Compressive Strength: Thermal Stability:

__

Radiation Stability:

--

Biological Stability:

--

Leach Resistance:

--

Immersion Stability: Free Liquids:

--

Chemical Durability:

Compositional Flexibility:

--

Gas Generation:

--

RCRA Compliance:

__

Conclusions:

Samples of glass and the surrounding soil were tested by

TCLP. Only one sample contained toxic material above

TCLP limits.

TITLE:

The Product Consistency Test and its Role in the Waste Glass

Acceptance Process for DWPF Glass

AUTHOR:

N.E. Bibler; C. M. Jantzen

PUBLICATION:

Waste Management '89, Vol.1, R.G. Post, ed. pp. 743-749

DATE:

January 1, 1989

ORGANIZATION:

University of Arizona, Tucson, AZ

SUMMARY:

Development of the Product Consistency Test (PCT) for radioactive waste glass. Reproducibility 2 - 3% for a single

investigator and ~8% for different investigators.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

--

Development Status:

Submitted to ASTM

Compressive Strength:

Thermal Stability:

The stability.

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

None

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

--Leach Test:

PCT

Glass

DWPF

Leach Results:

131

Rad 200R

Start-up

NL (gm/l)*

1.10

1.05

0.95

^{*} Normalized Log Boron Concentration

TITLE:

Materials Interactions Relating to Long-Term Geologic Disposal

of Nuclear Waste Glass

AUTHOR:

N.E. Bibler; C.M. Jantzen

PUBLICATION:

Scientific Basis for Nuclear Waste Management X, J.K. Bates,

ed., pp. 47-66, Materials Research Society, Pittsburg

DATE:

January 1, 1987

ORGANIZATION:

Materials Research Society

SUMMARY:

Interactions between various materials in canister, overpack, etc.; the ground water; and the geologic mineral in oxic and anoxic conditions. The geologies reviewed are tuff, salt, basalt, and

granite.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

Development Status:

Mature

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

Leach resistance influenced by changes in pH due to

radiation.

Biological Stability:

.

Leach Resistance:

Influenced by certain metals, Eh, pH, and mineral system

Immersion Stability:

--

Free Liquids:

orquias:

Chemical Durability:

--

Compositional Flexibility: Gas Generation:

--

RCRA Compliance:

__

Conclusions:

Tuff	Salt	Basalt &
		Granite
None	None	Changes Eh
None	None	None
	Inc. Leach.	May Inc.

May Inc. Leach.

Radiation

Iron overpack

Rock S. Steel

Changes pH Changes Eh

None

NO. 11

TITLE:

Application of High Level Waste-Glass Technology to the

Volume Reduction and Immobilization of TRU, Low Level, and

Mixed Wastes

AUTHOR:

D.F. Bickford; M.E. Smith; P.M. Allen; J.P. Faraci; C.A.

Langton; K.Z. Wolf

PUBLICATION:

Proceedings of Waste Management '91, R.G. Post, ed., Tucson,

AZ, pp. 537-545

DATE:

January 1, 1991

ORGANIZATION:

SUMMARY:

The EPA has designated vitrification as the "Best Developed Available Technology" for immobilization of high-level nuclear waste. Recent EPA announcements indicate the agency is considering long-term waste immobilization as a preferred mode of treatment for many types of hazardous waste. It was concluded that a program for adaptation of HLW vitrification to other wastes is clearly needed, and would have a high confidence of making

major impact.

Waste Form:

Waste Type:

Glass, borosilicate

Low level mixed wastes, mixed TRU waste

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability: Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Description of stirred glass melter. Low level mixed wastes which require permanent isolation are good candidates for

vitrification. Examples of waste types are presented.

TITLE:

Control of Radioactive Waste Glass Melters: I, Preliminary

General Limits at Savannah River

AUTHOR:

D.F. Bickford; A.A. Ramsey; C.M. Jantzen; K.G. Brown

PUBLICATION:

Journal of the American Ceramic Society, Vol. 73, 10, pp. 2896-

2902

DATE:

October 1, 1990

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

Discusses DWPF melter control considerations, e.g., melter temperature, glass composition, product durability, waste loading

limits, glass redox control, and glass cooling requirements.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

Nominal loading 28 wt%, (< 30 wt%)

Development Status:

Mature, extensive testing scale melters, simulated and

radioactive feed

Compressive Strength:

Thermal Stability:

Cooling of canister controlled to prevent devitrification and

cracking.

Radiation Stability:

Biological Stability:

Leach Resistance:

Greater than environmental assessment glass (131/TDS)

Immersion Stability:

None

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Certain oxides and salts will be limited by control system

Gas Generation:

Conclusions:

RCRA Compliance:

 $TiO_2 < 1.0$ wt% of glass, $SO_4 < 0.4$ wt%, $Cr_2O_3 < 0.3$ wt%, PO_4

< 3.0 wt%, NaF < 0.1 wt%, NaCl < 0.6 wt%, Fe(ll)/Fe(ll1)<

0.5

NO. 13

TITLE:

Control of Radioactive Waste Glass Melters: II, Residence Time

and Melt Rate Limitations

AUTHOR:

D.F. Bickford; P. Hrma; B.W. Bowan

PUBLICATION-

Journal of the American Ceramic Society, Vol. 73, 10, pp. 2903-

2915

DATE:

October 1, 1990

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

Investigated melting behavior of simulated feeds with respect to foaming, homogenization, and glass quality. Introduces potential

for stirred melting.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

Development Status:

Mature

Compressive Strength:

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance: Immersion Stability:

Free Liquids:

None

Chemical Durability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

Waste glass melter size and residence times required by glass quality are much smaller than those used in current

practice. Shorter residence times and lower melt

temperatures are sufficient to develop durability similar to

that of existing melters operating at 1,150°C.

NO. 14

TITLE:

Advanced Radioactive Waste-Glass Melters

AUTHOR:

D.F. Bickford

PUBLICATION:

Presentation to American Ceramic Society, Tutorial Lecture on Novel Ceramic Processing/Nuclear Division, WSRC-RP-89-1174

DATE:

April 22, 1990

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

Discusses how technology developed for HLW might be used for

other types of waste. A new type of stirred glass melter is

introduced.

Waste Form:

Glass

Waste Type:

Simulated HLW, TRU, ²⁴⁸Pu, U, RCRA, and mixed

Waste Loading:

Development Status:

Preliminary trial

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

RCRA Compliance:

Conclusions:

Chemical Durability:

Compositional Flexibility: Gas Generation:

A new class of waste glass melters has been designed and

proof of concept tests completed on simulated HLRW slurry.

Melt rates have exceeded 155 kg/m²/hr.

NO. 15

TITLE:

Control of Radioactive Waste-Glass Melters: Part 3 - Glass

Electrical Stability

AUTHOR:

D.F. Bickford; R.C. Probst; M.J.Plodinec

PUBLICATION:

Advances in the Fusion of Glass, D.F. Bickford, ed., American

Ceramic Society, Westerville, OH.

DATE:

June 1, 1988

ORGANIZATION:

American Ceramic Society

SUMMARY:

Pilot waste glass melters have shown a tendency for noble-metal accumulation on melter floors. These build-ups can affect joule

heating of the melters.

Waste Form:

Glass, borosilicate

Waste Type:

High level radioactive defense waste

Waste Loading:

28 wt%

Development Status:

Mature

Compressive Strength: Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

Immersion Stability: Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation

RCRA Compliance: Conclusions:

Build-up of noble metals in the DWPF melter would not be

sufficient to disrupt the joule heating in the melter.

Discusses other elements, including mercury, sulfides, and

silver

NO. 16

TITLE:

Large Scale Leach Testing of DWPF Canister Sections

AUTHOR:

D.F. Bickford; D.J. Pellarin

PUBLICATION:

Savannah River Laboratory, DP-MS-86-72

DATE:

December 1, 1986

ORGANIZATION:

International Symposium on the Scientific Basis for Nuclear

Waste Management, Monitored Retrievable Storage

SUMMARY:

Leach testing of 24-in. diameter canister sections. MCC-1 leach

conditions. Less than a factor of 3 increase in leachability

resulted from the scale-up conditions of the test.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

Nominal 28 wt%

Development Status:

Mature

Compressive Strength:

Thermal Stability:

Glass was fractured on cooling

Radiation Stability:

--

Biological Stability:

Leach Resistance:

Less than a factor of 3 increase in leachability results from

combined scale-up, glass cracking, leached surface area

estimation and surface roughness effects.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

7: --

Gas Generation:

--

RCRA Compliance: Conclusions:

28-day large scale test compared to typical MCC-1 test.

Large scale within factor of 3 to MCC-1. Difference due to saw cutting of canister glass. Comparison of lab scale test to

full size conditions.

NO. 17

TITLE:

A Borosilicate Glass for the Italian High-Level Waste:

Characterization and Behavior

AUTHOR:

C. Cantale; S. Castelli; A. Donato; D.M. Traverso; P. Colombo;

G. Scarinci

PUBLICATION:

Radioactive Waste Management and the Nuclear Fuel Cycle, 16

(1), pp. 25-47.

DATE:

January 1, 1991

ORGANIZATION:

ENEA, CRE-Casaccia, and Universita'di Padova

SUMMARY:

Description of processing, compositions, and initial testing of

candidate waste forms for Italian radioactive waste

Waste Form:

Borosilicate glass

Waste Type:

Waste Loading:

Waste/glass=57%

Development Status:

Intermediate stage of development

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

MCC-1 NL(B) 28d=8g/m² 91d=9g/m² for "BAZ-R" glass

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation

RCRA Compliance:

Conclusions:

Describes testing of candidate waste forms, including

physical characteristics and chemical leaching of laboratory

glass and plant-produced BAZ glass.

NO. 18

TITLE:

Chemical Durability of SRP Waste Glass - Saturation Effects and

Influence of SA/V

AUTHOR:

G.T. Chandler; G.G. Wicks; R.M. Wallace

PUBLICATION:

Savannah River Laboratory, DP-MS-84-37

DATE:

April 24, 1984

ORGANIZATION:

American Ceramic Society

SUMMARY:

Investigated the ratio of the glass surface area (SA) to the volume

of leachant (V). MCC-1 used as test.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

See summary

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Discusses the role of pH, saturation of chemical species, and

SA/V on glass leach resistance.

NO. 19

TITLE:

State-of-the-Art of Waste Glass Melters

AUTHOR:

C. Chapman

PUBLICATION:

3rd International Symposium, Advances in Fusion and Processing

of Glass, New Orleans, Louisiana

DATE:

May 1, 1992

ORGANIZATION:

Battelle, Pacific Northwest Laboratories

SUMMARY:

A review of types of melters under consideration for vitrification

for both high level and low level mixed wastes.

Waste Form:

Glass

Waste Type:

High and low level mixed waste

Waste Loading:

25 to 50 wt%

Development Status:

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

Leach Resistance: Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

The volumes of hazardous, nonhazardous, radioactive, and

mixed wastes produced each year are large. Waste

vitrification or transformation of waste into a nonleaching and useful secondary glass material is an environmentally

attractive process.

NO. 20

TITLE:

Evaluation of Vitrifying Municipal Incinerator Ash

AUTHOR:

C.C. Chapman

PUBLICATION:

Ceramic Transactions, Nuclear Waste Management IV, G.G.

Wicks, ed., pp. 223-231.

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

Vitrifying incinerator ash is an attractive means of stabilizing the toxic materials. Vitrification provides a further volume reduction and produces a construction material. Vitrification provides an economic treatment method while providing an environmentally

sound solution to a troublesome waste steam.

Waste Form:

Glass calcium aluminosilicate

Waste Type:

Incinerator ash, municipal

Waste Loading:

100% to 80% volume reduction

Development Status:

Initial

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

Biological Stability:

--

Leach Resistance: Immersion Stability:

--

Free Liquids:

Chemical Durability:

Compositional Flexibility:

--

Gas Generation:

RCRA Compliance:

__

Conclusions:

Vitrification of municipal incinerator ash provides an

economic treatment method, while providing an

environmentally sound solution to disposal of the waste

stream.

NO. 21

TITLE:

Electric Melting of Nuclear Waste Glasses, State of the Art

AUTHOR:

C.C. Chapman; J.M. Pope; S.M. Barnes

PUBLICATION:

Journal of Non-Crystalline Solids, No. 84, pp. 226-240

DATE:

January 1, 1986

ORGANIZATION:

West Valley Nuclear Services Co.

SUMMARY:

The paper reviews the design of melters used throughout the world. Includes the lessons learned and the problems associated with corrosion, crystalline sludge, reboil, and metal precipitation.

Waste Form:

Waste Type:

Waste Loading:

Development Status:

Compressive Strength:
Thermal Stability:

Radiation Stability:

Biological Stability:
Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance: Conclusions:

Discusses the liquid-fed ceramic, West Valley

Demonstration, DWPF, PAMELA melter, Japanese vitrification, Hanford, and the U.K. Harwell melters. Problems with draining, corrosion, foaming, etc., are

discussed.

NO. 22

TITLE:

Chemical Durability and Related Properties of Solidified High-

Level Waste Forms

AUTHOR:

Coordinated Research Programme of the Evaluation of Solidified

High-Level Waste Form.

PUBLICATION:

IAEA Technical Report Series No. 257

DATE:

January 1, 1985

ORGANIZATION:

International Atomic Energy Agency

SUMMARY:

Review of waste glass/ceramic compositions, leach tests, and

multicomponent effects (radiation, backfill, etc.) for international

application.

Waste Form:

Borosilicate glass

Waste Type:

Waste Loading:

Effects of 10-30% on leaching are composition-dependent.

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

NO. 23

TITLE:

WIPP/SRL In Situ Tests: MIIT Program - The Effects of Metal

Package Components

AUTHOR:

J.F. Covington; G.G. Wicks; M.A. Molecke

PUBLICATION:

Ceramic Transactions, Nuclear Waste Management, Vol. 23, pp.

723-732

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

There were no significant effects observed on leaching of SRL Y

waste glass due to the presence of 304L stainless steel.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

Nominal 28 wt%

Development Status:

Mature

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability: Biological Stability: ~-

Leach Resistance:

See summary

Immersion Stability:

--

Free Liquids:

Chemical Durability:

See summary

Compositional Flexibility:

Gas Generation:

--

RCRA Compliance:

__

Conclusions:

No large effects observed on the leaching of SRL Y waste glass when leached in the presence of metals, including titanium, copper, nickel alloys, and several carbon steels. Metals such as A216 and lead corroded significantly.

Modeling the Dissolution of Borosilicate Glasses for Radioactive TITLE:

Waste Disposal with the PHREEQE/GLASSOL Code: Theory

and Practice

E. Curti AUTHOR:

PSI-Bericht Nr. 86 PUBLICATION: -

DATE: January 1, 1991

ORGANIZATION: Paul Scherrer Institute, Wurenlingen, Germany

SUMMARY: Discusses Granbow model of silicic acid control of glass reaction

> rate and applies model to measured reactivity of British MWglass at 90°C. Finds model requires too much curve fitting to

define parameters to be acceptable.

Waste Form: Borosilicate glass (MW) and ABS-118

Waste Type:

Waste Loading:

Development Status: Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

Long term MW=6 x 10^{-3} , ABS-118 = $1.31 \times 10^{-3} \text{ g/m}^2/\text{day}$, Leach Resistance:

deionized water, 90°C

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions: Current model (Granbow's version) requires too many ad

hoc adjustments based on data to be modeled to be

acceptable for long-term predictions.

TITLE:

Cyclone Furnace for Vitrification of Contaminated Soil and

Wastes

AUTHOR:

J.M. Czuczwa; H. Farzan; S.J. Vecci; J.J. Warchol

PUBLICATION:

1991 Incineration Conference Proceedings, pp. 613-620,

Knoxville, TN

DATE:

May 1, 1991

ORGANIZATION:

Babcock & Wilcox Co.

SUMMARY:

Describes cyclone furnace which might be well-suited for treating

high inorganic content hazardous wastes, e.g., soils.

Waste Form:

Slag

Waste Type:

Contaminated soils

Waste Loading:

100%

Development Status:

Early

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability: Leach Resistance:

Passes TCLP

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility: --Gas Generation:

RCRA Compliance:

Passes TCLP

Conclusions:

Furnace was able to melt soil at 150 lb/hr. Slag passed TCLP. Approximately 95% of soil was captured as slag. Had a severe problem with toxic metal volatility. This was probably due to dispersion of waste into cyclonic burner. Not a good approach to trying to encapsulate inorganic toxic

waste.

NO. 26

TITLE:

R7T7 Glass Initial Dissolution Rate Measurements Using a High-

Temperature Soxhlet Device

AUTHOR:

F. Delege; J.L. Dussossoy

PUBLICATION:

Materials Research Society Symposium Proceedings, 212, pp. 41-

47

DATE:

January 1, 1991

ORGANIZATION:

CEA-CEN France

SUMMARY:

Measure forward rate coefficient as function of temperature using

Soxhlet from 90-250°C. Follows Arrhenius behavior with Ea=58-

60 kJ/mol

Waste Form:

Borosilicate glass, R7T7

Waste Type:

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

 $K_r = A \exp((-59k)/\text{mol/RT})$

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Rate coefficient follows Arrhenius behavior between 90 to

250°C with Ea=58 to 60 kJ/mol. Release of Li, Na, B, & Si non-stoichiometric but all linear in reaction time. Interpret

Ea to indicate surface reaction control of rate.

TITLE:

Natural Analogues: Their Application to the Prediction of the

Long-Term Behavior of Nuclear Waste Forms

AUTHOR:

R.C. Ewing; M.J. Jercinovic

PUBLICATION:

Materials Research Society Symposium Proceedings, 84, pp. 67-

83

DATE:

January 1, 1987

ORGANIZATION:

Department of Geology, University of New Mexico

SUMMARY:

Review of natural analogue approach to HLW problem and

summary of experimental results through 1986

Waste Form:

Analogues for borosilicate glass

Waste Type:

Waste Loading:

Development Status:

Compressive Strength: -

Thermal Stability:

Radiation Stability: - Biological Stability: -

Leach Resistance:

Immersion Stability: Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions: Discusses tektite, rhyolitic, and basaltic glass analogies

based on silica contents, comparisons of experimentally altered glass and naturally altered glass, primarily through

secondary solids generated.

NO. 28

TITLE:

Chemistry

AUTHOR:

J. Gafney

PUBLICATION:

Science News, pg. 172

DATE:

March 14, 1992

ORGANIZATION:

Argonne National Laboratory

SUMMARY:

Observed on a qualitative basis that humic acid may interact with

borosilicate labware.

Waste Form:

Glass

Waste Type:

Humic acid

Waste Loading:

--

Development Status:

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance: Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

Humic acid may interact with borosilicate labware

Compositional Flexibility:

Gas Generation:

y: --

RCRA Compliance:

Conclusions:

Humic acid may interact with borosilicate labware. Possible

complexing agent.

NO. 29

TITLE:

Performance Assessment of Glass as a Long-Term Barrier to the

Release of Radionuclides into the Environment

AUTHOR:

B. Grambow; W. Lutze; R.C. Ewing; L.O. Werme

PUBLICATION:

Material Research Society Symposium Proceedings, 112

DATE:

January 1, 1988

ORGANIZATION:

HMI, UNM, SKB

SUMMARY:

Summarizes leaching test interpretation of JSS project based on

Grambow's reaction model

Waste Form:

Borosilicate glass JSS-A ABS-118

Waste Type:

Waste Loading:

w aste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Forward rate 1.5g/m²/d final rate 0.0025 g/m²/d at 90°C

Immersion Stability:

Free Liquids:

si i i i i

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

COGEMA glass sufficiently durable at flow rates <100 1/yr;

glassol code (and his model) validated; long-term 'final rate'

not well understood; backfill not effective barrier.

NO. 30 **GLASS SUMMARIES**

Demonstrating Compliance with the Waste Acceptance TITLE:

Preliminary Specifications on Foreign Materials within DWPF

Canistered Waste Forms

J.R. Harbour AUTHOR:

Proceedings of the 2nd International Seminar on Radioactive PUBLICATION:

Waste Products, E. Warnecke, et al., eds., KFA Research Julich,

FRG, WSRC-MS-90-98

May 28, 1990 DATE:

Westinghouse Savannah River Co. ORGANIZATION:

Study of volatility of waste glass combined with new results of SUMMARY:

thermogravimetric analysis (TGA) experiments.

Glass, borosilicate Waste Form:

Simulated high level radioactive defense waste Waste Type:

Waste Loading: Nominal 28 wt%

Development Status: Mature

Compressive Strength:

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

Immersion Stability:

RCRA Compliance:

Free Liquids: No organics or free liquid found

Chemical Durability:

Compositional Flexibility: Highly reduced glass powder may absorb oxygen > 400°C

Gas Generation:

TGA results demonstrate that powdered waste glass samples Conclusions:

> can gain or loose weight upon heating. The weight loss is associated with adsorbed water loss while weight gain at 400°C may be associated with oxygen uptake of reduced species, e.g., iron. The volatility of these glass samples provides evidence that no free liquids, free gases, organics, or explosives are released upon heating the waste glass to its

glass transition temperature.

TITLE: The Determination of Pressure, Dewpoint, and Composition of

the Gas Within the Free Volume of Canistered Waste Forms

AUTHOR: J.R. Harbour; T.J. Miller; M.J. Whitaker

PUBLICATION: WSRC-RP-90-1167

January 1, 1990

SUMMARY: The free volume in four simulated canistered waste forms

Westinghouse Savannah River Co. Aiken, SC

produced during Scale Glass Melter Campaigns was examined after being hermetically sealed for 2 to 3 years. The internal gas

pressure, dewpoint temperature and gas composition were

determined.

Waste Form: Glass, borosilicate

Waste Type: Simulated high level radioactive defense waste

Waste Loading: Nominal 28 wt%

Development Status: Mature

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability: Leach Resistance:

Immersion Stability:

DATE:

ORGANIZATION:

Free Liquids:

Chemical Durability:

Relative humidities in canister 5-20 %, no free water.

No unexpected chemical compound(s) found within sealed

containers.

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

No free liquids or unexpected chemical compounds were

identified within the sealed containers after several years of storage. The simulated waste form does not volatilize or emit chemical compounds, including water, during storage.

TITLE:

Evaluation of the Potential for Gas Pressurization and Free Liquid

Accumulation in a Canister from the West Valley Demonstration

Project

AUTHOR:

R.F. Hazelton; C.K. Thornhill; W.A. Ross

PUBLICATION:

Ceramic Transactions, Nuclear Waste Management, IV, Vol. 23,

pp. 491-500

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

A full-scale canister from WVDP was tested to determine potential for gas generation (non-radiolytic) and liquid accumulation. Heated for eight weeks above glass transition

temperature.

Waste Form:

--

Waste Type:

--

Waste Loading:

__

Development Status: Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance: Immersion Stability:

Free Liquid:

No free liquid detected (increase in H₂0 of 0.00004 wt%)

Chemical Durability:

Chemical Durability: Compositional Flexibility: -

Gas Generation:

No unusual gasses detected nor generation of pressure.

RCRA Compliance:

-

Conclusions:

Test did not generate any gas pressurization. Oxygen

depleted. Carbon dioxide increased. No free water detected.

GLASS SUMMARIES NO. 33

TITLE:

Results of Vitrifying Fernald K-65 Residue

AUTHOR:

D.S. Janke; C.C. Chapman; R.A. Vogel

PUBLICATION:

Ceramic Transactions, Nuclear Waste Management, Vol. 23, pp.

53-61

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, OH

SUMMARY:

K-65 residue, which contains radium, uranium, daughter products,

and heavy metals (lead), was vitrified on a bench-scale system

which permitted analysis of the off-gas. TCLP, EP were

measured.

Waste Form:

Glass, soda iron barium silicate

Waste Type:

Pitchblende residue, treated as TRU waste

Waste Loading:

Approximately 80 wt%; volume reduction 60%

Development Status:

Initial

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance:

See conclusions

Immersion Stability:

nersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

__

Gas Generation:

Reduced by factor of 33,000; limited to amount from surface

of glass.

RCRA Compliance:

Conclusions:

K-65 residue tested "hazardous" by EP toxicity test, with radon emanation rate (52,400 pCi/m²/s) after vitrification tested "non-hazardous" radon gas reduced by factor of

33,000 to $1.56 \text{ pCi/m}^2/\text{s}$.

TITLE:

Solidification of Consolidated Incinerator Facility (CIF) Wastes

in Soda-Lime-Silica (SLS) Glass: Use of Reactive Additives to

Retain Hazardous and Heavy Metal Constituents

AUTHOR:

C.M. Jantzen

PUBLICATION:

Savannah River Lab, WSRC-TR-92-214, Rev. 0

DATE:

April 30, 1992

ORGANIZATION:

Westinghouse Savannah River Co.

SUMMARY:

Discusses the vitrification of CIF blowdown and bottom kiln ash waste with available silica sources to form a stable soda lime glass waste form. The stirred electric melter is recommended as

the melter system.

Waste Form:

Glass, soda-lime

Waste Type:

Incinerator blow-down and ash, low level radioactive,

hazardous, mixed

Waste Loading:

45 to 50 wt%

Development Status:

Preliminary

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Expected to pass TCLP

Immersion Stability:

Free Liquids:

Chemical Durability: Compositional Flexibility:

Wide variation in feed material

Gas Generation:

RCRA Compliance:

Expected to pass TCLP

Conclusions:

Vitrification suggested as a viable process for solidification of CIF blowdown and kiln ash waste. Only one additive,

SiO₂, is necessary for vitrification.

NO. 35

TITLE:

Thermodynamic Approach to Glass Corrosion

AUTHOR:

C.M. Jantzen

PUBLICATION:

Corrosion of Glass, Ceramics, and Ceramic Superconductors, Principles, Testing, Characterization and Applications, D.E. Clark and B.K. Zoitos, eds., pp. 153-215, Noves Publications, Park

Ridge, NJ

DATE:

January 1, 1992

ORGANIZATION:

Savannah River Site

SUMMARY:

A review of theory of glass corrosion. Approaches glass

corrosion from thermodynamic point of view. Discusses various

parameter effects, e.g., SA/V, Eh, and pH.

Waste Form:

Waste Type: Waste Loading:

Development Status:

Compressive Strength: Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance: Immersion Stability:

Free Liquids: Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Hydration thermodynamics have wide applicability to predict the durability of natural, ancient, modern, and nuclear waste glass. The predicted durabilities correlate with those observed in nature and give a means for interpolation of the long-term durability of nuclear waste

glasses.

TITLE:

First Principles Process-Product Models for Vitrification of

Nuclear Waste: Relationship of Glass Composition to Glass Viscosity, Resistivity, Liquidus Temperature, and Durability

AUTHOR:

C.M. Jantzen

PUBLICATION:

Ceramic Transactions, Vol. 23, pp. 37-51, Nuclear Waste

Management IV, G.G. Wicks, et al., eds.

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

Development of first principle models for viscosity, electrical

conductivity, liquidus temperature, and durability.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

Development Status:

Mature

Compressive Strength:

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance: Immersion Stability:

Free Liquids:

None

Chemical Durability:

Compositional Flexibility:

Gas Generation: RCRA Compliance:

Conclusions:

The process/product models developed for the DWPF have

been developed on first principle concepts of glass

chemistry, solubility, precipitation, and thermodynamics. The models have been successfully used to control several

Research Melter Campaigns at SRS (simulated and

radioactive waste).

GLASS SUMMARIES NO. 37

TITLE:

Systems Approach to Nuclear Waste Glass Development

AUTHOR:

C.M. Jantzen

PUBLICATION:

Journal of Non-Crystalline Solids, 84, No. 1-3, pp. 215-225

DATE:

January 1, 1986

ORGANIZATION:

SUMMARY:

A review and comparison among borosilicate, high-silica, and phosphate glasses indicated that borosilicate glass was most

desirable for the immobilization of nuclear waste.

Waste Form:

Glass

Waste Type:

Nuclear waste

Waste Loading:

--

Development Status:

--

Compressive Strength: Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance: Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility: Gas Generation:

__

RCRA Compliance:

--

Conclusions:

A system evaluation of aluminosilicate glasses indicates that they have superior product characteristics, but are difficult to process. Evaluation of phosphate glasses indicates that they have adequate to poor product characteristics and are difficult to process. Borosilicate glass exhibits favorable

product performance and ease of processability.

NO. 38 GLASS SUMMARIES

Nuclear Waste Glass Product Consistency Test (PCT) TITLE:

AUTHOR: C.M. Jantzen; N.E. Bibler

Savannah River Site **PUBLICATION:**

DATE: November 1, 1990

SUMMARY: method of quickly determining the durability and consistency of

Westinghouse Savannah River Co. Aiken, SC

The PCT procedure as submitted to ASTM C26.13. The PCT is a

glasses. Proposed for use at DWPF.

Waste Form: Glass

Waste Type: Waste Loading:

ORGANIZATION:

Development Status: Mature

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

7 day 90°C deionized water. Leach Resistance:

Immersion Stability:

Free Liquids: Chemical Durability:

Compositional Flexibility:

Gas Generation: RCRA Compliance:

A durability test, designated the Product Consistency Test Conclusions: (PCT) was developed for DWPF glass in order meet to the

> applicable waste acceptance specifications. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly and to be easily performed in shielded cell facilities

with radioactive samples.

GLASS SUMMARIES NO. 39

TITLE:

The Product Consistency Test for the DWPF Wasteform

AUTHOR:

C.M. Jantzen; N.E. Bibler

PUBLICATION:

Proceedings of the 2nd International Seminar on Radioactive

Waste Products, E. Odoj, et al., eds., pp. 609-622

DATE:

June 1, 1990

ORGANIZATION:

Kernforschunganlanger (KFA) Julich, FRG

SUMMARY:

Development of Product Consistency Test (PCT). Comparison to

MCC-1 as well as other tests, results of round-robin evaluations.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

--

Development Status:

Mature

Compressive Strength:

--

Thermal Stability:

Radiation Stability:

--

Biological Stability: Leach Resistance:

--

Immersion Stability:

--

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

--

RCRA Compliance:

--

Conclusions:

Log norm. Boron compared to free energy of hydration, results of round-robin evaluation. Approximately 10%

difference between laboratories.

TITLE:

Leaching of Polyphase Nuclear Waste Ceramics: Microstructural

and Phase Characterization

AUTHOR:

C.M. Jantzen; D.R. Clarke; P.E.D. Morgan; A.B. Harker

PUBLICATION:

Journal of the American Ceramic Society, Vol. 65, No. 6, pp.

292-300

DATE:

June 1, 1982

ORGANIZATION:

Rockwell International Science, Ctr.

SUMMARY:

The leaching of complex polyphase nuclear waste ceramics is

described in the context of the geochemically established

dissolution behavior of the constituent phases.

Waste Form:

Ceramic, tailored for SRS defense waste

Waste Type:

High-level defense waste

Waste Loading:

30 - 60 wt%

Development Status:

Initial

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance:

Immersion Stability:

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

Gas Generation:

RCRA Compliance: Conclusions:

Dissolution was incongruent and controlled by the

solubilities of the individual phases. Necessary to avoid intergranular glass phases due largely to trace amounts of silica and microcracking of the principle phases during

processing.

GLASS SUMMARIES NO. 41

TITLE: There

Thermodynamic Model of Natural, Medieval and Nuclear Waste

Glass Durability

AUTHOR:

C.M. Jantzen; M.J. Plodinec

PUBLICATION:

Journal of Non-Crystalline Solids, 67, pp. 207-223

DATE:

January 1, 1984

ORGANIZATION:

Elsevier Science Publishers, North Holland, Amsterdam

SUMMARY:

A thermodynamic model of glass durability based on the hydration of "structural units" has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste.

Waste Form:

Glass, general

Waste Type:

Type:

Waste Loading:

Development Status:

--

Compressive Strength:

--

Thermal Stability: Radiation Stability:

--

Biological Stability: Leach Resistance:

See summary

Immersion Stability:

--

minersion State

offity.

Free Liquids:

--

Chemical Durability:

Compositional Flexibility: --

Gas Generation:

RCRA Compliance:

__

Conclusions:

A method of calculating glass durability based on the free energy of hydration is presented. The contribution of the redox level and alumina coordination must also be

considered. Glass compositions which raise the pH of leachate above 10 must be corrected with an additional free energy term. Waste glass is compared to known glasses

which were formed 500 to 0.5 million years ago.

TITLE:

Comparison of Surface Layers Formed on Synthetic Basaltic Glass, French R7T7 and HMI Borosilicate Nuclear Waste Form Glasses-Materials Interface Interactions Tests-Waste Isolation

Pilot Plant

AUTHOR:

M.J. Jercinovic; S.A. Kaser; R.C. Ewing; W. Lutze

PUBLICATION:

Material Research Society Symposium Proceedings, 176, pp. 355-

362

DATE:

January 1, 1990

ORGANIZATION:

Department of Geology, University of New Mexico; HMI, Berlin

SUMMARY:

Analysis of secondary phases formed on basalt, R7T7, and HMI

glasses reacted up to 2 years.

Waste Form:

Borosilicate glass, basalt as natural analogue

Waste Type:

.--

Waste Loading:

--

Development Status:

--

Compressive Strength: Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance: Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

y. --

Gas Generation: RCRA Compliance:

-

Conclusions:

Layer compositions reflect glass compositions, although

some elements are incorporated from leachant.

GLASS SUMMARIES NO. 43

TITLE:

Basaltic Glasses From Iceland and the Deep Sea: Natural

Analogues to Borosilicate Nuclear Waste-Form

AUTHOR:

M.J. Jercinovic; R.C. Ewing

PUBLICATION:

JSS 88-01

DATE:

January 1, 1988

ORGANIZATION:

Department of Geology, University of New Mexico

SUMMARY:

Provides characterization of reaction processes and products for

reaction of natural basaltic glasses.

Waste Form:

Basalt glass as analogue for borosilicate glass

Waste Type:

--

Waste Loading:

--

Development Status:

__

Compressive Strength: Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance:

--

Immersion Stability: Free Liquids:

--

Chemical Durability:

Compositional Flexibility:

--

Gas Generation:

--

RCRA Compliance: Conclusions:

Amorphous and crystalline products form on glass surface but do not protect underlying glass from further attack.

Supports Grambow's hypothesis of two characteristic rate coefficients for initial rate in dilute solutions and final rate in

"silica-saturated" solutions.

TITLE:

Silicate Glasses

AUTHOR:

W. Lutze

PUBLICATION:

Radioactive Waste Forms for the Future, W. Lutze, R.C. Ewing,

eds., Elsevier Science Publishers, B.V.

DATE:

January 1, 1988

ORGANIZATION:

Hahn-Meitner-Institute, Berlin

SUMMARY:

Review of silicate glasses as used in high-level waste disposal.

Review of mechanical and chemical properties of U.S. and

foreign glasses.

Waste Form:

Borosilicate glass, many different compositions discussed

Waste Type:

Reprocessed high-level waste

Waste Loading:

-

Development Status:

Advanced

Compressive Strength:

--

Thermal Stability:

Glass will crack as it cools

Radiation Stability:

Radiation effects in glass are small, in leachate lead to

modest increase

Biological Stability:

--

Leach Resistance:

In general 0.5-5 g/m²/d at 90° deionized water initially

Immersion Stability:

--

Free Liquids:

Chemical Durability:

Nitric acids from radiolysis increase rate slightly; phase

separation possible at high waste loadings

Compositional Flexibility:

Gas Generation:

y: --

RCRA Compliance:

__

Conclusions:

Glass composition determined primarily by processing techniques; overloading with waste may lead to phase

separation; glass will fracture as it cools; radiation does not significantly affect glass durability (enhancement less than 5 times); different glasses have different corrosion rates, which

decrease with time; solid alteration products may affect

reaction.

GLASS SUMMARIES NO. 45

TITLE:

Radioactive Waste Forms for the Future

AUTHOR:

W. Lutze; R.C. Ewing

PUBLICATION:

Book, Elsevier Science Publishers, B.V., pp. 699-739

DATE:

January 1, 1988

ORGANIZATION:

SUMMARY:

A review of high level waste forms. Compares borosilicate glass and other glasses, Synroc and other ceramics, and FUETAP cement. Provides a summary of physical and chemical properties.

Waste Form:

Glass, borosilicate, Synroc, tailored ceramics, FUETAP

Waste Type:

High-level defense waste

Waste Loading:

10-60 wt%

Development Status:

Varied

Compressive Strength:

Ceramic~550 MPa; FUETAP ~20 MPa

Thermal Stability:

--

Radiation Stability:

%vol change: borosilicate ± 1.5 , Synroc +8

Biological Stability:

--

Leach Resistance:

Borosilicate < 1 g/m²/d; difficult to compare forms due to

radiation effects

Immersion Stability:

Free Liquids:

Chemical Durability:

Durability: -

Compositional Flexibility:

tv: __

Gas Generation: RCRA Compliance:

Conclusions:

Borosilicate: large data base, corrosion mechanism well understood, long term corrosion validated by natural glasses,

industrial scale fabrication has been demonstrated.

Synroc: well-characterized, more stable at elevated

temperatures in hydrothermal environment better mechanical

integrity, no flow rate dependence for leaching, natural

analogues available.

GLASS SUMMARIES NO. 46

TITLE: Chemical Corrosion of Lead-Iron Phosphate Glass

AUTHOR: W. Lutze; B. Grambow

PUBLICATION: In-process

DATE:

ORGANIZATION: Hahn-Meitner Institute, Berlin

SUMMARY:

Waste Form: Phosphate glass, lead-iron

Waste Type: LWR commercial waste

Waste Loading: 6.4 wt%
Development Status: Initial

Compressive Strength: -Thermal Stability: -Radiation Stability: --

Biological Stability: --

Leach Resistance: Max rate 0.05 g/m²/day (MCC-1, 90°C, deionized water)

Immersion Stability: --

Free Liquids: -Chemical Durability: -Compositional Flexibility: --

Gas Generation:

RCRA Compliance:

Conclusions: Leach rate controlled by Pb₃(PO₄)². Lead-iron phosphate

glass more stable than borosilicate due to lower solubility of

Pb₃(PO₄)² compared to H₄SiO₄, which controls rate of

borosilicate reaction.

NO. 47

TITLE:

A Comparison of the Behavior of Vitrified HLW in Repositories

in Salt, Clay, and Granite. Part II: Results

AUTHOR:

J.A.C. Marples; W. Lutze; M. Kawanishi; P. Van Iseghem

PUBLICATION:

Material Research Society Symposium Proceedings, 176, pp. 275-

282

DATE:

January 1, 1990

ORGANIZATION:

SUMMARY:

Results of round-robin with R7T7 glass at 900°C in salt, clay, or

granite at 90°C.

Waste Form:

Borosilicate glass

Waste Type:

Waste Loading: **Development Status:**

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability: Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance: Conclusions:

Glass corroded at about the same rate in clay and granite

systems, but about 10 times faster in salt. Agreement

between labs on absolute releases is poor.

NO. 48

TITLE:

Comparison of SRP High-Level Waste Disposal Costs for

Borosilicate Glass and Crystalline Ceramic Waste Forms

AUTHOR:

W.R. McDonell

PUBLICATION:

DuPont, Savannah River Laboratory, DPST-82-346

DATE:

April 1, 1982

ORGANIZATION:

DuPont, Savannah River Laboratory

SUMMARY:

Comparison of costs for immobilization and disposal HLW indicates that the borosilicate waste form is less costly than the crystalline waste form. Waste disposal for ceramic less costly due to fewer canisters, however not sufficient to offset the higher development and processing costs.

Waste Form:

Glass/borosilicate - ceramic/Synroc-D

Waste Type:

High level radioactive defense waste Glass - 28 wt%; ceramic - 65 wt% (52% after Al wash)

Waste Loading: Development Status:

Glass - mature; ceramic - intermediate

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids: Chemical Durability:

Compositional Flexibility: --

Gas Generation:

RCRA Compliance:

Conclusions:

Costs dependent on size of ceramic body, development

costs. Must consider all costs, intermediate storage,

shipping, final storage, and monitoring. The cost reductions due to lesser number of ceramic canisters did not offset the

higher development and processing costs.

NO. 49

TITLE:

A Comparison of the Behavior of Vitrified HLW in Repositories

in Salt, Clay, and Granite, I: Experimental

AUTHOR:

L.A. Mertens; W. Lutze; J.A.C. Marples; P. Van lseghem; E.

Vernaz

PUBLICATION:

Material Research Society Symposium Proceedings, 176, pp. 267-

DATE:

January 1, 1990

ORGANIZATION:

SUMMARY:

Round-robin results for leach tests with R7T7 glass at 90°C.

Waste Form:

Borosilicate glass

Waste Type:

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

Leach Resistance: Immersion Stability:

Free Liquids:

Chemical Durability: Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Comparison of results from different labs shows large

differences in highly soluble species of B, Li, and Mo.

TITLE:

Surface Analyses of SRS Waste Glass Buried for up to Two

Years in Limestone in the United Kingdom

AUTHOR:

C.G. Namboodri; G.G. Wicks; A.R. Ledding; L.L. Hench; R.G.

Newton

PUBLICATION: -

Ceramic Transactions, Vol. 23, Nuclear Waste Management IV,

G.G. Wicks, ed., American Ceramic Society, Westerville, OH, pp.

653-662

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society

SUMMARY:

Evaluation of borosilicate glass after one and two years at

ambient temperature. For all samples, the glass interaction zone

was less than 1 micron.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high-level radioactive waste.

Waste Loading:

28 wt%

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

Less than one micron interaction layer after two years at

ambient temperature.

TITLE:

Development of a Combined Soil Wash/In-Furnace Vitrification

System for Soil Remediation at DOE Sites

AUTHOR:

I.L. Pegg; W. Greenman; Y. Guo; I.S. Muller; R. K. Mohr; P.B.

Macedo; D.C. Grant; P.R. Mullik

PUBLICATION:

First International Mixed Waste Symposium, ASME

DATE:

August 1, 1991

ORGANIZATION:

Duratek Corp, CUA, Westinghouse

SUMMARY:

Vitrification and soil washing technologies are briefly reviewed

and compared to other technologies for remediation of

contaminated soils and sludges.

Waste Form:

Glass, borosilicate

Waste Type:

Low-level, mixed, and TRU

Waste Loading:

60-80 % loading blended streams

Development Status:

Initial

Compressive Strength:

Thermal Stability:

Radiation Stability:

--

Biological Stability: Leach Resistance:

--

Immersion Stability:

--

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

.y. --

RCRA Compliance:

Conclusions:

While the costs associated with waste treatment are important components in a comparison of treatment

technologies, they represent only a part of the total costs for site remediation. Disposal and long-term monitoring must also be considered. Recommends washing of contaminated soils and slurries, capture of radioactive and hazardous

materials, followed by vitrification.

NO. 52

TITLE:

Hydrated-Layer Formation During Dissolution of Complex

Silicate Glassses and Minerals

AUTHOR:

J.C. Petit; D.G. Mea; J.C. Dran; M.C. Maganthier; P.A. Mando;

A. Paccagnelia

PUBLICATION:

Geochim-Cosmochim. Acta, 54, pp. 1941-1955

DATE:

January 1, 1990

ORGANIZATION:

SESD/LECALT, CEN-FAR, France

SUMMARY:

Study of the dissolution behavior of three complex silicate glasses

and five crystalline silicates after implantation of Pb ions to

produce dislocations.

Waste Form:

Borosilicate glass

Waste Type:

Simulated

Waste Loading:

None

Development Status:

Experimental

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance:

--

- Loadii Resistance.

--

Immersion Stability:

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

...

Gas Generation:

RCRA Compliance: Conclusions:

Hydrated layers form on all samples in which heavy

elements accumulate.

TITLE:

Integrated Testing of the SRL-165 Glass Waste Form

AUTHOR:

D.L. Phinney; F.J. Ryerson; V.M. Oversby; W.A. Lanford; R.D.

Aines; J.K. Bates

PUBLICATION:

Material Research Society Symposium Proceedings, 84, pp. 433-

446

DATE:

January 1, 1986

ORGANIZATION:

Laboratory

Lawrence Livermore National Laboratory, Argonne National

SUMMARY:

Mass-balance analyses of reacted SRL-165 glass to account for alteration layer composition, tuff rock and steel vessel surfaces,

and leachate

Waste Form:

Borosilicate glass, SRL-165

Waste Type:

Doped with ²³⁷Np, ²³⁹Pu and ²⁴²Am

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

Leach Resistance:

1.5 to 3.0 micron/yr at 90°C at S.A.=1/10m in J-13 solution

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Glass reacts via ion exchange, followed by surface

dissolution. Actinides sorbed onto teflon and steel vessel

surfaces. U and Li diffused into tuff.

NO. 54

TITLE:

Viscosity of Glasses Containing Simulated Savannah River Plant

Waste

AUTHOR:

M.J. Plodinec

PUBLICATION:

Savannah River Laboratory, DP-1507

DATE:

August 11, 1978

ORGANIZATION:

E.I. DuPont, Savannah River Laboratory, Aiken, SC

SUMMARY:

The viscosity of glass melts containing four simulated sludge types and two frits were measured over the temperature range

750-1200°C.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

25 to 30 wt%

Development Status:

Preliminary (1978)

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability: Biological Stability:

--

Leach Resistance:

--

Immersion Stability: Free Liquids:

None

Chemical Durability:

110111

Compositional Flexibility:

--

Gas Generation:

RCRA Compliance:

--

Conclusions:

Limits for viscosity, sludge loading, and devitrification were

defined. Melts containing devitrification were found to be

non-Newtonian.

NO. 55

TITLE:

The Physical and Thermal Properties of Simulated Nuclear Waste

Glasses and Their Melts

AUTHOR:

L.D. Pye

PUBLICATION:

Savannah River Laboratory, DPST-85-397

DATE:

February 1, 1985

ORGANIZATION:

Alfred University

SUMMARY:

The physical and thermal properties of three simulated nuclear

waste glasses (165), high-iron, TDS, and high-alumina were

measured.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading

Nominal 28 wt%

Development Status:

Mature

Compressive Strength:

M.O.R. 3700 to 6200 psi

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance: Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Density @ 23°C, 2.6 to 2.8; coefficient of linear expansion

<300°C 9.9 to 10 ppm; also, values for thermal diffusivity, Young's modulus, shear modulus, Poisson's ratio, specific

heat, and viscosity.

NO. 56

TITLE:

EPA Tests of Simulated DWPF Waste Glass-U

AUTHOR:

A.A. Ramsey

PUBLICATION:

WSRC-TR-90-22, Inter Office Memo to M.J. Plodinec.

DATE:

January 10, 1990

ORGANIZATION:

Westinghouse Savannah River Co.

SUMMARY:

The simulated DWPF waste glasses tested passed both the EP Toxicity and the TCLP tests. The glasses were prepared by doping two to three times the expected amounts of Cr, Pb, Ba, Ag, Se, and Cd. The resulting material is not a hazardous waste.

Waste Form:

Simulated high-level waste borosilicate glass. Simulated radioactive, actual hazardous elements

Waste Type: Waste Loading:

--

Development Status:

--

Compressive Strength: Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance:

Passed TCLP and EP Tox tests

Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

Compositional Flexibility:

·: --

Gas Generation:

Non-hazardous

RCRA Compliance: Conclusions:

Simulated high level waste form is not a hazardous waste.

NO. 57

TITLE:

Predictive Modeling of Leachate pH for Simulated High Level

Waste Glass

AUTHOR:

W.G. Ramsey; T.D. Taylor; C.M. Jantzen

PUBLICATION:

Ceramic Transactions, Vol. 23, Nuclear Waste Management, pp.

105-114

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

A methodology is proposed for predicting the equilibrium pH of leachates from PCT experiments in deionized water. Glasses in the SiO₂-Al₂O₃-B₂O₃-Fe₂O₃-CaO-Na₂O system were tested.

Waste Form:

Glass

Waste Type:

Waste Loading:

Development Status:

Compressive Strength: Thermal Stability:

Radiation Stability:

Biological Stability:

Leach resistance largely dependent on the pH of leachate

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance: Conclusions:

It was possible to predict the equilibrium pH based solely on

the glass composition.

NO. 58

TITLE:

Materials Characterization Center, Workshop on the Irradiation

Effects in Nuclear Waste Forms - Summary Report

AUTHOR:

F.P. Roberts; R.P. Turcotte; W.J. Weber

PUBLICATION:

US DOE Report, PNL-3588

DATE:

January 1, 1981

ORGANIZATION:

Pacific Northwest Laboratory, Richland, Washington

SUMMARY:

The workshop considered the utility of the proposed MCC-6 irradiation test and the effect of various types of radiation (alpha, beta, gamma, and ionizing) and transmutation effects on the waste form. Considered actinide-doping the waste form. Among the important property changes caused by irradiation are those that

lead to leachability.

Waste Form:

Glass and ceramic/fuel Doping of ²³⁸Pu or ²⁴⁴Cm

Waste Type:

Waste Loading:

Initial

Development Status:

Compressive Strength: Thermal Stability:

Density change < 1% for saturation doses. Damage slight.

Radiation Stability: Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Alpha decay is probably the principal contributor to structural damage. MCC-6 considers approximately 3 x 10¹⁸ alpha decays/cc while HLW would only receive 1017 to 5 x 1017. Should consider dose equivalent to that received in one million years. Density changes for glass waste generally do not exceed 1%. Studies reported that structural changes induced by alpha decay do not adversely affect leach rates in glass waste forms. Leaching increased less than 2 times. Studies indicated that radiolysis can produce nitric acid in air-saturated water. This can affect

leaching. Ceramics showed larger volume changes.

TITLE:

Comparative Assessment of TRU Waste Forms and Processes, Vol.

I: Waste Form and Process Evaluations

AUTHOR:

W.A. Ross; R.O. Lokken; R.P. May; F.P. Roberts; C.L.

Timmerman; R.L. Treat; J.H. Westik

PUBLICATION:

US DOE Report PNL-4428, Vol. I

DATE:

September 1, 1982

ORGANIZATION:

Pacific Northwest Laboratory, Richland Washington

SUMMARY:

This study provides an assessment of seven waste forms and eight processes for immobilizing TRU wastes. Includes preparation and characterization of TRU-containing waste forms. Waste forms were cast cement, cold pressed cement, FUETAP cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and pressed and sintered ceramic. Properties, processes, and costs were compared.

Waste Form:

Eight types noted in summary

Waste Type:

TRU waste, 3 parts sludge, 1 part incinerator ash

Waste Loading:

>20 %

Development Status:

Compressive Strength:

Cement 3-8; glass 35-40; ceramic 48-60 MPa. MCC-11

(Tensile)

Thermal Stability:

Glass and ceramic-no weight loss to 800°C; cement-substantial

loss

Radiation Stability:

Cumulative radiation doses for time >105 yrs not significant

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability: Compositional Flexibility:

Gas Generation:

Cements produce gases due to radiation or heat

RCRA Compliance:

--

NO. 59 (Cont.)

Conclusions:

Cement had the lowest release of Pu, but was otherwise less durable than the glasses or ceramics. Leachate pH appeared to play an important role in the releases from the waste forms. Differences in waste forms are not more than two orders of magnitude. All seven waste forms may exceed proposed performance objectives. The maximum annual release of radionuclides should be less than 10⁻⁵ of the maximum inventory of that radionuclide. The cement waste forms had the lowest strength, followed by glass, then ceramics. Overall rating: ceramics, glasses, cements. All would be acceptable for WIPP or NRC requirements. Also evaluated processes.

TITLE: Environmental Assessment, Waste Form Selection for SRP High-

Level Waste

AUTHOR: Savannah River Laboratory

PUBLICATION: U.S. Department of Energy, DOE/EA-0179

DATE: July 1, 1982

ORGANIZATION: Department of Energy

Discusses physical characteristics of borosilicate glass as the waste SUMMARY:

form for high-level radioactive waste and compares borosilicate

glass with crystalline ceramic.

Waste Form: Glass, borosilicate

Waste Type: High level radioactive defense waste

Waste Loading: 28 wt% Development Status: Mature

Compressive Strength: 550 MPa. Fraction of fines from 10 J/cm³ - 0.14 to 0.18% <

10_µ

Thermal Stability Will crack on cooling from melt, may increase leach by 5 times

Radiation Stability: Performance not affected by self-irradiation for periods of 106

yrs

Biological Stability: Inert

RCRA Compliance:

Leach Resistance: Steady state at 25 to 55°C, 10^{-3} to 10^{-4} g/m²/day

Immersion Stability: Generally forms protective layer Free Liquids:

No free liquids. Chemical Durability:

Little effect between pH 5 to 9 Compositional Flexibility: Stable/inert

Gas Generation: Should be maintained in structure of glass

Initial leach, 10⁻¹ to 10⁻³ g/m²/day, steady state 10⁻³ to 10⁻⁴. Conclusions:

Discusses influence of temperature, pH, water, etc. Discusses impact resistance. Compares borosilicate glass to Synroc-D

NO. 61

TITLE:

Solubilities of Nickel and Cobalt Chalcogenides in a Nuclear Waste

Glass

AUTHOR:

H.D. Schreiber; E.D. Sisk; C.W. Schreiber; J.K. Burns

PUBLICATION:

Ceramic Transactions, Vol.23, Nuclear Waste Management, pp.

213-222

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

Measured the solubilities of NiS, NiSe, NiTe, CoS, and CoSe in

SRL Frit 131 as a function of temperature and oxygen fugacity.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense waste

Waste Loading:

Nominal 28 wt%

Development Status:

Mature

Compressive Strength:

5.....

Thermal Stability:

--

Radiation Stability:

Biological Stability: Leach Resistance:

--

Immersion Stability:

__

Free Liquids:

Chemical Durability:

--

Compositional Flexibility:

Nickel sulfide and nickel selenide are both relatively

insoluble in the glass

Gas Generation:

Conclusions:

--

RCRA Compliance:

The solubilities decreased with decreasing oxygen fugacity.

In general, Ni₃S₂ is the least soluble of the compounds in

SRL-131.

TITLE:

DWPF Batch I, Waste Glass Investigations

AUTHOR:

R.F. Schumacher

PUBLICATION:

Ceramic Transactions, Vol. 23, Nuclear Waste Management,

G.G.Wicks, ed., pp. 453-463

DATE:

May 1, 1991

ORGANIZATION:

American Ceramic Society

SUMMARY:

Discusses the effects of variability in the DWPF feed mixture on

glass properties, including solubility of sludge and copper-nickel

precipitation.

Waste Form:

Glass, borosilicate

Waste Type:

High level radioactive defense waste

Waste Loading:

10 to 40 wt%

Development Status:

Mature

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability: Biological Stability:

--

Leach Resistance: Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

Compositional Flexibility:

Limits on chrome, nickel, and copper

Gas Generation:

--

RCRA Compliance: Conclusions:

--

Limited to 30 wt% sludge, copper limited to about 0.30 wt%.

NO. 63

TITLE:

In Situ Vitrification of Buried Waste Sites

AUTHOR:

J.W. Shade; L.E. Thompson; C.H. Kindle

PUBLICATION:

Ceramic Transactions, Vol. 23, Nuclear Waste Management, G.G.

Wicks, ed., American Ceramic Society, Westerville, OH, pp. 633-

640

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society

SUMMARY:

Discusses ISV of buried wastes. Stabilizes or volatilizes organic

chemicals, stabilizes toxic elements.

Waste Form:

Glass, ISV

Waste Type:

Mixed waste

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Testing to date indicates that ISV is a promising remediation technology for application to buried wastes. It is capable of

processing a wide variety of waste types. The resulting product has been shown to meet EPA requirements.

TITLE:

Secondary Lead Smelter Slags: Minimizing Lead Release Levels

AUTHOR:

E.S. Shenkler; S. Graham; V.A. Greenhut

PUBLICATION:

Ceramic Transactions, Vol. 23, Nuclear Waste Management IV,

G.G. Wicks, ed., American Ceramics Society, Westerville, Ohio,

pg. 75-84

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society

SUMMARY:

Secondary lead slags and mattes were formulated into glass compositions in order to stabilize the material with regard to the

lead release levels as established by the EPA TCLP.

Waste Form:

Glass

Waste Type:

Lead waste

Waste Loading:

--

Development Status:

--

Compressive Strength:

--

Thermal Stability:

Radiation Stability: Biological Stability:

--

Leach Resistance:

Approximately 50 times improvement

Immersion Stability:

ıty:

Free Liquids:

--

Chemical Durability:

Compositional Flexibility:

--

Gas Generation:

__

RCRA Compliance:

--

Conclusions:

An approximate 50 times improvement in leach resistance is

possible. Varied percentage of network former.

TITLE:

Reference Commercial High-Level Waste Glass and Canister

Definition

AUTHOR:

S.C. Slate; W.A. Ross; W.L. Partain

PUBLICATION:

USDOE, PNL-3838

DATE:

September 1, 1981

ORGANIZATION:

Pacific Northwest Laboratory

SUMMARY:

Presents technical data and performance characteristics of a highlevel waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal of a waste product which would be produced in a commercial nuclearfuel reprocessing plant.

Waste Form:

Glass, borosilicate

Waste Type:

High level radioactive commercial waste/intermediate level

liquid

Waste Loading:

31 wt%

Development Status:

Initial

Compressive Strength:

Estimated 37 to 51 MPa diametric compression; also

discusses impact tests

Thermal Stability:

Below 500°C, diffusion processes very slow

Radiation Stability:

Radiation effects discounted; no change in leach 3 x 10¹⁷

d/cc

Biological Stability:

--

Leach Resistance:

 2×10^{-6} to 45×10^{-6} g/cm² day Cs release (simulated and

radioactive)

Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

. --

Compositional Flexibility: Gas Generation:

Very slow diffusion release of helium

Gas Generation.

RCRA Compliance:

-

Conclusions:

Laboratory research has indicated the practicality of reprocessing fuel for the efficient recovery of uranium and plutonium, along with a minimal addition of non-radioactive chemicals. The HLW composition is based on the Allied

General Nuclear Services plant.

TITLE: Mineralogical, Textural and Compositional Data on the Alteration

of Basaltic Glass From Kilauea, Hawaii to 300°C: Insights to the

Corrosion of a Borosilicate Glass

AUTHOR: D.K. Smith

PUBLICATION: Material Research Society Symposium Proceedings, 212, pp. 115-

121

DATE: 1991

ORGANIZATION: Lawrence Livermore National Laboratory

SUMMARY: Analysis of solids in palagnite layer of naturally altered basalt

glass shows that smectite, chlorites, and actinolite form. Adopts dissolution/reprecipitation mechanism to describe banding of

phases in layer.

Waste Form: Basalt glass as analogue of borosilicate glass (SRL 165)

Waste Type:

Waste Loading: --Development Status: ---

Compressive Strength: --

Thermal Stability: --

Radiation Stability: --Biological Stability: ---

Leach Resistance: -Immersion Stability: --

Free Liquids:

Chemical Durability: --Compositional Flexibility: ---

Gas Generation:

RCRA Compliance:

Conclusions:

Discusses secondary minerals found in palagonite layer.

Critically compares basalt as analogue for HLW.

TITLE:

Travel Report - Summary of Talk given at the SAIC OTD

Thermal Working Meeting in Salt Lake City

AUTHOR:

M. E. Smith

PUBLICATION:

Savannah River Lab, WSRC-RP-91-1092

DATE:

October 30, 1991

ORGANIZATION:

Westinghouse Savannah River Co, Aiken, SC

SUMMARY:

Comparison of total costs of two waste forms, cement and glass, for the treatment of consolidated incinerator facility blow down. Vitrification can be as cost effective as cementation when the long term maintenance costs of the waste form are considered.

Waste Form:

Glass, cementitious

Waste Type:

Incinerator blow-down

Waste Loading:

--

Development Status:

Conceptual

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance:

--

Immersion Stability:

Free Liquids:

--

Chemical Durability:
Compositional Flexibility:

--

Gas Generation:

--

RCRA Compliance:

--

Conclusions:

The treatment of low level waste by mixing with cement has, in the past, been considered more cost effective than the vitrification process. Vitrification can be as cost effective as

cementation for this particular case.

TITLE:

Impact Testing of Vitreous Simulated High-Level Waste in

Canisters

AUTHOR:

T.H. Smith; W.A. Ross

PUBLICATION:

USDOE BNWL-1903

DATE:

May 1, 1975

ORGANIZATION:

Battelle, Pacific Northwest Laboratories

SUMMARY:

A portion of a risk analysis for accidental release of radioisotopes. Investigated the impact breakup characteristics of encapsulated waste glass. Tests were of a simulated waste glass in cylindrical

304L stainless steel canisters. Ten cylinders impacted at

velocities of 25 and 44 fps. Twenty two smaller specimens were tested at velocities of 25, 44, 66 and 117 fps. Tested some of

small canisters at 800°F.

Waste Form:

--

Waste Type:

Waste Loading:

--

Development Status: Compressive Strength:

--

Thermal Stability:
Radiation Stability:

--

Biological Stability:

--

Leach Resistance:

~-

Immersion Stability:

--

Free Liquids:

--

Chemical Durability: Compositional Flexibility:

-ty: --

Gas Generation:

RCRA Compliance:

--

Conclusions:

Canisters breached only at the two highest velocities 66 and

117 fps. Breaches were all very small cracks. The inventory fraction smaller than 10 micron typically ranged from 10⁻⁸ to

10⁻⁴ for the 80 mph impact. The surface area typically increased by only a few percent of the initial surface area, but by a factor of 40 for the 117 fps impact (80 mph).

TITLE:

Optimization of Glass Composition for the Vitrification of

Nuclear Waste

AUTHOR:

P.D. Soper; D.D. Walker; M.J. Plodinec; G.J. Roberts; L.F.

Lightner

PUBLICATION: -

American Ceramic Society Bulletin, Vol. 62, No. 9, pp. 1013-

1028, DP-MS-81-108

DATE:

September 1, 1983

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

Development of the early DWPF sludge only glass frits, (Types 131-166) Twenty-five trials leading to optimization of Frit 165, basis for selection of composition. A statistical approach to glass

development.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated high level radioactive defense

Waste Loading:

Nominal 28 wt%

Development Status:

Early

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

0.125 to 0.586 g/m²/day

Leach Resistance: Immersion Stability:

Free Liquids:

None

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Leach Test: Static 90°C--40/+60 mesh, pH buffer solution,

4,7,10

S.A. 0.007	Frit 131	Frit 165
$(g/m^2/day)$		
pH 4.00	0.586	0.165
pH 7.00	0.161	0.125
pH 10.00	0.458	0.477

TITLE:

An Experimental Comparison of Alternative Solid Forms for Savannah

River High-Level Wastes

AUTHOR:

J.A. Stone

PUBLICATION:

Scientific Basis for Nuclear Waste Management, Annual Meeting of the

Material Research Society, DP-MS-81-102

DATE:

November 16, 1981

ORGANIZATION:

Material Research Society, 4th International Symposium, Scientific Basis

for Nuclear Waste Management

SUMMARY:

Compares leachability of alternative waste forms: borosilicate glass.

high silica glass, tailored ceramic, and Synroc-D ceramic.

Uranium SR<TC<BS<HS

Cesium HS<BS<SR

Waste Form:

Borosilicate and high silica glass, tailored and Synroc-D ceramic

Waste Type: Waste Loading:

High level radioactive defense waste Glasses ~28 wt%; ceramics ~59 wt%

Development Status:

· C.

Compressive Strength:

Thermal Stability: Radiation Stability:

Irradiated samples

Biological Stability:

biological Stability.

madrated samples

Leach Resistance:

Immersion Stability:

--

Free Liquids:

-

Chemical Durability:

Compositional Flexibility: -

Gas Generation:

y: --

RCRA Compliance:

--

Conclusions:

No single waste form had a clear advantage for leach resistance. Ceramic retained U best, while high silica retained Cs best. Risk

MCC-1 28 day @ 90°C, deionized water, silicate water, brine

analyses indicated that all the forms tested should be satisfactory.

TITLE: Comparison of Properties of Borosilicate Glass and Crystalline Ceramic

Forms for Immobilization of Savannah River Plant Waste

AUTHOR: J.A. Stone; J.S. Allender; T.H. Gould

PUBLICATION: USDOE Savannah River Laboratory, DP-1627

DATE: April 1, 1982

ORGANIZATION:

SUMMARY: Properties of borosilicate glass are compared to the crystalline ceramic

Synroc-D for immobilization of SRP defense high-level waste.

Waste Form: Glass, borosilicate

Waste Type: Simulated high level radioactive defense waste

E.I. DuPont, SRL, Aiken, SC

Waste Loading: Nominal 28 wt% (Synroc-D ~50%)

Development Status: Early evaluation

Compressive Strength: 550 MPa (Synroc-D 280 MPa)

Thermal Stability: Both forms may fracture on cooling; little change < 500°C

Radiation Stability: Little change due to self-irradiation for periods of 1 million yrs. (m)

Biological Stability: --

Leach Resistance: MCC-1, similar to Synroc-D, g/m²/day; Cs~1,Sr<10⁻³,U~0.10

Immersion Stability: -Free Liquids: None

Chemical Durability: -Compositional Flexibility: Change in glass structure due to irradiation is slight

Compositional Flexibility: Change in glass structure due to irradiation is slight
Gas Generation: Little release of helium

RCRA Compliance: --

Conclusions:

B.S. Glass Synroc-D

Waste Loading 28 wt% -50 wt%

Leach Rate g/m²/day Cs~1 ~1

Sr <.001 ~0.1

U -0.1 ~0.0001

TITLE:

Chemical Engineering Problems of Radioactive Waste Fixation by

Vitrification

AUTHOR:

R.F. Taylor

PUBLICATION:

Chemical Engineering Science, Vol. 40, No.4, pp. 541-569

DATE:

1985

ORGANIZATION:

U.K. Atomic Energy Authority

SUMMARY:

A review of the chemical engineering problems faced in the vitrification of high-level radioactive liquid wastes resulting from the reprocessing of nuclear fuel. A general chemical engineering view of waste vitrification.

Waste Form:

Glass and glass-ceramic

Waste Type:

High level radioactive liquid waste

Waste Loading:

--

Development Status:

--

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

Self-irradiation does not reduce mechanical properties.

Biological Stability:

-

Leach Resistance:

 $< 1 \text{ g/m}^2/\text{day}$

Immersion Stability:

--

Free Liquids:

-

Chemical Durability:

--

Compositional Flexibility:

Volatility of Ru and Cs during melting

Gas Generation:

RCRA Compliance:

--

Conclusions:

Detailed discussion of volatility of Ru and Cs problems. Describes in-can melting, pot melting, continuous metallic melters, and joule heated melters. Concluded that vitrification processes have developed to the stage where a route may reasonably be chosen. Discussed the problems which are central to the vitrification

process.

NO. 73 **GLASS SUMMARIES**

The Long-Term Corrosion and Modelling of Two Simulated Belgian TITLE:

Reference High-Level Waste Glasses

P. Van Iseghem; B. Grambow **AUTHOR:**

Material Research Society Symposium Proceedings, 112, pp. 631-639. PUBLICATION:

DATE: January 1, 1988

SCK/CEN Belgium and H-MI, Berlin **ORGANIZATION:**

Comparison of leach test results to computer modelling for two glass SUMMARY:

> compositions shows effects of SAN to reaccelerate corrosion at long times probably due to formation of secondary phases, such as analcime.

Waste Form: Borosilicate glass

Reprocessed high level waste Waste Type:

Waste Loading: None

Intermediate **Development Status:**

Compressive Strength: Thermal Stability:

Radiation Stability: Biological Stability:

Long-term rates around 5 x 10^{-3} and 3 x 10^{-3} g/m²/d prior to Leach Resistance:

reacceleration

Immersion Stability: Free Liquids:

Chemical Durability: Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

TITLE:

Key Parameters of Glass Dissolution in Integrated Systems

AUTHOR:

E.Y. Vernaz; N. Gordon

PUBLICATION:

Material Research Society Symposium Proceedings, 212, pp. 19-30

DATE:

January 1, 1991

ORGANIZATION:

CEA/CEN Valrho, France

SUMMARY:

Summarizes test results of RFTF glass under potential French storage

conditions

Waste Form:

Borosilicate glass

Waste Type:

Simulated

Waste Loading:

None

Development Status: Compressive Strength: Advanced

Thermal Stability:

Radiation Stability:

Glasses doped with Am showed no difference in leachability

Biological Stability:

Leach Resistance:

Long term (3 yr) leach rate= 2×10^{-3} g/m²/day.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Presence of clay leads to higher long-term leach rates, bentonite has

no effect on leaching.

TITLE: Chemical Approach to Glass

M.B. Volf

PUBLICATION: Book, Glass Science and Technology, 7 Elsevier, New York

DATE: January 1, 1984

ORGANIZATION:

AUTHOR:

SUMMARY: Discusses the influence of the various elements present in glass. The

book is generally limited to silicate glasses, which are most widely used in commercial glassmaking. Borate, phosphate, and germanate glasses

are dealt with only briefly.

Waste Form: Glass general

Waste Type: --

Waste Loading: --

Development Status: --

Compressive Strength: --

Thermal Stability: --

Radiation Stability: --

Biological Stability: --

Leach Resistance: --

Immersion Stability: --

Free Liquids:

Chemical Durability: --

Compositional Flexibility: --

Gas Generation: --

Gas Generation.

RCRA Compliance:

Conclusions: Used to discuss solubility of chlorides, noble metals, etc., in glass.

NO. 76

TITLE:

Materials Characterization Center, Second Workshop on Irradiation

Effects In Nuclear Waste Forms, Summary Report

AUTHOR:

W.J. Weber; R.P. Turcotte

PUBLICATION:

USDOE, PNL-4121

DATE:

January 1, 1982

ORGANIZATION:

Pacific Northwest Laboratory, Battelle

SUMMARY:

Discusses results of the second workshop on irradiation effects in nuclear

waste forms. See Ref. No. 58.

Waste Form:

-

Waste Type:

--

Waste Loading:

--

Development Status: Compressive Strength:

~~

Thermal Stability:

Radiation Stability:

--

Biological Stability:

--

Leach Resistance: Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:
Gas Generation:

y: --

RCRA Compliance:

--

Conclusions:

Ion or neutron irradiations are not substitutes for the actinide doping technique, as described by the MCC-6. Ion or neutron irradiations may be useful for screening tests or more fundamental studies.

NO. 77

TITLE:

Nuclear Waste Glasses

AUTHOR:

G.G. Wicks

PUBLICATION:

Treatise on Materials Science and Technology, Vol. 26, Glass IV, pp. 57-

118

DATE:

January 1, 1985

ORGANIZATION:

Savannah River Laboratory

SUMMARY:

A review of vitrification and storage of high level glass waste forms.

Waste Form:

Glass, borosilicate

Waste Type:

High-level radioactive defense wastes

Waste Loading:

5 to 40 wt%

Development Status:

Compressive Strength:

Thermal Stability:

Increase in glass surface area was less than 10 times with increased

cooling rate. The effect of radiation on glass properties is small.

Radiation Stability:

Biological Stability:

Leach Resistance:

Durability improves with increased waste loading

Immersion Stability: Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Generation of helium in closed canister is about 80 psi in 106 years.

Describes DWPF, West Valley, French AVM, and ceramic melters.

Describes the performance of the waste glass form. Briefly reviews some of the facets of glass leaching. Effects of waste loading, temperature, time, and pH on leaching are considered. Mechanical

properties, thermal stability, and radiation effects are considered.

NO. 78

TITLE:

High Level Radioactive Waste - Doing Something About it

AUTHOR:

G.G. Wicks; D.F. Bickford

PUBLICATION:

DuPont Savannah River Laboratory DP-1777

DATE:

March 1, 1989

ORGANIZATION:

Savannah River Laboratory

SUMMARY:

A history of the high level waste vitrification program at Savannah River.

Includes the involvement of E.I. DuPont Inc.

Waste Form:

Glass, borosilicate

Waste Type:

High level radioactive defense waste

Waste Loading:

Development Status:

Compressive Strength: Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Discusses background of Savannah River and development of the

DWPF.

TITLE: Long-Term Leaching Behavior of Simulated Savannah River Plant Waste

Glass

AUTHOR: G.G. Wicks; J.A. Stone; G.T. Chandler; S. Williams

PUBLICATION: Savannah River Lab, DP-1728

DATE: August 1, 1986

ORGANIZATION:

SUMMARY:

Long-term leaching data were obtained for SRP 131 type waste glasses. Experiments were conducted for time periods of up to 4 years using

MCC-1 type procedures.

E.I. DuPont, Aiken, SC

Waste Form: Glass, borosilicate

Waste Type: Simulated high level radioactive defense waste

Waste Loading: 35 wt%

Development Status: Intermediate glasses

Compressive Strength: --

Thermal Stability: -Radiation Stability: -Biological Stability: --

Leach Resistance: < 1 g/m²/day

Immersion Stability: --

Free Liquids: -Chemical Durability: -Compositional Flexibility: --

Conclusions: The data obtained represent a worst case for release of radionuclides

from glass matrices. Observed leach rates of less than 1 g/m²/d after about 2 to 3 months and lower at longer times. Measured species, such as Sr, after leaching for 3.5 years at 90°C are about 0.006

g/m²/d and for sodium are about 0.1 g/m²/d.

NO. 80

TITLE:

Analyses of SRS Waste Glass Buried in Granite in Sweden and Salt in

the United States

AUTHOR:

J.P. Williams; G.G. Wicks; D.E. Clark; A.R. Lodding

PUBLICATION:

Ceramic Transactions, Vol. 23, Nuclear Waste Management IV, G.G.

Wicks, et al., eds., pp. 663-674

DATE:

April 29, 1991

ORGANIZATION:

American Ceramic Society, Westerville, Ohio

SUMMARY:

The chemical durability of SRL waste glass compositions buried for up to two years in granite at Stipa and WIPP was excellent and the leach rate decreased with time. These glasses were characterized by the formation of two main surface layers. Quantitative analyses of the glass interaction zone showed that less than one micron of the glass had interacted with

the environment after testing at 90°C for 2 years.

Waste Form:

Glass, borosilicate

Waste Type:

Simulated, high-level radioactive waste

Waste Loading:

28 wt%

Development Status: Compressive Strength:

Advanced

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

The chemical durability of SRL waste glass compositions buried for

up to two years in granite at Stripa easily passed the leaching

requirements and also improved with increasing time.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

One micron interaction after 2 years in accelerated conditions at

90°C in salt and granite repositories.

HYDRAULIC CEMENT SUMMARIES

HYDRAULIC CEMENT SUMMARIES INDEX

NO. 1	AUTHOR: TITLE:	Boehmer, A.M.; Larsen, M.M. Solidification of Hazardous and Mixed Radioactive Wast	
	PUBLICATION: DATE:	at the Idaho National Engineering Laboratory Waste Management '86 3/2-6/86	
NO. 2	AUTHOR: TITLE:	Bostik, W. D., et al. Grout-Based Waste Forms for the Solidification of Anion	
	PUBLICATION: DATE:	Exchange Resins Ceramic Transactions, Vol. 23 1991	
NO. 3	AUTHOR: TITLE:	Cohen, S.; Crouzet, P.	
	PUBLICATION:	Syncrete (a highly efficient polymer cement embedding matrix for waste processing)	
	DATE:	Waste Management '86 3/2-4/86	
NO. 4	AUTHOR: TITLE:	Cowgill, M.G.	
	PUBLICATION:	A Comparison of Solidification Media for the Stabilization of Low-Level Radioactive Wastes	
	DATE:	BNL-52304 10/91	
NO. 5	AUTHOR: TITLE:	Fischer, D.F.; Johnson, T.R.	
	PUBLICATION:	Immobilization of IFR Salt Wastes in Mortar Spectrum '88	
	DATE:	9/11-15/88	
NO. 6	AUTHOR: TITLE:	Fischer, D.F.; et al.	
	HILE.	Laboratory Evaluations of Mortars for Immobilizing Waste IFR Salt	
	PUBLICATION:	ANL-IFR-120	
	DATE:	9/89	
NO. 7	AUTHOR:	Funk, H.J.; Pfeiffer, R.	
	TITLE:	Solidification by Cementation at Liquid Radioactive Primary Waste Mixes	
	PUBLICATION:	Waste Management '90	
	DATE:	2/25-3/1/90	

NO. 8 AUTHOR: Gay, R. L.; Granther, L.F. High Strength Cementized Dried Resins TITLE: Waste Management '88 PUBLICATION: 3/2-6/86 DATE: NO. 9 Gilliam, T.M.; Spence, R.D.; Evans-Brown, B.S.; Morgan, AUTHOR: I.L.; Shoemaker, S.L.; Bostick, W.D. Performance Testing of Blast Furnace Slag for TITLE: Immobilization of Technetium in Grout Spectrum '88 PUBLICATION: 9/11-15/88 DATE: Greenhalgh, W.O. NO. 10 AUTHOR: TITLE: Disposal Concepts for Waste in Underground Single-Shell Storage Tanks at the Hanford Site WHC-SA-1344-FP - Presented at Waste Management '92 PUBLICATION: at Tucson, AZ DATE: 1/92 NO. 11 **AUTHOR:** Greenhalgh, W.O. The Immobilization of Organic Liquid Wastes TITLE: PUBLICATION: Waste Management '86 DATE: 3/2-6/86 NO. 12 AUTHOR: Greenhalgh, W.O.; Cash, R. J. High-Impact Concrete for Fill in U. S. Department of TITLE: Transportation Type Shipping Containers Waste Management '90, Tucson, AZ PUBLICATION: 2/25-3/1/90 DATE: NO. 13 Greenhalgh, W.O.; Cash, R.J.; Christie, M.A. **AUTHOR:** TRU Waste Immobilized in Grout TITLE: PUBLICATION: Waste Management '88, Vol. 2 2/28-3/3/88 DATE: NO. 15 **AUTHOR:** Howard, C.G. Advanced Cementation Concepts - Final Report TITLE: **PUBLICATION:** DATE: 10/89

NO. 16 AUTHOR: Hoyle, S.; Grutzeck, M.W. TITLE: Effects of Phase Composition on the Cesium Leachability of Cement-Based Waste Forms PUBLICATION: DATE: 1986 NO. 17 AUTHOR: Jaouen, C.; Vigreux, B. Cement Solidification of Spent Ion Exchange Resins TITLE: Produced by the Nuclear Industry PUBLICATION: DATE: 9/88 NO. 18 AUTHOR: Kalb, P.D.; Colombo, P. Full Scale Leaching of Commercial Reactor Waste Forms TITLE: PUBLICATION: BNL 35561 DATE: 9/84 NO. 19 AUTHOR: Kalb, P.D.; Heiser, J.H. III; Colombo, P. TITLE: Encapsulation of Mixed Radioactive and Hazardous Waste Contaminated Incinerator Ash in Modified Sulfur Cement PUBLICATION: BNL-45163 DATE: 1990 NO. 20 AUTHOR: Langton, C.A. TITLE: Metal Toxicity Evaluation of Savannah River Plant Saltstone Comparison of EP and TCLP Test Results PUBLICATION: Waste Management '88, Vol. 1 DATE: 2/28-3/3/88 NO. 21 AUTHOR: Langton, C.A.; Dukes, M.D.; Simmons, R.V. TITLE: Cement-Based Waste Forms for Disposal of Savannah River Plant Low-Level Radioactive Salt Waste PUBLICATION: DP-MS-83-71 DATE: 11/14-17/83 NO. 22 AUTHOR: Lerch, R. E. TITLE: Division of Waste Management, Production and Reprocessing Programs Report for January-June 1977 PUBLICATION: HEDL-TME-77-74 DATE: 7/77

NO. 23 **AUTHOR:** Lerch, R. E. TITLE: Division of Waste Management, Production and Reprocessing Programs Report for January-December 1976 **PUBLICATION:** HDL-TME-77-40 DATE: 1977 NO. 24 **AUTHOR:** McConnell, J.W.; Neilson, R.M.; Rogers, R.D. Testing Waste Forms Containing High Radionuclide TITLE: Loadings PUBLICATION: Waste Management '86 DATE: 3/2-6/86 NO. 25 AUTHOR: McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N. TITLE: Leach Studies on Cement-Solidified Ion Exchange Resins From Decontamination Processes at Operating Nuclear **Power Stations** PUBLICATION: EGG-M-92090 DATE: NO. 26 **AUTHOR:** Rosenstiel, T.L.; Bodett, S.P.; Lange, R.G. TITLE: **Envirostone Gypsum Cement PUBLICATION: Topical Report** DATE: 1984 NO. 27 **AUTHOR:** Rzyski, B.M.; Suarez, A.A. TITLE: Setting Temperature Evolution of Nitrate Radwaste Immobilized in Ordinary Portland Cement **PUBLICATION:** DATE: 9/88 NO. 28 AUTHOR: Sams, T.L.; McDaniel, E.W. TITLE: Development of a Cement-Based Grout for Immobilization of a Low-Level Waste Stream Containing Sodium Sulfate PUBLICATION: Waste Management '88, Vol. 1 DATE: 2/28-3/3/88

NO. 29	AUTHOR: TITLE: PUBLICATION: DATE:	Sauda, K.; Todo, F.; Nakashima, T.; Kagawa, T.; Kuribayashi, H. Advanced Cement-Solidification Process for Spent Ion- Exchange Resins Waste Management '90 2/25-3/1/90
NO. 30	AUTHOR: TITLE: PUBLICATION: DATE:	Schuler, T.F.; Charlesworth, D.L. Solidification of Radioactive Incinerator Ash Waste Management '86 3/2-6/86
NO. 31	AUTHOR: TITLE: PUBLICATION: DATE:	Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L. The Effect of Cure Conditions on the Stability of Cement Waste Forms After Immersion in Water Waste Management '88 2/25-3/190
NO. 32	AUTHOR: TITLE: PUBLICATION: DATE:	Stone, J.A.; d'Entremont, P.D. Measurement and Control of Cement Set Times in Waste Solidification DP-1404 9/76
NO. 33	AUTHOR: TITLE: PUBLICATION: DATE:	Tallent, O.K.; McDaniel, E.W.; Delcul, G.D.; Dodson, K.E.; Trotter, D.R. Immobilization of Technetium and Nitrate in Cement-Based Materials Materials Research Society Symposium Proceedings, Vol. 112, 1988 1988
NO. 34	AUTHOR: TITLE: PUBLICATION: DATE:	Taouen, C.; Vigreux, B. Cement Solidification of Spent Ion Exchange Resins Produced by the Nuclear Industry Spectrum '88 9/11-15/88
NO. 35	AUTHOR: TITLE: PUBLICATION: DATE:	Unger, S.L.; Telles, R.W. Surface Encapsulation Process for Managing Low-Level Radioactive Wastes

NO. 36 AUTHOR: United States - Energy Research & Development Administration TITLE: Alternatives for Managing wastes from Reactors and Post-Fission Operations in the LWR Fuel Cycle - Vol. 2 ERDA-76-43 PUBLICATION: 5/76 DATE: NO. 37 Veazey, G.W. **AUTHOR:** TITLE: The Cement Solidification Systems at LANL (1) **PUBLICATION:** 12/90 DATE: NO. 38 AUTHOR: Veazey, G.W. TITLE: The Cement Solidification Systems at LANL (2) **PUBLICATION:** DATE: 12/90 NO. 39 **AUTHOR:** Wallace, R.M.; Hull, H.L.; Bradley, R.F. TITLE: Solid Forms for Savannah River Plant High-Level Waste PUBLICATION: DP-1335 DATE: 12/73 NO. 40 **AUTHOR:** Weitzman, L.; Hamel, L.E. Evaluation of Solidification/Stabilization as a Best TITLE: Demonstrated Available Technology for Contaminated Soils PUBLICATION: PB89-169908 DATE: 3/89 NO. 41 AUTHOR: Whilhite, E.L.; Hooker, R.L.; Sturm, H.F.; Langton, C.A.; Occpihti, E.S. Saltstone Processing Startup at the Savannah River Plant TITLE: PUBLICATION: Spectrum '88 DATE: 9/11-15/88 NO. 42 AUTHOR: Van Beek, J.E.; Wodrich, D.D. TITLE: Grout Disposal System for Hanford Site Mixed Waste Waste Management '90 PUBLICATION: DATE: March 1990

NO. 43 **AUTHOR:** Cooley, C.R.; et al. Alternatives for Managing Wastes from Reactors and TITLE: Post-Fission Operations in the LWR Fuel Cycle PUBLICATION: ERDA-76-42, Vol. 2 of 5 DATE: May 1976 NO. 44 AUTHOR: Place, B.G. TITLE: Treatment Technology for Transuranic Waste Streams-Cementation, Vitrification, and Incineration Testing for the treatment of Spent Ion Exchange Media PUBLICATION: WHC-EP-0462 DATE: April 1992 NO. 45 AUTHOR: Ganser, B.L. TITLE: Cementation--A Solution for Final Disposal? PUBLICATION: Waste Management '90 DATE: March 1990 NO. 46 AUTHOR: McConnell, Jr., J. W.; Rogers, R.D. TITLE: Results of Field Testing of Waste Forms Using Lysimeters PUBLICATION: Waste Management '90 DATE: February 1990 NO. 47 AUTHOR: Compiled by Lerch, R.E. TITLE: Division of Waste Management, Production and Reprocessing Programs Report for January-June 1977 PUBLICATION: **HEDL-TME 77-74**

July 1977

DATE:

NO. 1

TITLE:

Solidification of Hazardous and Mixed Radioactive Waste at the

Idaho National Engineering Laboratory

AUTHOR:

A. M. Boehmer; M. M. Larsen

PUBLICATION:

Waste Management '86

DATE:

March 2-6, 1986

ORGANIZATION:

Idaho National Engineering Laboratory (INEL)

SUMMARY:

Testing shows toxic waste materials can be solidified using

cement, cement-silicate, or Envirostone binders.

Waste Form:

Cement, cement-silicate, Envirostone

Waste Type:

Mixed waste

Waste Loading:

Up to 12,500 ppm potassium chromate can be immobilized

with cement silicate

Development Status:

--

Compressive Strength:

--

Thermal Stability:

. --

Radiation Stability:

--

Biological Stability:

Leach Resistance:

--

Immersion Stability:

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

: --

Gas Generation: RCRA Compliance:

Did testing to show toxic characteristics were done away

with

Conclusions:

Has listed treatment for 54 types of mixed wastes in table

form.

Grout-Based Waste Forms for the Solidification of Anion

Exchange Resins

AUTHOR:

W.D. Bostick; et al.

PUBLICATION:

Ceramic Transactions, Vol. 23

DATE:

1991

ORGANIZATION:

Oak Ridge National Laboratory

SUMMARY:

Results on the encapsulation of beaded anion exchange resins in

grout formulations are presented.

Waste Form:

Type I-II portland cement, slag, and additives

Waste Type:

Dowex SRB-OH resin beads in nitrate form containing 99Tc

Waste Loading:

40 vol% of waste form

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Leachability index for 99Tc was 14 and for nitrate ion was

>9.5

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

All samples passed

The best binder composition was 75% blast furnace slag, 10

wt% Type I-II cement and 15 wt% attapulgite clay. This formula had a high leachability index for nitrate and pertechnetate ions, the lowest weight loss during wetting/drying cycle testing and an acceptable

freezing/thawing behavior.

TITLE:

Syncrete (A Highly Efficient Polymer Cement Embedding Matrix

for Waste Processing)

AUTHOR:

S. Cohen; P. Crouzet

PUBLICATION:

Waste Management '86

DATE:

March 2-4, 1986

ORGANIZATION:

STMI (France)

SUMMARY:

Report describes characteristics and test results of Syncrete, a

polymer-cement concrete.

Waste Form:

Hydraulic concrete plus a thermosetting polymer mixture

Waste Type:

--

Waste Loading:

60% for resins, 30 to 35% for sludges and concentrates

Development Status:

--

Compressive Strength:

>90 mPa

Thermal Stability:

12,000 frost/thaw cycles over 3 years resulted in weight loss

of only 0.3 %.

Radiation Stability:

No apparent damage from 108 rad exposures.

Biological Stability:

logical Stability.

Leach Resistance:

•••

Immersion Stability:

Stable during water immersion to 142 days

Free Liquids: Chemical Durability:

Resists attack from 10 to 20 % acid solutions for up to a

year. Also, it is readily aapplicable to salts such as sea salts.

Compositional Flexibility:

Gas Generation:

-

RCRA Compliance:

--

Conclusions:

Syncrete combines the positive characteristics of hydraulic cement with the sealing characteristics of thermosetting

polymer material.

NO. 4

TITLE:

A Comparison of Solidification Media for the Stabilization of

Low-Level Radioactive Wastes

AUTHOR:

M.G. Cowgill

PUBLICATION:

BNL 52304

DATE:

October 1991

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

This report gives comparative performance characteristics for

various waste forms.

Waste Form:

Variable

Waste Type:

--

Waste Loading:

--

Development Status:

--

Compressive Strength:

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance:

--

Immersion Stability:

--

Free Liquids:

--

Chemical Durability: Compositional Flexibility:

--

Gas Generation:

--

RCRA Compliance:

--

Conclusions:

--

NO. 5

TITLE:

Immobilization of IFR Salt Wastes in Mortar

AUTHOR:

D. F. Fischer, T. R. Johnson

PUBLICATION:

Spectrum '88

DATE:

September 11-15, 1988

ORGANIZATION:

Argonne National Laboratory

SUMMARY:

Both flyash and blast furnace slag were found to be beneficial

mortar additives for immobilizing IFR waste salt.

Waste Form:

Portland cement-base mortars

Waste Type:

Alkaline earth chlorides

Waste Loading:

10%

Development Status:

Compressive Strength:

Required ≥7 mPa within 3 days; average 10 to 20 mPa after

3 days and 50 to 70 mPa after 56 days

Thermal Stability:

mermar Stability.

Radiation Stability:

Biological Stability:

Leach Resistance:

Leachability indexes for chloride -7 to 8.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

DCD 4 C 1:

RCRA Compliance:

Conclusions:

--

NO. 6

TITLE:

Laboratory Evaluations of Mortars for Immobilizing Waste IFR

Salt

AUTHOR:

D. F. Fischer; et al.

PUBLICATION:

ANL-IFR-120

DATE:

September 1989

ORGANIZATION:

Argonne National Laboratory

SUMMARY:

Waste Form:

25% Type I portland cement, 25% Class F flyash and 50%

blast furnace slag

Waste Type:

Chloride salt form IFR

Waste Loading:

3-10% salt

Development Status:

More work needed for qualification

Compressive Strength:

7 day 10 mPa (1450 psig)

Thermal Stability:

Radiation Stability:

Biological Stability: Leach Resistance:

Leachability index greater than 7 for chloride ion

Immersion Stability:

Free Liquids:

None

Chemical Durability:

Compositional Flexibility:

Yes

Gas Generation:

RCRA Compliance:

Conclusions:

CaCl₂ containing salt waste produced a fluid mix that set

extremely fast. Flyash addition increased set times

significantly with more than 10% salt, the specimens swelled and cracked, but with about 4%, the mortar was reasonably strong and did not swell or crack. Several binder mixes were

evaluated and reported.

NO. 7

HYDRAULIC CEMENT SUMMARIES

TITLE:

Solidification by Cementation at Liquid Radioactive Primary

Waste Mixes

AUTHOR:

H. J. Funk; R. Pfeiffer

PUBLICATION:

Waste Management '90

DATE:

February 25-March 1, 1990

ORGANIZATION:

Kernforschungszentrum Karlsruhe

SUMMARY:

Shows successful cementation of evaporator concentrates

containing primarily sodium nitrate.

Waste Form:

Cement

Waste Type:

Liquid waste evaporator concentrates

Waste Loading:

Development Status:

In use

Compressive Strength:

≥10 N/mm²

Thermal Stability:

Radiation Stability:

 $3.7 \,\mathrm{Bg/cm^2}$

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

No free liquid detected

Chemical Durability:

Compositional Flexibility:

Gas Generation: RCRA Compliance:

Conclusions:

TITLE:

High Strength Cementized Dried Resins

AUTHOR:

R. L. Gay; L. F. Grantham

PUBLICATION:

Waste Management '88

DATE:

1988

ORGANIZATION:

Rockwell International Corporation

SUMMARY:

Depleted ion exchange resins dried in a high-efficiency dryer and solidified in cement are nearly impermeable to water and will not

reabsorb or swell when immersed.

Waste Form:

Cement

Waste Type:

Depleted ion-exchange resin

Waste Loading:

28 wt% dried resin = 70 wt% of original dewatered resins

Development Status:

Mature

Compressive Strength:

20 samples passed 0.48 mPa (69 psi) test

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

20 samples passed 90-day immersion test, 2 samples failed

Free Liquids:

Conclusions:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Fresh resins did not produce high-strength cement samples,

but chemically spent resin waste forms passed compressive strength and immersion tests. Cost saving figures are presented for both dewatered and dried resin waste forms.

based on volume reduction.

NO. 9

TITLE:

Performance Testing of Blast-Furnace Slag for Immobilization of

Technetium in Grout

AUTHOR:

T. M. Gilliam; R. D. Spence; B. S. Evans-Brown; I. L. Morgan; S.

L. Shoemaker; W. D. Bostick

PUBLICATION:

Nuclear and Hazardous Waste Management, Spectrum '88

DATE:

September 1988

ORGANIZATION:

Martin Marietta Energy Systems

SUMMARY:

Grout formulas have been developed that can satisfactorily

sequester 99Tc in low level mixed waste.

Waste Form:

Portland cement/flyash/blast furnace slag

Waste Type:

Heavy metals sludge and filtrate

Waste Loading:

38% weight

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Leachability index for 99Tc was 10.5 and NO₃ was 7.3

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

None

Leachability indices of 99Tc and NO3 increased by 4.4 units Conclusions:

(10.5 versus .1) and 1.4 units (7.3 versus 5.9), respectively,

by the addition of slag in waste forms. The principal

mechanisms of improved retention are a result of the redox potential of the slag and not the resulting improved physical

properties of the grout.

Disposal Concepts for Waste in Underground Single-Shell

Storage Tanks at the Hanford Site

AUTHOR:

W. O. Greenhalgh

PUBLICATION:

Waste Management '92

DATE:

March 1-5, 1992

ORGANIZATION:

Westinghouse Hanford Company

SUMMARY:

Disposal concepts and waste form options for use in immobilizing

liquid tank waste were discussed.

Waste Form:

Variable

Waste Type:

Single-shell tank waste liquid

Waste Loading:

Variable

Development Status:

Laboratory screening of waste form candidates

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance: Immersion Stability:

Free Liquids:

Conclusions:

--

Chemical Durability:

Compositional Flexibility:

--

Gas Generation:

--

RCRA Compliance:

The goal of this program was to develop or establish

disposal technology that could be used to remediate singleshell tank waste liquid. Disposal options to be tested were

outlined.

NO. 11

TITLE:

The Immobilization of Organic Liquid Wastes

AUTHOR:

W. O. Greenhalgh

PUBLICATION:

Waste Management '86

DATE:

March 2-6, 1986

ORGANIZATION:

Westinghouse Hanford Company

SUMMARY:

The report describes the cement immobilization of low-level radioactive organic liquid waste to form a non-combustible

monolith solid.

Waste Form:

Cement

Waste Type:

Organic liquid waste such as pump oil, mineral spirits, and

TBP-NPH

Waste Loading:

Variable from 32 to 40 vol%

Development Status:

Applied to actual waste materials

Compressive Strength:

Variable - a 35 vol% TBP-Dodecane product exhibited a 28-

day compressive strength of 250 psi.

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Flame resistant solid

Emulsifiers and cement accelerator additives were used to

solidify organic liquids up to 45% by volume. Cement products containing greater than 40 vol% might not exhibit sufficient strength to meet the NRC minimum of 60 psi

without use of a good set accelerator.

High-Impact Concrete for Fill in U.S. Department of

Transportation Type Shipping Containers

AUTHOR:

W. O. Greenhalgh; R. J. Cash

PUBLICATION:

Waste Management '90, Tucson, AZ

DATE:

February 25 - March 1, 1990

ORGANIZATION:

Westinghouse Hanford Company

SUMMARY:

The report describes a high-impact concrete product which is not brittle, but will absorb high energy impacts with little or no loss of

product integrity.

Waste Form:

Cement/concrete

Waste Type:

Waste Loading:

Development Status: Compressive Strength:

This concrete does not exhibit any appreciable compressive

strength but rather absorbs the compression force. The product, without containment, can be dropped 30 ft with

minimal or no loss of material.

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

None

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

The high impact concrete was designed for use in filling

empty tanks, vessels, etc., requiring shipment over public highways with interior parts that have radioactive contamination. The fill concrete eliminates or nearly eliminates the potential loss of containment due to normal

impact accidents (traffic accidents).

NO. 13

TITLE:

Product Characteristics of TRU Waste Immobilized in Grout

AUTHOR:

W. O. Greenhalgh; R. J. Cash; M. A. Christie

PUBLICATION:

Waste Management '88

DATE:

February 28-March 3, 1988

ORGANIZATION:

Westinghouse Hanford Company

SUMMARY:

Laboratory and drum site specimens of shred/grout (shredded waste solidified with a cement grout) will be paired and tested against NRC waste form positions and other handling and

transportation type tests.

Waste Form:

Cement/grout monolith

Waste Type:

Simulated TRU combustible waste

Waste Loading:

Near 100%

Development Status:

Demonstration with simulated waste

Compressive Strength:

510 psi

Thermal Stability:

480 psi - no apparent damage

Radiation Stability:

210/120 psi - no weight loss, no apparent damage

Biological Stability: Leach Resistance:

420, 560, 690, 650, and 1010 psi - no damage

Immersion Stability:

Index >10 >80 psi

Free Liquids:

None detected

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

The shred/grout waste form produced met all DOE and NRC test requirements and exhibited the following characteristics: Free standing monolith; no free liquid; resistant to radiation; resistant to biodegradation; resistant to water leaching; stable in water; resistant to climate variations; resistant to typical fire situations; stable during cross-country transport;

resistant to forklift handling punctures; stable to substantial

impact-type accidents.

NO. 14

TITLE:

Detection of Free Liquid in Sealed Containers Simulating Drums

of Solidified Radioactive Liquid Waste

AUTHOR:

W. O. Greenhalgh; C. R. Green

PUBLICATION:

Nondestructive Evaluation in the Nuclear Industry, Salt Lake

City, Utah, American Society for Metals (ASM) publication

DATE:

February 11-13, 1980

ORGANIZATION:

Hanford Engineering Development Laboratory

SUMMARY:

The report describes two successfully demonstrated ways of

examining drums by NDT thermal methods for water (free

liquid).

Waste Form:

Cement type, urea formaldehyde, and bitumen (asphalt)

Waste Type:

Simulated sodium sulfate radwaste

Waste Loading:

Variable

Development Status:

--

Compressive Strength:

Thermal Stability: Radiation Stability:

--

Biological Stability:

--

Leach Resistance: Immersion Stability:

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility: Gas Generation:

y. --

RCRA Compliance:

CA Compliance: --

Conclusions:

Infrared scanning camera and thermal imaging methods were shown to detect "free liquid" in sealed drums of simulated, solidified liquid waste. The volume of free liquid can also

be estimated by the methods.

TITLE:

Advanced Cementation Concepts Final Report

AUTHOR:

C. G. Howard

PUBLICATION:

AEEW-R2398

DATE:

October 1989

ORGANIZATION:

Winfrith Technology Center

SUMMARY:

Improvements to existing cement formulations were sought using

inorganic additives, such as microsilica and limestone flour.

Waste Form:

Ordinary portland cement/blast furnace slag/pulverized fuel

ash

Waste Type:

--

Waste Loading:

45% to 52%

Development Status:

Compressive Strength:

Thermal Stability:

--

Radiation Stability: Biological Stability:

--

Leach Resistance:

The addition of microsilica reduced 137Cs leachability from

45% to 145 days to 16%

Immersion Stability:

__

Free Liquids:

Samples containing 6% microsilica have no measurable

bleed after 24 hours

Chemical Durability:

--

Compositional Flexibility:

.

Gas Generation:

__

RCRA Compliance:

__

Conclusions:

Microsilica and limestone flour block pore spaces in cement forms and reduced the total amount of ¹³⁷Cs leached out.

These additives caused no detrimental effects on the dimensional stability, compressive strength, or elastic

modules of the waste forms.

Effects of Phase Composition on the Cesium Leachability of

Cement-Based Waste Forms

AUTHOR:

S. Hoyle; M. W. Grutzeck

PUBLICATION:

Waste Management '86

DATE:

1986

ORGANIZATION:

Pennsylvania State University

SUMMARY:

Phase relations in the system CaO-Al₂O₃-SiO₂-H₂O were investigated to enhance Cs retention by enrichment of the bulk

composition of the mixture in silica and alumina.

Waste Form:

Type I portland cement/calcium aluminate

cement/condensed silica fume

Waste Type:

Deionized water containing added cesium hydroxide

Waste Loading:

30% to 60%

Development Status:

Compressive Strength:

15 mPa (2100 psi) to 73 mPa (10,500 psi)

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Improvement in Cs leachability is achieved by increasing

silica or alumina content. A high calcium content is

correlated with high Cs leachability.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Yes

Gas Generation:

RCRA Compliance:

Conclusions:

Five mixtures having varying compositions were formulated from portland cement, calcium aluminate cement, and condensed silica fume. Leaching results indicated that the enrichment of the bulk composition of a mixture in silica and for alumina-enhanced cesium retention. All samples were found to be as strong, if not stronger, than their non-cesium

containing counterparts.

NO. 17

TITLE:

Cement Solidification of Spent Ion Exchange Resins Produced by

the Nuclear Industry

AUTHOR:

C. Jaouen; B. Vigreux

PUBLICATION:

Spectrum '88

DATE:

September 1988

ORGANIZATION:

SGN (France)

SUMMARY:

A simple rapid pretreatment.

Waste Form:

Cement

Waste Type:

Spent ion exchange resin

Waste Loading:

40 to 75 vol%, 27 wt% dry residue

Development Status:

Compressive Strength:

25 wt% resin was 9 mPa after 90 days; 10 wt% resin was 31

mPa after 90 days

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

None

Conclusions:

A mobile plant has been designed utilizing a highly efficient batch mixer for mixing PWR secondary system resins and for cement solidification of ash. Pretreatment of waste can be adapted to various cases. Resins are saturated (i.e., the

water content is limited), thereby reducing the

water/cement/resin interactions.

Full Scale Leaching of Commercial Reactor Waste Forms

AUTHOR:

P. D. Kalb; P. Colombo

PUBLICATION:

BNL 35561

DATE:

September 1984

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Full-scale leaching experiment using 55-gal drum size waste forms from commercial reactor stations was accomplished

Waste Form:

Masonry cement and Type III cement

Waste Type:

Sodium sulfate and boric acid concentrated ion exchange

resins

Waste Loading:

--

Development Status:

Full-scale

Compressive Strength:

--

Thermal Stability: Radiation Stability:

--

Biological Stability:

--

Leach Resistance: Immersion Stability:

--

Free Liquids:

Chemical Durability:

--

Compositional Flexibility:

': ---

Gas Generation:

--

RCRA Compliance:

Conclusions:

Trends observed in the leaching of laboratory-scale

simulated waste forms have been confirmed for full-size commercial reactor waste forms. Leachability of ⁶⁰Co from cement was two orders of magnitude lower than Cs isotopes. Elevated concentrations of sodium sulfate in combination

with the presence of ion exchange resins can cause premature deterioration in cement waste forms.

TITLE:

Encapsulation of Mixed Radioactive and Hazardous Waste

Contaminated Incinerator Ash in Modified Sulfur Cement

AUTHOR:

P. D. Kalb; J. H. Heiser III; P. Colombo

PUBLICATION:

BNL-45163

DATE:

1990

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Modified sulfur cement provides improved waste loadings and

waste form performance over hydraulic cement.

Waste Form:

Sulfur cement versus hydraulic cement.

Waste Type:

LLW and mixed waste

Waste Loading:

Sulfur cement > hydraulic cement: 6 times more sodium

sulfate, 2.6 times more boric acid, 1.4 times more bottom

ash, and 2.7 times more flyash

Development Status:

Compressive Strength:

Minimum compressive strength is 1800 psi for sulfur cement

containing sodium flyash, sulfate, or ash wastes

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Leach Index for Co⁶⁰ 10.7 or higher for sulfur cement and

sodium sulfate or ash. Leach Index for Cs137 9.7 or higher

for sulfur cement and sodium sulfate or ash.

Immersion Stability:

Free Liquids:

Chemical durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Metal Toxicity Evaluation of Savannah River Plant Saltstone

Comparison of EP and TCLP Test Results

AUTHOR:

C. A. Langton

PUBLICATION:

Waste Management '88, Vol. 1

DATE:

February 28-March 3, 1988

ORGANIZATION:

Savannah River Laboratory

SUMMARY:

Waste Form:

Saltstone grout

Waste Type:

Sodium salt solution with pH >12.5 and Cr⁺⁶>100 ppm

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability: --

Compositional Flexibility:

Gas Generation: RCRA Compliance:

Conclusions:

Cement-Based Waste Forms for Disposal of SRP Low-Level Salt

Waste

AUTHOR:

C. A. Langton; et al.

PUBLICATION:

DP-MS-83-71

DATE:

November 1983

ORGANIZATION:

DuPont Company

SUMMARY:

A cement-based waste form, "saltstone," has been developed for

SRP mixed waste containing 32 wt% sodium salts.

Waste Form:

Portland cement/flyash

Waste Type:

Salt solution containing 32 wt% sodium salts

Waste Loading:

38%

Development Status:

Mature

Compressive Strength:

3 mPa (450 psi) minimum

Thermal Stability:

Radiation Stability:

Biological Stability:

 10^{-5} g/cm²-day

Leach Resistance:

Free Liquids:

Chemical Durability:

Immersion Stability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

Physical properties, mineralogy and microstructure of the saltstone are similar to conventional grouts. The saltstone product, in combination with design of the total landfill,

meets all state and federal guidelines for contaminant release

into the environment.

Division of Waste Management, Production and Reprocessing

Programs Report for January-June 1977

AUTHOR:

Compiled by R.E. Lerch

PUBLICATION:

HEDL-TME-77-74

DATE:

July 1977

ORGANIZATION:

Hanford Engineering Development Laboratory

SUMMARY:

This report addresses immobilization of boric acid waste and provides composition phase diagrams for boric acid and ionexchange resin. It also presents thermal stability data for asphalt

and urea-formaldehyde organic binders.

Waste Form:

Variable

Waste Type:

Low level waste and radwaste

Waste Loading:

Variable

Development Status:

Compressive Strength:

Data given for boric acid and ion-exchange waste forms; compression strengths up to 70 kg/cm² were reported.

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

A variety of leach rates are tabulated, cesium leach rates varied from 0.5 to 0.01, and strontium from 0.04 to 0.00090

g/cm² day.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

Three phase diagrams of cement/water/waste were

determined for boric acid. Problems of cementing resins are

discussed, some lower waste loading limits are stable. Thermal profiles on asphalt and urea-formaldehyde waste products are given. Leach rate data are provided for cesium

and strontium tracers in test waste forms.

TITLE:

Division of Waste Management, Production and Reprocessing

Programs Report for January-December 1976

AUTHOR:

Compiled by R.E. Lerch

PUBLICATION:

HEDL-TME-77-40

DATE:

April 1977

ORGANIZATION:

Hanford Engineering Development Laboratory

SUMMARY:

Waste Form:

Cement Type I-II

Waste Type:

Variable-calcium sulfate, neutralized ferric sulfate, sodium

sulfate, sodium nitrate, sodium chloride, ion-exchange resin

(anion and cation)

Waste Loading:

Development Status:

Compressive Strength:

Compressive strengths are tabulated, strengths up to 1700

psi are tested

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance: Conclusions:

Three phase diagrams of cement/water/waste were

determined for the simulated wastes listed above. Tables of

product density and compression strengths are given.

NO. 24

TITLE:

Testing Waste Forms Containing High Radionuclide Loadings

AUTHOR:

J. W. McConnell, Jr.; R. M. Neilson; R. D. Rogers

PUBLICATION:

Waste Management '86

DATE:

March 2-6, 1986

ORGANIZATION:

Idaho National Engineering Laboratory

SUMMARY:

The report addresses 10 CFR 61 testing of TMI type resin waste.

Waste Form:

Portland cement and vinyl ester-styrene (VES)

Waste Type:

TMI spent resin

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

Cement: no; VES: bacteria-no, fungi-yes

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation: RCRA Compliance:

Conclusions:

NO. 25

TITLE:

Leach Studies on Cement-Solidified Ion-Exchange Resins from

Decontamination Processes at Operating Nuclear Power Stations

AUTHOR:

C. V. McIsaac; et al.

PUBLICATION:

EGG-M-9290

DATE:

ORGANIZATION:

Idaho National Engineering Laboratory (INEL)

SUMMARY:

The effects of varying pH and leachant compositions on

leachability were determined for cement-solidified

decontamination ion-exchange resin wastes.

Waste Form:

Cement

Waste Type:

Decontamination ion-exchange resins

Waste Loading:

30%

Development Status:

Needs further evaluation to improve strength when

immersed in water

Compressive Strength:

 $3 \times 10^3 \text{ kPa (440 psig)}$

Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance:

Leachability index for all test samples were >8 for Co⁶⁰,

Ni⁶³, and Fe⁵⁵

Immersion Stability:

Physical disintegration during leach testing

Free Liquids:

None

Chemical Durability:

Initial leachant pH does not affect leachate pH

Compositional Flexibility:

Gas Generation:

, •

RCRA Compliance:

Conclusions:

Loss of waste form stability after exposure to leachants due to swelling of solidified resin beads. However, cumulative releases of radionuclides and chelating agents for forms that disintegrated were similar to those for forms that maintained

their general physical integrity.

NO. 26

TITLE:

Envirostone Gypsum Cement

AUTHOR:

T. L. Rosenstiel; S. P. Bodett; R. G. Lange

PUBLICATION:

Topical Report

DATE:

1984

ORGANIZATION:

United State Gypsum

SUMMARY:

Summary of the qualification of Envirostone gypsum cement to

10 CFR 61 type tests

Waste Form:

Waste Type:

--

Waste Loading:

--

Development Status: Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance:

--

Immersion Stability: Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

· __

Gas Generation: RCRA Compliance:

y. --

Conclusions:

Meets NRC regulatory requirements in 10 CFR 61 for the

following wastes: 24% boric acid solution; mixed bed ion exchange bead resin (unexpended); powdered ion exchange resin (unexpended); lubricating oil; mixtures of oil and 24% boric acid solution; mixtures of mixed bed ion exchange

bead resin and 24% boric acid solution; mixtures of

powdered ion exchange resin and 24% boric acid solution; EDTA decontamination fluid; a neat aqueous mixture of

ENVIROSTONE® gypsum cement to simulate

encapsulation of solid objects such as used equipment, spent

filter cartridges, etc.

NO. 27

TITLE:

Setting Temperature Evolution of Nitrate Radwaste Immobilized

in Ordinary Portland Cement

AUTHOR:

B.M. Rzyski; A.A. Suarez

PUBLICATION:

DATE:

September 1988

ORGANIZATION:

IPEN-CNEN/SP

SUMMARY:

Waste Form:

Portland cement

Waste Type:

to Type.

Waste Loading: Development Status:

--

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance: --

Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

. --

Compositional Flexibility:

ty: --

Gas Generation:
RCRA Compliance:

Conclusions:

--

NO. 28

TITLE:

Development of a Cement-Based Grout for Immobilization of a

Low-Level Waste Stream Containing Sodium Sulfate

AUTHOR:

T. L. Sams; E. W. McDaniel

PUBLICATION:

Waste Management '88, Vol. 1

DATE:

February 1988

ORGANIZATION:

Oak Ridge National Laboratory

SUMMARY:

A unique approach to grout formulation using statistical methods has been presented using a low level waste stream containing

sodium sulfate

Waste Form:

Cement-based grout

Waste Type:

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

This formulation development work encompassed several

variables. the reference grout formula developed is cement 46.0%, flyash 32.8%, attapugite clay 1.4%, IRPC 0.8%. This should produce grouts that are processible and durable

Advanced Cement-Solidification Process for Spent Ion-Exchange

Resins

AUTHOR:

K. Sauda; et al.

PUBLICATION:

Waste Management '90, Vol. 2

DATE:

February 1990

ORGANIZATION:

JGC Corporation

SUMMARY:

A new pretreatment technique for spent ion exchange resins

solidified in cement has been reported.

Waste Form:

Portland cement

Waste Type:

Ion exchange resins

Waste Loading:

Resins/water/cement = 18/36/46

Development Status:

Pilot plant demonstration

Compressive Strength:

Passed, 1400 to 3000 psi Passed, after 30 cycles compressive strength was 1200-2000

nsi

Radiation Stability:

Thermal Stability:

Passed, after 10⁸ rad compressive strength was 1080 psi

Biological Stability:

Passed, no growth and compressive strength was 1500 psi

Leach Resistance:

Leachability index was greater than 7

Immersion Stability:

Passed, compressive strength after 90 days ranged from 330

to 2650 psi

Free Liquids:

None

Chemical Durability:

--

Compositional Flexibility:

RCRA Compliance:

None

Gas Generation:

Conclusions:

Dewatered spent ion-exchange resins are agitated at high speed in a highly alkaline cement slurry. The pretreatment parameters have been optimized and 10 CFR 61 tests

performed. The products met the waste form criteria.

NO. 30

TITLE:

Solidification of Radioactive Incinerator Ash

AUTHOR:

T. F. Schuler; D. L. Charlesworth

PUBLICATION:

Waste Management '86

DATE:

March 2-6, 1986

ORGANIZATION:

Savannah River Laboratory

SUMMARY:

An ash cementing process termed "Ashcrete" was set up, the waste product tested, and results reported in this paper.

Waste Form:

Cement

Waste Type:

Incinerator ash

Waste Loading:

--

Development Status: Compressive Strength:

A minimum of 100 psi criteria was established, ≥1000 psi

was achieved.

Thermal Stability:

Radiation Stability:

Kadiation Stability: -

Biological Stability:
Leach Resistance:

Immersion Stability:

Free Liquids:

Free Liquids: Chemical Durability: -

Compositional Flexibility: --

Gas Generation:

RCRA Compliance:

Conclusions:

NO. 31

TITLE:

The Effect of Cure Conditions on the Stability of Cement Waste

Forms After Immersion in Water

AUTHOR:

B. Siskind; J. W. Adams; J. H. Clinton; P. L. Piciulo

PUBLICATION:

Waste Management '88

DATE:

February 25-March 1, 1990

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Cement-solidified ion exchange resin exhibits a non-portland

cement-like behavior if the waste loading is too high.

Waste Form:

Cement

Waste Type:

Spent mixed-bed ion exchange resin

Waste Loading:

asie Luading.

Development Status: -

Compressive Strength:

Thermal Stability: -

Radiation Stability:

Biological Stability: -

Leach Resistance:

Immersion Stability:

Free Liquids:

ree Liquids: -

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

--

Measurement and Control of Cement Set Times in Waste

Solidification

AUTHOR:

J. A. Stone; P. D. d'Entremont

PUBLICATION:

DP-1404

DATE:

September 1976

ORGANIZATION:

Savannah River Laboratory

SUMMARY:

A commercial retarder was added to cement-sludge formulations

to achieve set times that are workable for routine handling

equipment. Set times and compressive strengths were measured.

Waste Form:

Cement and/or concrete

Waste Type:

Simulated or actual sludge waste

Waste Loading:

10, 25, 40% of solids

Development Status:

--

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance:

--

Immersion Stability:

--

Free Liquids:

--

Chemical Durability: Compositional Flexibility:

· --

Gas Generation:

==

RCRA Compliance: Conclusions:

For High Alumina Cement

Tank 5: 9,500 psi at 10% sludge, 9,000 psi at 25%, and

3,000 psi at 40%

Tank 13: 900 psi at 10% sludge, 7,000 psi at 25%, and

1,600 psi at 40%

Tank 15: 6,800 psi at 10% sludge, 4,800 psi at 25%, and

1,400 psi at 40%

NO. 33

TITLE:

Immobilization of Technetium and Nitrate in Cement-Based

Materials

AUTHOR:

O.I. Tallent; et al.

PUBLICATION:

DATE:

1988

ORGANIZATION:

Martin Marietta

SUMMARY:

The leachability of technetium and nitrate wastes immobilized in

cement-based materials have been investigated.

Waste Form:

Blends of Type I-II cement/slag/flyash

Waste Type:

Simulated double shell slurry feed from Hanford

Waste Loading:

--

Development Status:

--

Compressive Strength:

Thermal Stability: Radiation Stability:

--

Biological Stability:

Leach Resistance:

Leachability index for nitrate ranged from 7.0 to 7.5 and for

technetium from 8.0 to 8.3

Immersion Stability:

--

Free Liquids:

ree Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

--

RCRA Compliance:

--

Conclusions:

Decreasing waste concentration by dilution with water

decreased leachability to Tc ion, but did not affect nitrate ion leachability. Chemical reducing properties of the slag reduce the Tc from the pertechnetate to the dioxide, a less

soluble and slower leaching species.

NO. 34

TITLE:

Cement Solidification of Spent Ion Exchange Resins Produced by

the Nuclear Industry

AUTHOR:

C. Taouen; B. Vigreux

PUBLICATION:

Spectrum '88

DATE:

September 11-15, 1988

ORGANIZATION:

SGN (France)

SUMMARY:

A mobile cementation solidification was designed to treat the

resin waste.

Waste Form:

Cement solidification

Waste Type:

Spent ion exchange resin

Waste Loading:

40 to 75%

Development Status:

The SGN resin measured 8 mPa after 28 days and 9 mPa

after 90 days.

Compressive Strength:

10% resin measured 26 mPa after 28 days and 31 mPa after

90 days.

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

NO. 35

TITLE:

Surface Encapsulation Process for Managing Low-Level

Radioactive Wastes

AUTHOR:

S. L. Unger; R. W. Telles

PUBLICATION:

DATE:

1986

ORGANIZATION:

Environmental Protection Polymers, Inc.

SUMMARY:

Waste Form:

Surface encapsulated agglomerated modules - agglomerates

of mixed LLRW with co-reacted polyethylene and

polybutadiene

Waste Type:

Low level radioactive waste

Waste Loading:

50% of total (including jacket)

Development Status:

Prototype in development

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

Biological Stability:

--

Leach Resistance:

--

Immersion Stability:

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

Gas Generation:

--

RCRA Compliance:

__

Conclusions:

--

NO. 36

TITLE:

Alternatives for Managing Wastes from Reactors and Post-Fission

Operations in the LWR Fuel Cycle - Vol. 2

AUTHOR:

United States - Energy Research & Development Administration

PUBLICATION:

ERDA-76-43

DATE:

May 1976

ORGANIZATION:

United States - Energy Research & Development Administration

SUMMARY:

Volume 2 addresses solidification methods and waste forms

including comparisons.

Waste Form:

Waste Type:

Waste Loading:

Development Status:

Compressive Strength: --

Thermal Stability:

Radiation Stability: --

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability: --

Compositional Flexibility: --

Gas Generation:

RCRA Compliance:

Conclusions:

NO. 37

TITLE:

The Cement Solidification Systems at LANL (1)

AUTHOR:

G. W. Veazey

PUBLICATION:

DATE:

December 1990

ORGANIZATION:

Los Alamos National Laboratory

SUMMARY:

7A-50 infrequently used system.

Waste Form:

Portland cement

Waste Type:

TA-50 system pH-adjusted TRU-waste

Waste Loading:

42% waste

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Some surface moisture

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance: Conclusions:

Corrosion of drum can occur if moisture gains entrance into

drum. Entrance may be made through carbon filters on drum

vents if not protected from environment.

The Cement Solidification Systems at LANL (2)

AUTHOR:

G. W. Veazey

PUBLICATION:

LA-UR-90-4161

DATE:

December 1990

ORGANIZATION:

Los Alamos National Laboratory

SUMMARY:

Problems of drum corrosion in extended outdoor storage prior to

burial and appearance of free liquid in sealed drums are

addressed.

Waste Form:

Portland cement and Envirostone

Waste Type:

Evaporator bottoms TRU-level waste

Waste Loading:

23 gal sludge per 55-gal drum Existing operating system

Development Status: Compressive Strength:

Thermal Stability:

Radiation Stability:

Appearance of free liquid possibly linked to gamma

irradiation

Biological Stability: Leach Resistance:

Immersion Stability:

Free Liquids:

Appearance of more than 15 liters low-level free liquid in

sealed drums after 8-44 weeks.

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Theories have been proposed for the appearance of free liquids, although the exact causes have not been pinpointed. Inadequate mixing, gamma irradiation, and exposure of

drums to rain are likely causes.

NO. 39

TITLE:

Solid Forms for Savannah River Plant High-Level Waste

AUTHOR:

R. M. Wallace; H. L. Hull; R. F. Bradley

PUBLICATION:

DP-1335

DATE:

December 1973

ORGANIZATION:

Savannah River Laboratory

SUMMARY:

This study was made to evaluate candidate solid waste forms and

solidification processes.

Waste Form:

vaste Form:

Waste Type:

Waste Loading:

Development Status: --

Compressive Strength: -

Thermal Stability: --

Radiation Stability: --

Biological Stability: --

Leach Resistance: --

Immersion Stability: --

Free Liquids:

Chemical Durability: --

Compositional Flexibility: --

Gas Generation:

RCRA Compliance: -

Conclusions:

--

NO. 40

TITLE:

Evaluation of Solidification/Stabilization As a Best Demonstrated

Available Technology for Contaminated Soils

AUTHOR:

L. Weitzman; L. E. Hamel

PUBLICATION:

PB89-169908

DATE:

March 1989

ORGANIZATION:

Acurex Corporation

SUMMARY:

Demonstrated that soil could be immobilized and contents stabilized by use of cement, lime, or a lime flyash mixture.

Waste Form:

Portland cement, lime kiln dust, equal parts of lime and

flyash

Waste Type:

Hazardous contaminated soil

Waste Loading:

Development Status:

Compressive Strength: -

Thermal Stability:

Radiation Stability: -

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids: - Chemical Durability: -

Compositional Flexibility: -

Gas Generation:

RCRA Compliance:

Conclusions:

--

NO. 41

TITLE:

Saltstone Processing Startup at the Savannah River Plant

AUTHOR:

E. L. Whilhite; R. L. Hooker; H. F. Sturm; C. A. Langton; E. S.

Occpihti

PUBLICATION:

Spectrum '88

DATE:

September 11-15, 1988

ORGANIZATION:

E. I. DuPont de Nemours and Company

SUMMARY:

Saltstone was shown to be non-hazardous after EP and TCLP testing. The feed is hazardous because of Cr and other metals.

Waste Form:

Saltstone grout

Waste Type:

Tank waste (LLW)

Waste Loading:

--

Development Status:

--

Compressive Strength:

Thermal Stability:

__

Thermal Stability.

--

Radiation Stability:

Biological Stability: Leach Resistance:

Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

F1 --- 11-1114---

Gas Generation:

RCRA Compliance:

--

Conclusions:

<u>Diffusion Coefficients</u>: 1.3×10^{-9} cm²/sec for nitrate; 4×10^{-12} cm²/sec for technetium; 4×10^{-13} cm²/sec for chromium.

TITLE:

Grout Disposal System for Hanford Site Mixed Waste

AUTHOR:

J. E. Van Beek; D. D. Wodrich

PUBLICATION:

Waste Management '90, pp 797-802

DATE:

March 1990

ORGANIZATION:

Westinghouse Hanford Company

SUMMARY:

The Grout Treatment Facility has been constructed at Hanford for processing liquid radioactive and hazardous tank wastes into a cement-based solid for disposal in near-surface concrete vaults.

Waste Form:

Grout

Waste Type:

Phosphate/Sulfate salt solution

Waste Loading:

Development Status:

Large-scale disposal has been performed

Compressive Strength:

200 to 2000 psi

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

Leach index of Cs-137 is 9 and of Sr-90 is 14

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

The grouting process combines cementitious materials with liquid waste to form grout slurry which is pumped to large. underground concrete vaults for solidification and final disposal. The Grout Treatment Facility disposal system design is a unique concept for meeting both hazardous and low-level waste disposal criteria.

Alternatives for Managing Wastes from Reactors and Post-Fission

Operations in the LWR Fuel Cycle

AUTHOR:

C. R. Cooley, et al.

PUBLICATION:

ERDA-76-42, Vol. 2 of 5

DATE:

May 1976

ORGANIZATION:

US ERDA

SUMMARY:

Waste Form:

Portland cement, bitumen, UF

Waste Type:

Na₂SO₄, boric acid, bead resins, diatomaceous earth

Waste Loading:

--

Development Status:

--

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability: Biological Stability:

--

Leach Resistance:

 10^{-5} to 10^{-1} gm/Cm² day for sodium ion and 10^{-9} to 10^{-7}

gm/Cm² day for actinides

Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

. __

Gas Generation:

--

RCRA Compliance:

--

Conclusions:

Typical waste/cement formulations have been presented. Solutes in waste solutions and slurries can be incorporated in cement products at salt/cement weight ratios of 0.5, although more typically from 0.15 to 0.3. The maximum water to cement weight ratio is 0.5 and the minimum is 0.25. Sodium silicate as an additive helps to lower final volume increase

factor.

TITLE:

Treatment Technology for Transuranic Waste Streams--Cementation, Vitrification, and Incineration Testing for the

treatment of Spent Ion Exchange Media

AUTHOR:

B. G. Place

PUBLICATION:

WHC-EP-0462

DATE:

April 1992

ORGANIZATION:

Westinghouse Hanford Company

SUMMARY:

Cementation pretreatment testing was conducted for ion exchange resins and zeolites from a number of Hanford Site facilities.

Waste Form:

1. Cement 2. Glass

Waste Type:

Organic ion exchange resins and zeolites

Waste Loading:

--

Development Status:

--

Compressive Strength:

920-3700 psi

Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance:

--

Immersion Stability:

--

Free Liquids:

--

Chemical Durability: Compositional Flexibility:

· __

Gas Generation:
RCRA Compliance:

Conclusions:

Attritive and size-reduction pretreatment methods proved

most effective in producing a stable final waste form.

Pretreated zeolite exhibited substantially higher compressive strengths and higher waste packaging efficiencies when

compared to untreated zeolite.

NO. 45

TITLE:

Cementation--A Solution for Final Disposal?

AUTHOR:

B. L. Ganser

PUBLICATION:

Waste Management '90

DATE:

March 1990

ORGANIZATION:

NUKEM Gmb H

SUMMARY:

The suitability of cemented waste forms for final disposal in Germany has been evaluated through several tests from 1979 to

1989.

Waste Form:

Cement and additives

Waste Type:

Waste Loading:

Evaporator concentrates, resins, filter sludges Up to 40 wt% waste content (dry substance)

Development Status:

--

Compressive Strength:

10-100 MPa

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

10⁻⁴ to 7x10⁻³ gm/cm² day

Leach Resistance: Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

. __

Gas Generation:

--

RCRA Compliance:

--

Conclusions:

Blast furnace slag cement gave lower average leach rates than ordinary Portland cement. Long term leach tests showed that after about 5 years there was a sharp decrease in leach rates. Direct cementation of liquid wastes showed

excellent mechanical properties.

Results of Field Testing of Waste Forms Using Lysimeters

AUTHOR:

J. W. McConnell, Jr.; R. D. Rogers

PUBLICATION:

Waste Management '90

DATE:

February 1990

ORGANIZATION:

Idaho National Engineering Laboratory

SUMMARY:

Results of lysimeter tests on ion-exchange resins are presented

and the use of lysimeter data in performance assessment is

discussed.

Waste Form:

Portland Type I-II

Waste Type:

Ion-exchange resins from prefilters

Waste Loading:

Development Status:

Compressive Strength: -

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance: Immersion Stability: -

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance: Conclusions:

Sr-90 is more prevalent than Cs-137, CO-60 or Sb-1215 in

collected liquid samples. The limiting step in receiving Sr-90 in the leachate is not release of the nuclide from the waste

forms, but rather it is the soil characteristics that limit

movement.

Division of Waste Management, Production and Reprocessing

Programs Report for January-June 1977

AUTHOR:

Compiled by R. E. Lerch

PUBLICATION:

HEDL-TME 77-74

DATE:

July 1977

ORGANIZATION:

Hanford Engineering Development Laboratory

SUMMARY:

The report addresses immobilization of boric acid waste and provides composition phase diagrams for boric acid and ion-exchange resin. It also presents thermal stability data for asphalt

and urea-formaldehyde organic binders.

Waste Form:

Variable

Waste Type:

Low-level waste and radwaste

Waste Loading:

Variable

Development Status:

--

Compressive Strength:

Data given for boric acid and ion-exchange waste forms;

compression strengths up to 70 kg/cm² were reported.

Thermal Stability:

iai Stability: -

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

nemical Durability: -

Compositional Flexibility:

Gas Generation:

.....

RCRA Compliance:

--

Conclusions:

Three-phase diagrams of cement/water/waste were

determined for boric acid. Problems of cementing resins are

discussed, some lower waste loading limits are stable. Thermal profiles on asphalt and urea-formaldehyde waste products are given. Leach rate data is provided for cesium

and strontium tracers in test waste forms.

NO. 1	AUTHOR: TITLE: PUBLICATION: DATE:	Darnell, G.R.; Aldrich, W.C; Logan, J.A. Full-Scale Tests of Sulfur Polymer Cement and Nonradioactive Waste in Heated and Unheated Prototypical Containers EGG-WM-10109, Idaho National Engineering Laboratory 1992
NO. 2	AUTHOR: TITLE:	Johnson, E.R. An Assessment of the Potential of Modified Sulfur Cement for the Conditioning of Low-Level Radioactive Waste for Dumping at Sea
	PUBLICATION: DATE:	JAI-200 6/83
NO. 3	AUTHOR: TITLE:	van Dalen, A.; Rijpkema, J.E. Modified Sulphur Cement: A Low Porosity Encapsulation Material for Low, Medium, and Alpha Waste
	PUBLICATION:	Nuclear Science and Technology (Commission of the European Communities), EUR 12303
	DATE:	1989
NO. 4	AUTHOR: TITLE:	Kalb, P.D.; Heiser III, J.H.; Colombo, P. Modified Sulfur Cement Encapsulation of Mixed Waste Contaminated Incinerator Fly Ash
	PUBLICATION: DATE:	Waste Management, Vol. II, pp. 147-153 1991
NO. 5	AUTHOR: TITLE:	Darnell, G.R. Sulfur Polymer Cement, a Solidification and Stabilization Agent for Hazardous and Radioactive Wastes
	PUBLICATION:	First International Mixed Waste Symposium, Washington, D.C.,
	DATE:	1991
NO. 6	AUTHOR: TITLE:	Kalb, P.D.; Heiser III, J.H.; Pietrzak, R.; Colombo, P. Durability of Incinerator Ash Waste Encapsulated in Modified Sulfur Cement
	PUBLICATION: DATE:	BNL-45292, 1991 Incineration Conference, Knoxville, TN 1991

NO. 7 AUTHOR: Kalb, P.D.; Heiser III, J.H.; Pietrzak, R.; Colombo, P. TITLE: Comparison of Modified Sulfur Cement and Hydraulic Cement for Encapsulation of Radioactive and Mixed Wastes Twelfth Annual U.S. DOE Low-Level Waste Management PUBLICATION: Conference 1991 DATE: NO. 8 **AUTHOR:** Kalb, P.D.; Heiser III, J.H.; Colombo, P. TITLE: Encapsulation of Mixed Radioactive and Hazardous Waste Contaminated Incinerator Ash in Modified Sulfur Cement, BNL-43691 PUBLICATION: Incineration Conference 1990, San Diego, CA, DATE: 1991 NO. 9 AUTHOR: McBee, W.C.; Sullivan, T.A.; Fike, H.L. TITLE: Sulfur Construction Materials PUBLICATION: United States Department of the Interior Bureau of Mines Bulletin 678 1985

DATE:

Full-Scale Tests of Sulfur Polymer Cement and Nonradioactive

Waste in Heated and Unheated Prototypical Containers

AUTHORS:

G.R. Darnell; W.C. Aldrich; J.A. Logan

PUBLICATION:

EGG-WM-10109, Idaho National Engineering Laboratory

DATE:

1992

ORGANIZATION:

EG&G Idaho, Inc.

SUMMARY:

Describes and discusses the first full-scale tests of SPC as a stabilization agent for simulated radioactive incinerator ash and steel waste. Tests were conducted with a horizontal, externallyand-internally heated, production-scale mixer. A prototypical, rectangular, 24-ft³, thin-walled, steel waste container with no appendages was used to hold 800 lb of simulated sized waste while molten SPC combined with incinerator hearth ash under 3/8-in. diameter was poured into it. One test was with an ambient-temperature container and steel waste. Another test was with the steel waste, the container, and the mold-form preheated to melt temperature in an oven. Destructive examination showed better results in the concrete mass where heating was applied. It was proposed that better heating of the container and waste be

provided for the next tests.

Waste Form:

Sulfur polymer cement

Waste Type:

Incinerator hearth ash and steel pipes (nonradioactive)

Waste Loading:

40 wt% ash (not counting 800 lb of steel pipe)

Development Status:

50% established

Compressive Strength:

Lab tests not conducted, but resisted hammer blows

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance: Immersion Stability:

Free Liquids:

None

Chemical Durability:

Compositional Stability:

Gas Generation: RCRA Compliance:

NO. 1 (cont.)

Conclusions:

Preheating the waste container and its 800 lb of steel "waste" to 135°C greatly improved the pour and eliminated nearly all voids experienced in the "cold test," even though the container and contents lost ~34°C during the pour. The evidence indicates that the container and its contents need to be preheated and then maintained at SPC melt temperatures throughout the pour.

An Assessment of the Potential of Modified Sulfur Cement for the

Conditioning of Low-Level Radioactive Waste for Dumping at

Sea

AUTHORS:

E.R. Johnson

PUBLICATION:

JAI-200

DATE:

June 1983

ORGANIZATION:

E. R. Johnson Associates, Inc. for Brookhaven National

Laboratory

SUMMARY:

This report presents curves on strength versus time, strength growth curve of SPC versus Portland cement concrete, stress strain, modulus of elasticity, freeze-thaw cycles to failure for SPC and Portland cement concrete, linear thermal expansion, and variation of compressive strength and specific gravity. SPC's properties for radioactive waste stabilization include rapid curing: no residual free water; little degradation (especially from radiation); resistant to chemical and physical degradation, not chemically reactive, low leaching rate, particularly by saline waters or ground; and is easily handled and controlled by operators.

Waste Form:

Sulfur polymer cement

Waste Type:

Waste Loading:

Development Status:

Initial effort for evaluation as final waste form Equal to or greater than that of hydraulic concrete

Compressive Strength: Thermal Stability:

Resistant to thermal cycling

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Relatively impervious to water and moisture

Free Liquids:

Chemical Durability:

Strong, corrosion resistant concrete; highly resistant to

dissolution and chemical corrosion

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

NO. 2 (cont.)

Conclusions:

The author predicted the attributes of SPC as a radioactive waste stabilization agent that have since proven true. A genesis report for radioactive and hazardous waste stabilization.

Modified Sulphur Cement: A Low Porosity Encapsulation

Material for Low, Medium and Alpha Waste

AUTHOR:

van Dalen, A., and Rijpkema, J. E.

PUBLICATION:

Nuclear Science And Technology (Commission of the European

Communities), EUR 12303

DATE:

1989

ORGANIZATION:

Energy Research Foundation ECN, 1755 ZG Petten, The

Netherlands

SUMMARY:

This report summarizes tests conducted with modified sulfur cement, more commonly referred to as sulfur polymer cement (SPC). It confirms tests conducted in the U.S.A. at Brookhaven National Laboratory (BNL). They, like BNL, combined SPC with

dried ion-exchange resins. In both cases the resins took on

moisture very quickly and ruptured the concrete. The Netherlands tried a different approach that worked. They combined the ion-exchange resins with SPC, raised the temperature from the normal 135°C to 230 to 250°C and held that temperature for 3 hours. The

test specimen was immersed in water for one year with no

degradation. No information is provided on how they handled the

gaseous emissions. All of the NRC's laboratory tests were

conducted.

Waste Form:

Sulfur polymer cement concrete

Waste Type:

Ion-exchange resins; sludges with 5% U, 1% Ti, 3% Cu, 1% Mn, 3% Al, and 2% Na; precipitates; lead iodide (model for ¹²⁹I); PbI₂; incinerator ashes with borate, CaCo₃, CsCl, EuCl₃, and 1.86% K₂O, 1.04% Na₂, 2.07% Fe₂O₃, 28.38% Al₂O₃, 16.09% CaO, 2.12% MgO, 43.88% SiO₂, 1,72% TiO₂, 0.92% BaO, 0.10% MnO, and 0.32% P₂O₃; ¹³⁷Cs; ⁶⁰Co;

SrCO₃; toxic metals; and other metals

Waste Loading:

See above

Development Status:

Second major effort in testing SPC for final waste form 3333 psi after one day and 9275 psi after two years

Compressive Strength: Thermal Stability:

Passed tests

Radiation Stability:

6232 psi before 108 rad and 8840 psi after

Biological Stability:

--

Leach Resistance:

--

NO. 3 (cont.)

Immersion Stability:

Passed tests

Free Liquids:

None

Chemical Durability:

No problem noted. Irradiation suggested longevity

Compositional Flexibility: Gas Generation:

Improved by the addition of Al₂O₃ and/or Fe₂O₃ Subjecting SPC with samples containing PbI₂, incinerator

ash, and borate waste to 10⁸ rad produced no gaseous

radiolysis products

RCRA Compliance:

Not tested to EPA's TCLP

Conclusions:

If we can reproduce their excellent results with ion-exchange

resins without any safety concern, that fact alone makes this

report a valuable asset.

NO. 4

TITLE:

Modified Sulfur Cement Encapsulation of Mixed Waste

Contaminated Incinerator Fly Ash

AUTHORS:

P. D. Kalb; J.H. Heiser III; P. Colombo

PUBLICATION:

Waste Management, Vol. II, pp. 147-153

DATE:

1991

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Upon cooling, SPC achieves compressive strengths averaging 4.000 psi. Due to high concentrations of zinc, lead, cadmium, sodium, and chlorine in the mixed waste fly ash obtained from the Waste Experimental Reduction Facility (WERF), it is difficult to combine with portland cement. That waste also contained approximately 1.5 B/g (pc/g) of activity made up of mixed fusion products--primarily 137Cs and activation products-which were primarily 57Co and 125Sb. Highly soluble metal chloride salts (mostly zinc chloride) further complicate this waste.

Waste Form:

Sulfur polymer cement

Waste Type:

Mixed waste fly ash (37 wt% zinc, 7.5 wt% lead, 0.2 wt%

cadmium)

Waste Loading:

43 wt%

Development Status:

Early

Compressive Strength:

4,000 psi (>27.6 MPa), which is twice the binder strength

alone

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

3 to 4 times better than Portland cement

Immersion Stability:

Free Liquids:

None

Chemical Durability: Compositional Flexibility:

Gas Generation:

Conclusions:

RCRA Compliance:

Passed TCLP with high loadings of lead and cadmium Presence of high concentrations of zinc, lead, cadmium, sodium, and chloride make loading in SPC more successful

than in portland cement by a factor or 3.2..

Sulfur Polymer Cement, a Solidification and Stabilization Agent

for Hazardous and Radioactive Wastes

AUTHORS:

G.R. Darnell

PUBLICATION:

First International Mixed Waste Symposium, Washington, D.C.

DATE:

1991

ORGANIZATION:

EG&G Idaho, Inc., Idaho National Engineering Laboratory

SUMMARY:

SPC's resistance to acids, salts, water penetration, and physical failure are discussed. It discusses the ability to remelt stabilized waste, should some remediation decree be rendered. SPC's propensity for microencapsulation of toxic metals is discussed. SPC's ability to accept higher loadings of troublesome wastes than

other agents is discussed.

Waste Form:

Sulfur polymer cement concrete

Waste Type:

MW incinerator flyash and hearthash, boric acid, sodium

sulfate

Waste Loading:

43 wt% mixed waste flyash (37 wt% zinc, 7.5 wt% lead, 0.2 wt% cadmium); 40 wt% boric acid; 40 wt% sodium sulfate;

40 wt% hearthash

Development Status:

Early

Compressive Strength:

Averages ~4,000 psi

Thermal Stability:

--

Radiation Stability:

Gains compressive strength

Biological Stability:

Passed test with no visible deterioration

Leach Resistance:

1 assect test with no visible deterioration

Immersion Stability:

4 to 8 orders of magnitude better than NRC requirements Passes with addition of 0.5 wt% Omens Corning glass fibers

Free Liquids:

No free liquid in final waste form

Chemical Durability:

Passed all EPA and NRC lab-scale tests Passed all EPA and NRC lab-scale tests

Compositional Flexibility:

No gas generation during 10⁸ rad test

Gas Generation:

RCRA Compliance:

--

Conclusions:

Sulfur polymer cement resists attack by most acids and salts.

This and other facts suggest longevity. SPC gains strength

when subjected to high radiation, which also suggests longevity. SPC can pass the EPA's TCLP with heavy

loadings of toxic metals and no volatilization of toxic metals

in the process.

NO. 6

TITLE:

Durability of Incinerator Ash Waste Encapsulated in Modified

Sulfur Cement

AUTHORS:

P. D. Kalb, J. H. Heiser III, R. Pietrzak, and P. Colombo

PUBLICATION:

BNL-45292, 1991 Incineration Conference, Knoxville, TN

DATE:

1991

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY.

Brookhaven National Laboratory completed durability tests with SPC laden with mixed waste fly ash. Tests completed were those prescribed by the NRC; specifically, the tests were compressive strength, biodegradation, irritation, water immersion, thermal cycling, and leaching. Incinerator hearth ash and fly ash from the rotary-kiln incinerator at Rocky Flats Plant had no problem passing the tests with a 43 wt% loading in SPC. Fly ash from the INEL's WERF were loaded at the same ratio, but the high concentrations of soluble metal salts tended to deteriorate in the immersion test. The same stabilized waste was subjected to

EPA's TCLP test with successful results.

Waste Form:

Sulfur polymer cement

Waste Type:

RFP ash and INEL ash (mixed waste)

Waste Loading:

43 wt%

Development Status:

Compressive Strength:

4,430 psi (30.5 MPa) at maximum ash loading of 43 wt%

Thermal Stability:

No significant change in compressive strength

Radiation Stability:

Passed tests

Biological Stability: Leach Resistance:

No visible microbial growth of either bacteria or fungi 5 to 8 orders of magnitude slower than NRC leach index

Immersion Stability:

Glass fibers required to pass with one ash tested

Free Liquids:

None

Chemical Durability:

Passed all tests

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Passed TCLP test with 43 wt% of mixed waste flyash

NO. 6 (cont.)

Conclusions:

Compressive strength increased with increased waste loadings (4,430 psi at 43 wt% loading). Had to add glass 0.5 wt% fibers in the concrete to pass immersion test with one of the ashes tested (contained extremely high concentrations of soluble metal salts).

Comparison of Modified Sulfur Cement and Hydraulic Cement

for Encapsulation of Radioactive and Mixed Wastes

AUTHORS:

P. D. Kalb; J. H. Heiser III; R. Pietrzak; P. Colombo

PUBLICATION:

Twelfth Annual U.S. DOE Low-Level Waste Management

Conference

DATE:

1991

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Modified sulfur cement (SPC) is compared to hydraulic cements in its capabilities as radioactive and mixed waste stabilization agent. SPC is a thermoplastic that melts at 120°C and requires no activator, while hydraulic cements do require an activator. At Brookhaven National Laboratory they compared the loadings of four divergent wastes that could be stabilized in the 2 cements to EPA standards. The four wastes were loaded in SPC and

EPA standards. The four wastes were loaded in SPC and hydraulic cements. SPC was capable of passing the TCLP with the following waste loadings: incinerator bottom ash, 1.4 wt%; boric acid, 2.6 wt%; incinerator fly ash, 2.7 wt%; and sodium sulfate, 6.0 wt%. The tests showed that an average of 3.2 times more waste by volume could be placed in SPC than in portland cement. It was concluded that untreated nitrate salts and ion-exchange resins could not be successfully stabilized in SPC.

Waste Form:	Sulfur polymer of	ement		
Waste Type:	Sodium sulfate,	fly ash,	bottom ash,	boric acid
Waste Loading: ^a	40(9)	43(16)	43(40)	40(15)
Development Status:	In earliest stages	of testing and		(20)
Compressive Strength: ^a	4300(3000)	4200(4000)	6500(4000)	2000(1400)
Thermal Stability: ^b	4300(3700)	4200(2800)	6500(4700)	2000(2200)
Radiation Stability:				
Biological Stability:				
Leach Resistance:	each Resistance: 4 to 8 orders of magnitude better than NRC leach index			each index
Immersion Stability: ^c	4300(3000)	4300(4000)	6500(4000)	2000(1400)

a. Expressed in terms of weight percent. Unbracketed is for SPC and bracketed is for portland cement.

b. Before cycling is unbracketed and after cycling is bracketed.

c. 60Co is unbracketed and 137Cs is bracketed.

NO. 7 (cont.)

Free Liquids:

None

Chemical Durability:

Compositional Flexibility: Gas Generation:

y: --

RCRA Compliance:

Passed TCLP

Conclusions:

SPC will accommodate more waste than portland cement

with higher compressive strength.

Encapsulation of Mixed Radioactive and Hazardous Waste

Contaminated Incinerator Ash in Modified Sulfur Cement

AUTHORS:

P. D. Kalb; J. H. Heiser III; P. Colombo

PUBLICATION:

BNL-43691, Incineration Conference 1990, San Diego, CA

DATE:

1990

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Modified sulfur cement (SPC) was tested with mixed waste fly ash from the INEL's WERF. Wet chemical and solid phase waste characterization analyses showed high concentrations of lead and cadmium and other soluble metal salts in the fly ash. The EPA's TCLP test was passed with a 43 wt% loading of the fly ash after adding 7 wt% sodium sulfide, which enhanced the retention of the soluble metal salts. This work was completed at Brookhaven

National Laboratory.

Waste Form:

Sulfur polymer cement

Waste Type:

Mixed waste fly ash containing 7.5 wt% lead and 0.2 wt%

cadmium

Waste Loading:

43 wt%

Development Status:

Early stages of testing

Compressive Strength:

Exceeds 4,000 psi at 43 wt% loading

Thermal Stability:

icima Stability.

Radiation Stability:

Biological Stability:

--

Leach Resistance:

--

Immersion Stability: Free Liquids:

--

Chemical Durability:

__

Chemical Durability.

--

Compositional Flexibility:

--

Gas Generation:

--

RCRA Compliance:

Passed TCLP test at 43 wt% loading; well below EPA

concentration criteria for delisting

Conclusions:

Addition of 7 wt% sodium sulfide allowed more of toxic-

metal-bearing ash to be added and pass the TCLP test.

Sulfur Construction Materials

AUTHORS:

W.C. McBee; T.A. Sullivan; H.L. Fike

PUBLICATION:

United States Department of the Interior Bureau of Mines Bulletin

678

DATE:

1985

ORGANIZATION:

U.S. Bureau of Mines

SUMMARY:

This report on SPC takes it from prehistoric times when elemental sulfur was used as a cement through its development as a modern cement, with some exceptional qualities. Discussed in this report are SPC's strengths and weaknesses, safety considerations, chemical reactions, and effects of aggregates. Charts present curves on viscosity dependency, strength, differential scanning calorimetry thermograms, linear thermal-expansion data, aggregate gradation, stress strain, compressive strength, load deflection, moisture, freeze-thaw durability, and others. Lists are provided that define the success of SPC in various acids and salts, and the time of exposure.

Waste Form:

Sulfur polymer cement

Waste Type:

Waste Loading:

Development Status:

SPC developed 13 years earlier

Compressive Strength:

Thermal Stability:

Successfully resists freeze-thaw cycles

Radiation Stability:

Biological Stability:

No reaction

Leach Resistance:

Immersion Stability:

Routinely used as tanks for acid and salt solutions

Free Liquids:

None; impermeable to water

Chemical Durability:

Resists most acids and salts that destroy Portland cement

Compositional Flexibility:

Resists most acids and salts that destroy Portland cement

Gas Generation:

RCRA Compliance:

Conclusions:

This report does not discuss encapsulation of wastes, but indirectly addresses the problem that has plagued the waste

stabilization industry: concrete degradation.

CERAMIC SUMMARIES

CERAMIC SUMMARIES

NO. 1

TITLE:

An ICPP Aluminum Phosphate Ceramic Waste Form:

Synthesis and Room-Temperature Aqueous Stability

AUTHORS:

Paul Silva; Barry E. Scheetz

PUBLICATION:

Advances in Ceramics 8, American Ceramic Society, 1984

DATE:

1974

ORGANIZATION:

Pennsylvania State University

SUMMARY:

Describes the synthesis and dissolution behavior of a berlinitebased (AIPO₄) ceramic encapsulant for the high-alumina nuclear

waste at the Idaho Chemical Processing Plant (ICPP).

Waste Form:

Aluminum phosphate (berlinite) low-temperature ceramic

Waste Type:

Processing Plant (ICPP)

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

High-alumina nuclear waste at the Idaho Chemical

42% (Simulated ICPP alumina waste)

Very low for Cs and Sr over the pH range 3-9

Very low solubility (<10⁻⁵ mol/l) in the pH range 3-9

None

The extreme insolubility of berlinite, coupled with the very

low processing temperatures makes this a very attractive candidate waste form for high-alumina defense wastes.

ORGANIC BINDER SUMMARIES

ORGANIC BINDER SUMMARIES INDEX

NO. 1	AUTHOR: TITLE: PUBLICATION: DATE:	DOW Polymer Literature Provided by Heather Holmes Burns on CIF Project, 5/22/92
NO. 2	AUTHOR: TITLE: PUBLICATION: DATE:	Low-Level Radioactive Waste Volume Reduction and Stabilization Technologies and Resource Manual DOE/LLW-76T 12/88
NO. 3	AUTHOR: TITLE: PUBLICATION: DATE:	Treatment of Spent Ion-Exchange Resins for Storage and Disposal Technical Report Series No. 254 1985
NO. 4	AUTHOR: TITLE: PUBLICATION: DATE:	A Waste Inventory Report for Reactor and Fuel Fabrication Facility Wastes ONWI-20 1979
NO. 5	AUTHOR: TITLE: PUBLICATION: DATE:	Akins, M.J.; Costomiris, G.; Delete, P.; Wilson, R.B. The Options for Solidifying Low Level Waste Nuclear Engineering International, Vol. 28 3/83
NO. 6	AUTHOR: TITLE: PUBLICATION: DATE:	Barletta, R.; Bowerman, B.; Davis, R.; Shea, C. Biodegradation Testing of Bitumen BNL-NUREG-38999 1986
NO. 7	AUTHOR: TITLE: PUBLICATION: DATE:	Bennet, B., et al. Conditioning Options for Magnox Fuel Element Debris Radioactive Waste Management 1984

NO. 8	AUTHOR: TITLE: PUBLICATION: DATE:	Buckley, L.; Clegg, B.; Oldham, W. Microbial Activity on Bituminized Radioactive Waste Radioactive Waste Management and the Nuclear Fuel Cycle, Vol. 6 3/85
NO. 9	AUTHOR: TITLE: PUBLICATION: DATE:	Colombo, P.; Neilson Jr., R.M. Properties of Radioactive Wastes and Waste Containers-First Topical Report BNL-NUREG-50957 1979
NO. 10	AUTHOR: TITLE: PUBLICATION: DATE:	Colombo, P.; Neilson Jr., R.M. Properties of Radioactive Wastes and Waste Containers BNL-NUREG-50957 1977
NO. 11	AUTHOR: TITLE: PUBLICATION: DATE:	Colombo, P., Neilson Jr., R.M. Critical Review of the Properties of Solidified Radioactive Waste BNL-NUREG-50591 1976
NO. 12	AUTHOR: TITLE: PUBLICATION: DATE:	Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P. Accelerated Leach Test(s) Program Annual Report BNL-52042 1986
NO. 13	AUTHOR: TITLE: PUBLICATION: DATE:	Fenner, O.H. Chemical and Environmental Properties of Plastics and Elastomers Handbook of Plastics and Elastomers, C.A. Harper, ed. 1975
NO. 14	AUTHOR: TITLE: PUBLICATION: DATE:	Filter, H.E. Vinyl Ester Solidification of Low-Level Radioactive Wastes 1979

NO. 15	AUTHOR: TITLE: PUBLICATION: DATE:	Fitzgerald, C.L.; Godbee, H.W.; Blanco, R.E. The Feasibility of Incorporating Radioactive Wastes in Asphalt or Polyethylene Nuclear Applications and Technology, Vol. 9, No. 12 1970
NO. 16	AUTHOR: TITLE: PUBLICATION: DATE:	Franz, E.M.; Colombo, P. Waste Form Evaluation Program, Final Report BNL-51954 9/84
NO. 17	AUTHOR: TITLE: PUBLICATION: DATE:	Franz, E.M.; Colombo, P. Waste Form Evaluation Program, Final Report BNL-51954 9/84
NO. 18	AUTHOR: TITLE: PUBLICATION: DATE:	Franz, E.M.; Colombo, P. Waste Form Evaluation Program, Final Report BNL-51954 9/84
NO. 19	AUTHOR: TITLE: PUBLICATION: DATE:	Franz, E.M.; Colombo, P. Waste Form Evaluation Program, Final Report BNL-51954 9/84
NO. 20	AUTHOR: TITLE: PUBLICATION: DATE:	Franz, E.M.; Heiser, J.H.; Colombo, P. Solidification of Problem Wastes, Annual Progress Report BNL-52078 1987
NO. 21	AUTHOR: TITLE: PUBLICATION: DATE:	Fuhrmann, M.; Neilson, R.M.; Colombo, P. A Survey of Agents and Techniques Applicable to the Solidification of LLW BNL 51521 12/81
NO. 22	AUTHOR: TITLE: PUBLICATION: DATE:	Graves, J.J. The Chemical Cleaning of Dresden Unit 1 Transactions of the American Nuclear Society, Vol. 28 1978

NO. 23 **AUTHOR:** Kalb, P.D.; Colombo, P. TITLE: An Economic Analysis of a Volume Reduction/Polyethylene Solidification System for Low-Level Radioactive Wastes PUBLICATION: BNL-51866 DATE: 1/85 NO. 24 AUTHOR: Kalb, P.D.; Colombo, P. Polyethylene Solidification of Low-Level Wastes TITLE: BNL-51867 PUBLICATION: DATE: 1984 NO. 25 AUTHOR: Kalb, P.D.; Heiser, J.H.; Colombo, P. Polyethylene Encapsulation of Nitrate Salt Wastes: Waste TITLE: Form Stability, Process Scale-up, and Economics PUBLICATION: BNL-52293 DATE: 7/91 NO. 26 AUTHOR: Kopajtic, Z.; Laske, D.; Linder, H.P.; et al. Characterization of Bituminous Intermediate-Level Waste TITLE: **Products** Materials Research Society Symposium Proceedings, Vol. PUBLICATION: 21 DATE: 1989 NO. 27 AUTHOR: Kopajtic, Z.; Laske, D.; Linder, H.P.; et al. Characterization of Bituminous Intermediate-Level Waste TITLE: **Products** Materials Research Society Symposium Proceedings, Vol. **PUBLICATION:** 21 DATE: 1989 NO. 28 **AUTHOR:** Makhlis, F.A. TITLE: PUBLICATION: Radiation Physics and Chemistry of Polymers

1975

DATE:

D-178

NO. 29	AUTHOR: TITLE: PUBLICATION: DATE:	Mattus, A.J.; Kaczmarsky, M.M. Laboratory Performance Testing of an Extruded Bitumen Containing a Surrogate, Sodium Nitrate-Based, Low- Level Aqueous Waste Proceedings of the Symp. on Waste Management at Tucson, AZ, 3/1-5/87
NO. 30	AUTHOR: TITLE: PUBLICATION: DATE:	Miyanoga, I.; Sakata, S.; Ito, A.; Amano, H. Development of Radioactive Waste Management at the Japan Atomic Energy Research Institute Nuclear Power and Its Fuel Cycle, Vol. 4, IAEA CN- 36/156 1977
NO. 31	AUTHOR: TITLE: PUBLICATION: DATE:	Moriyama, N.; Dojiri, S.; Honda, T. Solidification of Powdered Ion Exchange Resins with Polyethylene Nuclear and Chemical Waste Management, Vol. 3, No. 2 1982
NO. 32	AUTHOR: TITLE: PUBLICATION: DATE:	Moriyama, N. Incorporation of an Evaporator Concentrate on Polyethylene for BWR Nuclear Chemical Waste Management 1982
NO. 33	AUTHOR: TITLE: PUBLICATION: DATE:	Moriyama, N. Solidification of Powdered Ion Exchange Resins with Polyethylene Nuclear Chemical Waste Management 1982
NO. 34	AUTHOR: TITLE: PUBLICATION: DATE: 1982	Moriyama, N.; Dojiri, S.; Matsuzuru, H. Incorporation of BWR's Evaporator Concentrate in Polyethylene Nuclear and Chemical Waste Management, Vol. 3, No. 1

NO. 35	AUTHOR: TITLE: PUBLICATION: DATE:	Muurinen, A.K.; Vuorinen, U.S. Testing of the Bituminized Ion-Exchange Resin Waste Products From a Nuclear Power Plant International Atomic Energy Agency 1981
NO. 36	AUTHOR: TITLE: PUBLICATION:	Neilson Jr., R.M.; Colombo, P. Properties of Radioactive Waste Containers Progress Report No. 11, BNL-NUREG-51042
	DATE:	1979
NO. 37	AUTHOR: TITLE:	Neilson Jr., R.M., Colombo, P. Solidification of Liquid Concentrate and Solid Waste Generated as By-Products of the Liquid Radwaste Treatment Systems in Light Water Reactors
	PUBLICATION: DATE:	BNL-NUREG-22839 1977
NO. 38	AUTHOR: TITLE:	Neilson, Jr., R.M.; Colombo, P. Solidification of Liquid Concentrate and Solid Waste Generated as By-Products of the Liquid Radwaste Treatment System in Light Water Reactors
	PUBLICATION: DATE:	BNL-NUREG-22839 1977
NO. 39	AUTHOR: TITLE: PUBLICATION:	Snellman, M.; Valkiainen, M. Long-Term Behavior of Bituminized Waste Proceedings of the Symposium on Waste Management at Tucson, AZ
	DATE:	3/1-5/87
NO. 40	AUTHOR: TITLE:	Soo, P.; Milian, L.W.; Piciulo, P.L. The Leachability and Mechanical Integrity of Simulated Decontamination Resin Wastes Solidified in Cement and Vinyl Ester-Styrene
	PUBLICATION: DATE:	Topical Report, BNL-NUREG-52149 1988

NO. 41	AUTHOR: TITLE: PUBLICATION: DATE:	Letter from M. Tokar (NRC) to O. Wong encloses NRC Technical Evaluation Report on USE-61-002-P High-Strength Asphalt Solidification Process for Low-Level Radioactive Wastes
NO. 42	AUTHOR: TITLE:	Letter from M. Tokar (NRC) to Klein (WasteChem) encloses NRC Technical Evaluation Report on VRS-002 "10 CFR 61" Waste Form Conformance Program for Solidified Process Waste Products Produced by a WasteChem Corporation Volume Reduction and Solidification (VRS) System
	PUBLICATION: DATE:	1/22/88
NO. 43	AUTHOR: TITLE: PUBLICATION: DATE:	U.S. Environmental Protection Agency Toxicity Characteristic Leaching Procedure, 40 CFR 261 3/29/90
NO. 44	AUTHOR: TITLE: PUBLICATION: DATE:	U.S. Department of Transportation 49 CFR 173, Appendix C, Fed. Reg. 46, 31294 6/15/81
NO. 45	AUTHOR: TITLE: PUBLICATION: DATE:	Valkiainen, M.; Vuorinen, U. Long-Term Properties of TVO's Bituminized Resins YJT-89-06 6/89

NO. 1

TITLE:

DOW Polymer

AUTHORS:

PUBLICATION:

Literature Provided by Heather Holmes Burns on CIF Project

DATE:

May 22, 1992

ORGANIZATION:

SUMMARY:

Discussion of waste form and process consideration.

Waste Form:

DOW polymer (vinyl ester resin)

Waste Type:

Sodium sulfate salts and 5% ash fines

Waste Loading:

Waste/binder = 2.0/1.0

Development Status:

Commercial

Compressive Strength:

Solidified waste forms meet the NRC structural stability

requirements.

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Recent hazardous leachability test (TCLP tests) have proven

that DOW Polymer waste forms can meet the EPA requirements for disposal for some waste types.

Immersion Stability:

Chemical Durability:

Compositional Flexibility:

The solid waste product is a uniform mixture of finely

dispersed liquid particles in a continuous matrix.

Free Liquids:

When cured there is no free water

Gas Generation:

RCRA Compliance:

Conclusions:

DOW system is capable of safely processing wet solid

radioactive waste generated by light water reactors.

NO. 2

TITLE:

Low-Level Radioactive Waste Volume Reduction and

Stabilization Technologies and Resource Manual

AUTHOR:

PUBLICATION:

DOE/LLW-76T

DATE:

December 1988

ORGANIZATION:

SUMMARY:

Waste volume minimized during solidification process. Water

content of liquid waste streams is removed during the

solidification process.

Waste Form:

Bitumen

Waste Type:

Various (summary of systems) compatible with most low-

level radioactive waste streams.

Waste Loading:

High waste loading capability

Development Status:

.

Compressive Strength:

Documented results (ASTM D-1074) show a range of

compressive strengths between 55 and 300 psi with oxidized

bitumen generally higher.

Thermal Stability:

Test Method: ASTM B553. Data supported conclusion that

thermal cycling has no effect on bituminized waste forms.

Radiation Stability:

Samples exposed to total dose of 10⁸ rad IAW NRC tests.

All samples stabilized using bitumen performed well during

radiation testing. Post-test compressive strengths were unchanged compared to pretest. Radiation has little or no

effect on waste stabilized in bitumen.

Biological Stability:

Initial biodegradation tests detected bacterial growth on some test samples. Bitumen vendors, IAW, the NRC BTP,

are conducting long-term tests to determine effects of growth

on waste form stability.

Leach Resistance:

Test Method: ANS 16-1. Typical wastes with 60 wt% waste

had range of leach indices from 8 to 14.

NO. 2 (cont.)

Immersion Stability: Bitumen waste forms containing certain waste streams may

crack or swell when exposed to water. Immersion can have a severe impact on compressive strength of waste forms. On the average, the test showed a decrease in compressive

strength of 10-50%. The loss of compressive strength was directly proportional to increase in the amount of waste

loading.

Free Liquid:

None

Chemical Durability:

--

Compositional Flexibility:

--

Gas Generation:

--

RCRA Compliance:

Some types of bitumen can be ignited at temperatures as low

as 315° C

Conclusions:

Bitumen's performance in the tests prescribed in the NRC BTP indicates that bitumen is a good stabilization agent for most low-level waste streams. Its potential application to wastes other than those reported in the reviewed topical reports, including aqueous mixed, or hazardous wastes, must

be evaluated on a case-by case basis.

NO. 3

TITLE:

Treatment of Spent Ion-Exchange Resins for Storage and

Disposal

AUTHOR:

PUBLICATION:

Technical Report Series No. 254

DATE:

1985

ORGANIZATION:

International Atomic Energy Agency

SUMMARY:

For a 55 wt% loading of ion-exchange resins, volumes are 0.75 times the initial volume of ion-exchange resin. For ion-exchange ash in bitumen, final volumes are less than initial volumes.

Waste Form:

Bitumen (direct-distilled, oxidized, cracked, or emulsified)

Waste Type:

Spent ion-exchange resins

Waste Loading:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Bitumen can be successfully used for low and medium

activity when the radiation dose does not exceed 10⁷ Gy.

Some H₂ generation.

Biological Stability:

Any bacteriological attack can be regarded as generally

insignificant.

Leach Resistance:

Leach rates generally increase with harder bitumens, increased waste loading, and residual water in the waste

form.

Immersion Stability:

Ion-exchange resins will absorb water with time once they are disposed of, although bitumen will impede this process.

The swelling could lead to damage to the waste form

repository.

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

NO. 4

TITLE:

A Waste Inventory Report for Reactor and Fuel Fabrication

Facility Wastes

AUTHOR:

PUBLICATION:

ONWI-20

DATE:

1979

ORGANIZATION:

ONWI Library

SUMMARY:

Description of the physical and chemical characteristics of waste

forms generated at light-water-cooled nuclear reactor power

plants and nuclear fuel fabrication facilities.

Waste Form:

Urea formaldehyde

Waste Type:

Liquid waste

Waste Loading:

1:1

Development Status:

Commercial

Compressive Strength:

50 kg/cm²

Thermal Stability:

--

Radiation Stability:

Moderate damage at 3 x 10⁶ rad; severe damage at 2 x 10⁷

rad

Biological Stability:

Susceptible to biodegradation

Leach Resistance:

Poor for 85Sr and 137Cs

Immersion Stability:

--

Free Liquids:

Produced during polymerization as low as 1%

Chemical Durability:

Resistant to oils, solvents, and grease, but dissolves in strong

alkalis and acids

Compositional Flexibility:

Good in sealed system, water loss when exposed to air

Gas Generation:

Hydrogen gas produced during radiolysis

RCRA Compliance:

Self-extinguishing

Conclusions:

Means for the stabilization of low-level waste containing free liquids are needed to minimize the potential release of radionuclides during handling, offsite shipping, and disposal.

NO. 5

The Options for Solidifying Low Level Waste

AUTHOR:

TITLE:

M.J. Akins; G. Costomiris; P. Delete; R.B. Wilson

PUBLICATION:

Nuclear Engineering International, Vol. 28

DATE:

March 1983

ORGANIZATION:

SUMMARY:

Solidification of resin in bitumen results in volume reduction. Ash in bitumen and evaporator concentrates in bitumen do not

result in volume reduction.

Waste Form:

Bitumen

Waste Type:

Various (summary of studies)

Waste Loading:

--

Development Status: Compressive Strength:

Bitumen at ambient temperature exhibits good mechanical

strength. On impact, the material will deform but will not normally break apart. The material will flow at high

temperatures.

Thermal Stability:

Bitumen has demonstrated good thermal stability, but it is subject to melting/flowing at elevated temperatures which

could be reached if exposed to fire or very hot sun-

conditions.

Radiation Stability:

Bitumen can be successfully used for solidification of low and intermediate level wastes when integrated radiation dose does not exceed ~10⁹ rad. As the dose approaches 10⁹ rad, the chemical structure breaks down, leading to gas generation

and a volume increase.

Biological Stability:

Based on the amount of organic constituents that leach from test specimens, it was determined that bitumen is not likely

to be subject to significant biological attack.

Leach Resistance:

Some test results indicate bitumen leach rates are an order of magnitude lower than cements. However, if catastrophic swelling occurs as a result of immersion, the leach resistance is negligible.

Immersion Stability:

intersion Stability.

None

Free Liquids:

Chemical Durability:

--

NO. 5 (cont.)

Compositional Flexibility: Has low sensitivity to variations on waste feed and waste to

binder ratio, but oil in feed must be <1%.

Gas Generation:

RCRA Compliance:

Ignition temperature for pure bitumen is ~600°F, and 750 to

900°F when mixed with radioactive waste.

Conclusions: Bitumen has some advantages and some disadvantages when

compared to other solidification agents. Each system must be evaluated on its merits in conjunction with all the specific

parameters of its intended use.

NO. 6

TITLE:

Biodegradation Testing of Bitumen

AUTHOR:

P. Barletta; B. Bowerman; R. Davis; C. Shea

PUBLICATION:

BNL-NUREG-38999

DATE:

1986

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Waste Form:

Bitumen (oxidized)

Waste Type:

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation: RCRA Compliance:

Conclusions:

N/A, the bitumen was tested without loading

Used Bartha-Pramer test method. See summary for results.

Environmental factors have very little effect on the rate of

biodegradation of bitumen. The mean rate is on the order of 5.5 x 10⁻⁴ cm/yr. Summary of other studies indicates

microbial attack is more likely under aerobic conditions, and that many fungal and bacterial strains can degrade bitumen.

NO. 7

TITLE:

Conditioning Options for Magnox Fuel Element Debris

AUTHOR:

B. Bennet; et al.

PUBLICATION:

Radioactive Waste Management

DATE:

1984

ORGANIZATION:

British Nuclear Energy Society, London

SUMMARY:

Work carried out on processes for the treatment of fuel element

debris arising at Magnox nuclear power plants.

Waste Form:

Epoxy resin

Waste Type:

Magnox fuel element debris

Waste Loading:

40 vol%

Development Status:

Commercial

Compressive Strength:

 $19 \text{ MPa} \pm 1$

Thermal Stability:

Reduction of compressive strength to 17 MPa \pm 1 after 20

freeze/thaw cycles

Radiation Stability:

Increased compressive strength to 20 MPa ± 1 after

irradiation to 1,000 Mrads

Biological Stability:

Leach Resistance:

For 137 Cs: 7 days = 1.0 x 10 $^{-4}$ cm/day; 100 days = 1.2 x 10 $^{-5}$

cm/day

Immersion Stability:

Decreased compressive strength to 17 MPa ± 1 after

immersion inversion

Free Liquids:

Chemical Durability:

Compositional Flexibility:

90°C for 24 hours: 0.7 mL/kg,

Gas Generation: RCRA Compliance:

Spontaneous ignition at 600°

Conclusions:

Epoxy resins exhibit superior chemical stability and leach

resistance.

NO. 8

TITLE:

Microbial Activity on Bituminized Radioactive Waste

AUTHOR:

L. Buckley; B. Clegg; W. Oldham

PUBLICATION:

Radioactive Waste Management and the Nuclear Fuel Cycle, Vol.

6

DATE:

March 1985

ORGANIZATION:

SUMMARY:

Waste Form:

Bitumen

Waste Type:

Nitrate salts

Waste Loading:

38 wt%

Development Status: Compressive Strength:

__

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

Exposed to pseudomonas, bacillus, and other bacteria chosen

for their affinity for bitumen.

Leach Resistance:

Test Method: "Leach Testing of Immobilized Radioactive Waste Solids, A Proposal for a Standard Method," E. Hespe, 1971. There were no statistical differences in the releases from the specimens inoculated with the culture, and those

which were not.

Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

--

Gas Generation:

RCRA Compliance

--

Conclusions:

Statistically, there appeared to be no effect of microbial

action on the bituminized waste forms.

Properties of Radioactive Wastes and Waste Containers-First

Topical Report

AUTHOR:

P. Colombo; R.M. Neilson, Jr.

PUBLICATION:

BNL-NUREG-50957

DATE:

1979

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Properties of waste forms and packages, solidification agents, and

various processing parameters are discussed.

Waste Form:

Urea formaldehyde

Waste Type:

Bead resin waste slurry

Waste Loading:

Waste/UF = 2.6

Development Status:

Commercial

Compressive Strength:

ASTM C39-72: 78 psi \pm 5

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

High concentration of organic carbon in free standing water IAEA Leach Test: 137 Cs = 1.4 x 10-6 cm/day; 85 Sr = 2.4 x

Leach Resistance: IAEA Leach T

00 /1

10-8 cm/day

Immersion Stability:

. __

Free Liquids:

Often formed during polymerization

Chemical Durability:

micai Durability:

Compositional Flexibility:

Gas Generation:

Weight loss due to water evaporation in ambient air

 $.915 \text{ cm}^3/\text{g} \text{ from } 10^7 \text{ R} \text{ at } 104 \text{ R/hr}; .756 \text{ cm}^3/\text{g} \text{ from } 10^7 \text{ R} \text{ at } 10^7 \text{ R}$

105 R/hr

RCRA Compliance:

Conclusions:

Flammability: ASTM D635-74; self-extinguishing

This information is required to assess the safety and

environmental impacts of radioactive waste disposal and to

support quality control and assurance standards for

radioactive waste treatment systems in operating facilities.

NO. 10

TITLE:

Properties of Radioactive Wastes and Waste Containers

AUTHOR:

P. Colombo; R.M. Nielson, Jr.

PUBLICATION:

BNL-NUREG-50957

DATE:

1977

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

The properties of waste forms and packages resulting from the solidification of liquid concentrate and solid wastes generated as by-products of the liquid radioactive treatment systems in commercial BWRs and PWRs have been determined.

Waste Form:

Vinyl ester-styrene

Waste Type:

BWR chemical regenerative waste

Waste Loading:

Waste/binder = 1.65

Development Status:

Commercial

Compressive Strength:

ASTM C39-72: 2140 lb/in.2

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

After four days immersion, small amounts of organic carbon

was detected.

Leach Resistance:

Cumulative fraction release: Cs = 0.0548; Sr = 0.0513; Co

= 0.155

Immersion Stability:

--

Free Liquids:

None

Chemical Durability:

Non-corrosive

Compositional Flexibility:

Weight loss due to evaporation of water

Gas Generation:

21 molecules/100 eV at an exposure of 10⁵ rad

RCRA Compliance:

--

Conclusions:

Vinyl ester-styrene compares favorably with other types of

solidifying agents.

NO. 11

TITLE:

Critical Review of the Properties of Solidified Radioactive Waste

AUTHOR:

P. Colombo; R.M. Neilson, Jr.

PUBLICATION:

BNL-NUREG-50591

DATE:

1976

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Review and evaluation of existing information on the properties

of various solidified wastes and waste packages being generated

by commercial nuclear power reactors.

Waste Form:

Urea formaldehyde

Waste Type and Loading:

Deep bed demineralizer resins

2.2%

Powdered demineralizer resins

2.6% Weight

25 wt% sodium sulfate

1.6%

Borates

1.5% to

Diatomaceous earth

2.7% UF

Ratio

Development Status:

Commercial

Compressive Strength:

Thermal Stability:

Poor due to high water content

Radiation Stability:

Mild damage at 3 x 10⁶ rad; moderate to severe damage at 2

 $\times 10^7 \text{ rad}$

Biological Stability:

Leach Resistance:

Cs - 3×10^{-2} to 2×10^{-1} fractional per day

Immersion Stability:

Free Liquids:

.5% to 1% by volume, slightly acidic

Chemical Durability:

Resists chemical attack

Compositional Flexibility:

Prolonged drying leads to degradation of strength and

increased leachability.

Gas Generation:

Low toxicity gases produced (.5 molecules/100 eV)

RCRA Compliance:

Self extinguishing

Conclusions:

Conclusions are drawn regarding the current state of

knowledge of solidified reactor waste properties.

Accelerated Leach Test(s) Program Annual Report

AUTHOR:

D.R. Dougherty; R.F. Pietrzak; M. Fuhrmann; P. Colombo

PUBLICATION:

BNL-52042

DATE

1.986

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Leachability evaluation of various solidification/waste form

combination.

Waste Form:

Bitumen

Waste Type:

Sodium tetraborate (produced by neutralizing boric acid with

sodium hydroxide)

Waste Loading:

40 wt%

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

129 days: conductance (μ mhos/cm) = 1630

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

For waste form samples containing 40 wt% salt, the

cumulative fraction released was 450 times greater than the

baseline after 129 days. This is due to the number of

interconnected salt particles providing a pathway for water.

NO. 13

TITLE:

Chemical and Environmental Properties of Plastics and

Elastomers

AUTHOR:

O.H. Fenner

PUBLICATION:

Handbook of Plastics and Elastomers, C.A. Harper, ed.

DATE:

1975

ORGANIZATION:

McGraw-Hill, New York

SUMMARY:

Provides a listing of physical properties and characteristics for

various plastics and elastomers.

Waste Form:

Polyethylene

Waste Type:

--

Waste Loading:

--

Development Status:

--

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

__

Biological Stability: Leach Resistance:

--

Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

Compositional Flexibility:

Unprotected polyethylene undergoes rapid ultraviolet

degradation.

Gas Generation:

--

RCRA Compliance:

If ignited, polyethylene burns in a slow controlled manner at

about 1 in./min. under ASTM D-635 conditions.

Conclusions:

Control of environmental exposure is critical to the integrity

of polyethylene.

Vinyl Ester Solidification of Low-Level Radioactive Wastes

AUTHOR:

H.E. Filter

PUBLICATION:

DATE:

1979

ORGANIZATION:

Dow Chemical Company

SUMMARY:

Waste Form:

Vinyl Ester-Styrene

Waste Type:

Waste Loading:

Development Status:

Commercial

Compressive Strength:

Thermal Stability:

Radiation Stability:

Low exposures have no significant effect on leachability. Exposures of 4 x 108 and 6 x 108 rad as much as tripled the leachability; however, this was still below a cumulative release of 5% in 100 days. Similar doses had no effect on

the leachability of ⁶⁰Co.

Biological Stability:

Leach Resistance:

Prior heating to 538°C for ten minutes resulted in an acceleration of initial leaching of ¹³⁷Cs; however, the overall cumulative fraction leached began to approach that of the control after 90 days.

Immersion Stability:

Free Liquids:

Chemical Durability: Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

The Dow Polymer Solidification Process has advantages of

low leachability and radiation stability.

NO. 15

TITLE:

The Feasibility of Incorporating Radioactive Wastes in Asphalt or

Polyethylene

AUTHOR:

C.L. Fitzgerald; H.W. Godbee; R. E. Blanco

PUBLICATION:

Nuclear Applications and Technology, Vol. 9, No. 12

DATE:

1970

ORGANIZATION:

Oak Ridge National Laboratory

SUMMARY:

Thermoplastic of chemical formula (CH₂-CH₂)^x is melted and mixed with waste to form homogeneous solid (solid plastic

monolith).

Waste Type:

Sodium borate, organic and inorganic solvents, low-density

polyethylene lab-scale

Waste Form:

Waste Loading: **Development Status:** 40 wt% evaporator concentrates, 50 wt% tributyl-phosphate Experimental, limited application (at time of publication)

Compressive Strength:

300 kg/cm²

Thermal Stability:

Radiation Stability:

10⁶ rad, no effect; 10⁷ - 10⁹ rad caused slight shrinkage and

discoloration

Biological Stability:

Leach Resistance:

Depends on waste type and loading, polyethylene type. Ranged from $3 \times 10^{-3} \text{ g/cm}^2$ day to $1.5 \times 10^{-6} \text{ g/cm}^2$ day.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

No gas was generated.

RCRA Compliance:

Conclusions:

Discusses feasibility of polyethylene for waste

encapsulation. Limitations of their results can be attributed to the fact that only two types (of the hundreds available) of polyethylene were used, and processing technology was not optimized (only thin film evaporator used, which is not

common practice in plastics industry).

NO. 16

TITLE:

Waste Form Evaluation Program, Final Report

AUTHOR:

E.M. Franz; P. Colombo

PUBLICATION:

BNL-51954

DATE:

September 1984

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Presents data for assessing the acceptability of polyethylene waste

forms to meet the requirements of 10 CFR 61.

Waste Form:

Polyethylene

Waste Type:

Sodium sulfate

Waste Loading:

50 wt%

Development Status:

Commercial ASTM D-1074: 2000 psi \pm 100

Compressive Strength: Thermal Stability:

ASTM B-553

Radiation Stability:

⁶⁰Co gamma radiation to 10⁸ rad at 3.6 x 10⁶ rad/hr then

compressive testing ASTM D-1074

Biological Stability:

ASTM G21 and G22

Leach Resistance:

ANS 16.1: leach index ⁸⁵Sr= 10.2, ¹³⁷Cs=9.9, ⁶⁰Co= 10.1

Immersion Stability:

54 wt%: 0.0% swelling after 90 days immersion in water

Free Liquids:

Chemical Durability: Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

The major criterion the waste form must meet after exposure

(immersion, irradiation, etc.) is a compressive strength ≥ 50

NO. 17

TITLE:

Waste Form Evaluation Program, Final Report

AUTHOR:

E.M. Franz; P. Colombo

PUBLICATION:

BNL-51954

DATE:

September 1984

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Presents data for assessing the acceptability of polyethylene waste

forms to meet the requirements of 10 CFR 61.

Waste Form:

Polyethylene

Waste Type:

Boric acid

Waste Loading:

35 wt%

Development Status:

Commercial

Compressive Strength:

ASTM D-1074: 1800 psi \pm 100

Thermal Stability:

ASTM B-553

Radiation Stability:

⁶⁰Co gamma radiation to 10⁸ rad at 3.6 x 10⁶ rad/hr then

compressive testing ASTM D-1074

Biological Stability:

ASTM G21 and G22

Leach Resistance:

Immersion Stability:

0.2% swelling after 90 days immersion in water

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

The major criterion the waste form must meet after exposure

(immersion, irradiation, etc.) is a compressive strength > 50

NO. 18

TITLE:

Waste Form Evaluation Program, Final Report

AUTHOR:

E.M. Franz; P. Colombo

PUBLICATION:

BNL-51954

DATE:

September 1984

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Presents data for assessing the acceptability of polyethylene waste

forms to meet the requirements of 10 CFR 61.

Waste Form:

Polyethylene

Waste Type:

Incinerator ash

Waste Loading:

20 wt%

Development Status:

Commercial

Compressive Strength:

ASTM D-1074: 1750 psi \pm 140

Thermal Stability:

ASTM B-553

Radiation Stability:

⁶⁰Co gamma radiation to 10⁸ rad at 3.6 x 10⁶ rad/hr, then

compressive testing ASTM D-1074

Biological Stability:

ASTM G21 and G22

Leach Resistance:

ANS 16.1 (25 wt%): leach index 85Sr=15.5, 137Cs=12.5,

⁶⁰Co=13.9

Immersion Stability:

25 wt%: 0.5% swelling after 90 days immersion in water

Free Liquids:

--

Chemical Durability:

**

Compositional Flexibility:

· --

Gas Generation:

RCRA Compliance: Conclusions:

The major criterion the waste form must meet after exposure

(immersion, irradiation, etc.) is a compressive strength > 50

NO. 19

TITLE:

Waste Form Evaluation Program, Final Report

AUTHOR:

E.M. Franz; P. Colombo

PUBLICATION:

BNL-51954

DATE:

September 1984

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Presents data for assessing the acceptability of polyethylene waste

forms to meet the requirements of 10 CFR 61.

Waste Form:

Polyethylene

Waste Type:

Ion exchange resin

Waste Loading:

10 wt%

Development Status:

Commercial

Compressive Strength:

ASTM D-1074: 2100 psi \pm 170

Thermal Stability:

ASTM B-553

Radiation Stability:

⁶⁰Co gamma radiation to 10⁸ rad at 3.6 x 10⁶ rad/hr, then

compressive testing ASTM D-1074

Biological Stability:

ASTM G21 and G22

Leach Resistance:

ANS 16.1: leach index 85Sr=16.2, 137Cs=18.2, 60Co= 13.6

Immersion Stability:

20 wt%: 0.0% swelling after 90 days immersion in water

Free Liquids:

--

Chemical Durability:

Compositional Flexibility: --

Gas Generation:

y. --

RCRA Compliance:

--

Conclusions:

The major criterion the waste form must meet after exposure

(immersion, irradiation, etc.) is a compressive strength > 50

Solidification of Problem Wastes, Annual Progress Report

AUTHOR:

E.M. Franz; J.H. Heiser; P. Colombo

PUBLICATION:

BNL-52078

DATE:

1987

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Development and evaluation of solidification systems for sodium

nitrate waste and compacted waste.

Waste Form:

Waste Type:

Polyethylene Sodium nitrate

Waste Loading:

30-70%

Development Status:

Laboratory scale

Compressive Strength:

ASTM D-695:

Compressive Strength (psi)

30 wt% 2370 50 wt% 1920 60 wt% 2200

70 wt%

1020

Thermal Stability:

Radiation Stability: Biological Stability:

Leach Resistance:

ANS 16.1:

Leach Index

30 wt% 11.1 50 wt% 9.7 60 wt% 9.0 70 wt% 7.8

Immersion Stability:

90 days in water:

Compressive Strength (psi)

30 wt% 2550 50 wt% 1920 60 wt% 2310 70 wt% 720

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Polyethylene waste forms exhibit good leaching

characteristics, high compressive strength (700-2,600 psi) and high leading efficiencies (70 wt% sodium nitrate)

A Survey of Agents and Techniques Applicable to the

Solidification of LLW

AUTHOR:

M. Fuhrmann; R.M. Neilson; P. Colombo

PUBLICATION:

BNL 51521

DATE:

December 1981

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Use of a twin screw extruder reported at Japan Atomic

Energy Research Institute, and in the Netherlands

Waste Stream:

Ion exchange resin beads

Waste Form:

Low-density polyethylene

Waste Loading:

50 wt% bead resin

Development Status:

Experimental, bench-scale

Compressive Strength:

300 kg/cm²

Thermal Stability:

Radiation Stability:

33% drop in compressive strength reported after gamma

irradiation dose of 108 rad.

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Polyethylene by itself does not spontaneously ignite on

heating to temperatures of 550°C.

Conclusions:

This is a literature study comparing solidification agents applicable to LLW. Report is a comprehensive overview of many solidification agents including hydraulic cements, bitumen, polyethylene, urea-formaldehyde, polyester and epoxy thermosetting polymers, mineralization processes, glass, polymer modified gypsum cement, and polymer impregnated concrete. Numerous figures and tables reprinted from original sources enhance readability.

NO. 22

TITLE:

The Chemical Cleaning of Dresden Unit I

AUTHOR:

J.J. Graves

PUBLICATION:

Transactions of the American Nuclear Society, Vol. 28

DATE:

1978

ORGANIZATION:

SUMMARY:

Discussion of Dow Solidification system use in decontaminating

a nuclear power reactor.

Waste Form:

Dow polymer

Waste Type:

Various wastes produced during decontamination of nuclear

power plants

Waste Loading:

Development Status:

Commercial

Compressive Strength: Thermal Stability:

--

Radiation Stability:

Exposure to 600 Mrad has no significant effect on

mechanical properties or leachability.

Biological Stability:

--

Leach Resistance:

Low leachability

Immersion Stability:

--

Free Liquid:

No free liquid

Chemical Durability:

Compositional Flexibility:

. ___

Gas Generation:

--

RCRA Compliance:

-

Conclusions:

The Dow solidification process is superior to any other commercial solidification process in waste form behavior

and characteristics.

NO. 23

TITLE:

An Economic Analysis of a Volume Reduction/Polyethylene

Solidification System for Low-Level Radioactive Wastes

AUTHOR:

P.D. Kalb; P. Colombo

PUBLICATION:

BNL-51866

DATE:

January 1985

ORGANIZATION:

Brookhaven National Lab

SUMMARY:

Fluidized bed calcination/incineration as a waste pretreatment.

coupled, with encapsulation in LDPE. Levelized revenue

requirement technique used to compare volume

reduction/polyethylene encapsulation with solidification of

aqueous streams in cement.

Waste Form:

Low-density polyethylene

Waste Type: Waste Loading: Aqueous evaporator concentrates and ion exchange resins 60 wt% sodium sulfate, 30 wt% boric acid, and 25 wt%

incinerator ash (conservative waste loadings selected

intentionally)

Development Status:

Compressive Strength:

Study of economic feasibility for full-scale implementation

Thermal Stability:

Radiation Stability

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

Not applicable

If current trends in escalation rates of cost components

continue, the volume reduction/polyethylene solidification option will be cost effective for both boiling water and pressurized water reactors. Data indicate that a minimum net annual savings of \$0.8 million/yr (for a PWR with short shipping distance to disposal site) and a maximum savings of \$9 million/yr for a BWR with long shipping distance) can

be achieved (savings in 1984 dollars).

Polyethylene Solidification of Low-Level Wastes

AUTHOR:

P.D. Kalb; P. Colombo

PUBLICATION:

BNL - 51867

DATE:

1984

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Low density polyethylene is melted at 130 - 150°C and mixed with waste to form homogeneous solid, using single screw extruder. Static hopper replaced with volumetric feeders to provide precise control of waste/binder ratios.

Waste Form:

Low density polyethylene

Waste Type:

Sodium sulfate, boric acid, incinerator ash, ion exchange

resin beads

Waste Loading:

70 wt% sodium sulfate, 50 wt% boric acid, 40 wt% incinerator ash, 30 wt% ion exchange resin beads.

Development Status:

Bench-scale (1.25-in.) single screw extruder

Compressive Strength:

ASTM D-621(deformation of plastics under 100 psi load) Maximum deformation when subjected to 100 psi load was

0.36%.

Thermal Stability:

Thermal cycling conducted according to NRC protocol. After 30 cycles between -40 and +60°C, no change in waste

form mechanical properties was detected.

Radiation Stability:

Biological Stability:

Leach Resistance:

ANS 16.1 90 day (137Cs, 85Sr, 60Co). Dependent on waste

type and loading. Leaching from ash waste forms ranged between 1×10^{-3} and 4×10^{-4} for loadings up to 35 wt%. All 3 isotopes had similar releases from sodium sulfate waste forms (about 5×10^{-3} for 10 wt%) which increased with waste loading (about 2×10^{-2} 50 wt%) for sodium sulfate.

Immersion Stability:

90 day water immersion testing conducted according to NRC protocol. Samples were then measured for any change in dimensions. Swelling was less than 2% for all samples, except ion exchange resin waste forms with loadings

exceeding 30 wt%.

Free Liquids:

Chemical Durability:

NO. 24 (cont.)

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

This work examined many types of low density polyethylene

(varying in density and melt index) to optimize the selection of a plastic with optimal properties for waste encapsulation.

Process development study compared effectiveness of

several processing technologies - single screw extrusion was

found to be most effective and efficient. Feed system modified for improved QA. Detailed process control

parameters (temperature zone setting, screw speeds, motor draw, melt temperatures and pressures) are all reported at

length in the appendix.

Polyethylene Encapsulation of Nitrate Salt Wastes: Waste Form

Stability, Process Scale-up, and Economics

AUTHOR:

P.D. Kalb; J.H. Heiser; P. Colombo

PUBLICATION:

BNL 52293

DATE:

July 1991

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Low density polyethylene is melted at 130 - 150°C and mixed with waste to form homogeneous solid, using single screw extruder. Static hopper replaced with volumetric feeders to provide precise control of waste/binder ratios. This report assessed potential long-term durability of polyethylene waste forms by examining potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation. A review of the literature was supplemented by waste form performance testing for several key potential failure mechanisms including

biodegradation, radiation and flammability.

Waste Form:

Low-density polyethylene

Waste Type:

Nitrate salts

Waste Loading:

70 dry wt% sodium nitrate

Development Status:

Bench-scale: formulation development and performance testing complete. Full-scale: feasibility test at production-scale successful. Full-scale demonstration using surrogate

waste planned for FY-1993.

Compressive Strength:

ASTM D-695, Standard Method of Test for Compressive Properties of Rigid Plastics. Polyethylene waste form compressive yield strength varies with loading from a minimum of > 1,000 psi (70 wt% NaNO₃) to a maximum of >2,350(30 wt% NaNO₃); NRC minimum strength for waste forms other than cement is 60 psi. Compressive strength data for cores taken from full-scale test specimen were

within 8% of lab-scale data.

Thermal Stability:

__

NO. 25 (cont.)

Radiation Stability: Low density polyethylene polymer chains become more

heavily cross-linked when subjected to ionizing radiation,

which increases mechanical strength and reduces

permeability. Polyethylene waste forms subjected to 108 rad

total absorbed dose of gamma

irradiation increased in strength by about 18% over un-

irradiated control samples.

Biological Stability: Results from literature which indicate that polyethylene is

highly resistant to microbial degradation were confirmed by biodegradation testing on polyethylene waste forms (ASTM

G-21 and G-22).

Leach Resistance: ANS 16.1 90 day, sodium leachability. Leaching of soluble

salts is dependent on waste loading. Leaching index ranged from 11.1 for polyethylene waste forms containing 30 wt% NaNO₃ to 7.8 for 70 wt% NaNO₃. These results represent 2

to 5 orders of magnitude lower leachability than NRC

minimum leach index value of 6.0.

Immersion Stability:

Free Liquids:

Chemical Durability: --Compositional Flexibility: ---

Gas Generation:

RCRA Compliance:

Flammability testing indicated that polyethylene self-

ignition occurs at 430°C (the material is self-extinguishing below this temperature) compared with normal process

temperatures of <150°C.

Conclusions: Following bench-scale development and testing, a scale-up

feasibility test was conducted for simulated NaNO₃ waste using a 4.5-in. production-scale extruder with a maximum output of 2000 lbs/hr. This test indicated that at least 60

wt% NaNO₃ could be successfully encapsulated in

polyethylene using production equipment, bench- and full-scale process data were comparable, and the waste form product was homogeneously mixed. QA/performance testing for cored specimens from the full-scale waste form including compressive strength, thermal cycling, irradiation and biodegradation testing were in close agreement with labscale data and were well above minimum NRC standards for low-level waste. An economic analysis for encapsulation of Rocky Flats nitrate salt resulted in net cost savings ranging between \$1.5 and 2.7 million, compared with conventional

cement processes.

NO. 26

TITLE:

Characterization of Bituminous Intermediate-Level Waste

Products

AUTHOR:

Z. Kopajtic; D. Laske; H.P. Linder; et al.

PUBLICATION:

Materials Research Society Symposium Proceedings, Vol. 21

DATE:

1989

ORGANIZATION:

Materials Research Society Summary:

SUMMARY:

Waste Form:

60 wt% distilled bitumen

Waste Type:

Swiss intermediate level radioactive waste

Waste Loading:

40 wt% solids

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Gamma irradiated to approximately 5 MGy at approximately

3.8 kGy/hr

Biological Stability:

Leach Resistance:

Test Method: ISO-6961-1982 Long Term Leach Testing of

Solidified Radioactive Waste Forms. Swelling and cracking observed, relatively low leach rates, although leach rates are

slightly higher for irradiated forms.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation

--

As an irradiation effect, swelling and gas evolution (mainly

H₂)

RCRA Compliance:

--

Conclusions:

External gamma irradiation at a high dose rate caused intense swelling in both oxidized and distilled bituminous waste products. The amount of swelling depends on factors such as dose rate, total dose, type of bitumen, and quantity of

the waste.

Characterization of Bituminous Intermediate-Level Waste

Products

AUTHOR:

Z. Kopajtic; D. Laske; H.P. Linder; et al.

PUBLICATION:

Materials Research Society Symposium Proceedings, Vol. 21

DATE:

1989

ORGANIZATION:

Materials Research Society

SUMMARY:

Waste Form:

63 wt% blown bitumen

Waste Type:

Simulated inactive NaNO₃

Waste Loading:

37 wt%

Development Status:

Development Status.

Compressive Strength:

Thermal Stability:

Radiation Stability:

Gamma irradiated to approximately 5 MGy at approximately

3.8 kGy/hr

Biological Stability:

_

Leach Resistance:

Test Method: ISO-6961-1982 Long Term Leach Testing of Solidified Radioactive Waste Forms. Swelling and cracking observed, relatively low leach rates, although leach rates are

slightly higher for irradiated forms.

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

As an irradiation effect, swelling and gas evolution (mainly

 H_2)

RCRA Compliance:

-

Conclusions:

External gamma irradiation at a high dose rate caused intense swelling in both oxidized and distilled bituminous waste products. The amount of swelling depends on factors such as dose rate, total dose, type of bitumen, and quantity of

the waste.

NO. 28

TITLE:

AUTHOR:

F.A. Makhlis

PUBLICATION:

Radiation Physics and Chemistry of Polymers

DATE:

1975

ORGANIZATION:

John Wiley and Sons, New York

SUMMARY:

Influence of the physical state and temperature on radiochemical

transformations in polymers.

Waste Form:

Polyethylene

Waste Type:

--

Waste Loading:

--

Development Status: Compressive Strength:

--

Thermal Stability:

__

Radiation Stability:

Observed changes in melting point and gel content depend only on total dose and are not affected by the rate the dose is

delivered.

Biological Stability:

--

Leach Resistance:

--

Immersion Stability:

--

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

· __

Gas Generation:

--

RCRA Compliance:

--

Conclusions:

The use of polymers in atomic technology is limited due to

their relatively low radiation stability.

TITLE:

Laboratory Performance Testing of an Extruded Bitumen

Containing a Surrogate, Sodium Nitrate-Based, Low-Level

Aqueous Waste

AUTHORS:

A.J. Mattus; M.M. Kaczmarsky

PUBLICATION: -

Proceedings of the Symposium on Waste Management at Tucson,

Arizona

DATE:

March 1-5, 1987

ORGANIZATION:

SUMMARY:

Always results in volume reduction for wastes which contain

volatile solvents.

Waste Form:

Bitumen (ASTM D-312) Type III (oxidized)

Waste Type:

Surrogate low-level mixed liquid waste containing ~30 wt%

sodium nitrate, plus eight heavy metals, cold Cs and Sr.

Waste Loading:

Waste Loading of 40 wt%, 50 wt%, and 60 wt%

Development Status:

--

Compressive Strength:

Test Method ASTM D-1074. Compressive strengths range

from ~249 psi for pure bitumen to ~622 for the 60 wt%

loading.

Thermal Stability:

Radiation Stability:

Biological Stability:

--

...

Leach Resistance:

Test Method ANS 16. 1. Leach indices for Cs, Sr, as well as

other heavy metals range from 8.0 to >14.1 for all samples.

Immersion Stability:

Chemical Durability:

Chemical Dulability.

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Test Method: EP Tox. All waste forms/waste loading easily

passed the test. For most of the 8 EPA metals, the concentration in the leachates was at/near the LLD.

Conclusions:

Regulatory performance testing of extruded bitumen has shown that the relatively viscous form of oxidized bitumen

used performed well under several required performance tests. The extruder bitumen process has been able to achieve high waste loading and high VRE, and has still resulted in a waste form capable of offering superior leach resistance.

Development of Radioactive Waste Management at the Japan

Atomic Energy Research Institute

AUTHOR:

I.S. Miyango; A.I. Sakata; H. Amano

PUBLICATION:

Nuclear Power and Its Fuel Cycle, Vol. 4, IAEA CN-36/156

DATE:

1977

ORGANIZATION:

Japan Atomic Energy Research Institute

SUMMARY:

Discussion of waste forms and their process considerations.

Waste Form:

Low-density polyethylene

Waste Type:

Ion exchange resin beads

Waste Loading:

50 wt% bead resin

Development Status:

Bench-scale

Compressive Strength:

Thermal Stability:

Radiation Stability:

Leach Resistance:

Release of ¹³⁷Cs was as low as 0.1% after one year.

Immersion Stability:

Free Liquids: Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

TITLE:

Solidification of Powdered Ion Exchange Resins with

Polyethylene

AUTHOR:

N. Moriyama; S. Dojiri; T. Honda

PUBLICATION:

Nuclear and Chemical Waste Management, Vol. 3, No. 2

DATE:

1982

ORGANIZATION:

Japan Atomic Energy Research Institute

SUMMARY:

Low density polyethylene is melted at 160°C and mixed with waste to form homogeneous solid, using batch wiped film stirrer.

Waste Form:

Low-density polyethylene

Waste Type:

Powdered ion exchange resins

Waste Loading:

40 - 50 wt% powdered ion exchange resins

Development Status:

Experimental (lab-scale), limited application at time of

publication

Compressive Strength:

ASTM D-6952 test. 31- 237 kg/cm²

Thermal Stability:

Radiation Stability:

Radiation resistance testing showed slight increases in strength with doses ranging from 10⁷ - 10⁹ rad and 50 wt%

powdered resin.

Biological Stability:

Leach Resistance:

IAEA leach test. Fraction of 60Co released in 200 days: 3.1 x 10⁻⁴. ¹³⁷Cs fraction release below detection limit of 3 x 10⁻⁵.

⁶⁰Co diffusion coefficient: 4.5 x 10 ⁻¹⁰ cm²/day for initial 64

days, 6.7×10^{-12} cm²/day for remaining data.

Immersion Stability:

Water immersion for 1200 days caused some swelling and

cracking in samples containing waste loadings of more than

40 wt%.

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

Minimal gas generation measured: 2 x 10⁻² cm³/g Mrad.

RCRA Compliance:

Conclusions:

NO. 32

TITLE:

Incorporation of an Evaporator Concentrate on Polyethylene for

BWR

AUTHOR:

N. Moriyama

PUBLICATION:

Nuclear Chemical Waste Management

DATE:

1982

ORGANIZATION:

SUMMARY:

The adaptability of polyethylene solidification method to an

evaporator concentrate produce on a boiling water reactor (BWR).

Waste Form:

Polyethylene

Waste Type:

Sodium sulfate

Waste Loading:

40 to 70 wt%

Development Status:

Compressive Strength:

ASTM D-695 and D-256

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

40-50 wt%: diffusion coefficient of sodium range from 10-7

to 10⁻⁶ cm²/day

Immersion Stability:

No swelling, destruction or deterioration after 120 days

Free Liquids:

Chemical Durability: Compositional Flexibility:

Gas Generation:

Conclusions:

RCRA Compliance:

Polyethylene products are superior to both cement and

bitumen products with respect to mechanical property, leachability, water resistance, and volume reduction effect.

Solidification of Powdered Ion Exchange Resins with

Polyethylene

AUTHOR:

N. Moriyama

PUBLICATION:

Nuclear Chemical Waste Management

DATE:

1982

ORGANIZATION:

SUMMARY:

The adaptability of polyethylene solidification method to spent

powdered ion exchange resins.

Waste Form:

Polyethylene

Waste Type:

Spent powdered ion exchange resin

Waste Loading:

50 wt%

Development Status:

Compressive Strength:

ASTM D-695 and D-256: 230 kg/cm²

Thermal Stability:

Radiation Stability:

Compressive strength increased with increased irradiation.

Samples become hard and brittle in doses above 6.9 x 10⁸

rad.

Biological Stability:

Leach Resistance:

Fractional after 200 days: 60 Co = 3.1 x 10^{-4} ; 137 Cs =

undetectable

Immersion Stability:

Crack formation after 1,200 days

Free Liquids:

Chemical Durability:

Compositional Flexibility:

2.0 to 2.4 x 10⁻² cm³/g·Mrad

Gas Generation: RCRA Compliance:

Conclusions:

The product with 50 wt% waste has a compressive strength

of 203 kg/cm², and low leachability.

Incorporation of BWR's Evaporator Concentrate in Polyethylene

AUTHOR:

N. Moriyama; S. Dojiri; H. Matsuzuru

PUBLICATION:

Nuclear and Chemical Waste Management, Vol. 3, No. 1

DATE:

1982

ORGANIZATION:

Japan Atomic Energy Research Institute

SUMMARY:

Low density polyethylene is melted at 190°C and mixed with waste to form homogeneous solid, using batch wiped film stirrer.

Waste Form:

Low-density polyethylene

Waste Type:

Sodium sulfate

Waste Loading:

50 - 70 wt% sodium sulfate evaporator concentrates

Development Status:

Experimental, limited lab-scale application at time of

publication

Compressive Strength:

ASTM D-695: 137 - 327 kg/cm²

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Depends on waste loading, polyethylene type. Diffusion coefficient ranged from 3 x 10⁻⁴ cm²/day (70 % loading) to

 $8.5 \times 10^{-8} \text{ cm}^2/\text{day (40 \% loading)}.$

Immersion Stability:

Water immersion for 120 days caused no increased swelling

or weight gain.

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Batch-wiped film mixer used instead of a screw extruder,

which is commonly used in plastics industry.

TITLE:

Testing of the Bituminized Ion-Exchange Resin Waste Products

from a Nuclear Power Plant

AUTHOR:

A.K. Muurinen; U.S. Vuorinen

PUBLICATION:

DATE:

1981

ORGANIZATION:

International Atomic Energy Agency

SUMMARY:

Waste Form:

Bitumen

Waste Type:

Finnish nuclear power plant low- and medium-level wet

wastes (ion-exchange resins, filter masses, and evap. conc.)

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Samples exposed to ~52 Mrad over ~6 days. The waste

swelled ~20 to 25% as a result of irradiation.

Biological Stability:

Leach Resistance:

Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

Radiation somewhat affects the properties of waste products

and of pure bitumen. Post-irradiation tests performed included relative density, softening point, breaking point, flash point, and water content. Activity distributions were

also measured.

Properties of Radioactive Waste Containers Progress Report

AUTHOR:

R.M. Neilson, Jr.; P. Colombo

PUBLICATION:

No. 11, BNL-NUREG-51042

DATE:

1979

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Effects of radiation exposure on Urea Formaldehyde waste form

leachability.

Waste Form:

Urea Formaldehyde

Waste Type:

Diatomaceous earth slurry waste/UF = 2.0 by weight

Waste Loading: Development Status:

Commercial

Compressive Strength:

--

Thermal Stability:

--

Radiation Stability:

--

Biological Stability: Leach Resistance:

Cumulative Fraction Release

Rad Exposure (60Co)	Strontium	Cesium
105	2.824	0.043
10 ⁶	2.741	0.038
107	3.165	0.057
10 ⁸	3.706	0.151

Immersion Stability:

Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

y: --

Gas Generation:

RCRA Compliance: Conclusions:

A radiation dose dependence was found for both cesium and strontium release from urea formaldehyde waste forms.

TITLE:

Solidification of Liquid Concentrate and Solid Waste Generated

as By-Products of the Liquid Radwaste Treatment Systems in

Light Water Reactors

AUTHOR:

R.M. Neilson, Jr.; P. Colombo

PUBLICATION: -

BNL-NUREG-22839

DATE:

1977

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Overview of solidification process and non-specific comparison

of products.

Waste Form:

Urea Formaldehyde

Waste Type:

Various

Waste Loading:

Highly dependent on waste type

Development Status:

Commercial

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

 5×10^{-1} to 5×10^{3} g/(cm²-day)

Immersion Stability:

Free Liquids:

Acidic free standing water produced during polymerization

Chemical Durability:

Compositional Flexibility:

Gas Generation:

RCRA Compliance: Conclusions:

Properties relevant to the evaluation of solidified waste

forms are identified and relative comparisons are made for

wastes solidified by various processes.

Solidification of Liquid Concentrate and Solid Waste Generated

as By-Products of the Liquid Radwaste Treatment System in

Light Water Reactors

AUTHOR:

R.M. Nielson, Jr.; P. Colombo

PUBLICATION:

BNL-NUREG-22839

DATE:

1977

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

Table listing nonspecific properties of Dow polymer waste forms.

Waste Form:

Dow polymer

Waste Type:

Various

Waste Loading:

Development Status:

Commercial

Compressive Strength:

Thermal Stability: Radiation Stability:

Biological Stability:

 10^{-3} to 10^{-5} g/(cm²-day)

Leach Resistance: Immersion Stability:

Free Liquids:

Chemical Durability:

Compositional Stability:

Gas Generation:

RCRA Compliance:

Not ignitable

Conclusions:

When compared to other waste solidification systems, the

Dow polymer is a viable choice.

TITLE:

Long-Term Behavior of Bituminized waste

AUTHOR:

M. Snellman; M. Valkiainen

PUBLICATION:

Proceedings of the Symposium on Waste Management at Tucson,

Arizona

DATE:

March 1-5, 1987

ORGANIZATION:

SUMMARY:

Waste Form:

Bitumen

Waste Type:

Ion-exchange resins

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Below 0°C bitumen waste forms are brittle and may be

cracked by mechanical impact. Cracks may heal if forms are

reheated to room temperature.

Radiation Stability:

Radiolysis gas (mostly hydrogen) is generated at a rate and in an amount proportional to the absorbed radiation dose.

Biological Stability:

Anaerobic microbial attack on a monolithic bitumen block

takes place extremely slowly.

Leach Resistance:

Samples were leached in cement equilibrated and distilled water using a test method developed by K. Brodersen. Leaching tends to be much faster in "cement water."

Immersion Stability:

If swelling of bitumenized ion-exchange resins is restricted, but uptake of water is possible, considerable pressure may

develop.

Free Liquids:

Chemical Durability:

uus. I Durahilita:

Compositional Flexibility:

Waste loadings up to 50%

Gas Generation:

RCRA Compliance:

Conclusions:

Behavior of waste product depends on the solidification

process parameters. In the context of this study, no

unacceptable long-term effects have been found caused by bitumen itself, but swelling must be taken into account for

disposal.

The Leachability and Mechanical Integrity of Simulated

Decontamination Resin Wastes Solidified in Cement and Vinyl

Ester-Styrene

AUTHOR:

P. Soo; L.W. Milian; P.L. Piciulo

PUBLICATION:

Topical Report, BNL-NUREG-52149

DATE:

1988

ORGANIZATION:

Brookhaven National Laboratory

SUMMARY:

The release rates of organic decontamination reagents were measured for mixed-bed resins solidified in vinyl ester styrene.

Waste Form:

Vinyl ester-styrene

Waste Type:

Simulated LOMI Waste

Waste Loading:

50 wt%

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

Biological Stability:

Leach Resistance:

Cumulative release fraction = .088 after 144 days for waste

form size of 5 cm x 10 cm.

Immersion Stability:

No cracking, spalling, swelling, etc. were observed after 540

to 630 days immersion.

Free Liquids:

Chemical Durability:

Gas Generation:

RCRA Compliance:

Conclusions:

Vinyl ester-styrene waste forms have superior leaching and compositional stability properties compared to cement based

waste forms.

TITLE:

High-Strength Asphalt Solidification Process for Low-Level

Radioactive Wastes

AUTHOR:

Letter from M. Tokar (NRC) to O. Wong encloses NRC

Technical Evaluation Report on USE-61-002-P

DATE:

August 2, 1991

SUMMARY:

Waste Form: Waste Type:

Bitumen (distilled)

Boric acid concentrates

Waste Loading:

Development Status:

Test Method: ASTM D-1074. Pure asphalt compressive Compressive Strength:

strength was 430 psi. Compressive strength for boric acid

wastes were 1055 to 1185 psi.

Thermal Stability:

Test Method: ASTM B553. Post-test compressive strengths

for boric acid wastes were >900 psi

Radiation Stability:

Samples exposed to 108 rad. Post-test compressive strengths

for boric acid wastes were >800 psi.

Biological Stability:

Test Method: ASTM G21 & G22. Post-test compressive strengths were 850 to 1085 psi. One sample had growth and

was retested using Bartha Pramer, which it passed.

Leach Resistance:

Test Method: ANS 16. 1. Leach indices ranged from 7.77 to

10.91 in demineralized water and from 7.65 to 9.90 in

simulated sea-water

Immersion Stability:

Following immersion for 90 days, one waste form (pH = 7, waste loading = 50.68 wt%) had a compressive strength of -96 psi. Another (pH = 9, waste loading = 43.85 wt%) had a

compressive strength of ~1075 psi.

Free Liquids:

None

Chemical Durability:

Compositional Flexibility:

Up to 12 wt% solids. Limited to pH=9, waste loading < 40

wt%.

Gas Generation:

RCRA Compliance:

Under normal conditions, the waste form will not cause

fires. Minimum flash point is 500°F

Conclusions:

The boric acid waste form has been approved by the NRC,

under certain conditions. Other wastes may be qualified for

use with this binder system following future testing.

"10 CFR 61" Waste Form Conformance Program for Solidified Process Waste Products Produced by a WasteChem Corporation

Volume Reduction and Solidification (VRS) System

AUTHOR:

Letter from M. Tokar (NRC) to Klein (WasteChem), encloses

NRC Technical Evaluation Report on VRS-002

PUBLICATION:

DATE:

January 22, 1988

SUMMARY:

Waste Form:

Bitumen (ASTM D-312, Type III)

Waste Type:

Simulated generic process wastes from commercial PWRs

and BWRs

Waste Loading:

Development Status:

Compressive Strength:

Test Method: ASTM D-1074. At 10% sample deformation.

results ranged from 108 psi to 262 psi.

Thermal Stability:

Test Method: ASTM B553. Post-test compressive strengths

range from 81.2 psi to 276 psi.

Radiation Stability:

Samples exposed to 108 Mrad, over a 239.9 hour period had post-irradiation compressive strengths of 220 and 270 psi. Test Method: Bartha-Pramer. Total carbon loss from waste

Biological Stability:

forms was projected to be <10% over 300 years.

Leach Resistance:

Test Method: ANS 16. 1. Leach index range was 8.07 to

13.76

Immersion Stability:

Immersion for 90 days in deionized water. Compressive strength range after immersion, 74 psi to 250 psi. Waste loading for simulated evaporator concentrate was decreased to 25%. Higher loadings led to swelling and disintegration.

Free Liquids:

None

Chemical Durability:

Compositional Flexibility: Gas Generation:

RCRA Compliance:

Conclusions:

NRC approved the WasteChem topical report with

limitations on waste loading, (none are greater than 60 wt% waste). In addition, waste forms must be contained in 55-gal drums or approved HICs. Backfill should be used if 55-gal

drums are used.

TITLE:

AUTHOR:

U.S. Environmental Protection Agency

PUBLICATION:

Toxicity Characteristic Leaching Procedure, 40 CFR 261

DATE:

March 29, 1990

ORGANIZATION:

U.S. Environmental Protection Agency

SUMMARY:

Testing to determine the mobility of both organic and inorganic

analytes present in liquids, solids, and multiphasic wastes.

Waste Form:

Polyethylene

Waste Type:

Sodium nitrate salt containing sufficient chromium to be

classified as hazardous

Waste Loading:

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

--

Biological Stability: Leach Resistance:

--,

Immersion Stability:

Free Liquids:
Chemical Durability:

Chemical Durability: --Compositional Flexibility: ---

Gas Generation:

--

RCRA Compliance:

__

Conclusions:

Toxicity Characteristic Leaching Procedure recently

replaced the EP Toxicity Test in 40 CFR 261.

AUTHOR:

U.S. Department of Transportation

PUBLICATION:

49 CFR 173, Appendix C, Federal Register 46, 31294

DATE:

June 15,1981

ORGANIZATION:

U.S. Department of Transportation

SUMMARY:

Vibration testing for hazardous waste form packaging that is to be

transported.

Waste Form:

Polyethylene

Waste Type:

Not specified

Waste Loading:

-

Development Status:

--

Compressive Strength:

__

Thermal Stability:

--

Radiation Stability:

--

Biological Stability:

--

Leach Resistance:

Immersion Stability: Free Liquids:

--

Chemical Durability:

--

Compositional Flexibility:

y: --

Gas Generation: RCRA Compliance: --

Conclusions:

Replaced by "Test for Solid Oxidizing Substances," for DOT

use to qualify hazardous wastes.

NO. 45

TITLE:

Long-Term Properties of TVO's Bituminized Resins

AUTHOR:

M. Valkiainen; U. Vuorinen

PUBLICATION:

YJT-89-06

DATE:

June 1989

ORGANIZATION:

Nuclear Waste Commission of Finnish Power Companies

Waste Form:

Bitumen

Waste Type:

Spent ion-exchange resins (Nordic)

Development Status:

Compressive Strength:

Thermal Stability:

Radiation Stability:

In individual drums (200 l), the amount of generated

radiolytic gas may be appreciable in terms of drum volume leading to possible swelling of the product and possible

pressurizing of the drum.

Leach Resistance:

Leaching in cement equilibrated water with Brodersen method. Samples have been in leachant for several years.

Leaching tends to increase with decreasing pH.

Immersion Stability:

Pretreating anion ion-exchange resin by drying at 140°C for 14 hours reduces rewetting and swelling capacity. Only in

products with resin contents below 20%, can the resin

particles be completely bitumen surrounded.

Free Liquids:

Chemical Durability: Compositional Flexibility:

Gas Generation:

RCRA Compliance:

Conclusions:

INTERNAL DISTRIBUTION

1.	Т.	Abraham
2	D	Doolers

P. Backus
 M. Baker

4-8. J. Berry

9. G. Bloom

10. C. Brown

11. A. Croff

12. T. Conley

13. R. Genung

14. B. Hightower

15. D. Hutchins

16. G. Kamp

17. T. Malinauskas

18. L. Mezga

19. J. Perona

20. M. Savage

21. P. Taylor

22. Central Research Library

23. Document Reference Center

24. ORNL Patent Section

25-26. ORNL Laboratory Records

27. ORNL Laboratory Records, RC

EXTERNAL DISTRIBUTION

- 28. N. Askew, Westinghouse Savannah River Co., P.O. Box 616, Aiken, SC 29802
- 29. C. Baldwin, EG&G Rocky Flats, P.O. Box 464, Highway 93 & Cactus, Bldg. 881, Golden, CO 80402-0464
- 30. M. Ballestri, BDM Federal, 20251 Century Blvd., 4th Floor, Germantown, MD 20874
- 31. J. Bassi, EM-351, U.S. Department of Energy, 12850 Middlebrook Road, Germantown, MD 20874
- 32. J. Batdorf, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 33. S. Bates, EG&G Idaho, Inc., P.O. Box 1625, MS-3930, Idaho Falls, ID 83415-3930
- 34. T. Bergsman, Battelle Pacific Northwest Laboratory, Battelle Boulevard, MS P7-41, Richland, WA 99352
- 35. L. Borduin, Los Alamos National Laboratory, One Bikini Road, MS K557, Los Alamos, NM 87545
- 36. M. Brooks, Waste Policy Institute, 555 Quince Orchard Blvd., Suite 600, Gaithersburg, MD 20879
- 37. H. Burns, Westinghouse Savannah River Co., P.O. Box 616, Bldg. 704-61s, Aiken, SC 29808
- 38. G. Bryan, Pacific Northwest Lab, Battelle, Blvd., Richland, VA 99352
- P. Castel, U.S. DOE/HQ, WINCO, 20201 Century Blvd., Rm. 408, Germantown, MD 20874
- 40. D. Chaiko, Argonne National Lab, CMT/Bldg. 205, 9700 S. Cass Ave., Argonne, IL 60439
- 41. C. Collier, BDM Federal, 20251 Century Blvd., 4th Floor, Germantown, MD 20874
- 42. C. Cooley, U.S. Department of Energy, EM-50, Trevion II, Washington, D.C. 20585-0002

- 43. T. Cooper, Westinghouse Hanford Corp., 2355 Stevens Dr., MS N3-12, Richland, WA 99352
- 44. A. Corstillo, FERMCO, 25 Merchant St., 3rd Floor Technology, Springdale, OH 45246
- 45. S. Couture, Lawrence Livermore National Lab, P.O. Box 808, L-591, Livermore, CA 94551
- 46. G. Coyle, EM-541, U.S. Department of Energy, 12800 Middlebrook Road, Trevion II, Germantown, MD 20874-1290
- 47. P. Coyle, EM-55, U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874
- 48. J. Cunnane, Argonne National Lab, 9700 South Cass Ave., Bldg, 205, Argonne, IL 60439
- 49. J. Dalton, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 50. J. Dancz, SAIC, Quince Diamond Executive Center, 555 Quince Orchard Rd., Suite 500, Gaithersburg, MD 20878-4137
- 51. R. Darnell, EG&G Idaho, Inc., P.O Box 1625, MS-3950, Idaho Falls, ID 83415-3950
- 52. L. Dewitt, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 53. S. Domotor, U.S. DOE, EM-351, Trevion II, Washington, D.C. 20585
- 54. P. Erickson, EPA-RREL, 5995 Center Hill Ave., Cincinnati, OH 45224
- 55. J. Fannon, U.S. DOE, HQ/EM-50, 20201 Century Blvd., Bellmeade Bldg. II, Rm. 402, Germantown, MD 20874
- 56. G. Fitzgibbon, WHC, P.O. Box 1970, MS H6-07, Richland, WA 99352
- 57. C. Frank, EM-50, U.S. Department of Energy, Forrestal Office Building, Washington, DC 20585
- 58. E. Franz, Brookhaven National Lab, Environmental & Waste Technology Center, North Railroad St., Bldg. 830, Upton, NY 11973
- 59. N. French, Sandia National Laboratory-Livermore, 7011 East Avenue, Livermore, CA 94550
- 60. M. Fuhrmann, Brookhaven National Laboratory, Building 703, Upton, NY 11973
- 61. A. Gatuchette, US EPA, Risk Reduction Engineering Lab, 26 W. Martin Luther King Blvd., Cincinnati, OH 45268
- 62. R. Gehrke, EG&G Idaho, Inc., 2151 N Blvd., MS-7111, P.O. Box 1625, Idaho Falls, ID 83415
- 63. R. Geimer, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 64. R. Gillins, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 65. K. Hain, EM-55, U.S. Department of Energy, 1000 Independence Ave., SW, Washington, DC 20585
- 66. T. Harris, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 67. P. Hart, U.S. Department of Energy, EM-542, Trevion II, 19901 Germantown Rd., Germantown, MD 20874-0002
- 68. J. Helt, Argonne National Laboratory, 9700 S. Cass Avenue, Bldg. 205, Argonne, IL 60439
- 69. D. Helton, Westinghouse Savannah River Co., P.O. Box 616, Bldg. 773-41 A., Rm. 228, Aiken, SC 29802
- 70. B. Hickman, Lawrence Livermore National Lab, 7000 E. Ave., Livermore, CA 94550
- 71. D. Hjeresen, AET, MS-P641, Bikini Road, Los Alamos, NM 87545
- 72. J. Hunter, Westinghouse Hanford Co., P.O. Box 1970, MS L531, Bldg. 3766, Rm. 14, Richland, WA 99352

- 73. D. Isbell, EM-40, U.S. Department of Energy, 12800 Middlebrook Road, Trevion II, Germantown, MD 20874
- 74. P. Jones, BDM Federal, 20251 Century Blvd., 4th Floor, Germantown, MD 20874
- 75. P. Kalb, Brookhaven National Lab, Environmental & Waste Technology Center, North Railroad Street, Bldg. 830, Upton, NY 11973
- T. Kan, Lawrence Livermore National Lab., P.O. Box 808, L-467, Livermore, CA 94550
- 77. B. Kitchen, Savannah River Laboratory, Westinghouse Savannah River Co., P.O. Box 616, Aiken, SC 29802
- 78. K. Kostelnik, EG&G Idaho, Inc., P.O. Box 1625, MS-3930, Idaho Falls, ID 83415-3930
- 79. D. Kried, Battelle Pacific NW Lab, Battelle Blvd., Richland, WA 99352
- 80. O. Kruger, Westinghouse Hanford Company, 2355 Stevens Dr., Richland, WA 99352
- 81. M. Lankford, EM-552, U.S. Department of Energy, 12800 Middlebrook Road, Trevion II, Germantown, MD 20874
- 82. M. Larsen, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 83. G. Leatherman, SAIC, Quince Diamond Executive Center, 555 Quince Orchard Rd., Suite 500, Gaithersburg, MD 20878-0697
- 84. S. Lein, EM-54, U.S. Department of Energy, 12800 Middlebrook Road, Trevion II, Germantown, MD 20874-1290
- 85. J. Lippold, BDM Federal, 20251 Century Blvd., 4th Floor, Germantown, MD 20874
- 86. P. Lurk, EM-552, U.S. Department of Energy, 12800 Middlebrook Road, Trevion II, Germantown, MD 20874
- 87. J. Mayberry, SAIC, P.O. Box 50697, Idaho Falls, ID 83405-0697
- 88. W. McCulla, Los Alamos National Laboratory, SM 30 Warehouse, Bikini Road, MS J-563, Los Alamos, NM 87545
- 89. J. McFee, IT Corporation, 5301 Central Ave., NE, Albuquerque, NM 87108
- K. Merrill, EG&G Idaho, Inc., 2151 N Blvd., MS-3930, P.O. Box 1625, Idaho Falls, ID 83415
- 91. R. Moats, BDM International, 12850 Middlebrook Road, Suite 300, Germantown, MD 20874
- 92. J. Moore, U.S. Department of Energy, P.O. Box 2001, Oak Ridge, TN 37830-8620
- 93. D. Musgrave, Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-440, Livermore, CA 94550
- 94. T. Myrick, SAIC, P.O. Box 2501, Oak Ridge, TN 37831
- 95. R. Nakaoka, Los Alamos National Laboratory, P.O. Box 1663, MS-6517, Los Alamos, NM 87545
- 96. M. Nawar, Office of Radiation Programs, Environmental Protection Agency, 401 M St. SW, ANR-461, Washington, DC 20460
- 97. G. Ordaz, EM-541, U.S. Department of Energy, 12800 Middlebrook Road, Trevion II, Germantown, MD 20874
- 98. C. Owens, EG&G Idaho, P.O. Box 1625, Idaho Falls, ID 83415-3960
- 99. R. Peters, Battelle-Pacific Northwest Lab, P.O. Box 999, MS P7-41, Richland, WA 99352
- 100. W. Phillips, Roy F. Weston Office of Technology Services, 12850 Middlebrook Road, Germantown, MD 20874
- 101. W. Pitt, Texas A&M University, Department of Nuclear Engineering, College Station, TX 77843

- 102. B. Place, Westinghouse Hanford Co., Solids & Liquids Waste Remediation, P.O. Box 1970, MS H5-33, Richland, WA 99352
- 103. W. Ross, Battelle-Pacific Northwest Lab, P.O. Box 999, MS P7-41, Richland, WA 99352
- 104. R. Schumacker, Westinghouse Savannah River Co., SRTC, P.O. Box 616, Bldg. 773-42A, Aiken, SC 29808
- 105. B. Schutte, EM-54, U.S. Department of Energy, 12800 Middlebrook Road, Trevion II, Germantown, MD 20874-1290
- 106. B. Schwinkendorf, BDM Federal, 1801 Randolph Rd., SE, Argonne, IL 60439
- 107. G. Sevigny, Battelle-Pacific Northwest Lab, P.O. Box 999, MSIN P7-42A, Aiken, SC 29808
- 108. M. Shupe, EM-541, U.S. Department of Energy, Trevion II, Room 440, 19901 Germantown Road, Germantown, MD 20874-1290
- 109. D. Singh, Argonne National Lab, 9700 South Cass Ave., Bldg. 212, Rm. G-233, Argonne, IL 60439
- 110. D. Skrincosky, Strategic Technology International, 20 Avon Meadow Ln., Suite 220, Avon, CT 06001
- 111. S. Slate, Battelle Pacific Northwest Laboratory, 902 Battelle Blvd., P.O. Box 999, KI-25, Richland, WA 99352
- 112. S. Stein, Battelle, Seattle Research Center, 4000 NE 41st, Seattle, WA 98105-5428
- 113. E. Steverson, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 114. P. Sydenticker, BDM Federal, 20251 Century Blvd., 4th Floor, Germantown, MD 20874
- 115. H. Turner, ARCO, 2300 W. Plano Parkway, Plano TX, 75075-8499
- 116. T. Timmerman, Mason & Hanger, Bldg. 11-2, P.O. Box 50697, Idaho Falls, ID 83405-0697
- 117. T. Uhlmeyer, MD-Ferguson Co., 7295 Highway 94 South, St Charles, MO 63304
- 118. J. Vavruska, Equinox, Ltd., 872 Don Cubero Ave., Santa Fe, NM 87501
- 119. C. Ward, Westinghouse Savannah River, Building 773-A, D-1134, Aiken, SC 29808
- 120. S. Warren, EM-442, U.S. Department of Energy, 12800 Middlebrook Road, Trevion II, Germantown, MD 20874-1290
- 121. J. Witzeman, P.O. Box 398704, 7400 Williey Road, Fernald, OH 45030
- 122. S. Wolf, U.S. Department of Energy, Trevion II, 19901 Germantown Road, Germantown, MD 20874
- 123. W. Wolfe, SAIC, 545 Shoup Ave., P.O. Box 50697, Idaho Falls, ID 83405-0697
- 124-125. A. Wollerman, Trevion I, 12850 Middlebrook Road, Suite 400, Room 721, Germantown, MD 20874
 - 126. M. Zenkowich, EM-323, U.S. Department of Energy, 12800 Middlebrook Road, Germantown, MD 20874
 - 127. Office of Assistant Manager, Energy Research and Development, DOE-OR, P.O. Box 2001, Oak Ridge, TN, 37831
- 128-129. Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831