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Abstract 

Future generation automated human biometric identification and verification will require multiple 
features/sensors together with internal and external information sources to achieve high performance, 
accuracy, and reliability in uncontrolled environments. The primary objective of the proposed 
research is to develop a theoretical and practical basis for identifying and verifying people using 
standoff biometric features that can be obtained with minimal inconvenience during the verification 
process. The basic problem involves selecting sensors and discovering features that provide sufficient 
information to reliably verify a person’s identity under the uncertainties caused by measurement 
errors and tactics of uncooperative subjects. A system was developed for discovering hand, face, ear, 
and voice features and fusing them to verify the identity of people. The system obtains its robustness 
and reliably by fusing many coarse and easily measured features into a near minimal probability of 
error decision algorithm. 
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1. INTRODUCTION 

The basic problem under investigation is the development of a computer vision system for 
identifying or verifying the identity of an individual for controlling entry into secure areas or 
access to sensitive information. The goal is to develop a system with a high probability of 
detecting an unauthorized entry or access attempt with minimal inconvenience to authorized 
personnel. Facial, hand, ear, and voice features are investigated to evaluate their performance in 
terms of the complexity of the recognition problem. A number of coarse features are extracted 
from face and hand images and from digitized voice and acoustic ear signals. These are analyzed 
to establish their ability to recognize people. The thrust of the research is to analyze the feature 
space of the problem and to establish the features that can be fused to reduce the complexity of 
the recognition problem, consequently reducing the error probability and computational effort. 

Our research followed two parallel paths. One path focused on a novel concept for biometric 
identity verification, an acoustic signature of the individual’s ear canal. The concept was to emit 
an acoustic signal of known spectral content into the individual’s ear canal and record the 
spectrum of the reflected signal. Under highly idealized experimental conditions, the reflectivity 
of different frequencies is highly sensitive to individual ear canal shape, and in principle could be 
used to verify an individual’s identity. However, under variable conditions, such as those 
expected in an access control application, and using moderate-cost equipment that people find 
acceptable to interact with, the reproducibility of the reflected signals was poor. We therefore 
elected not to pursue this avenue further. 

The second path involved developing an access control portal to monitor the biometric 
characteristics of a person entering a secure area, acquiring a feature signature database and 
developing information fusion algorithms to discover and fuse features into near minimal 
probability of error decision algorithms. Cameras are used to obtain hand and facial features, and 
a microphone obtains voice characteristics as a person enters the facility. A large signature 
database was developed of hand, facial, and voice features to provide a basis for discovering 
features for distinguishing people. An information fusion algorithm was developed to discover 
and fuse the features to perform the verification tasks. The fusion process provides the theoretical 
foundations for the verification system. Performance bounds are established for individual and 
weighted combinations of features. These performance bounds provide a basis to determine any 
performance degradation caused by feature measurement errors and fusion of the features into 
decision algorithms. 

Multi-resolution wavelets are used to discover signature features, often not motivated by human 
insights, to distinguish signatures. The wavelet transform reduces the resolution of the signature 
while still retaining the basic structural and frequency components of the signature. Models are 
derived that can generate the signatures. Parameters are extracted from the models that 
maximally distinguish the signatures of interest. The result of the feature-discovery process is a 
multidimensional feature space containing features that can be used to design a near optimal 
decision module. 

The information fusion algorithm selects and weights the features to establish their performance 
by estimating the probability of error. A genetic selection algorithm was developed to evolve a 
weighted feature vector to minimizes the probability of error. Genetic algorithms (GA) are very 
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effective at finding near optimal solutions in complex, high-dimensional problems. The 
properties that make the GA robust to local extrema also make it computational-intensive. Recent 
research has enhanced the search and adaptation mechanism by coding the features so that 
previous experiences can be passed along to promote more desirable crossovers. During the 
evolutionary process when the performance of the feature vector is increasing rapidly, the 
crossover rate can be increased, while during periods when the performance is stagnant, the 
mutation rate can be increased. These and other recent improvements have significantly reduced 
the search time for GAs. 

Section 2 of this paper describes the mathematical fi-amework for the feature discovery, fhsion, 
and selection. Section 3 discusses the procedures and results of feature extraction and fision 
of the hand, voice, and face for biometric identity verification. Conclusions are provided in 
Section 4. 

2. MATHEMATICAL FRAMEWORK 

A mathematical framework is presented for the feature-based information fision problem. The 
problem is formulated in terms of a statistical hypothesis test. A fusion theorem is presented that 
ensures that the minimum probability of error cannot increase by adding more features. It is also 
shown that an n-dimensional feature vector can be fused into a single feature without increasing 
the minimum probability of error. A weighted nearest-neighbor (WNN) fusion model is used to 
fuse features into a near-minimum probability of error decision algorithm. Wavelets are used to 
assist in the discovery and extraction of features at different levels of resolution. Statistical 
methods are presented to evaluate features in high dimensional spaces. A genetic algorithm is 
used to select and weight the features to obtain a near-minimum probability of error solution. 

2.1 Problem Formulation 

Many decision and control problems can be formulated as either an m-ary statistical hypothesis 
test or a set of binary statistical hypothesis tests, one for each decision class. For mathematical 
convenience, the decision and control problem is described here as a binary hypothesis test. In 
binary hypothesis testing, a statement or claim that something is true, called the null hypothesis 
HO, is tested against its alternative H. to establish with confidence the most probable decision. 
Consider the features as a vector of random variables X = (xl, Xz, . . . ,@ used to distinguish the 
decision class Cj from the other classes and let x = (xl, x2, . . . ,x~ be a given measurement of these 
random variables. When the features are measured y = (yl, yz, . . . . y~ from an unknown decision 
class and compared to measurements from a known class x = (xl, X2, . . . ,@j the decision is 
formulated as: 

HO: The feature measurements y came horn the known class; 

H,: The feature measurements y came fi-om a different class. 

The feature measurements are generally perturbed by measurement noise and random factors 
including many environmental and perhaps information warfiwe factors. The conditional 
probability density functions (PDFs) under the HO and H, hypotheses are represented as 
f(x1,x2,...,x~ I HO)=f(x I HO) and f(x,,x,, I . . ..x~ H,)=f(x I H~. If these PDFs are known and the 
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a priori probabilities of occurrence of each hypothesis are also known, an optimal hypothesis test, 
in terms of minimizing the probability of making an error, can be formulated. The minimum 
probability of error can also be computed, giving a bound on the achievable performance 
associated with the chosen features. The difficulty lies in estimating the PDFs. 

Parameter estimation can often be used to estimate f(x I HO). Relative frequency histograms are 
more appropriate for estimating f(x I H,). A simple and often usefi.d way to address the random 
perturbations is to model their overall effect as a zero mean, stationary, white random process. 
When a feature measurement xi, taken from the known class, and ~, taken fi-om an unknown 
class, are affected by realizations of such random measurement processes ~ and n~ respectively, 
then xi~~+n~ and yi=y~+~, where x~ and y~ are the actual deterministic feature vectors. Under the 
HO hypothesis, x~=y~ and the difference statistic D = xi-yi depends only on the joint distribution of 
the noise components. If the joint distribution of the components are normal N(O,a~), then the 
difference statistic also has a normal distribution N(0,2cT~). The related squared difference 
statistic SD=(xi-yi)2/(2cri2) has a X2(1) distribution. The sum of the squared difference statistic 
(SSD) over n features is often used to compare features from an unknown class to a known class, 

(2-1) 

If the features are independent, the distribution of the SSD under the HO hypothesis is a sum of n 
independent X2(1 ) random variables, which is X*(n) distributed [7,17]. These results can be used 
to estimate the distribution of the SSD statistic by estimating the parameters of the distribution. 
The distribution under the H, hypothesis is generally not known and relative-frequency 
histograms are used as estimates. 

Approximating the minimum probability of error using estimates of f(x I HO) and f(x I H) requires 
a priori knowledge of the probability of occurrence of each hypothesis P(HO) and P(H~. These 
a priori probabilities are often not known and an equally likely assumption is often used to 
estimate the minimum probability of error (MPE). The MPE is a measure of the overlap of two 
joint distributions in the feature measurement space that has proven to be an effective measure of 
the ability of a set of features to distinguish objects from different classes. For continuous 
random variables, where Q is the set of all x, the MPE is defined in terms of these joint PDFs. 
For discrete random variables, the MPE is defined in terms of probability mass functions. The 
operator A selects the minimum. 

MPE(x) = ~Q P(HO)f(xl Ho) A P(HJf(x/ Ha)dx. (2-2) 

MPE(x) = ~ P(HO)f(x~ Ho) A P(H.)f(x/Ha). (2-3) . 
Q 

2.2 Feature Fusion Theorem 

Two theorems [11] are presented to establish mathematical foundations for our approach to 
feature-based fusion. The first theorem shows that increasing the number of features cannot 
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increase the MPE of the decision task. The second theorem provides constraints on the 
information fising algorithm to maintain an MPE decision algorithm. 

Theorem 2.2.1: MPE(x,z) < MPE(x) where x = ( xl, Xz, . ...%) represents an n dimensional 
feature vector and z =(z1, Z2, . . . ,z~ is an additional feature vector. 

By the definition of the MPE 

~PE(X) = ~Pi f(xl Ci) A Pj f(x[ Cj)dx , and 
Rx 

MPE(X,Z) = ~ \ pf(X, dci) A pjf(X, ~Ci)dzdx 
I&& 

The proof begins with the inequality 

~Pi f(x,~ci) A Pj f(x,dcj)dz s ~pi f(x,~ci)dz = pi f(xlci) 

R, R, 

Similarly, 

jpif(x,~ci) A Pj f(x,dcj)dz s j~jf(x,4cj)dz = Pjf(xlc-i) 
R. R, 

Hence, 

(2-4) 

(2-5) 

(2-6) 

(2-7) 

Jpifix~ci) A Pjf(x,ACj)dz s pif(~Di) A pjf(x[~j) . (2-8) 
Rz 

Integrating the last inequality over the space define by ~ completes the proof 

MPE(X,Z) s Jpi f(x] Ci) A Pj f(X[ Cj)dx = ik?PE(X) . (2-9) 
R. 

Consequently, if sufficient samples are used to establish the probability density functions and the 
decision surfaces, then MPE should not increase with additional features. 

The next theorem suggests a method to fise or consolidate information from multiple sensors 
and preserve an MPE decision algorithm. The significance of this result is that large dimensional 
feature vectors can be fused into a single dimensional feature while preseming the MPE. A 
research goal in information fusion is to discover these powerfld features and ways to efficiently 
measure them. There are many fbnctions that can be used to combine multiple information 
sources into a single composite source while preserving the MPE. Some interesting fhsion 
fimctions, y = g(x), that preserve MPE are: 
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(1) y= pif(Xlci) - pjflX]Cj), 

(2) y= pif(xlc~ / pj~xlcj) ~d 

(3) y= 1 if p,f(XIC,) > pjf(XICj), 
y= O if p,f(xlQ = pjf(xlcj), 

Y ‘-1 if pif(XIC,) < pjf(XICJ). 

All of these MPE preserving fision fimctions, however, require knowledge of the 
multidimensional joint PDFs for each decision class. 

Theorem 2.2.2: If the fusion fimction y = g(x) is used then MPE(Y) 2 MPE(X) and 
equality holds if and only if R(y) m RI = 0 or R(y) n R~ = 0 where R(y) = {xl g(x)= y}, 

RI= {x I pif(x[c~ < pjf(xlcj)}, R2 = {x I pif(xlc~ = pjf(xlcj)} and Rs = {x I pif(xlc~ > pjf(xlCj)} 

Recall the definition of MPE(X) 

MPE(X) 

and observe that for y = g(x), 

MPE(Y) 

where 

and 

= IPi f(xlci) A Pjf(xlCj)dxr 
Rx 

= [pi f(ylci) A Pj f(ylcj)dy 
RY 

f(ylci) = ~ f(x\Ci)dx , 
R(y) 

f(yl G) = ~ f(x[ G)dx, 
R(y) 

and R(y) = {xl g(x)=y}. If, over R(y), R(y) n RI = 0 or R(y) n RJ = 0 then either 

Pjf(xlcj) ~ Pif(xlci) Or Pif(xlci) ~ Pjf(xlcj)> respectively. Under either condition, 

~ pi f(xlci)dx A ~ Pjf(ticj)dx = ~ Pi f(x]Ci)Apj f(~cj)dx 
R(y) R(y) R(y) 

Hence, it follows that 

pi f(yl Ci) A Pj f(yl Cj) = ~ Pi f(xl Ci) A Pj f(xl Cj)dx . 

R(y) 

(2-lo) 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

(2-15) 



If, for each y = g(x), R(y) n RI = 0 or R(y) n R~ = 0 then 

~pif(ylci) Apjf(ylcj)dy=~ ~pif(x]Ci)Apjf(xlCj)dxdy (z-16) 
RY RY R(Y) 

and consequently, MPE(Y) = MPE(X). To complete the proof it is shown that if R(y)nR1 # 0 
and R(y)nR~ # @ then MPE(Y) > MPE(X). If R(y)nR1 # 0 then 

R~)P f(xlci)dx > [Pi f(x[ci)Apj f(xlCj)dx 
R(y) 

and if R(y)nRJ # 0 then 

R~,Pj f(x[cj)dx > ~ Pj f(xlci)Apjf(xlCj)dx, 
R(y) 

Hence, 

\ P, f(xlci)dx A ] Pj f(xlcj)dx > ~ pi f(x\Ci)Apj f(xlcj)dx, 
R(y) R(y) R(y) 

pi f(yl Ci) A Pj f(y] Cj) > ~ pi f(xl Ci) A Pj f(~ Cj)dx , 
R(y) 

and it follows that 

JP, f(ylci) A Pj f(ficj)dY > ~ ~ Pi f(x\Ci)Apjf(x/Cj)dxdy. 
RY Ry R(Y) 

(2-17) 

(2-18) 

(2-19) 

(2-20) 

(2-21) 

Consequently, MTE(Y)>MPE(X) when R(y)nR1 # 0 and R(y)nRj # 0. This result motivated a 
search for a firsion fimction that retains the MPE solution. The WNN fusion fi.mction inherits the 
property fi-om the nearest-neighbor decision theory [2] that as the number of samples becomes 
sufficiently large the perfon-nance of the fusion algorithm is less than twice the MPE solution. 

2.3 Weighted Nearest-Neighbor Fusion Model 

The WNN fision model provides a method for analyzing and fbsing multiple features to design 
and optimize a decision process. The fi.lsion process involves discovering the features that can be 
fused to obtain robust and minimum error decision algorithms. A WNN model is used to provide 
the mathematical fi-amework for fiming features into near-minimum probability of error decision 
algorithms. 

Training samples are used to guide the feature selection and fusion process. Each training sample 
X = ( X1, X2,..., “ x ) represents a point in an n dimensional space. Nj training samples are used to 
characterize the statistical behavior of each decision class Cj. A weighted distance ~= WNN(y,xj) 



fi-om an unknown sample y to the nearest neighbor XJ of class Cj is used to fise the features and 
decide class membership. The WNN distance is given as 

~N(Y,xo = ~ Wk (Yk ‘X{ )2 
k=l (2-22) 

An unknown sample y is given Cj membership if its nearest neighbor is in class Cj and dj < Tj. The 
thresholds Tj are chosen to achieve the desired false acceptance and rejection rates. The weights 
w~e [0,1.0] are chosen to minimize the probability of error of the decision process using a genetic 
algorithm search process. A weight of zero effectively eliminates the feature from the decision 
process and indicates the feature does not contribute to the minimal error solution. The higher the 
weight the more the feature contributes to the decision process. 

Training samples are used to estimate the one dimensional conditional probability density 
functions for the minimal in-class distance f(dj\Cj)Vj and the minimal out-of-class distance 
f(djlC~j#k. The minimum probability of error is estimated by integrating the minimum of the 
conditional probability density estimates over the observation space O(d) of the in-class and out- 
of-class distances. The minimum probability of error (rope) estimate is given by 

f(djlck)J’ * k (2-23) 
L O(d) 

where the symbol A is a minimum select operator and the a priori probabilities are chosen equal 
P(Cj)=P(C~=%. The feature weights directly affect the distance measurements which in turn 
affect the conditional probability functions and the minimum probability of error. The genetic 
optimization method is used to select the weights to minimize mpe given a set of potential 
features. The net result of these operations is to select and fuse the features to achieve near- 
minimum probability of error performance. 

A key variable in the WNN fusion process is the number of samples required to approach a 
minimum probability of error solution. Estimates for the sample size can be theoretically 
established by determining the number of samples required to estimate the parameters p and a of 
a normal distribution N(p,02). Letting m and S* represent the sample mean and variance from ns 
samples, it is known [3] that m= (p-ccr,p+ca) with confidence 1 -a when the number of samples 
ns is given in terms of the size of the confidence interval c and a value Zt determined horn the 
normal distribution N(O,l) 

ZL2 ‘lx’ 
ns. — where J e-~dx = t. 

C2 ., a 
(2-24) 
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This results from the sample mean computed from random samples from N(p,02) having a 

o 

~~~ . Therefore, for any given confidence l-~ normal distribution with mean p and variance 

Hence 

and 

( ) p v-Za,2&7n<p+Za,2-& =1-a, 

P(~-ca< m<p+cO)= l-a, 

where 

(2-25) 

(2-26) 

(2-27) 

(2-28) 

Solving for the sample size ns yields the result 

() .zI/2 2 
~.J. — 

c“ 
(2-29) 

Consequently, a sample size of ns guarantees that the probability of an m falling in (p-co, p+co) 
is 1-a. The sample size can also be chosen to guarantee that the variance is in a given confidence 

(ns -I)S2 

interval. Since ~ 2 is X2 distributed with degree of freedom ns- 1 

( 2 

p XL12 (ns-1) < 
) 

‘ns~~)s < &l (ns-1) = l-a, 

and 

[ 

p Xfa,2(ns-1) CY2 ~s2 ~ X~12(ns-1) cr2 

) 
=1-a. 

ns-1 ns-1 

(2-30) 

(2-31) 
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for any confidence 1-u. By taking the square root we have 

Let 

where 

and 

P(/y”o-.s.J-.)=l... 

P(o-d,a -a<a+d2u)=kx, 

‘=’-w 

When dl+dz=d, the probability of S falling in (cr-dlu,o+dz) is greater than 1-u if 

e-w<’ 

(2-32) 

(2-33) 

(2-34) 

(2-35) 

(2-36) 

Finally, since m and S are independent, 

( (ns - 1)S2 
P – Z~,2 < m – p < Z~,2 ‘X~_~,2 (ns – 2) < 

1 
< XJ,2 (ns – 1) (2-37) 

G/& 02 

( )( (ns - 1)S2 = P –Z~12 < ‘–p <Za,z ● P Xf_a,2(ns–1)< 
1 

< X~,2 (ns – 1) (2-38) 
GIG G* 

=(1-CL)2 

the probability of both m falling in (p-ccr,p+co) and S falling in (~-dl~,~+dz) is (1+X)2. Hence, 
by selecting a sample size larger than that required form and S yields a confidence of (l-cx)z. For 
example, if the confidence interval size is c=O.52, and if the confidence is (1 -ct)2=0.9, then the 
number of required samples ns=10. This result holds only when the number of features n=l. If 
the number of features is n and they are independent and identically distributed N(p,CJ2), then the 
number of samples required is given by 

[) 
q 2“ 

ns=— 
c 

(2-39) 
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where a = ~ > 1. For example, if the number of features is n=4, if the desired confidence is 
c 

1 -et=.9 and if the confidence interval size is c=O.52 then a=3.163 and the required number of 
samples ns=l 002. For many problems with many features the number of required samples is an 
unacceptable large number. In our experiments with the human identity verification problem, the 
number of features is on the order of n=40, which leads to an unrealistic number of samples. These 
estimates are based on estimating the parameters of the joint feature distributions and determining 
the minimum probability of error decision surfaces. 

Our experience with the WNN decision process, however, indicates that fm fewer samples are 
required to approach the minimum probability of error solution. To illustrate the benefit of the 
WNN decision process, consider a two-class decision problem with n=40 features which would 
require a very large number of samples to estimate the joint distributions. If the features are 
independent with the same variance and normally distributed then only two samples are required 
(at the expected values of these two distributions) to define the optimal WNN decision surface. 
Any two samples co-aligned with the peaks of the distributions will form the optimal decision 
boundary. In our studies with the human verification problem with 44 features only five to ten 
samples for each person has produces excellent results. 

To fiu-ther illustrate the number of training samples required to produce near-minimum 
probability of error solutions, a large database of 13 hand features (n=13) was used to establish 
an experimental relationship between the number of samples and the probability of error. A 
distribution of pe was obtained for a sample size of ns=2 by random sampling the training data 
and determining the pe from the remaining data. The experiment was repeated for ns=5, 10, and 
20. These distributions are given in Figure 2–1, As the number of samples is increased the 
variance of the distributions decreases and the means decrease toward the minimum probability 
of error solution. 

8. 

8. 

4. 

2. 

. 

0 J 06 O.i at$ Oi O& 
Minimum Probability of Error (MPE), x 

Figure 2–1. Distribution of error probabilities 
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2.4 Feature Discovery Module 

The goal of the feature discovery module is to assist in the discovery of multiscale features to 
distinguish object classes, as shown in Figure 2–2. 

I Signature Database I 

I fvlultiresolution VVaveletAnalyzerl 

* t 
I I I I I 

Feature 

H 

Model-Based I Wavelet Signature 

Codebook Feature Extractor Feature Extractor I 

I Integrated Feature Database I 

Model-Based Features Signature-Based Features 

+ Shape and size measures + Frequency response measure: 
+ Statistical measures of color and texture + Wavelet energy packets 
+ Trajectory measures + Predictive model coefficients 

Figure 2–2. Feature discovery module 

The wavelet transform provides a method to discover model- and signature-based features at 
different levels of resolution. Model-based features include the geometric features that are used 
by humans and features that are developed by modeling the fimdamental laws governing the 
sensors, atmosphere, and objects to be distinguished. The signature-based features include the 
subtle spectral features that often do not have a geometric interpretation. The wavelet transform 
is used to generate a hierarchical pyramid representation where features can be extracted with 
different resolution levels, ranging from coarse to fine. By using the wavelet filter/decimation 
process, signatures are reduced in resolution while the low-pass component contains the basic 
spectral-fi-equency characteristics. At each level, features can be extracted and analyzed in terms 
of their ability to separate the classes. When features are proven effective, they are added to the 
feature codebook. The feature codebook provides a dictionary of the features that have been 
shown to be effective in distinguishing the object classes. This dictionary represents an 
accumulation of knowledge obtained from experience and from detailed system models based 
upon fimdamental laws governing the ability of the sensor to distinguish the objects and 
backgrounds of interest. 
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Features 

The wavelet generates a hierarchical pyramid representation of a signature 

at different resolutions for feature discover. 

Figure 2-3. Filter-decimation operation diagram 

The wavelet transform is used to reduce signals to their significant features. Let h(n) be a low 
pass filter with finite impulse response as described by Daubechies[l 3]. Let g(n) be a band pass 
or a high pass filter with finite impulse response defined by: g(n)=(-l)-lh(l -n). 

Let x(n) be a signal sequence with data size of N where N is a power of 2. The wavelet transform 
involves applying the filter pair (h(n), g(n)) to x(n): 

x~ (n)= ~ x(k)h(2n - k), 
k (2-40) 

x~ (n)= ~ x(k)g(2n - k), 
k (2-41) 

followed by a decimation of 2 (reduction in the spatial resolution by 2). The data size of x~(n) 
and x~(n) is one-half of the data size of x(n). Using the operation repeatedly, the original input 
signal sequence with N points is partitioned into its low-frequency and high-frequency 
components. This procedure is also known as filter-decimation operation. A filter-decimation 
example is given in Figure 2–3 where the high- and low-frequency parts are placed in bins. At 
each level of the filter-decimation operation, only one-half of the samples are kept in the same 
space and frequency domain. A well selected filter pair separates different frequency components 
so that there is little information overlap in the low- and high-frequency parts at each level of the 
transform. 
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When the wavelet transform is used to reduce the data size for a signal sequence, a major 
consideration is defining the level for stopping the decimation procedure. The objective is to 
reduce the resolution while keeping the significant properties of the signal. An energy map is 
used to determine at which level to stop the wavelet transformation and establish the bins that 
contain the significant information for a feature space. The bin location within a decomposition 
tree is represented by using the notations SLj(i) and SHj(i) to represent the low-frequency part 
and the high-fi-equency part, respectively. The wavelet transfon-n reduces the high-fi-equency 
noise while retaining the signal structural information. Hence, it is possible to represent the 
signal efficiently with fewer samples. In other words, the signal maybe classified by using the 
lower resolution information. The energy of the signal in each resolution also provides important 
information for recognition purposes. The energies in the low-flequency part ELj and in the high- 
frequency part EHj in level j are calculated using 

The energy ratio of the high and Iow-fi-equency parts (P%) is given in percent by 

EH . 
PRj % = ----J*1OO. 

ELj (2-43) 

Higher energy signals contain the more significant structural information than do lower energy 
signals. The energy ratio is used for extracting the important features. If PI$ is less than a 
threshold e, then the information contained in the high-frequency part is small compared to the 
low-frequency part. When the Pl$ is greater than e, the filtering process is stopped because the 
structural features of the signal are going into the high-frequency bin. The effective features are 
extracted from the low-frequency bin of the previous level and used for recognition. 

2.5 Feature Selection Module 

The feature selection module, Figure 2–4, selects and establishes weights for the features to forma 
weighted-feature vector that minimizes the probability of error. A GSA selects the features from the 
possible feature set and establishes the weights to minimize the probability of error. The result of 
this process is a weighted-feature vector that can be partitioned to meet processing constraints and 
minimize the probability of error. 
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Figure 2-4, Feature selection module 

The central element of the feature selection module is the GSA. It selects combinations of 
features from the feature set generated by the discovery module and utilizes the evolution 
operators to weight the features to obtain a near-minimum probability of error solution. If any 
processing constraints are imposed, the GSA ensures that they are satisfied. Given the selected 
features and weights, the error analyzer uses the training samples to estimate the conditional 
probability density fictions for the minimal nearest-neighbor in-class distance f(djlCj) V j and 
the minimal nearest-neighbor out-of-class distance f(~lC~j#k. The minimum probability of error 
is estimated by integrating the minimum of the conditional probability density functions over the 
observation space O(d) of the in-class and out-of-class distances. For discrete probability density 
finctions the minimum probability of error (rope) is given by 

mpe = ~~f(djl Cj) A f(djl Ck)j # k (2-44) 
O(d) 

where the symbol A is a minimum select operator. The features selected and the feature weights 
directly affect the distance measurements, which in turn affect the conditional probability 
fimctions and the probability of error. The genetic optimization problem is used to select the 
weights to minimize the mpe given a set of potential features. The net result of these operations 
is the selection and fhsion of the features to achieve a near-minimal probability of error decision 
algorithm. 

* 

14 



The purpose of GSAs is to establish an initial population (P) of NP possible solutions (members) 
to a given problem. For the current problem, a member is an ordered collection of features and 
their corresponding weights. These population members compete, mate, and mutate to generate a 
new population of NP members that are better qualified to solve the problem. This process 
continues until a desired performance level is reached or a limit on the number of generations 
(NG) is reached. 

The initial P is formed by establishing the performance of each individual feature in the given 
feature set. A weighted list of the features is formed to generate a weighted random selection of 
NP members based upon their individual performance. Weights are assigned for each feature 
selected based upon the relative performance of the features selected. After the initial population 
is selected the mutation, reproduction, and mating (crossover) operators generate the natural 
selection of the next population. The mutation operator selects a random member from the 
population, selects a random pointer to a feature in the member, performs a weighted random 
selection of a new feature not already in the member (could be the same feature) and randomly 
assigns weights to the new features and all features above the pointer. This allows new features 
to enter the population with randomly assigned weights. The reproduction operator performs a 
weighted random select of a member fi-om the population and randomly perturbs the feature 
weights to generate a new member with similar performance. This process promotes new 
members with characteristics similar to members with good performance. The crossover operator 
performs two weighted random selections of two members based on their performance. Two 
random pointers are selected in the feature string, and the common features and fuzzified weights 
are exchanged between the pointers to prevent duplication of features. After the crossover 
process is completed, the new solutions are evaluated and only the best are introduced into the 
next generation. Using these operators, each old member is replaced by randomly selecting an 
operator with the probabilities p~=O.2 for mutation, p,=O. 1 for reproduction, and pC=0.7 for 
crossover and generating a new member. 

The GSA has demonstrated the ability to quickly generate good solutions that compare well with 
solutions obtained with neural nets that take much longer to converge. For the human verification 
problem with n=44 possible features excellent solutions are obtained with only five generations 
(NG=5) with a population size of NP=40. The training time on a 90MHz personal computer is 
only a few minutes. A comparable solution using a neural network solution requires several 
hours of training time. 

2.6 Decision Module 

A common mathematical foundation for the comparative analysis of statistical, fizzy, and 
artificial neural pattern recognition or decision-making systems was developed [15] using 
abstract algebraic techniques. These techniques characterize the fimctions generating decision 
surfaces and the learninghraining processes involved in each technique. 

Abstract algebra is built on the most basic of foundations: sets, operations on sets, and mappings 
from set to set. Viewed from this level, all pattern recognition methods are strikingly similar. So 
much so, in fact, that an abstract pattern recognize (APR), Figure 2–5, can be defined such that 
all others are its subsets or special cases. The basic structure of the APR was developed during 
this project. Typical popular statistical, fizzy, and artificial neural pattern recognizes are 
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characterized in the context of the APR [15]. Each of the modem methods has strengths and 
weaknesses, advantages and disadvantages. Using the concept of an APR, it is possible to design 
and build hybrid systems that capitalize on the advantages and strengths of all previous 
methodologies. Each of the modem pattern recognition areas has its own terminology and set of 
notations. As much as possible, the standard notation for each discipline was preserved and 
described as it relates to the standard notation of abstract algebra. 

The study of pattern recognition has many important goals, such as the development of 
methodologies for designing and building machines capable of recognizing and learning to 
recognize objects in natural or unstructured environments. The common task of any pattern 
recognize is to obtain a set of observations or measurements fi-om an unknown (or unclassified) 
pattern and to decide which class the pattern belongs based on the values observed. From an 
abstract point of view, once pattern recognition is clearly defined within a mathematical 
fi-amework, the pattern recognition task becomes a simple mathematical problem. 

Decider Mapping Functbn, 

Obsmatbn Space, M F):MD-w 

Figure 2–5. Conceptual view of abstract pattern recognize 

A pattern recognize is a decision maker or decider, D, that can be viewed as a mapping from an 
arbitrary observation space M to a finite set of symbols representing decisions or object classes, 
Cl D is therefore a triple (M,Q,8); M is a space (the largest set ftom which subsets of 
observations are taken); Q is a finite set of symbols; and 5 is a mapping ilom M to Q 8: M--X2. 
The decider is meaningful only if !2 contains two or more elements and M contains at least as 
many elements as Q. For most deciders, the mapping 5 is many-to-one with the number of 
elements in M quite large, often not finite. In these cases, the mechanism creating 5 defines a 
partition of M with nonoverlapping subsets of M mapping into elements of Q. Note that 
members of the special subset of deciders characterized by finite M are called combinatorics 
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machines in automata theory with M being a finite set of input symbols and Q a finite set of 
output symbols. 

There are three basic types of deciders: fixed, trainable, and learning. The mapping 8 in a fixed 
decider is static. It is developed prior to the use of the decider and does not change during decider 
operation. The trainable decider has a training mode wherein the mapping can be altered in 
response to one or more sets of measurements whose classification is known a priori. The 
mapping of a learning decider develops and evolves as the decider encounters and classifies new 
patterns of unknown classes. There are, of course, many variations of these basic types. 

Regardless of the type or implementation method, all pattern recognizes are deciders as defined 
above. Once a specific pattern recognition task has been defined, the sets M and Q are the same 
whether the pattern recognize be classical deterministic, statistical, fizzy, artificial neural, or 
something altogether new. What differs for each is the mapping 5 and its generation. For typical 
examples of each of the pattern recognition methods chosen for comparative analysis, the 
composition of 5 is derived and used as a basis for comparison and contrast. In each of these 
methods, the mapping 8 is expressed as a composition of a decision rule and another set of 
mappings classically termed discriminant or decision fi.mctions. The three methods chosen for 
analysis are also based on the implicit assumption that M and the subsets of M from which 
measurements are taken is a measurable space. In this development, M was arbitrarily restricted 
to be a vector space. 

These restrictions were for convenience only and are not contained in the fi-mdamental definition 
of a decider. Without these restrictions, extraordinarily rich pattern recognizes can be developed 
using nonmeasurable spaces containing measurable subspaces. The use of a nonmeasurable space 
M provides a mechanism for incorporating nonmeasurable information dimensions and 
nonmeasurable a priori knowledge into a pattern recognize. 

Deciders can be considered optimal if they minimize some cost fimction that rewards correct 
decisions and penalizes errors. It general, there maybe many decision surfaces that minimize a 
cost fimction. It is expected that for a given problem, optimal decision surfaces obtained by any 
of the methods will be similar. The probability of error is an accepted measure of the 
performance of a decision maker. The optirnality criterion is the minimization of the probability 
of error (MPE). The number of training samples (ns), the amount of time required for training (tt) 
and the amount of time required to make a decision (td) are also important factors in evaluating a 
decision maker. The WNN decision maker is a good choice for many applications. The power of 
the nearest-neighbor decision process reduces the number of training samples, the GSA reduces 
the training time and if the number of decision-making samples (rids) is not too large the time to 
make a decision is favorable. Normally the number of decision making samples is much less than 
the number of training samples (nds<<ns) by eliminating samples that do not significantly affect 
the decision surfaces as shown in Figure 2–6. 
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Figure 2–6. Weighted nearest-neighbor decision process 

The WNN decision process involves computing the minimum in-class distances ~ and 
comparing to the class thresholds Tj. It is important to observe that the genetic training algorithm 
selects the features and establishes the class thresholds Tj during the training phase. Hence, the 
real time decision process is very fast. 
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Figure 2–7. Weighted nearest-neighbor decision process 

The WNN training and decision performance compares well with neural network performance. 
The training time of the WNN decision process, however, is much faster and achieves acceptable 
performance very quickly with the genetic optimization procedure. 
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3. HUMAN IDENTITY VERIFICATION PROBLEM 

A detailed, practical application of the sensor fision methodology is a solution to the human 
identity verification problem. The basic problem under investigation is the development of a 
computer vision system for identi~ing or veri~ing the identity of an individual for controlling 
entry into secure areas or access to sensitive information. The goal is to develop a system with a 
high probability of detecting an unauthorized entry or access attempt with minimal 
inconvenience to authorized personnel. Facial, hand and voice features are investigated to 
evaluate their performance in terms of the complexity of the recognition problem. Several coarse 
features are extracted fi-om face and hand images and from digitized words. These are analyzed 
to establish their ability to recognize people. The objective of this research is to analyze the 
feature space of the problem and to establish the features that can be fused to reduce the 
complexity of the recognition problem, consequently reducing the error probability and 
computational effort. 

Results of initial experiments were reported by Flachs et al [5] and Carlson et al [6]. The early 
results were obtained from a Sandia National Laboratories (SNL) database and an early New 
Mexico State University (NMSU) database. The SNL data set was acquired under ideal 
conditions. The early NMSU data set was produced under somewhat more relaxed conditions. 
The results presented here are based on data obtained from an operational access control/portal 
control system under what would be considered normal operating conditions. The operators of 
the system and the participants were essentially untrained and, for the most part, had little image 
processing/pattern recognition experience. Many of the subjects actually tried to defeat the 
system by quickly moving their hands below the hand sensor or “making faces” in an attempt to 
fool the facial sensors. The main purpose of the experiment was to test the robustness of the 
algorithms developed earlier and to gain insight into their operational utility. These tests 
demonstrate that good features possess the ability to distinguish people and they can be reliably 
computed. 

The configuration of the human biometrics data acquisition system is shown in Figure 3–1. A 
person attempting to enter a secure area must present his or her right hand, palm-down, over the 
hand imaging area. A television monitor in front of the hand imaging area shows the user how 
the hand looks to the system. This monitor also serves the purpose of causing the user to orient 
his or her face appropriately for facial fi-ont and side view cameras. The system automatically 
senses a person’s hand in the hand imaging area and acquires the hand and face images. The 
system then prompts the user to repeat a sequence of digits flashed one at a time on the monitor. 
During this time, the voice digitizer captures the spoken numbers. 

In the side view image, the facial profile forms a one-dimensional signal for side view features. A 
gray-level projection along the rows of the front view image forms a one-dimensional signal for 
front view features. The wavelet feature discovery algorithm is used to reduce the signatures for the 
side and front views to 12-dimensional feature vectors. In the hand image, the hand is segmented 
from the background and the length and width of the fingers are combined with three hand-shape 
features to form an 1 l-dimensional hand feature vector. Each person is asked to say three 
numbers with strong vowel sound as they enter the verification room. The voice signature for 
each number is analyzed with match filters to obtain a pitch fi-equency profile and the fast 
Fourier transform is used to obtain the fi-equency spectrum. The feature discovery process 
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reduced the pitch frequency profile to six features and the fi-equency spectrum to eight features. 
Consequently, 14 features are obtained for each spoken number, forming a 42-dimensional 
feature vector for the three spoken numbers. Statistical decision techniques are used to evaluate the 
facial, hand, and voice features in terms of their ability to discriminate humans. The WNN method 
is used to reliably fise the features from all of the different sensors. 

Hand view 
camera 

\ 

I 

. Ill 
x 

E 
Hand imaging 
area 

x m---r’ 1 

— — 

Figure 3–1. System configuration 

3.1 Facial Features 

For both the front and side view face images, the top of the head and the sides of the face are 
located using edge detection. This restricts the computations to the face regions and removes 
much of the positional variation from trial to trial. In the side view image, an edge detector is 
used to highlight and extract the profile of the front of the face. The extracted facial profile forms 
a one-dimensional signal for side view features. A typical side view profile signal is shown in 
Figure 3–2. The average gray level of each row in the front view image forms a one-dimensional 
signal for front view features. Since the two-dimensional image is projected along the rows onto 
a one-dimensional array, this front view signal is termed a gray level row projection of the 
image. A typical front face view row projection is shown in Figure 3–3. These signals from the 
side and front of the face contain considerable discriminating information. The side and front 
view cameras are not aligned exactly so the same features do not occur in corresponding rows. 
Because of the way features are extracted and fised from these signals, alignment of the cameras 
is not necessary, thus simpli~ing system setup. 
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Figure 3–2. Signal for side view features Figure 3–3. Signal for frontal view features 

The feature discovery algorithms utilize the wavelet transforms of the two signals to extract 
potential features for use in the system. Initial experiments were performed on face side view 
images from a Sandia National Laboratories database containing 28 different people with 5 trials 
from each person. In early experiments, the fill discrete wavelet transform (DWT) using the 
Daubechies10 1=3 wavelet was applied to the profiles. Energy distributions and sample 
autocorrelations of the wavelet coefficients were examined. It was determined that only the 
coefficients representing the larger scale phenomena were useful in identity discrimination. The 
high pass portion of the DWT was not selected, since it mostly contained the measurement and 
environmental noise factors. The low-pass portion was replaced by a unit sample response 
derived from a windowed ideal low pass filter. The filter used is h(n) = 0.02343755(n-4) 
-0.0468755(n-3) -0.1255(n-2) +0.2968755(n-1) +0.703125i3(n) +0.2968758(n+l) -0.1255(n+2) 
-0.0468756 (n+3) +0.02343758 (n+4). 

One way of assessing the quality of a feature set is by examining how well the set can reconstruct 
the object it represents. The fill DWT of a signal using an orthonorrnal basis wavelet set has a 
unique inverse that is the original signal, Reconstructing the signal from only a few of the DWT 
coefficients results in only an approximation of the signal. Reconstruction of these facial signals 
using only the wavelet coefficients fi-om the 23 level preserves most of the important structural 
and frequency features of the signals. The reconstructed signals corresponding to those shown in 
Figures 3–2 and 3–3 are shown in Figures 3–4 and 3–5 respectively. 
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Figure 3-4. Reconstructed side view signal Figure 3-5. Reconstructed frontal view signal 

The side view and front facial projection signals each have 256 components. In the side view 
image, a correction is made for the tilt of the head by finding the nose profile and rotating the 
profile so that the line under the nose shown in Figure 3–5 becomes horizontal. After correction, 
the wavelet coefficients are computed, and the feature discovery module selects 12 of the 32 
coefficients from the 23 scale in the vicinity of the nose region to keep by the feature discovery 
algorithms as the side view features. The position of the nose in the image is also kept as a 
feature. This is a rough measure of a person’s height. The top of the head position and eleven 
wavelet coefficients are kept as features from the front view projection. The wavelet coefficients 
from the top and bottom portions of the row projection are omitted because they fall in the highly 
variable hair and neck/collar regions respectively. These features are evaluated by the mpe 
statistic to determine their discriminating power. The ones that indicate the greatest 
discriminating ability are selected by the feature discovery module for use in the system. 

The SNL and the early NMSU database images were used to develop the feature discovery 
algorithms and for preliminary feature evaluation. For final feature evaluation, these images were 
not used because they were obtained under controlled conditions and do not contain the levels of 
variation that would be expected in an operational system. Students in the NMSU Electrical and 
Computer Engineering Department acquired a large database of images using the prototype 
access control portal described earlier. These images contain the large variations that would be 
expected in an operational environment. Images from 25 different people in the new NMSU 
database are used in the evaluation of the feature discove~ algorithms. 

The facial features were evaluated by estimating the conditional probability density functions 

(pDFs) fx(x I Ho) and fx(x I H,) for the features under the HO and H, hypotheses. Estimates of the 
PDFs were computed for each feature by using the nearest-neighbor minimal in-class (HO) and 
the minimal out-class (H,) distance statistics to compare measurements from one person to 
himself or herself and to compare measurements fi-om different people. The PDF estimators are 
smoothed relative-frequency histograms of all combinations of measurements for each 
hypothesis. The MPE statistic is used to evaluate and rank the 32 facial features from the two 
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views. An MPE value O implies the feature completely separates the classes and an MPE value of 
0.5 implies the feature provides no information to separate the classes. 

Pitch Profile vpl 

P(error) = 0.261 

0.2 0.4 0.6 0.8 1 

Performance of one front view feature 
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Performance of one side view feature 

Figure 3–6. Complexities of selected individual facial features 

The estimated PDFs for fx(x I HO) and fx(x I H,) for a side view feature and a front view feature 
together with the estimated probability of error for these individual features are shown in 
Figure 3–6. From these graphs, it is clear that these features have relatively high probabilities of 
error. The other features have similar graphs and are summarized in Tables 3–1 and 3–2. 

Table 3,1. Side Facial Feature Performance 

I 3-” I 0.31 

I 4 I 0.27 

I 8 I 0.41 

I 9 I 0.22 

10 0.41 

11 0.27 

Table 3.2. Front Facial Feature Performance 
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The genetic optimization algorithm was used to weight the features to obtain a near-minimum 
probability of error when using the WNN fision and classification algorithm. The weights 
increase the effects of good features and decrease the effects of the poor ones. After the 
minimization procedure, the WNN fimion algorithm uses the weights to account for the 
differences in the discriminating abilities of the features. The weights assigned to the front view 
features are {0.230, 0.010,0.148,0.400,0.160, 0.128,0.368,0.142,0.412, 0.038,0.014, .114}. 
The weights assigned to the side view features are {1.000, 0.100,0.386,0.200,0.211, 0.050, 
0.121,0.100,0.227,0.000, 0.208 ,0.029}. The features with the higher weights are more 
important in terms of minimizing misclassification error. The first featur~eight—is given a 
large weight by the generic algorithm fision algorithm. Figure 3–7 shows the dramatic 
improvement when the WNN fision algorithm is used to fuse the front features and Figure 3–8 
shows the perfommnce of the fised side features. The fised front features perform better @e = 
O. 116) than the fused side features (pe = 0.164). 

INN Front Features 

P(error) ❑ 0.117 

Figure 3–7. WNN-fused front facial features 

WNN Side Features 

P(error) = 0,163 

Figure 3–8. WNN-fused side-face features 

3.2 Hand Features 

Finger lengths and widths are relatively stable and easily computed measurements that provide 
coarse information about the structure of the hand. The lengths and widths of the four digits are 
extracted from the hand image using a combined process of segmentation, border tracking, and 
region filling. The segmentation is accomplished by taking the histogram of the entire image and 
setting a threshold according to the histogram. This threshold is used to make a binary image 
consisting of background and target. A finite state machine is then implemented to track the 
border of the segmented image to generate the hand curve. During this tracking stage, the 
maximal points of curvature are determined by locating the point where the angles of curvature 
are maximum. 

The high curvature points are used to locate the tips of the fingers and the valleys between each 
pair. The valleys are marked in Figure 3–9 as points b,c and d. The line cb is extended to point a 
to isolate the index finger. The line cd is extended to e to isolate the little finger. The features of 

. 

, 
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the hand used in the recognition system are the length of the fingers,fli (i= O,...,3), and the widths 
of the fingersfii (i= O,..., 3) also shown marked in Figure 3–9. The lengths are the distances from 
the midpoints of the line segments to the fingertips. The finger widths are measured at the 
midpoint between the finger tips and the finger valleys as the minimal distance across the finger 
as shown in Figure 3–9. The three points labeled b, c, and d form a triangle whose sides hgO=bc, 
hg,=cd, and hgz=bd are also used as features, forming an 1 l-dimensional hand-feature space. 
The side bd provides a measure of hand width, and the sides provide additional hand 
distinguishing characteristics. 

finger lengths 

h13 

finger 

h 

widths 

Figure 3-9. Hand geometry features 

The new NMSU hand image database was used to study the effectiveness of these hand features. 
The hand database includes ten hand images of 25 different people. As with the features fi-om the 
face images, the hand features are individually analyzed with the MPE statistic to establish their 
effectiveness in hand recognition. The performance of typical individual hand features are shown in 
Figure 3–10. A summary of the probability of error evaluation of the hand features is given in 
Table 3–3. These results indicate that all the individual hand features have considerable probability 
of error. 
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P(error) = 0.427 

Finger Length fll 

— 
1 

0.2 0.4 0.6 0.8 1 

Finger Width hvl 

P(error) = 0.455 

0.2 0.4 0.6 0.8 1 

Figure 3–1 O. Performance of selected individual hand features 

Table 3–3. Hand Feature Performance 

Feature P(error) 

I h10 I 0.42 

I hll I 0.45 

I h12 I 0.45 

I h13 I 0.45 

I hwO I 0.45 

I hgO I 0.33 

I hgl I 0.38 

I hg2 I 0.39 

The genetic algorithm was used to select the weights using the WNN fusion model to obtain a 
near-minimum probability of error performance. The weights for the hand features were 
determined to be {0.750, 0.370, 1.000,0.985,0.950,0.542, 0.700,0.210,0.493,0.225, 1.000}. The 
performance of the WNN fusion process is shown in Figure 3–11. This indicates that the 

26 



expected probability of error of the fised hand features is pe=O.093, which again shows the 
perfommnce improvement by using the fision process. 

WNN Hand Features 

P(error) = 0,093 

0- 
0 0.2 0.4 0,6 

Figure 3–1 1. WNN-fused hand features 

3.3 Voice Features 

Since most of the vocal apparatus is consciously controllable, it is difficult to obtain features 
fi-om the voice that reliably distinguish individuals. The portion of the vocal tract that is not 
under conscious control by the individual is the nasal tract, This portion is subject to significant 
variations with health (allergies, colds, etc.). Rather than attempting to find a few intricate vocal 
features that are invariant with respect to health and conscious effort, many simple features are 
used that are habitual in nature. These features are usefi.d because it is difficult to control many 
habitual features simultaneously. That is, out of habit, the person vocalizes certain phonemes and 
combinations of phonemes in consistent and predictable ways. These vocalizations can be altered 
but only with much conscious effort. When many such features are used, it is very difficult for an 
impostor to alter enough of them in a sufficiently controlled fashion to mimic the voice of 
another person. 

Itch Profile vpl 

P(error) = 0.261 

0 

Pitch Profile vp2 

P(error) = 0.0362 

0.2 0.4 0.6 0.8 1 

Figure 3–12. Performance of selected individual voice features 
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For this study, several experiments on isolated digits fi-om zero to nine indicated that the vowel, 
diphthong and nasal phonemes in the combination three-nine-five carried considerable 
information for distinguishing individuals. The simple voice features extracted from these 
signatures are the pitch fi-equency profile and the frequency spectrum. The pitch frequency varies 
as one speaks the numbers and this variation is a good speaker-verification characteristic. The 
frequency spectrum for each number also provides significant information to identi~ speakers. 

A digital correlator is used to discover the presence of near uniformly spaced pitch pulses to 
determine the location of the voiced phonemes. The pitch frequency is tracked before and after 
the center of the voiced numbers, forming a pitch-fi-equency profile signature. This pitch- 
fiequency profile provides significant speaker recognition features. The profile is reduced by the 
feature discovery module to an average pitch fi-equency and five features that represent the 
beginning, middle and ending of the profile (vpi,i=O,..., 5). In addition to finding the pitch 
frequency profile features, a fast Fourier transform is used to establish the frequency spectrum of 
the middle segment of the voiced numbers. The feature discovery module reduces the frequency 
spectrum to eight features (vsi, i= O,..., 7), representing the major peaks in the spectrum. 

The frequency profile and spectrum features give an indication of the habitual speaking 
characteristics and prosody (rhythm) of the speaker. Fourteen features are measured for each 
voiced number. Consequently, a total of 42 features are measured for the three-number sequence 
three-nine-five. Performance of the average-pitch fi-equency for the number three and the front- 
porch of the number three frequency profile are given in Figures 3–12a and 3–12b. As with the 
coarse features fi-om the face and hand, each of the voice features individually is not sufficiently 
reliable for identity verification. However, after the WNN algorithm was used to fise the forty-two 
features, a probability of error pe=O. 147 was obtained as shown in Figure 3–13. 

WNN Voice Features 

Figure 3–1 3. WNN fused voice features 
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3.4 Fusion of Facial, Hand, and Voice Features 

The coarse features from the face, hand and voice have demonstrated the ability to distinguish 
people with a probability of error of less than 1 percent. Groups of features taken together tend to 
lower the probability of error. An important research problem addressed here is to establish a 
method for combining some or all of the available features to improve the error performance 
without greatly increasing the computational cost. This problem is called the feature fusion 
problem. The approach to this problem presented here involves selecting reliable, simple and 
nearly independent features and using a near optimal algorithm to fise all selected features to 
solve the discrimination problem. 

Since the hand and front facial features performed the best an augmented feature vector is 
assembled that contains the hand and facial front features (23 in all). The genetic optimization 
algorithm and the WNN iision model described earlier is used to weight the features to obtain a 
near-minimum probability of error. The performance of the combined hand and facial front 
features is shown in Figure 3-14 with the hand features weighted by {0.800, 0.370, 1.000, 1.000, 
1.000,0.492,0.750,0.260, 0.143,0.225, 0.850} and the front features weighted by {0.000, 
0.050,0.150,0.050,0. 100,0.000,0.000,0.050, 0.150,0.200,0.100, 0.000}. The probability of 
error was significantly reduced from the hand performance (pe_hand=0.093) and the facial front 
performance (pe_fiont=O.116) to a combined performance of pe_h&O.042). The hand, facial 
fi-ont, and facial side features are also fused together using the WNN fusion algorithm. The fised 
hand-feature weights are {0.900, 0.520, 1.000,0.200, 1.000,0.442,0.250,0.160, 0.143,0.075, 
0.700}; the fhsed front feature weights are {0.000, 0.050,0.350,0.150,0.200, 0.000,0.000, 
0.050,0.150,0.200,0.100, 0.000}; and the fused side weights are {1.000, 0.000,0.000,0.050, 
0.050,0.000,0.000,0.050, 0.000,0.000,0.000, 0.000}. The results are shown in Fig. 4–15. 
Again the probability of error was significantly reduced from the combined hand/front 
perfommnce (pe_hf=O.042) to pe_hfs=O.013. All the features from the front, hand, side, and nine 
of the most significant voice features are fused to form a 44-dimensional space to obtain the 
performance pe_fhsv=O.008 as shown in Figure 3–16. The nine voice features selected are {vpO, 
vp4, vp5 } from the pitch profile of the number three, {vpO, vp4, vp5, VS7} from the number nine 
and {vp4, vp5 } from the numberfive. The fused weights for the hand features are {1.000, 0.620, 
1.000,0.200,0.950,0.442, 0.250,0.160,0.043,0.125, 0.750}, the fused front feature weights are 
{0.000, 0.000,0.300,0.300,0.200, 0.000,0.000,0.050,0.100, 0.200,0.150, 0.000}, the fused 
side weights are {1.000, 0.000,0.000,0.050, 0.050,0.000,0.000, 0.050,0.000,0.050, 0.000, 
0.000} and the fused voice weights are {0.050, 0.000,0.000,0.250,0.050, 0.000,0.000,0.100, 
0.000}. To illustrate the effectiveness of the feature-weighting process, all features were given 
equal weights, and the WNN fision process resulted in a probability of error of pe=O.068, as 
shown in Figure 3–17. This clearly shows the power of the weighting process. 

The hand and facial side features are also fused together using the WNN fbsion algorithm. The 
results are shown in Figure 3–15. Again the probability of error was significantly reduced horn 
the combined fionthnd performance Qe_fh=O.028) to pe_fhs=O.019. All the features from the 
fi-ont, hand, side and voice are fised to forma 44 dimensional space to obtain the performance 
pe_fhsv=O.016 as shown in Figure 3–16. To demonstrate the effectiveness of the feature 
weighting process, all features were given equal weights and the WNN fixsion process resulted in 
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a probability y of error of pe=O. 144, as shown in Figure 3–17. This clearly shows the power of the 
weighting process. 

WNN Hand and Front Fused 

Ho 

c , 
0 0.2 0.4 0.6 0.8 1 

Figure 3–1 4. WNN-fused hand/front 

Fused Hand, Front, Side, and Voice Features 

A P(error) = 0,008 

0 

WNN Hand, Front, and Side-Fused Features 

P(error) ❑ 0.013 

Ho 

o . . 
0 02 0.4 0.6 0.8 1 

Figure 3–1 5. WNN-fused hand/front/side 

Fused Hand, Front, Side, and Voice 
Equal 

Figure 3–1 6. WNN hand/front/side/voice Figure 3–17. Fused with equal weights 

WNN method is demonstrated to be a good tool for feature fision. A well designed system The — 
can accurately veri$ the identity of individ~als by fusing numerous simple biological features 
extracted from remotely acquired digital images and voice data. Although the individual simple . 

. 
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features do not provide quite the performance of some of the more complex human biometrics 
features, the time to extract the 44 simple features is significantly less than that required for some 
of the more complex features. Furthermore, the results demonstrate the important theorem in 
feature fision that the performance of an optimal feature fksion system will not degrade with the 
addition of new features and may improve. 

For comparison purposes an artificial neural netsvork was trained to fise the features. Once 
trained the neural network’s performance was similar to the WNN fbsion model. The main 
disadvantage of the neural network fusion was the very long training time required each time a 
new person was added to the database. The training time for the WNN involves selecting the 
training samples and determining the feature weights to obtain a near-minimal probability of 
error. 

4. CONCLUSIONS 

The results support the conclusion that the identity of individuals can be reliably verified by 
using a large number of relatively simple features extracted from digital images of the face and 
hand and from digitized speech. The performance of each feature is established in terms of its 
probability of error. Individually, the coarse features have a relatively high probability of error. 
However, when fused together in a higher dimensional space their combined performance is 
much improved. The basic idea is that a few features can be easily confhsed but it is difficult to 
confise a large number of features from different sensors simultaneously. This concept is 
illustrated by using the WNN method to fuse and evaluate the joint performance of the features. 

The use of data acquired under normal operating conditions was of great help in evaluating the 
robustness of the features chosen for the experiment and the feature extraction algorithms. 
Feature performance is closely related to the ability of the extraction algorithms to reliably 
measure the features. Errors in the measurement of the features cause decision errors. However, 
the fusion of many features reduces the effect of any given feature measurement error. For 
example, the hand feature extraction algorithm performed very well on subjects whose fingers 
were spread apart. It often failed when two or more fingers were touching. The hand feature 
extraction algorithm was modified to correctly detect this failure mode and prompt the person to 
spread their fingers. This modification significantly enhances the performance of the system. 
Several of the subjects tried to foil the system with some success by moving their hands very 
quickly through the scanning area or making unnatural faces. The digitized hand images were 
somewhat blurred and often their fingers were out of the scanning area before all calculations 
were complete. Uncooperative subjects accounted for many of the system errors. These subjects 
can also be seen in the HO probability of density functions as minor modes under the H, 
probability of density fictions. The voice feature extraction algorithm also performed well on 
some subjects but not on others. The major cause of the failures in the voice feature extraction 
was determined to be variation in loudness from person to person. Perhaps a better microphone 
with a better dynamic range and better signal-to-noise ratio would significantly improve the 
performance of the voice recognition. 
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