

1

SAND97-2551 Distribution
 Unlimited Release Category UC-705
Printed October 1997

The Development and Performance of a
Message-Passing Version of the PAGOSA

Shock-Wave Physics Code

David R. Gardner
Parallel Computational Sciences Department

Courtenay T. Vaughan
Parallel Computing Science Department

P.O. Box 5800
Sandia National Laboratories
Albuquerque, NM 87185-111

Prepared for
The Computational Mechanics and Material Modeling Technology
Coordination Group of the Joint DoD/DOE Munitions Technology

Development Program

Abstract

A message-passing version of thePAGOSA shock-wave physics code has
been developed at Sandia National Laboratories for multiple-instruction,
multiple-data stream (MIMD) computers.PAGOSA is an explicit, Eulerian
code for modeling the three-dimensional, high-speed hydrodynamic flow
of fluids and the dynamic deformation of solids under high rates of strain.
It was originally developed at Los Alamos National Laboratory for the sin-
gle-instruction, multiple-data (SIMD) Connection Machine parallel com-
puters. The performance of Sandia’s message-passing version ofPAGOSA
has been measured on two MIMD machines, thenCUBE 2 and the Intel
Paragon XP /S. No special efforts were made to optimize the code for ei-
ther machine. The measured scaled speedup (computational time for a sin-
gle computational node divided by the computational time per node for
fixed computational load) and grind time (computational time per cell per
time step) show that the MIMDPAGOSA code scales linearly with the
number of computational nodes used on a variety of problems, including
the simulation of shaped-charge jets perforating an oil well casing. Scaled
parallel efficiencies for MIMDPAGOSA are greater than 0.70 when the
available memory per node is filled (or nearly filled) on hundreds to a thou-
sand or more computational nodes on these two machines, indicating that
the code scales very well. Thus good parallel performance can be achieved
for complex and realistic applications when they are first implemented on
MIMD parallel computers.

2

Acknowledgments

ThePAGOSA code was developed at Los Alamos National Laboratory under the direction
of Dr. J. W. Hopson. We thank Dr. Hopson for making the data-parallel version of
PAGOSA available to us, and we thank Dr. D. B. Kothe of Los Alamos National Laborato-
ry for providing technical advice concerning its structure. We thank the Advanced Com-
puting Laboratory of Los Alamos National Laboratory, Los Alamos, NM 87545, for
providing computing resources necessary to complete this work.

This work was supported under the Joint DoD/DOE Munitions Technology Development
Program, and sponsored by the Office of Munitions of the Secretary of Defense.

We thank T. Mack Stallcup of Intel Corporation for providing technical information about
the Paragon computer. We thank Martin W. Lewitt, formerly of nCUBE Corporation, for
technical information about the nCUBE 2 computer.

UNIX® is a trademark of AT&T. CM-2, and CM-5 are trademarks of Thinking Machines
Corporation.iPSC®, i860 , and Paragon™ are trademarks of Intel Corporation.

This work was performed at Sandia National Laboratories supported by the U.S. Depart-
ment of Energy under contract number DE-AC04-94AL85000. We thank the Massively
Parallel Computing Research Laboratory at Sandia for providing computing resources
necessary to complete this work.

3

Table of Contents

Abstract ..1

Acknowledgments..2

Introduction..9

Issues in Parallel Computing ...11

Parallel Code Performance Measurements ..13

Development of the MIMDPAGOSA Code...18

Features ofPAGOSA 5.5 ..18

Development of MIMDPAGOSA 5.5 from SIMDPAGOSA 5.5...........................19

Features of MIMDPAGOSA 5.5..22

The Test Simulations ...22

The Finned Projectile Simulations...22

The Explosive Welding Simulation...23

The Oil-Well Perforation Simulation...24

The Test Conditions...27

The Performance of MIMD PAGOSA ..28

Message-Passing Performance on thenCUBE 2...29

Message-Passing Performance on the IntelParagon ...36

Performance of MIMDPAGOSA on thenCUBE 2 and the IntelParagon
Message-Passing Computers ...46

Summary and Conclusions ..52

References..54

Appendices...56

A MIMD PAGOSA 5.5 Input Guide...56

B Test Problem Input Sets ...90

B1 Input Set for the Finned Projectile Problem with the Hydrodynamic
Constitutive Model, fp1 ...90

4

B2 Input Set for the Finned Projectile Problem with the Elastic, Perfectly
Plastic Constitutive Model, fp2 ...94

B3 Input Set for the Explosive Welding Problem, ew98

B4 Input Set for the Oil-Well Perforation Problem, owp..............................102

5

List of Figures

1 Illustration of the speedup surface, the fixed-size speedup curve, and the
scaled speedup curve...15

2 The fixed-size speedup and scaled speedup curves projected on the
P-S plane ...17

3 Illustration of the decomposition of the global computational domain into
subdomains, in two spatial dimensions...20

4 Program fragments illustrating the translation from CM Fortran to Fortran 77.......20

5 Illustration of shift_left local inter-node communication between two nodes for
two-dimensional subdomains for a message-passing code.......................................21

6 Simulation of a finned tungsten projectile obliquely impacting a stainless steel
plate (hydrodynamic constitutive model) ...23

7 Simulation of a finned tungsten projectile obliquely impacting a stainless steel
plate (elastic, perfectly plastic constitutive model)...23

8 Simulation of the explosive welding of a copper tube to a stainless steel plate.24

9 Simulation of the perforation of a steel oil-well casing by a shaped charge jet.26

10 Scaled speedup and grind time for the fp1 simulation on thenCUBE 2.33

11 Scaled speedup and grind time for the fp2 simulation on thenCUBE 2.33

12 Scaled speedup and grind time for the ew simulation on thenCUBE 2.34

13 Scaled speedup and grind time for the owp simulation on thenCUBE 2.................34

14 Scaled parallel efficiency as a function of the number of nodes on thenCUBE 2...35

15 Scaled speedup and grind time for the fp1 simulation on theParagon43

16 Scaled speedup and grind time for the fp2 simulation on theParagon43

17 Scaled speedup and grind time for the ew simulation on theParagon44

18 Scaled speedup and grind time for the owp simulation on theParagon44

19 Scaled parallel efficiency on theParagon ...45

20 Effect of subdomain size on the scaled parallel efficiency on theParagon for
the ew and owp simulations..45

6

Intentionally Blank Page

7

List of Tables

1 Compiler Versions and Options for Compiling MIMD PAGOSA..............................27

2 Grind Time Repeatability ..27

3 Performance of MIMDPAGOSA on thenCUBE 2 for fp1..31

4 Performance of MIMDPAGOSA on thenCUBE 2 for fp2..31

5 Performance of MIMDPAGOSA on thenCUBE 2 for ew ..32

6 Performance of MIMDPAGOSA on thenCUBE 2 for owp ..32

7 Performance of MIMDPAGOSA on the IntelParagon for fp139

8 Performance of MIMDPAGOSA on the IntelParagon for fp240

9 Performance of MIMDPAGOSA on the IntelParagon for ew.................................41

10 Performance of MIMDPAGOSA on the IntelParagon for owp42

11 Performance of MIMD PAGOSA on thenCUBE 2 and the IntelParagon for
18x12x7-Cell Subdomains for the Finned Penetrator Problem with No Material
Strength (fp1) ...47

12 Performance of MIMD PAGOSA on thenCUBE 2 and the IntelParagon for
15x10x6-Cell Subdomains for Finned Penetrator Problem with Material Strength
(fp2)..48

13 Performance of MIMD PAGOSA on thenCUBE 2 and the IntelParagon for
14x7x7-Cell Subdomains for the Explosive Welding Problem (ew)...........................49

14 Performance of MIMD PAGOSA on thenCUBE 2 and the IntelParagon for
15x6x6-Cell Subdomains for the Oil-Well Perforation Problem (owp)......................50

15 Summary of Maximum Simulation Sizes for thenCUBE 2 and theParagon51

16 Comparisons of Calculations on the CrayY-MP, CrayC90, nCUBE 2, and Intel
Paragon ...53

17 GEN and PAGOSA Input and Output Files ..58

18 OPTIONS Variables ..60

19 OUTPUTS Variables ...62

20 OUTPUTS Variables: Restart Dump Variables ..62

21 OUTPUTS Variables: Edit Variables ..63

22 OUTPUTS Variables: EV Dump Variables (for tool GD_EV)...................................63

23 OUTPUTS Variables: YNG dump Variables (for tool GD_YNG).............................63

8

24 OUTPUTS Variables: Frame Buffer Plot Variables..64

25 OUTPUTS Variables: X-Window Plot Variables ...65

26 OUTPUTS Variables: X-Window Variable Aliases..69

27 OUTPUTS Variables: Graphics Dump Variables ...69

28 OUTPUTS Variables: KRKL Dump Variables...70

29 OUTPUTS Variables: User Auxiliary Output Variables...70

30 OUTPUTS Variables: Tracer Output Control Variables ...70

31 RESTARTS Variables: Restart Dump Variables ..71

32 RAIDS Variables: Restart Dump Variables ..71

33 Mats Variables ...72

34 Mats Variables: EOS (Equation-of-State) Data...73

35 Mats Variables: HE Burn Data ..74

36 Mats Variables: Strength Data...75

37 Mats Variables: Fracture Data ...75

38 DETS Variables ...76

39 TRACERS Variables ...76

40 GEN Variables...77

41 BODY Variables..78

42 BODY Variables: Geometry Parameters ...79

43 BODY Variables: Surface Parameters...80

44 TABULAR_DATA Variables ...81

45 SETVEL Variables ..82

46 SETVEL Variables ..83

47 EXTRACT Variables...83

48 EXTRUDE Variables...85

49 GD Utilities..85

9

The Development and Performance of a Message-
Passing Version of the PAGOSA Shock-Wave

Physics Code

Introduction

An important class of shock-wave physics problems is characterized by large material
deformations. These problems involve penetration, perforation, fragmentation, high-
explosive initiation and detonation, and hypervelocity impact. These phenomena arise, for
example, in armor/antiarmor research and development, the design of impact shielding for
spacecraft, the modeling of lithotripsy for the disintegration of kidney stones using high-
frequency sound waves, and hypervelocity impact problems. The most important of such
problems are intrinsically three-dimensional and involve complex interactions of exotic
materials, including alloys, ceramics and glasses, geological materials (e.g., rock, sand, or
soil), and energetic materials (e.g., chemical high explosives).

Multidimensional computer codes with sophisticated material models are required to
model this class of shock-wave physics problems realistically. The codes must model the
multiphase (solid-liquid-vapor), strength, fracture, and high-explosive detonation
properties of materials. Three-dimensional simulations may require millions of
computational cells to adequately model the physical phenomena and the interactions of
complex systems of components. Many scientists and engineers currently use Eulerian
shock physics codes such as Sandia National Laboratories’CTH code [15][18] or Los
Alamos National Laboratory’sMESA [17] codes to model such problems [3].

CTH andMESA are serial codes which run on Cray vector supercomputers and on
workstations. Owing to the expense of high-speed memory, vector supercomputers do not
have enough memory to model problems which require more than a few million
computational cells. Many problems of interest require tens of millions of cells. Even
these inadequately resolved problems often require tens or hundreds of CPU hours to
complete. Traditional serial vector supercomputers are too slow and have too little
memory to calculate many important weapon safety problems, or to calculate complex
design problems, such as the effects of materials selection and design parameters on the
performance of modern armor.

Parallel shock physics codes running on current-generation massively parallel
computers are beginning to provide the high resolution and short turnaround time required
for these shock-wave physics problems. Several years ago, work at Sandia demonstrated
that massively parallel computers running parallel versions of theCTH andMESA codes
were highly competitive with serial vector supercomputers such as a CrayY-MP [10][11]
[12] [19]. Current-generation parallel computers, such as theParagon XP /S, are
demonstrating even better performance, both in terms of problem size and speed [8].

10

In this report we describe the development of a three-dimensional, multimaterial
version of thePAGOSA shock-wave physics code for multiple-instruction, multiple-data
(MIMD) parallel computers, and present the measured performance of the code on two
different parallel computers, thenCUBE 2 and the IntelParagon XP /S. ThenCUBE 2 is
a distributed-memory MIMD parallel computer with a hypercube communications
topology. TheParagon XP /S is a distributed-memory MIMD parallel computer with a
two-dimensional mesh communications topology.

The original data-parallelPAGOSA code was developed at Los Alamos National
Laboratory inCM Fortran for the Connection Machine-2 (CM-2) and the Connection
Machine-5 (CM-5)[16].

In earlier work we developed a three-dimensional, single-material, ideal-gas version of
PAGOSA for MIMD parallel computers (specifically, the CrayY-MP, thenCUBE 2, the
Intel iPSC/860 , and theCM-5) by translating it toFortran 77 and adding routines for
domain decomposition and interprocessor communication [9]. The excellent performance
of this code [10][11] and the parallelCTH code (PCTH) [7][8][12][13][19] on a variety of
MIMD parallel computers spurred the continuing development of parallel shock-wave
physics codes, and, in particular, an MIMD version of the three-dimensional,
multimaterialPAGOSA code.

By reporting the performance of a single applications code on a variety of parallel
machines, we can provide an indication of the performance that may be attained on
current-generation parallel computers. The performance results presented here are
indicative of what one might achieve in first implementing a complex application code on
a distributed-memory, message-passing parallel computer. We have made no attempt to
optimize the code for any particular machine; all the machines are running essentially the
same code. The performance results reported here are lower bounds for each architecture,
because, given sufficient resources, most codes can be optimized for a given architecture.

The performance data we present in this report represent only one aspect of the
performance of each computer. While the data address fundamental issues of
computational speeds, other issues must also be considered when evaluating parallel
computers, including the ease of sharing the machine among multiple users, the
functionality of the operating system, the availability of graphical output devices and the
ease of their use, and the machine acquisition and maintenance costs. Neither of the
machines examined in this report should be accepted or rejected solely on the basis of the
data presented in this report.

In the remainder of this report we discuss issues in parallel computing and measuring
the performance of parallel computer codes. We then discuss the development of the
MIMD PAGOSA code. We describe the test problems and the conditions used in our study
and then present the performance results. Finally we compare the performance of MIMD
PAGOSA on the two MIMD computers and present our conclusions.

11

Issues in Parallel Computing

In this section we discuss some of the issues involved in parallel computing. We define
data-parallel computing and message-passing computing, and general features of how
these computing paradigms are implemented on the computers used in this study. Then we
review what has been learned prior to this study about the performance of shock-wave
physics codes on parallel computers.

Historically, two parallel computing architectures have been popular: theSingle-
Instruction, Multiple-Data, or SIMD, architecture, and theMultiple-Instruction, Multiple-
Data, or MIMD, architecture. These architectures are visible to the user as a data-parallel
programming paradigm or a message-passing paradigm, respectively. Often terms used to
describe the architectures and the programming paradigms are used interchangeably.

In the SIMD architecture, a large number (usually thousands) of small processors
perform operations on data under the control of a master processor. Each processor
executes the same instruction simultaneously on the data to which it has access. SIMD
computers may be thought of as large array processors. The SIMD approach is more
general than it might first seem, because the result of the operation executed on the data in
a processor may depend on the data itself through local flag variables. An example of an
SIMD machine was the Connection Machine-2, manufactured by Thinking Machines
Corporation. The SIMD programming paradigm focuses on and exploits parallelism in the
data, but not in the instructions executed by the processors.

In the MIMD architecture, a large number (usually tens or hundreds) of more
sophisticated processors (which we will refer to asnodes1) execute the same or different
instructions on the data to which they have access. For distributed memory computers, the
work performed by the nodes is coordinated via explicit passing of messages from one
node to another. In shared memory computers, the work performed by the nodes may also
be coordinated through the shared memory. Each node has its own operating system and
its own copy of the instruction set. Although each node may be executing the same
instruction at the same time, the more common mode of operation is for each node to
execute instructions independently of the others, and then synchronize its execution with
other nodes at various times via the passing of messages, such as the global determination
of a time step. This latter mode of operation is calledloosely synchronous. It is common
for each node in an MIMD computer partition to be executing the same program in loosely
synchronous mode, but more generally the nodes can be executing entirely different

1. Some MIMD processing elements are composed of more than one processor. For example, the computa-
tional processor in theParagon XP /S is composed of an i860 XP RISC processor for computation and an
additional i860 XP processor for communication. In most circumstances we will refer to a processing ele-
ment in a parallel computer as aprocessor or anode. In those circumstances where it is important to distin-
guish between an a processing element and the processors which comprise it, we will refer to the former
strictly as a node.

12

programs. For example, in an eight-node partition, four nodes might be devoted to
performing an armor penetration simulation, while the other four might be devoted to
forming graphical images of the simulation in parallel with the computation. Examples of
MIMD computers are thenCUBE 2, manufactured by nCUBE Corporation, the Intel
Paragon XP /S, and the CrayT3D. The message-passing programming paradigm
exploits parallelism in both the data and the instructions executed by the nodes.

Both SIMD and MIMD computers often employ a front-end host to communicate
information (instructions and data) to the parallel assembly of processors, and to collect
data from the processors for transmission to the user. In the SIMD architecture, the host
acts as a master processor to the slave processors. The host issues all the instructions,
while the processors execute those instructions synchronously.

In the MIMD architecture, the nodes can function much more independently of the
host, and the division of labor between the host and the nodes can vary widely. In
particular, the work allocated to the front-end host can vary from minimal to a significant
amount, depending on the application. Minimal work includes allocating and opening the
requested assembly of nodes (e.g., a hypercube in a computer with a hypercube
communication topology), broadcasting the appropriate instruction set to each node, and
closing and deallocating the assembly of nodes at the completion of the job. In addition,
the host might broadcast the user input to the nodes or postprocess some of the data from
the nodes for transmission to the user. In general, at least two distinct instruction sets are
required, one for the host, and one (or more) for the nodes. In the case where the host
performs more than the minimal work required, this programming model is termed the
host-nodemodel; such a model is explicitly required on the CrayY-MP (when run as a
distributed-memory message-passing computer).

On many MIMD computers it is possible to put processing that might be performed on
the host on one or more of the nodes, allowing the host to perform only the minimal work
required. On these machines the manufacturer may supply a generic host code which
performs the minimal work and relieves the user of the burden of maintaining both a host
code and a node code. The generic host code is calledxnc on thenCUBE 2. A script
calledpexec that functions as a generic host code is commonly used on the Intel
Paragon ; pexec allocates a collection of nodes, loads and runs the application code(s),
and finally deallocates the nodes. This programming model is termed thenode-only
model.

In general, SIMD computers are easier to program than MIMD computers because the
interprocessor communication in SIMD computers is hidden from the programmer by the
operating system and hardware. SIMD computers can often run applications that are
strongly data-parallel faster than MIMD computers. In general, however, MIMD
computers provide a more flexible computing environment, because different nodes can
work on different subtasks simultaneously. Even on MIMD machines, much of the inter-
node communication in MIMD computers may be hidden from the programmer by the

13

operating system and by the use of data-parallel languages such asFortran 90 . Overall,
an MIMD computer is a more general-purpose computer than an SIMD computer.2

Earlier work at Sandia and at Los Alamos National Laboratory demonstrated that both
SIMD and MIMD computers can be programmed effectively for shock wave physics
calculations [12][16][19]. Our previous work with a single-material, ideal-gas version of
PAGOSA demonstrated that MIMD computers consistently outperformed SIMD
computers on large problems for machines of comparable cost [10][11]. Currently all
major parallel computer manufacturers have adopted the MIMD architecture, which we
interpret as evidence that the MIMD architecture is more suitable for general applications
than the SIMD architecture.

Parallel Code Performance Measurements

In this section we discuss issues in measuring the performance of codes on parallel
computers. We consider computational rate, memory size, and scalability as three
essential metrics of parallel computer performance.

The performance of parallel computers is commonly measured using several metrics.
The peak theoretical speed is often cited. The results from the LINPACK benchmarks [6]
or the NAS Parallel benchmarks [1] are more indicative of the performance which may be
achieved by applications codes.

The LINPACK benchmark codes perform a factorization of a dense matrixA into a
lower triangular matrixL and an upper triangular matrixU, such thatA = LU. This
factorization, called anLU factorization, is used in solving dense linear systems of
equations of the formAx = b. The benchmark uses standard LINPACK [5] routines in full-
precision (64-bit) arithmetic in a Fortran 77 environment (there is also a set of benchmarks
for the C programming language) to perform an LU factorization. The benchmark consists
of several tests. The first is for a matrix of order 100 using a prescribed Fortran 77
program. The second test is for a matrix of order 1000 using any algorithm, but with a
prescribed driver to set up the problem to be solved and to ensure consistent solution
accuracy. The third test is to factor the matrix of largest possible order using any code on a
parallel computer. The full LINPACK benchmark results for a computer consist of the
time required to complete each test and also include the theoretical peak speed of the
computer, the upper bound on machine performance. The most commonly cited
LINPACK benchmark results provide an achievable upper bound for speed on problems
involving the solution of dense linear systems by LU factorization; achieving the
benchmark results often requires the use of special machine configurations and highly

2. TheCM-5 does not fit neatly into the framework of the discussion in this paragraph because, while its un-
derlying architecture is MIMD, the user can employ either a data-parallel or message-passing programming
paradigm for applications. TheCM-5 demonstrates that the programming paradigm can be independent of
the underlying computer architecture.

14

optimized assembly code or other resources not normally available to the engineering
analyst.

The NAS Parallel benchmark set is a collection of eight problems designed to indicate
the performance of parallel supercomputers. They consist of five kernels, each
emphasizing a particular type of numerical computation (e.g., fast Fourier transforms),
and three simulated computational fluid dynamics applications. The benchmarks are
specified functionally, independent of the details of implementation, with specified
operation counts. While the times required to complete the NAS Parallel benchmark tests
provide a more realistic assessment of the performance of a parallel computer, the tests are
still highly idealized compared to real applications codes.

Computational rate and problem size are distinct though related aspects of computer
performance. Analysts usually want to perform simulations as quickly as possible; for
example, when conducting a parameter study. If a problem is sufficiently large, a parallel
computer may be able to run it faster than the fastest vector supercomputers even though
the parallel computer has slower processors [10][11]. Vector supercomputers must use
expensive high-speed memory to achieve high computational rates, and the cost of that
memory places a practical limit on the memory size of the computer, and hence on the size
of the simulations which can be performed with it. Distributed-memory parallel computers
use slower, less expensive memory, and hence, for the same cost as a vector
supercomputer, a parallel computer with much larger total memory can be acquired. Thus
it is practical for a distributed-memory parallel computer to run much larger simulations
than can be performed on existing vector supercomputers. From this point of view, the
issue is not so much computational rate as memory size: if a computer does not have
enough memory to perform the simulation, it does not matter how fast it is. Both
computational rate and memory size should be considered when measuring the
performance of a computer.

Elsewhere [8] we have demonstrated that while an MIMD parallel computer may
provide a higher computational rate than a vector supercomputer, it must also have
sufficient memory capacity to provide equal or greater resolution. A simulation with less
resolution obtained more quickly may not be as useful to the analyst as a simulation with
greater resolution. We have also demonstrated that when a parallel computer has enough
memory, simulations of greater resolution can be obtained in less time than with a serial
vector supercomputer.

In order to achieve a high execution rate on a parallel computer, both the parallel
computer and the application code must also be scalable. By scalability of the computer,
we mean that the time to send a zero-length message across the largest dimension of the
computer increases no more than linearly with the number of nodes. By “largest
dimension” we mean the maximum over all the nodes of the number of nodes a message
must pass through in order to travel from one node to another while taking the shortest
permissible path, including the sending and receiving nodes. For example, a hypercube

15

with 2N nodes has dimensionN. A Paragon with a mesh of 6 columns of 16 nodes has
dimension 21, since messages are passed along a row and then down a column.

By scalability of the application code we mean that the execution speed of the code
running a specific problem on a scalable parallel computer increases linearly with the
number of nodes when the computational load per node is fixed [14]. Both the parallel
computer (hardware and operating system) and the application code must be scalable in
order to achieve high execution rates.

Three performance metrics are commonly used for application codes on parallel
computers: fixed-size speedup, scaled speedup and parallel scaled efficiency. If the scaled
speedup, or, equivalently, the parallel efficiency, varies linearly with the number of nodes,
then the application code is scalable.

We first define thespeedup, S(P,N) to be the ratio of the time to solve a problem of size
N on one node,T1(N), to the time required to solve the same problem onP nodes,TP(N):

This defines a surface in three dimensions; an example is shown in Figure 1.

S P N,() T1 N() TP N()⁄=

0

5

10

15

20

25

S
(P

,N
)

0
5

10
15

20
25

30

P
0

5
10

15
20

N

XY

Scaled Speedup

Fixed-Size Speedup

Figure 1. Illustration of the speedup surface, the fixed-size speedup curve, and the
scaled speedup curve.

16

Thefixed-size speedup Sf is the ratio of the time required to solve a problem on a single
node to the time required to solve the same problem onP nodes, when the problem sizeN
is fixed. If the problem size is fixed, the locus of points on the speedup surface generated
as the number of processors is varied is the fixed-size speedup curve. A fixed-size speedup
curve is marked on the speedup surface (Figure 2). If we are interested in solving very
large problems which will not fit on a single node (as is often the case), then fixed-size
speedup is not a good measure of performance. However, engineers are often interested in
solving a problem of fixed size as quickly as possible, and hence in the maximum of the
fixed-size speedup curve. In this circumstance the fixed-size speedup is a useful measure
of performance.

In contrast to the fixed-size speedup, thescaled speedup Ss is the ratio of the time
required to solve a problem of sizePN on a single node,T1(PN), to the time required to
solve the problem of sizePN onP nodes with a subproblem of sizeN on each node,
TP(PN), when the work per node is fixed [14]. Thus the problem size increases with the
number of computational nodes. The scaled speedup can be calculated directly, as long as
the problem of sizePN will fit on a single node, from

The locus of points on the speedup surface generated as the number of processors is varied
and the problem size is increased in proportion to the number of processors is the scaled
speedup curve. A typical scaled speedup curve is marked on the speedup surface (Figure
1). The projections of the fixed-size and scaled speedup curves on theP-S plane are shown
in Figure 2 to illustrate the difference between them.

When the problem of sizePN will no longer fit on a single node,T1(PN) must be
estimated. One way to estimate the time T1(PN) is to extrapolate it from the behavior of
T1(PN) on a single node asPN increases [9]. For large problems, this may require
extrapolation over several orders of magnitude, which introduces uncertainty into the
validity of the resultant speedup. In this report we estimate the timeT1(PN) by PT1(N).
This represents the time required by a single node to perform the necessary calculations on
each subdomain serially, assuming that no time is required to swap the subdomains in
memory and assuming sufficient memory to hold all the subdomains. It is thus the shortest
time that a single node could perform the same calculation as the parallel computer.
Making this estimate is straightforward for an explicit code likePAGOSA; for codes with
implicit components, however, one must ensure that the same computational work is done
by the single node in processing all the subdomains as is done by the parallel computer.
Here we calculate the scaled speedupSs(P) from the ratio of the product of the time
required to solve the problem of sizeN on a single node,T1(N) and the number of nodes,
P, to the time taken to solve the problem of sizePN onP nodes, TP(PN):

Ss P() S= P PN,()
T1 PN()
TP PN()
--------------------.=

17

For many scientific and engineering simulations (such as the test problems presented
later and simulated with MIMDPAGOSA) the ratioT1(P)/TN(PN) becomes constant when
P is sufficiently large, and Ss(P) varies directly withP [10][11], that is, the simulations are
scalable.

Theparallel scaled efficiency is the scaled speedup divided by the number of
computational nodes:

The closer the parallel scaled efficiency is to one, the more efficient the parallel
performance of the code is. The parallel scaled efficiency will always be less than one,
owing to algorithmic, communication, or load-balancing overhead.

Thegrind time is a useful measure of the computational rate of a mesh-based, time-
marching computer code, such asPAGOSA. The grind time, , is the execution time
for the code calculating a given problem divided by the product of the number of time
steps and the number of computational cells:

5 10 15 20 25

P

5

10

15

20

25

S
(P

,N
)

Scaled Speedup

Fixed-Size Speedup

Figure 2. The fixed-size speedup and scaled speedup curves projected on the
P-S plane.

ε

ε Ss P() N⁄ T1 P() TN⁄ PN().= =

tgrind

18

whereTP(PN) is the execution time onP nodes for a problem ofPNcomputational cells
run forn time steps. The grind time depends on the number of cells and the number of
nodes, and also on the specific simulation. For a given code solving the same problem on
different computers, the grind time indicates the performance of the code on that computer
and is a useful metric for computer performance comparisons.

Of special interest in indicating parallel computer performance are the maximum
problem size which can be run and the execution time (or equivalently, the grind time) on
the maximum problem size. As discussed above, these are distinct though related
measures of performance. These measures are both very problem-dependent, and so must
be measured for a variety of problems for a given application code in order to adequately
represent the performance of a given computer.

The relative performance of parallel computers can be assessed from measured values
of scaled speedup, parallel scaled efficiency, grind time, maximum problem size and
execution rate on the maximum problem size. The scaled speedup and parallel scaled
efficiency both measure the scalability of a parallel code on a specific parallel computer.
The grind time and maximum problem size data measure the absolute performance of the
parallel code on the parallel computer.

Development of the MIMD PAGOSA Code

In this section we describe the features of thePAGOSA 5.5 shock-wave physics code
and the process of developing the MIMDPAGOSA 5.5 code from the SIMD version.

Features of PAGOSA 5.5
PAGOSA is an explicit, three-dimensional, multimaterial shock wave physics code

which has been developed at Los Alamos National Laboratory for theCM-2 andCM-5
massively parallel computers inCM Fortran , a variant of the Fortran 90 programming
language [16].PAGOSA is designed to model problems involving high-speed
hydrodynamic flow and the dynamic deformation of solid materials. The core algorithms
in PAGOSA were inherited from theMESA code [17], but some of the algorithms in
PAGOSA have been rewritten to take advantage of the SIMD parallel architecture of the
CM-2 and the data-parallel programming paradigm of theCM-5. MESA andPAGOSA
were both developed specifically for three-dimensional armor/antiarmor simulations,
although they are now used for a broad range of applications, and both codes include a
variety of equations of state and material strength models.

The numerical algorithms used inPAGOSA solve the equations of conservation of
mass, momentum and energy in an explicit, Eulerian finite difference formulation on a
three-dimensional Cartesian mesh. A staggered mesh is used in which density and
pressure are evaluated at the cell centers, and the velocities are evaluated at the cell
vertices.

19

The solution at each time step is calculated in two phases, a Lagrangian phase and an
advection phase. During the Lagrangian phase, the Lagrangian equations of motion are
solved to obtain the values of the variables corresponding to a fluid element which has
moved and distorted relative to the fixed Cartesian mesh, using a second-order accurate
predictor-corrector scheme for the time integration.

During the advection phase, the updated variables at the original, fixed cell centers and
vertices are calculated. The advection equations are solved using an operator-splitting
scheme in which the advection operator is split into components along the three
orthogonal mesh directions and the fluxes of mass, energy, momentum and stress through
cell faces are calculated for each direction. Corrections for cross terms are not explicitly
included, but approximate corrections are made implicitly by reversing the order of the
advection directions in alternate timesteps. This tends to remove any directional bias
introduced by the operator splitting. In each coordinate direction an upwind or donor-cell
scheme is used to determine the fluxes of cell-centered quantities through the faces of a
cell; a similar scheme is used for determining the momentum flux, but is based on a
vertex-centered cell. A third-order accurate van Leer limiting scheme is used to correct the
first-order accurate donor-cell fluxes. This makes it possible to maintain steep gradients of
advected quantities without introducing non-physical oscillations.

Ideal gas, Mie-Grüneisen, polynomial, and Jones-Wilkins-Lee (JWL) equations of
state, the von Mises elastic, perfectly plastic yield stress model, and a programmed burn
model for high explosives have been implemented in the production version of PAGOSA
[16].

Development of MIMD PAGOSA 5.5 from SIMD PAGOSA 5.5
Conceptually, creating an MIMD version ofPAGOSA from the SIMD version involves

dividing the global computational domain into a collection of subdomains, with each
subdomain assigned to a single node, and then adding the necessary communications
between neighboring nodes to reproduce the global computational domain. When the
global computational domain is divided into subdomains, each subdomain is surrounded
by ghost cells, which are used for communicating results between neighboring nodes. This
subdivision is illustrated for a two-dimensional domain in Figure 3. This process of
dividing the global computational domain into subdomains, assigning a subdomain to a
node, and implementing the necessary inter-node communications to reproduce the global
domain is calleddomain decomposition.

More specifically, following the process we used in developing an MIMD version of
the single-material, ideal-gas version ofPAGOSA[9], we created an MIMD version of
PAGOSA from the SIMD code (specifically,PAGOSA 5.5) by translating theCM Fortran
to Fortran 77 , adding routines to divide the global computational domain into
subdomains and assign each to a node, and adding routines for inter-node communication.

20

The translation fromCM Fortran to Fortran 77 primarily involved replacing
single-line matrix instructions, such as those for adding two vectors, byFortran 77 DO
loops; we also combined adjacentDO loops where appropriate. This process is illustrated
with the program fragments shown in Figure 5. Each array statement in theCM Fortran
(Figure 8, left) is equivalent to a set ofDO loops inFortran 77 . In many cases, adjacent
equivalentDO loops in theFortran 77 translation can be combined, as illustrated in the
right half of Figure 5.

Ghost Cells

Decomposed Computational MeshGlobal Computational Mesh

Boundary Cells

Physical Boundary
Subdomain Boundaries

Figure 3. Illustration of the decomposition of the global computational domain into
subdomains, in two spatial dimensions.

CM Fortran:
real,array(0:n1,0:n2,0:n3)::a,b
.
.
.
.
b = a + cshift(a,1,1)
c = c + cshift(a,1,1)

Fortran 77:
real a(0:n1, 0:n2, 0:n3),
& b(0:n1, 0:n2, 0:n3)
.
.
.
call shift_left(a)
do 300 k = 0, n3

do 200 j = 0, n2
do 100 i = 0, n1-1

b(i,j,k)=a(i,j,k)+a(i+1,j,k)
c(i,j,k)=c(i,j,k)+a(i+1,j,k)

100 continue
b(n1,j,k)=a(n1,j,k)+a(0,j,k)
c(n1,j,k)=c(n1,j,k)+a(0,j,k)

200 continue
300 continue

Figure 4. Program fragments illustrating the translation from CM Fortran (left) to
Fortran 77 (right). The DO loops implicit in the CM Fortran array addition are ex-
plicit in the Fortran 77 equivalent. In addition, the different communication over-
head is evident for the simple index shift operations in CM Fortran and Fortran 77.
Two communications, one for each cshift operation, are required in the
CM Fortran code. The equivalent Fortran 77 requires only one, via the
shift_left subroutine. The function of shift_left is illustrated in Figure 5.

21

Thecshift function shown in Figure 5 performs a circular shift; for example,
cshift(a,1,1) returns the array of values of the arraya shifted by one in its first
index. At the maximum value of the first index, thecshift function wraps around and
returns the value ofa at the minimum value of the first index (hence the name “circular
shift”). This is made more clear by the equivalentFortran 77 code (Figure 4, right).
Within a processor,cshift makes internal memory copies; between processors,
cshift uses interprocessor communication to obtain the values required.

The equivalentFortran 77 code also illustrates the reduction in communication
which is often possible in the message-passing code, compared to the data-parallel code.
In theCM Fortran code (Figure 8, left), many internal memory copies are made and
interprocessor communication is required for each call to thecshift function. In the
equivalentFortran 77 code, no internal memory copies are required on the node, and
only one communication, implemented with the functionshift_left , is required.
These reductions in memory copies and inter-node communication can significantly
improve the performance of the message-passing code over the data-parallel code [11].
The function of theshift_left routine is illustrated in Figure 5 for two-dimensional
subdomains. In this figure, node 2 sends the contents of its left-most cells to the right ghost
cells on the node to its left, node 1.

Node 1 Node 2

Real Cell Ghost Cell

Figure 5. Illustration of shift_left local inter-node communication between two
nodes for two-dimensional subdomains for a message-passing code. The ele-
ments on the left boundary of node 2 are communicated to the ghost cells on the
right boundary of node 1.

Top

Right

Top

Left

BottomBottom

22

Features of MIMD PAGOSA 5.5
MIMD PAGOSA 5.5 contains all the features of the SIMDPAGOSA 5.5 code, except

for theX Window graphics, tracer particles, and shadow regions for the high-explosive
burn time calculations. (SIMDPAGOSA 5.5 does not contain fracture models).

Simulations from MIMDPAGOSA 5.5 can be visualized using theiso isosurface
code, developed by Patricia J. Crossno at Sandia.iso can be run heterogeneously with
MIMD PAGOSA, or used as a post-processor.iso runs on theParagon and the
nCUBE 2.

We have also developed an MIMD version ofGEN, the generator, or problem-setup,
code forPAGOSA. MIMD GEN runs on the same platforms as MIMDPAGOSA, and can
be run either independently of MIMDPAGOSA (for verifying that a problem has been set
up correctly) or called from within MIMDPAGOSA when running a simulation.

An input guide for MIMDPAGOSA 5.5 and MIMDGEN is included in Appendix A.

The Test Simulations

The test simulations used to measure the performance ofPAGOSA on the parallel
computers and to demonstrate its capabilities were the oblique impact of a finned tungsten
projectile on a stainless steel plate, the explosive welding of a copper tube to a steel plate,
and the perforation of an oil-well casing by a shaped charge.

The Finned Projectile Simulations
In the simulation of oblique impact of a finned tungsten projectile on a stainless steel

plate, a finned tungsten projectile 0.9 cm long and 0.15 cm in diameter impacts a 0.15-cm
thick stainless steel plate at an angle of 30o from the normal and a speed of 1.0 km/s. We
used linear Us/Up Mie-Grüneisen equations of state for the tungsten and the stainless
steel. We ran this simulation with the hydrodynamic constitutive model to a time of 5 s,
when the projectile has clearly perforated the plate. The left frame in Figure 6 shows the
initial configuration; the right frame shows the configuration at 5.0 s. A typical input file
for this simulation is given in Appendix B.

 We also ran the same simulation with the elastic, perfectly plastic constitutive model
for the tungsten and the steel to a time of 6.7 s, when the penetrator has clearly
penetrated the plate. The left frame in Figure 7 shows the initial configuration; the right
frame shows the configuration at 6.7 s. A typical input file for this simulation is given in
Appendix B.

µ

µ

µ

µ

23

The Explosive Welding Simulation
In the simulation of the explosive welding of a copper tube to a stainless steel plate [2],

a cylindrical charge of the high explosive PBX-9501 is ignited inside a copper tube, and
the resulting detonation welds the tube to a steel plate. The copper tube is 1.2 cm in inside
diameter with a wall thickness of 0.4 cm. The tube is inserted through a 64o bevelled hole
in the plate and protrudes 3.0 cm beyond the surface of the plate. The internal diameter of
the hole in the plate is 2.0 cm and the external hole opening is 4.0 cm. The PBX-9501 is in
the form of a rod, 0.6 cm in outside diameter and of length 0.5 cm. The PBX-9501 is held

Figure 6. Simulation of a finned tungsten projectile obliquely impacting a stainless
steel plate (hydrodynamic constitutive model).

Figure 7. Simulation of a finned tungsten projectile obliquely impacting a stainless
steel plate (elastic, perfectly plastic constitutive model).

0µs 6.7µs

24

in a position coaxial with the tube by a foam cup, which fills the space between the PBX-
9501 and the inner surface of the copper tube, and also projects 0.25 cm beyond the end of
the high explosive. The PBX-9501 was detonated at the center of the internal end of the
rod using a point detonator. We used a linear Us/Up Mie-Grüneisen equation of state and
the elastic-perfectly plastic constitutive model for the copper, the 304 stainless steel, and
the foam. The PBX-9501 detonation products were modeled with the Jones-Wilkins-Lee
equation of state. The programmed burn model was used to model the detonation. For the
performance measurements we ran this simulation a time of 15 s, when significant
deformation of the copper has occurred. The left frame in Figure 8 shows the initial
configuration; the right frame shows the configuration at 65 s, when the weld is
essentially complete. A typical input file for this simulation is given in Appendix B.

The Oil-Well Perforation Simulation
In the oil-well perforation simulation, the casing of an oil well is perforated with two

small shaped-charge jets. Well bores are typically lined with steel pipe, or concrete casing,
or both; the liner usually must be perforated with tiny high-explosive charges prior to
pumping. Perforation allows production of oil from specific depths determined from
logging data. The perforators are inserted into the well hole inside carrier tubes and then
detonated when the tube has been lowered to the prescribed depth. They are designed to

µ

µ

Figure 8. Simulation of the explosive welding of a copper tube to a stainless steel
plate. The initial configuration is shown on the left; the simulation at 65 s is
shown on the right.

µ

25

make clean holes in the casing and to penetrate several inches outward into the
surrounding oil-bearing strata.

In this simulation, two perforator charges are aimed horizontally in opposite directions
inside a steel carrier tube that has been inserted in an oil well. The perforators are similar
to a current industrial design, with a conical copper liner surrounded by high explosive
and a steel case. The carrier tube is positioned flush against one side of the well casing.
Each charge is point-detonated at the apex of the high explosive layer surrounding the
conical copper liner. Energy release in the detonated explosive then causes the liners to
converge and form shaped-charge jets that perforate the steel carrier tube and casing, and
penetrate into the surrounding rock.

The inner diameter of the stainless steel well casing is 6.21 cm and the casing is 10.0
cm long and 0.77 cm thick. The casing is surrounded by rock, which is modeled as quartz.
The carrier tube is stainless steel with a spherical cap. It has an inside diameter of 1.55 cm
and a wall thickness of 0.44 cm. The space between the carrier tube and the well casing is
filled with water. The stainless steel, the liner material, and the explosive charge casing
were modeled with linear Us/Up Mie-Grüneisen equations of state and elastic, perfectly
plastic constitutive models. The high-explosive, cyclotol, was modeled using the Jones-
Wilkins-Lee equation of state with the hydrodynamic constitutive model, and was
detonated using a programmed burn model. The water was modeled with a linear Us/Up
Mie-Grüneisen equation of state and the hydrodynamic constitutive model.

The upper frame in Figure 9 shows the initial configuration; the lower frame shows the
configuration at 140 s, when the first perforation is complete. An input file for this
simulation is given in Appendix B.

µ

26

Figure 9. Simulation of the perforation of a steel oil-well casing by a shaped
charge jet. The initial configuration is shown in the upper figure.The configuration
at 140 s is shown in the lower figure, when the lower shaped-charge jet has per-
forated the well casing and the upper shaped-charge jet has reached the far side
of the casing. The water and air are not shown in these figures.

µ

27

The Test Conditions

The code was compiled on each machine at the highest level of optimization which
still yielded correct answers (Table 1).

All simulations were conducted in full-precision (64-bit) arithmetic. The-Knoieee
option used on theParagon substitutes an in-line divide algorithm which produces
results that differ from results generated by algorithms conforming to the IEEE 754
standard by no more than three units in the last place.

For the scaled speedup calculations for the message-passing version ofPAGOSA, the
problem size was increased by adding nodes in powers of two. A subdomain of fixed size,
with the size depending on the machine, was placed on each node and the number of nodes
was increased.

Only the main computational loop was timed, unless otherwise noted. I/O time was
excluded, except for brief diagnostics which were similar for all versions of the code.
Grind times reported in the tables in the following sections are averages over the full
simulation in each case, unless otherwise noted. The repeatability of the grind time
measurements was tested for each machine, and results are given in Table 2. On each
machine the variation in the grind times was less than 0.2% over ten trials, and so the grind
time results reported are for a single calculation.

* Results are for the hydrodynamic finned projectile simulation. Ten calculations were run on 64 nodes and
for the largest subdomain which would fit on each node. Each calculation was run for the same number of
time steps on each machine, and for at least 20 time steps.

Table 1: Compiler Versions and Options for Compiling MIMD PAGOSA

Machine
Compiler
Version

Compiler Options Used

nCUBE 2 2.2 -O2

Paragon XP /S R4.5 -Knoieee -O4 -Mframe
-Mvect=recog,trans-

form,cachesize:12288
-Mnostreamall -Mnoxp -Mnoperfmon
-Mnodepchk -Mnostride0 -Mnodebug

Table 2: Grind Time Repeatability *

Machine
Grind Time Range
(s/cell/timestep)

Mean Grind Time
(s/cell/timestep)

Standard
Deviation

(s/cell/timestep)

nCUBE 2 108.432—108.469 108.446 0.0123

Paragon XP /S 13.214—13.262 13.226 0.0171

µ µ µ

28

The Performance of MIMD PAGOSA

In this section we describe thenCUBE 2 and the IntelParagon . We will present the
performance of MIMDPAGOSA as measured by the scaled speedup, parallel scaled effi-
ciency, and the grind time for four different simulations:

• The finned projectile simulation without material strength. This represents a minimal
problem of two active materials (tungsten and stainless steel) with a simple but non-
trivial equation of state which will exercise the interface tracker. For reference
purposes, this simulation is designated fp1.

• The finned projectile simulation with material strength. This represents a minimal
problem of two active materials (tungsten and stainless steel) with a simple but non-
trivial equation of state and material strength which will exercise the interface tracker.
This will indicate the computational expense of the material strength model. For
reference purposes, this simulation is designated fp2.

• The explosive welding simulation. This represents a more typical simulation than the
first two, and adds the detonation of the high explosive. For reference purposes, this
simulation is designated ew.

• The oil-well perforation simulation. This represents a more complex simulation, with
10 materials of various types, including a high explosive. For reference purposes, this
simulation is designated owp.

The intent of this study is to indicate the scalability ofPAGOSA on the two MIMD
parallel computers and the relative performance of the code on those machines. Both the
MIMD computers ran the same code, compiled as described in the previous section, with
no other computer-specific optimizations. We assume that given sufficient incentive
MIMD PAGOSA could be optimized for either of the parallel computers used; our results
provide a lower bound on the achievable performance of a real application code on these
machines.

For each computer we present the scaled speedup, the parallel scaled efficiency, and
the grind time for two cases:

• The largest subdomain per node, and
• The same subdomain size as used on thenCUBE 2.

Presenting results for the largest subdomain per node will indicate the best
performance for each computer. Presenting the results for the same subdomain size on all
the computers will allow comparisons between the machines to be made more easily. The
nCUBE 2 has the smallest memory per node, and hence the smallest subdomain size.

29

Message-Passing Performance on the nCUBE2

In this section we present the performance of MIMDPAGOSA on thenCUBE 2,
measured for the fp1, fp2, ew, and owp simulations. The compiler version and options are
given in Table 1. We first briefly describe thenCUBE 2, and then present the performance
results.

Description of thenCUBE2

ThenCUBE 2 is a massively parallel, hypercube-topology, distributed-memory,
multiple-instruction stream, multiple-data stream (MIMD) computer. Each node is
capable of running one or more complete programs independently of the other nodes. All
coordination or cooperation between nodes,i.e., “parallel processing”, is performed via
explicit message passing calls. The maximumnCUBE 2 configuration is 8192 nodes with
16 megabytes of local memory each. The MPCRL’snCUBE 2 was acquired in 1989 and is
configured with 1024 four-megabyte nodes.

The individual node is a single-chip VLSI implementation of nCUBE’s proprietary
instruction set architecture, integrating both communications and memory control. The
remainder of a complete system consists mainly of memory chips, communications lines,
power supplies and cooling. 1024 of the nodes fit into a 4-foot high 19-inch rack. Each
node has 64-bit internal data paths, sixteen general registers, and 28 direct memory access
(DMA) communication channels. While a logical address is 30 bits, the physical address
is 26 bits, resulting in a maximum physical memory size of 64 megabytes per node. A 64-
megabyte node is implemented on a “double-wide” module using 16-megabit chips. When
double-wide modules are used the maximum configuration is reduced to 4096 nodes.

The instructions are complex (CISC not RISC). Up to three operands can be specified
with addressing modes ranging from register direct to word offset plus stack pointer
memory indirect. The node is rated at 7 million instructions per second, and 3.5 million
single precision or 2.7 million double precision floating point operations per second.
Typical performance is 4 to 7 mips or 1.5 to 2 megaFLOPs per node. The 1024-node
system achieves 1.5 to 2 gigaFLOPs on applications that scale well. Eight-, 16-, 32- and
64-bit twos-complement and unsigned integer formats and 32- and 64-bit IEEE floating
point formats are supported.

The 28 communication channels are paired to form 14 bi-directional links. Thirteen of
the links may be connected to nearest neighbor nodes resulting in the maximum number of
nodes of two raised to the 13th power, or 8192 nodes. The 14th channel may be connected
to an I/O node, an identical node on a separate I/O board. “Wormhole routing” exploits a
gray-code numbering of the nodes and the hypercube interconnection topology, to open
direct links to distant nodes without using the memory or processing power of the
intervening nodes. The farthest node can be only 13 “hops” away, so the 2-microsecond
performance penalty for each hop is small relative to the 50- to 150-microsecond software

30

start-up overhead and the asymptotic 2.2 megabyte/second transfer rate in each direction
for a total bandwidth of 4.4 megabytes/second in full duplex mode.

nCUBE supplies a cross-development environment supporting VME bus-based,
shared-memory interfaces to either SUN or Silicon Graphics host workstations. Software
Release 3.2 includes optimizing compilers for theFortran 77 , ANSI C andC++
languages. nCUBE compilers support the typical CISC processor optimizations: global
register allocation, strength reduction, common sub-expression elimination, invariant code
motion,etc. The compilers do not provide automatic parallelism; all parallelism must be
explicitly specified by the programmer, whether at the lowest level of message passing
library calls, or indirectly through calls to routines implementing a higher level paradigm
or math libraries.

ThenCX operating system andxnc generic host program combine to supply a
UNIX® environment for programs. Operating system services which cannot be satisfied
on the local node are converted to an exchange of messages to the I/O node or host
resource which can supply the requested service.

While each node can be time-sliced among several user processes or jobs, a large
system is usually shared among multiple users via a concept calledspace sharing. In
space sharing, each user gets the exclusive use of a subset of the total available nodes
called asubcube. A subcube is restricted by the hypercube architecture to consist of a
power-of-two number of nodes. Single node subcubes are allowed.

Message-Passing Performance on thenCUBE 2

The message-passing performance of MIMDPAGOSAon thenCUBE 2 is indicated by
the grind time, scaled speedup, and parallel scaled efficiency data presented in Tables 3–6.
This data is displayed graphically in Figures 8–12.The calculations were performed on an
nCUBE 2 in the MPCRL. The repeatability of the grind time is shown by the data in
Table 2.

31

Table 3: Performance of MIMD PAGOSA on the nCUBE 2 for fp1

Number
of

Nodes

 Problem Size
on Node 0

Global Problem
Size

Scaled
Speedup

Parallel
Scaled

Efficiency

Grind Time
(s/cell/
timestep)

1 1.000 1.000 5754.819

2 1.844 0.922 3120.893

4 3.558 0.890 1617.461

8 6.909 0.864 832.892

16 13.43 0.839 428.501

32 26.23 0.820 219.438

64 52.04 0.813 110.586

128 102.4 0.800 56.213

256 201.3 0.786 28.594

512 397.7 0.777 14.470

1024 789.6 0.771 7.288

Table 4: Performance of MIMD PAGOSA on the nCUBE 2 for fp2

Number
of

Nodes

 Problem Size
on Node 0

Global Problem
Size Scaled

Speedup

Parallel
Scaled

Efficiency

Grind Time
(s/cell/
timestep)

1 1.000 1.000 9384.238

2 1.816 0.908 5168.621

4 3.469 0.867 2704.819

8 6.653 0.832 1410.551

16 12.82 0.801 731.922

32 24.82 0.776 378.141

64 49.17 0.768 190.858

128 95.99 0.750 97.758

256 185.3 0.724 50.656

512 365.2 0.713 25.694

1024 720.3 0.703 13.028

nx ny× nz×() nx ny× nz×()
µ

18 12× 7× 18 12× 7×

9 12× 14× 18 12× 14×

9 12× 14× 18 24× 14×

9 12× 14× 36 24× 14×

9 12× 14× 36 24× 28×

9 12× 14× 36 48× 28×

9 12× 14× 72 48× 28×

9 12× 14× 72 48× 56×

9 12× 14× 72 96× 56×

9 12× 14× 144 96× 56×

9 12× 14× 144 96× 112×

nx ny× nz×() nx ny× nz×()
µ

15 10× 6× 15 10× 6×

8 10× 12× 15 10× 12×

8 10× 12× 15 20× 12×

8 10× 12× 30 20× 12×

8 10× 12× 30 20× 24×

8 10× 12× 30 40× 24×

8 10× 12× 60 40× 24×

8 10× 12× 60 40× 48×

8 10× 12× 60 80× 48×

8 10× 12× 120 80× 48×

8 10× 12× 120 80× 96×

32

Table 5: Performance of MIMD PAGOSA on the nCUBE 2 for ew

Number
of

Nodes

 Problem Size
on Node 0

Global Problem
Size

Scaled
Speedup

Parallel
Scaled

Efficiency

Grind Time
(s/cell/
timestep)

1 1.000 1.000 11475.076

2 1.778 0.889 6452.905

4 3.311 0.828 3466.073

8 6.170 0.771 1859.853

16 11.85 0.740 968.521

32 22.49 0.703 510.196

64 44.28 0.692 259.141

128 85.97 0.672 133.471

256 169.3 0.662 67.764

512 337.4 0.659 34.011

1024 659.6 0.644 17.396

Table 6: Performance of MIMD PAGOSA on the nCUBE 2 for owp

Number
of

Nodes

 Problem Size
on Node 0

Global Problem
Size

Scaled
Speedup

Parallel
Scaled

Efficiency

Grind Time
(s/cell/
timestep)

1 1.000 1.000 18449.366

2 1.814 0.907 10168.498

4 3.373 0.843 5469.947

8 6.532 0.816 2824.440

16 12.44 0.778 1482.658

32 24.17 0.755 763.337

64 47.44 0.741 388.899

128 93.92 0.734 196.445

256 184.2 0.720 100.168

512 364.4 0.712 50.635

1024 728.9 0.712 25.312

nx ny× nz×() nx ny× nz×()
µ

14 7× 7× 14 7× 7×

7 7× 14× 14 7× 14×

7 7× 14× 14 14× 14×

7 7× 14× 28 14× 14×

7 7× 14× 28 14× 28×

7 7× 14× 28 28× 28×

7 7× 14× 56 28× 28×

7 7× 14× 56 28× 56×

7 7× 14× 56 56× 56×

7 7× 14× 112 56× 56×

7 7× 14× 112 56× 112×

nx ny× nz×() nx ny× nz×()
µ

15 6× 6× 15 6× 6×

8 12× 6× 15 12× 6×

8 6× 12× 15 12× 12×

8 6× 12× 30 12× 12×

8 6× 12× 30 24× 12×

8 6× 12× 30 24× 24×

8 6× 12× 60 24× 24×

8 6× 12× 60 48× 24×

8 6× 12× 60 48× 48×

8 6× 12× 120 48× 48×

8 6× 12× 120 96× 48×

33

1 10 100 1000
0.1

1.0

10.0

100.0

1000.0

10000.0

0.1

1.0

10.0

100.0

1000.0

10000.0

S
ca

le
d

S
pe

ed
up

G
rin

d
T

im
e

(µ
s/

ce
ll/

tim
es

te
p)

Number of Nodes

Scaled Speedup

Grind Time

Figure 10. Scaled speedup and grind time for the fp1 simulation on the nCUBE 2.

1 10 100 1000
0.1

1.0

10.0

100.0

1000.0

10000.0

0.1

1.0

10.0

100.0

1000.0

10000.0

S
ca

le
d

S
pe

ed
up

G
rin

d
T

im
e

(µ
s/

ce
ll/

tim
es

te
p)

Number of Nodes

Scaled Speedup

Grind Time

Figure 11. Scaled speedup and grind time for the fp2 simulation on the nCUBE 2.

34

1 10 100 1000
0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

0.1

1.0

10.0

100.0

1000.0

10000.0

S
ca

le
d

S
pe

ed
up

G
rin

d
T

im
e

(µ
s/

ce
ll/

tim
es

te
p)

Number of Nodes

Scaled Speedup

Grind Time

Figure 12. Scaled speedup and grind time for the ew simulation on the nCUBE 2.

Figure 13. Scaled speedup and grind time for the owp simulation on the nCUBE 2.

1 10 100 1000
1.0x10-1

1.0x100

1.0x101

1.0x102

1.0x103

1.0x104

1.0x105

1.0x10-1

1.0x100

1.0x101

1.0x102

1.0x103

1.0x104

1.0x105

G
rin

d
T

im
e

(µ
s/

ce
ll/

tim
es

te
p)

Number of Nodes

Scaled Speedup

Grind Time

S
ca

le
d

S
pe

ed
up

35

100 101 102 103

Number of Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
ar

al
le

l E
ff

ic
ie

nc
y

fp1
fp2
ew
owp
Ideal

Figure 14. Scaled parallel efficiency as a function of the number of nodes on the
nCUBE 2.

36

Message-Passing Performance on the Intel Paragon

In this section we present the performance of MIMDPAGOSA on theParagon ,
measured for the fp1, fp2, ew, and owp simulations. The compiler version and options are
given in Table 1. We first briefly describe theParagon , and then present the performance
results.

Description of the IntelParagon

The IntelParagon is a massively parallel computer which uses a two-dimensional
mesh topology for communications. It is a Multiple-Instruction, Multiple-Data (MIMD)
computer which can be used with either the Single-Program, Multiple-Data (SPMD) or
Multiple-Program, Multiple-Data (MPMD) programming models. It uses explicit message
passing for communications between nodes.

TheParagon at Sandia has 1824 compute nodes, 48 disk nodes, 11 service nodes, 3
HiPPI nodes, two Ethernet nodes, and one FDDI node. There are two sizes of compute
nodes in the machine: 1312 nodes with 16 MB of memory and 512 nodes with 32 MB of
memory. Each disk node contains 16 MB of memory and is connected to a five-disk, level-
3 RAID which has 4.8 GB of formatted space. The 11 service nodes are 32 MB nodes
which run the OSF-1/AD operating system (Open Software Foundation) with a single-
system image. The network nodes are all 32-MB nodes, except for the FDDI node which
only contains 16 MB of memory. There is a total of 36.5 GB of memory on the compute
nodes and a total of 37.7 GB of memory in the machine.

The nodes in theParagon are connected in a two-dimensional mesh. Each node is
connected to the mesh via a mesh router chip which is on the back-plane of theParagon ,
not on the node. The mesh router chips route the messages across the mesh back-planes
without any intervention from the nodes, until the message arrives at the destination node.
At this point, the message is delivered to the node via a network interface chip (NIC) on
the node board. Messages are routed first in the X direction, then in the Y direction.
Measured message latency, from user level to user level, on theParagon is 17
microseconds for zero-length messages. The achieved bandwidth is 160 MB/s, which is
over 90% of the theoretical bandwidth. The size of the mesh is 120x16 giving an aspect
ratio of 7.5:1.

Each node in theParagon contains two Intel i860-XP processors: one is used for
computing, the other is used as a message co-processor. The processors operate at 50 MHz
and have a performance of 75 MFLOPS using 64-bit arithmetic. It can run in dual
instruction mode which simultaneously executes integer and floating-point instructions. In
addition, the floating-point unit can execute dual operations using the adder and the
multiplier units in parallel. There are on-board instruction and data caches on the i860
chip. Each is a four-way, set-associative cache of 16-byte lines for a total of 16 KB for
instructions and 16 KB for data. Cache coherence is maintained using an MESI protocol.

37

The i860 also uses pipelines and has delayed branch instructions to avoid breaks in the
pipes.

Each node also has a network interface chip which connects the node to the mesh
router chip in the mesh. There are two DMA devices on each node which allow data to be
fed onto the network with minimal support from a processor. While a DMA transfer is in
progress from memory to the network, the processor can be doing other work. A node also
has a 2-KB cache for sending messages and a 2-KB cache for receiving messages. These
caches allow the DMA devices, or the mesh router chip, to initialize the sending or
receiving of a message before actually putting data onto the network, or into memory.

The operating system shipped with theParagon is OSF-1/AD from Open Software
Foundation (OSF). It is based on the Mach microkernel architecture. It also contains
system software from Locus Computing which is used to give a single-system image to
theParagon . This allows all OSF nodes to have uniform access to all resources such as
disks and networks. It does not matter from which node an application makes a system
request, each node has access to all of the resources of the machine. OSF uses the NX
protocol for message passing. This is the same protocol used in the Intel iPSC/860, so
iPSC/860 codes can be ported with little difficulty.

TheParagon at Sandia actually uses a heterogeneous operating system environment
in which OSF and SUNMOS (Sandia/University of New Mexico Operating System) co-
exist. OSF runs on the service nodes, disk nodes and network nodes, while SUNMOS runs
on the compute nodes. SUNMOS is an operating system which was jointly developed by
Sandia and UNM. It was designed as a single-tasking operating system which depends on
OSF to provide services such as I/O (see [20]). The main task of SUNMOS is to run user
processes, pass messages and provide an interface to OSF for I/O. SUNMOS provides the
capability to use both processors for computing, as well as using one for computing and
one as a message co-processor. This allows the user to use the second processor according
to the needs of the application.

SUNMOS contains emulation libraries for both NX, the message passing library used
on theParagon , and Vertex, the message passing library used on thenCUBE 2. This
allows applications which use either NX or Vertex to be easily ported to SUNMOS. In
fact, some codes at Sandia use both the NX and Vertex message passing libraries. The
implementation of the Vertex emulation is complete except for the functions which use
pointers to buffers in the communications buffer. The NX emulation is not quite as
complete. All message passing functions are implemented, except for hrecv(). However,
all library calls which deal with processes are not implemented because SUNMOS is a
single-tasking operating system.

TheParagon has cross compilers for both Sun and SGI development environments
as well as native compilers on theParagon . The languages supported include C, C++
and Fortran. C++ is provide by bothCfront (version 3.0) and a C++ compiler. The

38

compilers for theParagon were developed by Portland Group Inc. There are also
SUNMOS versions of the compilers for C, C++ and Fortran. These compilers use the
Portland Group compilers to create object files and then link these files with the
appropriate SUNMOS libraries. The nodes are shared among users via space sharing.

Message-Passing Performance on theParagon

The message-passing performance of MIMDPAGOSA on theParagon is indicated
by the grind time, scaled speedup, and parallel scaled efficiency data presented in Tables
7–10, and graphically in Figures 15–18. The calculations were performed on the 1824-
nodeParagon in the Massively Parallel Computing Research Laboratory at Sandia. Two
subdomain sizes per node were used; the smaller is the same as the largest subdomain size
per node on thenCUBE 2 and the latter is the largest that will fit on the 16-megabyte
nodes of theParagon . The repeatability of the grind time is shown by the data in
Table 2.

39

Table 7: Performance of MIMD PAGOSA on the Intel Paragon for fp1

Number
of

Nodes

Problem Size
on Node 0

Global Problem
Size

Scaled
Speedup

Parallel
Scaled

Efficiency

Grind Time
(s/cell/
timestep)

1 1.000 1.000 903.748

2 1.790 0.895 505.017

4 3.463 0.866 261.001

8 6.668 0.834 135.536

16 12.99 0.812 69.551

32 25.16 0.786 35.917

64 49.83 0.778 18.138

128 96.66 0.755 9.350

256 191.4 0.748 4.723

512 377.2 0.737 2.396

1024 751.9 0.734 1.202

1 1.000 1.000 741.244

2 1.932 0.966 383.745

4 3.828 0.957 193.645

8 7.184 0.890 103.178

16 14.22 0.889 52.137

32 27.73 0.866 26.733

64 54.59 0.853 13.578

128 107.0 0.836 6.928

256 207.9 0.812 3.565

512 409.3 0.799 1.808

1024 814.1 0.795 0.909

1824 1353. 0.742 0.548

nx ny× nz×() nx ny× nz×()
µ

18 12× 7× 18 12× 7×

9 12× 14× 18 12× 14×

9 12× 14× 18 24× 14×

9 12× 14× 36 24× 14×

9 12× 14× 36 24× 28×

9 12× 14× 36 48× 28×

9 12× 14× 72 48× 28×

9 12× 14× 72 48× 56×

9 12× 14× 72 96× 56×

9 12× 14× 144 96× 56×

9 12× 14× 144 96× 112×

36 24× 12× 36 24× 12×

36 24× 12× 72 24× 12×

36 24× 12× 72 48× 12×

18 24× 24× 72 48× 24×

18 24× 24× 144 48× 24×

18 24× 24× 144 96× 24×

18 24× 24× 144 96× 48×

18 24× 24× 144 96× 96×

18 24× 24× 144 192× 96×

18 24× 24× 288 192× 96×

18 24× 24× 288 192× 192×

24 25× 19× 438 292× 146×

40

Table 8: Performance of MIMD PAGOSA on the Intel Paragon for fp2

Number
of

Nodes

Problem Size
on Node 0

Global Problem
Size

Scaled
Speedup

Parallel
Scaled

Efficiency

Grind Time
(s/cell/
timestep)

1 1.000 1.000 1390.773

2 1.754 0.877 793.134

4 3.338 0.834 416.671

8 6.385 0.798 217.803

16 12.30 0.769 113.075

32 23.50 0.734 59.172

64 46.68 0.729 29.791

128 90.60 0.708 15.350

256 175.4 0.662 7.928

512 347.2 0.678 4.006

1024 684.4 0.668 2.032

1 1.000 1.000 1143.038

2 1.922 0.961 594.577

4 3.792 0.948 301.452

8 6.891 0.861 165.868

16 13.56 0.848 84.277

32 26.13 0.817 43.738

64 51.83 0.810 22.504

128 99.96 0.781 11.435

256 195.7 0.765 5.840

512 376.2 0.735 3.038

1024 739.5 0.722 1.544

1824 1077. 0.591 1.060

nx ny× nz×() nx ny× nz×()
µ

15 10× 6× 15 10× 6×

8 10× 12× 15 10× 12×

8 10× 12× 15 20× 12×

8 10× 12× 30 20× 12×

8 10× 12× 30 20× 24×

8 10× 12× 30 40× 24×

8 10× 12× 60 40× 24×

8 10× 12× 60 40× 48×

8 10× 12× 60 80× 48×

8 10× 12× 120 80× 48×

8 10× 12× 120 80× 96×

30 20× 10× 30 20× 10×

30 20× 10× 60 20× 10×

30 20× 10× 60 40× 10×

15 20× 20× 60 40× 20×

15 20× 20× 120 40× 20×

15 20× 20× 120 80× 20×

15 20× 20× 120 80× 40×

15 20× 20× 240 80× 40×

15 20× 20× 240 160× 40×

15 20× 20× 240 160× 80×

15 20× 20× 480 160× 80×

20 21× 16× 366 244× 122×

41

* This simulation was run to only 1 microsecond.

Table 9: Performance of MIMD PAGOSA on the Intel Paragon for ew

Number
of

Nodes

Problem Size
on Node 0

Global Problem
Size

Scaled
Speedup

Parallel
Scaled

Efficiency

Grind Time
(s/cell/
timestep)

1 1.000 1.000 1763.937

2 1.704 0.852 1034.936

4 3.190 0.798 552.989

8 5.872 0.734 300.403

16 11.39 0.712 154.833

32 21.56 0.674 81.816

64 42.14 0.658 41.857

128 80.97 0.633 21.785

256 160.0 0.625 11.022

512 320.5 0.626 5.504

1024 628.0 0.613 2.809

1 1.000 1.000 1637.87

2 1.889 0.945 866.883

4 3.678 0.920 445.250

8 7.063 0.883 231.886

16 13.80 0.862 118.708

32 26.76 0.836 61.201

64 52.62 0.822 31.128

128 103.6 0.809 15.815

256 204.1 0.797 8.023

512 397.0 0.775 4.097

1024 796.7 0.778 2.056

1824 1476. 0.818 1.1096*

nx ny× nz×() nx ny× nz×()
µ

14 7× 7× 14 7× 7×

7 7× 14× 14 7× 14×

7 7× 14× 14 14× 14×

7 7× 14× 28 14× 14×

7 7× 14× 28 14× 28×

7 7× 14× 28 28× 28×

7 7× 14× 56 28× 28×

7 7× 14× 56 28× 56×

7 7× 14× 56 56× 56×

7 7× 14× 112 56× 56×

7 7× 14× 112 56× 112×

28 15× 15× 28 15× 15×

28 15× 15× 56 15× 15×

28 15× 15× 56 30× 15×

28 15× 15× 56 30× 30×

28 15× 15× 112 30× 30×

28 15× 30× 112 60× 30×

28 15× 15× 112 60× 60×

28 15× 15× 224 60× 60×

28 15× 15× 224 120× 60×

28 15× 30× 224 120× 120×

28 15× 15× 448 120× 120×

28 15× 15× 360 180× 180×

42

Table 10: Performance of MIMD PAGOSA on the Intel Paragon for owp

Number
of

Nodes

Problem Size
on Node 0

Global Problem
Size

Scaled
Speedup

Parallel
Scaled

Efficiency

Grind Time
(s/cell/
timestep)

1 1.000 1.000 3021.62

2 1.689 0.845 1788.75

4 3.268 0.817 924.620

8 6.352 0.794 475.816

16 11.99 0.749 252.102

32 23.61 0.738 127.990

64 46.52 0.727 64.954

128 92.58 0.723 32.636

256 180.2 0.704 16.771

512 357.4 0.698 8.456

1024 714.7 0.698 4.228

1 1.000 1.000 2299.889

2 1.951 0.975 1178.958

4 3.716 0.929 618.891

8 7.198 0.900 319.516

16 14.21 0.888 161.886

32 27.33 0.854 84.148

64 54.26 0.848 42.384

128 107.3 0.838 21.422

256 212.2 0.829 10.836

512 414.5 0.810 5.548

1024 808.1 0.789 2.846

1824 1499. 0.822 1.534

nx ny× nz×() nx ny× nz×()
µ

15 6× 6× 15 6× 6×

8 12× 6× 15 12× 6×

8 6× 12× 15 12× 12×

8 6× 12× 30 12× 12×

8 6× 12× 30 24× 12×

8 6× 12× 30 24× 24×

8 6× 12× 60 24× 24×

8 6× 12× 60 48× 24×

8 6× 12× 60 48× 48×

8 6× 12× 120 48× 48×

8 6× 12× 120 96× 48×

30 12× 12× 30 12× 12×

30 12× 12× 60 12× 12×

15 24× 12× 60 24× 12×

15 12× 24× 60 24× 24×

15 12× 24× 120 24× 24×

15 12× 24× 120 48× 24×

15 12× 24× 120 48× 48×

15 12× 24× 240 48× 48×

15 12× 24× 240 96× 48×

15 12× 24× 240 96× 96×

15 12× 24× 480 96× 96×

20 13× 19× 380 156× 152×

43

Figure 15. Scaled speedup and grind time for the fp1 simulation on the Paragon .
The curves labeled “Small Domains” are for the subdomain size used on the
nCUBE 2.

1 10 100 1000
0.1

1.0

10.0

100.0

1000.0

10000.0

0.1

1.0

10.0

100.0

1000.0

10000.0

S
ca

le
d

S
pe

ed
up

G
rin

d
T

im
e

(µ
s/

ce
ll/

tim
es

te
p)

Number of Nodes

Scaled Speedup

Grind Time

Grind Time (Small Domains)

Scaled Speedup (Small Domains)

Figure 16. Scaled speedup and grind time for the fp2 simulation on the Paragon .
The curves labeled “Small Domains” are for the subdomain size used on the
nCUBE 2.

1 10 100 1000
0.1

1.0

10.0

100.0

1000.0

10000.0

0.1

1.0

10.0

100.0

1000.0

10000.0

S
ca

le
d

S
pe

ed
up

G
rin

d
T

im
e

(µ
s/

ce
ll/

tim
es

te
p)

Number of Nodes

Scaled Speedup

Grind Time

Grind Time (Small Domains)

Scaled Speedup (Small Domains)

44

1 10 100 1000
0.1

1.0

10.0

100.0

1000.0

10000.0

0.1

1.0

10.0

100.0

1000.0

10000.0

S
ca

le
d

S
pe

ed
up

G
rin

d
T

im
e

(µ
s/

ce
ll/

tim
es

te
p)

Number of Nodes

Scaled Speedup

Grind Time

Scale Speedup (Small Domains)

Grind Time (Small Domains)

Figure 17. Scaled speedup and grind time for the ew simulation on the Paragon .
The curves labeled “Small Domains” are for the subdomain size used on the
nCUBE 2.

Figure 18. Scaled speedup and grind time for the owp simulation on the Paragon .
The curves labeled “Small Domains” are for the subdomain size used on the
nCUBE 2.

1 10 100 1000
0.1

1.0

10.0

100.0

1000.0

10000.0

0.1

1.0

10.0

100.0

1000.0

10000.0

S
ca

le
d

S
pe

ed
up

G
rin

d
T

im
e

(µ
s/

ce
ll/

tim
es

te
p)

Number of Nodes

Scaled Speedup

Grind Time

Grind Time (Small Domains)

Scaled Speedup (Small Domains)

45

100 101 102 103

Number of Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
ar

al
le

l E
ff

ic
ie

nc
y

fp1
fp2
ew
owp
Ideal

Figure 19. Scaled parallel efficiency on the Paragon .

100 101 102 103

Number of Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
ar

al
le

l E
ff

ic
ie

nc
y

ews
ew
owps
owp
Ideal

Figure 20. Effect of subdomain size on the scaled parallel efficiency on the
Paragon for the ew and owp simulations. The points labeled “ews” and “owps”
are for the ew and owp simulations, respectively, using the subdomain sizes used
on the nCUBE 2

46

Performance of MIMD PAGOSA on the nCUBE 2 and the Intel
Paragon Message-Passing Computers

In this section we present a summary of the grind time, scaled speedup, and parallel
scaled efficiency for MIMDPAGOSA running on the fp1, fp2, ew, and owp simulations for
the same number of cells per node on each machine (Tables 11–14). We also present a
summary of the grind time, scaled speedup, and parallel scaled efficiency for the largest
problem solved on each computer (Table 15).

47

Table 11: Performance of MIMD PAGOSAon the nCUBE 2 and the Intel
Paragon for 18x12x7-Cell Subdomains for the Finned Penetrator Problem
with No Material Strength (fp1)

Machine
Number

of
Nodes

Global Problem
Size

Grind
Time

(s/cell/
timestep)

Scaled
Speedup

Parallel
Scaled

Efficiency

nCUBE 2 1 5755. 1.000 1.000

Paragon 1 903.7 1.000 1.000

nCUBE 2 2 3121. 1.844 0.922

Paragon 2 505.0 1.790 0.895

nCUBE 2 4 1617. 3.558 0.890

Paragon 4 261.0 3.463 0.866

nCUBE 2 8 832.9 6.909 0.864

Paragon 8 135.5 6.668 0.834

nCUBE 2 16 428.5 13.43 0.839

Paragon 16 69.55 12.99 0.812

nCUBE 2 32 219.4 26.23 0.820

Paragon 32 35.92 25.16 0.786

nCUBE 2 64 110.6 52.04 0.813

Paragon 64 18.14 49.83 0.778

nCUBE 2 128 56.21 102.4 0.800

Paragon 128 9.350 96.66 0.755

nCUBE 2 256 28.59 201.3 0.786

Paragon 256 4.723 191.4 0.748

nCUBE 2 512 14.47 397.7 0.777

Paragon 512 2.396 377.2 0.737

nCUBE 2 1024 7.288 789.6 0.771

Paragon 1024 1.202 751.9 0.734

nx ny× nz×() µ

18 12× 7×

18 12× 7×

18 12× 14×

18 12× 14×

18 24× 14×

18 24× 14×

36 24× 14×

36 24× 14×

36 24× 28×

36 24× 28×

36 48× 28×

36 48× 28×

72 48× 28×

72 48× 28×

72 48× 56×

72 48× 56×

72 96× 56×

72 96× 56×

144 96× 56×

144 96× 56×

144 96× 112×

144 96× 112×

48

Table 12: Performance of MIMD PAGOSAon the nCUBE 2 and the Intel
Paragon for 15x10x6-Cell Subdomains for Finned Penetrator Problem with
Material Strength (fp2)

Machine
Number

of
Nodes

Global Problem
Size

Grind
Time

(s/cell/
timestep)

Scaled
Speedup

Parallel
Scaled

Efficiency

nCUBE 2 1 9384. 1.000 1.000

Paragon 1 1391. 1.000 1.000

nCUBE 2 2 5169. 1.816 0.908

Paragon 2 793.1 1.754 0.877

nCUBE 2 4 2705. 3.469 0.867

Paragon 4 416.7 3.338 0.834

nCUBE 2 8 1411. 6.653 0.832

Paragon 8 217.8 6.385 0.769

nCUBE 2 16 731.9 12.82 0.801

Paragon 16 113.1 12.30 0.769

nCUBE 2 32 378.1 24.82 0.776

Paragon 32 59.17 23.50 0.734

nCUBE 2 64 190.9 49.17 0.768

Paragon 64 29.79 46.68 0.729

nCUBE 2 128 97.76 95.99 0.750

Paragon 128 15.35 90.60 0.708

nCUBE 2 256 50.66 185.3 0.724

Paragon 256 7.928 175.4 0.662

nCUBE 2 512 25.69 365.2 0.713

Paragon 512 4.006 347.2 0.678

nCUBE 2 1024 13.03 720.3 0.703

Paragon 1024 2.032 684.4 0.668

nx ny× nz×() µ

15 10× 6×

15 10× 6×

15 10× 12×

15 10× 12×

15 20× 12×

15 20× 12×

30 20× 12×

30 20× 12×

30 20× 24×

30 20× 24×

30 40× 24×

30 40× 24×

60 40× 24×

60 40× 24×

60 40× 48×

60 40× 48×

60 80× 48×

60 80× 48×

120 80× 48×

120 80× 48×

120 80× 96×

120 80× 96×

49

Table 13: Performance of MIMD PAGOSAon the nCUBE 2 and the Intel
Paragon for 14x7x7-Cell Subdomains for the Explosive Welding Problem
(ew)

Machine
Number

of
Nodes

Global Problem
Size

Grind
Time

(s/cell/
timestep)

Scaled
Speedup

Parallel
Scaled

Efficiency

nCUBE 2 1 11475. 1.000 1.000

Paragon 1 1764. 1.000 1.000

nCUBE 2 2 6453. 1.778 0.889

Paragon 2 1035. 1.704 0.852

nCUBE 2 4 3466. 3.311 0.828

Paragon 4 553.0 3.190 0.798

nCUBE 2 8 1860. 6.170 0.771

Paragon 8 300.4 5.872 0.734

nCUBE 2 16 968.5 11.85 0.740

Paragon 16 154.8 11.39 0.712

nCUBE 2 32 510.2 22.49 0.703

Paragon 32 81.82 21.56 0.674

nCUBE 2 64 259.1 44.28 0.692

Paragon 64 41.86 42.14 0.658

nCUBE 2 128 133.5 85.97 0.672

Paragon 128 21.78 80.97 0.633

nCUBE 2 256 67.76 169.3 0.662

Paragon 256 11.02 160.0 0.625

nCUBE 2 512 34.01 337.4 0.659

Paragon 512 5.504 320.5 0.626

nCUBE 2 1024 17.40 959.6 0.644

Paragon 1024 2.809 628.0 0.613

nx ny× nz×() µ

14 7× 7×

14 7× 7×

14 7× 14×

14 7× 14×

14 14× 14×

14 14× 14×

28 14× 14×

28 14× 14×

28 14× 28×

28 14× 28×

28 28× 28×

28 28× 28×

56 28× 28×

56 28× 28×

56 28× 56×

56 28× 56×

56 56× 56×

56 56× 56×

112 56× 56×

112 56× 56×

112 56× 112×

112 56× 112×

50

Table 14: Performance of MIMD PAGOSAon the nCUBE 2 and the Intel
Paragon for 15x6x6-Cell Subdomains for the Oil-Well Perforation Problem
(owp)

Machine
Number

of
Nodes

Global Problem
Size

Grind
Time

(s/cell/
timestep)

Scaled
Speedup

Parallel
Scaled

Efficiency

nCUBE 2 1 18449.366 1.000 1.000

Paragon 1 3021.62 1.000 1.000

nCUBE 2 2 10168.498 1.814 0.907

Paragon 2 1788.75 1.689 0.845

nCUBE 2 4 5469.947 3.373 0.843

Paragon 4 924.620 3.268 0.817

nCUBE 2 8 2824.440 6.532 0.816

Paragon 8 475.816 6.350 0.794

nCUBE 2 16 1482.658 12.44 0.778

Paragon 16 252.102 11.99 0.749

nCUBE 2 32 763.337 24.17 0.755

Paragon 32 127.990 23.61 0.738

nCUBE 2 64 388.899 47.44 0.741

Paragon 64 64.954 46.52 0.727

nCUBE 2 128 196.445 93.92 0.734

Paragon 128 32.636 92.58 0.723

nCUBE 2 256 100.168 184.2 0.720

Paragon 256 16.771 180.2 0.704

nCUBE 2 512 50.635 364.4 0.712

Paragon 512 8.456 357.3 0.698

nCUBE 2 1024 25.312 728.9 0.712

Paragon 1024 4.228 714.7 0.698

nx ny× nz×() µ

15 6× 6×

15 6× 6×

15 12× 6×

15 12× 6×

15 12× 12×

15 12× 12×

30 12× 12×

30 12× 12×

30 24× 12×

30 24× 12×

30 24× 24×

30 24× 24×

60 24× 24×

60 24× 24×

60 48× 24×

60 48× 24×

60 48× 48×

60 48× 48×

120 48× 48×

120 48× 48×

120 96× 48×

120 96× 48×

51

* Finned penetrator problem with no material strength.
† Finned penetrator problem with material strength.
‡ Explosive welding problem.
** Oil-well perforation problem.

Table 15: Summary of Maximum Simulation Sizes for the nCUBE 2 and the
Paragon

Machine Problem
Subdomain

Size
Global Domain

Size
No. of
Nodes

Scaled
Speed-

up

Grind
Time

(s/cell/
timestep)

nCUBE 2 fp1* 1024 789.6 7.3

Paragon fp1 1824 1353. 0.55

nCUBE 2 fp2† 1024 720.3 13.0

Paragon fp2 1824 1077. 1.06

nCUBE 2 ew‡ 1024 959.6 17.4

Paragon ew 1824 1476. 1.1

nCUBE 2 owp** 1024 728.9 25.3

Paragon owp 1824 1499. 1.5

nx ny× nz×() nx ny× nz×() µ

9 12× 14× 144 96× 112×

24 25× 19× 438 292× 146×

8 10× 12× 120 80× 96×

20 21× 16× 366 244× 122×

7 7× 14× 112 56× 112×

28 15× 15× 360 180× 180×

8 6× 12× 120 96× 48×

20 13× 19× 380 156× 152×

52

Summary and Conclusions

In this report we have presented the measured performance of the MIMDPAGOSA
shock-wave physics code, developed at Sandia for MIMD parallel computers using a
message-passing programming model, on thenCUBE 2 and the IntelParagon . The
originalPAGOSA code was developed at Los Alamos National Laboratory for single-
instruction, multiple data (SIMD) computers using a data-parallel programming model.

The performance of MIMDPAGOSA1 on the various machines was measured in terms
of the scaled speedup, the parallel scaled efficiency, and the grind time (execution time per
computation cell per timestep). Scaled speedup tests (in which the problem size was
increased in proportion to the number of computational nodes) were conducted for each
parallel computer for four test problems: a finned projectile problem with no material
strength (fp1, the minimal test problem), a finned projectile problem with material
strength (fp2), the explosive welding of a copper tube to a steel plate (ew), and the
perforation of an oil-well casing by shaped charge jets (owp). These represent increasingly
complex and realistic engineering simulations. Summary tables (Tables 11–14) present the
performance on the two machines on identical problem sizes. A summary table (Table 15)
presents the largest calculation of each of the test problems on each machine.

The parallel scaled efficiencies were greater than 0.70 when the available memory per
node was filled (or nearly filled). The linear variation of the scaled speedup and grind time
with the number of computational nodes for each machine (Figures 8–12 for thenCUBE 2
and Figures 15–18 for theParagon) demonstrate that MIMDPAGOSA is scalable on
both thenCUBE 2 and theParagon to large numbers of computational nodes (1024 and
1824, respectively) for a variety of problems, from simple problems to real-world
problems. The scalability is maintained even if the memory of the computational node is
not filled.

Not surprisingly, adding various material models, such as material strength and high-
explosive burn, affects the code performance by increasing the memory required (for
storing the model variables) and increasing the grind time (because the models must be
evaluated). For example, for thenCUBE 2, adding the material strength models reduces
the maximum number of cells per computational node by a factor of approximately 0.60
(from 1512 cells per node for fp1 to 960 cells per node for fp2) and increases the grind
time by approximately a factor of 1.63 (one node) to 1.79 (1024 nodes). For the
Paragon , adding the material strength models reduces the maximum number of cells per
computational node by a factor of approximately 0.57 (from 10368 cells per node for fp1
to 6000 cells per node for fp2) and increases the grind time by approximately a factor of
1.54 (one node) to 1.93 (1824 nodes).

1. The performance data presented in this report represent only one aspect of the performance of each ma-
chine. While they address fundamental issues of computational and communication speeds, other issues
must also be considered when evaluating computers, including the ease of sharing the machine among sev-
eral users, the functionality of the operating system, the availability of graphical output devices and the ease
of their use, the purchase price, and the maintenance costs. None of the machines examined in this report
should be accepted or rejected based only on the data presented in this report. We have deliberately provided
only enough interpretation to allow the reader to understand the results.

53

In Reference 10 we reported the performance of a simplified, single-material version
of MIMD PAGOSA (smPAGOSA) on a variety of parallel computers and on various Cray
vector supercomputers (viz., aY-MP8E, aY-MP8I and a CrayC90) for a three-
dimensional, spherical blast wave problem (sbw). In Table 16 we compare the largest
calculations withsmPAGOSA on single processors of theY-MP andC90 with similar
calculations with MIMDPAGOSA on thenCUBE 2 and theParagon . For the
comparison, we list the calculations with MIMDPAGOSA which had both a similar
number of cells, and a similar grind time. Since MIMDPAGOSA is a much more complex
code thansmPAGOSA (e.g., it reconstructs material interfaces), and since the fp1 problem
involves three materials while the spherical blast wave involves only one, the comparison
in the table favorssmPAGOSA running on the Cray vector computers. The point of this
comparison is that large shock-wave physics simulations can be run on MIMD
supercomputers at speeds and with problem sizes equalling or exceeding those achievable
with vector supercomputers. In particular, the last row of Table 16 illustrates that much
larger problems can be run significantly faster on the MIMD supercomputers than on
traditional vector supercomputers.

Thus large, real-world, shock-wave physics simulations can be performed on parallel
computers with sizes and speeds that equal or greatly exceed those for a single processor
of a CrayY-MP, and scalable shock-wave physics codes can be developed to run on
hundreds to a thousand or more computational nodes.

* Single-material version ofPAGOSA.
† Three-dimensional, single-material, spherical blast wave problem.

Table 16: Comparisons of Calculations on the Cray Y-MP, Cray C90,
nCUBE 2, and Intel Paragon

Machine Code Problem
No. of
Nodes

Total Number
of Cells

Grind Time
(s/cell/
timestep)

nCUBE 2 MIMD PAGOSA fp1 1024 1,548,288 7.3

CrayY-MP8I smPAGOSA* sbw† 1 2,097,152 8.6

Paragon MIMD PAGOSA fp1 256 2,654,208 3.6

CrayY-MP8I smPAGOSA sbw 1 2,097,152 8.6

Paragon MIMD PAGOSA fp1 128 1,327,104 6.9

Paragon MIMD PAGOSA fp1 256 2,654,208 3.6

CrayC90 smPAGOSA sbw 1 4,194,304 3.1

Paragon MIMD PAGOSA fp1 512 5,308,416 1.8

Paragon MIMD PAGOSA fp1 1824 18,672,816 0.55

µ

54

References

1. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V.
Venkatakrishnan and S. K. Weeratunga, The NAS Parallel Benchmarks, in
International. Journal of Supercomputer Applications, vol. 5, pp. 63-73, 1991.

2. Welding of Tubular, Rod, and Special Assemblies, inExplosive Welding, Forming,
and Compaction, T. Z. Blazynski, ed. Applied Science Publishers, London, 1983

3. D. J. Cagliostro, D. A. Mandell, L. A. Schwalbe, T. F. Adams and E. J. Chapyak,
MESA 3-D Calculations of Armor Penetration by Projectiles with Combined
Obliquity and Yaw, inInternational Journal of Impact Engineering, vol. 10, pp. 81–
92, 1990.

4. D. D. Cline and J. A. Schutt, Three-Dimensional Advection on a Massively Parallel
Hypercube. Fourth International Symposium on Computational Fluid Dynamics,
University of California at Davis, September 9–12,1991.

5. J. J. Dongarra, J. Bunch, C. Moler and G. W. Stewart,LINPACK User’s Guide.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1979.

6. J. J. Dongarra, Performance of Various Computers Using Standard Linear Equations
Software, Report CS-89-85. Computer Science Department, University of
Tennessee, Knoxville, TN, March 1994.

7. H. E. Fang and A. C. Robinson, A. C., 1993, 3-D Massively Parallel Impact
Simulations Using PCTH, inProceedings of the 1993 Summer Computer Simulation
Conference, held in Boston, MA, July 19–21, 1993. The Society for Computer
Simulation, San Diego, CA, 1993.

8. H. E. Fang, C. T. Vaughan, and D. R. Gardner, Performance Issues for Engineering
Analysis on MIMD Parallel Computers, inInternational Mechanical Engineering
Congress and Exposition ‘94, held in Chicago, IL, November 6–11, 1994. ASME,
Fairfield, NJ, 1994.

9. D. R. Gardner, D. D. Cline, C. T. Vaughan,Implementation of a Single-Material
Version of PAGOSA on MIMD Hypercubes, SAND92-0640. Sandia National
Laboratories, Albuquerque, NM, June 1992.

10. D. R. Gardner, D. D. Cline, C. T. Vaughan,The Performance of PAGOSA on Several
MIMD Massively Parallel Computers. Sandia National Laboratories report
SAND92-1880C. 1992 Nuclear Explosives Code Developers Conference held in
Sunnyvale, CA, November 2–6, 1992.

11. D. R. Gardner, D. D. Cline, C. T. Vaughan, R. Krall and M. Lewitt, The Performance
of PAGOSA on Several SIMD and MIMD Parallel Computers, SAND92-1452,
Sandia National Laboratories, Albuquerque, NM, October 1992.

55

12. D. R. Gardner and H. E. Fang, 1992, “Three-Dimensional Shock Wave Simulations
on Massively Parallel Supercomputers, in Proceedings of the 1992 Summer
Computer Simulation Conference, held in Reno, NV, July 27–30, 1992. The Society
for Computer Simulation, San Diego, CA, 1992.

13. D. R. Gardner and H. E. Fang, 1994, Three-dimensional Shock Wave Physics
Simulations with PCTH on the Paragon Parallel Computer, inProceedings of the
1994 Simulation Multiconference, High Performance Computing Symposium 1994—
Grand Challenges in Computer Simulation, held in La Jolla, CA, April 11–13, 1994.
The Society for Computer Simulation, San Diego, CA, 1994.

14. J. L. Gustafson, G. R. Montry and R. E. Benner, Development of Parallel Methods
for a 1024-Processor Hypercube, inSIAM Journal on Scientific and Statistical
Computing, vol. 9, pp. 609-638, 1988.

15. E. S. Hertel, Jr.; R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M.
McGlaun, S. V. Petney, S. A. Silling, P. A. Taylor and L. Yarrington, CTH: A
Software Family for Multi-Dimensional Shock Physics Analysis, inProceedings,
19th International Symposium on Shock Waves, held in Provence, France, 1993,
Université de Provence, Provence, France, vol 1., 1993.

16. D. B. Kothe, J. R. Baumgardner, J. H. Cerutti, B. J. Daly, K. S. Holian, E. M. Kober,
S. J. Mosso, J. W. Painter. R. D. Smith and M. D. Torrey, PAGOSA: A Massively
Parallel, Multi-Material Hydrodynamics Model for Three-Dimensional High-Speed
Flow and High-Rate Material Deformation, inProceedings of the 1993 SCS
Simulation Multiconference, held in Arlington, VA, March 29–April 1 1993. The
Society for Computer Simulation, San Diego, CA, 1993.

17. K. S. Holian, D. A. Mandell, T. F. Adams, F. L. Addessio, J. R. Baumgardner and S.
J. Mosso, MESA: A 3-D Computer Code for Armor/Anti-Armor Applications.
Supercomputing World Conference, San Francisco, October 17–20, 1989.

18. J. M. McGlaun and S. L. Thompson, CTH: A Three-Dimensional Shock Wave
Physics Code,International Journal of Impact Engineering, vol. 10, pp. 351-360,
1990.

19. A. C. Robinson, C. T. Vaughan, H. E. Fang, C. F. Diegert, C. F. and K.-S. Cho,
Hydrocode Development on the nCUBE and the Connection Machine Hypercubes,
in Shock Compression of Condensed Matter 1991,S. C. Schmidt, R. D. Dick, J. W.
Forbes, D. G. Tasker, ed., Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, pp. 289-292, 1991.

20. S. R. Wheat, A. B. Maccabe, R. Riesen, D. W. van Dresser and T. M. Stallcup,
PUMA: An Operating System for Massively Parallel Systems, inProceedings of the
27th Annual Hawaii International Conference on System Sciences, held in Kihei, HI,
January 4–7, 1994. IEEE Computer Society Press, Los Alamitos, CA, vol. 2, pp. 56-
65, 1994.

56

Appendices

A MIMD PAGOSA 5.5 Input Guide

PAGOSA Input Summary
Version 5.5

26 Feb 1993 and July 1995

John Cerutti, X-3, MS F663, ph. (505) 667-0738
Jay Mosso, X-3, MS F663, ph. (505) 667-4276
Tom Bennion, X-4, MS F664, ph. (505) 667-1721
Doug Kothe, T-3, MS B216, ph. (505) 667-9089
Martin Torrey, T-3, MS B216, ph. (505) 667-0976
Ed Kober, T-14, MS B214, ph. (505) 667-5140

Los Alamos National Laboratory

David R. Gardner, 9221, MS 1111, ph. (505) 845-7875
Courtenay T. Vaughan, 9226, MS 1109, ph. (505) 845-7277

Sandia National Laboratories

This brief input summary has been provided for user reference in lieu of
any other existing documentation. When a set of documentation exists,
this abbreviated input summary will probably not be maintained nor avail-
able. Text which applies to only the SIMD version of PAGOSA 5.5 is print-
ed in an italic font . Text which applies to only the MIMD version of
PAGOSA 5.5 is printed in a bold font . Text which applies to both SIMD and
MIMD PAGOSA 5.5 is printed in normal font.

The input for both the main code and GEN, the generator code, is the
same. They do not use separate input files, but rather different parts of
the same input file. For the more simple problems that will run without
restarts, etc., this means that separate input files need not be main-
tained for each program. For more complicated runs, the user will want to
have separate input files for each phase of the run, but the format, for
now, is the same.

Some input examples are provided under the “examples” directory and oth-
ers may be found with the test problems under the “tp” directory.

Both GEN and PAGOSA have sets of empty “user_mods” routines which may be
programmed to perform special functions. For the generator, for example,
this may be to initialize a space depending on density and energy distri-
bution.

All of the user input, except for the first line, is by means of Fortran
namelists. The first line is always the TITLE, which may be blank, or a
descriptive title which will be used to label all output. It may be up to
100 characters long.

Each namelist block of variables is defined below with a short descrip-
tion. All of the namelists are not used in both GEN and the main code
PAGOSA. The main code does not use the GEN or BODY namelists, and GEN
does not use the TRACERS and DETS namelists. However, this is changing,

57

as for example, GEN takes on more functionality such as calculating pro-
grammed burn times. There is no order to the namelists and they can be
given in any order since the file is logically rewound before each type
of namelist read. The order given below is simply one recommended order.
Many users like to have the MESH, OPTIONS and OUTPUTS given first for
easy access, then the MATS, DETS, and TRACERS next with the GEN and BODY
namelists last. Use the order which best accommodates the way you work.
The MESH and MATS namelists are used to set the problem dimensions.

To run SIMD GEN on the Connection Machine, add the PAGOSA path to your
PATH or else access it explicitly, attach to the Connection Machine and
type:

gen input-prefix

where “input-prefix” is the prefix of the input file (described below).
To look at a previous GEN run, a second argument, an input dump file name
on the Data Vault, will also be requested. More on this later too.

To run SIMD PAGOSA, do the same with the path, attach to the Connection
Machine and type:

pagosa input-prefix restart-dump

where “input-prefix” is the prefix of the input file (described below)
and “restart-dump” is the name of the restart Data Vault file. When
starting from scratch with the GEN output, this file will usually be
named “input-prefix.dump.0”. When running SIMD GEN or the SIMD PAGOSA
main code, if the input arguments are omitted, it will then ask for them
interactively. When running non-interactively, this will cause the run
to terminate.

To run MIMD GEN on the Intel Paragon running the SUNMOS operating system,
add the PAGOSA path to your PATH or else access it explicitly and type:

yod -sz N gen input_prefix

where “N” is the number of nodes to be used and “input-prefix” is the
prefix of the input file (described below).

To run MIMD PAGOSA on the Intel Paragon running the SUNMOS operating sys-
tem, use the same path, and type:

yod -sz N pagosa input-prefix

where “N” is the number of nodes to be used and “input-prefix” is the
prefix of the input file (described below). The restart dump number, if
any, is specified in the input file (described below). When running MIMD
GEN or MIMD PAGOSA, if the input arguments are omitted, the code will ask
for them interactively. When running non-interactively, omitting the in-
put arguments will cause the run to terminate.

The input file must have the suffix “.inp” as the trailing part of the
file name. The prefix part of the file name (before the “.inp”) is also
used to name all of the output files. For MIMD PAGOSA, the graphics and
restart output files may be named independently using options in the OUT-

58

PUTS and RESTARTS namelist blocks. Thus, the input “prefix” part is all
that is needed by GEN and the main program and the “.inp” suffix is op-
tional when the user input file name is requested. Both SIMD GEN and the
SIMD main program also may request an input dump file name, a file on the
Data Vault. This is required when restarting a run, or using SIMD GEN to
view the volume fractions of a previous SIMD GEN or PAGOSA run.

The input and output files now used or produced are described below. Most
have the same prefix (obtained from the user input file) and the suffix
is used for reference and differentiation. With the same prefix, the nor-
mal directory list commands will display them together.

GEN and PAGOSA Input and Output Files

File Name Description

stdin Program run/prefix information. (Fortran unit *)

stdout Program status information. (Fortran unit *)

stderr System error status information.

prefix.inp Standard code input. (Fortran unit 1)

prefix.out Standard code list output. This includes regular
cycle prints, mesh & material summaries, short and
long edits, etc. (Fortran unit 2)

prefix.err Code errors (also usually echoed in prefix.out).
(Fortran unit 3)

prefix.aux Auxiliary output, usually special user output.
(Fortran unit 4, not available in GEN)

prefix.trc Massless tracer particle output.
(Fortran unit 7, not available in GEN)

prefix.dump.0 SIMD GEN output dump file, used for starting
PAGOSA. (Fortran unit 10: GEN write, and unit 9:
PAGOSA read)

prefix.nnnn.0 MIMD GEN output dump file, used for starting
PAGOSA. ‘nnnn’ is the node number. (Fortran unit
10: GEN write, and unit 9: PAGOSA read)

prefix.dump.1
&
prefix.dump.2

Alternating restart dump files as requested by
user. (Fortran unit 10)

prefix.nnnn.1
&
prefix.nnnn.2

Alternating restart dump files as requested by
user. ‘nnnn’ is the node number. (Fortran unit 10)

prefix.nnnn.trm Final restart dump file as requested by user.
‘nnnn’ is the node number. (Fortran unit 10)

prefix.gd Graphics dumps as requested by the user.
(Fortran unit 8: write and unit 11: read)

59

MESH Namelist Variables
(Mesh Specification)

The MESH namelist input is used to define the Eulerian (fixed) computa-
tional mesh. This is done by specifying mesh segments where each segment
has a constant mesh interval or a geometric mesh interval defined by a
constant expansion or contraction ratio. Simply specify the number of
cells in each mesh segment, the coordinates of the mesh segments, and the
ratio for each. A ratio of 1.0 (or 0.0) specifies a constant zone size
(no geometric expansion or contraction). Use the utility tool “grid” to
help find geometric ratios.

OPTIONS Namelist Variables
(Run-time Parameters)

The OPTIONS namelist input is used to specify the “run-time” parameters.
These are the cutoffs, safety factors, etc.

prefix.nnnn.init Graphics dump initialization file. ‘nnnn’ is the
node number.

prefix.nnnn.N Graphics dump material file. ‘nnnn’ is the node
number. N is the material number (0,1,…)

MESH Variables

Variable Default Description

ncellx - Number of cells in each x-direction mesh segment

coordx - Coordinates of the x-direction mesh segment

ratiox - Geometric ratio of each x-direction mesh segment

ncelly - Number of cells in each y-direction mesh segment

coordy - Coordinates of the y-direction mesh segment

ratioy - Geometric ratio of each y-direction mesh segment

ncellz - Number of cells in each z-direction mesh segment

coordz - Coordinates of the z-direction mesh segment

ratioz - Geometric ratio of each z-direction mesh segment

GEN and PAGOSA Input and Output Files (Continued)

File Name Description

60

OPTIONS Variables

Variable Default Description

cutacc 1.0e-9 Acceleration cutoff

cutd 1.0e-6 Density cutoff (alias: cutrho)

cutvof 1.0e-5 Volume fraction cutoff

cutrecon 0.0 Recon volume fraction cutoff to make
parallel

zeps 1.0e-15 Relative “zero” epsilon
(alias: alittle)

safec 0.75 Safety factor for Courant timestep

safed 0.25 Safety factor for divergence timestep
(alias: safediv)

safeu 0.25 Safety factor for u velocity timestep
(aliases: safevel, safev, safew)

id_geom 3 geometry id (1: 2D-cart, 2: 2D-cyl, 3:
3D-cart) (alias: idgeom)

id_q 1 artificial viscosity id
(alias: idartvis, idq)
1: Wilkins
2: Std div with l**2 calculated in
 the direction of pressure gradient
3: Std div with l**2 = diagonal
4: Std div with l**2 = dx**2
5: Std div with l**2 = dy**2
6: Std div with l**2 = dz**2
7: Std div with
 l*2=min(dx**2,dy**2,dz**2)
8: Std div with
 l**2 = max(dx**2,dy**2,dz**2)
9: Std div with
 l**2 = included in CQ1 and CQ2
 by user

tensor_q .false. Enables a tensor form for the
artificial viscosity instead of the
standard scalar form. The id_q input
variable also has meaning because it
controls the form of the coefficient
in front of the tensor. Dimensionless
coefficients cq1 and cq2 are needed as
well (the default values are usually
acceptable).

cq1 0.2 Dimensionless coefficient for the
linear artificial viscosity term.
(alias: art1)

61

cq2 2.0 Dimensionless coefficient for the
quadratic artificial viscosity term.
(alias: art2)

ibc 6*0 Boundary conditions
(Xmin, Xmax, Ymin, Ymax, Zmin, Zmax)
0:rigid/reflective
1:xmit-out
2:vacuum

t 0.0 Current time
(usually set by the code)

dth 1.0e+10 Current time step size
(usually set by the code)

istep 0
Current time step
(usually set by the code)

dtgrow 1.05 Timestep growth factor

dt0 1.0e+10 Initial time step size
(alias: dtinit)

dtmin 1.0e-6 Minimum time step size

dtmax 10.0 Maximum time step size

clean .false. Enable clean option (uses clean_df
values in $mats)

backup .true. Lagrangian phase autoback-up, else
abort

fix_crossings .false. Detect and fix interface crossings

multidiv_type ‘uniform’ Set to ‘voidclose’ for void closure
model

jciter .false. Set to .true. for strain rate
iteration to occur for Johnson-Cook
strength model

mesh_velocity
(0.0,0.0,0.0) Mesh translation velocity

(constant, no spatial or temporal
dependence)

OPTIONS Variables (Continued)

Variable Default Description

62

OUTPUTS Namelist Variables
(Output specifications)

The OUTPUTS namelist input is used to specify output times and delta
times. It is also used to specify what will be output. Currently, there
are printed outputs (long and short edits), frame buffer plots (on the
actual CM frame buffers or on your terminal using X-windows), restart
dumps, and a preliminary graphics dump capability. Massless tracer par-
ticle outputs are also provided, as well as a user programmable output
capability.

trc_move_mesh 0 Integer number of the tracer whose
velocity is to be used for the mesh
velocity. This velocity, unlike the
mesh_velocity input variable, could
vary in time according to the velocity
sampled by the tracer. If
trc_move_mesh and mesh_velocity are
both nonzero, then the mesh moves
according to the tracer number given
by trc_move_mesh.

mesh_move_time 1.0e+19 Time to begin moving mesh

mesh_stop_time 0.0 Time to stop moving mesh

OUTPUTS Variables

Variable Default Description

t 0.0 Output times (alias: op_t)

dt 0.0 Delta output times (alias: op_dt)

OUTPUTS Variables: Restart Dump Variables

Variable Default Description

dump_freq 0 dump frequency
(0: none, -1 each cycle)

dump_read_fms .false. read mode
(serial output: .false., FMS .true.)

dump_write_fms .false. write mode
(serial output: .false., FMS: .true.)

OPTIONS Variables (Continued)

Variable Default Description

63

OUTPUTS Variables: Edit Variables

Variable Default Description

long_freq 0 Long edit frequency (0: none)

short_freq 0 Short edit frequency (-1: each cycle)

ed_imax nx Maximum edit index in x-direction

ed_imin 0 Minimum edit index in x-direction

ed_jmax ny Maximum edit index in y-direction

ed_jmin 0 Minimum edit index in y-direction

ed_kmax ny Maximum edit index in z-direction

ed_kmin 0 Minimum edit index in z-direction

ed_xmax X-max Maximum edit coord in x-direction

ed_xmin X-min Minimum edit coord in x-direction

ed_ymax Y-max Maximum edit coord in y-direction

ed_ymin Y-min Minimum edit coord in y-direction

ed_zmax Z-max Maximum edit coord in z-direction

ed_zmin Z-min Minimum edit coord in z-direction

OUTPUTS Variables: EV Dump Variables (for tool GD_EV)

Variable Default Description

ev_var – Variable names
(vofm, d, dm, em, p, pm, c, cm, q)

ev_mat
– material number for mixed cell

variable, else 0 for mixed cell
variables, “0” is not allowed

OUTPUTS Variables: YNG dump Variables (for tool GD_YNG)

Variable Default Description

yng_mat None
Material number(s) for which
interface polygons are to be computed
and written to the EV dump.

yng_first None Number of the first graphics dump for
which interface polygons and other EV
variables (specified with ev_var,
ev_mat) are to be computed and
written to the EV dump.

64

yng_first None Number of the last graphics dump for
which interface polygons and other EV
variables (specified with ev_var,
ev_mat) are to be computed and
written to the EV dump.

yng_inc None Skip increment between the first and
last graphics dump for which
interface polygons and other EV
variables (specified with ev_var,
ev_mat) are to be computed and
written to the EV dump.

OUTPUTS Variables: Frame Buffer Plot Variables

Variable Default Description

fb_color 255.0 Color maximum (min=0, max=255)

fb_contours 10 Number of contour

fb_freq 0 Frame buffer frequency
(0: none, -1: each cycle)

fb_level 1 Plane level
(min=1, max=direction-max-dim)

fb_mat 0 Material number
(0 means average cell data)

fb_max – Variable maximum (0 means calculate
maximum from data)

fb_min – Variable minimum (0 means calculate
minimum from data)

fb_pixwin 512 Maximum number pixels in window

fb_plane ‘xz’ Plane and orientation (xy, yz, xz,
yx, zy, or zx)

fb_smooth 0 Smoothing (0: none, >0: b-quad B-
spline)

fb_var ‘d’ Plot variable names
(d, e, p, c, q, dm, em, pm, rho, sie,
prs, vof, etc.)

fb_width 0.5
Contour width (full width is 0.5 on
either side)

OUTPUTS Variables: YNG dump Variables (for tool GD_YNG) (Continued)

Variable Default Description

65

OUTPUTS Variables: X-Window Plot Variables

Variable Default Description

X_freq 0 X-window frequency
(0: none, -1: each cycle)

X_pixwin(id) 512 Maximum number of pixels to
be used in initializing the
size of X-window identifier.
Window resizing (with the
mouse) after initialization
is permitted, and this action
preempts X_pixwin.

X_xpix_border(id) 0.10 Percent of the horizontal
width of X-window identifier
devoted to margins outside
the plot space. A nonzero
value is especially
recommended for vector plots.

X_ypix_border(id) 0.10 Percent of the vertical width
of X-window identifier
devoted to margins outside
the plot space. A nonzero
value is especially
recommended for vector plots.

X_frame_plot(id) .true. Frame the image by outlining
the computational domain.

X_show_interfaces(id
)

.false. Show material interfaces in
X-window id. Interfaces are
currently approximated as
the VOF=1/2 level line. If
input variable
“X_interfaces” is not
specified for X-window id,
then all interfaces are
drawn.

X_interfaces(n,id) 1:nmat-1 Material numbers of the
interfaces to be drawn in X-
window id. All interfaces
(material numbers 1 to nmat-
1) are drawn as a default.
Example: X_interfaces(1,3) =
4,5,6, specifies interfaces
for materials 4, 5, and 6 are
to be drawn in X-window 3 (if
X_show_interfaces(3) =
.true.)

66

X_plot_type(id) ‘image’ Plot type in X-window id.
Available options are
‘image’, ‘contour’, and
‘vector’.

X_show_tracers(id) .false. If .true., plot any tracers
(as points) presently in the
plane of X-window id. The
tracer points are plotted in
X-window id regardless of its
X_plot_type.

X_show_mesh(id) .false. If .true., plot the
computational mesh in the
plane of X-window id. The
mesh lines are plotted in X-
window id regardless of its
X_plot_type.

X_color_map(id) ‘rainbow’ Color map for X-window id.
‘rainbow’ spans from black to
red, through the rainbow of
colors; ‘blue’ spans black to
blue, and ‘grayscale’ makes a
gray-scale color map.
Grayscale is recommended if
black-and-white copies of
the window are to be printed
on a monochrome printer.

X_image_interp(id)
‘bilinear’ Interpolation algorithm to

be used for images plotted in
X-window id. ‘bilinear’ uses
a bilinear (first order)
interpolation of
computational cell data to
nearby pixels, whereas ‘ngp’
use a “nearest grid point”
(zeroth order)
interpolation. Both
techniques are useful:
bilinear gives a smoother
view of the data, making it
easier for the eye to discern
patterns in the data, whereas
ngp gives the raw, rough data
as the code sees it.

OUTPUTS Variables: X-Window Plot Variables (Continued)

Variable Default Description

67

X_color(id) 253.0 Maximum entry into the color
table of X-window id (min=0,
max=253). Positions 254 and
255 are reserved for
background and foreground,
respectively.

X_plane ‘xy’ Coordinate plane and
orientation of the plane for
X-window id. Allowable
values are xy, yz, xz, yx,
zy, or zx.

X_level(id) 1 Plane level to be plotted in
X-window id. The actual
coordinate value associated
with the plane will be
displayed in the top window
panel. (min=1, max=direction-
max-dim)

X_var(id) ‘d’ Plot variable name for X-
window id. Allowable
variables are the same as
those used for the trc_var
input variables, listed in
detail in the
../lib/trc_data.FCM file.
The only exception is if
X_plot_type(id) is set to
‘vector’, in which case
‘velocity’ is the only
acceptable variable name.

X_mat(id) 0 Material number for the
variable to be plotted in X-
window id. A 0 gives cell-
averaged quantities.

X_max(id) preset Plot variable values in the
plane of X-window id are
scaled between 0 and 1 with
this as its maximum. If X_max
is not input, then the
current maximum of the data
is used.

OUTPUTS Variables: X-Window Plot Variables (Continued)

Variable Default Description

68

X_min(id) preset Plot variable values in the
plane of X-window id are
scaled between 0 and 1 with
this as its minimum. If X_max
is not input, then the
current minimum of the data
is used.

X_contour_values
(n,id)

0.0
Values of contour lines to be
drawn for the variable in X-
window id. X_contours should
then be set to the number of
contour values specified in
X_contour_values. (Example:
X_contour_values(1,2) gives
the value for contour #1 in
X-window #2.)

X_contours(id) 10 Number of contour intervals
to be used in contouring the
variable in X-window id. The
intervals are taken in even
steps between the current
variable minimum and maximum
in the X-window plane. If
quantities for
X_contour_values have been
supplied, and then
X_contours should be equal to
the number of contour values
specified in
X_contour_values. This input
only applies if
X_plot_type(id) is set to
‘contour’.

X_vector_length 3*max(dx,dy,dz) Length of vectors drawn on
all vector plots. The default
is 3 x the maximum mesh
spacing in the problem.

X_arrowhead_fraction 0.10 Fraction of the vector length
covered by the arrowhead in
all vector plots.

X_arrowhead_angle 15.0 Arrowhead opening angle for
the vector arrowheads on all
vector plots.

OUTPUTS Variables: X-Window Plot Variables (Continued)

Variable Default Description

69

OUTPUTS Variables: X-Window Variable Aliases

Variable Aliases

X_plot_type
(id)

‘IMAGE’, ‘Image’, ‘image’, ‘img’, ‘VECTOR’, ‘Vector’,
‘vector’, ‘VECTORS’, ‘Vectors’, ‘vectors’, ‘CONTOUR’,
‘Contour’, ‘contour’, ‘CONTOURS’, ‘Contours’,
‘contours’

X_var(id)
(for vectors)

‘VELOCITY’, ‘Velocity’, ‘velocity’, ‘vlcty’, ‘vel’,
‘VEL’, ‘fluid velocity’, ‘FLUID VELOCITY’

X_color_map
(id)

‘BLUE’, ‘Blue’, ‘blue’, ‘RAINBOW’, ‘Rainbow’,
‘rainbow’, ‘rnbow’, ‘GRAYSCALE’, ‘Grayscale’,
‘grayscale’, ‘GREYSCALE’, ‘Greyscale’, ‘greyscale’,
‘gray’, ‘grey’

X_image_interp
(id)

‘ngp’, ‘NGP’, ‘first-order’, ‘first’, ‘same-cell’,
‘bilinear’, ‘BILINEAR’, ‘Bilinear’, ‘linear’,
‘LINEAR’, ‘Linear’

OUTPUTS Variables: Graphics Dump Variables

Variable Default Description

gd_freq 0 Graphics dump frequency
(0: none, -1: each cycle)
(alias: dv_freq)

gd_var – Variable names
(vofm,d,dm,em,p,pm,c,cm,q,u,v,w,
bfm, bt, p_shk, etc.)

gd_mat –
Material number for mixed cell
variable, else 0 for mixed cell
variables, “0” means all materials
(note: some materials may not have
bfm, p_shk, etc.)

gd_read_fms .false. Read mode
(serial output: .false., FMS: .true.)

gd_write_fms .false. Write mode
(serial output: .false., FMS: .true.)

gd_iso .false. Flag to specify use of the iso code
to create iso surfaces.

gd_numdisks 0 Number of disks to which to write
graphics output files.

gd_diskpath ‘.’ Root location on the disks for
writing graphics output files.

70

gd_disk_file ‘ ‘ Root name for the graphics output
files, relative to gd_diskpath. A
file number is appended to the file
name by the code.

gd_write_file ‘ ‘ Output file name for the .polyh file
used by the iso code.

gd_mat_thresh 0.5, 0.5 Threshold values used by iso. A value
may be entered for the first n
materials, and the default value will
be used for the remaining nmat-n
materials.

gd_frame_number 0 Starting value for the frame numbers.

OUTPUTS Variables: KRKL Dump Variables

Variable Default Description

krkl_plane – “xy”, “yx”, “xz”, “zx”, “yz”, or “zy”

krkl_level –
Plane index (min=1, max=direction-
max-dim)

krkl_first – First dump number (optional)

krkl_last – Last dump number (optional)

krkl_inc – Increment between dumps (optional)

OUTPUTS Variables: User Auxiliary Output Variables

Variable Default Description

user_freq 0 User auxiliary frequency
(0: none, -1: each cycle)

OUTPUTS Variables: Tracer Output Control Variables

Variable Default Description

tracer_freq
0 Tracer frequency

(0: none, -1: each cycle)

tracer_var – Variable names
(std 9: x, y, z, u, v, w, d, e, p)
(choices: c, q, vof, sxx, sxy, sxz,
syy, syz, plst, plwk, else, bf, dq,
p_shk, f_shk, etc.)
(alias: trc_var)

tracer_mat – Material number (alias trc_mat)

OUTPUTS Variables: Graphics Dump Variables (Continued)

Variable Default Description

71

RESTARTS Namelist and RAIDS Namelist Variables
__

The RESTARTS and RAIDS namelists are used to write and read restart dumps
for the MIMD version of PAGOSA. A separate RAIDS namelist block is re-
quired for each disk to which restart dumps will be written or from which
they will be read.

RESTARTS Variables: Restart Dump Variables

Variable Default Description

restart .false. Flag to indicate whether the
calculation will be restarted from a
dump.

numraid 0
Number of disks to which the restart
dumps will be written. Each disk must
have its own RAIDS namelist block.

readfile ‘ ‘ The path used for the restart dump to
be read. The full path has the form
raidname/readfile.processor_number.e
xt. raidname and ext are defined
below. processor_number is the
logical number of the processor which
will read the file.

ext ‘ ‘ The extension used to distinguish
among restart dump sets. GEN and
PAGOSA write dumps with extensions 1,
2, and trm.

writefile ‘ ‘ The path used for writing the restart
dump. The full path has the form
raidname/writefile.processor_number.
ext. raidname is defined below. ext
is defined above. processor_number is
the logical number of the processor
which wrote the file. A restart dump
set must be read by the same number
of processors which wrote the set.

RAIDS Variables: Restart Dump Variables

Variable Default Description

raidname ‘ ‘ The root path name for a disk to
which restart dumps are written or
from which they are read. A separate
RAIDS block is required for each
disk. On the Intel Paragon, the disks
often have the root form /raid/io_N
or /pfs/io_N, where N is the two-
digit number of the disk (disk 1 is
number 01, etc.).

72

MATS Namelist Variables
(Materials Data)

The MATS namelist is used to specify all of the material properties (EOS,
HE burn, Strength, Fracture and other data associated) for each material
in the problem. Each material may be entered using a separate MATS namel-
ist block without any indexing, or all the material data may be entered
within a single MATS namelist block by using explicit indexing (sub-
scripts). The former is recommended since it is then order-independent
and easily changed as materials are added or deleted.

Mats Variables

Variable Default Description

material – Material index (alias: mat)

matbak – Background material number

matname – Material name

priority –
Material priority (aliases: pri,
mpri)

d0 – Initial material density
(alias: rho0)

d0s – Normal solid density
(usually d0, alias: rho0s)

e0 – Initial specific internal energy
(alias: sie)

pmin – Minimum pressure cutoff (simple spall
scheme) (alias: prsmin)

clean_df – Density cutoff fraction for purging
(aliases: cfrho, cleandf)

close .false. For void material, set to true for
void closure

73

Mats Variables: EOS (Equation-of-State) Data

Variable Default Description

eosform EOS form

‘void’ ‘vacuum’, ‘null’

‘gas’ ‘ideal’, ‘ideal gas’, ‘ideal-gas’,
‘perfect gas’

‘poly’ ‘polynomial’

‘osb’ ‘osborne, ‘mod-osb’,
‘mod-osborne’, ‘modified-osborne’

‘usup’ ‘us-up’, ‘us/up’, ‘gruneisen’,
‘mie-gruneisen’, ‘mie’

‘jwl’

‘bkw’ ‘bkw-gas’, ‘bkwgas’, ‘bkwfit’

‘bkwhe’ ‘bkw-he’, ‘he-bkw’, ‘hebkw’

eoscon constants for each EOS form

‘void’ (no constants)

‘gas’ gamma

‘poly’ a0, a1, a2c, a2e, a3, b0, b1, b2

‘usup’ c0, s, gamma0, gamma1, p0, d_max

‘osb’
a1, a2c, a2e, b0, b1, b2c, b2e, c0,
c1, c2c, c2e, eps0

‘jwl’ w, b1, c1, b2, c2
(c1 = d*r1, c2 = d*r2)

‘bkw’
A, B, C, D, E, K, L, M, N, O, Q, R, S,
T, U, Cv, Z, d_max, d_min

‘bkw-he’ c, s, gamma0, gamma1, P0 dsmax, K, L,
M, N, O, Cv(s), alpha, A, B, C, D, E,
K, L, M, N, O, Q, R, S, T, U, Cv(g),
Z, dgmax, dgmin, maxit, t_del

74

MATS Namelist Variables (continued): Strength Data

A large number of additional arrays are allocated to calculate strength.
It is now minimized by specifying strength only for those materials which
require it. For example, if there are 10 materials specified for the
whole problem but only two of then have strength, then only about 20% of
the possible storage will be allocated. Also, only about 20% of the pos-
sible computer time will be spent in the strength routines compared to
that if all 10 materials had strength. Users are encouraged to minimize
the number of materials which will realistically require strength in or-
der to minimize run time and space.

There is a compiler option to compile the code with or without the
strength routines and storage arrays. As such, for “hydro only” problems,

Mats Variables: HE Burn Data

Variable Default Description

burnform EOS form

‘none’ ‘null’, ‘inert’

‘prog’ ‘progburn’, ‘program’, ‘time’

‘dyna’ ‘dynaburn’, ‘dynamic’

‘cj’ ‘cjburn, ‘c-j burn’, ‘volburn’

‘ff’ ‘ffburn’, ‘forest’, ‘ffb’, ‘ffpburn’

‘msff’ ‘msffburn’, ‘msforest’, ‘msffb’

‘jtf’ ‘jtfburn’, ‘tangburn’, ‘tang’,
‘model-t’ (not yet implemented)

burncon constants for each HE burn form

‘none’ (no constants)

‘prog’ detvel

‘dyna’ matdyna, edyna, dedyna

‘cj’ bf_min cut, bf_max cut, CJ density

‘ff’ bf_min cut, bf_max cut, bp_min cut,
bp_max cut, n (number of FF constants
following), FF constants (“n” of
them), Q lim

‘msff’ bf_min cut, bf_max cut, bp_min cut,
bp_max cut, n (number of MSFF
constants following), MSFF constants
(“n” of them), Q lim, p_shk min,
p_shk max, q_shk min, dq min, reshock
p

75

the code is much simpler and smaller if compiled without strength. How-
ever, with recent code changes, the code compiled with strength but run
without strength (hydro only), a minimum of storage is now dynamically
allocated and the strength routines will never be called. It is no longer
a significant time and space penalty to run a “hydro-only” problem with a
version of the code compiled with the strength option (which is the
default).

Mats Variables: Strength Data

Variable Default Description

strform strength form

‘none’ ‘null’, ‘hydro’

‘ep’ ‘e-p’, ‘epp’

‘s-g’ ‘sg’

‘j-c’ ‘jc’

y0 – initial yield strength (alias: yld0)

ymax – maximum yield strength
(alias: yldmax)

g0 – initial shear modulus (alias sm0)

gmax – maximum shear modulus (alias smmax)

eoscon constants for each str form

‘none’ (no constants)

‘e-p’ (no constants)

‘s-g’ alpha, psi0, beta, delta, emelt,
gama, gamap

‘j-c’ bcap, ccap, an, am, emlt, eroom,
gamap

Mats Variables: Fracture Data

Variable Default Description

fracform fracture form (not yet implemented)

‘none’ ‘null’

fracon constants for each fracture form (not
yet implemented)

76

 DETS Namelist Variables
(Detonator Specifications)

The DETS namelist is used to specify the programmed burn detonation
points. Only a simple scheme is now implemented which does not handle
shadow regions.

TRACERS Namelist Variables
(Massless Tracers Particles)

The TRACERS namelist input is used to specify massless tracer particles.

NOTE: Between restarts this data must be manually updated and reentered
as the current tracer positions are not now written on the restart dumps.
This will be eliminated soon and become automated.

DETS Variables

Variable Default Description

type ‘point’ Detonator type: ‘point’, ‘line’,
‘plane’, cylindrical’, ‘spherical’
(aliases: ‘points’, ‘cyl’, ‘sph’)

t – Detonation time(s) (alias: time)

xyz –
X, Y, and Z detonator coordinate
triple(s)

axis – ‘x’, ‘y’, or ‘z’
axis of line, axis normal to plane,
or axis of cylinder

radius — cylinder or sphere radius

shadow_fraction – Detonation-velocity reduction
fraction for shadow region

TRACERS Variables

Variable Default Description

xyz(i,np) N/A Tracer number (i = 0) and initial
(x,y,z) coordinates (i=2,3,4) for
tracer particle np
(aliases: trc_xyz & tracer_xyz)

frame(i,np) ‘Lagrangian’
for i = 1,2,3

Reference frame for tracer particle
np in direction i (i = 1 for the X-
direction, 2 for Y, and 3 for Z)
(‘Eulerian’ or ‘Lagrangian’)
(aliases: trc_frame & tracer_frame)

77

GEN Namelist Variables
(Generator Specifications)

The GEN namelist input block is used to specify some basic input control
information for the generator, GEN.

BODY Namelist Variables
(Material Body Specifications)

The BODY namelist input is used to defined the material geometry, one
body at time. In practice, it often takes several bodies of the same ma-
terial to make-up the complete three-dimensional solid desired. As such,
all bodies of the same material are added together (union). Previously
defined bodies are also “subtracted” from subsequent body specifica-
tions. This is often very handy, but it is suggested that users try not
to overlap bodies and have GEN help to find any overlaps. All surfaces
defined within a body are also combined (intersection). Aliases for the
variable names are given in parentheses.

GEN Variables

Variable Default Description

particles 5 Number of particles per cell and per
coordinate direction used to
calculate volume fractions
statistically.

start_mode 1
1 - new generate from input file
2 - view previous generate from a
 Data-Vault restart dump file

interactive .true. .false. - The generator will ask
questions about various input options
and ignores them from this input
file.

restart_dump .true. .false. - Write a Data-Vault dump of
the code variables for use in
starting a calculation with PAGOSA.

burn_times .false. .true. - Calculate and write a Data-
Vault dump of the program burn times
(only if there is program burn
material in the problem)

78

BODY Namelist Variables (continued)

For each surface there is an appropriate and necessary set of associated
location and defining input parameters from the following set. Rotations
are performed first (positive angles: counter-clockwise, negative an-
gles: clockwise) and then translations. Rotations are performed about
the body’s local origin unless a non-zero rotation point is specified.

BODY Variables

Variable Description Allowable Input

material_number
(mat)

material index material number from EOS input

surface_name
(surf)

(first 3 characters used)

Plane plane’, ‘planar’, ‘pla’

Box box’, ‘cube’, ‘cub’,
parallelepiped’, ‘par’

Sphere sphere’, ‘sph’

Ellipsoid ellipsoid’, ‘ellipse’, ‘ell’

Cylinder cylinder’, ‘cyl’

Cone cone’, ‘conical’, ‘con’

Tabular ‘tabular’, ‘tab’

Background ‘background’, ‘bac’

u0, v0, w0 Initial
velocity

Constant numerical values.

d0, e0 Initial
density &
energy

The body is filled with the default
density & energy of the material
specified unless overridden here by
specifying an initial d0 & e0.

fill material
location

To place the
material
inside the
body or in
the positive
direction

inside’, ‘fill inside’, ‘insert’,
‘+’, ‘right’, ‘above’, ‘top’,
‘front’

To place the
material
outside the
body or in
the negative
direction

outside’, ‘fill outside’, delete’,
‘-’, ‘left’, ‘below’, ‘bottom’,
‘back’

79

BODY Variables: Geometry Parameters

Variable Description Allowable Input

axis orientation
axis

‘x’, ‘y’, or ‘z’
‘x-axis’, ‘y-axis’ or ‘z-axis’
‘1’, ‘2’, or ‘3’

radius body radius Radius triple (may change soon)
(triple required for ellipsoid)

height height of body single value

xyz_length
(length)

length of
sides

dx, dy and dz triple

xyz_translation
_pt
(trans,
xyz_trans)

new location
of body

x, y, z triple

xyz_rotation_pt
(rot, xyz_rot)

body rotation
point

x, y, z triple

xyz_rotation_an
gle
(angle,
rot_angle)

body rotation
angle

Angle triple (degrees)

tabular_type
(tab_type)

type of
tabular body

‘rotation’ or ‘translation’

A rotated tabular body forms an n-
sided collection of cylinders and
cones if the axis of rotation is
included as one side of the body. If
the axis is not included, then the
body has a toroidal shape.

A translated body is used to form an
“extruded” shape; a “funny”
cylinder with sides defined by the
n-sided tabular entries instead of
a circle.

rz_tabular_pt
(rz)

tabular body Table of r,z points

rtheta-
tabular_pt
(rtheta)

tabular body Table of r,theta points

file_name
(file)

tabular file
name

File name (w/path spec)
(see TABULAR_DATA below)

80

BODY Namelist Variables (continued): Surface Parameters

The parameters required for each surface are given below.

BODY Variables: Surface Parameters

Surface Parameters Origin Description

‘plane’ axis 0,0 Axis normal to plane

‘background’
N/A N/A This “surface” is used to

define the remaining
space not occupied. With
“matbak” now required,
this body type is
optional. If present, it
must be the last body
specified.

‘box’ xyz_length Center Length of each of the
three coordinate sides.

‘sphere’ radius Center (temporarily use 3*value)

‘ellipsoid’ radius
xyz_translation_pt
xyz_rotation_pt
xyz_rotation_angle

Center Three radii required

‘cylinder’ radius

axis
height
xyz_translation_pt
xyz_rotation_pt
xyz_rotation_angle

Center
 of
base

(temporarily use 3*value)

Axis of cylinder
Height of cylinder

‘cone’ radius

axis
height
xyz_translation_pt
xyz_rotation_pt
xyz_rotation_angle

Center
 of
base

(temporarily use 3*value)

Axis of cone
Height of cone

81

 TABULAR_DATA Namelist Variables
(Tabular Contour Specifications)

The TABULAR_DATA namelist input is used to read-in a contour table in ei-
ther r,z or r,theta form. In the r,theta form, theta is measured from the
normal to the z-axis and can take on positive or negative values in de-
grees. The positive values are counter-clockwise, while the negative
values are clockwise. For example, 90 degrees is along the positive z-ax-
is, -90 degrees is along the negative z-axis while 0 degrees is at the
equator (perpendicular to the z-axis).

 SETVEL Namelist Variables for use in GEN
(User Modified Initial Velocities)

__

GEN now includes two user modifiable routines called “setvel” and
“setvel_inp”. The first (in the file setvel.Fcm) calls the second (in the
file setvel_inp.F). Right now, the sample code within each is to set a
uniform radial inward or outward velocity. The inclusion of a non-zero

‘tabular’ tabular_type

axis

rz-tabular_pt

xyz_translation_pt
xyz_rotation_pt
xyz_rotation_angle

0,0 ‘rotation’ or
‘translation’

Axis of rotation or axis
along which points are
translated.

Table of r,z points
making up an n-sided
polygon in either the
clockwise or counter-
clockwise direction

TABULAR_DATA Variables

Variable Description Allowable Input

rz r,z table of values Constant coordinate values

rtheta r,theta table of
values

Constant coordinate values

BODY Variables: Surface Parameters (Continued)

Surface Parameters Origin Description

82

velocity in the SETVEL namelist input will set all materials in the prob-
lem to that radial velocity (negative is inward). As presently coded, it
assumes the origin of the mesh is the origin of the radial velocity. If
an additional table of numbers is provided, one for each material in the
problem, then the radial velocity is set only for those materials flagged
with a 1 (one) and not set for those flagged with a 0 (zero).

Code users are encouraged to modify these routines to suit their own spe-
cial problem set-up requirements. A non-uniform density, energy, veloci-
ty, etc. distribution may be programmed in to facilitate a special
problem.

As currently coded, a missing or empty SETVEL namelist causes no change
to the velocity distribution as set-up by the other parts of the genera-
tor input.

CRAYLINK Namelist Variables for Use in GEN
__

GEN now includes the means to link from the MESA-3D generator the mate-
rial volume fractions and programmed burn times. This namelist may be re-
peated as often as necessary to map over all of the desired regions of
the mesh.

SETVEL Variables

Variable Description Allowable Input

vel radial velocity + (outward) or - (inward) real
number
A zero or missing value currently
has no effect on the velocity
distribution.

mats material table
flags

A list of 0’s & 1’s with a one-to-
one correspondence with the
material numbers.
A “0” means do not impose the radial
velocity on this corresponding
material while a “1” (or other non-
zero) means to apply the uniform
radial velocity to this
corresponding material.

Omitting the “mats” table causes
the radial velocity to be imposed
over the entire mesh for all
materials.

83

WINDOW

In addition to GEN and the PAGOSA main program, there is a preliminary
windowing utility program which merges previous GEN or PAGOSA made re-
start dumps into a new restart dump. In this manner, different portions
may be pieced together (or deleted) as a problem is run. Old portions may
be deleted and new portions may be added. The mesh size may be expanded
or shrunk as needed, but the mesh cells may not be “rezoned” or resized.
As of now, portions may be “extracted” from previously made restart dump
files and placed upon a whole new mesh. Also, two-dimensional portions
may be “extruded” in the orthogonal directions to make a three-dimension-
al problem out of a two-dimensional problem.

 EXTRACT Namelist Variables for use in WINDOW

SETVEL Variables

Variable Description Allowable Input

vf_lnk vol-frac file name (alias: vf_file)

bt_lnk burn_time file name (alias: bt_file)

lnk_imin
lnk_imax

x-direction
indices

(defaults = 0,mx)
(aliases: imin & imax)

lnk_jmin,
lnk_jmax

y-direction
indices

(defaults = 0,my)
(aliases: jmin & jmax)

lnk_kmin,
lnk_kmax

z-direction
indices

(defaults = 0,mz)
(aliases: kmin & kmax)

i_offset,
j_offset,
k_offset

mapping offsets (defaults = 0,0,0)
(aliases: ioffset, joffset &
koffset)

u0, v0, w0 mesh velocities (defaults = 0,0,0)

EXTRACT Variables

Variable Description Allowable Input

file name of old restart
dump

required, must not be blank

nx, ny, nz size of old mesh required

nmat number of materials
in old problem

Required

84

imin, imax
jmin, jmax
kmin, kmax

mesh range of old
problem from which
to “extract”

(defaults = whole old mesh)
(less than or equal to the new
“window” range)

istart,
jstart,
kstart

mapping offsets
into the new
“window” mesh

(defaults = 0, 0, 0)

mats_table material mapping
table

For each old material, a “zero”
indicates that material is to be
skipped (or dropped).

A non-zero “new” material number
indicates that material is to be
included, but as the “old n-th”
material as given by this position
(or index) within the table.

burnform old HE burn form,
if any

‘prog’, ‘msff’, etc. in the “old n-
th” material position of this array
as required to read the old restart
dump.
(defaults: none)

fracform old fracture form,
if any

(not yet implemented)

strform
old strength form,
if any

‘ep’, ‘kospall’, etc. in the “old
n-th” material position of this
array as required to read the old
restart dump.
(defaults: none)

burn_times old burn_time file
name

Include only if needed for the next
phase of the new problem.
(aliases: bt_file and
prog_burn_times)

EXTRACT Variables (Continued)

Variable Description Allowable Input

85

EXTRUDE Namelist Variables for use in WINDOW

WINDOW also has a set of empty “user_mods” routines which may be pro-
grammed to perform special functions required by the user. These may in-
clude changing a material throughout the mesh, etc.

Post-Processing Utility Programs

GRID

This program is used to help calculate a mesh grid. It copied from and
slightly improved upon the Mesa-2D program which does the same thing.
Please refer to the Mesa-2D manuals at this time for more information, or
else just try it!

GD (Graphics Dumps) Utilities

These utilities are for post-processing the graphics dumps. For input,
they use an input file which may be identical to the original file used
to run PAGOSA (however, rename it with a different prefix to avoid over-
writing the same output files). For the most part, they are self explan-
atory, for there is not yet a detailed description of their workings.

EXTRUDE Variables

Variable Description Allowable Input

plane name of 2D plane to
extrude

required, must not be blank
‘xy’, ‘yz’, ‘xz’, ‘zx’, ‘yz’, ‘zy’

start_level
Existing level of
the 2D plane

1 through mx, my, or mz
(defaults to 1)

final_level Level to which to
extrude

may be above or below the
start_level
(defaults to mx, my, or mz)

imin, imax
jmin, jmax
kmin, kmax

Mesh range of new
problem from which
to “extrude”

(defaults = whole old mesh)
(less than or equal to the new
“window” range)

GD Utilities

GD_EV Makes an EV (Eulerian Viewer) file for viewing data on
the IRIS graphics system.

GD_KRKL Makes a near faithful reproduction of a Mesa-2D dump for
subsequent processing through KRKL for plots of two-
dimensional slices.

GD_MERGE Merges or extracts portions of graphics dump files.

GD_MOVIE Shows on the frame buffer (or X-terminal) a “movie” like
sequence of frames produced by GD_SLICE.

86

READ_TRACERS

This utility program reads the “prefix.trc” output by PAGOSA and extracts
the data requested into a file of time and value pairs for plotting by
Xvgr or other plotting programs. It asks for the prefix, the time range
desired, the variable values wanted and some scaling information. Again,
try it and see if it will extract the data you need.

EXTRACT_SHORT

This utility extracts data from the short edits on the “prefix.out” file
made by PAGOSA into a file(s) of time and value pairs. Again, this is for
post-processing plots. The data which may be selected as of now by mate-
rials is volume, mass, density, total energy, internal energy and kinetic
energy.

EXTRACT_LONG

This program extracts spatial data from the long edit on the “prefix.out”
file. In addition to the prefix, it asked for the variables desired and
the indices, or spatial range to be extracted.

 EXTRACT_RDR

This is a utility program to extract the integral of Rho*dr over time
from the “prefix.aux” file written by the special “user_write” subrou-
tine. The user must compile and run PAGOSA with this special version of
the subroutine for this data to be calculated and written out on the aux-
iliary prefix.aux file.

GD_SLICE Extract two-dimensional slices from the graphics dumps
and render them into frame buffer image using the frame
buffer specifications in the OUTPUTS namelist block.

iso Extract three-dimensional iso-surfaces of volume
fraction from the graphics dumps and create a file of
polyhedra which can be visualized using AVS modules.

GD Utilities (Continued)

87

 Sample Sequence in Running GEN and PAGOSA

The following schematic is a sample sequence showing several phases in
running GEN and then PAGOSA with a restart. Here there are separate input
files for each run (“prefix.a.inp” for GEN, “prefix.b.inp” for the first
PAGOSA, and “prefix.c.inp” for the PAGOSA restart), but they are derived
from each other and are nearly identical. For example, the “b” version
may have a special initial timestep and stopping time specified, while
the “c” version may reset the initial time step large (which then has no
effect), set a new stopping time, and update the tracer particle coordi-
nates.

The names “prefix.a”,”prefix.b” and “prefix.c” are then used to name all
of the output files with unique and non-overlapping names. The “prefix”
part is usually a brief problem identifier (unclassified) which is also
recommended to be a sub-file directory name. For example, “test1”,
“test2”, etc. where “test” is the overall parent directory name. A naming
scheme like this helps to keep things organized, logically together and
non-overlapping

prefix.a.inp

prefix.b.inp

prefix.c.inp

GEN

PAGOSA

PAGOSA

prefix.a.out
prefix.a.err

prefix.b.out
prefix.b.aux
prefix.b.err
prefix.b.trc

prefix.b.out
prefix.b.aux
prefix.b.err
prefix.b.trc

prefix.a.0000
.
.
.
prefix.a.000n

prefix.b.0000
.
.
.
prefix.b.000n

prefix.c.0000
.
.
.
prefix.c.000n

88

PAGOSA Directory Structure

The following directory structure currently applies to PAGOSA and all of
its programs and utilities. Note the executable programs are stored in
the /bin sub-directory while the binary libraries, sources and debugging
intermediate source files are found in separate directories, one for each
program.

The library (*.a file), sources (*.Fcm , *.F, *.f and *.fcm files) are
found under each program directory in the format as shown for GEN and
PAGOSA. The *.F files are the F77 sources while the *.Fcm files are the
CMF sources, both used as input to the CPP preprocessor run under CC. The
*.f and the *.fcm are the corresponding preprocessor output files which
are actually compiled by F77 and CMF respectively, or by if77 . They are
also available for use with the debuggers.

The Makefiles are the compiler scripts for each program and are under
constant change as we learn how to do things in a better way. This is par
for UNIX. They (and the code storage structure) will also change when we
start using the CVS or SCCS code maintenance system.

The /include directory is for the common blocks and variable definitions
which are included within the programs by the preprocessor. Any changes
to these may require recompiling all of the programs and libraries.

The /lib directory is for those subroutines which are used in common be-
tween GEN and PAGOSA or the other utility programs. As such, it is sepa-
rated out and compiled once. Any changes to it require reloading
(sometimes changing and re-compiling) all of the programs which use it.
As of now, it is not real easy to recompile lib.a by itself without pro-
viding some compile switches to its Makefile. Compiling GEN or PAGOSA now
automatically compiles and builds lib.a as needed.

The /examples directory is for some example input files to help users get
started while the /tp directory is for test problems used for code vali-
dation and quality assurance (Q/A). The /archive directory is for each
new code version by version number. The last (highest version number) is
the version in the program directories which are compiled and stored in
/bin.

The tools directory is the beginning of a set of utilities or tools for
pre-post processing. The grid program assists in setting-up a variable
mesh, or grid. The read_tracers program is used to extract massless trac-
er particle data from the *.trc tracer output file, and the ‘gd’ series
is used to process the graphics dumps. gd_ev is used to extract data from
a graphics dump and make a set of EV input dump files for displaying on
the Iris SGI. gd_krkl is used to make a MESA dump file for plotting by
the KRKL plotting program. gd_merge is used to exact or merge together
graphics dump files. gd_movie is used to display frame buffer plots (2D
slices) made by the gd_slice program.

89

/pagosa

/gen /pagosa /window /tools /examples /tp /doc /archive/lib/include/bin

gen /m.m/gd/window.a/pagosa.a/gen.a/lib.a/*.h

.f,.fcm /n.n

/etc.

grid
window
pagosa

read_tracers

gd_merge
gd_krkl
gd_ev

gd_movie

gd_v3d
gd_slice

extract_short

extract_long

*.F, *.FCM

Makefile

.f,.fcm

*.F, *.FCM

Makefile

.f,.fcm

*.F, *.FCM

Makefile

.f,.fcm

*.F, *.FCM

Makefile

/grid

/script

/etc.

/read_tracers
/gd_krkl

/extract

extract_long

/gd_ev

extract_short

/gd_merge

/gd_movie

/gd_v3d

/gd_slice

Abbreviated Directory Structure for PAGOSA

90

B Test Problem Input Sets
In this appendix we present input sets for the two finned projectile problems, fp1 and

fp2, for the explosive welding problem, ew, and for the oil-well perforation problem, owp.

B1 Input Set for the Finned Projectile Problem with the Hydrodynamic Constitu-
tive Model, fp1

Finned Projectile Obliquely Impacting a Steel Plate Hydrodynamically

 $mesh

 ncellx = 384,192, coordx = -1.0, 0.0, 0.5, ratiox = 1.0, 1.0,

 ncelly = 96, 96, coordy = -0.5, 0.0, 0.5, ratioy = 1.0, 1.0,

 ncellz = 96, coordz = 0.0, 0.5, ratioz = 1.0,

 $end

 $mats

 mat = 1,

 pri = 2,

 matbak = 1,

 matname = 'void',

 eosform = 'void',

 $end

 $mats

 matname = 'Tungsten Projectile',

 material = 2,

 priority = 1,

 d0 = 17.3, d0s = 17.3, e0 = 0.0, clean_df = 0.2, detvel = 0.0,

 eosform = 'us/up',

 pmin = -0.02,

 eoscon = 0.4, 1.295, 0.0, 1.43,

 strform = 'none',

 y0 = 0.0193, ymax = 0.0193, g0 = 1.28, gmax = 1.28,

 fracform = 'none',

 $end

 $mats

 mat = 3,

 pri = 3,

 matname = 'SS plate',

 d0 = 7.89, e0 = 0.0, clean_df = 0.2, pmin= -.06,

 eosform = 'us/up',

 eoscon = 0.4569, 1.49, 0.0, 2.17,

 strform = 'none'

 y0 = 0.010, g0 = 0.77,

 fracform = 'none',

 $end

91

 $options

 dt0=0.010, dtmin=1.0d-5, dtmax=0.20,

 id_q=1, cq1=0.2, cq2=2.0,

 cutacc=1.0d-9, cutd=1.0d-5, cutvof=1.0d-5,

 dtgrow=1.2,

 safec=0.75, safed=0.25, safeu=0.25,

 ibc = 1,1, 1,1, 0,1,

 $end

 $outputs

 t=0.0, 5.00, dt=0.01,

 gd_freq=0,

 gd_var ='vofm',

 gd_mat = 0 ,

 short_freq=0,

 dump_freq=0,

 $end

 $gen

 particles = 5,

 startmode = 1,

 interactive = .false.,

 restartdump = .false.,

 burntimes = .false.

 $end

 $body

 mat = 1,

 surf = 'plane',

 fill = 'right',

 axis = 'x',

 trans = 0.150, 0.000, 0.000,

 rot = 0.000, 0.000, 0.000,

 angle = 0.000, 0.000,-30.000,

 $end

92

 $body
 mat = 3,
 surf = 'plane', 'plane',
 fill = 'left' , 'right',
 axis = 'x', 'x',
 trans = 0.150, 0.000, 0.000,
 0.000, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 0.000, 0.000, 0.000,
 angle = 0.000, 0.000,-30.000,
 0.000, 0.000,-30.000,
 $end

 $body
 mat = 2,
 surf = 'cone',
 fill = 'inside',
 radius = 0.075,
 height = 0.200,
 axis = 'x',
 trans = -0.200, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 u0 = 0.100, v0 = 0.00, w0 = 0.00,
 $end

 $body
 mat = 2,
 surf = 'cyl',
 fill = 'inside',
 axis = 'x',
 radius = 0.075,
 height = -0.700,
 trans = -0.200, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 u0 = 0.100, v0 = 0.00, w0 = 0.00,
 $end

 $body
 mat = 2,
 surf = 'box',
 fill = 'inside',
 axis = 'x',
 length = 0.200, 0.300, 0.050,
 trans = -0.800, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 u0 = 0.100, v0 = 0.00, w0 = 0.00,
 $end

93

 $body
 mat = 2,
 surf = 'box',
 fill = 'inside',
 axis = 'x',
 length = 0.200, 0.050, 0.300,
 trans = -0.800, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 u0 = 0.100, v0 = 0.00, w0 = 0.00,
 $end

94

B2 Input Set for the Finned Projectile Problem with the Elastic, Perfectly Plastic
Constitutive Model, fp2

Finned Projectile Obliquely Impacting a Steel Plate

 $mesh

 ncellx = 320,160, coordx = -1.0, 0.0, 0.5, ratiox = 1.0, 1.0,

 ncelly = 80, 80, coordy = -0.5, 0.0, 0.5, ratioy = 1.0, 1.0,

 ncellz = 80, coordz = 0.0, 0.5, ratioz = 1.0,

 $end

 $mats

 mat = 1,

 pri = 3,

 matbak = 1,

 matname = 'void',

 eosform = 'void',

 $end

 $mats

 matname = 'Tungsten Projectile',

 material = 2,

 priority = 1,

 d0 = 17.3, d0s = 17.3, e0 = 0.0, clean_df = 0.2, detvel = 0.0,

 eosform = 'us/up',

 pmin = -0.02,

 eoscon = 0.4, 1.295, 0.0, 1.43,

 strform = 'ep',

 y0 = 0.0193, ymax = 0.0193, g0 = 1.28, gmax = 1.28,

 fracform = 'none',

 $end

 $mats

 mat = 3,

 pri = 2,

 matname = 'SS plate',

 d0 = 7.89, e0 = 0.0, clean_df = 0.2, pmin= -.06,

 eosform = 'us/up',

 eoscon = 0.4569, 1.49, 0.0, 2.17,

 strform = 'ep'

 y0 = 0.010, g0 = 0.77,

 fracform = 'none',

 $end

95

 $options

 dt0=0.010, dtmin=1.0d-6, dtmax=0.10,

 id_q=1, cq1=0.2, cq2=2.0,

 cutacc=1.0d-9, cutd=1.0d-5, cutvof=1.0d-5,

 dtgrow=1.2,

 safec=0.75, safed=0.25, safeu=0.25,

 ibc = 1,1, 1,1, 0,1,

 clean = .true.,

 $end

 $outputs

 t=0.0, 7.00, dt=0.01,

 gd_freq=0,

 gd_var ='vofm',

 gd_mat = 0 ,

 short_freq=0,

 dump_freq=0,

 $end

 $gen

 particles = 5,

 startmode = 1,

 interactive = .false.,

 restartdump = .false.,

 burntimes = .false.

 $end

 $body

 mat = 1,

 surf = 'plane',

 fill = 'right',

 axis = 'x',

 trans = 0.150, 0.000, 0.000,

 rot = 0.000, 0.000, 0.000,

 angle = 0.000, 0.000,-30.000,

 $end

96

 $body
 mat = 3,
 surf = 'plane', 'plane',
 fill = 'left' , 'right',
 axis = 'x', 'x',
 trans = 0.150, 0.000, 0.000,
 0.000, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 0.000, 0.000, 0.000,
 angle = 0.000, 0.000,-30.000,
 0.000, 0.000,-30.000,
 $end

 $body
 mat = 2,
 surf = 'cone',
 fill = 'inside',
 radius = 0.075,
 height = 0.200,
 axis = 'x',
 trans = -0.200, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 u0 = 0.100, v0 = 0.00, w0 = 0.00,
 $end

 $body
 mat = 2,
 surf = 'cyl',
 fill = 'inside',
 axis = 'x',
 radius = 0.075,
 height = -0.700,
 trans = -0.200, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 u0 = 0.100, v0 = 0.00, w0 = 0.00,
 $end

 $body
 mat = 2,
 surf = 'box',
 fill = 'inside',
 axis = 'x',
 length = 0.200, 0.300, 0.050,
 trans = -0.800, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 u0 = 0.100, v0 = 0.00, w0 = 0.00,
 $end

97

 $body
 mat = 2,
 surf = 'box',
 fill = 'inside',
 axis = 'x',
 length = 0.200, 0.050, 0.300,
 trans = -0.800, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 u0 = 0.100, v0 = 0.00, w0 = 0.00,
 $end

98

B3 Input Set for the Explosive Welding Problem, ew

Explosive Welding of a Copper Tube to a Steel Plate

 $mesh

 ncellx = 240,240, coordx = -3.0, 0.0, 3.0, ratiox = 1.0, 1.0,

 ncelly = 120, coordy = 0.0, 3.0, ratioy = 1.0,

 ncellz = 120, coordz = 0.0, 3.0, ratioz = 1.0,

 $end

 $mats

 mat = 1,

 pri = 5,

 matbak = 1

 matname = 'void',

 eosform = 'void',

 $end

 $mats

 mat = 2,

 pri = 1,

 matname = 'copper',

 d0 = 8.93, e0 = 0.0, cleandf = 0.2, pmin = -.06,

 eosform = 'us/up',

 eoscon = 0.394, 1.489, 0.0, 2.002,

 strform = 'ep',

 y0 = 0.003, g0 = 0.477,

 fracform = 'none'

 $end

 $mats

 mat = 3,

 pri = 2,

 matname = '304 SS plate',

 d0 = 7.89, e0 = 0.0, clean_df = 0.2, pmin= -.06,

 eosform = 'us/up',

 eoscon = 0.4569, 1.49, 0.0, 2.17,

 strform = 'ep'

 y0 = 0.010, g0 = 0.77,

 fracform = 'none',

 $end

99

 $mats

 mat = 4,

 pri = 3,

 matname = 'PBX-9501',

 d0 = ****, e0 = ****, pmin = ****, detvel = ****,

 clean_df = 0.0,

 eosform = 'jwl',

 eoscon = ****, ****, ****, ****, ****,

 y0 = 0.0, ymax = 0.0, g0 = 0.0, gmax = 0.0,

 burnform = 'prog',

 strform = 'none',

 fracform = 'none',

 $end

 $mats

 mat = 5,

 pri = 4,

 matname = 'foam',

 d0 = 0.32, e0 = 0.0, clean_df = 0.2, pmin = -0.001,

 eosform = 'foam-us/up',

 eoscon = 0.07, 1.13, 0.0, 1.70,

 strform = 'none',

 fracform = 'none',

 $end

 $dets

 time = 0.0,

 xyz = 1.0, 0.0, 0.0,

 $end

 $options

 dt0=0.005, dtmin=1.0d-5, dtmax=0.25,

 id_q=1, cq1=0.2, cq2=2.0,

 cutacc=1.0d-9, cutd=1.0d-5, cutvof=1.0d-5,

 dtgrow=1.2,

 safec=0.75, safed=0.25, safeu=0.25,

 ibc = 1,1, 0,1, 0,1,

 clean = .true.,

 $end

100

 $outputs

 t=0.0, 10.00, dt=1.00,

 gd_freq=0,
 gd_var ='vofm',
 gd_mat = 0 ,

 short_freq=0,
 dump_freq=0,
 $end

 $gen
 particles = 5,
 startmode = 1,
 interactive = .false.,
 restartdump = .false.,
 burntimes = .false.
 $end
 $body
 mat = 4,
 surf = 'cyl',
 fill = 'inside',
 axis = 'x',
 radius = 0.300,
 height = 1.000,
 trans = 0.000, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 $end

 $body
 mat = 5,
 surf = 'cyl',
 fill = 'inside',
 axis = 'x',
 radius = 0.600,
 height = 1.500,
 trans = 0.000, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 $end

 $body
 mat = 1,
 surf = 'cyl',
 fill = 'inside',
 axis = 'x',
 radius = 0.600,
 height = 3.000,
 trans = 0.000, 0.000, 0.000,
 rot = 0.000, 0.000, 0.000,
 angle = 0.000, 0.000, 0.000,
 $end

101

 $body

 mat = 2,

 surf = 'cyl' , 'cyl'

 fill = 'outside', 'inside'

 axis = 'x' , 'x',

 radius = 0.600, 0.600, 0.600,

 1.000, 1.000, 1.000,

 height = 5.000, 5.000,

 trans = 0.000, 0.000, 0.000,

 0.000, 0.000, 0.000,

 rot = 0.000, 0.000, 0.000,

 0.000, 0.000, 0.000,

 angle = 0.000, 0.000, 0.000,

 0.000, 0.000, 0.000,

 $end

 $body

 mat = 1,

 surf = 'cone',

 fill = 'inside',

 radius = 2.000,

 height = 2.000,

 axis = 'x',

 trans = 0.000, 0.000, 0.000,

 rot = 0.000, 0.000, 0.000,

 angle = 0.000, 0.000, 0.000,

 $end

 $body

 mat = 3,

 surf = 'plane', 'plane',

 fill = 'left' , 'right',

 axis = 'x', 'x',

 trans = 2.000, 0.000, 0.000,

 0.000, 0.000, 0.000,

 rot = 0.000, 0.000, 0.000,

 0.000, 0.000, 0.000,

 angle = 0.000, 0.000, 0.000,

 0.000, 0.000, 0.000,

 $end

102

B4 Input Set for the Oil-Well Perforation Problem, owp

Oil Well Perforator with Water

 $mesh
 ncellx = 96,144, coordx = -8.0, 0.0, 12.0, ratiox = 1.0, 1.0,
 ncelly = 96, coordy = 0.0, 8.0, ratioy = 1.0, 1.0,
 ncellz = 96, 96, coordz = -4.0, 0.0, 4.0, ratioz = 1.0, 1.0,
 $end

 $options
 cutacc = 1.0e-9, cutd = 1.0e-5, cutvof = 1.0e-4, cutrecon = 0.0,
 safec = 0.75, safed = 0.25, safeu = 0.25,
 id_geom = 3,
 id_q = 1, cq1 = 0.2, cq2 = 2.0,
 ibc = 1, 1, 0, 1, 1, 1,
 dtgrow = 1.1, dt0 = 0.02, dtmin = 0.0001, dtmax = 0.75,
 clean = .true., backup = .true., fix_crossings = .false.,
 $end

 $outputs
 t = 0.0, 30.0, dt = 0.1,
 long_freq = 0,
 short_freq = 0,
 dump_freq = 0,
 gd_freq = 0,
 gd_var = 'vofm',
 gd_mat = 0,
 user_freq = 0,
 tracer_freq = 0,
 $end

 $dets
 type = 'los_point',
 xyz = -2.2860, 0.0, 1.5,
 -0.3683, 0.0, -1.5,
 time = 0.0, 0.0,
 $end

 $mats
 matname = 'tubing air',
 material = 1,
 priority = 1,
 matbak = 1,
 eosform = 'gas',
 d0 = 1.293e-03, e0 = 1.9335e-03, pmin = 0.0,
 eoscon = 1.4,
 strform = 'none',
 fracform = 'none',
 $end

103

 $mats

 matname = 'liner',

 material = 2,

 priority = 2,

 eosform = 'usup',

 d0 = 8.93, d0s = 8.93, e0 = 0.0, clean_df = 0.1, pmin = -0.001,

 eoscon = 0.394, 1.489, 0.0, 2.17,

 strform = 'e-p',

 y0 = 0.001, ymax = 0.001, g0 = 0.477, gmax = 0.477,

 fracform = 'none',

 $end

 $mats

 matname = 'cyclotol',

 material = 3,

 priority = 3,

 eosform = 'jwl',

 burnform = 'program',

 d0 = ****, e0 = ****, pmin = ****, detvel = ****,

 eoscon = ****, ****, ****, ****, ****,

 strform = 'none',

 y0 = 0.0, ymax = 0.0, g0 = 0.0, gmax = 0.0,

 strcon = 0.0,

 $end

 $mats

 matname = 'stainless steel',

 material = 4,

 priority = 4,

 eosform = 'usup',

 d0 = 7.896, e0 = 0.0, clean_df = 0.1, pmin = -0.003,

 eoscon = 0.4569, 1.49, 0.0, 2.17,

 strform = 'e-p',

 y0 = 0.010, ymax = 0.010, g0 = 0.81, gmax = 0.81,

 fracform = 'none',

 $end

 $mats

 matname = 'water',

 material = 5,

 priority = 5,

 eosform = 'usup',

 d0 = 1.0, e0 = 0.0, clean_df = 0.1, pmin = 0.0,

 eoscon = 0.18, 1.6, 0.0, 1.0,

 strform = 'none',

 fracform = 'none',

 $end

104

 $mats

 matname = 'quartz strata',

 material = 7,

 priority = 7,

 eosform = 'usup',

 d0 = 2.204, e0 = 0.0, pmin = 0.0,

 eoscon = 0.794, 1.695, 0.0, 0.9,

 strform = 'none',

 fracform = 'none',

 $end

 $gen

 particles = 5,

 startmode = 1,

 interactive = .false.,

 restart_dump = .false.,

 burntimes = .true.,

 $end

 $body

 mat = 1,

 surf = 'tabular',

 tab_type = 'rotation',

 axis = 'x',

 fill = 'inside',

 rz = 0.0000, -1.8070,

 0.1483, -1.8070,

 0.8725, -0.0000,

 0.0000, -0.0000,

 trans = 0.0, 0.0, 1.5,

 rot = 3*0.0,

 angle = 3*0.0,

 $end

 $body

 mat = 1,

 surf = 'sphere',

 fill = 'inside',

 radius = 3*0.16,

 trans = -1.7471, 0.0, 1.5,

 rot = 3*0.0,

 angle = 3*0.0,

 $end

105

 $body

 mat = 2,

 surf = 'tabular',

 tab_type = 'rotation',

 axis = 'x',

 fill = 'inside',

 rz = 0.0000, -1.9472,

 0.2206, -1.9472,

 0.8725, -0.3734,

 0.8725, -0.2032,

 0.0000, -0.2032,

 trans = 0.0, 0.0, 1.5,

 rot = 3*0.0,

 angle = 3*0.0,

 $end

 $body

 mat = 2,

 surf = 'sphere',

 fill = 'inside',

 radius = 3*0.2388,

 trans = -1.8558, 0.0, 1.5,

 rot = 3*0.0,

 angle = 3*0.0,

 $end

 $body

 mat = 3,

 surf = 'tabular',

 tab_type = 'rotation',

 axis = 'x',

 fill = 'inside',

 rz = 0.0000, -2.2860,

 0.1981, -2.2860,

 0.1981, -2.1336,

 0.3175, -2.1336,

 0.5156, -2.0345,

 0.8725, -0.8712,

 0.8725, -0.3734,

 0.0000, -0.3734,

 trans = 0.0, 0.0, 1.5,

 rot = 3*0.0,

 angle = 3*0.0,

 $end

106

 $body

 mat = 4,

 surf = 'tabular',

 tab_type = 'rotation',

 axis = 'x',

 fill = 'inside',

 rz = 0.2794, -2.6543,

 0.1981, -2.2860,

 0.1981, -2.1336,

 0.8725, -0.2032,

 0.8725, 0.0,

 0.9266, 0.0,

 1.2065, -0.2774,

 1.2065, -1.1049,

 1.1532, -1.5164,

 0.8128, -2.1145,

 0.6985, -2.1717,

 0.6985, -2.6116,

 trans = 0.0, 0.0, 1.5,

 rot = 3*0.0,

 angle = 3*0.0,

 $end

 $body

 mat = 1,

 surf = 'tabular',

 tab_type = 'rotation',

 axis = 'x',

 fill = 'inside',

 rz = 0.0000, 1.8070,

 0.1483, 1.8070,

 0.8725, 0.0000,

 0.0000, 0.0000,

 trans = -2.6543, 0.0, -1.5,

 rot = 3*0.0,

 angle = 0.0, 0.0, 0.0,

 $end

 $body

 mat = 1,

 surf = 'sphere',

 fill = 'inside',

 radius = 3*0.16,

 trans = -0.9072, 0.0, -1.5,

 rot =3*0.0,

 angle = 0.0, 0.0, 0.0,

 $end

107

 $body

 mat = 2,

 surf = 'tabular',

 tab_type = 'rotation',

 axis = 'x',

 fill = 'inside',

 rz = 0.0000, 1.9472,

 0.2206, 1.9472,

 0.8725, 0.3734,

 0.8725, 0.2032,

 0.0000, 0.2032,

 trans = -2.6543, 0.0, -1.5,

 rot = 3*0.0,

 angle = 0.0, 0.0, 0.0,

 $end

 $body

 mat = 2,

 surf = 'sphere',

 fill = 'inside',

 radius = 3*0.2388,

 trans = -0.7985, 0.0, -1.5,

 rot = 3*0.0,

 angle = 0.0, 0.0, 0.0,

 $end

 $body

 mat = 4,

 surf = 'tabular',

 tab_type = 'rotation',

 axis = 'x',

 fill = 'inside',

 rz = 0.2794, 2.6543,

 0.1981, 2.2860,

 0.1981, 2.1336,

 0.8725, 0.2032,

 0.8725, 0.0,

 0.9266, 0.0,

 1.2065, 0.2774,

 1.2065, 1.1049,

 1.1532, 1.5164,

 0.8128, 2.1145,

 0.6985, 2.1717,

 0.6985, 2.6116,

 trans = -2.6543, 0.0, -1.5,

 rot = 3*0.0,

 angle = 0.0, 0.0, 0.0,

 $end

108

 $body
 mat = 4,
 surf = 'cyl', 'cyl', 'sphere' 'sphere'
 fill = 'outside', 'inside', 'outside', 'outside',
 axis = 'z', 'z',
 height = 10.0, 10.0,
 radius = 3*1.54686, 3*1.99136, 3*14.25238, 3*14.25238,
 trans = -1.32715, 0.0, -5.0,
 -1.32715, 0.0, -5.0,
 14.75784, 0.0, 1.5,
 -17.41214, 0.0, -1.5,
 rot = 3*0.0, 3*0.0, 3*0.0, 3*0.0,
 angle = 3*0.0, 3*0.0, 3*0.0, 3*0.0,
 $end

 $body
 mat = 5,
 surf = 'cyl', 'cyl'
 fill = 'outside', 'inside',
 axis = 'z', 'z',
 height = 10.0, 10.0,
 radius = 3*1.83261, 3*6.21284,
 trans = -1.32715, 0.0, -5.0,
 2.89433, 0.0, -5.0,
 rot = 3*0.0, 3*0.0,
 angle = 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0,
 $end

 $body
 mat = 6,
 surf = 'cyl', 'cyl'
 fill = 'outside', 'inside',
 axis = 'z', 'z',
 height = 10.0, 10.0,
 radius = 3*6.21284, 3*6.985,
 trans = 2.89433, 0.0, -5.0,
 2.89433, 0.0, -5.0,
 rot = 3*0.0, 3*0.0,
 angle = 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0,
 $end

 $body
 mat = 7,
 surf = 'cyl'
 fill = 'outside',
 axis = 'z',
 height = 10.0,
 radius = 3*6.985,
 trans = 2.89433, 0.0, -5.0,
 rot = 3*0.0,
 angle = 0.0, 0.0, 0.0,
 $end

109

 $body
 mat = 1,
 surf = 'background',
 $end

110

111

Distribution
1. External Distribution

14 Director
U.S. Army Research Laboratory
Aberdeen Proving Ground, MD
21005-5066
Attn.: AMSRL-WM-PD (K. A. Bannister)
Attn.: AMSRL-WM-TA (S. Bilyk)
Attn.: AMSRL-CI-A (H. J. Breaux)
Attn.: AMSRL-WM-PD (B. Burns)
Attn.: AMSRL-WM-PD (D. A. Hopkins)
Attn.: AMSRL-WT-TD (J. Huffington)
Attn.: AMSRL-WT-TC (K. D. Kimsey)
Attn.: AMSRL-CI-CA (Nisheeth Patel)
Attn.: AMSRL-WM-MF (A. M. Rajendran)
Attn.: AMSRL-WT-TD (M. Raftenberg)
Attn.: AMSRL-WT-NC (S. J. Schraml)
Attn.: AMSRL-WT-TD (S. Segletes)
Attn.: AMSRL-WT-TD (T. Wright)
Attn.: AMSRL-SC (W. H. Mermagen, Sr.)

3 Commander
U.S. Army Armament Research,
Development and Engineering Center
Picatinny Arsenal, NJ 07806-5001
Attn.: SMCAR-AEE-WW (E. L. Baker)
Attn: SMCAR-AET (W. Ebehara)
Attn.: SMCAR-AET-M (F. Witt)

3 Commander
U.S. Air Force Wright Laboratory
Eglin Air Force Base, FL 32549-6810
Attn.: MNMW (J. Foster, Jr.)
Attn.: MNMW (J. A. Collins)
Attn.: MNMW (M. Nixon)

1 Commander
U.S. Army Missile Command
Redstone Arsenal, AL 35898-5240
Attn: AMSMI-RD-ST-WF (D. Lovelace)

1 Director
U.S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709
Attn.: SLCRO (Dr. K. Iyer)

2 Director
U.S. Army Materials Technology
Laboratory
Arsenal Street
Watertown, MD 02172-0001
Attn.: SCLMT-MR (C. White)
Attn.: SCLMT-MR (Tony Chou)

1 Commander
Naval Weapons Center
China Lake, CA 93555-6001
Attn.: Code 3261 (T. J. Gill)

1 Commander
U.S. Army Belvoir Research,
Development, and Engineering Center
Fort Belvoir, VA 22060
Attn.: STRBE-NAA (S. Bishop)

2 Director
U.S. Naval Surface Warfare Center
10901 New Hampshire Avenue
Silver Spring, MD 20903-5000
Attn.: Code R12 (L. Hudson)
Attn.: Code R12 (P. Walter)

1 R.K. Garrett, Jr.
NSWC, Indian Head Division
Code 410G, Bldg ROB7
101 Strauss Avenue
Indian Head, MD 20640-5035

2 Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714
Attn.: Lt. Col. Joseph Beno
Attn.: Maj. Robert W. Kocher

3 Special Defense Weapons Agency
HQ DNA/SPSD
6801 Telegraph Road
Alexandria, VA 22310-3398
Attn.: M. E. Giltrud
Attn.: J. Connell
Attn.: LTC Carlos Rubio

112

1 Director
U.S. Air Force Weapons Laboratory
Kirtland Air Force Base, NM 87185
Attn.: NTI (C. Mulligan)

1 Dr. Albert Holt
OUSD(A)/TWP/OM
Pentagon, Room 3B1060
Washington, DC 20301-3100

1 Warren Chernok
Defense Programs
US Department of Energy
1000 Independence Avenue, SW
Washington, DC 20585

1 D. B. Nelson, Executive Director
ER-7, GTN
Office of Energy Research
Scientific Computing Staff
US Department of Energy
Washington, DC 20585

1 Dr. William Happer, Director
Energy Research
US Department of Energy
1000 Independence Avenue, SW
Washington, DC 20585

1 James Decker
Energy Research
US Department of Energy
1000 Independence Avenue, SW
Washington, DC 20585

3 Office of Energy Research
Scientific Computing Staff
US Department of Energy
Washington, DC 20545
Attn.: ER-7, GTN (T. A. Kitchens)
Attn.: ER-7, GTN (D. Hitchcock)
Attn.: ER-7, GTN (F. Howes)

2 Institute for Advanced Technology
The University of Texas at Austin
4030-2 W. Braker Lane
Austin, TX 78759-5329
Attn.: Tom M. Kiehne
Attn.: Douglas D. Cline

21 Los Alamos National Laboratory
Mail Station 5000
P. O. Box 1663
Los Alamos, NM 87545
Attn.: F. Addessio, MS B216
Attn.: J. Cerutti, MS F663
Attn.: S. T. Bennion, MS F663
Attn.: G. E. Cort, MS G787
Attn.: P. Follansbee, MS F663
Attn.: K. Holian, MS B295
Attn.: J. W. Hopson, MS B216
Attn.: L. Hull, MS J960
Attn.: J. N. Johnson, MS F663
Attn.: D. B. Kothe, MS B216
Attn.: O. Lubek, MS B265
Attn.: D. A. Mandell, MS F663
Attn.: J. Moore, MS B265
Attn.: D. Rabern, MS F663
Attn.: J. G. Sanderson, MS J488
Attn.: M. Simmons, MS B265
Attn.: R. D. Smith, MS B216
Attn.: B. Spangenberg, MS F663
Attn.: L. Schwalbe, MS F663
Attn.: D. Tonks, MS B221
Attn.: H. Wassermann, MS B265

4 Lawrence Livermore National
Laboratory
P. O. Box 808
Livermore, CA 94550
Attn.: D. Baum, L-35
Attn.: R. Christiansen, L-35
Attn.: R. Couch, L-35
Attn.: D. Lassila, L-342

113

2. Internal Distribution

1 MS 0151 G. Yonas, 9000

1 0321 W. J. Camp, 9200

1 0318 G. S. Davidson, 9215

1 1111 S. S. Dosanjh, 9221

30 1111 D. R. Gardner, 9221

12 1111 9221 File

1 1110 D. E. Womble, 9222

1 1110 D. S. Greenberg, 9223

1 1109 A. L. Hale, 9224

1 1111 G. S. Heffelfinger, 9225

1 0441 R. E. Leland, 9226

30 1109 C. T. Vaughan, 9226

1 0819 J. S. Peery, 9231

1 0819 E. Hertel, 9231

1 0820 P. Yarrington, 9232

1 0439 D. R. Martinez, 9234

1 0833 J. H. Biffle, 9103

1 0825 C. C. Wong, 1554

1 0842 C. M. Hart, 2500

1 0861 J. T. Hitchcock, 2521

1 9018 Central Technical Files, 8940-2

5 0899 Technical Library, 4414

2 0619 Review and Approval Desk, 12690
for DOE/OSTI

	Table of Contents
	Introduction
	Issues in Parallel Computing
	Parallel Code Performance Measurements
	Development of the MIMD PAGOSA Code
	Features of PAGOSA 5.5
	Development of MIMD PAGOSA 5.5 from SIMD PAGOSA 5.5
	Features of MIMD PAGOSA 5.5

	The Test Simulations
	The Finned Projectile Simulations
	The Explosive Welding Simulation
	The Oil-Well Perforation Simulation

	The Test Conditions
	The Performance of MIMD PAGOSA
	Message-Passing Performance on the nCUBE 2
	Message-Passing Performance on the Intel Paragon

	 Performance of MIME PAGOSA on the nCUBE 2 and the Intel Paragon Message-Passing Computers
	Summary and Conclusions
	References
	Appendices

