
SANDIA REPORT
SAND96-0166 Ž UC-706
UnlimitedRelease
PrintedJanuary 1996

Storage and Retrieval of Nuclear Test Data

Samuel D. Stearns

’

SF2900Q(8-81)

Issuedby SandiaNationalLaboratories,operatedfortheUnitedStates
DepartmentofEnergybySandiaCorporation.

NOTICE Thisreportwaspreparedasanaccountofworksponsoredbyan
agencyoftheUnitedStatesGovernment.NeithertheUnitedStatesGovern-
ment noranyagencythereof,noranyoftheiremployees,noranyoftheir
contractors,subcontractors,or theiremployees,makes any warranty,
expressorimplied,orassumesanylegalliabilityorresponsibilityforthe
accuracy,completeness,orusefulnessofanyinformation,apparatus,prod-
uct,orprocessdisclosed,orrepresentsthatitsusewouldnotinffingepri-
vatelyownedrights.Referencehereintoanyspecificcommercialproduct,
process,orserviceby tradename:,trademark,manufacturer,orotherwise,
doesnotnecessarilyconstituteorimplyitsendorsement,recommendation,
orfavoringbytheUnitedStatesGovernment,anyagencythereoforanyof
theircontractorsor subcontractors.The viewsand opinionsexpressed
hereindonotnecessarilystateorreflectthoseoftheUnitedStatesGovern-
ment,anyagencythereoforanyoftheircontractors.

PrintedintheUnitedStatesofAmerica,Thisreporthasbeenreproduced
directlyhornthebestavailablecopy.

AvailabletoDOE andDOE contractorsfrom
OfficeofScientificand‘IbchnicalInformation
PO BOX 62
Oak Ridge,TN 37831

Pricesavailablefrom(615)576-8401,ITS 626-6401

Availabletothepublicfrom
NationalTechnicalInformationService
US DepartmentofCommerce
5285PortRoyalRd
Sprin@eld,VA 22161

NTIS pricecodes
Printedcopy:A03
MicrofichecopyAOI

,

SAND96-0166

Unlimited Release
Printed January 1996

Distribution
Category UC-706

STORAGE AND RETRIEVAL
OF NUCLEAR TEST DATA

Samuel D. Stearns
Materials Radiation Science Department

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

This report is a part of the Test Information Program (TIP) at Sandia
National Laboratories. It is an interim report, written primarily as an instruction
and reference document to aid in current work on the project. It addresses some
of the issues found in storing and retrieving data from nuclear field tests
conducted over the past five decades, primarily instrumentation data recorded
from tests at the Nevada Test Site.

First, the TIP data unit for storing and transporting TIP data is described.
The data in the TIP data unit is typically recorded in a universal medium such as
the portable optical or magnetic disk, or the tape cassette. Each TIP data unit is
portable, and is also self-contained in the sense that it includes a set of related test
data files, along with complete instructions and software for retrieval of the data
by an unknown user, possibly on an unknown platform.

Secondly, we describe the use of current software for compressing and
decompressing waveform data, for authenticating and checking for errors in data
files, and for processing files to be used on foreign platforms.

i

Preface

This is a report on the storage and retrieval of nuclear test data which, since
the cessation of testing by the United States, has become an irreplaceable national
archive. We are concerned herewith some of the details of the Test Information
Program (TIP), which has the goal of preserving the test results for future users
who will do unknown and unpredictable things with the data, and will, no doubt,
insist that the data be reliable.

We wish to acknowledge the source of the test data, which has become a
legacy of the thousands of scientists and technicians, at Sandia Labs and
elsewhere, who have dedicated their careers to the fieldtest program. We leave
the questions of why we expended so much effort to develop and test nuclear
weapons, and of whether we are likely to do so again in the near future, as
separate issues. We simply note that the cost of the data that we now possess, in
terms of lives and dollars, certainly implies that a reasonable amount of effort be
expended to preserve it.

Concerning the soflware described in this report, we also acknowledge with
thanks the efforts of others who contributed to the research on waveform
compression that led to the development of our present compression and
decompression routines. We are especially grateful to Prof. D.M. Etter and
Jonathan Haines at the University of Colorado, to Prof. N. Magotra and his
students at the University of New Mexico, and to Prof. W.B. Mikhael and his
students at the University of Central Florida.

Also, we wish to thank P. L. Nelson and B. C. Bedeaux in the Nevada
Operations Department at Sandia Labs for managing and leading the TIP project,
as well as J. Pearcey, R. M. Clancy, and T.S. Caldwell for managing and
processing the data.

ii

Contents

Introduction . 1

The Data Unit . 2

Compression of Waveform Data . 3

Decompression ofWaveform Data . 5

Authentication . 6

PlatformIndependence ...9

summary .

References

. 11

. 12

Distribution . 13

Figures

1. Contents of the proposed data unit . 2

2. Portion ofadigitizedwaveform . 3

3. PartoftheWAVEFORM.ASC file containingthedataplottedinFig.24

4. PROGRAM lcompresses WAVEFORM.ASC into WAVEFORM.CMP5

5. PROGRAM 2decompresses WAVEFORM.CMP into WAVEFORM.DEC6

6. ModificationofPROGRAM lto produce authenticatedwaveformdata.7

7. ModificationofPROGlUAM2to checkauthenticityofwaveformdata.8

8. FurthermodificationofPROGR4M ltoproduceplatform-independentoutput.10

9. FurthermodificationofPROGRAM 2toprocessplatform-independent input.11

. . .
111

(blank page)

iv

,

.

STORAGE AND RETRIEVAL
OF NUCLEAR TEST DATA

Introduction

This report is an element of the Sandia Labs Test Information Program (TIP). It has two
purposes. The fmt is to describe in simple and general terms the TIP data unit, which is
proposed to be a basic unit in which TIP data is stored and transported from one location to
another. The TIP data unit is described in the next section.

The second purpose is to introduce and describe software that we are now using for
efllcient and reliable storage and retrieval of test waveform data. The software consists of
program modules used for compression and decompression of waveform data, as well as
program modules for attaching cyclic redundancy checks to compressed data files, and
program modules for decoding the redundancy checks, checking for errors, and
authenticating the compressed data.

The overall goal is to preserve waveform and other test data which, in the presence of a
moratorium on testing, forms an important national archive. Detailed digital instrumentation
data is presently available from dozens of underground tests conducted over several decades,
with yields ranging from well over a megaton down to very low levels. Future research may
pose new questions on effects, vulnerability, and other design aspects -- questions that
require a look at the details of these tests. If and when testing is resumed, the present data
from large numbers of tests already conducted will form an important basis for comparison
with new results.

To achieve this overall goal, we would like to be able to predict a storage medium that
will be convenient for fiture users. Our current candidate for the medium with the greatest
viability is the PC-DOS-compatible, compact disk read-only memory (CD-ROM). Currently
the CD-ROM is the medium of choice in the entertainment industry. It is sold in computer,
music, discount and even grocery stores, and has made its way into the average American
home; hence we believe that personal computers with CD-ROM readers are hereto stay for
the foreseeable fhture. Track formats may change, and storage capacities are likely to
increase, but the CD-ROM in its basic form should be around for a while.

The correct choice of the storage medium, or even of the PC-DOS platform, is not
critical. The data can always be copied to anew platform or to anew medium. What is
critical, we believe, is the arrangement of test data into data units that are self-stilcient and
self-explanatory -- units that depend as little as possible on specific computing equipment
and do not depend at all on software external to the data unit itself. Hence we arrive at the
concept described in the next section.

The Data Unit

We do not wish to propose here a detailed, all-purpose data storage format. There is no
such thing, and experience has shown that any attempt in this direction leads to immediate
revision, followed soon by obsolescence. Instead, we are proposing only a simple and
obvious concept which, if followed, will help to keep the test data available to fhture
investigators who do not have access to the original field test personnel, or to expository data
other than that in the data unit itself.

Our concept of the data unit is shown in Fig. 1. Its main feature is its stand-alone
capability, that is, its independence of any current hardware or software or procedures other

Data Unit
(CD-ROM, disk, tape cassette, etc.)

Text (ReadMe) File(s)

Software: Authentication
Decompression
Special Applications (maybe)

Compressed and authenticated TIP data files

Figure 1. Contents of the proposed data unit.

than the current platform and operating system. We assume that at least one of the platforms
used will be the personal computer (PC) running the well-known and currently standard Disk
Operating System (DOS). Thus far, new versions of DOS have always been backward-
compatible, and PC-DOS systems exist ahnost everywhere.

Each data unit must contain one or more ASCII text (ReadMe) files that can be easily
read or printed. These files contain all necessary information on the disk contents, history
and reliability of the da@ descriptions of directory and file structures, instructions for
authenticating and decompressing the da~ etc. In short, the ReadMe files should contain all
the information needed by an uninformed user who wishes to examine the data without
outside help. We must assume that the user has no information about the data unit contents,
other than the information stored in the data unit itself.

There may be more than one ReadMe file. For example, a short ASCII ReadMe file
could give instructions for decompressing a second file which, when decompressed, becomes
a second and much longer ASCII text file that provides complete instructions on the data
unit.

2

.

.

As shown in Fig. 1, we are assuming that the data itself is compressed in order to allow a
maximum amount of data to fit on the storage unit. We are also assuming that the data is
authenticated to ensure the detection of any errors in the stored data. Compression and
authentication are discussed in the following sections. In order to be self-sufficient, the data
unit must contain all software necessary to authenticate (check for errors) and decompress the
data into formatted ASCII files, the latter being described in the ReadMe files. Such
software is of course valid only for a given platform, and must be recompiled if the data files
are moved to another medium and platiorm. For example, the authentication and
decompression programs could be executable files designed to run under the DOS or
Windows operating systems on a PC.

The &ta unit could also contain special application programs, also in the form of
executable files designed to run on the specified platform. These might be files designed to
plot the decompressed data files, or to process the decompressed data in some way likely to
be useiid to a fbture user of the data.

The data files are compressed and authenticated in order to maximize the use of the
storage medium, and to put as much or all of the data together into a single data unit. They
must be checked for errors using the authentication software and converted to ASCII files
using the decompression soflware before they become usefi.d.

In summary, with the files just described, the data unit becomes a complete and self-
contained volume of data files, complete with all instructions and software necessary for
extracting individual waveforms, images, or other data.

Compression of Waveform Data

A typical TIP waveform data file (Fig. 1) consists of a short series of text records that
identifi the file and its properties, followed by a long series of data records, each containing
one or more samples from a digitized waveform. If the text portion of the file is relatively
short, we usually copy the text into the data unit file without compression. Then we
compress the waveform data and append it to the text, thus creating a complete TIP data file.

To illustrate the current Sandia waveform compression process, an example of a digitized
waveform is shown in Fig. 2. Suppose first that the data in this waveform is stored in an

-200

-300

~ -400

2
s

8 -500

-600

-700

0

Figure 2.

2000 4000 6000 Booo

Sample number

Portion of a digitized waveform.

3

ASCII data file named WAVEFORM.ASC, and suppose we wish to compress this file. A
portion of WAVEFORM.ASC shown in Fig. 3. The file contains initial text lines plus 800
lines of integer samples, ten to a line, for a total of 8000 samples.

Figure 3. Beginning of the WAVEFORM.ASC file containing the data plotted in Fig. 2.

A Fortran program, PROGRAM 1, to compress the data in the WAVEFORM.ASC file is
shown in Fig. 4. The code is simple to follow, but a few remarks are helpful. First, the
effect of the program is to create the compressed data unit file, WAVEFORM.CMP. The
latter consists of text data followed by eight fhrnes, each with K=l 000 samples. In the do 2
loop, the frames are encoded one by one into an ic vector and then written to the output file.
The number of bytes, Nc, is written ahead of each frame so the frame can be read by the
decompression program described later.

Encoding, that is, compression, is accomplished by the encodtf routine, which is part of
the Sandia Fortran compression library, CMPLIB3.FOR. The latter is described elsewhere
[1]. It involves waveform compression algorithms developed in a Sandia Labs LDRD
project. Here we treat the routines in CMPLIB3 as black boxes, and only illustrate their use
in compression and decompression software. The arguments in encod6 are obvious except
for the last argument (0), which tells encod6 not to print any messages during execution.

The compressed data unit file, WAVEFORM.CMP, is written in binary form by
PROGIL4M 1. Thus we have created a platform-dependent data unit, that is, a data unit that
must be decompressed on a similar PC platform using MS-DOS. To make the data unit
decompressible on a foreign platform, we would need to write WAVEFORM.CMP as a
formatted ASCII file. This process is discussed under “Platform Independence”.

4

.

.
/

,

.

Figure 4. PROGIL4M 1 compresses WAVEFORM.ASC into WAVEFORM.CMP.

As a matter of interest, we note that even the short waveform in Fig. 2 can be
significantly compressed by the process in Fig. 4. The capability of encod6 to compress the
waveform is shown by the following three file sizes:

Original: WAVEFORM .ASC 64,886 bytes

Zipped: WAVEFORM .ZIP 15, 971 bytes

Encod6: WAVEFORM .CMP 4,185 bytes

The compression produced by encod6 results in ahnost a 16:1 reduction of the original
ASCII file size, and is also significantly beyond the compression achieved by the zip process
in this case. The zip process uses a powerfid but general coding technique, whereas encod6
is designed specifically for waveform data. The theory and techniques implemented in
encod6 are described in the references [1-3]

Decompression of Waveform Data

Decompression of waveform data amounts to reversing the compression process. We
begin with a compressed data unit file and produce the corresponding ASCII data file that

5

can be read or processed by one wishing to use the data. An example of decompression is
shown in PROGRAM 2 in Fig. 5, which decompresses WAVEFORM.CMP and produces
WAVEFORM.DEC, the latter being the decompressed ASCII file. In this case, PROGRAM
2 exactly reverses the effect of PROGRAM 1 so that WAVEFORM.DEC and
WAVEFORM.ASC are identical files.

Figure 5. PROGIUM 2 decompresses WAVEFORM,CMP into WAVEFORM.DEC.

In PROGlL4M 2 the integer sample and character byte arrays, ix and ic respectively, must
be dimensioned large enough to accommodate the incoming data. This in itself is one reason
the decompression software must be made a part of the data unit, so these dimensions can be
set at the time the data is compressed. The decod6 routine is the decoding routine that
reverses the effect of encod6 and changes an ic vector into an ix vector. The output data is
written in ASCII to produce the WAVEFORM.DEC file.

Authentication

We currently provide the means for checking the authenticity of TIP data files by using
cyclic error detecting codes. The routines used for this purpose are in a library called
CRCLIB.FOR. Typically, within each TIP data file, we authenticate separately each
compressed data frame having K data samples. Thus, in PROGRAM 1 for example, we
would authenticate the ic vector after each call to encod6, and then write the authenticated

6

●

version of ic to unit 2, as shown in Fig. 6.
The purpose of authentication is to provide means for checking to see that the compressed

waveform da@ when it is read from the data unit, has not been altered. We are providing
only for error detection, and not for error correction, because the latter would add toc~much
redundant data to the data unit. Instead of correcting errors, we prefer simply to duplicate the
entire data unit many times, and store the duplicates in different places. This procedure not
only eliminates the need for error comecting codes, but also takes care of the case in which
the physical data unit is damaged or lost.

The authentication routines in CRCLIB.FOR are described in a separate SAND report
[4]. Essentially there are two pairs of routines, each for attaching cyclic check bytes when
the data unit is written and then checking for errors later, when the data is read. The names
of the two pairs of routines are {encode, decode} and {encodl, decodl}. The fust pair is used
for encoding and decoding a single vector of bytes, and the second pair is used primarily for
encoding and decoding a sequence of bytes that is so long that it must be partitioned into a
sequence of two or more vectors.

An example of the use of encode to authenticate each successive data fiarne in
PROGRAM 1 is shown in Fig. 6. The arguments passed to encode are ic, the byte vector to

c-PROGRAM 1: Compress the WAVEFORM .A8C file with 8000 samples.
parameter (K=lOOO,N=5000)
integer ix (O:K-1)
character*l ic (O:N-1)
character buf*8O

c-Open the ASCII and compressed files.
open (1,file=’WAVEFORM .A8C’,form.’formatted’)
open (2,file.’WAVEFORM. CMP !,form= !binary t)

c-Write Nv=3 for version 3 of CMPLIB and No. frames Nff.8000/K,,
write(2) 3,8000/K

c-Copy the text data.
1 read(l, ‘(a)‘) buf

length.len_trim (buf)
write (2) length,buf (1:length)
if (buf(l:4).ne.lDATA’) go to 1

c-Compress and write the waveform data, K samples at a time.
do 2 j=0,8000/K-l

read(l, ‘(9(i7,1x),i7)‘) ix
call encod6 (ix,K,N,Nc, ic,O)

mi~.,,.“,<;tt%wp~wd:~$se)~$
-W=::p;mm.%-,/-~

write(2) Nc, (ic(jj),jj=O,Nc-1)
2 centinue

end

Figure 6. Modification of PROGIL4M 1 to produce authenticated waveform data.

7

be authenticated, Nc, the number of bytes in ic, 4, indicating that four check bfies are to be
computed, and ic(Nc), the location in which to begin storing the four check bytes. After
encode is executed, Nc is increased by four to indicate the new length of the ic vector, which
now ends with the four check bytes. Thus, the waveform data is authenticated simply by
adding two lines to PROGRAM 1. Since there are four check bytes per frame and eight
frames in this case, the authentication process causes the overall size of the
WAVEFORM.CMP file to increase by 32 bytes.

An example of the use of decode to decode and check the authenticity of each successive
data fizune in PROGRAM 2 is shown in Fig. 7. In this case the arguments sent to decode are
ic, the stored byte vector, Nd, the number of bytes in ic, 4, the number of check bytes

c-PROGRAM 2: Decompress the WAVEFORM. CMP file.
parameter (N=5000)
integer ix (O:N-1)
character*l ic (O:N-1)
character buf*80

c-Open ASCII files. Read Nv=version and Nff=# frames.
open (1,file=’WAVEFORM. CHK’ ,form=’binary’)
open (2,file= !WAVEFORM.DEC1,for-m.1formatted’)
read (1) Nv,Nff

c-Copy the text data to the output file.
1 read(1) Nb,buf(l:Nb)

write (2,‘(a)‘) buf(l:Nb)
if (buf(1:4).ne.‘DATA’) go to 1

c-Decompress and write the data, one frame at a time.
do 2 j=O,Nff-1

read(l) Nd, (ic(jj),jj=O,Nd-1)

write (2,‘(9(i7.6,1x),i7.6)‘) (ix(jj),jj=O,K-1)
2 centinue

end

Figure 7. Modification of PROGRAM 2 to check authenticity of waveform data

originally appended when encode was executed, and ierror, an integer error indicator. If
ierror is not zero, the program stops and indicates a decoding error. If ierror is zero, the
program proceeds to call decod6 as before. We note that Nc, although not used explicitly, is
equal to Nd-4, which is the length of the ic vector without the four check bytes.

The error detecting capabilities of encode and decode are described in reference [4]. We
note here, however, that the capabilities are sufllcient for use in the TIP data unit. For
example, with four check bytes per frame, if there is a burst of error bits of any length less
than 33 anywhere in the fiwne, the error is detected with probability 1.0. If there is an error

8

burst longer than 32 bits, the error is detected with probability 1-2.3.10-10. Thus, a user can
have reasonable cotildence in the accuracy of the waveform data.

Platform Independence

A TIP data file is usually written to the data unit as it is in PROGRAM 1, that is, as a
sequence of character (byte) records. These records are written in the bina~ form in
PROGRAM 1, thus making the TIP data file and hence the entire data unit platform-
dependent. Whenever it is used, the data unit must be processed and decompressed on the
same or a similar platform, using a compatible operating system. Once the ASCII file,
WAVEFORM.ASC, has been reconstructed, it may of course be used on another platform.

To make the data unit independent of its platform, one must do two things, both of which
are risky. First, the TIP data files must be written asformatted files instead of binary files.
Secondly, source code for authentication and decompression must be included in the data
unit, in order to allow executable files to be compiled on the unknown platform. We will
discuss these things in order.

If the TIP data files are written by a Fortran program using the A edit descriptor, each
record within a file becomes a sequence of bytes with appropriate terminating bytes. Since
the compression routines use all 256 8-bit ASCII combinations, any given record may
contain one or more control characters. These may in turn cause the record to be read
incorrectly when it is mad using the A edit descriptor. To remove this difficulty, a pair of
routines named {expand, shrink} is included in CRCLIB.FOR. These routines have the
effect of expanding a TIP data file to remove certain control characters before the file is
written to the data unit, and then shrinking the file back to its original form tier the data file
has been successfidly read from the data unit.

Detailed instructions for using expand and shrink may be found in the CRCLIB listing;
however, the routines are easy to use, as shown in Figs. 8 and 9. Figure 8 is another iteration
of PROGR4M 1, this time producing a platform-independent, formatted data file named
WAVEFORM.PI. Several lines of the code are altered to produce the formatted file. A
second array, icx, is declared to hold the expanded ic vector produced by expand. Also, as
shown, all of the output statements are altered to write formatted data. The first argument in
the calling sequence to expand is ic, the byte vector to be expanded. The second argument is
Nc+4, the length of the ic vector after the check bytes have been added by encode. The third
and fourth arguments are icx, the output (expanded) vector and its dimension, N. The fifth
argument is 2, which indicates to expand that the linefeed, char(l O),carriage return,
char(13), and form feed, char(l 2), are to be expanded to other codes in the icx vector, The
final argument, Ncx, is the length of the icx vector produced by expand.

The removal of the three control bytes (linefeed, carriage return, and form feed) is, as far
as we know, sufilcient to allow any version of Fortran to read data records containing the icx
vectors successfully. Other allowable values of the fifth argument in the expand calling
sequence are described in the CRCLIB listing. In the present case, with just the three control
bytes removed, the expected expansion factor, that is, E[Ncx/Nc], is 1.016. Thus, the penalty

9

\

c-PROGRAM 1: Compress the WAVEFORM.ASC file with 8000 samples.
parameter(K=1000,N=5000)
integer ix(O:K-1)

>,/,,;.,., ,, .,
~-~$

character buf*80
c-Open the ASCII and compressed files.

open(l,file= ‘WAVEFORM.ASC’ ,form=’formatted’)

~:~= *~&V*~+=M.~a~$j&
c-Write Nv=3 for version 3 of CMPLIB and No. frames Nff=8000/K.

~m<~2$mkwd@
c-Copy the text data.

1 read(l,’ (a)’) buf
length=len_trim (buf)

$,$;y.:
~i~2*-,w~*i**#swia:

if(buf(l:4) .ne.’DATA’) go to 1
c-Compress and write the waveform data, K samples at a the.

do 2 j=0,8000/K-l

read(l, ‘(9(i7,1x),i7) ‘) ix
call encod6(ix,K,N,Nc, ic,O)
call encodc(ic,Nc,4, ic(Nc))

-#F*$:~-%%$:-Y=-iB%BF&*;#*+.s+....,,@Y&#.,
-l&*&Fs~;~mtm.s?4~%~%

2 continue
end

FigureS. Further modificationofPROGRAM Itoproduceplatforrn-independent output.

for platform-independence is approximately a 1.6% increase in the storage requirement.
Theuseofshrink to reversetheeffect ofeqxmdisillustrated inFig.9,where

PROGRAM2 isagain modifiedtoreadthe forrnatteddataproduced inFigs.8 andthen
shrink each icvectorbackto its original forrnbeforepassingit onto bedecoded. Notethat
Nvinkprocessest heicvector in plaee, anddoesnotrequire asecond output vector. The
secondvectoris not required because shrinkisableto collapse theicvector progressively
onto itselfas itmovesalong. The calling sequenceforshrink is therefore simple. We
speci~the input byte vector, ic,and its expanded length, Ncx, andthe routine computesNd,
thelengthofthe shrunken versionoficcontaining thecontrolbytesremoved byexpand.

In addition to formatted data files, platform independence also implies a capability for the
execution of all of the software in Fig. 1 on a foreign platform. Thus, the data unit must
contain source files instead of (or in addition to) execute files for the software, and these
must be capable of being compiled later on the foreign platform. There is some risk involved
in this process, since there is no absolute guarantee that the software will execute as
originally intended. In this respect, we have noted that software written in Fortran-77 is more
likely than ANSI-C software to produce consistent results on different platforms.

10

.

c-PROGRAM 2: Decompress the WAVEFORM.CMP file.
parameter(N=5000)
integer ix(O:N-1)
character*l ic(O:N-1)
character buf*80

c-Open files. Read Nv=version and Nff=# frames.

~a
c-Copy the text data to the output file.

write(2,’(a)”) bif(l:Nb”” ‘,‘
if(buf(l:4) .ne.tDATAi) go to 1

c-Decompress and write the data, one frame at a time.
do 2 j=O,Nff-1

,/~&W~~ >,.,,,a+, !’@

call decodc(ic,Nd, 4,i.error)
if(ierror.ne.O) stop ‘Error detected in decoded data. ‘
call decod6(ic,N,K, ix,0)
write (2,’(9(i7.6,1x),17.6) ‘) (ix(jj),jj=O,K-1)

2 continue
end

Figure9. FurthermodificationofPROGR4M 2toprocessplatform-independent input.

Summary

Inthisreportwehave introducedtheTIP dataunitasavehicle forthestorageand
retrievalofnucleartestdata. TheTIPdataunitisnotaspecifichardwareorsoftware
configuration. Itisinstead asirnple setofingredients which, takentogether, form a
transportable, self-contained storage unitthatcan beopenedandused bysomeonehaving no
fiormationoutsideofthedataunit itself. The capabilityofthedataunittooperate
successfidly depends onthequalityand integrityofthe fileswithinthe unit.

Also, we have described current software for compressing and decompressing waveform
da@ for authenticating and checking for errors in data files, and for processing files to be
used on foreign platforms.

%.

11

.

References

1.

2.

3.

4.

5.

Stearns, S.D., Final Report: Lossless Compression of Instrument Data, Sandia NationaI
Laboratories SAND95-2470, November 1995.
Stearns, S.D., L.Z. Tan, and N. Magotr% “Lossless Compression of Waveform Data for
Efficient Storage and Transmission”, IEEE Trans. on Geoscience and Remote Sensing,
vol. 31, no. 3, pp. 645-654, May 1993
Stearns, S.D., “Arithmetic Coding in Lossless Waveform Compression”, IEEE Trans. on
Signal Processing, IEEE Trans. on Signal Processing, vol. 43, no. 8, pp. 1874-1979,
August 1995.
Stearns, S.D., Authentication of Byte Sequences, Sandia National Laboratories SAND91-
1004, June 1991.
Sanders, M.L., Description of Ground Motion Data Processing Codes, Vol. 1, 2, and 3.
Sandia National Laboratories SAND87-1 176, February 1988.

;

12

.

DISTRIBUTION:

1

1

1

1

1

1

1

1

Mr. William C. Anderson -MS P-915
Los Alamos National Laboratory
P.O. BOX 1663
LOS f%kIIIOS,NM 87545

Mr. William A. Bookless
B Div., L-035, Box 808
Lawrence Livermore Nat. Laboratory
Livermore, CA 94550

Prof. D.M. Etter
Electrical and Computer Engineering
University of Colorado
Boulder, CO 80309

Dr. C.R. Hutt
Albuquerque Seismological Lab.
Bldg. 10002, KAFB East
Albuquerque, NM 87115-5000

Prof. N. Magotra
Electrical and Computer Engineering
University of New Mexico
Albuquerque, NM 87131

Prof. W.B. Mikhael, Chair
Electrical and Computer Engineering
University of Central Florida
Orlando, FL 32816-2450

LCDR Jerry White
Deputy Dir. for Information Mgmnt.
HQ Defense Nuclear Agency - OFIM
6801 Telegraph Road
Alexandri~ VA 22310-3398

Dept. of Energy
Nevada Operations Office
Attn: Stephen H. Leedom
P.O. BOX98518
Las Vegas, NV 89193-8518

1

1

1

1

1

1

1
1
1
1
5
1
1
1
5
1
1
1
1
1
1
1

13

Dept. of Energy
Attn: Ray Ferry, DP-12
19901 Germantown Road
Germantown, MD 20874

Mr. Frank Biggs
3515 Monte Vista NE
Albuquerque, NM 87106

Mr. Douglas C. Browne
3619 Horatio Ct. NE
Albuquerque, NM 87111

Mr. Rich McClean
2600 Yale Blvd SE
Albuquerque, NM 87106

Mr. GaryL. Ogle
4607 Larchmont NE
Albuquerque, NM 87111

Mr. Philip L. Wehrman
11600 Bellamah NE
Albuquerque, NM 87108

MS 0457 S.S. Rottler
MS 0750 M.C, Walck
MS 0980 G.R. Elliott
MS 1170 P.L. Nelso~ Jr.
MS 1170 B.C. Bedeaux
MS 1170 R.M. Chmcy
MS 1170 J. Pearcey
MS 1159 M.A. Hedemann
MS 1159 S.D. Stearns
MS 1160 H.D. Garbin
MS 1160 K.M. Glibert
MS 1169 C.W. Cook
MS 1169 T.S. Caldwell
MS 1391 F.M. Raymond
MS 1391 D.D. Thompson
MS 0459 J.C. Hogan

5139
6116
9225
9305
9305
9305
9305
9311
9311
9312
9312
9322
9322
9331
9331

14707

.*

z 1 MS 9018 Central Technical Files 8523-2
5 MS 0899 Technical Library 4414

-1 MS 0619 Print Media 12615
._ 2 MS 0100 Document Processing 7613-2

for DOE/OSTI

14

