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Mesh Generation for Yucca Mountain
Carl W. Gable

To model the transport of waste
radionuclides through Yucca
Mountain, we must generate a

grid, or mesh, on which our FEHM cal-
culations can be run. Our primary tool
for generating, optimizing, and main-
taining computational meshes is LaGriT
(for Los Alamos Grid Toolbox), a 
general-purpose software package.
LaGriT is a spinoff of X3D, which was
developed in the 1980s by Harold
Trease. 

Developed in the 1990s, LaGriT is 
a collaborative product of the Applied
Physics, Theoretical, Earth and Envi-
ronmental Science, and Computing, 
Information, and Communications 
Divisions at Los Alamos. It has been
used to model such varied phenomena
as shock physics, combustion, semi-
conductor devices and processes, bio-
mechanics, the evolution of metallic 
microstructure, porous flow, and 
seismology.1

A mesh consists of nodes (points) at
specific locations in space that are 
connected to form elements. These ele-
ments can be triangles or quadrilaterals
in 2-D models and tetrahedra, hexahe-
dra, prisms, or pyramids in 3-D mod-
els. The elements fit together like the
pieces of a puzzle to represent physical
systems such as the rock layers in
Yucca Mountain, a human knee joint,
or a semiconductor chip. Physical
quantities such as pressure, tempera-
ture, or density, which are continuous

in real materials, are usually represent-
ed by discrete values at the nodes or
within the elements.

Mesh generation draws on both cre-
ativity and advanced mathematical algo-
rithms. As Thompson et al. (1999) note,
grid generation is “still something of an
art, as well as a science. Mathematics
provides the essential foundation for
moving the grid generation process
from a user-intensive craft to an auto-
mated system. But there is both art and
science in the design of the mathematics
for . . . grid generation systems, since
there are no inherent laws (equations)
of grid generation to be discovered. The
grid generation process is not unique;
rather it must be designed.”2

Mesh generation can be automated
but never becomes automatic. Although
software like LaGriT helps automate
complex “meshing” operations, generat-
ing successful meshes still rests on a
series of judgment calls by an expert,
who must weigh many tradeoffs. For
example, imagine a calculation done on

a 10 × 10 × 10 grid of hexahedral ele-
ments. If we double the resolution to a
20 × 20 × 20 grid, the total number of
elements goes from 1000 to 8000. In
addition, if the calculation involves
modeling the change over time of a
quantity such as saturation, doubling
the resolution may require cutting the
time steps in half, which doubles the
computer time needed. Overall, then,
doubling the calculation’s resolution
will increase calculation time by a fac-
tor of 16. Although high resolution best
represents complex geometry and pro-
duces the most accurate physics solu-
tion, it requires more elements, which
result in calculations that require more
computer memory and cycles. 

The accompanying graphics illustrate
various computational grids that could
be generated for modeling Yucca
Mountain. Our starting point is a 
geological model that represents the
mountain as a sequence of sloping rock
layers offset by two vertical faults (a).
Focusing on the boxed area around the
left-hand fault, we first create a simple
mesh of square elements (b). The ele-
ments’ colors correspond to those of
the cross-section layers they represent

1More information on LaGriT is available 
from the software’s Web site:
http://www.t12.lanl.gov/~lagrit/.

2Handbook of Grid Generation. 1999. J. F.
Thompson, B. K. Soni, and N. P. Weatherill,
Eds. New York: CRC Press, p. iii.
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and thus also to the layers’ varying 
material properties (such as density 
and porosity).

The low-resolution squares in (b) do
a poor job of representing the geology.
The vertical fault is lost and individual
rock layers are nearly lost because the
mesh is so coarse. We can improve 
the mesh by increasing its resolution: the
squares in (c) are one-quarter the size of
those in (b). Now the geology is better
represented, although the interfaces be-
tween rock layers are still represented by
jagged stair steps. Also, only the thickest
layers are represented by contiguous ele-
ments; thin layers and small features are
still lost in the grid’s coarseness. 

Another approach is to use variable
mesh spacing, as shown in (d). Variable
spacing allows us to “zoom in” with
high resolution on some areas and
maintain low resolution in others. How-
ever, variable spacing generally works
well only for simple geometries in
which the phenomena being modeled
take place in a small portion of the 
entire computational domain and thus
only a few areas require high resolution. 

A more flexible approach is to adapt
mesh resolution to the geometry of inter-
est, as done in the quad-tree meshes
shown in (e) and (f). These meshes allow 
cascading refinements: each element is
subdivided into four elements, each of
which is then subdivided into four still
smaller elements, and so on. 

In (e) and (f), we start with the mesh
of (b) and then refine only selected ele-
ments. In (e), we refine along all material
interfaces by a factor of 16 but leave 
regions far from these interfaces at low
resolution. In (f), we refine only thin
rock layers by a factor of 32, increasing
their resolution while maintaining lower
resolution in the thick layers. In both
cases, however, the number of elements
is much greater than in the previous
meshes, which will slow down our 
calculations. 

Our mesh examples so far are all
structured: that is, they are made of
quadrilateral elements whose positions
are readily defined in terms of rows 
and columns and whose connectivity is

logical. Our last mesh examples are
made of unstructured triangular 
elements whose connectivity is more
arbitrary: for example, the nodes have
varying numbers of triangles attached
to them. This unstructured approach,
however, allows us to create meshes
that actually conform to the mountain’s
varied material interfaces. 

Both low-resolution (g) and high-res-
olution (h) meshes do well in represent-
ing the geologic interfaces. The high-
resolution mesh, however, will do a
better job solving the physics of 
radionuclide transport because its small-
er elements can more accurately repre-
sent variations that occur over short 
distances. In modeling Yucca Mountain,
we must also contend with phenomena
that lack symmetry, have a wide range
of length scales, and involve very thin

layers that must be preserved as contin-
uous. As a result, triangles in 2-D mod-
eling and tetrahedra in 3-D modeling
have been our meshes of choice.

In addition to tradeoffs in how well
they represent the mountain’s geometry,
meshes also pose tradeoffs in their suit-
ability for different physics codes.
Some codes can solve problems only
on regular grids like those shown in
(b)–(d). Others can use quad-tree mesh-
es like those shown in (e) and (f) but
not the unstructured meshes of (g) and
(h). Thus the meshing approach must
be compatible with the physics code
that will be used.

Developing flow and transport mod-
els for Yucca Mountain has pushed the
limits of mesh generation technology.

The models’ size requires us to keep
the number of elements as low as pos-
sible, their complex physics requires
us to accurately represent the geology
of the repository site, and the need for
timely results requires us to automate
mesh generation whenever possible.
These often conflicting demands have
been met by a collaborative effort in
enhancing mesh generation capabilities
to meet the challenges of modeling
Yucca Mountain. ■
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