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Elastic moduli are the material
constants that connect stress with
strain and are therefore crucial 

to engineering applications. They also
determine the long wavelength vibra-
tional modes, or sound waves, in a
solid and therefore play a leading role
in determining how thermal energy is
distributed among internal vibrations.
Because at ambient temperatures and
above vibrational excitations contribute
most of the entropy (which is deter-
mined by the total number of possible
configurations), accurate measurement
of elastic moduli as a function of tem-
perature can help us compute much of
the energy and entropy, and therefore
the free energy, in systems at finite
temperature, including plutonium. In
fact, a considerable effort at Los Alam-
os over the last decade has led to the
development of resonant ultrasound
spectroscopy (RUS) for accurate mea-
surements of elastic moduli in
polycrystalline and millimeter-sized 
single crystal samples. We have 
recently begun to apply that novel 
technique to the study of plutonium. 

In this article, we explain how this
empirical approach to determining the
free energy provides an important new
avenue for understanding the phase 
stability of plutonium. First principles
electronic-structure calculations have
given an impressive description of 
α-plutonium, the lowest-temperature
phase of plutonium, but no one has 
developed the tools to calculate the
higher-temperature phases from first
principles. To do so, one needs to 
include the effects of temperature and
entropy. Theorists cannot do that yet.
Instead, many of them point to changes
in electronic structure as the key to un-
derstanding phase changes. They argue
that the gradual localization of the itin-
erant f electrons causes the transition
from one solid phase to the next. In
contrast, we emphasize that both energy
and the number of configurations 
(entropy) contribute to the free energy
and are of comparable importance in
determining the most probable states
and, therefore, the observed phase of a

system. This point of view leads us to
attempt answering the following ques-
tion: What controls the most probable
and, therefore, the only observable
phases of plutonium? We show that 
we can estimate large parts of the free
energy at temperatures above ambient
by measuring elastic moduli and that
those data will also enable us to catalog
the missing parts. In particular, this 
approach may enable us to figure out
whether or not the localization of 
the f electrons is a main ingredient 
in determining phase instability. 

Because plutonium is very soft and
has a relatively high melting point, we
expect its elastic behavior and entropy
to play a big role in explaining its 
nature. The combination of softness and
high melting point alone could lead to
some very odd behavior and, in fact,
may explain the phase changes of plu-
tonium without requiring the dramatic
changes in electronic structure now
being invoked by theorists. 

Given the fundamental importance
of elastic properties, it might seem
strange that we have little accurate and
reliable elasticity information on pluto-
nium. Moreover, the data we have are
decidedly unusual. When Moment and
Ledbetter (1975) made the first, and 
so far the only, measurement on a 
single crystal of gallium-stabilized 
δ-plutonium—1 weight percent 
(1 wt %) gallium—they showed that
the elastic properties were amazingly
anisotropic. The very large shear
anisotropy in plutonium means that
elastic measurements on polycrystalline
samples will produce averages of
strongly varying quantities, masking 
the underlying physics. To get at these
details, it is important to make as many
measurements as possible on single
crystals. However, because powerful
regulatory and safety issues come to
bear when working with plutonium,
only very small (a few millimeters in
each dimension) gallium-stabilized 
δ-plutonium crystals will likely be
grown in the next several years. Fortu-
nately, RUS is perfectly suited to
measuring these small crystals. In this

very simple technique, an analysis of
the mechanical resonances of a solid
object whose shape is known provides
the complete elastic tensor. In the last
section of this article, we will describe
how RUS is being used to remeasure
the elastic moduli of plutonium, both 
in single-crystal and in polycrystalline
materials. We also summarize our latest
results. 

Statistics, Free Energy, and
Phase Stability

The following rapid review of statis-
tics, the laws of large numbers, and the
concepts of temperature, entropy, and
free energy is designed to explain how
a phase with a higher, and therefore
less likely, energy can become stable.
Because a higher-energy phase has
many more configurations than a lower-
energy phase—that is, it has more
entropy—the higher-energy phase may
be the more probable of the two. 
The climactic point of this section
shows that minimizing the free energy
is equivalent to finding the most 
probable phase. 

The configuration of a large group 
of atoms is called a phase, and the
study of what happens to large groups
of atoms and what phases they exhibit
as temperature or pressure is varied has
fascinated scientists for many years. 
It is, of course, a subject strongly pur-
sued today. One key to understanding
phase stability relates to the properties
of systems composed of very large
numbers of identical objects. When the
numbers are really large, there is no
hope of computing anything exactly.
But one can make approximations, and
the accuracy of the approximations 
becomes outstanding. In fact, very pre-
cise predictions arise strictly out of the
large numbers. 

Statistics. Let us take a collection of
8 coins, each with a different date. We
put the coins in a sack and then remove
them, one by one, and place them in a
row. The first coin in the row can be
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any one of 8; the second, any one of 7,
and so on. Thus the total number of
possible arrangements, or states, is 8 ×
7 × 6 × 5 × 4 × 3 × 2 × 1, which is
called 8! (eight factorial), and its value
is 40,320. But because we were care-
less in placing the coins in a row, some
are heads and some are tails. For the
40,320 ways of placing the coins on 
the table, there are also 40,320 ways of
placing all the coins heads up because
each coin has a distinct date. However,
if we could not read the date (the coins
become indistinguishable from each
other), things change. 

There are far fewer distinguishable
states if the objects are indistinguish-
able (256 = 28, to be exact, heads or
tails for each of 8 objects). Of those
256 states, only one is all heads, and
only one is all tails. There is also only
one state in which the first coin is
heads and the rest of the coins are tails.
There is only one state in which the
first, second, and fifth coins are heads
and all the rest are tails, and so on.
Each distinguishable state has the same
probability of appearing, namely, 1 in
256. But how many states have 1 head
and 7 tails? The answer is 8. That is,
the head can be in any one of 8 differ-
ent positions. How about 3 heads and 
5 tails? We have 8 choices for the first
head, 7 for the second, and 6 for the
third. But when we put the first head in
position 1 and the second in position 2,
we get the same number of heads as
when we put the first head in position 2
and the second in position 1. In fact,
there are 6 ways of arranging the order
of placing 3 coins heads up. Thus, the
total number of states with 3 heads is
(8 × 7 × 6)/(3 × 2 × 1) = 56. From the
above reasoning, we construct the bar
graph in Figure 1. The most likely 
occurrence is equal numbers of heads
and tails, and the probability of other
outcomes slowly drops as we move to
either side of the peak probability of
70/256. In general, we see that the
number of states Ω(n) of a system ofN
objects, n of which are of one equally
probable type and N – nof which are
of the other equally probable type, for

which the exact arrangement of the n
objects is unimportant, is

(1)

Recalling the binomial expansion, we
can also see that

(2)

If a = b = 1, then 

(3)

which is exactly the sum of all the
states. For our example in Figure 1, we
knew that the sum was 256, a value we
reasoned out by knowing that each ob-
ject had two possible states and that
there were 8 objects. 

The Effect of Large Numbers. If
instead of 8 random flips, we took
N = 1022 flips, about the number of
atoms in a small chunk of matter, then
there are 21022

distinguishable states.
The most probable result is equal num-
bers of heads and tails. If we compute
the probability of obtaining equal num-
bers of heads and tails and call it P,
then what outcome has a probability of
P/2? Using Equation (3), we find that
we get about 1011 more heads than tails
(or vice versa) with a probability of
P/2. In other words, in 1022 flips, it
would be reasonably likely to get 1011

more heads than tails—the error in get-
ting exactly equal numbers of heads
and tails is only a hundred billionth of
the total number of flips (that is, about 
1/N1/2 of the total). We also know there
is only one state, far from the maxi-
mum probability, in which we get 1022

heads. Thus, the width of the peak in
the probability distribution is N1/2, and
there is not much left outside the peak.

What we learn from all this is that, as
the numbers become large, the peak 
becomes extremely narrow and that all
practically useful information is in the
peak. It will be very accurate, later on,
to approximate the real peak with a
very tall rectangular distribution with
constant probability over the width of
the peak and zero probability else-
where. These arguments lead to some
important rules for systems (visible
pieces of matter) in which the number
of identical particles is of the order of
Avogadro’s number (6.02 × 1023).

The first rule for these macroscopic
systems is that we can count on all the
numbers to be very large. For that rea-
son, what may seem wildly inaccurate
approximations will be nearly exact
ones. The errors will be of the order of
either the square root of a large number
(for example, the square root of 1022 is
1011, a much smaller number than the
original one) or the logarithm of a large
number (for example, ln(1022) = 51,
which is pretty small compared to 1022).

The next rule is that any accessible
state of the system is equally likely, but
we see only the most probable ones.
Accessible states are those that do not
violate any constraints, such as fixed
volume, or physical laws, such as con-
servation of energy, momentum, or
charge. As time passes, a system com-
posed of a large number of objects with
a “reasonably large” total energy (we
will beg off on the definition of reason-
ably large for now) explores all the
possible arrangements of those objects
(each arrangement is a state) near that
energy.1 That is, if we were to take
suitably fast snapshots of the system,
each picture would be of an accessible
state. In more concrete terms, we take
our sack of coins, empty it on the floor,
count the number of heads, and then 
repeat the process. But our sack has
1022 coins, and we perform the experi-
ment, say, 1011 times per second (that
is about the number of times per second
that a gas molecule undergoes a colli-
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1There are, however, some systems that violate
this ergodicity hypothesis.



sion with another gas molecule). 
Because each state is equally likely, we
only see very few of the approximately
21022

total possible states. Let us say
that the universe will last 10110 seconds.
Then, in the life of the universe, we
will perform the experiment 10121 =
2402 times. If the experiment is really
done on a container of gas instead of a
sack of coins, then one possible observ-
able to use instead of the number of
heads is the fraction of gas molecules
in, say, the left half of the container.
The probability of any one atom of gas
to be in the left half is 1/2. The proba-
bility that all of them are in the left half
is 2–1022

. The number of times that we
observe this configuration to happen in
the entire life of the universe is 2–1022

× 2402 ≈ 2–1022
. Therefore, we will not

see it happen! What we do see in the
time we have to observe it is that the
gas mostly accesses the states near the
most probable one. That is, the states
we see most often are the ones with
nearly exactly half the mass in the left
side of the container, and the typical
variation in that value is 1/(1022)1/2, or
about 1 part in 1011. In more practical
terms, we would expect the measured
value of pressure, energy, or other
macroscopic physical quantity to be
within about 1 part in 1011 of its most
likely value. The statistical properties
of systems of very large numbers come
round again to behaving like those of
systems of only one or two particles.
That is, even though we can only take a
probabilistic view of a system that is
way too complicated to compute exact-
ly, the results are, for all practical
purposes, exact!

The last rule is that the total number
of states of a system is a very strongly
increasing function of the total energy.
We use a simple quantum harmonic os-
cillator to illustrate this property.
Unlike most other physics problems,
the statistical mechanics of quantum
systems is easier to work with than that
of classical systems because the quan-
tum numbers make the counting of
states easy. A quantum oscillator might
be composed of a mass and spring or

an atom and a chemical bond. In either
case, the energy of the quantum oscilla-
tor increases in proportion to the square
of the amplitude of vibration. No matter
what the amplitude might be, the 
frequency remains f = ω/2π, just like
the frequency of a tuning fork. The
total energy of the oscillator is always
E = (n + 1/2)hω, where n is any posi-
tive integer, h is Planck’s constant, 
and each quantum of vibrational energy
is hω. We now consider a set of three
harmonic oscillators, as shown in 
Figure 2. If the total energy of the three
oscillators is E = (2 + 1/2)hω, then the
system contains two quanta, and it can
be in one of six equally probable states
(110 means the first oscillator has one
quantum, the second has one, and the
third has none). The six states are the
following:

200 020 002 110 101 011.

If there are three quanta in the sys-
tem, E =  (3 + 1/2)hω. The 10 available
states are

300 030 003 210 201 
120 102 012 021 111.

If we increase the energy of the 

system, the number of available states
increases, as does the average energy of
each oscillator, and the increase per 
oscillator is roughly proportional to 
the fractional energy increase. There-
fore, if we have 1022 oscillators, or
vibrational modes, as in a solid of 1022

atoms, and the total energy of the sys-
tem is increased by 10 percent, then so
is the average energy of each oscillator.
Therefore, the total number of states 
in the systems increases by a factor of
(1.1)1022

, or approximately 21.4×1021
,

which is an enormous increase. It is now
apparent that a reasonably large amount
of energy in a system with a large num-
ber of objects is enough energy so that
roughly every object in that system has
more than its ground-state energy. 

Entropy and Temperature. We
will use simple properties of probabili-
ties to generate a universal definition of
temperature. Consider a very small
chunk of matter that is touching or is
part of a very much larger chunk. We
assume the total energy of the whole
system is fixed at E; the smaller piece
has an energy E1, and the larger has an
energy E – E1. What is the probability
that we observe this configuration? 
If the number of states of the smaller
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Figure 1. Number of Heads vs Ways to Get That Number 
This graph shows the number of states of a system of 8 coins in which the only quan-

tity of interest is the number of heads. That is, the 8 coins are indistinguishable, and

the order in which a given number of heads is obtained is irrelevant. If we keep track

of which toss produced what value, the total number of distinguishable states is 256,

the most probable state has 4 heads (and 4 tails), the total number of ways to make

that state is 70, and therefore the probability of that state is 70/256.
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system is Ω1(E1) and of the larger sys-
tem, Ω2(E – E1), then the probability of
observing this configuration is the prod-
uct of the probabilities of observing
each system separately, and 

(4)

Note that we have also used the
property that the probability of a state
of energy E1 is proportional to the total
number of states with energy E1. 
To convert Equation (4) to an equality,
we must divide it by the total number
of states Ωtotal. To find this constant,
we must first compute the total number
of states for each value of E1, where E1
ranges from zero to E, and then add up
those numbers. 

Equation (4) is a very important
result. Let us therefore review what it
means. Things in each system are
whizzing and banging around all the
time. Considered individually, the sys-
tems do not have fixed energy, and
therefore the number of states of each
system will vary as energy is exchanged
between them. Every time we look at
the whole system, we will see it in one
of its equally likely configurations. We
have shown that, as energy increases,
the number of states increases 
very rapidly. Conversely, if energy 

decreases, the number of states drops
very rapidly. Because the large and
small subsystems are in thermal contact,
they trade probabilities. Equation (4) is
a very sharply peaked function that is
the product of a rapidly increasing
function of E1 and a rapidly decreasing
function of E1. For large numbers, the
maximum is extremely sharp—in fact,
so sharp that it is unlikely that anything
but the most probable configurations
will ever be observed. Thus, after a
while, no matter what the initial states
were, the system is observed near its
most likely configurations (those that
are near the maximum in the probability
distribution). Those configurations 
divide the energy between the two sub-
systems in a very special way: The
fractional increase in the number of
configurations of the smaller system, 
as energy is added to it, is exactly
matched by the fractional decrease in
the number of configurations of the
larger system, as energy is removed
from it. That is, for small fluctuations
in the energy of either part of the sys-
tem, the overall probability stays about
the same, or

(5a)

Using the properties of the natural
logarithm, this expression becomes

(5b)

Equation (5b) expresses one property
common to both systems once they
have reached thermal equilibrium,
something we already know about.
What we know is that, after a while,
the temperature of both systems is the
same. The definition of the temperature is

(6)

where kB is Boltzmann’s constant. We
also define entropy to be

(7)

The definition of entropy is partic-
ularly important because it represents
a general way for constructing an ad-
ditive quantity from multiplied
probabilities. From Equations (4)–(7),
we see that thermal equilibrium 
occurs when the temperatures of the
subsystems are the same, which is
equivalent to saying that the system is
very near a maximum probable con-
figuration. We also see that, because
the logarithms of products add, 
entropy is a good extrinsic quantity 
(2 pounds of butter have twice 
the entropy of 1 pound).

The system will, however, also 
exhibit a strange property relating to
entropy. We already mentioned the 
intuitively attractive property that no
matter in what state we start the sys-
tem, after a while, it will be observed
in one of its very probable accessible
configurations (mathematically equiva-
lent to maximum entropy). All the
physical laws apparently governing
this system are time reversal invariant.
Therefore, if we go either forward or
backward in time, entropy should 
increase. Whenever we observe this
system, its entropy must be a mini-
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Figure 2. A System of Three Independent Quantum Harmonic Oscillators
The figure shows the parabolic potential wells and the energy levels (dashed lines) for

a system of three independent quantum harmonic oscillators. The energy levels are

equally spaced at intervals of hhω, where ω is the angular frequency of oscillation. That

is, we excite the system by adding vibrational energy in quantized units called

phonons, and the energy of each phonon is hhω. Because the oscillators are indistin-

guishable, any state of n quanta is equally likely—no matter how those phonons are

distributed among the oscillators. As a result, the average energy per oscillator will be

n/3. Also, the larger the number of quanta, the larger the number of ways to distribute

them, and therefore, the larger the entropy of the system.



mum—something the universe does
not, in fact, provide for. If the system
was in a very probable configuration in
the past, it will continue to be in a very
probable configuration in the future.
But if it was in a very improbable con-
figuration in the past, the system will
rapidly adjust itself to a probable con-
figuration. The behavior of entropy is
not time reversal invariant (we cannot
tell the state of the system in the past
by observing it in the present). To
quote the English translation of “Sta-
tistical Physics” by L. D. Landau and
E. M. Lifshitz (1980), 

“The question of the physical
foundations of the law of monoto-
nic increase in entropy thus
remains open: it may be of cos-
mological origin and related to the
general problem of initial condi-
tions in cosmology; the violation
of symmetry under time reversal
in some weak interactions between
elementary particles may play
some part. The answers to such
questions may be achieved only in
the course of further synthesis of
physical theories.”

Free Energy.To make the connec-
tion between statistics and quantities we
can measure, we need to study how to
calculate the values of measurables if
we know the probabilities of possible
states. Consider a small system in ex-
actly one definite statei of energy Ei
(there are many states with energy Ei)
connected to a much larger system of
energy E – Ei. Then a simple Taylor
expansion yields

or

(8)

where we used the definition of temper-
ature and relied on Ei to be small. We
can easily compute probabilities from

Equation (8) by remembering that the
sum of all the probabilities is 1. The
correct normalized probability, where
the sum is over each distinct state i, is

(9)

which describes the probability of 
observing a state i with energy Ei. The
numerator of Equation (9) is the fa-
mous Boltzmann factor. The equally
famous partition function is the normal-
ization factor in Equation (9), with one
term for each allowed state of energy Ei
such that

(10)

There are, however, many states
Ω(Ei) with energy near Ei. Equation
(10) can therefore be rewritten as a sum
over each distinct energy Ei, and we
will find that

(11)

Because numbers are large and
probability distributions sharply peaked,
we can accurately approximate the 
real shape of Ω(Ei) by a rectangular
distribution that is constant over the 
approximate width of the real distribu-
tion and zero everywhere else. The
width and height are adjusted so that
the area of the rectangle is the correct
total number of states near the energy .
“Near” in this case can be very crude,
and errors in it and this process will
only affect the answers to the order of
ln Ω, which is an extremely small error.
With these approximations, we perform
the sum in Equation (11) to obtain

(12a)

where Ω(E
–

) is the total number of
states near the most probable energy
and F is the free energy. Because

(12b)

we can express the partition function
solely in terms of the free energy and
temperature:

(12c)

The significance of writing the parti-
tion function in this way is as follows.
If the system can be in two phases at
once (ice in water), somehow, the fan-
tastically large numbers and wildly
swinging probabilities must conspire to
make both phases equally likely, even
though their energies are obviously dif-
ferent. In addition, the partition
function Z must now have two pieces,
one for ice and one for water. For the
two phases to be observable simultane-
ously, keeping in mind the monstrous
numbers, the two pieces of the partition
function must be equal. Therefore, we
see that, when the free energy of ice
per molecule equals the free energy of
water per molecule, the partition func-
tions for equal numbers of molecules
are equal, or

(13)

The number of molecules and, there-
fore, the number of accessible states are
typically so large that, if the free ener-
gies of the two phases differ, only the
phase with the lowest free energy is
sufficiently probable to be observed.
This is the primary concept  that deter-
mines the observed phase.

Note that the likelihood of observing
a state with a particular energy is equal
to the product of (1) the number of
states with that energy and (2) the prob-
ability of observing any one of them.
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Thus, both the energy and the entropy
control the phase stability. In the exam-
ple of ice and water, the increase in
energy per molecule associated with
stretching and breaking the bonds that
lock water into a frozen state makes
water less probable by itself because of
the Boltzmann factor. But because there
are many more ways to arrange the
molecules in the liquid than in the
solid, this reduction in probability is
offset by the increase in the number of
states of water. When the energy is just
right, the overall probabilities (free 
energies) of each phase are equal, and
ice begins to melt.

Phase Stability and Plutonium

We have seen how both the energy
and entropy contribute to determining
the free energy and therefore the most
probable states (phases) of a system.
We will now consider the various 
contributions to the phase stability of
plutonium.

At low temperature and pressure, 
the monoclinic α-phase of plutonium is
stable. This phase is predicted by mini-
mizing the internal energy associated
with the electronic structure. In fact,
modern electronic-structure calculations
by John Wills and coworkers appear to
describe completely and astonishingly
accurately the behavior of the low-tem-
perature phase of plutonium, essentially
from first principles. These calculations
are performed for the system at zero
temperature, and thus entropy, or the
number of states available, is neglected
because the entropy contribution to the
free energy is zero at zero temperature.
It is interesting that plutonium retains
the zero-temperature phase to about 
400 kelvins, and the electronic-structure
calculations predict well the behavior
throughout this temperature range.

As temperature rises, the theorist
must decide how to include the effects
of temperature in determining the free
energy. In addition to the internal elec-
tronic energy, the contributions to the
free energy include a harmonic vibra-

tional (phonon) piece, a thermally acti-
vated conduction electron piece, and as
Duane C. Wallace writes (1998), an 
aggregate piece associated with anhar-
monic phonons and electron-phonon
coupling. Of these, the harmonic
phonon contribution to the entropy is
by far the largest, whereas the aggre-
gate and electronic pieces are less than
6–12 percent of the total. Still, the 
anharmonic terms give rise to important
effects, including thermal expansion,
and cause the phonon frequencies
(which, in turn, affect the entropy and
specific heat) to be temperature depen-
dent. It is attractive, therefore, to use 
all the available data to attempt to 
understand the harmonic phonons as
perhaps the largest contributor to the
root causes of the unusual set of struc-
tures that plutonium exhibits. 

We will consider first the electronic
structure. Remember that isolated atoms
in a vacuum have completely localized
unmovable electrons with no overlap
between the electronic wave functions
of different atoms. As the atoms move
closer together, the wave functions of
their valence electrons overlap weakly
at first. The electrons are now shared
among the atoms and contribute to the
bonding that holds the solid together,
but they are hard to move (effectively
heavy) from one atom to the next. As
the overlap increases, the electrons in a
metal become more and more mobile
and finally may behave as a gas of
nearly free electrons as they do in sodi-
um. For metals such as plutonium, in
which the 5f electrons have little over-
lap, it is not surprising that the crystal
structure is very open (otherwise more
overlap would occur) and that the over-
lap and hence the degree of localization
are extremely sensitive to interatomic
spacing and therefore to pressure. Such
a system is expected to be very com-
pressible. As a result, vibrational
motion should increase more than usual
with increasing temperature as should
anharmonic effects so that the average
atomic separation should also increase,
producing a greater variety of phases
than in a system in which overlap is 

already strong. Note that the thermal-
expansion coefficient of iron is about
13 parts per million per kelvin (ppm/K)
whereas that for α-plutonium is near
42 ppm/K.

To get an idea of the extreme 
compressibility of plutonium, the bulk
modulus (an elastic constant describing
the stiffness against hydrostatic com-
pression) of α-plutonium that we have
measured on high-quality research sam-
ples is about 55 gigapascals. In contrast,
the bulk modulus of ordinary steel is
about 170 gigapascals. The stiffest
phase of plutonium is therefore three
times easier to compress than steel!

Increasing the temperature does not
only cause thermal expansion, but it
also increases the entropy. Associated
with this increase is the selection of
high-entropy/high-energy phases that
become more and more favorable as
temperature rises. Wallace (1998) 
provides a very careful computation of
the total entropy of plutonium as a
function of temperature (and phase) 
by using the best currently available
specific-heat data. He finds that by far
the largest contribution to the entropy
of plutonium at temperatures above 
ambient is that from the harmonic 
vibrations. To get an idea of the energy
scales, TS for δ-plutonium at the 
δ-ε phase boundary is about 
735 milli-electron-volt (meV) per atom,
whereas the enthalpy change (∆TS) 
between the δ- and ε-phase is on the
order of 20 meV per atom. Thus, 
the δ-phase differs from the ε-phase 
by only 20 meV per atom, which is a
very small fraction of the free energy
and is tough for the theorist to compute
accurately.

Vibrational Entropy and Elastic
Constants.Here we show how the 
vibrational entropy of plutonium can be
estimated from measurements of elastic
constants, or sound speeds. We begin
by approximating plutonium as a col-
lection of masses and springs. This
mass/spring, or harmonic, picture 
connects directly to such mechanical
properties as the Young’s and shear
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moduli, compressibility, and speed of
sound, all critical quantities for the
best-known practical application of plu-
tonium-239. Consider a long, thin bar
of plutonium of length L (we will keep
it under a kilogram or so, just to be
safe). If we set the bar to vibrating, the
lowest tone, or normal mode, is the one
whose half-wavelength just fits in the
bar, λ/2 = L. (That wavelength is very
much longer than the springs connect-
ing the atoms—therefore, the system
behaves as if it were continuous). For
the next higher tone, two half-wave-
lengths fit in the bar; for the next, three
fit; and in general, nλ/2 = L, where n is
an integer. In a perfect simple cubic
crystal of N atoms, there are N allowed
tones, or wavelengths, for a given type
of vibrational mode, and there are three
types of modes—one compressional
and two shear. We have a total of 3N
normal modes. Each tone (mode) has a
fixed frequency but can have any 
amplitude (careful there, with plutoni-
um, anyway). Thus, each mode is just
like the simple harmonic oscillator dis-
cussed above. For the lower-frequency
normal modes, the frequency f is
f = nvS/(2L). In this expression, vS is a
sound speed (compressional or different
types of shear speeds), and n is an inte-
ger less than about N1/3, which is about
the number of atoms in a row along the
length L of the bar. From all this, it is
apparent that the sound speeds control
the lower frequencies of the vibrations
in plutonium. 

To compute the vibrational contribu-
tion to the entropy at temperatures
above 300 kelvins, we need to find all
the vibrational modes, even those high-
er-frequency modes whose wavelengths
are comparable to the atomic spacing.
Neutron scattering measurements can,
in principle, measure them all (rather
imprecisely and with great difficulty),
but we can make very good guesses if
we know the sound speeds to high ac-
curacy, and even better guesses if we
can use sound speed data to constrain
approximate data from neutron scatter-
ing methods. Ultrasonic techniques,
even the ones we employ, determine

the sound speeds only at very long
wavelengths, but once we measure the
long wavelength modes, with a little
help, we can make a pretty good esti-
mate of the variation of frequency with
wavelength from our harmonic picture
of the solid. 

We imagine a very long string of 
N masses (atoms), each at a distance a
from its nearest neighbors, and each
connected to those neighbors by springs
(bonds) as shown in Figure 3. Looking
at one of the masses at position ui, we
find that the stretching of springs to the
left and right of that mass produces an
acceleration (Newton’s famous F = ma)
such that

(14)

We can solve Equation (14) to find
the relationship between the allowed
wavelengths and the vibrational fre-
quencies. For each allowed wave vector
k = 2π/λ, there is a solution with angu-
lar frequency ω = 2πf,

(15a)

where the relationship between k and ω
(also called the dispersion relation) is
given by

(15b) 

The shortest wavelength λ must 
be greater than twice the interatomic
spacing, or 2a0 (if any shorter, we
could describe the wave as if it had a
longer wavelength and get exactly the
same motions), and an integral number
of half wavelengths must fit along the
string, nλ/2 = L. In other words, 
k = nπ/Na0, and the largest value of k
is π/a0. Thus, there is a discrete set of
allowed wave vectors, and the frequen-
cies given by Equation (15b) define a
discrete set of vibrational modes. 

The plot of these discrete vibrational
modes versus wave vector in Figure 4
looks continuous because the number of
modes is very large. The slope of the
straight line, which is the slope of the
curve at the origin, is typically the
sound velocity and is given by dω/dk =
vS = a0(2c/m)1/2, wherec is the elastic
constant in Equation (14). It is impor-
tant to note that this simple picture is
for nearest-neighbor springs only. As is
also shown in the figure, second-nearest
neighbors change things, but still the
curves are tightly constrained. Our
measurements of sound speeds (or elas-
tic constants) are essentially within only
a few parts per million away from zero
in Figure 4. The flattening of the curve
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Figure 3. Elastic Forces in the Harmonic Picture of a Solid
In the harmonic picture of a solid, a very long string of atoms connected by chemical

bonds and separated by a0, the lattice constant, or interatomic distance, is represented

as a very long string of masses m connected by springs. The strength of those springs

is measured by the elastic constant c. The distance ui is the displacement of each

mass from its rest position x i., and Equation (14) in the text describes the elastic forces

that result from displacements that stretch and compress the springs. The wavelike so-

lutions to Equation (14) describe the longitudinal sound waves that will propagate in

this idealized harmonic solid.



at high wave vectors (short wave-
lengths) is the effect of the discrete
system over the continuous one.

For the real solid, the plot is four-
dimensional, with three dimensions for
the directions of the wave vector and
one dimension for frequency. The end-
point of the plot in any direction
depends on details of the crystal sym-
metry. In addition, there are three
branches in each direction, two for the
shearlike waves and one for the longi-
tudinal wave (see Figure 5). The
shear-wave speeds are usually about
two-thirds of the longitudinal-wave
speed. For plutonium and body-cen-
tered-cubic (bcc) metals, some
shear-wave speeds are much lower.
Therefore, the shear modes have lower
frequencies of vibration and contribute
more to the entropy as we shall see
next. Note that in a real solid, the elas-
tic constant c generalizes to a
fourth-rank elastic-modulus tensor with
as many as 21 independent elements.

But because most plutonium samples
currently available are isotropic poly-
crystalline samples, much of the
directional information is lost, and we
can measure only two elastic moduli:
c11, the compressional modulus, and
c44, the shear modulus. In general, each
elastic constant is the ratio of a particu-
lar type of stress to a particular strain. 

Interestingly, if we knew all the
sound speeds (or elastic moduli), we
could have a good guess at the full
four-dimensional plot of the vibrational
modes (the phonon dispersion curve)
because the frequency dependence is al-
ways expected to be very close to that
given by Equation (15b) or one of its
next-nearest-neighbor analogues. Even
in systems with more than nearest-
neighbor forces, the general forms of
the dispersion curves are tightly con-
strained, with only a few parameters
needed to describe them. 

Once the frequency of an oscillator
is known, it is very easy to compute its

entropy directly from the partition func-
tion—Equation (10). We mentioned
earlier that the energy levels of each
harmonic oscillator or normal vibra-
tional mode i are equally spaced, that
is, Ei = (n+1/2)hωi. The average num-
ber of quanta (phonons) thermally
populating that mode can be written as

(16a)

where we have used the partition func-
tion to compute the expectation value
of the number of phonons in that mode.
Note that, if the temperature (or kBT) is
high relative to the energy of each
phonon, there is a simple expression for
the average number of phonons in that
mode:

(16b)

Based on the result for the average
occupation number of mode i, we can
obtain expressions for the average 
energy in that mode, Ei

– 
, and the free 

energy Fi :

(17)

(18)

where

The entropic contribution to the free
energy for a single mode TSi, is 

(19a)

If the temperature is relatively high,
that is, kBT is much greater than the 
energy per phonon, the entropic 
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Figure 4. Vibrational Modes vs Wave Vector
The black solid curve is a plot of Equation (15b), the dispersion relation (or frequency

versus wave vector) for the longitudinal sound-wave solutions to Equation (14). That

equation describes forces (springs) between nearest neighbors only. The slope of that

curve at k = 0, marked by the red straight-line tangent, is the sound velocity, vs = a0

(2c/m)1/2. The dispersion curves for systems that have either positive or negative sec-

ond-nearest neighbor forces (in addition to nearest-neighbor forces) are also shown.



contribution in (19a) becomes

(19b)

We want to know the vibrational 
entropy of the entire system, and so we
need to compute an average over all
modes i of the ln ni

– or, at relatively high
temperatures, an average of ln hωi. The
Debye temperature, or more exactly,
kBΘD is a special low-temperature aver-
age of hωi rather than an average of the
ln hωi. A better characteristic tempera-
ture in the high-temperature limit could
be computed by taking an average over
Equation (19b) for all the modes along
all the dispersion curves in a four-di-
mensional plot. If we define this
temperature in the high-temperature
limit to be Θ0, then the total vibrational
contribution to the entropic term in 
the free energy is

(20)

With Equation (20), we have arrived
at a description of the total vibrational
entropy of a solid of N atoms, and we
have shown that it can be calculated
from a measurement of the speed of
sound at all wavelengths and in all 
directions. Measured sound speeds can
also be compared with those computed
directly from theoretical models of
plutonium energy. Therefore, sound
speeds or, equivalently, elastic moduli
are important for determining both the
entropy and energy contributions to
the free energy. It is for this reason
that measurements of the elastic modu-
lus tensor, dependent on the type of
strain and its direction, provide so
much stronger feedback to the theorist
than simple scalar thermodynamic
measurements such as heat capacity or
bulk modulus. Surprisingly, only a few
sound speeds are known for plutonium,
and these are mostly averages obtained
from measurements on polycrystalline
samples. At present, there is only one
measurement at ambient temperature
of the full elastic-modulus tensor on 
a gallium-stabilized δ-plutonium 
single crystal.

Estimated Free-Energy Changes 
and the Role of Entropy in 

Stabilizing Plutonium

Because the elastic constants in 
plutonium are very low, we expect 
the average number of quanta in each
mode, and therefore the vibrational 
entropy, to be high in the high-tempera-
ture phases of plutonium. We would
even guess that vibrational entropy
could be the primary ingredient in sta-
bilizing all the phases of plutonium
with the exception of the α-phase. It
would be nice if the changes in entropy
and electronic energy in going from
phase to phase could be computed
from first principles, but it is extremely
difficult to compute the electronic ener-
gy with the atoms vibrating. Instead,
we suggest that one can estimate large
parts of the free energy on either side
of a phase boundary by measuring
elastic moduli and that those data will
also enable identification of the miss-
ing contributions—especially any
changes in the zero-temperature inter-
nal electronic energy in going from the
α-phase to the higher-temperature
phases. In particular, this approach
may enable us to figure out the magni-
tude of the contribution played by 

f-electron localization in determining
phase stability in plutonium.

The δ- to ε-Phase Transition.We
will estimate changes in contributions
to the free energy across plutonium’s 
δ- to ε-phase transition at 753 kelvins.
This face-centered-cubic (fcc) to bcc
transition follows a Bain’s path (dis-
cussed later) and is most likely to be
explained by vibrational- and/or elastic-
entropy arguments. There is no net
change in free energy across a phase
boundary, so any change in internal vi-
brational (elastic) and electronic energy
must be balanced by a change in en-
tropy. One obvious change in the
internal energy in going from the δ- to
ε-phase is triggered by volume changes.
A crude guess for this contribution can
be based on the measured bulk modulus
B of δ-plutonium (measured, of course,
by the sound speeds as well as by x-ray
diffraction). Suppose we precompress
plutonium isothermally just below this
phase boundary by 3.58 percent, the
measured volume decrease across the
boundary (plutonium shrinks in volume
on warming throughout the range of ex-
istence of the δ-phase and also upon
transition to the ε-phase). We will wind
up with a state at the correct volume
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Figure 5. Vibrational Modes and Sound Speeds in a Cubic Crystal
There are three types of sound waves. One is a longitudinal wave in which atoms vi-

brate (red arrow) along the direction of propagation (black arrow), and two are shear

waves in which the atoms vibrate perpendicular to the direction of propagation. In a

cubic crystal, these waves are associated with three independent elastic moduli— c11, 

c12, and c44. As shown in the figure, c11 determines the speed of the longitudinal wave,

c44 determines the speed of the first shear wave, and c11 and c12 determine the speed

of the second shear wave.



for the ε-phase but at a temperature 
infinitesimally too low for it to be 
stable and having the wrong structure.
The compressional energy to make this
state is 

(21)

Using the unit cell size of δ-plutoni-
um, four atoms in 4.64 cubic
angstroms, and the bulk modulus 
B = 29 gigapascals,2 we find that the
energy required to compress is 3 meV
per atom. The measured latent heat for
the δ- to ε-phase transition is about 
20 meV per atom. So, simply changing
the volume of plutonium cannot 
account for the internal-energy change.
We also learn that elastic moduli other
than the bulk modulus must be control-
ling this transition, and therefore,

simple scalar quantities such as specific
heat will not provide all the information
we need. 

If the volume change does not 
explain the 20 meV per atom of latent
heat, where should we look? We note
that, at 753 kelvins, the thermal energy
per atom is 3kBT = 192 meV per atom,
an enormous energy. It is therefore very
attractive to see if much of the latent
heat goes into vibrational entropy,
which is then balanced by increases in
vibrational (elastic) energy, thereby 
ensuring a zero change in free energy
across the transition.

(22)

If we can get most of the latent heat
with vibrational entropy alone via
sound speed changes across the phase
boundary, perhaps only small changes
in electronic structure are needed. 

Figure 6 suggests the type of strain
or distortion that could eat up 20 meV
per atom. On the left is the fcc δ-
plutonium structure, shown as the 

exactly equivalent bct structure with
the long edge 21/2 times larger than
the short edges. If we are at a temper-
ature just below the δ-ε phase
boundary and we uniaxially and
isothermally stress δ-plutonium so that
it shrinks from fcc to bcc (it shrinks
along the stress direction and expands
perpendicular to it), we produce a bcc
structure at just below the temperature
at which it is stable. This is a Bain’s
path. On raising the temperature a tiny
amount, absolutely nothing happens
except that the bcc structure becomes
stable. There is no latent heat for this
final step. Therefore, the measured 
latent heat without a Bain’s strain
must be equal to the energy required
to strain the fcc phase into a bcc
shape along the Bain’s path. A small
volume adjustment might be needed,
but we have shown this to be a small
effect. What strains are involved in
this process? 

Measured elastic properties of 
δ-plutonium show an unusually large
shear anisotropy. The shear stiffness in
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2This value comes from our recent very accurate
RUS measurements on polycrystals, and it agrees
well with the only single-crystal elastic-modulus
measurements of gallium-stabilized δ-plutonium.
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Figure 6. The Bain’s Path for the δ- to ε-Phase Transition in Plutonium
The figure on the left shows the fcc structure of δ-Pu, and the one on the right the bcc structure of ε-Pu. The particular viewing angle

and the unit cell outlined on the left show that the fcc phase is equivalent to a bct phase in which the long edge is 2 1/2 times the

short edges of the unit cell. From this view of the fcc phase, it is clear how the system can shrink continuously from the fcc to the

bcc structure. That path is called a Bain’s path.



one direction (110, or an angle π/4 from
an edge) is very low compared to the
shear stiffness parallel to an edge. For
that reason, Young’s modulus, exactly
the modulus encountered along the
Bain’s path, is also very low. Also, 
Poisson’s ratio, which describes how
much a material bulges when uniaxially
compressed, is very large (0.424, a value
close to Poisson’s ratio for a liquid).
Hence, the Bain’s path is traversed with
little volume change, and the energy 
required goes mostly into shear strain 
energy. We have now connected a
change in shear strain energy to the mea-
sured latent heat, and we learn that
shearlike rearrangement of the plutonium
atoms must be the important process 
at this phase transition! Can we get a
handle on this argument via sound
speeds as well?

In general, bcc materials have a very
large shear anisotropy, typically even
larger than for δ-plutonium. We expect,
then, that the generally low shear stiff-
ness in one direction of bcc structures
should provide those modes with lots of
entropy, thereby making the bcc struc-
ture favorable as the temperature rises.
From standard ultrasound measurements
by Ledbetter and Moment (1975) and
Kmetko and Hill (1976), we obtain the
low-temperature average phonon fre-
quencies, or Debye temperatures (not the
right average, but at least related to what
we want), for both δ- and ε-plutonium.
Those characteristic temperatures are
106 kelvins for δ-plutonium and 
89 kelvins for ε-plutonium. Using 
those not-quite-right characteristic 
temperatures to compute the entropic
contribution to the free energy at 
750 kelvins—Equation (20)—we find
that the measured latent heat Q balances
the change in vibrational entropy perhaps
to within 10 percent. In other words,

(23)

Thus, we can account for essentially
all the energy and entropy changes in
the δ- to ε-phase transition from sound
speed (elastic constant) changes. Do
these changes in elastic moduli come
strictly from the typical changes that
occur when a material goes from fcc, a
phase expected to have low shear
anisotropy, to bcc, a phase expected to
have high shear anisotropy, or are the
modulus changes a result of changes in
electronic structure? Although much
more work must be done to establish
the relevance of these arguments for
the lower-temperature phases, for
which the entropy is less, an approach
based on ultrasound studies appears
the right route to understanding the
higher-temperature phases.

The Bain’s path may account for
the negative volume thermal-expansion
coefficient of δ-plutonium as well. The
very large strains that accompany the
Bain’s route ensure that, using the la-
tent heat and the starting and ending
moduli, we can only roughly construct
the elastic moduli along the route.
There is also no constraint that the
end-point volume be larger or smaller
than the starting volume. For plutoni-
um, the end-point bcc volume just
happens to be smaller, and the route is
very soft—that is, the value of
Young’s modulus is low along the
Bain’s path. Therefore, an attractive
argument for the negative thermal ex-
pansion coefficient of the volume is
that, at temperatures below the bound-
ary between the δ- and ε-phase,
plutonium thermally “samples” the bcc
volume along the very soft Bain’s
path. Thus, part of the time, it has a
volume closer to bcc, which is smaller
than the fcc volume. The negative
thermal-expansion coefficient of the
volume may be a direct consequence
of the lower bcc volume and the exis-
tence of a Bain’s path. 

The size of these entropy-driven ef-
fects is very large in plutonium. For
example, in nickel, which has a melt-
ing point almost twice that of
plutonium, the bulk modulus is about
five times higher, and the Debye tem-

perature (related to the sound speeds
and therefore the bulk modulus) is
four times higher than in plutonium.
Therefore in nickel, compressional 
energies are larger than in plutonium,
and entropy effects are smaller. Nickel
has far fewer options in its search for
stable high-temperature phases. It also
exhibits far fewer structures than plu-
tonium over the range of existence of
the solid and always has a positive
thermal-expansion coefficient. We
might guess then that the root of pluto-
nium’s odd behavior may be the
localized electrons with weak overlap
that force plutonium to have an easily
compressed open structure.

Elastic Moduli Measurements

By now we have probably con-
vinced the reader that knowing the
elastic modulus tensor as a function of
temperature and pressure for each of
the phases of plutonium would be 
required for a complete experimental
understanding of its thermodynamics.
Although such data exist for many 
elements, we have only sparse data for
plutonium. To determine the complete
elastic tensor using ultrasonic tech-
niques, we must have single crystals 
of each phase. The phase changes plu-
tonium undergoes as it cools from the
melt hinder us from growing single
crystals of α-plutonium unless the
metal is under extreme pressure. All
the other phases exist only at high
temperature. Thus, a single crystal 
of pure δ-plutonium would have to be
kept at above 550 kelvins for the 
entire measurement process. Moreover,
because plutonium-239 absorbs neu-
trons, neutron scattering studies must
use pure plutonium-242, and that is 
a rare isotope. Finally, measuring the
moduli in such a dangerous system 
requires extreme environmental and
safety overhead. All these factors 
combined result in little accurate and
reliable elasticity and thermodynamic
information on plutonium.
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Implications of Previous Data. The
few data we have, as stated above, are
decidedly unusual. Table I shows a
summary of the only existing elastic
data measured from a plutonium single
crystal. These measurements were made
by Moment and Ledbetter (1975) at
ambient temperature on a 7-millimeter-
long δ-plutonium grain stabilized with
3.3 atomic percent (at. %) gallium. It
took them over a decade to find suitable
methods for growing measurable single
crystals of plutonium. Their results
show that δ-plutonium is amazingly
anisotropic. Note that c* is the shear
modulus at an angle of π/4 to the cubic
axis, c11 controls the longitudinal sound
speed, and c* and c44 control shear
speeds.

Several points must be made about
this measurement. First, at a radioactive
heating rate of 50 milliwatts per cubic
centimeter (mW/cm3), larger crystals
cannot be measured accurately because
they heat internally as a result of their
larger surface-to-volume ratio. Second, 
gallium-stabilized δ-plutonium is differ-
ent from pure δ-plutonium. That is, in 
a crystal of plutonium stabilized with
3.3 at. % gallium, there are only about
two plutonium atoms between each gal-
lium atom along any of the principal
crystallographic directions. Thus, the
presence of gallium thoroughly distorts
the structure, the phase transitions, the
temperature at which the transitions
occur, and even the sign of the thermal-
expansion coefficient. Although the
atomic volume of the plutonium-
gallium (PuGa) alloy varies very
smoothly with decreasing gallium con-
centration and intercepts the atomic
volume of pure δ-plutonium as the gal-
lium content goes to zero, the elastic
properties are often more than an order
of magnitude more sensitive to atomic
volume than other physical quantities.
Thus, it is possible that the elastic mod-
uli of pure δ-plutonium are different
from those of gallium-stabilized δ-plu-
tonium. Third, the elastic anisotropy
c44/c* is the largest for any fcc metal.
(An isotropic system, such as glass, has
c* = c44.) This strong variation of mod-
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Figure 7. The Six Crystal Structures of Plutonium 
Starting from α-Pu and proceeding clockwise are five of the six crystal structures 

of plutonium in the order in which they appear as the metal is heated. The sixth

structure, δ′ (which occurs between δ- and ε-phase), is not shown because δ′ and

δ look about the same.

γ

δ

ε

α β

Monoclinic
16-atom cells

Body-centered monoclinic
34-atom cells

Body-centered orthorhombic
8-atom cells

Body-centered cubic
4 atom cells

Face-centered cubic
4 atom cells

Table I. The Elastic Moduli of δ-Pu (1 wt % Ga) at Ambient Temperature a

Modulus Measured Value
(GPa)

c11 36.28±0.36
c44 33.59±0.11

1/2(c11 – c12) = c* 4.78±0.38

aResults are from measurements by Moment and Ledbetter.



uli with direction means that we must
take more care when computing aver-
ages, especially because the soft
directions contribute more strongly to
entropy. Fourth, c44 nearly equals c11,
and therefore the material does not
change volume much when compressed
along a cubic axis; in other words, it
acts a lot like a liquid. Fifth, radiation
damage changes the properties of pluto-
nium. Taken together, these comments
suggest that modulus data derived from
PuGa alloys are not necessarily applica-
ble to pure δ-plutonium and that
elasticity measurements must be made
to determine the effect of gallium. 
Nevertheless, we can work with the
gallium-stabilized phases, which are
crucial for engineering applications. 
As a result, our initial measurements
were focused on those materials. 

Finally, we note that, because of 
the very large shear anisotropy in 
plutonium, elastic measurements on
polycrystalline samples will produce
averages of strongly varying quanti-
ties, masking the underlying physics.
To get at these details, we must make
as many measurements as possible on
single crystals. That information is
necessary to check electronic-structure
calculations and develop a fundamental
understanding of plutonium. Figure 7
shows the crystal structures of five of
plutonium’s six solid phases (the δ′-
phase, which looks like a slightly
compressed version of the fcc δ-phase,
is not shown). The cubic phases have
only three independent elastic moduli
whereas the monoclinic phases have
13 such moduli.

Resonant Ultrasound Spectroscopy.
The powerful regulatory and safety 
issues that come to bear will likely
allow only gallium-stabilized δ-pluto-
nium crystals of a few millimeters to
be grown in the next several years. But
small samples are difficult to study
with conventional pulsed ultrasound
because of both size and attenuation
effects. Fortunately, RUS3 is perfectly
suited for remeasuring plutonium’s
elastic moduli in both single-crystal

and polycrystalline samples. 
RUS is a very simple technique, in

which the mechanical resonances of a
solid object of known shape are in-
duced, measured, and analyzed to
provide the complete elastic tensor.
This technique is usually implemented
on a sample with all faces either paral-
lel or perpendicular to each other (a
rectangular parallelepiped resonator, or
RPR). Because weak, dry point contact

is made between transducers and very
small samples (a few millimeters or
less on one side), this system is both
extremely accurate and well suited for
glove-box operations. The weak contact
requires that extreme care be taken with
the electronics. Figure 8 shows a block
diagram of the current state-of-the-art
system.4 Figure 9 shows the very sharp
resonances observed with this system
when a typical sample is measured.
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Synthesizer

Computer

Amplifier

Transducers

In-phase signal

Quadrature signal
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Phase-sensitive
detector and digital

signal processor

Figure 8. Block Diagram and Photo of a Resonant Ultrasound Spectrometer
The resonant ultrasound spectrometer measures a sample (shaped as a rectangular

parallelepiped), which is

placed between two transduc-

ers, one of which drives the

sample over a continuous

range of frequencies in the

megahertz range. While the

temperature is held fixed, an

electronic-signal generator (or

synthesizer) changes the fre-

quency of the driver gradually

and automatically. The applied

signal is amplified when it

passes through regions where

the sample resonates. The 

amplified signal is picked up

by the second transducer and

recorded automatically by a specially designed electronic phase-sensitive detector. 

The requisite resonance spectrum at a given temperature is measured in several 

seconds and is displayed on the computer. Most important, the computer calculates 

the elastic constants. 

3Resonant ultrasound spectroscopy (RUS) was
developed into a practical tool by Albert Migliori
at Los Alamos over the last several years.

4The current system was designed by Albert
Migliori and is manufactured by Dynamic 
Resonance Systems, Inc. 



These data were obtained from a 
high-purity chill-cast new polycrys-
talline sample of plutonium with 
3.3 at. % gallium supplied by Jason
Lashley. (See the article “Preparing
Single Crystals of Gallium-Stabilized
Plutonium” on page 226.) The measure
of sharpness of a resonance, or Q, is
f/∆f, where f is the frequency of a reso-
nance and ∆f is the full width at half
maximum of the resonance. For 
our plutonium samples, f is about 
0.2 megahertz. If Q, which is a direct
measure of the intrinsic dissipation, is
greater than 1000, we expect very high
accuracy for elastic-modulus measure-
ments. For plutonium, we observe Qs
greater than 10,000. 

Although acquiring extremely accu-
rate resonances on carefully prepared
plutonium samples is straightforward,
analysis of those resonances is compu-
tationally intensive. To put this
statement in perspective, a computation

took 1 second of CPU time on the first
Cray, 12 hours on a PC-AT, and now
1.3 seconds on a 600-megahertz Pen-
tium III. In Figure 10, we show the
complex deformations corresponding to
several particular mode types. These
deformations need to be calculated. The
RUS algorithm must iteratively com-
pute the deformations and then adjust
the elastic moduli of the model RPR to
match the measured ones. A typical re-
sult is illustrated in Figure 11, showing
the deviation between fitted and mea-
sured resonances. The actual accuracy
of the measurement is not quite the
root-mean-square error in the fit be-
cause the best fit has different
curvatures in the different directions of
elastic-modulus space. Typically, we
obtain shear moduli on plutonium to
better than 0.1 percent and compres-
sional moduli to better than 0.7 percent.
Because there are no corrections to
such results, RUS typically provides the

highest absolute accuracy for any rou-
tine modulus-measurement technique.
For the measurement of Figure 11, we
used a sample weighing 1.33 grams,
with a geometrically determined densi-
ty of 15.968 grams per cubic
centimeter (g/cm3). The sample was
rather large for RUS measurements, 
0.3081 × 0.4928 × 0.5603 centimeters.
The errors for this measurement were
about 0.9 percent for c11, which deter-
mines the compressional-wave speed,
and 0.1 percent for c44, which deter-
mines the shear wave speed. 

In Table II, we provide a summary
of both our recent measurements and
previous measurements by others. Of
particular interest is the almost exact
correspondence between the very care-
ful measurements of Moment and
Ledbetter on a single crystal of new
plutonium (3.3 at. % gallium) and our
measurement on a nominally identical
polycrystal sample. Other measure-
ments, however, unexpectedly disagree.
For example, the data for the 3.2 at. %
gallium sample are very different. The
reason may be an uncontrolled variable
(age) or the data may simply be wrong.
Moreover, our modern measurement 
of pure polycrystalline plutonium 
(α-phase) at room temperature agrees
with one older measurement but not
with the other. Finally, the variation in
the results of pure plutonium in the 
δ-phase at higher temperatures is so 
extreme that those results beg for 
corroboration. We hope to address 
all these points and others in the next
few years. 

For all the measurements we have
made on plutonium, the Qs were
greater than 3000 and as much as
12,000 for the sample whose data are
illustrated in Figure 11. With a Q of
10,000 and signal-to-noise ratios typi-
fied by Figure 9, we are able to track
frequency changes smaller than 1 ppm.
This extraordinary sensitivity to
changes makes possible two unique
measurements. The first is done in real
time and is a measurement of the effect
of radioactive decay on the elastic
properties of plutonium. For example,
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Figure 9. RUS-Measured Resonances of a High-Purity Plutonium Sample 
This spectrum of resonant vibrational frequencies of a high-purity polycrystalline sam-

ple of Pu 3.3 at. % Ga was recently measured by our resonant ultrasound

spectrometer, which was adapted for use in a glove box environment. Because the

resonant ultrasound measurement is phase sensitive, some peaks are negative.
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Figure 10. Vibrational Modes of a
Rectangular Parallelepiped
There are eight types of normal vibra-

tional modes for a crystalline sample 

of orthorhombic or higher symmetry

shaped as a rectangular parallelepiped.

The modes are either symmetric or anti-

symmetric about three perpendicular

planes. The lowest of each mode type 

is shown here. 
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Figure 11. Accuracy of RUS 
Measurements
Shown here is the deviation between 

fitted and measured resonances on a

typical polycrystalline plutonium sample.

The experimental data are fed into a

computer program that tries to find a set

of elastic moduli consistent with the

measured resonances, the sample 

dimensions, and the symmetry of the

sample’s crystal lattice. Each circle 

represents the difference between the

observed and calculated resonances. 



a Q of 10,000 would enable us to see
a change of about 1 ppm in stiffness,
something we might expect to see in a
few days if the temperature can be
held stable to 0.005 kelvin, a perfectly
feasible task. The second is a measure-
ment that enables us to study the
effects of aging on phase stability in
real time. For example, if gallium-sta-
bilized δ-plutonium is cooled, it may
become increasingly and measurably
(by the RUS method) unstable, a fea-
ture exhibited by a very slow change
in elastic moduli versus time. Such
metastability is observed in many 
systems, including steel and precipita-
tion-hardened aluminum (known as
aircraft aluminum). To observe both
radioactivity-induced changes and
metastability will require a precisely
temperature-controlled environment 
for the measurement. Such a system
will leverage another critical set of
measurements—the variation of mod-

uli with temperature.
One source of variation in the elas-

tic properties of plutonium with
temperature comes from changes in the
phonon frequencies with vibrational
amplitude—an important nonlinear 
effect, as is thermal expansion. Noting
that plutonium has a very large 
thermal-expansion coefficient, other
nonlinear effects are also expected to
be unusually large. Their study will
therefore be particularly revealing. Few
temperature-dependent modulus mea-
surements have been made so far, and
there are no single-crystal data. The
polycrystal work has been done on
large samples that self-heat, and only
one set of data appears on the gallium-
stabilized alloy. The elastic moduli
results of those measurements are 
substantially different from our recent
results (the value for the 3.2 at. % gal-
lium sample in Table II was taken
from the temperature-dependence

study). Understanding the cause for
those differences will be difficult and
time-consuming but is badly needed.
Our approach, especially considering
the safety concerns, is to begin with
measurements of the temperature varia-
tion of the elastic moduli around
ambient temperature by using thermo-
electrically cooled stages to vary
temperature by 30 kelvins or so. Such
a variation will enable us to determine
the slope of the temperature depen-
dence at ambient temperature to about
0.3 percent. This work is well under
way, as we are tackling the much more
difficult task of introducing furnaces
and cryogens into the RUS experimen-
tal area so that other phases can be
studied. The results of this latter 
aspect of our work will be well worth
our effort. �
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Table II. Summary of Elastic-Moduli Measurements of Plutoniuma

Sample C11

(GPa)
Bulk
(GPa)

Shear
(GPa)

Polycrystal pure δ-Pu (703 K) 41.3 33.9 5.59

Polycrystal pure δ-Pu (655 K) 63.6 55.9 5.79

Single crystal δ-Pu 3.3 at. % Ga 51.4 29.9 16.1

Polycrystal δ-Pu 5.9 at. % Al 54.9 30.9 18.0

Polycrystal δ-Pu 2.1 at. % Al 40.3 19.1 15.9

Polycrystal δ-Pu 5.8 at. % Ga 65.1 37.1 21.0

Polycrystal δ-Pu 3.2 at. % Ga 64.4 37.7 20.0

Polycrystal δ-Pu 5.4 at. % Ga (aged) 50.0 27.0 17.2

Polycrystal δ-Pu 4.0 at. % Ga (aged) 58.4 34.3 18.1

Polycrystal δ-Pu 3.3 at. % Ga (new) 51.8 29.6 16.7

Polycrystal δ-Pu 3.3 at. % Ga (aged) 47.5 26.7 15.6

Polycrystal δ-Pu 2.2 at. % Ga (new) 30.3

Cast α-Pu (laquer) 104.6 46.6 43.5

Cast α-Pu* 109.1 55.8 40.0

Cast α-Pu (DeCadenet) 109.0 54.5 40.9

a The measurements conducted by the authors of this article are  in red. All measurements

took place at ambient temperature except where noted.
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