
P
ho

no
n 

D
O

S

Te
m

pe
ra

tu
re

Energy Transfer
About the time this issue of Los Alamos Sciencewas going to press, we 

obtained new experimental results on atomic vibrations in uranium. These 
results help answer questions raised when Andrew Lawson and coworkers of

Los Alamos rediscovered vibrational softening in the early 1990s. Although soften-
ing had been observed at least three times earlier, the most important questions about
the phenomenon were never addressed experimentally: What is the nature of vibra-
tional softening? Is it an anharmonic or electronic effect? This article summarizes
preliminary inelastic neutron-scattering results that address both questions. Our full
results will be published in a journal article (Manley et al. 2000a). 

Lawson’s measurements of Debye-Waller factors—mean-square atomic displace-
ment, 〈u2〉—suggest that the average phonon frequency decreases by about 40 percent
as the temperature is raised from room temperature (300 kelvins) to uranium’s β-phase
transition temperature (940 kelvins), a much larger decrease than the quasi-harmonic
theory of anharmonicity would normally predict (see the article “Atomic Vibrations
and Melting in Plutonium” on page 190). In the quasi-harmonic approximation, anhar-
monic vibrations are assumed to be independent harmonic modes whose frequencies
are not fixed but, instead, depend on volume (V). In this approximation, the vibrational
entropy Sof a collection of vibrational modes can be written as

(1)

where ω is the frequency of the quasi-harmonic mode. Using this expression, we can
determine the entropy difference between a constant-pressure (changing ω) and 
a constant-volume (fixed ω) experiment. Specifically, for the 40 percent decrease 
in frequency implied by the results of Lawson, Equation (1) would predict that
(Sp – SV)940 K – (Sp – SV)300 K= –3kBln(0.6) = 1.5kB/atom, which is about 5 times
larger than the total entropy change of the α-β transition. 

On the other hand, if we neglect the electronic entropy, we can also determine
this vibrational-entropy difference directly from classical thermodynamics. Using the

S V T k
V

k TB
j

Bj
( , ) ln

( )
= −





∑ 3

hω
,

202 Los Alamos Science Number 26  2000

Vibrational Softening 
in α-Uranium

Michael E. Manley



classical expression relating the specific heats at constant volume and constant 
pressure, Cp – CV = 9BT να 2T, and the well-known values for bulk modulus BT,
molar volume ν, and thermal expansion coefficient α, we obtain 

(2)

which is nearly an order of magnitude smaller than the quasi-harmonic value 
derived from Equation (1). Clearly, a greater understanding of vibrational 
softening is needed. 

Equation (1) is based on the usual assumption that phonon softening comes from
anharmonicity. That is to say, the softening is assumed to come from higher-order
terms (higher than quadratic) in a temperature-independent interatomic potential. 
A simple analog of this potential is the pair potential shown in Figure 1(a). In this
case, the increase in the average interatomic separation 〈u〉 with increasing tempera-
ture can be related directly to the softening (or flattening) of the potential. In other
words, as the masses, or atoms, are pulled farther apart by thermal motion, the 
potential has less restoring force than is expected from a linear spring (hence, the
term softening). But what if the potential is not fixed? Could the interatomic poten-
tial remain harmonic and soften because the electronic contribution to the potential
changes with temperature? If true, this fact would have profound implications on 
the way we think about the electronic structure and equation of state for uranium.

Figure 1 shows the potentials and phase-space trajectories for an anharmonic (a)
and a harmonic (b) oscillator, both having the same energy E and mean-square 
displacement 〈u2〉. Note that the phase-space trajectory of the anharmonic oscillator
has a smaller area than that of the harmonic oscillator. In the classical limit (kBT >>
the energy spacing of quantum states), a unit of phase-space area of size ∆p∆u ~ h
(set by the uncertainty principle) contains one quantum state. So, a smaller area 
accesses fewer quantum states. Because entropy is proportional to the log of the
number of accessible quantum states, the anharmonic oscillator with its smaller
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Figure 1. Anharmonic vs 
Harmonic Oscillators
Potentials (top) and phase space (bot-

tom) are shown for (a) anharmonic and

(b) harmonic oscillators with the same

mean square displacement 〈u2〉 and

energy E. The dashed lines in (b) 

represent the effective potentials seen

at low energy. The anharmonic phase

space contains a smaller area and

hence has a lower vibrational entropy.
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phase-space area must have less vibrational entropy. A similar argument can be made
for harmonic and anharmonic oscillators at equal temperatures, but in that case they
would have equal entropies, and the energy of the anharmonic oscillator would be
larger. Either way, the vibrational free energy (F = E – TS) is larger for the anhar-
monic oscillator. Thus, determining whether anharmonic or harmonic models 
describe the vibrational modes of uranium is essential to understanding the equation
of state for uranium. 

Most standard measurements of vibrations in solids are immediately interpreted 
in terms of harmonic models. However, it is possible to take a more general view. 
In particular, for inelastic neutron scattering, the dynamic-structure factor can be 
interpreted in terms of the mean-square power spectrum. The dynamic-structure fac-
tor S(Q, ω) gives the scattering intensity as a function of momentum transferQ and
energy transfer hω. The limiting case of zero-energy transfer (elastic scattering), 
S(Q, ω = 0), gives the usual diffraction pattern used for structural determination.
The limiting case ofQ = 0 can be measured by various vibrational spectroscopies
such as infrared. But neutrons are unique in their ability to accurately probe both 
the dynamics and positions of atoms in solids simultaneously. This is because, as if
by some lucky twist of fate, neutrons with energies on the order of the vibrational
energies also have wavelengths similar to the spacing between atoms. 

For a Bravais lattice, the polycrystalline averaged incoherent dynamic scattering
function is given by 

(3)

where the brackets imply a thermal and powder average. Expanding Equation (3) in
powers of Q gives the following: 

Substituting this expansion into Equation (2) and simplifying in the classical ap-
proximation gives 

(4)

where R(ω) is the Fourier transform of the atomic motion given by

(5)

The first term in Equation (4) gives the elastic line, and the second gives the 
modulus-square power spectrum. The average potential energy per oscillator can 
then be determined from

(6)

where M is the mass of the vibrating atom. 
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In the case of harmonic phonons in the high-temperature limit, the
power spectrum can be related to the phonon density of states Z(ω)
by the relation

(7)

Integrating both sides with respect to ω gives the expected classi-
cal result, 〈U〉h = kBT/2. Note that this result holds true even if the
harmonic potential is temperature dependent. On the other hand, 
if the potential is fixed and the softening comes from anharmonicity, 
the potential energy is given by

(8)

where the A and B coefficients can be related to true anharmonic
terms in the interatomic potential. 

In recent experiments, we took inelastic neutron-scattering spectra
of uranium at several temperatures from 50 to 913 kelvins. Measure-
ments at room temperature and below were taken on the Low-
Resolution Medium-Energy Chopper Spectrometer (LRMECS) at 
the Intense Pulsed Neutron Source at Argonne National Laboratory.
Spectra at room temperature and above were taken on the Fermi-
Chopper Spectrometer (FCS) at the Center for Neutron Research at
the National Institute of Standards and Technology. Both spectrome-
ters are time-of-flight instruments. We used these instruments with
polycrystals to obtain the best average over the phonon spectrum. 
Because uranium scatters coherently, interference modulates the 
inelastic scattering intensity as a function of momentum transfer Q.
Thus, to determine a phonon density of states, we must sum over 
all Q in the Brillouin zone. 

We extracted the phonon density of states from data taken over a
wide range of momentum transfers using a procedure described in
Manley et al. 2000b. The results, shown in Figure 2, do indeed indi-
cate the phonon softening with increasing temperature predicted by
Angus Lawson and coworkers. That is, the average phonon frequency
decreases as the temperature is increased. But the data show another
surprise. The phonon density-of-state features sharpen with increasing
temperature. Normally, the features broaden with increasing tempera-
ture if the potential is anharmonic. The reason is that the anharmonic-
ity becomes more pronounced at high temperatures, causing 
phonon-phonon scattering and thereby reducing the lifetimes of 
the phonons. Because of the wave nature of neutrons, shortened
phonon lifetimes result in broadened phonon energy line widths 
according to the time-energy relationship ∆E∆t > h. Thus, the sharpen-
ing of the phonon density-of-state features with increasing temperature
does not indicate anharmonicity. More likely, the low temperature
broadening is a result of increased electron-phonon coupling associated
with the charge density wave that occurs at ~43 kelvins. 

A result that contradicts the fixed anharmonic potential model is
the linear increase with temperature of the average potential energy

U k T A k T B k T
anh B B B≅ + + +

1
2

2 3
( ) ( ) ... ,

1
2

1
2

2 2
M R k T ZBω ω ω( ) ( )= .

Vibrational Softening in α-Uranium

Number 26  2000  Los Alamos Science  205

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0 5 10
Energy (meV)

P
ho

no
n 

de
ns

ity
 o

f s
ta

te
s 

(m
eV

−1
)

15 20

913 K

645 K

433 K

250 K

300 K (FCS)

300 K (LRMECS)

50 K

Figure 2. Phonon Density of States for α-Uranium 
Our data from the Fermi-Chopper Spectrometer (FCS) at

the National Institute of Standards and Technology are

shown in red and those from the Low-Resolution 

Medium-Energy Chopper Spectrometer (LRMECS) at 

Argonne National Laboratory are shown in blue. They

both indicate phonon softening. 



(see Figure 3), which we calculated by substituting our measurements of the mean-
square power spectrum into Equation (6). The linear increase implies that the motion
obeys harmonic statistics and that the higher-order terms in Equation (8) are zero.
Therefore, although the phonon density of states is softening, the underlying potential
must be harmonic in this temperature range (consistent with the sharper features).
Evidently, the potential is temperature dependent, and the simple model given in 
Figure 1(b) best describes the nature of the phonon softening. Because the potential
originates with the sensitivity of the electronic energy to atom displacements, it 
follows that thermal excitations of the electronic states are altering the potential. 

Although uranium has temperature-dependent phonon frequencies, the vibrational
part of the equation of state of uranium can be treated with the well-understood 
harmonic statistics. Therefore, preliminary phonon density-of-states data measured
near the α-β transition and the β-γ transition in uranium, shown in Figure 4, were
used to estimate the vibrational entropies of these transitions. The change in phonon
density of states at each phase transition accounted for vibrational entropy changes of 
(Sβ – Sα)vib = +(0.15±0.01)kB/atom and (Sγ – Sβ)vib = +(0.36±0.01)kB/atom. 
Both these values are significantly smaller than the total entropy obtained from latent
heat measurements: (Sβ – Sα)tot = 0.37kB/atom and (Sγ – Sβ)tot = 0.55kB/atom. 
The remaining entropy increases of the phase transitions must be electronic in origin.
This is quite a surprise because vibrations by far make up the largest contribution to
the total entropy (see the article “Elasticity, Entropy, and the Phase Stability of Plu-
tonium” on page 208). The total electronic entropy is smaller because the Pauli 
exclusion principle restricts the number of countable electronic states. Another 
important observation is that the large thermal softening observed in α-uranium did
not occur in the high-temperature γ-uranium (bcc) phase.

These results are most interesting because they challenge the way we think about
the strength of bonding. With very few exceptions, changes in the stiffness of a 
bond between two atoms or a collection of atoms in a crystal are related to atomic
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Figure 3. Vibrational Potential 
Energy of α-Uranium 
The average vibrational potential energy

calculated from the mean-square power

spectrum increases linearly with temper-

ature. The linear increase implies that

the thermal vibrations obey harmonic

statistics.
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distances and/or the symmetry of the arrangement in the case of a crystal, and the 
effects of electronic thermal excitations are usually ignored. The results presented
here suggest the opposite and therefore should be of considerable interest to those
studying electronic structures and related issues, such as the equation of state. 
Quantifying and understanding the vibrational and electronic parts of the equation 
of state of uranium as well as the other actinides are our primary objectives in 
the near future. 
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Figure 4. Phonon Density of
States of the Three Solid-State
Phases
The plot shows our results for 

the phonon density of states of 

the three solid-state phases of 

uranium: α-uranium (orthorhombic), 

β-uranium (tetragonal), and γ-uranium

(bcc). The shifting of the peaks to

lower energies for the higher-tempera-

ture phases implies an increase in 

vibrational entropy with each phase

transition.


