
Theoretical and experimental research in equations of state and 

material modeling is essential to ensuring a firm scientific footing 

for these disciplines. This type of research is necessary not only for

assessing the nuclear weapons stockpile but also for developing a

predictive computational capability. Here, I will outline the general

theoretical formalism for calculating equations of state and then 

expand on the contribution from the vibrational (or thermal) excita-

tions of solids to the equation of state (EOS). The temperature 

dependence of the Debye temperature reported in the main article

has a direct bearing on our models for the vibrational contribution. 

The EOS for any material is typically expressed as an equation for

the pressure as a function of temperature and density. Generally

speaking, at densities less than 100 grams per cubic centimeter

(g/cm3) and temperatures less than 100 kilo-electron-volt (keV), there

are three distinct contributions to the pressure: 

P(ρ,T) = Pc(ρ) + PN(ρ,T) + Pe(ρ,T)   . (1)

The pressure at T = 0, Pc(ρ), is commonly called the “cold curve” and

is due to the electronic forces that bind the individual atoms into a

solid; PN(ρ,T) is the pressure due to the vibrational excitation of the

nuclei in the solid, liquid, or gas states; and Pe(ρ,T) is the pressure

due to the electrons’ thermal excitation. 

The cold curve is traditionally modeled by empirical formulae

(Lennard-Jones and Morse potentials combined with Thomas-

Fermi-Dirac theory). Modern calculations of electronic band structure

include relativistic effects. Experimental measurements conducted 

in a diamond-anvil or tungsten carbide cell can provide data for 

pressures up to approximately 2 megabars. 

The vibrational contribution for the solid state, PN(ρ,T), is traditionally

modeled with the Debye theory. Models of the liquid state use an 

interpolation scheme between a Debye solid and an ideal gas. 

Modern theory for all these states uses molecular dynamics or 

Monte Carlo methods to obtain pressures as a function of density

and temperature. No direct experimental data are available, but to

infer a melting temperature, we use shock wave methods and 

laser-heated diamond-anvil cells. 

The pressure for electron excitations, Pe(ρ,T), is traditionally modeled

by Saha or Thomas-Fermi-Dirac theories. Modern theory for this 

contribution to the pressure uses relativistic, quantum mechanical, 

self-consistent field theory. No direct experimental data are available,

but Pe(ρ,T) can be inferred from data obtained from pressure waves

generated by nuclear explosions.

We now add more detail to the vibrational contribution to pressure 

from the motion of the nuclei. The Mie-Grüneisen form is given by 

PN(ρ,T) = ρΓ(ρ,T)EN(ρ,T)   , (2)

where the energy in the Debye model is given by

(3)

and the Grüneisen parameter Γ is defined by the following equation: 

(4)

The Debye temperature ΘD(ρ,T) is the effective atomic vibrational 

temperature, and it determines when a material melts or loses its

strength. In Equation (3), D3(x) is the Debye integral of the third kind.

In traditional EOS modeling, ΘD is assumed to be independent of 

temperature—that is, ΘD(ρ). Consequently, Γ would also be a simple

function only of density. Modern theories suggest that ΘD and Γ
depend on a material’s density, temperature, and electronic structure.

The neutron diffraction measurements reported in the main article 

confirm these theoretical ideas. The data show that the Debye 

temperature and the Grüneisen parameter are, indeed, a function 

of temperature and electronic structure. 

To verify the predictions from quantum mechanical theory, we need

to further validate our current models. Measuring the Debye-Waller

factor with a new, heated high-pressure cell shows great promise. 

By using the apparatus containing this cell, we have obtained inter-

esting data for molybdenum. After validation, the theory will be used

in modeling material melting and strength for applications in weapons

physics (conventional and nuclear), metal casting, or explosively 

driven shape-forming. 
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