the momentum flux tensor, we need to
assume that each region in the gas has
a local Maxwell-Boltzmann distribution.
With this assumption one can show that
the momentum flux tensor in Eq. 7 has
the following form:

Iy = pvivie + 6p.

where p is the pressure. This form of
IT;; gives the same Euler equation that we
found by general continuum arguments.
(We will see in Part 1l that the form of
I1,; for the totally discrete fluid is not so
simple but depends upon the geometry of
the underlying lattice. Again by assuming
a form for the local distribution function
(the appropriate form will turn out to be
Fermi-Dirac rather than Boltzmann), 11,
will reduce to a form that gives the lattice
Euler equation.)

Recovering the Navier-Stokes Equa-
tion. The derivation of the Navier-Stokes
equation from the kinetic theory picture
is more involved and requires us to face
the full Boltzmann equation. Hilbert ac-
complished this through a beautiful argu-
ment that relies on a spatial-gradient per-
turbation expansion around some single-
particle distribution function f; assumed
to be given at #. In “The Hilbert Con-
traction” we discuss the main outline of
his argument emphasizing the assump-
tions involved and their limitations. Here
we will summarize his argument. Hilbert
was able to show that the evolution of f
for times ¢ > 1, is given in terms of its
initial data at ¢, by the first three moments
of f. namely the familiar macroscopic
variables p (density), v (mean velocity),
and T (temperature). In other words, he
was able to contract this many-degree-of-
freedom system down to a low-dimen-
sional descriptive space whose variables
are the same as those used in the usual hy-
drodynamical description. The beauty of
Hilbert’s proof is that it is constructive.
It explicitly displays a recursive closed
tower of constraint relations on the mo-
ments of f that come directly from the
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THE HILBERT CONTRACTION

he Boltzmann equation is a mi-

I croscopic equation for colliding-

gas evolution valid in a very tight
regime. It is first order in time and so
requires a complete description of the
one-particle distribution function at one
time, say ¢ = 0, after which its functional
form is completely fixed by the Boltz-
mann transport equation.

Describing the one-particle distribution
function completely is a hopeless pro-
cedure, since the amount of information
is too large. However, one wants to
recover hydrodynamics, which is essen-
tially a partial differential equation for
a macroscopic description of the fluid
at long times and distances compared to
molecular scales. So there must exist a
contraction mechanism that reduces the
number of degrees of freedom required
to describe the solution to the Boltzmann
transport equation at such long times and
distances. It is not obvious how that can
happen, but Hilbert gave a proof that is
central to understanding that it must hap-
pen and in a rather surprising way. We
will call this process the Hilbert contrac-
tion. All analyses of the Boltzmann equa-
tion are based on this contraction. We
would like to give it in detail because it
is a beautiful argument, but space forbids
this, so we outline how Hilbert reasoned.

Since we don’t know what else to do
when faced with such a highly nonlinear
system, we construct a perturbation ex-
pansion in a small variable around some
distribution function f, assumed to be
given to us at #5. Under some very mild
assumptions, and assuming the existence
of such a general perturbation expansion
in some parameter &, Hilbert was able to
show that the evolution of f for ¢ > #; is
given in terms of its initial data at f5 by
the first three moments of f, namely p, v,
and T. The system has contracted down
to a low-dimensional descriptive mani-
fold whose coordinates are the same vari-
ables used by the hydrodynamic descrip-
tion. The beauty of Hilbert’s proof is that

it is constructive. It explicitly displays a
recursive closed tower of constraint rela-
tions on the moments off that come di-
rectly from the Boltzmann eguation. The
proof also shows that such a contracted
description is unique—a very powerful
result.

It must be pointed out that Hilbert's
construction is on the time-evolved solu-
tion to the Boltzmann transport equation,
not on the equation itself, which till re-
quires a complete specification of f. It
amounts to a hard mathematical statement
on an effective field-theory description
for times much greater than elementary
collision times, but with space gradients
still smooth enough to entertain a serious
gradient perturbation expansion. As such,
it says nothing about the turbulent regime,
for example, where all these assumptions
fall.

In standard physics texts one can read
all kinds of plausibility arguments as to
why this contraction process should ex-
ist, but they lack force, for, by arguing
tightly, one can make the conclusion go
the other way. This is why the Hilbert
contraction is important. It is really a
powerful and mathematically unexpected
result about a highly nonlinear integro-
differential equation of very special form.
Beyond Hilbert’s theorem and within the
Boltzmann transport picture, we can say
nothing more about the contraction of de-
scriptions.

The construction of towers of moment
constraints, coupled to a perturbation ex-
pansion that Hilbert developed for his
proof of contraction, was used in a some-
what different form by Chapman and En-
skog. Their main purpose was to devise
a perturbation expansion with side con-
straints in such a way as to pick off the
values of the coupling constants-which
are called transport coefficients in stan-
dard terminology-for increasingly more
sophisticated forms of macrodynamical
equations.

One makes the usual kinetic assump-
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THE HILBERT CONTRACTION (continued)

tions: The gas reaches local equilibrium
in a collision time or so; the one-particle
distribution function has a local Maxwell-
Boltzmann form (or whatever form is ap-
propriate), call it f7; a second time scale
is assumed where space gradients are still
small, but collective modes develop at
large distances and at times much greater
than molecular collision times. Then one
assumes a general functional perturbation
expansion exists of the form

F=RQ+&P+e® 4.,

which turns out to be explicitly a spatial
gradient expansion:

f =f(1 + MOV + 2 (MAVY + -+ )

where X is the mean free path in the
system and v is the macrovelocity.

The perturbation expansion is set up
so that at nth order, the correction to f;
obeys an integral equation of the form
f.C(€™) = L,, where C is the Boltzmann
collision operator and L, is an operator
that depends only on lower order spatial
derivatives. This generates a recursive
tower of relations £® whose solubility
conditions at order n are the (n — 1)th-
order hydrodynamical equations.

For example, assume

f=r(1+e0);

that is, we keep only 1st order in £&. Then
in the Boltzmann collision term keep con-
sistently only order ¢ and in the stream-
ing operator put £© =f£;. So we get

o
0, + VoOa + a4 av_a)fL =fLC(£(1))’

which is of the form

ACED) =L,

The solubility conditions for this are that
L) must be orthogonal to the five zero
eigenmodes of C (&) = 0 (the solutions
are 1,v, and v2). These solubility condi-
tions are the Euler equation for p, v, and
T and the ideal gas equation of state. In
this way one derives a sequence of hydro-
dynamical equations with explicit forms
for the transport coefficients. Order 0
gives the Euler equation, order 1 gives
the Navier-Stokes equations, order 2 and
greater give the generalized hydrodynam-
ical equations, which have some validity
only in special situations. The expansion
is an asymptotic functional expansion, so
going beyond Navier-Stokes takes one
away from ordinary fluids rather than
closer to them. Solving explicitly for the
various £ gives a way to evaluate the
transport quantities (viscosity, etc.).

There are many other ways to do the
same thing—multiple time expansions,
dispersion methods, etc. We have devel-
oped everything so far within the con-
ceptual frame of the Boltzmann trans-
port equation. Within that framework
the problem of deriving macrodynamical
equations and associated transport coeffi-
cients reduces to tedious but straightfor-
ward linear algebra that has absorbed the
best efforts of excellent technical people
since the turn of the century. It is a prob-
lem best suited to a computer but only
recently have algebraic processors of suf-
ficient power been available.

This asymptotic perturbation expansion
is a way to compute measurable quantities
from microdynamical properties, but the
physical insight one gains from doing it is
small. The other methods mentioned, es-
pecially correlation-function techniques,
are much more revealing. All of these
comments and approaches carry over di-
rectly to the discrete case of the lattice
gas. Nothing conceptually new arises in
the totally discrete case, but explicit cal-
culations are a great deal easier. m
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Boltzmann equation. The zero-order re-
lation gives the Euler equations and the
second-order relation gives the Navier-
Stokes equations.  However, Hilbert's
method is an asymptotic functional ex-
pansion, so that the higher order terms
take one away from ordinary fluids rather
than closer to them. Nevertheless, solv-
ing explicitly for the terms in the func-
tional expansion provides a way of eval-
uating transport coefficients such as vis-
cosity. (See the "Hilbert Contraction” for
more discussion.)

Summary of the Kinetic Theory Pic-
ture. Our review of the kinetic theory
description of fluids introduced a num-
ber of important concepts: the idea of
local thermal equilibrium; the character-
ization of an equilibrium state by a few
macroscopic observable; the Boltzmann
transport equation for systems of many
identical objects (with ordinary statistics)
in Collision; and the fact that a solution
to the Boltzmann transport equation is
an ensemble of equilibrium states. In
“The Hilbert Contraction” we introduced
the linear approximation to the Boltz-
mann equation with which one can de-
rive the Navier-Stokes equations for sys-
tems not too far (in an appropriate sense)
from equilibrium in terms of these same
macroscopic observable (density, pres-
sure. temperature, etc.). We then outlined
a method for calculating the coupling
constants in the Navier-Stokes system—
that is, the strengths of the nonlinear
terms-as a function of any particular mi-
crodynamics.

Thisreview was intended to give afla
vor for the chain of reasoning involved.
We will use this chain again in the to
tally discrete lattice world. However, just
as important as understanding the kinetic
theory viewpoint is keeping in mind its
limitations. In particular, notice that per-
turbation theory was the main tool used
for going from the exact Boltzrnann trans-
port equation to the Navier-Stokes equa-
tions. We did not discover more pow-
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