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identify with the velocity of a “macroscopic” fluid cell. The cel is not small
enough to notice a particle structure for the fluid, but it is small enough to be

treated as a mathematical point and still agree with physics.
To derive the properties of aflow defined by the vector field, one now invokes the

generalized Stokes theorem: . )
jg A= f dA,
ax b

where ¥ is a generalized surface or volume, 9% the boundary of X, A an r-differential
form and dA an (n + 1)-differential form. This very general theorem has two familiar
forms: one is the classical Stokes theorem from one to two dimensions,

7{ A-dl= 7{VXA~dS,
Jax Je

I etv(x,t) beavector-valued field referred to a fixed origin in space, which we

and the other is the Gauss law from two to three dimensions,

7{ A~dS=/(V~A)dV,
% b))

where £ is a curve, S is a surface, and V is a volume in three-dimensional Euclidean
-—
space R”.

Conservation Laws and Euler’s Equation. First, we deal with the idea of continu-
ity, or conservation of flow. If p is the density, or mass per unit volume, then the mass
of the fluid in volume V (that is, X), is equal to fz pdV . A two-dimensional surface
in R? has an outward normal vector n which is defined to be positive. The total mass
of fluid flowing out of a volume ¥ can be written as

pv-dS =
a%

Continuity of the fiow implies a balance between the flow through the surface and the
loss of fluid from the volume. That is, the decrease in mass in the volume must equal
the outflow of fluid mass through the surface of the volume, which implies by the Gauss
law that

pv nds.

r r
pv-dS = —a,/ pdV = / V- (pv)dV .
) py by
This gives the first evolution equation for a fluid, the continuity, or mass-conservation,
equation:
Op+V - (pv)=0. 0))

Now we introduce the idea of pressure p as the force exerted by the fluid on a
unit surface area of an enclosed volume and use Newton’s second law, F = ma. The
total force acting on a volume of fluid due to the remainder of the fluid is given by
— faz pdS. Using Stokes theorem we can write

f f
— pdS = — f VpdV .
% b
The translation of F = ma to a continuous medium is
—Vp = pdv/dt,
where dv/dt is a total derivative. The chain rule on dv(x,t)/dt gives
pdv/dt = p{O,v+v-Vv}
thsutunno this result into the e

dissipation-free fluid:
1
ov=—(v-V)v— ;Vp. 2)
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Discrete Fluids

One can generalize Euler’s equation to a form more useful for a dissipative fluid.
For this we look at the flux of momentum through a fluid volume. The momentum of
fluid passing through an element dV is pv, and its time rate of change expressed in
components is

0:(pvi) = (O, p)vi + p(O;v:).

We can rewrite 8,p and 8,v; as spatial derivatives by using Egs. 1 and 2. Then

Oi(pvi) = =0T, 3)
THE where the momentum flux tensor I1;; = pé;x + pvivi.
The meaning of the momentum flux tensor can be seen immediately by integrating
gggfjﬁgg%d Eq. 3 and applying Stokes theorem.
(continued) 8, / pvidE = — / HIidE = — ¢ Tmds.
= ® I)>

So
6,/ pvidV = — I nds, .
b)) F)>

where the left-hand side is the rate of change of the ith component of momentum pv;
in the volume and II;;n;d¥ is the ith component of momentum flowing through 45§
Therefore, Il;; is the ith component of momentum flowing in the kth direction. This
is more easily seen by writing

Iikne = poixne + pvivin, = pn+ pv(v - m).

Equations 1, 2, and 3 are the basic formalism for classical Newtonian ideal fluids (fluids
with no dissipation) and are also true for flows in general.

Classical Dissipative Fluids—The Navier-Stokes Equations. The general Euler’s
equation is 9;(pv;) = —8,Il;;, where II;; is now the momentum stress tensor. The form
of this tensor changes if the fluid is dissipative, for example, if viscous forces convert
the energy in the flow into heat. Traditionally, IT;; is modified in the following way.
Take I1;; = pé;i + pv;v¢ and introduce an unknown tensor a{ , that describes the effects
of viscious stress. Then rewrite the momentum stress tensor as

Mg = pbix + pvivk — pojy = Oix + pViVe,
where o0, = pby — po, is called the stress tensor and o}, the viscosity stress tensor.
The form of o}, can be deduced on general grounds. First we assume that the
gradient of the velocity changes slowly so o is linear in 9, v;. Moreover, o}, is zero

for v = 0, and under rotation it must vanish since uniform rotation produces no overall
transport of momentum. The unique form that has these properties is

Ux{k =a(Opv; + Oivp) + btsikajVj,
where a and b are unknown coefficients. It is usually written in the form
o}y = v(Ovi — Bivi — 2/3648;v;) + 6k Bv;,

where v is the kinematic shear viscosity and ( is the kinematic bulk viscosity.
For an incompressible fluid (the density is constant so p = po) this tensor simplifies,
and Euler’s equation goes over to the incompressible Navier-Stokes equations:

1
Ov+(v-V)v= —;Vp +vV2v and V-v=0.
In tensor notation we have
1 &
8,v,- + (vjaj)v,- = —;6,1) + VHV,' and aka =0.

In Part II we end the theoretical discussion of the lattice gas by giving the
incompressible limit of the lattice gas Navier-Stokes equations. B
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