Turbulence

Reynolds
Number

o design and test proposed large-
Tscale equipment, such as airfoils or

entire aircraft, it is often much more
practical to experiment with scaled-down
versions. If such tests are to be success-
ful, however, dynamic similitude must
exist between model and field equipment,
which, in turn, implies that geometric, in-
ertial, and kinematic similitude must ex-
ist.

The Navier-Stokes eguations (Egs. 9
and 10 in the main text) are a good start-
ing point for deriving the relationships
needed to establish dynamic similitude.
First, we look at the case of laminar flow.
Ignoring body force and pressure effects,
we examine the momentum conservation
relationship for steady, laminar, incom-
pressible, two-dimensional flow, equating
just the advection and diffusion terms in
the x-direction:
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Here u and v are the x and y compo-
nents of the velocity and vy, is the molec-
ular kinematic viscosity (the ratio of fluid
viscosity to fluid density um,/p). Advec-
tion has to do with kinematic effects, that
is, the transport of fluid properties by the
motion of the fluid, and thus accounts for
momentum transport along streamlines;
the diffusion terms represent viscous ef-
fects that cause momentum to diffuse be-
tween streamlines, thereby tending to di-

minish any sharp velocity gradients.

We can write Eq. 1 in dimensionless
form by introducing a length scale L and
a fluid velocity in the free stream u,. The

result is
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where the highlighted variables are di-
mensionless. This portion of the momen-
tum equation can thus be uniquely char-
acterized by the ratio of the coefficients
multiplying the dimensionless advection
and diffusion terms. The ratio, called the
Reynolds number
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can be thought of as a comparative mea-
sure of inertial and viscous (diffusive) ef-
fects within the flow field. To achieve dy-
namic similitude in two different laminar-
flow situations, the Reynolds numbers for
both must be identical.

What happens if we increase the flow
speed to the point that viscous dissipa-
tion can no longer stabilize the flow, and
the macroscopic balance between mean-
flow inertia and viscous effects bresks
down? At this point there is a transition
from purely laminar flow to turbulence.
In similar flows, the transition occurs at
a specific Reynolds number characteris-
tic of the flow geometry. For instance,
any fluid traveling inside a circular pipe—
regardless of the specific fluid or conduit

being used—experiences the onset of tur-
bulence at R = 2000.

At or near this “critical” Reynolds num-
ber, inertial contributions to mean-flow
momentum that cannot be dissipated by
viscous stresses must be absorbed by new-
ly formed turbulent eddies. The pres-
ence of turbulence energy is often de-
scribed in terms of an effective turbulence
viscosity v, defined as the ratio of the
turbulence-shear, or Reynolds, stress to
the mean-flow strain rate. With this in
mind, an effective turbulence Reynolds
number—one that includes molecular vis-
cous effects—is
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Molecular viscous effects are overwhelm-
ed if 14 > vyn. In those instances the
exact value of the kinematic viscosity vy,
is immaterial, and flow behavior is dom-
inated by turbulence effects.

Although a turbulence Reynolds num-
ber may be entirely adequate for research
on macroscopic flows, the analysis of
turbulence substructure requires a third
Reynolds number, a local turbulence Rey-
nolds number based not on L and g but
on representative eddy size s and eddy
velocity u’:
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Note that the molecular kinematic viscos-
ity vy, is retained in this definition. The
choice of molecular viscosity to charac-
terize the dissipative mechanisms respon-
sible for tearing eddies apart is based on
the ultimate transformation of turbulence
into heat energy. Molecular processes
are, in the end, dominant at the small-
est scales, and R, is a relative measure of
the loss of kinetic energy from an eddy
of a given size to heat. For the smallest
eddies in a flow system, Ry = 1; that is,
all the energy of the eddy is dissipated
into heat. m
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