




A
11throughout his history man has

wanted to know the dimensions

of his world and his place in it.

Before the advent of scientific in-

struments the universe did not seem very

large or complicated. Anything too small to

detect with the naked eye was not known,

and the few visible stars might almost be

touched if only there were a higher hill

nearby.
Today, with high-energy particle ac-

celerators the frontier has been pushed down

to distance intervals as small as 10-]6 cen-

timeter and with super telescopes to cos-

mological distances. These explorations

have revealed a multifaceted universe; at

first glance its diversity appears too com-

plicated to be described in any unified man-

ner. Nevertheless, it has been possible to

incorporate the immense variety of ex-

perimental data into a small number of

quantum field theories that describe four

basic interactions—weak, strong, electro-

magnetic, and gravitational. Their mathe-

matical formulations are similar in that each

one can be derived from a local symmetry.
This similarity has inspired hope for even

greater progress: perhaps an extension of the

present theoretical framework will provide a

single unified description of all natural
phenomena.

This dream of unification has recurred

again and again, and there have been many
successes: Maxwell’s unification of elec-

tricity and magnetism; Einstein’s unification

of gravitational phenomena with the
geomeh-y of space-time; the quantum-me-

chanical unification of Newtonian mechan-

ics with the wave-like behavior of matteL the

quantum-mechanical generalization of elec-

trodynamics; and finally the recent unifica-

tion of electromagnetism with the weak
force. Each of these advances is a crucial

component of the present efforts to seek a

more complete physical theory.

Befo,re the successes of the past inspire too

much optimism, it is important to note that a

unified theory will require an unprecedented

extrapolation. The present optimism is gen-
erated by the discovery of theories successful
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at describing phenomena that take place over

distance intervals of order 10–16 centimeter

or larger. These theories may be valid to

much shorter distances, but that remains to

be tested experimentally. A fully unified the-

ory will have to include gravity and therefore

will probably have to describe spatial struc-

tures as small as 10–33centimeter, the funda-

mental length (determined by Newton’s

gravitational constant) in the theory of grav-

ity. History suggests cause for further

caution: the record shows many failures re-

sulting from attempts to unify the wrong, too

few, or too many physical phenomena. The

end of the 19th century saw a huge but

unsuccessful effort to unify the description of

all Nature with thermodynamics. Since the

second law of thermodynamics cannot be

derived from Newtonian mechanics, some

physicists felt it must have the most funda-

mental significance and sought to derive the

rest of physics from it. Then came a period of

belief in the combined use of Maxwell’s elec-

trodynamics and Newton’s mechanics to ex-

plain all natural phenomena. This effort was

also doomed to failure: not only did these

theories lack consistency (Newton’s equa-

tions are consistent with particles traveling

faster than the speed of light, whereas the

Lorentz invariant equations of Maxwell are

not), but also new experimental results were

emerging that implied the quantum structure

of matter. Further into this century came the

celebrated effort by Einstein to formulate a

unified field theory of gravity and elec-

tromagnetism. His failure notwithstanding,

the mathematical form of his classical theory
has many remarkable similarities to the

modern efforts to unify all known fundamen-

tal interactions. We must be wary that our

reliance on quantum field theory and local

symmetry may be similarly misdirected, al-

though we suppose here that it is not.
Two questions will be the central themes

of this essay. First, should we believe that the

theories known today are the correct compo-

nents of a truly unified theory? The compo-

nent theories are now so broadly accepted

that they have become known as the “stan-
dard model.” They include the electroweak

theory, which gives a unified description of

quantum electrodynamics (QED) and the
weak interactions, and quantum chromo-

dynamics (QCD), which is an attractive can-

didate theory for the strong interactions. We
will argue that, although Einstein’s theory of

gravity (also called general relativity) has a

somewhat different status among physical

theories, it should also be included in the

standard model. If it is, then the standard

model incorporates all observed physical

phenomena—from the shortest distance in-

tervals probed at the highest energy ac-

celerators to the longest distances seen by

modern telescopes. However, despite its ex-

perimental successes, the standard model re-
mains unsatisfying, among its shortcomings

is the presence of a large number of arbitrary

constants that require explanations. It re-

mains to be seen whether the next level of

unification will provide just a few insights

into the standard model or will unify all

natural phenomena.

The second question examined in this es-

say is twofold: What are the possible strate-

gies for generalizing and extending the stan-

dard model, and how nearly do models based

on these strategies describe Nature? A central

problem of theoretical physics is to identify

the features of a theory that should be ab-

stracted, extended, modified, or generalized.

From among the bewildering array of the-

ories, speculations, and ideas that have

grown from the standard model, we will

describe several that are currently attracting

much attention.
We focus on two extensions of established

concepts. The first is called supersymmetry;

it enlarges the usual space-time symmetries

of field theory, namely, Poincar6 invariance,

to include a symmetry among the bosons

(particles of integer spin) and fermions

(particles of half-odd integer spin). One of
the intriguing features of supersymmetry is

that it can be extended to include internal

symmetries (see Note 2 in “Lecture Notes—

From Simple Field Theories to the Standard

Model). In the standard model internal local

symmetries play a crucial role, both for
classifying elementary particles and for de-
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termining the form of the interactions among

them. The electroweak theory is based on the

internal local symmetry group SU(2) X U(l)

(see Note 8) and quantum chromodynamics

on the internal local symmetry group SU(3).

Gravity is based on space-time symmetries:

general coordinate invariance and local

Poincari symmetry. It is tempting to try to

unify all these symmetries with supersym-

metry.

Other important implications of super-

symmetry are that it enlarges the scope of the

classification schemes of the basic particles

to include fields of different spins in the same

multiplet, and it helps to solve some tech-

nical problems concerning large mass ratios

that plague certain efforts to derive the stan-

dard moclel. Most significantly, if supersym-

metry is made to be a local symmetry, then it

automatically implies a theory of gravity,

called supergravity, that is a generalization of

Einstein’s theory. Supergravity theories re-

quire the unification of gravity with other

kinds of interactions, which may be, in some

future version, the electroweak and strong

interacticms. The near successes of this ap-

proach are very encouraging.

The other major idea described here is the

extension of the space-time manifold to

more than four dimensions, the extra

dimensions having, so far, escaped observa-

tion. This revolutionary idea implies that

particles are grouped into larger symmetry

multiples and the basic interactions have a

geometrical origin. Although the idea of ex-

tending space-time beyond four dimensions

is not new, it becomes natural in the context

of supergravity theories because these com-
plicated theories in four dimensions may be

derived from relatively simple-looking the-

ories in higher dimensions.
We will follow these developments one

step further to a generalization of the field

concep~ instead of depending on space-time,

the fields may depend on paths in space-

time. When this generalization is combined
with supersymrnetry, the resulting theory is

called a superstring theory. (The whimsi-

cality of ‘the name is more than matched by

the theory’s complexity.) Superstring the-

ories are encouraging because some of them
reduce, in a certain limit, to the only super-

gravity theories that are likely to generalize

the standard model. Moreover, whereas

supergravity fails to give the standard model

exactly, a superstring theory might succeed.

It seems that superstring theories can be

formulated only in ten dimensions.

Figure 1 provides a road map for this

essay, which journeys from the origins of the

standard model in classical theory to the

extensions of the standard model in super-
gravity and superstrings. These extensions

may provide extremely elegant ways to unify

the standard model and are therefore attract-

ing enormous theoretical interest. It must be

cautioned, however, that at present no ex-

perimental evidence exists for supersym-

metry or extra dimensions.

Review of the Standard Model

We now review the standard model with

particular emphasis on its potential for being

unified by a larger theory. Over the last

several decades relativistic quantum field

theories with local symmetry have succeeded

in describing all the known interactions

down to the smallest distances that have

been explored experimentally, and they may

be correct to much shorter distances.

Electrodynamics and Local Symmetry. Elec-

trodynamics was the first theory with local

symmetry. Maxwell’s great unification of

electricity and magnetism can be viewed as

the discovery that electrodynamics is de-

scribed by the simplest possible local sym-
metry, local phase invariance. Maxwell’s ad-

dition of the displacement current to the field

equations, which was made in order to insure

conservation of the electromagnetic current,

turns out to be equivalent to imposing local

phase invariance on the Lagrangian of elec-

trodynamics, although this idea did not

emerge until the late 1920s.

A crucial feature of locally symmetric
quantum field theories is this: typically, for

each independent internal local symmetry

there exists a gauge field and its correspond-

ing particle, which is a vector boson (spin-1

particle) that mediates the interaction be-

tween particles. Quantum electrodynamics

has just one independent local symmetry

transformation, and the photon is the vector

boson (or gauge particle) mediating the inter-

action between electrons or other charged

particles. Furthermore, tbe local symmetry

dictates the exact form of the interaction.

The interaction Lagrangian must be of the

form e.P’(.x),4Y(.x),where .P(.x) is the current

density of the charged particles and A ~(x) is

the field of the vector bosons. The coupling

constant e is defined as the strength with
which the vector boson interacts with the

current. The hypothesis that all interactions

are mediated by vector bosons or, equi-

valently, that they originate from local sym-

metries has been extended to the weak and

then to the strong interactions.

Weak Interactions. Before the present under-

standing of weak interactions in terms of
local symmetry, Fermi’s 1934 phenomeno-

logical theory of the weak interactions had

been used to interpret many data on nuclear

beta decay. After it was modified to include

parity violation, it contained all the crucial

elements necessary to describe the low-

energy weak interactions. His theory as-

sumed that beta decay (e.g., n + p + e– + ;?)

takes place at a single space-time point. The

form of the interaction amplitude is a prod-

uct of two currents Y’.JV, where each current

is a product of fermion fields, and .P’JP de-

scribes four fermion fields acting at the point

of the beta-decay interaction. This ampli-
tude, although yielding accurate predictions

at low energies, is expected to fail at center-

of-mass energies above 300 GeV, where it

predicts cross sections that are larger than

allowed by the general principles of quantum
field theory.

The problem of making a consistent (re-

normalizable) quantum field theory to de-

scribe the weak interactions was not solved

until the 1960s, when tbe electromagnetic
and weak interactions were combined into a

locally symmetric theory. As outlined in Fig.
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Fig. 2. Comparison of neutrirzo-quark charged-current scattering in the Fermi
theory and the modern SU(2) X U(I) electroweak theory. (The bar indicates the
Dirac conjugate.) The point interaction of the Fermi theoq !eads to an inconsistent
quantum thtory. The W‘ boson exchange in the electroweak theory spreads out the
weak interactions, which then leads to a consistent (renormalizable) quantum field
theory. J ~) and J ~-) are the charge-raising and charge-lowering currents, respec-
tively. The amplitudes given by the two theories are nearly equal as long as the
square of the momentum transfer, qz = (PU – pd)2, is much less than the square of
the mass of the weak boson, M~).
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is not a rcnormalizablc quanlum field the-

ory. This means [hat removing the Inflnltles

from Ihc [hcory strips I( of all 1[s prcdictl\e

power.

In lhc gauge theory gcrrcrallzation of

Fermi’s theory. beta decay and olher weak

lntcrac!lons arc mcdlated h> heavy weak

vwlor hosons. so the basic Inlcrac[lon has

the form ,qM’P./}, and the current-currcn[ in-

teraction looks po]ntllke only for energlcs

much less than [he rest energy of Ihc weak

bosons. (The coupling ,< is dimcms]onless.

whereas (;F IS a composi[e number [hat in-

cludes the masscsofthc weak icc~or hosons. )

The theory has four indcpcndcnt local sym-

rnctrics, lncludlng {hc phase symmetry [hat

ylclds elcctrod>narnics. The local s>mrnctr>

group of (he clectroweak theory ts SU(2) X

(J(l). where U(I) is the group of phase trans-

formations, and SU(2) has [he same struc-

~ure as rotations [n three dtmcnslons. The

one phase angle and the ~hrcc Indcpcndcnt

angles of rotallon [n [his thcor> Imply ~hc

cxistcncc of four veclor bosons, the pholon

plus three weak kcctor bosons. 1~”’. /[). and

W-, These four partlclm couple 10 the four

S[1(2) X [J( 1) currents and are responsible

for the ‘“elcctroweak” ln[cractions.

The idea thal all tn~eractlons must be de-

rived from local symmetry may seem simple.

but it was not stall obvious how to apply this

idea [o the weak (or lhc strong) Interactions.

Nor was it ohvtous tha~ clcclrodynamlcs and

~hc weak inlcrac[ions should be parl of the

$amc local symmetry slncc. cxpcrimcnlall>.

[hc weak bosons and [hc photon do not share

much in common: (he photon has been

known as a physical entity for nearly ctgh~y

years. bu[ the vwak vcc~or bosons wwrc not

observed until late 1982 and early 1983 a[ ~he

C’ERN pro~on-antlproton colllckr In {he

highes{ energy accclcralor L!xpcnmcnls c\;er
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Table 1

performed: the mass of the photon IS consis-

tent with zero. whereas the weak vector bos-

ons have huge masses (a li~tle less ~han 100

GeV/cl): electromagnetic lnteracllons can

lake place over ven large distances, whereas

the weak Interactions take place on a dis-

tance scale of about 10’16 cen(lmeter: and

finally. ~he pho[on has no elec~ric charge,
whereas the weak veclor bosons carry the

electric and weak charges of Ihe clectroweak

Interactions. Moreover, in the early days of

gauge lheortes. it was generally belwved. al-

lhough incorrectly. ~hat local symmetry ofa

Lagranglan Implies masslessness for the vec-

tor hoson$.

How can par~lcles as dilTcrcnl as the

photon and the weak bosons possibly be

unlficd by local symmclry? The answer IS

explained In detail In the Leclure Noles; we

mention here merely (hat If (he ~acuum of

a Iocall} symmetric theory has a nonzero

s)mmctr\ charge denslt> due to [he

presence of a spinless field. then the vector

boson assoclawd wl~h !hat symmctr~ ac-

qulrcs a mass. Solu~lons to the equations of

motion in which the vacuum IS not invanant

under symmc[ry Iransformatlons arc called

spontaneously broken solutions. and the vcc-

Ior boson mass can be arbitrarily large

without upscltlng ~he s)mmctry of the La-

granglan.

In [hc clcclrowcak Ihcor} sponlarrcous

symmclr) hrcaklng scparalcs thr weak and

clcc[romagrrclic lnlcrac(lons and IS the mosl

]mponant mechanism for gcncratlng masses

of [he clcmentar> particles. In the theories

dlcussed below. spontaneous s~mmc(ry

breaking IS often used 10 dlsllngulsh ln~erac-

~lons Ihal have been unllicd h) extending

s}mmc[ries (SCCNOIC 8).

The range of \alldlty of the clcctrowcak

(heo~ {s an Important tssue. cspmally when

considering exwnsions and gcncraliza~ions

10 a ~hcor) of broader applicability. “Range

of \alldlt>” refers 10 the energy (or dlslancc)

scale o~cr which Ihc prcdlctlons of a theory

arc \altd. The old Fcrml [heor} gl~cs a good

account of the weak lnlcrac(lons for encrglcs

less [ban 50 Cic V. bul al hlgiicr encrglcs,

where (hc effect of the weak bosons IS to
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Review of fundamental interactions.

Interaction
Local

Example Name Symmetry

Any Charged Particle

)-Photon
Any Charged Particle

Quark

*“”on
Quark

Ve

+ ‘+
e-

Any Massive Particle

)-- ‘ravi’o”
Any Massive Particle

‘hd’e+

Electromagnetic

(QED)

Strong
(QCD)

Eleclroweak

Gravity

Conjectured
Strong-

U(l)

SU(3)

SU(2) x U(1)

PoincarE

SU(5)

/’ \
Electroweak

u Unification
(Proton Decay ) u

Local Synsnse@y: The generator of the electromagnetic U( 1) is a linear combination of
the generators of the electroweak U(1) and the diagonal generator of the electroweak
SU(2). The gewwal s%wardinate invarismx of gravity permits several formulations of
gravity in which ckf%rertt id symmetries can be emphasized.

Range of Force The ebmomagaetic and gravitational forces fall off as l/r2. Of course,
the electromagnetic part of the electroweak force is long range.

RelativeStrength at Low Energy:The strength of the strong interactions is extremely
energy-dependent. At low energy hadronic amplitudes are typically 100 times stronger
than electroma~netic amplitudes.

Nismber of Vector Bosons: The graviton can be viewed as the gauge particle for
translations, and as a consequence it has a spin of 2. After all the symmetries of gravity
are taken into account, the graviton is massless and has only two degrees of freedom
with felicities (spin components) &2.
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Number of Relative
Veetor Range of Strength at Mass
Bosons Force Low Essergy We

1 (photon) Infinite 1/137

8 (gluons)

4(3 weak
bosons, I
photon)

(Graviton)

24

10-13 ~

10-’5 cm
(weak)

Infinite

10-29 cm

1

1()-32 10’5GeVfc2

spread out the weak interactions in space-

time, the Fermi theory fails. The elemroweak

thecr~ remains a consistent quantum field

theory al cncrgics far ahovc a fcw hundred

CJCV and rcduccs to the Fermi lheo~ (wtth

the modification for parily violatlon) at

lower energies. Moreover. it correctl}

predicts the masses of the weak vector bos-

ons. In fact. until cxperimen[ proves other-

wise. there arc no logical impediments to

extending the clcctrowcak lheory to an

energy scale as Iargc as desired, Recall !hc

example of electrodynamics and Its quan-

Ium-mechanical generalization, As a theo~

GF1f2 = 290 GeVlc2 ofllghl in the mld-191h century. it could hc
tested to about 10 $centimeter. How could it

have been known that QED would still be

valid for distance scales ten orders of magni-

~udc smaller? Even today It is not known

where quanlum clectrod}namlcs breaks

down.
~(-j-38 G#2 == 1.2 X 1010GeV/c2

Strong Interactions. Quan{um chromo-
dynamics is [he candidate theory of the
slrong interactions. It. too. Isa quanlum field
~heor-ybased on a local symmetry: Ihe sym-

metry, called color SLJ(3). has eighl inde-

pendent kinds oftransformatlons. and so the

strong lnlcractmns among [hc quark ticlds

arc mediated by eight vcclor bosons. called

gluons, .Apparcntly. the local symmetn of

the strong interaction theory IS not spon-

taneously broken, Although conceptual]!
Mass ScrsIeThere is no universal definition of mass seaie in particle physics. It is, simpler, lhe absence of symmetry breaktng
however, possible to select a mass scale d’ gd?ysietd si@&wtsm fix @eh cd’ them makes it harder to extracl experimental
theories. For example, in the electreweak ad W(3) thewies $ist$@m%%sW# is predictions. The exacl SU(3) color symmet~
associated with the spontaneous symmetry Lweakkg. In btMt aaasa &l&wawwsra v%lwe may imply that the quarks andgluons. which
of a scalar field (which has dimensions of mass) kma a aoswero w*. b tke weak
interactions GF is related directly to this vwusnn value (see Fig. 2) trod, at the same

carry the SU(3) color charge. can never be

time, to the masses of the weak bosons. %mihwly, the scale of the W(5) model is
observed in isolation. There seem to be no

related to the proton-decay rate and to the vacuum value of a differem scalar field. In
simple relationships between tbe quark and

the Fermi theory GF is the strength of the weak interaction in the same way that GN is
gluon fields of the theory and the observed

the strength of the gravitational interaction. However, in gravity theory, with its structure of hadrons (s{rongly Interacting

massless graviton, the origin of the large value of GN is not well tmderstood. (R might particles). The quark model of hadrons has

be related to a vacuum value but not in precisely the way that GF is.) ‘The (JCD mass not been rigorously derived from QCD.

scale is defined in a completely diflerent way. Aside from the -k nmsseaj the One of the malrr clues \hat quantum

classical QCD Lagrangian has no mass scales atid so scalar fkr.lds. 140wever, in chromodynamics is correct comes from [he

quantum field theoty the coupling of a gitson to a qtiark current depends on the results of “’deep” inclaslic scattering experi -

momentum earned by the gluon, and this coupling is found to be large fbr momentum ments in which Ieptons are used to probe the

transfers below 200 MeV/c. [t is thus customary to aekctw = 200 MeVfc2 (where wis structure of protons and neutrons at very

the parameter governing the scaie of asymptotic frecdesss) as the mass sale for QC13. short distance Intervals. The theory predicts
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that at very high momentum transfers or,

equivalently, at very short distances (< 10–13

centimeter) the quark and gluon fields that

make up the nucleons have a direct and

fundamental interpretation: they are almost

noninteracting, point-like particles. Deep in-

elastic electron, muon, and neutrino experi-

ments have tested the short-distance struc-

tureofprotons and neutrons and have con-

firmed qualitatively this short-distance

prediction of quantum chromodynamics. At

relatively long distance intervals of 10–13

centimeter or greater, the theory must ac-

count for the existence of the observed

hadrons, which are complicated composites

of the quark and gluon fields. Until progress

is made in deriving the list of hadrons from

quantum chromodynamics, we will not

know whether it is the correct theory of the

strong interactions. This is a rather peculiar

situation: the validity of QCD at energies

above a few GeV is established (and there is

no experimental or theoretical reason to

limit the range of validity of the theory at

even higher energies), but the long-distance

(low-energy) structure of the theory, includ-

ing the hadron spectrum, has not yet been

calculated. Perhaps the huge computational

effort now being devoted to testing the the-

ory will resolve this question soon.

Gravity. Gravity theory (and by this is meant

Einstein’s theory of general relativity) should

be added to the standard model, although it
has a different status from the electroweak

and strong theories. The energy scale at

which gravity becomes strong, according to

Einstein’s (or Newton’s) theory, is far above

the electroweak scale: it is given by the

Planck mass, which is defined as (hc/GN)1f2,
where GN is Newton’s gravitational constant,

and is equal to 1.2 X 1019GeV/c2. (In quan-

tum theories distance is inversely propor-

tional to energy; the Planck mass cor-

responds to a length (the Planck length) of

1.6 X 10–33 centimeter. ) Large mass scales

are typically associated with small interac-

tion rates, so gravity has a negligible effect on

high-energy particle physics at present ac-

celerator energies. The reason we feel the
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effect of this very weak interaction so readily

in everyday life is that the graviton, which

mediates the interaction, is massless and has

long-range interactions like the photon.

Moreover, the gravitational force has always

been found to be attractive; matter in bulk

cannot be “gravitationally neutral” in the

way that it is typically electrically neutral.

At present there are no experimental

reasons that compel us to include gravity in

the standard model; present particle

phenomenology is explained without it.

Moreover, its theoretical standing is shaky,

since all attempts to formulate Einstein’s
gravity as a consistent quantum field theory

have failed. The problem is similar to that of

the Fermi theory: Newton’s constant has

dimensions of (energy )-2 so the theory is not

renormalizable. However, like the Fermi the-

ory, it is valid up to an energy that is a

substantial fraction of its energy scale of 1019

GeV. This is the only known serious in-

consistency in the standard model when

gravity is included. Thus, including gravity

in the standard model seems to pose many

problems. Yet, there is a good reason to

attempt this unification: there exist theoreti-

cal models (as we discuss later) that suggest

that the electroweak and strong theories may

cure the ills of gravitational theory, and uni-

fication with gravity may require a theory

that predicts the phenomenological inputs of

the electroweak and strong theories.

The mathematical structure of gravity the-

ory provides another reason for its inclusion

in the standard model. Like the other interac-

tions, gravity is based on a local symmetry,

the Poincar6 symmetry, which includes

Lorentz transformations and space-time

translations. In this case, however, not all the

generators of the symmetry group give rise to

particles that mediate the gravitational inter-

action. In particular, Einstein’s theory has no

kinetic energy terms in the Lagrangian for

the gauge fields corresponding to the six in-

dependent symmetries of the Lorentz group.

The space-time translations have associated

with them the gauge field called the graviton

that mediates the gravitational interaction.
The graviton field has a spin of 2 and is

denoted by ej(x), where the vector index w
on the usual boson field is combined with the

space-time translation index a to form a spin

of 2. The metric tensor is, essentially, the
square of efi(x). The massless graviton has

two felicities (spin projections along the

direction of motion) of values t2. In some
ways these are merely technical differences,

and gravity is like the other interactions.

Nevertheless, these differences are crucial in

the search for theories that unify gravity with

the other interactions.

Summary. Let us summarize why the stan-
dard model including gravity may be the

correct set of component theories of a truly

unified theory.

o

0

0

0

The standard model (with its phenomeno-

Iogically motivated symmetries, choice of

fields, and Lagrangian) correctly accounts

for all elementary-particle data.

The standard model contains no known

mathematical inconsistencies up I.o an

energy scale near 1019GeV, and then only

gravity gives difficulty.

All components of the standard model

have similar mathematical structures. Es-

sentially, they are local gauge theories,

which can be derived from a principle of

local symmetry.

There are no logical or phenomenological

requirements that force the addition of

further components to describe phe-

nomena at scales greater than 10–16 cen-
timeter. Thus, we are free to seek theories
with a range of validity that may tran-

scend the present experimental frontier.

We still have to cope with the huge ex-

trapolation, by seventeen orders of magni-

tude, in energy scale necessary to include

gravity in the theory. At best it appears reck-

less to begin the search for such a unification,

in spite of the good luck historically with

quantum electrodynamics. However, even if

we ignore gravity, the energy scales en-

countered in attempts to unify just the elec-

troweak and strong interactions are surpris-
ingly close to the Planck mass. These more
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Fig. 3. Unification in the SU(5) model. The values of the SU(2), U(l), and SU(3)
couplings in the SU(5) model are shown as functions of mass scale. These values
are calculated using the renormalization group equations of quantum field theory.
At the unification energy scale the proton-decay bosons begin to contribute to the
renormalization group equations; at higher energies, the ratios track together along
the solid curve. If the high-mass bosons were not included in the calculation, the
couplings would follow the dashed curves.

modesl efforts 10 unif! !he fundamental in-

teractions ma} he an lmportanl slep Ioward

Including gravl Iy. Moreover. these efforts re-

quire the belief that local gauge theories are

correct In dlsiance Intervals around 10-2q

ccntlmcler. and so the! ha\c made Ihcorists

more “comi’orlablc” when considering the

extrapolation 10 gra~ll!. which IS only four

(Jrdcr$ (It magnlludc I’urlhcr. Whclhcr this

(]u~lnok has been mlslcadlng rcrnalns I() he

seen. The components of ’~he $mndard model

are summarized In Table 1.

Electroweak-Strong Lrnification
without Gravity

The S[l(2)X L!(l) XSll(3)l(xal (hcnr) Isa

delalled phcnornenologlcal framework In

~hlch lo anal! ze and correlalc dala on elec-

troweak and slrong Inlcracllons. but lhe

choice ofs~mmctry group. Ihc charge asstgn -

mcnls of {hc scalars and Ikrrnlons. and the

lalu(w of man! masses and coupllngs musl

he dcduccd from expcnmcnml dala. The

pmblcm IS 10 find lhc slmplcst c~tcnslon of

{his par; nt Ihc standard mod~l (hat also

untfics (at Icasl par~lall} ) the ln~cracllons.
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assignments. and parameters that must be

puI lnlo it “by hand. ” Tolal success at unl-

Iication IS not required al Ihls stage because

the range of validi~y will be restricted by

gravitational effecls.

Onc eklcnsion is 10 a local symmclr~

group that includes S(1(2) X [1(1) X S(1(3)

and ln(errclatcs the transformal!ons nf Ihc

\landard mndcl h! furih~sr Int(srniil \} m-

mclr} lran$limnall{lns “l-he slmplcsl exam-

ple IS the group SIJ(5). although m[)sl oflhc

comrncnts below also apply to other

proposals for clcc~roweak-slrong unification.

The S( I(5) local s}mmetry lmplles new con-

straints on the Iields and paramcmrs In Ihc

Ihcor-y. However. the {hecrry also includes

nc~ lnlcracllons (hat mlx the elcc{rowc’ak

andslrongquarrtum numbers:in S(l(5)therc

arc ~cclor hnsons that transfbrrn quarks 10

Icp(ons and quarks 10 anliquarks. These vec-

tor boson~ provldc a rncchanlsm fbr proton

dcca>

lfthc S1J(5) local symmetry were cx.act. all

(hc coupl;ng~ of Ihe \Jccmr bosorrs 10 {he

s!mmclr> currcnls would bc equal (or rc-

Iatcd b! known faclors), and conw’quentl}

Ihc prt)lon dcca} rate would bc near the weak

decay ralcs. Sponlancous s!mmc{r~ br,.aklng

of S( 1(5) IS Introduced Inlo the thcor> 10

scpara[c [he clcclrowcak and slrong lntcrac -

Ilons from the olhcr S( 1(5) lnlcracll~)ns as

WCII as t[~ pr(~\ Idc a huge mas~ Ii)r [h<. \ L.L.1(~1

bosons mcdla[lng proton dcca! and ihcrcb)

rcducc lhc prcdlctcd dcca) rate. To sallst!

lhe experimental conslralnl [hal the prolon

Ilfcllmc bc at least 10{’1 )cars. the masses of

the heavy vcc(or bosons In the S(1(5) model

musl be al Icas( 1o’” Cic V/(:. Thus. r\-

pcrimcrrtal facts alrcad! d~>!crmlnc tha~ the

clt’clr(lwcsak-str(~ng unllica[l(~n nlllfl ln -

lrOd LIL’~ nlasm Into lhc Ihwr) (hal flrL’

WIII III1il I’ilL’loin of 10” 01’ IIIC Pl;lnch Illllss.

II IS posslhlc 10 calculate [he proton lllc-

tlmc In the S( 1(5) model and similar uniticd

modrls frnm tbc \alucs of thr couplings and

nli15\~s Of’ [h~ POrllL’k\ Ill lhL$ [h~.(lr> T h ,.

couplings of” [hc sland:lrd mode’i (Ibc I\\[~

clcclrowcak coupllngs and ~hc slrong L’ou-

pllng) hale been measured In Iow-crwrg!

proccsscs. Although ~hc ratios 01 the cou-

pllngs arc prcdlcled hy S(1(5). ~hc s}mmclr>

values arc accurate only at cnerglcs \vhcrc

S[ 1(5) looks ckac~. which is at cnergws abo~c

~he masses of the vector bosons mecila(lng

pro((m dcca!. In gcncml. [hc s~rcng!hs 01’ [ht.

WUptlllg S dLsPcllci (Ill [he’ 111:1~~\L’illL’:11!l hlL’h

Ihcy arc mca\urcd ( “onwqucntl!. the’ S1 [5)

ratl(m cannot hc dlI’LtCll}C(lm~>illL>dwlttl th~,
\ dlLILS\m(.osur(,d ill l(l\v L.llctl-g\ t {ON1*{1.1,(h(~

rrll(~rlll:lllz:ill[lll glollPL’~lll:lll(~ll\ {~ftiL’ld [hL’-

(w} prcscrlhc how lhL’} L’h;lngc’ u Ilh Ihc mdss

scale. Specllicall!. ~hc change ot’the coupllng

at a gl~cn mass scale depends orrl! on all lhc

clcmcnlar} parllclcs v. IIh masm l~>s\ than

that nloss \L”:lk’. ‘I’h U\. as (hc mas\ w’;]lc !~

Iowc’red below ~hc mass 01”the pr{)loll-d(>L’3!

lmons. {hc lallL’r rnusl hc Oml{iLXifrom lhL’

cqua[lnns. so Ihc ralln\ ot’ the coupllngs

change tt(~nl Ihc S( 1(5) \;llucs. Ifuc JSSLlnlL1

(hal the onl} clcmcrrtar! tickls contrlhullng

I(1 [hc ~qu;l(lolls ~r~ lhL> k)~-nlO\\ fi~>ld~

known L’\pL’rlllWIIlflll} and !1’ !hL’ pr(~l(~n-

dcca! bosons ha\c a mass 01’ 101” (;c\’,, :

(scc>Fig. 3). !hcn the Iow-cnerg! c’\pcrlmcn -

Itli l:lllo\ (It’lhi’ \l:lnd~rLi lll(dL>l L’{lUl>llllg\ :Ilc

prdl(’l~d L’OrrL’L’11) h! lhL> l-~ll(lllllallzall(lll

group ~>qua(lons hul Ihc prc~((ln t!tkl!mc
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prediction is a little less than the experimen-

tal lower bound. However, adding a few

more “low-mass” (say, less than 10’2

GeV/c2) particles to the equations lengthens

the lifetime predictions, which can thereby

be pushed well beyond the limit attainable in
present-day experiments.

Thus, using the proton-lifetime bound

directly and the standard model couplings at

low mass scale, we have seen that elec-

troweak-strong unification implies mass

scales close to the scale where gravity must

be included. Even if it turns out that the

electroweak-strong unification is not exactly

correct, it has encouraged the extrapolation

of present theoretical ideas well beyond the

energies available in present accelerators.

Electroweak-strong unified models such as

SU(5) achieve only a partial unification. The
vector bosons are fully unified in the sense

that they and their interactions are de-

termined by the choice of SU(5) as the local

symmetry. However, this is only a partial

unification. The choice of fermion and scalar

multiples and the choice of symmetry-

breaking patterns are left to the discretion of

the physicist, who makes his selections based

on low-energy phenomenology. Thus, the

“unification” in SU(5) (and related local

symmetries) is far from complete, except for

the vector bosons. (This suggests that the-

ories in which all particles are more closely

related to the vector bosons might remove

some of the arbitrariness; this will prove to

be the case for supergravity.)

In summary, strong experimental evi-

dence for electroweak-strong unification,

such as proton decay, would support the

study of quantum field theories at energies

just below the Planck mass. From the van-

tage of these theories, the electroweak and

strong interactions should be the low-energy

limit of the unifying theory, where “low

energy” corresponds to the highest energies

available at accelerators today! Only future

experiments will help decide whether the

standard model is a complete low-energy

theory, or whether we are repeating the age-

old error of omitting some low-energy inter-

actions that are not yet discovered. Never-

theless, the quest for total unification of the

laws of Nature is exciting enough that these

words of caution are not sufficient to delay

the search for theories incorporating gravity.

Toward Unification with Gravity

Let us suppose that the standard model

including gravity is the correct set of theories

to be unified. On the basis of the previous

discussion, we also accept the hypothesis that

quantum field theory with local symmetry is

the correct theoretical framework for ex-

trapolating physical theory to distances per-

haps as small as the Planck length. Quantum

field theory assumes a mathematical model

of space-time called a manifold. On large

scales a manifold can have many different

topologies, but at short enough distance

scale, a manifold always looks like a flat

(Minkowski) space, with space and time in-

finitely divisible. This might not be the struc-

ture of space-time at very small distances,

and thq manifold model ofspace-time might

fail. Nevertheless, all progress at unifying

gravity and the other interactions described

here is based on theories in which space-time

is assumed to be a manifold.

Einstein’s theory of gravity has fascinated

physicists by its beauty, elegance, and correct

predictions. Before examining efhts to ex-

tend the theory to include other interactions,

let us review its structure. Gravity is a

“geometrical” theory in the following sense.

The shape or geometry of the manifold is

determined by two types of tensors, called

curvature and torsion, which can be con-

structed from the gravitational field. The

Lagrangian of the gravitational field depends

on the curvature tensor. In particular, Ein-

stein’s brilliant discovery was that the
curvature scalar, which is obtained from the

curvature tensor, is essentially a unique

choice for the kinetic energy of the gravita-

tional field. The gravitational field calculated

from the equations of motion then de-

termines the geometry of the space-time

manifold. Particles travel along “straight

lines” (or geodesics) in this space-time. For

example, the orbits of the planets are

geodesics of the space-time whose geometry

is determined by the sun’s gravitational field.

In Einstein’s gravity all the remaining

fields are called matter fields. The La-

grangian is a sum of two terms:

where the cu~ature scalar ~gravity is the

kinetic energy of the graviton, and S&’matte,

contains all the other fields and their inter-

actions with the gravitational field. The in-

teraction term in the Lagrangian, which cou-

ples the gravitational field (the metric tensor)

to the energy-momentum tensor, has a form

almost identical to the term that couples the

electromagnetic field to the electromagnetic

current. Newton’s constant, which has

dimensions of (mass)-’, appears in the ratio

of the two terms in Eq. 1 as a coupling

analogous to the Fermi coupling in the weak

theory. This complicates the quantum gen-

eralization, just as it did in Fermi’s weak

interaction theory, and it is not possible to

formulate a consistent quantum theory with

Eq. 1. Actually, the situation is even worse,

because ~gravity alone does not lead to a

consistent quantum theory either, although

the inconsistencies are not as bad as when

~mauer is included.

This suggests that our efforts to unify grav-

ity with the other interactions might solve

the problems of gravity: perhaps we can join

the matter fields together with the gravita-

tional field in something like a curvature

scalar and thereby eliminate ~m,lt,P In addi-

tion, generalizing the graviton field in this

way might lead to a consistent (re-

normalizable) quantum theory of gravity.

There are reasons to hope that the problem

of finding a renormalizable theory of gravity
is solved by superstrings, although the proof

is far from complete. For now, we discuss the

unification of the graviton with other fields
without concern for renormalizability.

We will discuss several ways to find mani-

folds for which the curvature scalar depends

on many fields, not just the gravitational
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Fig. 4.
theoty.

Two-dimensional analogue of the vacuum geomet~ of a Kalu.za-Klein
From great distances the geometty looks one-dimensional, but up close the

second dimension, which is wound up in a circle, becomes visible. If space-time has
more than four dimensions, then the extra dimensions could have escaped detection
if each is wound into a circle whose radius is less than 10”16 centimeter.

Iicld. This generally requires ex(endlng the 4-

dtmcnstonal space-ll~e manifold. The fields

and manifold must sa~lsfy many constraints

heforc this can be done. All the efforis 10

unlf} gra~ II) ~~lih Ihc olhcr interactions have

tmn ~ornlulalcd In lhls way. hut progress

was no[ made unlll Ihe role ofsponlancous

symmclry breaking was apprcclalcd. 4s wc

now dcscrlhc, ii IS crucial Ibr Ihc soluttons of

the thcor} 10 have less s! mrnclr} than the

Lagranglan has.

In ~hc standard model [hc generators of

lhc space-llnlc Polncai=t symmctr} commu(c

wtlh (arc lndcpcndcn~ 01) the gcncralors of

[hc Inwrnal symmctnes of the electroweak

and s~rong Inlcractlons. Wc might look for a

local symmetry [hat interrelates the space-

time and internal symmetries. just as SU(5)
intemelates the electroweak and strong inter-

nal symmetries. Unfortunately. if this

enlarged symmetry changes simultaneously

{he Internal and space-time quantum

numbers of several states of the same mass.

(hen a lhcorcm ofquanlurn field lhco~ re-

quires the cxistencc of an infinite number of

particles of that mass. However. this secm-

Ingly catastrophic result does not prevent the

unification of space-lime and internal sym -

mclrics for Iwo reasons: Iirsl. all symmetries

of~he Lagrangian need not bc symme(rics of

the stales because of spontaneous symmetry

breaking: and second, the theorem does not

apply to symmetries such as supersymmci~,

with its anticommutlng generators.

These two Ioopholcs in the assumptions of

the theorem have suggested IWO dlrect}ons of

research [n (he atlcmpl to unify gravlt} \\lth

the olhcr lntcrac~ions. First. wc nllgh~ sup-

pose [hat lhc dlmcnslonallty ofspacc-(lmc IS

greater than four. and thal spontaneouss> n~-

metry breaking ofthc Polncar6 in\arlance of

this larger space separates 4-dlnlcnsional

space-time from” the other dimensions. The

symmetries of the cxlra dlmcnslons can then

correspond to inicrnal symmetrws. and the

symmclrics of the sta[es In four dlmcnslons

need no[ Imply an unsallshctor~ tnlinl[> ot

states, A second approach IS to extend Ihc

Poincar@ symmelry to supersymmetry.

which Ibcn requires additional fermlonic

fields 10 accompany [he graviton. A conl-

bina(ion of lhcse approaches Icads to the

most intcresttng theories.

Higher Dimensional Space-Time

If the dimcnslonality of space-tlmc IS

greater than four. then the geometry ofspacc-

(Imc must satlsf} some strong olwrvallonal

conslralnls. [n a 5-dlmcnsion:ll world !hc

fourlh spatial dlrcctlon must he ln\ lsihlc I(J

prcscnl ckpcrimcnts. Thl\ IS posslhlc lt’ cl

each +dlmcnvonnl SP:IU(S-IIML>p{lIm [hc ;Id -

dIIIonal diwc(I(m IS :1 Ilttlc clrclt’, $0 (Iuit o

Ilny person lravcllng In lhe ncw dlrcction

would soon return to the starling point. The-

ories with this kind of vacuum gcome~n are

generically called Kaluza-Klein theories, 1

[t is easy to vlsuallzc Ibis gcomctv with a

lwo-dimensional analoguc. namcl}, a long

PIPC. The dircctlon around the plpc IS

analogous to the c\tra dlnwnslon, and lhc

Ioca!lon al(mg (hc plpc IS analogou\ [(~ a

Iocalmn In -Lciinlcnslonal space-tlrnc. If the

means lbr cxamlnlng the structure of the

pipe arc too coarse 10 scc distance inter\ als

as small as its diarncwr. then the PIPC ap-

pears I -dlmcnslonal ( Fig. 4). 1~thr prohc 01

(he slruc~urc IS scnslllvc 10 shorter dtslanccs.

(he PIPC IS a ?-dlrncnslonal structure \\l~h

orw dimcnslon wound up Into a clrclc.
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The physically interesting solutions of

Einstein’s 4-dimensional gravity are those in

which, if all the matter is removed, space-

time is flat. The 4-dimensional space-time

we see around us is flat to a good approxima-

tion; it takes an incredibly massive hunk of

high-density (much greater than any density

observed on the earth) matter to curve space.

However, it might also be possible to con-

struct a higher dimensional theory in which

our 4-dimensional space-time remains flat in

the absense of identifiable matter, and the

extra dimensions are wound up into a “little

ball.” We must study the generalizations of

Einstein’s equations to see whether this can

happen, and ifit does, to find the geometry of

the extra dimensions.

The Cosmological Constant Problem. Before
we examine the generalizations of gravity in

more detail, we must raise a problem that

pervades all gravitational theories. Einstein’s

equations state that the Einstein tensor

(which is derived from the curvature scalar

in tinding the equations of motion from the

Lagrangian) is proportional to the energy-

momentum tensor. If, in the absence of all

matter and radiation, the energy-momentum

tensor is zero, then Einstein’s equations are

solved by flat space-time and zero gravita-

tional field. In 4-dimensional classical gen-

eral relativity, the curvature of space-time

and the gravitational field result from a

nonzero energy-momentum tensor due to

the presence of physical particles.
However, there are many small effects,

such as other interactions and quantum ef-

fects, not included in classical general rel-

ativity, that can radically alter this simple
picture. For example, recall that the elec-

troweak theory is spontaneously broken,

which means that the scalar field has a

nonzero vacuum value and may contribute

to the vacuum value of the energy-momen-

tum tensor. If it does, the solution to the

Einstein equations in vacuum is no longer

flat space but a curved space in which the

curvature increases with increasing vacuum

energy. Thus, the constant value of the po-

tential energy, which had no effect on the

weak interactions, has a profound effect on

gravity.
At first glance, we can solve this difficulty

in a trivial mannec simply add a constant to

the Lagrangian that cancels the vacuum

energy, and the universe is saved. However,

we may then wish to compute the quantum-

mechanical corrections to the electroweak

theory or add some additional fields to the

theory; both may readjust the vacuum

energy. For example, electroweak-strong uni-

fication and its quantum corrections will

contribute to the vacuum energy. Almost all

the details of the theory must be included in

calculating the vacuum energy. So, we could

repeatedly readjust the vacuum energy as we

learn more about the theory, but it seems

artificial to keep doing so unless we have a

good theoretical reason. Moreover, the scale

of the vacuum energy is set by the mass scale

of the interactions. This is a dilemma. For

example, the quantum corrections to the

electroweak interactions contribute enough
vacuum energy to wind up our 4-dimen-

sional space-time into a tiny ball about 10–13

centimeter across, whereas the scale of the

universe is more like 1028centimeters. Thus,

the observed value of the cosmological con-

stant k smaller by a factor of 1082 than the

value suggested by the standard model.

Other contributions can make the theoretical

value even larger. This problem has the in-

nocuous-sounding name of “the cos-

mological constant problem.” At present

there are no principles from which we can

impose a zero or nearly zero vacuum energy

on the 4-dimensional part of the theory, al-

though this problem has inspired much re-

search effort. Without such a principle, we

can safely say that the vacuum-energy

prediction of the standard model is wrong.

At best, the theory is not adequate to con-

front this problem.
If we switch now to the context of gravity

theories in higher dimensions, the difilcult
question is not why the extra dimensions are

wound up into a little ball, but why our 4-

dimensional space-time is so nearly flat,

since it would appear that a large cos-
mological constant is more natural than a

small one. Also, it is remarkable that the

vacuum energy winding the extra

dimensions into a little ball is conceptually

similar to the vacuum charge of a local sym-

metry providing a mass for the vector bos-

ons. However, in the case of the vacuum

geometry, we have no experimental data that

bear on these speculations other than the

remarkable flatness of our 4-dimensional

space-time. The remaining discussion of uni-

fication with gravity must be conducted in

ignorance of the solution to the cosmological

constant problem.

Internal Symmetries
from Extra Dimensions

The basic scheme for deriving local sym-

metries from higher dimensional gravity was

pioneered by Kaluza and Klein[ in the 1920s,

before the weak and strong interactions were

recognized as fundamental. Their attempts

to unify gravity and electrodynamics in four

dimensions start with pure gravity in five

dimensions. They assumed that the vacuum

geometry is flat 4-dimensional space-time
with the fifth dimension a little loop of de-

finite radius at each space-time point, just as

in the pipe analogy of Fig. 4. The Lagrangian

consists of the curvature scalar, constructed

from the gravitational field in five

dimensions with its five independent com-

ponents. The relationship of a higher dimen-

sional field to its 4-dimensional fields is sum-

marized in Fig. 5 and the sidebar, “Fields

and Spin in Higher Dimensions. ” The in-

finite spectrum in four dimensions includes

the massless graviton (two helicity compo-

nents of values *2), a massless vector boson

(two helicity components of tl ), a massless

scalar field (one helicity component of O),

and an infinite series of massive spin-2

pyrgons of increasing masses. (The term

“pyrgon” derives from rtfipyocr, the Greek
word for tower. ) The Fourier expansion for

each component of the gravitational field is

identical to Eq. 1 of the sidebar. Since the

extra dimension is a circIe, its symmetry is a

phase symmetry just as in electrodynamics.
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Fig. 5. A field in D dimensions unifies fields of diflerent the harmonic expansion of the 4-dimensional spin compo-
spins and masses in four dimensions. In step 1 the spin nents on the extra dimensions, which then resolves a single
components of a single higher dimensional spin are resolved massless D-dimensional field into an infinite number of 4-
into several spins in four dimensions. (The total number of dimensional fields of varying masses. When the 4-dimen -
components remains constant.) Mathematically this is sionai mass is zero, the corresponding 4-dimensiona[f7eld is
achieved by finding the spins J,, J ~, .. . in four dimensions called a zero mode. The 4-dimensional j7elds with 4-dimen -
that are contained in “spin-.~” of D dimensions. Step 2 is sional mass form an irrjinite sequence of pyrgons.

The s!mmctr!, ofthls vacuum siatc is no( the more rcallstic theories. The zero modes no low-mass charged par~iclcs. (.+ddlng fer-

$dimcnsional Polncart symmelry hut the (masslcss par~iclcs in four dimensions) arc mlons to {hc 5-dimensional ~hcor! dots not

dlrcc{ produc[ oflhc %dimensional Poincart clcctrtcallj nculral. (lnly the pyrgons carry help. bccausc thr rcsultlng -l-dimensional

gmupand a phase s!mmclry. clcctnc charge. The interaction associated fcrmions arc all p!rgons. wh]ch cannnl t-w

This $kc+xal lheory should no{ hc lakcn with the vector boson In four dimensions low mass cllhcr, ) Nc\crthclcss. (hc

scnousl!. m.cepl as a basis for generalizing to cannot be electrodynamics hccausc there arc h!poihcsis Ihtit all Inlcrac(lons arc consc-
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Fiel& andSpins in
Fields in HigherDimensions.We deseribeherehow to cos%stmcta
field in higher dimensions and how such a &$$ is rektmi to i%ldri b
the 4-dimensional world in which we live. Higher dimensiensd 6c$th
unify an infinite number of 4-dimensional fieids. A typical and
simple example of this can be seen from a scalar field (a spin-O field)
in five dimensions. A scaiar field has ostly one component, so it can
be written as q(x.y), where x is the 4dinmnsiotml space-time
coordinate and y is the coordinate fbr the fifth dimension. We wili
assume that the fifth dimension is a little circle with radius R, where
R is independent of x. (After this example, we examine the gen-
eralizations to more than five dimensions and to fields carrying
nonzero spin in the higher dimensions.)

Functions on a circie can be expanded in a Fourier series; thus, the
5-dimensional scalar field can be written in the form

.
$I(X..V)= ~>,4%(@WXifrY/fV. (1)

where n is an integer, and ~n(x) are 4-dimensional fields. The Fourier
series satisfies the requirement that the field is single-valued in tlse
extra dimension, since Eq. 1has the same vaiue at the identical poissts
y and y + 2xR, Usually the wave equation of q(x,y) is a 5%rs@t-

forward generalization of the 4-dimensional scalar wave equation

(that is, the Klein-Gordon equation) in the limit that interactions cats
be ignored. The 5-dimensional Kiein-Gordon equation for a massless
5-dimensional particle is

(2)

m~~~ 1 term depends on the details of lhe

~, $@ W@- thm for the present description. It is a
simple ssmtter to s&titt@ the Fmwier expansion of Eq. 1 into Eq. 2
and use the rwthogonality of the expansion functions exp(itr.v/R) to

rewrite Eq. 2 as an infinite number of equations in four dimensions.
one for each *AX)

[$-v’+(azl~n(x)mo (3)

Note the foi!owing very impomsnt point: for n = O, Eq. 3 is the
er&atiorr for a massiess 4-dimensional scalar field, whereas for n # O.
Eq. 3 is the wave equation for a particie with mass InI/R. The
massiess particle, or “zero mode,” should correspond to a field
observable in our world. The fields with nonzero mass are called
“pyrgons,” since they are on a “tower” of particles, one for each n. If
k?is near the Planck length (10-33 centimeter), then the pyrgons have
masses on the order of the Planck mass. However, it is also possible
that R can be much larger, say as large as 10-16 centimeter, without
conflicting with experience.

The 4dimensional form of the Lagrangian depends on an infinite
number of fields and is very complicated to analyze. For many
purposes it is heipful to truncate the theory, keeping a specially
chosen set of fields. For example, 5-dimensional Einstein gravity is
simplified by omitting ail the pyrgons. This can be achieved by
requiring that the fields do not depend on y, a procedure called
“dimensioaai reduction.” The dimensionally reduced theory should

qucncwoflhc s!mmctricsi)lspacc-lime ISSO

~!!rac~l~c tha[ c$fft)rts 10 gcncrall/c the

haluza-Klcln lLiC2 hai (’ been Ilgorousi}

purwscd. l-hcsc theories require a more com-

plcIc dlwusslon o!’ lhc poss Ihlc candidate

manifolds oflhc c\(ra dlrrwns[ons.

The gcomcir! of the c\lra dimensions in

Ihcahscnmolmattcr is I!pIcally a space with

a high dcgrcc of s!mmc~r!, S!mmctry rc-

qu[rcs Ihc c\ts(cncc of transtbrma(lons In

u hlth the suirl!ng point looks Ilkc \hc point

rcochc,d al”l~v lhc. lranslbrnlatlt)n, ( For L.\am-

plc, ihc cn~ lronmcn~s \urroundirrg each

poln{ on a sphere arc tdcnltcal. ) Two o!’ the

mosl Imporlanl examples arc ‘“group m2nl -

f’olds” and “’COSC(spaces.” wh~ch wc bncfly

dcscrlhc.

The Iran fornlat[ons OIU cuntlnuousgroup

86

——.

arc Icientl!icd h! .Y paramc(crs, where V is

[hc numlwr o!’ lndcpcndcn( transtbrmations

In lhc group. For example. Y = 3 I(]r S( 1(?)

and 8 for SLJ(3). These parameters arc the

coordinates of an .Y-dimensional manifold.

Ifthc vacuum valucsofficlds arc constant on

~hc group manifold. then Ihe vacuum solu-

(ion IS said to bc symmetric.

Cosct spttccs have (hc symmetry ofa group

Irso. bul Ihc coordinates arc Iahrled by a

subscl {)f the p~ramctcrs of a group. For

c\amplc. c[~nsldcr (hc space S0( 3)/S(X21. [n

(his c\anlplc. S0( .3) has three pararncwrs.

and S0(2) IS the phase symmcir> with onc

paramclcr. so the COSCI space S0(3)/S(>(2)

has ~hrcc minus one. or two. dirmcnslons.

This space IS called Ihc ?-sphere. and II has

the gconlclry of the surface of an ordinary

sphere Spheres can bc gcncrallzcd to an)

number of d]mcnwons: ~hc \-dlmcnslc>nal

sphere IS (hc LWSCIspace [SO,\’ + I )1/S()( \ ),

Man! olhcr COSCIS.or “ratios”” o!’ groups.

make spaces with large s}mmctncs. II IS

posslblc 10 find spaces with ~hc s! mmcincs

of lhc clcctrowcak and strong inwractlons.

Onc such space IS the group manifold S1(?)

X (r(l) X S( 1(3). which has IUCl\C

dlmcnslorrs. ,Nlorc lntcr~’s(lng IS Ihc l{~\\csI

dlmcnsl{)nal \[>aCL’ul~h lh(mc $}mmclrlc\,

n:lmcl~. the (owl space [s( ‘(3) \ ~(:~?) \

(1(1) ]/[ S[1(2) X (J(l) X (~(lll. uhtch has

dlnlcnslon 8 + 3 + I – 3 – 1 – 1 = 7, (’The

S(1(2) and the 11(1)’s In (hc dcnorrllna{{~r

dltlcr trom lhosc In Ihc nunwra~or, so [he!

cannel hc “’can c~>lcd,’. ) Thus. t~nc nllghl h~>i>c

Ihai (-! + 7 = I I bdlnwnsmnal grail(! VCNIIC!



Toward a Unified Theo~: ‘ ~ ,

gher Dhensions
describe the low-energy limit of the theory,

The gravitational field can be generalized to higher (X) dimen-
sional manifolds, where the extra dimensions at eaeh +dimetwkttal
space-lime point form a little ball of finite volume. The mathematics
requires a generalization of Fourier series to “harmonic” expansions
on these spaces. Each field (or field component if it has spin) unifies
an infinite set of pyrgons, and the series may also contain some zero
modes. The terms in the series correspond to ftelds of increasing 4-
dimensional mass. just as in the 54itmensiot# example. The kinetic
energy in the extra dimensions of each term in the senks then
corresponds to a mass in our space-time. The higher dimensional
field quite generally describes mathematically an infinite number of
4dimensional fields.

Spin in Higher Dimensions. The definition of spin in D dimensions
depends on the D-dimensional Lorentz symmetry; 4-dimensional
Lorentz symmetry is naturally embedded in the D-dimensional
symmetry. Consequently a D-dimensional fieid of a ~ific spin
unifies 4-dimensional fields with different spins.

Conceptually the description of D-dimettsiotd spits is simiktr to
that of spin in four dimensions. A massless particle of spin J in four
dimensions has felicities +J and –J corresponding to the projections
of spin along the direction of motion. These two felicities are singlet
muhiplets of the Idirnensional rotations that leave unchanged the
direction of a particle traveling at the speed of light. The group of 1-
dimensional rotations is the phase symmetry SO(2), and this tnctimd
for identifying the physical degrees of fi-eedom is called the “lighl-
cone classification.” However, the situation is a tittie more com-

plicated in five dimensions, where there are three directions or-
thogod w the direction of the particle. Then the helicity symmetry

ties SO(9 (ktstmd of SO(2)), and the spin multiples in five
dimensions group together sets of 4-dimensional helicity. For exam-
ple, the graviton in five dimensions has five components. The SO(2)
of fdur dimectsions is contained in this SO(3) symmetry. and the 4-
dimcmaiod felicities of the 5-dimensional graviton are 2, 1,0. –1,
and -2.

@ite generally, the light-cone symmetry that leaves the direction
of motion of a massless particle unchanged in D dimensions is
SO(D – 2), and the D-dimensional helicity corresponds to the multi-

ples (or repreaentations) of SO(D – 2). For example, the graviton
has D(D – 3)/2 independent degrees of freedom in D dimensions;
thus the graviton in eleven dimensions belongs to a 44-compcment
representation of SO(9). The SO(2) of the 4-dimensional he licity is
inside the SO(9), so the forty-four components of the graviton in
eleven dimensions carry labels of 4-dimensional helicity as follows:
one component @fhelicity 2, seven of helicity 1, twenty-eight of
helicity O, aeven of helicity -1 and one of helicity -2. (The compo-
nents of the gravi?on in eleven dimensions then correspond to the
graviton, aeven massless vector bosons, and twenty-eight scalars in
four dimensiorts.)

The analysis for massive particles in D dimensions proceeds in
exactly the same way, except the helicity symmetry is the one that

Ieaves a resting particle at rest. Thus, the massive helicity symmetry

is SO(D - i). [For example, SO(3) describes the spin of a massive

particie in ordinary 4dimensional space-time.) These results are
atmmarized in Fig. 5 of the main text.

un{f! all known Inwrac[lons,

It Iurns out Ihal ~hc 4-dlmcnslonal Iiclds

Impltcd h} ~hc I I-dtmcnslonal gravilalmrral

field rmcmblc the solullon to {hc 5-dlmcn-

slonal Kaluza-Klein case. CMXPI [hat ihc

gra\ ]Ialional Iicld now corresponds 10 man!

more -Ldlmcnsional ftclds. There arc meth-

ods ot dlmcnslorsal rcductmn Ibr group

marrltblds and COSCI spaces. and lhc zero

modes lncludc o \ cc~or boson for each s) m-

mctr! 01 Ihc c\ira dimcnwons. Thus. in Ihc

(4 + 7}-dimensional c\amplc mcntmncd

aboic. !hcrc is a complclc set of vccmr bos-

on$ fur the slandard model, .AI Iirsl sighl this

model appears to prov]dc an altracllvc uni-

fication ofall Ihc tntcractionsofihc standard

model: il cxplalns the origins of the local

symmctncs of [hc standard model as spacc-

1.0S .AI..+Y1OSS(’IE,S(”ESummer/Fall 1984

Iimc s~mmclrws of gravi(y in clcvcn

dlmcnslons.

(Jnforlunalcl!. lbls I I-dlrncnslonal

Kaluza-Klcln [hcory has some shortcomings,

Even wi[h the complc[c freedom consistent

with quanlum field [hcory to add fcrmlons. il

cannel account for lhc parity violation seen

In ~hc weak nculral-current in[crac~mns 01

[hc electron. W’illcn’ has prcscntcd very gen-

eral arguments lhat no I 1-dimensional

Kaluza-Klein Ihcory will ever give (hc cor-

rccl clcctrowcak Ihcory.

Supersymmetry and Gravity in
Four Dimensions

Wc relurn Irom our cxcurswn inm htghcr

dimcnsmns and discuss extending gravity

cnlarglng ~hc s}mmclr!. The local Polncarl

s!mmctr) of Elns[cln’s grai II! Impilcs !hu

massicss spin-2 gral]lon: our prcscnl goal IS

[o extend the Poincar< s}mmctr) (wlthou{

increasing !hc numbcro ldlrncnsions) so lhal

addl(ional fields arc grouped logcihcr wlib

the gravlton. Howe\ cr. (his cannel bc

achlcvcd by an ordlnar! (LIC group) s!nl -

mctry: Ihc gravllon IS the onl} known

clcmcntar! sptn-? field. and [he local s!m -

rnc(rws of [hc slandard mode’1 arc Internal

symmclrws that group Ioguthcr partlclcs of

the same sp[n, Moreover. gravlt! has an

cxccptiomslly weak Intcractlon. so If the

gravllon carncs quanlum nurnbcrs of s!m-

mctrws similar 10 those of the standard

model. tI will intcmcl [oo slrongl}, WC can
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accommodate these facts if the graviton is a

singlet under the internal symmetry, but then
its multiplet in this new symmetry must

include particles of other spins. Supersym-

metryz is capable of fulfilling this require-

ment.

Four-Dimensional Supersymmetry. Super-

symmetry is an extension of the Poincar6

symmetry, which includes the six Lorentz

generators A4YVand four translations PY.The

Poincar6 generators are boson operators, so

they can change the spin components of a

massive field but not the total spin. The

simplest version of supersymmetry adds fer-

mionic generators Qa to the Poincar6 gen-

erators; Qa transforms like a spin-1/2 field

under Lorentz transformations. (The index a

is a spinor index.) To satisfy the Pauli ex-

clusion principle, fermionic operators in

quantum field theory always satisfy anticom-

mutation relations, and the supersymmetry

generators are no exception. In the algebra

the supersymmetry generators Q. anticom-

mute to yield a translation

{Q.> Q,}‘W’, , (2)

where PP is the energy-momentum 4-vector

and the y~5 are matrix elements of the Dirac

y matrices.

The significance of the fermionic gen-

erators is that they change the spin ofa state

or field by *1/2; that is, supersymmetry uni-
fies bosons and fermions. A multiplet of

“simple” supersymmetry (a supersymmetry
with one fermionic generator) in four

dimensions is a pair of particles with spins .l

and J — 1/2; the supersymmetry generators

transform bosonic fields into fermionic

fields and vice versa. The boson and fermion

components are equal in number in all super-

symmetry muhiplets relevant to particle the-

ories.
We can construct larger supersymmetries

by adding more fermionic generators to the
Poincar6 symmetry. “Nextended” super-

symmetry has N fermionic generators. By

applying each generator to the state of spin J,

we can lower the helicity up to N times.

Thus, simple supersymmetry, which lowers

the helicity just once, is called N = 1 super-

symmetry. N = 2 supersymmetry can lower

the helicity twice, and the N = 2 multiples

have spins J, J – 1/2,and J – 1. There are

twice as many J – 1/2states as J or J – 1, so

that there are equal numbers of fermionic

and bosonic states. The N = 2 multiplet is

made up of two N = 1 multiples: one with

spins J and J — 1/2and the other with spins

J–kand J-l.

In principle, this construction can be ex-

tended to any N, but in quantum field theory

there appears to be a limit. There are serious

difficulties in constructing simple field the-

ories with spin 5/2 or higher. The largest

extension with spin 2 or less has N = 8. In N

= 8 extended supersymmetry, there is one

state with helicity of 2, eight with 3/2,

twenty-eight with 1, fifty-six with 1/2, sev-

enty with O, fifty-six with —1/2, twenty-eight
with —1, eight with 3/2 and one with —2.

This multiplet with 256 states will play an

important role in the supersymmetric the-

ories of gravity or supergravity discussed

below. Table 2 shows the states of N-ex-

tended supersymmetry.

Theories with Supersymmetry. Rather or-

dinary-looking Lagrangians can have super-

symmetry. For example, there is a La-

grangian with simple global supersymmetry

in four dimensions with a single Majorana

fermion, which has one component with

helicity +1/2, one with helicity – 1/2, and

two spirdess particles. Thus, there are two

bosonic and two fermionic degrees of free-

dom. The supersymmetry not only requires

the presence of both fermions and bosons in

the Lagrangian but also restricts the types of

interactions, requires that the mass

parameters in the multiplet be equal, and
relates some other parameters in the La-

grangian that would otherwise be un-

constrained.

The model just described, the Wess-

Zumino model,3 is so simple that it can be
written down easily in conventional field

notation. However, more realistic supersym-

metric Lagrangians take pages to write down.

We will avoid this enormous complication

and limit our discussion to the spectra of

particles in the various theories.

Although supersymmetry maybe an exact

symmetry of the Lagrangian, it does not ap-

pear to be a symmetry of the world because

the known elementary particles do not have

supersymmetric partners. (The photon and a
neutnno cannot form a supermultiplet lbe-

cause their low-energy interactions are dif-

ferent.) However, like ordinary symmetries,

the supersymmetries of the Lagrangian do

not have to be supersymmetries of the

vacuum: supersymmetry can be spon-

taneously broken. The low-energy predic-

tions of spontaneously broken supersym-

metric models are discussed in “Supersym-

metry at 100 GeV. ”

Local Supersymmetry and Shrpergravity.
There is a curious gap in the spectrum of the

spin values of the known elementary parti-

cles. Almost all spins less than or equal to 2
have significant roles in particle theory:

spin- 1 vector bosons are related to the local

internal symmetries; the spin-2 graviton

mediates the gravitational interaction; low-

mass spin-h fermions dominate low-energy

phenomenology; and spinless fields provide

the mechanism for spontaneous symmetry

breaking. All these fields are crucial to the

standard model, although there seems to be

no relation among the fields of different spin.

A spin of 3/2 is not required phenomenologi-

cally and is missing from the list. If the

supersymmetry is made local, the resulting

theory is supergravity, and the spin-2 gravi-

ton is accompanied by a “gravitino” with

spin 3/2.

Local supersymmetry can be imposed on a

theory in a fashion formally similar to the
local symmetries of the standard model, ex-

cept for the additional complications due to

the fact that supersymmetry is a space-time

symmetry. Extra gauge fields are required to
compensate for derivatives of the space-

time-dependent parameters, so, just as for

ordinary symmetries, there is a gauge particle
correspond ng to each independent super-
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Toward a Unified Theory

Table 2

The fields of N-extended supergravity in four dimensions. Shown are the
number of states of each helicity for each possible supermultiplet coMaining a
graviton but with spin s 2. Simple supergrwity (N = 1) has a grmiton and
gravitino. N = 4 supergravity is the simplest theory with spinkss particles.
The overlap of the multiples with the }argest (+2) and smaIlest (–2) felicities
gives rise to large additional symmetries in supergravity. N = 7 and N = 8
supergravities have the same list of felicities because particle-antiparticle
symmetry implies that the N = 7 theory must have two multiples (as for N <
7), whereas N = 8 is the first and last case for which particle-antiparticle
symmetry can be satisfied by a single multiplet.

N

Helicity 1 2 3 4 5 6 7or8

2 1 1
3/2 1 2
1 1

1/2
o
–1/2

–1
–3I2
–2

Total

1
1

4

I

2
1

8

s>mrmelr> Iranslormatlon However

1
3
3

1

1

3
3
1

16

{he

gauge particles assoclalcd with the supcrsym -

mclr> gcncra!ors musl he fcrmloris. .Ius[ as

lhcgrailt(~n hafspln ?and Isa$socla[cd wl~h

[hc locrl ~rans]atlonal s>mmctr>. ~hc gra\i -

Ilno has spin 3/2 and gaugc~ the local supcr-

s\mmctr> Thr gr:l\ ](on and gral Illno form

a slmplc ( j’ = 1) supcrs!mme(ry mulllplct.

This lhcor] Is called simple supcrgravll} and

IS ]nlcrcstlng bccausc II succccds In unli”>]ng

~hcgrail[on wl{h anolbcr ticl&

The l.agl-ang]an [Jfstmplc ~upcrgra\ Il\4 I\

an citcnjlon 01 Elnslcln’s L.agrangtan, and

orw rcco\~.r$ Elns~cln’s thcnr> when lhc

grailla~lonal lntcr:icl! on~[)lt hc,graillln(~arc

Ignored Th]~, model rmu$[ hc gcncral!zcd (o a

more rcallstlc thcor) wt(h kcc(or hosons.

1.OS .+ I..4\loSS(’lES[E ‘iummcr/Fall 19 X.4

I
4
6

4
2
4

6
4
1

32

1 I 1
5 6 8
10 16 28

11 26 56
10 30 70
11 26 56

10 16 28
5 6 8
1 1 1

64 128 256

spin-’: fermlons. and sp]nlcss fields 10 he 01

much usc In parllclc (hcory.

The gcncrali~allon IS 10 Lagranglans wllh

cx~cndcd local supcrsymmclr>. where the

largest spin IS 2, The cxtcnslon IS cxlrcmely

compllctr(cd. Nc\crthclcss. wlthoul much

work we can surmlsc some fca!urcs of the

m.(ended thcnr}, Tahlc 2 shows (he spectrum

ofparllclcs jn S-cxtcndcd supcrgrav]!y.

We s(art here wt~h (he Iargcs( cxlcndcd

supcrs>mmctr) and In\csllgalc whether II

lrrcludc~ ~hc clcclroweak and $trong inicrac-

Ilons. [n k = 8 extended supcrgra\l~y the

spcclr’um IS JU$[ the \ = 8 supcmymmc’lrlc

mull] plcl of ?56 hcllclty sta(cs discussed

hcforc. The masslcss par~lclcs formed Irom

~hcsc s(a(cs Include one gravllon, clgh~ gra\i -

tlnos. twenty-eight icc~or hosons. fift)-sl\

fermlons. and seventy splnlcss fields,

,V=8supergra \l~>’lsa nlntr\gu]ng{hec~r>

(Actual l!. se~cral Liltlcrcnl I = S ~upCr-

gra~ II! Lagrangian\ can (w COIISIWL’ILX.) II

has d rcmarkahlc SC(otin(ernal s}mmctrlcj.

and lhL’ cholcc ol’lhcor> dcpcnd$ on whlLh of

these s>mmctrvcs haic gauge parllclcs as-

socla~cd wl(h ~hcm Ne\cr~hclcss. supcr-

gra\rt) Ihcorlcs arc hlgbl> cons{ l-alncd and

w’ can look Ihr the slanciard model In caL’h,

W’c slnglc OUI one t~t’ the mosl prt]mls]ng

~crslon~ of {he lh~’[lr!. dcscrltrc ]IS spt~clrum

and (hen Indlcalc how rlow II c~)mc.s I()

LImly lng Ihc c.lc.ulr(~wcmk. S1l-ong. :ind gI-;I\ 11:1-

(Ional ]nlcracll(~ns

In the \ = 8 supcrgrailt> of de W’r I-

N]colat Ihcm-y” [he twcnly-eight {ec~or bos-

ons gauge an SO(8) s!mmclr> found hi

(’rcrnmcr and .lulla.’ Slncc ~hc- slandard

model nccd$ just Iwcl\c \ eclor bosons.

(wcnty-clgh( would appear (o Ix plcn~> In

[he f(’rmlon w’clor. !hc clghl grai Illnos musl

have i’hlrl> large masses In c)rdcr lo hal c

L’scapcd dclccljon, Thus. the local supcrs>m -

mclr) mus~ he broken. and lhc gra\lllno\

acquire masses h) absorhlng clghl spin-’ ~

fcrmlnns. This Icavcs 56 – 8 = 48 spin-’ :

fcrmlon Iicld$ For ~hc quat-ks and lc~plt~rls in

~hc slandard model. WCnL>d fi)rl!-ii\c tiL>[Ci\.

w) lhls numhc. r also IS ~ullic.lcnl

ThL. n{il quci[lon 1$whc.(h<! the qu:]il!u M

numhcm of so(x) cc)r-rcsp(~nd (() lhL> L>lL.L-

[rowcak and strong quantum numhcrs :lnd

(he sp]n-’? fermlons (o quark~ and Icp!ons

This IS where the prohlcms start r! uc

separate an S(1(3) out of Ihc SO(8) for Q(’D.

(hen ~hc only o(hcr Indcpcndcnl ln~cracllons

arc Iwo local phase s>mmctrlcs of (’( I ) X

(( I ). which ts not large enough 10 lncludc

the SL~(2) X [I(I ) of the clcc{rowcak thcor>

The rcsl otthe SO(X) currents ml\ the S(1(3)

and Ihc [v.() ( ( I )’s M(~rc(~\c]-. man! <)1’IIlc

Iil’l !-\]\ iplrl- ~ Itit-nlt(lr \tLl[L>\ (01 f’,Jrl).L,lghl

Ii the graf lllnc)s ar-c mas~ti~.) ha\c lhL. \\rorlg

S[1(3) quanlum numhcrs 10 he quarks and

Icplon$ ‘ Flnall!, c~cn it’ ~hc quantum

numhcr; for ()( ’[) wL.rc, rlgh( and [ht. cltc-

lrowcak local s>rmmc(r> were prcscnl. [hc

wcah lnlcrautlon~ could sLIII nol h(. 2L’-
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counted for. No mechanism in this theory

can guarantee the almost purely axial weak
neutral current of the electron. Thus this

interpretation of N = 8 supergravity cannot

be the ultimate theory. Nevertheless, this is a

model of unification, although it gave the

wrong sets of interactions and particles.

Perhaps the 256 fields do not correspond

directly to the observable particles, but we

need a more sophisticated analysis to find

them. For example, there is a “hidden” local

SU(8) symmetry, independent of the gauged

SO(8) mentioned above, that could easily

contain the electroweak and strong interac-

tions. It is hidden in the sense that the La-

grangian does not contain the kinetic energy

terms for the sixty-three vector bosons of

SU(8). These sixty-three vector bosons are

composites of the elementary supergravity

fields, and it is possible that the quantum

corrections will generate kinetic energy

terms. Then the fields in the Lagrangian do

not correspond to physical particles; instead

the photon, electron, quarks, and so on,
which look elementary on a distance scale of

present experiments, are composite. Un-

fortunately, it has not been possible to work

out a logical derivation of this kind of result
for N= 8 supergravity.*

In summary, N = 8 supergravity may be

correct, but we cannot see how the standard

model follows from the Lagrangian. The

basic fields seem rich enough in structure to

account for the known interactions, but in

detail they do not look exactly like the real
world. Whether N = 8 supergravity is the

wrong theory, or is the correct theory and we

simply do not know how to interpret it, is not

yet known.

Supergravity in Eleven
Dimensions

The apparent phenomenological short-

comings of N = 8 supergravity have been
known for some time, but its basic mathe-

matical structure is so appealing that many

theorists continue to work on it in hope that
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some variant will give the electroweak and

strong interactions. One particularly interest-

ing development is the generalization of N =

8 supergravity in four dimensions to simple

(N= 1) supergravity in eleven dimensions.9

This generalization combines the ideas of

Kaluza-Klein theories with supersymmetry.

The formulation and dimensional reduc-

tion of simple supergravity in eleven

dimensions requires most of the ideas al-

ready described. First we find the fields of 11-

dimensional supergravity that correspond to

the graviton and gravitino fields in four

dimensions. Then we describe the compo-

nents of each of the 1l-dimensional fields.

Finally, we use the harmonic expansion on

the extra seven dimensions to identify the

zero modes and pyrgons. For a certain

geometry of the extra dimensions, the

dimensionally reduced, 1 l-dimensional

supergravity without pyrgons is N = 8 super-
gravity in four dimensions; for other

geometries we find new theories. We now

look at each of these steps in more detail.

In constructing the 11-dimensional fields,

we begin by recalling that the helicity sym-

metry of a massless particle is SO(9) and the

spin components are classified by the multi-

ples of SO(9). The multiples of SO(9) are

either fermionic or bosonic, which means

that all the four-dimensional felicities are

either integers (bosonic) or half-odd integers

(fermionic) for all the components in a single

multi plet. The generators independent of the

SO(2) form an SO(7), which is the Lorentz
group for the extra seven dimensions. Thus,

the SO(9) multiples can be expressed in

terms of a sum of multiples of SO(7) X

SO(2), which makes it possible to reduce 11-
dimensional spin to 4-dimensional spin.

The fields of 1l-dimensional, N= 1 super-

gravity must contain the graviton and gravi-

tino in four dimensions. We have already

mentioned in the sidebar that the graviton in

eleven dimensions has forty-four bosonic

components. The smallest SO(9) multiplet of

1l-dimensional spin that yields a helicity of

3/2 in four dimensions for the gravitinos has

128 components, eight components with

helicity 3/2, fifty-six with 1/2, fifty-six with

– 1/2, and eight with –3/2. Since by super-

symmetry the number of fermionic states is

equal to the number of bosonic states, eighty-

four bosonic components remain. It turns

out that there is a single 11-dimensional spin

with eighty-four components, and it is just

the field needed to complete the N= 1 super-

symmetry mrrltiplet in eleven dimensions.
Thus, we have recovered the 256 compo-

nents of N = 8 supergravity in terms of just

three fields in eleven dimensions (see Table

3). The Lagrangian is much simpler in eleven

dimensions than it is in four dimensions.

The three fields are related to one another by

supersymmetry transformations that are
very similar to the simple supersymmetry

transformations in four dimensions. Thus, in

many ways the 1l-dimensional theory is no

more complicated than simple supergravity

in four dimensions.

The dimensional reduction of the 11-di-

mensional supergravity, where the extra

dimensions are a 7-torus, gives one version

of N = 8 supergravity in four dimensions. s In

this case each of the components is expanded

in a sevenfold Fourier series, one series for

each dimension just as in Eq. 1 in the side-

bar, except that ny is replaced by Xn,yj. The

dimensional reduction consists of keeping

only those fields that do not depend on any

yi, that is, just the 4-dimensional fields cor-
responding to n, = n2 = . . = n7 = O.Thus,

there is one zero mode (massless field in four

dimensions) for each component. The

pyrgons are the 4-dimensional fields with

any n, # O, and these are omitted in the

dimensional reduction.

The 11-dimensional theory has a simple

Lagrangian, whereas the 4-dimensional, N=

8 Lagrangian takes pages to write down. Ii

fact the N= 8 Lagrangian was first derived in

this ways It is easy to be impressed by a

formalism in which everything looks simple.

This is the first of several reasons to take

seriously the proposal that the extra

dimensions might be physical, not just a

mathematical trick.

The seven extra dimensions of the 11-

dimensional theory must be wound up into a

little ball in order to escape detection. The
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Tow’ard a Unified Theory

Table 3

The relation of simple (N= 1) supergravity in eleven dimensions and N = 8
supergravity in four dimensions. The 256 components of the massless fields of
1l-dimensional, N = 1 supergravity fall into three n-member malti~ets of
SO(9). The members of these multiples have definite felicities in four
dimensions. The count of helicity states is given in terms of’the size of SO(7)
multiples, where SO(7) is the Lorentz symmetry of the seven extra dimensions
in the 1l-dimensional theory.

4-Dimensional Helicity

n 2 3/2 1 1/2 o –1/2 –1 –3/2 –2

44 1 7 1+27 7 1
84 21 7+35 21

]~8 8 8+48 ‘ 8+48 8

Total 1 8 28 56 70 56 28 8 1

case descmhcd abo\c assumes Ihat lhc lIttlc

ball ISa 7-torus. which IS (hc group manifold

made of the produc~ of scum phase sym-

metries. As a Kaluza-Klctn Ihcor>, (he seven

\cctorbosons in Ihcgrat l~on (Table 3) gauge

lhesc sctcn s!nlrnc[rles. Slncc the twenty-

clgh~ \ mor trost)ns of \ = 8 supcrgra\rt! can

bc lhc gauge iicld~ for a local S0(8). It IS

ln~crcstlng [u sce Ii’ wc can rcdcr the dlnlcn -

slonal rcductlon so that 1 I-djmcnslonal

Supcrgrai II) IS a Kaluza-Klcln [hctjr) Ibr

S0(8). ~hc dc W1l-Ntcolal [hci(~r! Indred.

[his IS posslblc. II [he cxira dlnlcn~lons arc

assurncd lo hc Ihc 7-sphere. which IS [hc

cwscI spare S0(8)/S0( 7). the \ cctor bosons

do gauge SfX8).l° This Is. perhaps. lhc ul-

Iinla!u ICilum-klcln [hcor!. allhough II does

no[ contain Ihc s[andard model. The main

dlffercncc bclv. ccn ~he 7-torus and COSCI

spaces IS [hal for COSCIspaces [hmc IS not

ncccssanly a one-lo-one correspondence trc-

Iwccn cornponcn!s and zcm modes. Some

conlponcn Is ma! htsi c scwral /cro modes,

while o(hcrs ha\c norw (recall Fig. 5).

There arc (Ilhcr manlfulcif thal sol~c [hc

I I-dlmcnslonal supcrgra\ll) equations. al-

[hough wc do not dcscnhc Ihcm here. The

Internal local symmclrlcs arc Jusl those of the

extra dlmcnslons. and [he fermions and hos-

ons are unl(icd h) supcrsyrnmetr}. Thus, 11-

d!mcmslonal supcrgravltj can hc ciinlen-

slonall> rcduccd [o orrc ofscvcral dll~crcn[ 4-

dlrncnsional supcrgra~ltj theorlcs. and wc

can search through these [hcorlcs for one tha[

contains the \iandard model. ~lnfortunatcl\.

[hcj all sufl’cr phcnorncnolnglcal shortconl-

tngs.

Elckcn-dlmcnslonal supcrgra\lt~ conlalns

an iIdd II Ional c.rror. In [hc solutl{)n where the

\c\c.n ~.\lra dlnl~~nslt)ns arc wound up In a

lIlllc hall. our -Lcilmcnslonal uorld gels Iu\l

as compaclcd: ~hc cosmological conslan~ 1~

shout I ?() Ordtrs Ofnlagnl(Ud Li tar’gcr than IS

otwricd c~pcrlrncn[ally, )1 This IS the c(~s-

mologlcal constant prohlcm at }[s worst, [[s

solu[lon ma! be a major hrcakthmugh In the

search for unlticallon wl[h gravity. Mean -

whllc, It would appear ~hal supcrgra\lt! has

gl,cn us lhc worst prediction In Ihc hlstor) of

modern ph! ~tcs’

Superstrings

In V!CW of ![s shortcomings. supcrgrati[y

IS apparcntl) not Ihc unified [heory of all
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“Regge ~rajectones.”’ Figure 6 shows exam;

pies of Regge [rajeclorles (PIOIS ofspln versus

mass-squared) for the Iirs[ few stales of [he A

and .~’ resonances: these resonances for

hadrons of dlfferenl spins fall along nearly

slralght Ilnes. Such sequences appear 10 be

general phenomena. and so. In the ’60s and

earl! ‘70s. a great effort was made to in-

corporate !hesc results dlrecll} into a theor}.

The basic Idea was [o build a SCI of hadron

amplitudes with rising Regge [raJeclories

that satisfied several Imporlan[ cons(raln[s

of quan{um field thcor}. such as Lorentz
*’, Invar}ancc, crossing symmc[ry. Ihc corrcc~
*,

anaf}~lc propcr!m. and laclorlJalion ofrcso-

rmncc-pole rcuducs. 1: Although the thcm-}

was a prcscrlp[lon for calculating lhc

amplitudes. {hcsc constraints arc (rue of

quantum field ~hco~ and arc ncccssary for

the thcor~ 10 make sense.

The constrains of field lhco~ proved to

be IOO much for Ihls ~hco~ of badrons.

Some{htng always wcn~ wrong. %mc thc-

oncs prcdtc[cd parllclcs with }maglnar} mass

(lachyons) or parllclcs produced wi[h

ncga[lvc probablliiy (ghos~s). which could

not bc Inlcrprcted. Several Ihconcs had no

logical difficul~lcs. but [he! dtd noi look Iikc

hadron ihcorm. Flrs[ of all. the consistency

rcqulrcmcn{s forced lhcm to bc In lcn

dimensions ralhcr than four. Moreover. lhc~

prcdtclcd masslcss parltclcs wl(h a spin of 2.

no hadrons of this sort cxis!. These orvglnal

supcrstrtng thconcs dtd nol succccd In dc-

scrlblng hadrons In any detail. but ~hc solu-

tion of Q(’D may sIIII be similar to onc of

them.

[n [974 Schcrk and Schwarz} 1 no[ed thal

{hc quantum amplitudes for Ihc sca~(cring of

the masslcss sptn-? stales tn the superstring

arc !hc same as gravlion-graviton scattering

in {he simplest approximation of E!nstcln”s

theory, They then boldl} proposed throwing

out the hadronlc intcrprctalion of [hc supcr-

strlng and rcin{crprc[ing 1[ as a Iundamcntal

[hcon ofclcmcnlary parllclc lnleracllons. II

was cash} found {ha( supcrslnngs arc C1OSCI)

rcla~cd LO $upcrgra\ity. stncc the states fall

}nm supcrsymmctry multlplcls and masslcss

spin-? par~lclcs arc required.’~
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Fig. 6. Regge trajectories in hadron physics. The neutron and proton m (938)) lie
on a linearly rising Regge trajectory with other isospin - V2 states: the N (1680) of
spin 5/2, the N(2220) of spin 9/2, and so on. This fact can be interpreted as meaning
that the N (1680), for example, looks like a nucleon except that the quarks are in an
F wave rather than a P wave. Similarly the isospin-.~/l A resonance at 1232 Me P’
lies on a trajectory with other isospin-3/2 states of spins 7/2, I!/1, 15/2, and so on.
The slope of the hadronic Regge trajectories is approximately (1 Ge V/c 1,-1. The
slope of the superstring trajectories must be much smaller

The ~hcorctlcal dcvclopmcnl of supcr-

strings IS not jcI complctc. and It is nol

posslblc lo dctcrmlnc whclhcr the! WIII fi-

naily yield the trul~ unlficd thcor~ of all

intcrac!lons, The) arc [hc suhjccI of Intense

research Ioda). Our plan here 1$10 prL’\L’nl a

quall[a[l}c dcwmptlon of supcrs!rlng~ and

then to d!scus~ [hc types and partlclc spcc[ra

ol’supcrslring [hconcs.

Rcccnt I’[)rmulal]ons 01” supcrslrlng lhc-

orles arc gcncrallzalions of quantum Iicld

lhcor ~.” The fields ofan ordtnar! ticld ~hc-

or>. such as supcrgra\ It!. depend on ~hc

space-lime polnl a{ which Ihc ticld I\

c\alua(cd. The fields 01” supcr$lnng lhc.i)r~

depend on paths In spac~’-tlnl~>. II cac.h m~J-

nlcll[ 111II I1lc. Ihc’ $lrln~ traL’L’f OU1 J p:llh II)

$paL’(’. and as Iimc ad\anutJ\, Ihc slrlng

propagatc~ Ihl-ough space forming J sLirtilcL’

L’allL’d [hL’ “w{~rld shccl’” Slnngs can h,’

Uloscd. llk L’ a l“LlbtX’1” band, tlr opc’n, Ilhc a

broken rubber band, Thcorlc’s of both I! PCS
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(a)

‘1

‘2

t3

Fig. 7. Dynamics of closed srrings. The figures show the string configurations at a
sequence of times (in two dimensions instead of ten). In Fig. 7(a) a string in motion
from times t, to t, traces out a world sheet. Figure 7(b) shows the three c[osed string
interaction, w’here one string at t,undergoes a change of shape until it pinches off at
a point at time t~(the interaction time). At time t,two strings are propagating away
from the interaction region.

arc promising. bu~ Ihc gra\ tton is alwa~s were numhcrs that salisfied (hc rules ot’ or-

assocla!cd w lth closed s~rlngs. dlnar) arlthmcilc, }’CI another extension of

Before anal)/lng Ihc motion 01’ a super- space-llme. which IS useful In supcrgra\i[!

string. uc mLls~ return [() a discussion of’ and crucial In supcrstrlng (hcory. IS the ~ddl-
space-~lnlc Prc\ IOUSI>, wc dcscnbcd c\- tlon [c) space.-ttmc of ‘“supcrcoord lnalcs”

lCtISloII\ Of SpWC-ll MC 10 nlorL~ than four {hatdc notsatlsf} the rules of ordinary arith -

dlrncnslons. In all [hose cases coord[natcs mcllc lnslcad. two supcrcoordinales 6,, and

[.0S .A[..4.\lOS SCIENCE Summer/Fall 19x4
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91) salisl} anllcommutallon rclatlons e(,e,~ +

131{13,,= f). and ccsnscqucntly 0,,(1(,(wllh no sum

on rr)= f), Spaces wilh (his kind of’add]llonzil

coord)nalc arc called supcrspacm ‘h

.A[ Iirsl cncounlcr supcrspaccs ma> appear

[() bc sormcwha[ SIII! cons~ructlons. Nc\ cr.

[hclcss. much of~hc apparatus ofdlllcrcn[lal

gcomc[r~ of manltulds can bc cxlcndcd lo

supcrspaccs. so appllcallons In ph!slcs ma!

cxisl. II IS possible [o dciinc ticlds tha~ de-

pend on lhc coordlna(es of a supcrspacc

Ra[hcrnaturall!. such Iiclds arc called supcr-

ticlds,

Let us apply Ihls ldca to supcrgravlt!.

which IS a Iicld {hcor\ of both Itirmlonlc and

tmsonlc ticlcis The \upcrgrfivl~~ li~’lds can tw

further unlfic.d li’the! arc urli!cn asa smallrr

numbcl- 01’ supcrliclds Supcrgra\l(\ La-

granglans can lhcn bc wrl[[cn In lcrms of

supcrliclds: ~hc carllcr tt]rmulatlons arc rc -

covcrcd by c~pandlng Ihc supcriiclds In a

power scrws In the supcrcoordina(cs The

anllccsmmula[lnn rule 6(,9,, = O Icads ICJ a

Iinl[c nurntx,r c~f’(Jrdlnar! tic.lcis In !hls t.\-

panslon

The mo[[on of a supcrs(rlng IS dcscrlbcd

b} Ihc mo!ton ol’each spare-llmc c’nordlnalc

and sUpL’rC’()()rd lIla[L> along Ihc slrlng. thu\

the mot]on of Ihc \(rlng Irac.cs out a “w(~rid

shccl”’ In supcrspacc. The full thcor} dc -

scritws the mo(lons and jnlcractlons 01

supcrstnngs. In parllcular, Fig. 7 shov. $ Ihc

haslc Ibrm {,1 Ihc !hrc.c Cl(MC>dsupcrs(ring

ln~crac(lons. All (~ihcr Inlcracllons ofcloscd

slnngscan hc hu]lt upoui oflhlsnnc kind ot

Inlcracllon.’< Nccdlcss 10 sa!. (hc c\ls!cncc

ofonl) t)nc kind of I’undamcnlal Intcracvlon

would scvcrcl~ rcslrlcl lhcorlcs wllh onl~

closed strings,

There 1$ a dtrcct ccsnncc!lon hctwccn the

quanlum-mcchan]cal $Ialcs ol(hc slnng and

the clcnlcnmr! pfirllclc Iicld$ {~t Ihc lhcor!.

The slnng. whL>lhcr lt IS C’losc>dor open. IS

under Icnston Wha~c\cr Ils source. this tcn -

slon, rathrl- than Ncu~on’s conslan(. delines

the basic cncrg~ scale ot Ihc Ihcor}. To iirsl

apprnktmatton each poIm on (hc slrlng has a

I’orcc on II depending on lhls lcnslon and lhc

rclati~c dlsplaccmcnt hclwccn i{ and

nclghborlng points on (hc strtng. The prob-
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Table 4

Ground states of Type H supemtrbga. Tbe 1WimeAm@ ti are 1- swcomting to the multiples of the SO(8)
light-cone symmetry. The 4-dimenskm#l PMds me listed in temss afiwiicfty ad maltipiets of the SO(6) Lorentz group
of the extra six dimensions.

Helicity

2 312 1 1/2 o –1/2 –1 –3/2 –2

Type 11A: Bosons
1 1

28 6 1+15 6
35, 6 l+2fY 6

8, i 6 1
56. 15 6+10+~ 15

Type HA: Fermions
8,
8,

56,
56,

Type IIB: Bosons
1 (twice)

28 (twice)

35,
35,

Type IIB. Fermions
85(twice)

56, (twice)

4
4

4+20
4+20

Icm of unravclllng this inlini[c number of

harmonic osctllalors M one of the mosl

famous problems of phjslcs. The amplitudes

of the Fourier cxpanslon of ihc string cfis-

placcmcn[ decouple ~hc in flni~c WY of har-

monic oscillators into indcpcndcn( Fourmr

modes. These Fourlcr modes Ibcn cor-

respond 10 [hc cdcmcn[ary-particle tlclds

The quan[um-mechanical ground s(a[e of

Ibis lniinltc SL!Iof oscllla!ors corrcsponcfs 10

~hc fields of 10-dtmcnslonal supergravi{y.

Tcn space-time dimensions arc ncccssar> [o

a\oid tachymts and ghosts. The cxciled

modes of the superstring then correspond [o

the new fields being added [o supergravi{y.

The harmonic oscillator in three

dimcnslon$ can prolldc lnslgh[ into ~bc

qualltatl\c fca{urcs of ~be supcrs(rlng. The

ma\imunl value ofihc spin ofa slate ofthc

harmonic oscillator incrcascs wl[h the Icvcl

of [he mcllallon. Morco\ cr. the energy

necessa~ lo reach a gtvcn lc\ c1 Increases as

[he spring conslant is incrcmcd. The supcr-

slring is s]milar. Tbc higher the cxcita~ion of

the slnng. the bigher arc lhe possible spin

\alucs (now In tcn dlmcnsions), The larger
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4

4+20

[hc string (cnslon, [hc more masslvc arc lhc

stales ofan cxclicd Icvcl.

The consis[cnc! rcqulrcmcnls rcstrlc~

supcrstring Ihcorlcs to IWO Iypcs. T! pc [

thcortcs have 10-dlmcnswnal .Y = [ supcr-

symmclr> and Include both closed and open

strings and five kinds of string interactions.

Nothing more will bc said here about Type 1

[hconcs. ;ll(hough [hey arc cx~rcnwly lntcr-

csting(scc Rcfs. 14 and 15),

Type II theories ha\e j“ = 2 supcrsym -

mctry in Icn dimensions and accommodate

closed s[rings only. There arc Iwo l’ = 2

supcrs}mme[ry multi plc(s in tcn dimen-

sions. and each corresponds to a Type II

supcrs(rlng theory, We WIII now dcscritx

these two supcrslnng [heorics.

The Type [14 ground-sta~c spectrum is the

one tha~ can be dcrlvcd hy dlrncnsional rc-

ductlon Of simple supcrgra~ II> In clcvcn
dlmcnslons 10 .V = 2 \upcrgra\tly In tcn

dlmcnslons. Thus. if wc conllnuc [o reduce

t’rom’ wn !O tour dlnwrrslons wllh the

hypothesis that the extra six dimensions

form a (i-torus. wc will oblain ,Y = 8 supcr-

gravity in four dimensions. The superstnng

1
1+15
$ + 20’

15

6
6
10

4
4+2-0

I

4

I

lhetw! adds both p}rgons and Rcggc rccur-

rcnccs 10 (hc 256 Y = 8 supcrgra\ It! ticlds.

but IL has been posslblc (and olicrr simpler)

10 ln\ esllgalc several aspccls of supcrgra{ II}

dlrecll} from Ihc supcrstring Ihcory.

The classiticatmn nflhc cscitcd lo-dlnlcn-

sional slrlng sla{cs (or clcmcntary ticlds of

~hc [henry) is complicated b! the dcscripllon

of spin III trn dImL,nsIons H(~\\c,\cr. th’.

analysis d(>t~s nol dltliir conccpt LIall! from

tbc anal!sls of spin for I I-dlnlcnslonal

supcrgra\][>. The masslcss s!atcs. \vhlch

form the ground state of [he supers~rlng. are

classlflcd by multlplcls of S0(8). and ~hc

cxcitailons oflhe string are masslvc fields in

ten dimmwons ~hat belong to multlplets of

S0(9), The ground-slale liclds of the T} pe

1[4 supers[rtng arc found in Table -1

Tbc Type 1113ground. slalc ticlds cannel

Iw dcrl\cd from I I -dlnwnslonat supcr-

gra\ i[~. Instead the (hcor) has a Uw>ful phaw

s!mnlt,tr~ In [en dlmcnslons. The ticlds

lis~cd as occurring IWICC In Table 4 carr}

nor-mm values of Ihc quan~urn number as-

sociated with [!( 1). So far. [hc main appllco-

tlon of ~hc [!( I ) s}mmcl~ bas been [hc

Sumnlcr/Fall 1984 1.0S ,.\l..4\lOS SCIFXCF
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Toward a 1 unified Theory

I SO(9) Mukiplets I

5/2

3/2

10-Dimensional Mass2

Fig. 8. The ground state and first Regge recurrence of fermionic stales in the 10-
dimensional Type lIB superstring theory. There are a total of 256 fermionic and
bosonic stares in the ground stale. (The 56., contains the gravitino.) The first

excited states contain 65,536 component fields. Half of these are fermions. (Each
representation of the fermions shown abo re appears twice.)

dcrl\a(ion (If Ihc cquatlons ot’mollon for Ihc

ground-smlc ficlds.l - 11will ccr~olnl) ha\c a

crucial role In the fuiurc undcrsmndlng oi’

T> PC 1lf3 supcrstnngs.

The qu:inlunl-n~cch:l lllcal c\~ltallons o!’

lhc supcrslrlng correspond 10 (hc Rc’ggc rc-

CUITL’IICCS. \\hlc.h arc nlassl\(~ In lcn

dlnlcn$lons: [Iw! Iwlong 10 multlplcls of

S0(9), Thus. [[ IS poss[tsic [o fill in a diagram

s]mllar lo Fig. 6, althnugh lhc huge numtwr

oi’$mlm rnakcs lhc results l(N~h conlpllc~(cd.

W“L’ gl\ c a Iiu results [o illu\lra!c [hc

mclhnd,

The WIS ol’ ~L>ggC rccurrcnL’c\ In l-! PC I [ A

and ilHarcldmrtical. In Fugurc8 uc~how lhl>

Iirs[ recurrence of \hc fcrnllon Ira]crlnrlcs.

(NoIc that onl\ onc-hal( of Ihc 32.768 fcr-

mlonlc sIalc\ ()!’ IhI\ ModL” arc shown. Th~,

hoson slates arc even rncsslcr. ) The Iirsl c\-

cl(cd lc\cl hasa IOIal of65.536slalc\. and ~hc

nc\l tun c\c Ilcd lL’\’C[\ ha~c’ S.~()~.~16 nnd

~~j,020,600 \l;]t L’\, rL.\pL$L’ll\(> l\. L’()(ll)tl!lg

both l’t’rnllon\ and hosons, (Par(lclr

ph}SICl\[\ $CL’111 10 Sho14 IIIIIC Clllb[l ITd\\lllL’11[

lhcsc da)s o\cr addtng a fcw Iicld$ In a

~hcory’)

The componcn[ Iiclds In (cm dlnlcn\i(ms

can now bL’ c\pan{ic>d inl(l ~-(iilllc’ll sloll:lt

field\ as ua$ donL” In supcrgra\ II!. Rc$Idcs

ihc ?cro n) OLic\ and p>rg(ms ~\ W)L’lillCd w)th

Ihu ~roUllL{ \lal Lw lhcrc wII h lnlinllc lad-

durs ()!’ p! rgotl Iic’lds :issncla~cd u Ith each of

Ihc iiclds of Ihc c,\cIIcd lc\cls 01’ ~hc supcr-

slring,

Postscript

“I-hc warL’h Ii)r a unllicd [hcor! ma} IN>

!IkcnLxi [() ;]n old g(>ogr:lph} [>roi~lL>lll. ( “(J-

lumhLIs sailed WL’\(W3rLi [[) rc’ac’h lnd Ia hc-

lIc\ Ing [iw world had no M@. B! analog>. \\c

arc scarchtng for a unllicd [hcor> al shorter

and shi)rtcr dl\tan~’c WYIILX hL-lIL>\ In: Ihc

Mlcroworki” h:\\ no (XtgL\ Prrhaps \\ L. ;lr~

v.rong and \pa(c-l In]L. i\ nol (’ontlnuo Ll\” of

pL’rh[lps ML’ ;II”l’ 01]1} [>~)r[l> Wl(ll)g. Ilhl’ ( “(l-

lumhu~. anti \\ Ill (iiww\cr \(]nlL.!hlng nt.u,

but w)mc(hlng con\l\lL>n[ Ulth Ullnl \!L, Jl -

rcad! kmm, “1’hL.n ag:l)n, WL>nla\ linall\ hc~

nghl on course tu a thcor} that Llnlfi L’$ all

Nat Llrc.s Intcracllons. ■
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