
LectureNotes
jiom simple jield theories to the standard model

by RichardC. Slansky

T
he standard model of electrowcak and strong interactions

consists of Iwo relativistic quantum field theories. one to

describe [he strong interactions and one to describe [he

clec!romagnetic and weak interactions, This model. which

incorporates all Ihe known phcnomenology of these fundamental

]nterac[ions. descnbcs splnless. spin-lb, and spin-1 fields interacting

twth onc ano[hcr in a manner delcrmlned by its Lagrangian. The
{hcory is rclalivlstically Invariant. so the mathematical form of the

Lagranglan is unchanged by Lorcntz transformations,

,411hough rather complicated in detail. the standard model La-

grangian IS based on JUSI IWO basic Ideas beyond those necessary for a

quantum field [hcory. One is the concep! of local symmetry, which is

encountered in its simples! form in electrodynamics. Local symmetry

determines the form of the interaction bclween panicles. or fields,

iha[ carry the charge assoclalcd with the symmclry (no~ ncccssarll!

the cleclnc charge). The interaction is mcdia{ed by a spin-l partlclc.

the vector boson. or gauge parliclc. The second conccpl IS spon -

[ancous symmclr> breaking. where the \acuum ([he slate wilh IIL)

particles) has a nonzero charge dls[rlbution. In [hc standard model

[he nonzcro weak-interaction charge dis~ributton of [he vacuum IS

the source of most masses of the parliclcs in ~hc theory. These Iwo

basic ideas. local symmetry and spontaneous symmct~ breaking. arc

exhibited by simple field lhcorws. Wc hcgin [hcsc Icc[urc noms t~llh a

Lagrangian for scalar tlclds and then. through the cs~cnslcrns and

generalizations indicalcd by [hc arrow in the diagram below. build

up [he formalism ntedcd to construc[ [hc standard model,
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We begin this introduction to field theory with one of the simplest

theories, a complex scalar field theory with independent fields rp(x)

and rpt(x). (pt(x) is the complex conjugate of q(x) if rp(x) is a classical
field, ancl, if q(x) is generalized to a column vector or to a quantum

field, qf(x) is the Hermitian conjugate of q(x).) Since q(x) is a

complex function in classical field theory, it assigns a complex

number to each four-dimensional point x = (et, x) of time and space.

The symbol x denotes all four components. In quantum field theory

q(x) is an operator that acts on a state vector in quantum-mechanical
Hilbert space by adding or removing elementary particles localized

around the space-time point x.

In this note we present the case in which p(x) and Vt(x) correspond

respectively to a spinless charged particle and its antiparticle of equal

mass but opposite charge. The charge in this field theory is like

electric charge, except it is not yet coupled to the electromagnetic

field. (The word “charge” has a broader definition than just electric

charge.) In Note 3 we show how this complex scalar field theory can

describe a quite different particle spectrum: instead of a particle and

its antiparticle of equal mass, it can describe a particle of zero mass

and one ofnonzero mass, each of which is its own antiparticle. Then
the scalar theory exhibits the phenomenon called spontaneous sym-

metry breaking, which is important for the standard model.

A complex scalar theory can be defined by the Lagrangian density,

where dP~ = @/d.#. (Upper and lower indices are related by the

metric tensor, a technical point not central to this discussion.) The

Lagrangiam itself is

The first term in Eq. la is the kinetic energy of the fields q(x) and

qt(x), anti the last two terms are the negative of the potential energy.

Terms quadratic in the fields, such as the –m2qtq term in Eq. la.

are callecl mass terms. If m2 >0, then q(x) describes a spirdess
particle and rpt(x) its antiparticle of identical mass. If m2 <0, the

theory ha:] spontaneous symmetry breaking.

The equations of motion are derived from Eq. 1 by a variational

method. Thus, let us change the fields and their derivatives by a small
amount 89(x) and &3Pq(x) = dV&p{x).Then,

(?s4’

+ d~) 1d@pfa’4x, (2)

where the variation is defined with the restrictions &p(x,tl) = &p(x,t2)

= &pt(x,tl) = iSrpt(x,t2)= O,and &p(x) and lkp+(x) are independent. The
last two terms are integrated by parts, and the surface term is dropped

since the integrand vanishes on the boundary. This procedure yields

the Euler-Lagrange equations for qt(x),

(3)

and for p(x). (The Euler-Lagrange equation for q(x) is like Eq. 3

except that rpt replaces q. There are two equations because SW(x) and

tipt(x) are independent.) Substituting the Lagrangian density, Eq. 1a,

into the Euler-Lagrange equations, we obtain the equations of mo-

tion,

Way(p + Fn*(p+ 2k((ptq)rp= 0, (4)

plus another equation of exactly the same form with p(x) and

Vt(x) exchanged.

This method for finding the equations of motion can be easily

generalized to more fields and to fields with spin. For example, a field

theory that is incorporated into the standard model is elec-

trodynamics. Its list of fields includes particles that carry spin. The

electromagnetic vector potential A!(x) describes a “vector” particle
with a spin of 1 (in units of the quantum of action h = 1.0546 X 10–27

erg second), and its four spin components are enumerated by the

space-time vector index K ( = O, 1, 2, 3, where O is the index for the

time component and 1, 2, and 3 are the indices for the three space

components). In electrodynamics only two of the four components of

A!(x) are independent. The electron has a spin of 1/2, as does its

antiparticle, the positron. Electrons and positrons of both spin pro-

jections, *1/2, are described by a field ~(x), which is a column vector
with four entries. Many calculations in electrodynamics are com-

plicated by the spins of the fields.

There is a much more difficult generalization of the Lagrangian

formalism: if there are constraints among the fields, the procedure

yielding the Euler-Lagrange equations must be modified, since the
field variations are not all independent. This technical problem

complicates the formulation of electrodynamics and the standard

model, especially when computing quantum corrections. Our ex-

amination of the theory is not so detailed as to require a solution of

the constraint problem.



Continuous
‘Symmetries

II. is often possible to find sets of fields in the Lagrangian that can

be rearranged or transformed in ways described below without

changing the Lagrangian. The transformations that leave the La-

grangian unchanged (or invariant) are called symmetries. First, we

will look at the form of such transformations, and then we will

discuss implications of a symmetrical Lagrangian. In some cases

symmetries imply the existence of conserved currents (such as the

electromagnetic current) and conserved charges (such as the electric

cha:rge), which remain constant during elementary-particle collisions.

The conservation of energy, momentum, angular momentum, and

electric charge are all derived from the existence of symmetries.

Let us consider a continuous linear transformation on three real

spinless fields qi(~) (where i = 1, 2, 3) with qi(.x) = q](x). These three

fields might correspond to the three pion states. As a matter of

notation, q(x) is a column vector, where the top entry is q](x), the

second entry is p2(x), and the bottom entry is 93(x). We write the

linear transformation of the three fields in terms of a 3-by-3 matrix

U(s), where

q’(1~) = u(&)@) , (5a)

or in component notation

9:(X’) = ‘ij(&)9j(x) (5b)

The repeated index is summed from 1 to 3, and generalizations to

different numbers or kinds of fields are obvious. The parameter e is

continuous, and as &approaches zero, U(E) becomes the unit matrix.

The dependence ofx’ on x and &is discussed below. The continuous
trarmformation u(8) is called linear since qj(x) occurs linearly on the

right-hand side of Eq. 5. (Nonlinear transformations also have an

important role in particle physics, but this discussion of the standard

model will primarily involve linear transformations except for the
vector-boson fields, which have a slightly different transformation

law, described in Note 5.) For N independent transformations, there
will be a set of parameters Sa, where the index a takes on values from

1 to N.

For these continuous transformations we can expand rp’(x’) in a

Taylor series about s= = O; by keeping only the leading term in the

expansion, Eq. 5 can be rewritten in infinitesimal form as

&p(x) - q’(x) – q(x)= i8”Taq(x) , (6a)

where Tc is the first term in the Taylor expansion,

(6b)

with 5X = x’ — x. The Ta are the “generators” of the symmetry

transformations of q(x). (We note that &p(x) in Eq. 6a is a small

symmetry transformation, not to be confused with the field varia-

tions Zipin Eq. 2.)

The space-time point x’ is, in general, a function of x. In the case

where x’ =x, Eq. 5 is called an internal transformation. Although our

primary focus will be on internal transformations, space-time sym-

metries have many applications. For example, all theories we de-

scribe here have Poincar6 symmetry, which means that these theones

are invariant under transformations in which x’ = Ax + b, where A is

a 4-by-4 matrix representing a Lorentz transformation that acts on a
four-component column vector x consisting of time and the three

space components, and b is the four-component column vector of the

parameters of a space-time translation. A spirdess field transforms

under Poincar6 transformations as rp’(x’) = q (x) or E@= –bKdPqI(X).

Upon solving Eq. 6b, we find the infinitesimal translation is repre-

sented by idy. The components of fields with spin are rearranged by

Poincar6 transformations according to a matrix that depends on both

the e’s and the spin of the field.

We now restrict attention to internal transformations where the

space-time point is unchanged; that is, axy = O. If &a is an in-

finitesimal, arbitrary function ofx, s.(x), then Eqs. 5 and 6a are called

local transformations. If the e. are restricted to being constants in

space-time, then the transformation is called global.
Before beginning a lengthy development of the symmetries of

various Lagrangians, we give examples in which each of these kinds

of linear transformations are, indeed, symmetries of physical the-

ories. An example of a global, internal symmetry is strong isospin, as

discussed briefly in “Particle Physics and the Standard Model.”

(Actually, strong isospin is not an exact symmetry of Nature, but it is

still a good example. ) All theories we discuss here have global Lorentz

invariance, which is a space-time symmetry. Electrodynamics has a

local phase symmetry that is an internal symmetry. For a charged

spinless field the infinitesimal form ofa local phase transformation is

bq(x) = ig(x)rp(x) and &pt(x) = –ie(x)qt(x), where q(x) is a complex

field. Larger sets of local internal symmetry transformations are

fundamental in the standard model of the weak and strong interac-

tions. Finally, Einstein’s gravity makes essential use of local space-

time Poincar% transformations. This complicated case is not dis-

cussed here. It is quite remarkable how many types of transforma-

tions like Eqs. 5 and 6 are basic in the formulation of physical

theories.

Let us return to the column vector of three real fields rp(x) and

suppose we have a Lagrangian that is unchanged by Eqs. 5 and 6,

where we now restrict our attention to internal transformations. (One

such Lagrangian is Eq. la, where q(x) is now a column vector and

qt(x) is its transpose.) Not only the Lagrangian, but the Lagrangian

density, too, is unchanged by an internal symmetry transformation.



Let us consider the infinitesimal transformation (Eq. 6a) and calcu-

late U&in two different ways. First of all, &Z’= O if &p is a symmetry

identified from the Lagrangian. Moreover, according to the rules of

partial differentiation,

(7)

Then, using the Euler-Lagrange equations (Eq. 3) for the first term

and collecting terms, Eq. 7 can be written in an interesting way:

The next step is to substitute Eq. 6a into Eq. 8. Thus, let us

define the current Yj(x) as

(8)

(9)

Then Eq. 8 plus the requirement that c5q is a symmetry imply the

continuity equation,

lY.Jj(x) = 0. (lo)

We can gain intuition about Eq. 10 from electrodynamics, since the

electromagnetic current satisfies a continuity equation. It says that

charge is neither created nor destroyed locally: the change in the

charge density, Jo(x), in a small region of space is just equal to the

current J(x) flowing out of the region. Equation 10 generalizes this
result of electrodynamics to other kinds of charges, and so Jfi(x) is

called a current. In particle physics with its many continuous sym-

metries, we must be careful to identify which current we are talking

about.

Although the analysis just performed is classical, the results are

usually correct in the quantum theory derived from a classical

Lagrangian. In some cases, however, quantum corrections contribute

a nonzero term to the right-hand side of Eq. 10; these terms are called

anomalies. For global symmetries these anomalies can improve the

predictions from Lagrangians that have too much symmetry when

compared with data because the anomaly wrecks the symmetry (it

was never there in the quantum theory, even though the classical

Lagrangian had the symmetry). However, for local symmetries

anomalies are disastrous. A quantum field theory is locally sym-

metric only if its currents satisfy the continuity equation, Eq. 10.

Otherwise local symmetry transformations simply change the theory.

(Some care is needed to avoid this kind of anomaly in the standard
model.) We now show that Eq. 10 can imply the existence of a

conserved quantity called the global charge and defined by

(y(t) = J(2’3X.lfj(x) , (11)

provided the integral over all space in Eq. 11 is well defined; that is,

Jfi(x) must fall off rapidly enough as 1x1approaches infinity that the

integral is finite.

If Q’(t) is indeed a conserved quantity, then its value does not

change in time, which means that its first time derivative is zero. We

can compute the time derivative of Q“(t) with the aid of Eq. 10

The next to the last step is Gauss’s theorem, which changes the

volume integral of the divergence of a vector field into a surface

integral. If Ja(x) falls off more rapidly than I/lx[z as lx! becomes very

large, then the surface integral must be zero. It is not a always true

that J“(x) falls off so rapidly, but when it does, Q“(t) = Q“ is a

constant in time. One of the most important experimental tests of a

Lagrangian is whether the conserved quantities it predicts are, in-

deed, conserved in elementary-particle interactions.

The Lagrangian for the complex scalar field defined by Eq. 1 has an

internal global symmetry, so let us practice the above steps and

identify the conserved current and charge. It is easily verified that the

global phase transformation

(p’(x)= e%+?(x) (13)

leaves the Lagrangian density invariant. For example, the first term

of Eq. 1 by itself is unchanged dPqtdYV becomes dP(e–i’(pt)%(d”q)

= d)qtdvq, where the last equality follows only if e is constant in

space-time. (The case of local phase transformations is treated in

Note 5.) The next step is to write the infinitesimal form of Eq. 13 and

substitute it into Eq. 9. The conserved current is

Jv(x) = i[(f3Wqt)9– (~y~)~+l, (14)

where the sum in Eq. 9 over the fields q(x) and rpt(x) is written out

explicitly.

If mz >0 in Eq. 1, then all the charge can be localized in space and

time and made to vanish as the distance from the charge goes to

infinity. The steps in Eq. 12 are then rigorous, and a conserved charge

exists. The calculation was done here for classical fields, but the same

results hold for quantum fields the conservation law implied by Eq.

12 yields a conserved global charge equal to the number of q particles

minus the number of (p antiparticles. This number must remain

constant in any interaction. (We will see in Note 3 that if m2 <0, the

charge distribution is spread out over all space-time, so the global

charge is no longer conserved even though the continuity equation

remains valid.)

Identifying the transformations of the fields that leave the La-

grangian invariant not only satisfies our sense of symmetry but also

leads to important predictions of the theory without solving the

equations of motion. In Note 4 we will return to the example of three

real scalar fields to introduce larger global symmetries, such as SU(2),

that interrelate different fields.



Q)Spontaneous
Breaking of a
Global Symmetry

II is possIblc for [hc \ acuum or ground sta[c ofa physical systcm 10

hove ICSSs!rnmc[r> than lhc Lagrangian. This possibility is called
spon[ancous s}mmctr} breaking. and II plays an importani role in

the standard model. The simplest example is the complex scalar field

thcor> of Eq. la wl[h ~~12<0.

In order 10 identify [hc classwal fields with parliclcs In the quan-

Ium lhcory, the classical field must approach zero as the number of

partlclcs In ~hc corresponding quantum-mccbanical s[atc approaches

zero. Thus Ihc quanlum-mechanical \acuum (the state with no

parllclcs) corresponds 10 the classical soluilon rp(.v) = O. This might

seem automallc. but it is noi. S!mmelry argumcn!s do not

necessarily impl) Ihat w(. Y)= O is [he Iowes[ energy sta[c of the

s!swrn. Howc\cr. If wc rcwrilc IP(.t) as a function of ncw fields that do

~anish for lhc IOWCSIcncrg) slate. Ihcn Ihc new fields ma) bc dlrecll}

ldcn~lficd wl[h particles. Although [his prcscnp(ion is simple. iis

Jus(lficallon and anal!sls of i(s limi~ations require cxtcnslvc use of

the dctalls ofquanlurn fmld thcor).

The cncrg} ol’lhc complc~ scalar thcor) is the sum ofkinctic and

potential cncrglcs of [he @K) and $+(.l-) tlclds. so the energy density is

.W = (’FQ+IIPQ+ /ttJQ+q-l+ l((p+(p)~ . (15)

with 1. > 0, NOIC tha[ #’p+JPrp is nonnegative and is zero if Q ]s a

consianl. For Q = O. .W = O. However. tf )}t: < (). then there are

nonzero \alucs of @ v) for which .W < 0. Thus. lhcrc is a nonzero

field conftgura!ton u l~h Iowcsl cncrg!, .+.graph of W as a function of

IQI ISshown In Fig. 1. In !hls example .W is a! its lowest value wbcn

both lhc lilnc~]c and potcrrtial cncrg]cs ( I‘= ))?V+V + L(q’IP)2) are al

lhclr Iowcst values. Thus. the vacuum solutlon for @ v) IS found by

soli Ing Ihc cqua[lon ;f I ‘/1’@= O. or

(I6)

Ncx[ wc find ncw ticlds tha~ vanish when Eq. 16 is sallsiicd, For

example. wc can SCI

W~) = ;~ [P(.Y) + 9(,1 exp[m(.WQl,]. (17)

where !hc real fields p(r) and rr(,v) arc zero when the system is in the

lowcs( cncrg~ state, Thus p(r) and rt(.v) ma} be associated with

parllclcs. Note. however. thal VII is not completely specified: it may

Iic at an! point on Ihc clrclc In field spaccdcfirwd b! Eq, 16. as shown

in Fig, 2.

Suppose V() is real and given by

Q(, = (–m~/1)”~ (18)

Then Ihc Lagrangian is still invariant under the phase transforma-

tions in Eq. 13, but thechoice of the vacuum field solulion is changed

K

Fig. 1, The Hamiltonian .W defined by Eq. 15 has minima at
nonzero values of rhefield (p.

. .

\

Fig. 2. The blue curve is the location of the minimum of V in
the field space Q.

by the phase transformation, Thus. the vacuum solutlon IS not

invariant under tbe phase transformations. so ~be pbasc symmel~ IS

spontaneously broken. The symrnctry of (hc Lagrangian IS H(II a

symmetry olthc vacuum. (For ~t~:> () in Eq, 1. lhc \acuum and Ihc

Lagrangian botb have the phase symmc(r), )
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Particle Physics and tke Standard Mtvdd

This Lagrangian has the following Itaturcs

-J== p’

P

\ \
\

\
\

\
\

●

lr rr n

Fig. 3. A graphic representation of the last four terms of Eq.
20, the interaction terms. Soiid lines denote the p field and
dotted lines the nj7eld. The interaction of three p(x) f7efds at
a single point is sho wn as three solid lines emanating from a
single point. In perturbation theory this so-called vertex
represents the 10west order quantum-mechanical amplitude
for one particle to turn into two. All possible conj7gurations
of these vertices represent the quantum-mechanical
amplitudes defined by the theory.

We now rcwrttc Ihc Lagrangian in mrms of lhc particle fields p(r)

and IT(. V)b) suhstltultng Eq. 17 into Eq. 1. The Lagrangian becomes

(19)

To cs[imatc the masses associated wl[h the parl[clc Iields p(r) and

n(.Y). WCsubsIttu Ic Eq. 18 forth cconstanl ~,)and expand Y’ in powers

of the ficld~ n(v) and p(v). oblalning

Y = ~ dPpilPp + ~ iP’71i),ll + fi’ + }}?2p2 – (–)d)?2)1/2p] – ~p4
.

!,

f)

[)

The fields p(r) and rr(,v) have slandard kinctlc cmcrg! icrms.

Since m~ <0. Ihc term lN2p2 can bc Inlcrprctcd as Ihc mass [w-m for

the p(,r) field. The p(v) Iicld thus dcscribcs a partlclc with mass-

squarcd equal 10 lm21. mx – lnt21.

The rr(.Y) field has no mass term. (This is obvious from Fig. ?.

which shows that Y(p.rT) has no curvalure ([hat is. i12Y’/iin2 = O) in

the rr(.f) direction. ) Thus. n(v) corresponds 10 a massless particle.

This result is unchanged when all lhc quantum effects are in-

cluded.

The phase symmc[ry is h]ddcn In Y’ when It is written in Icrms or

P(.Y) and ?d.r). Newthclcss. Y has phase symmetv. as IS proved

by working backward from Eq. 20 to Eq. 16 to recover Eq. la,

[n theories without gravity. the cons~anl term I” x IHJ/ican be

ignored. since a conslant overall energy Icvcl is nol rncasurablc.

The situation is much more complicawd for gravt[a[ional [heorlcs.

where [erms of this Iype contribute to ~hc vacuum cncrg!-momcn-

tum tensor and. by Einstein.s cqualions. modify [he gcometrj of

space-tlmc.

‘ I The p Iicld interacts with Ihc n Iicld only through dcrivatlvcs of m

The Interaction terms in Eq. 20 may bc pictured as in Fig. 3.

Allhough this model might appear 10 bc an idle curiosily. il is an

example ofa very general result known as Goldstonc’s theorem This

~hcorem states thal In any field [hcory there IS a zero-mass spinless

parliclc for each indcpcndcnt global continuous s!mmet~ of [he

Lagrangian Ihat is sponlaneousl) broken. Thu lcro-mass par~lclc is

called a Goldsmrre boson. (Thlsgcncral rcsull dots not appl! 10 local

symmclrics. as WCshall SCC.)

There has been one very importan[ physical application of spon-

taneously broken global symmetries in particle physics. namely.

theories of pion dynamics. The pion has a surprislngl! small mass

compared to a nucleon. so il migh[ be understood as a m-o-mass

par{iclc rcsulling from spontaneous symmclry breaking of a global

symmetry. Since the pion mass is not cxactl} mro. lhcrc must also be

some small bul cxplicil Icr’ms in the Lagranglan Ihat vlolaw the

global symmetry. The fca[urc of pion d)namlc-s tha[ Justltics this

proccdurc IS {hal ihc Intcracllons of pions with nucleons and olhcr

pions arc similar lo the Interactions (SIX Fig. 3) of the IT(. T)field w]th

the p(v) field and with itself in Ihe Lagrangian of Eq, 20. Since tbe

pion has three (electric) charge sla[cs. It must be associated with a

Iargcr global symmetry than lhc phase symmetry. one where three

independent symmetries arc spontaneously broken. The usual choice

of symmetry is global S(1(2) X St J(L) spontaneously broken 10 the

SU(2) of the s(rorrg-lnlcrac[mn isosp}n s!mmctr) (see NOIC 4 for a

discussmn of S[ l(?)). This dcscriplmn accounts rc:isonahl; well for

low-cncrg} plon phywcs.

Perhaps wc should no(c thal onl! splnlcss Iiclds can acqulrc a

vacuum value. Fields carrying spin arc noi invarlanl under Lorcnt7

Iransformalions. so if they acquire a vacuum value, Lorcnw ln-

vanancc will be spon[ancousl! hrokcn. In disagreement v. Ilh e\pcrl -

mcn[. Spinlcss particles [rtggcr the spontaneous s) mmctr) brcaklng

in the standard model,
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In a theory with a single complex scalar field the phase transforma-

tion in Eq. 13 defines the “largest” possible internal symmetry since

the only possible symmetries must relate q(x) to itself. Here we will

discuss global symmetries that interrelate different fields and group

them together into “symmetry multiples.” Strong isospin, an ap-

proximate symmetry of the observed strongly interacting particles, is

an example. It groups the neutron and the proton into an isospin

doublet, reflecting the fact that the neutron and proton have nearly

the same mass and share many similarities in the way that they
interact with other particles. Similar comments hold for the three

pion states (n+, no, and n-), which form an isospin triplet.

We will derive the structure of strong isospin symmetry by examin-

ing the invariance of a specific Lagrangian for the three real scalar

fields ~i(~) already described in Note 2. (Although these fields could

describe the pions, the Lagrangian will be chosen for simplicity, not

for its capability to describe pion interactions.)

We are about to discover a symmetry by deriving it from a

Lagrangian; however, in particle physics the symmetries are often

discovered from phenomenology. Moreover, since there can be many

Lagrangians with the same symmetry, the predictions following from

the symmetry are viewed as more general than the predictions of a

specific Lagrangian with the symmetry. Consequently, it becomes

important to abstract from specific Lagrangians the general features

ofa symmetry; see the comments later in this note.
A general linear transformation law for the three real fields can be

written

(3f (X) = [exp(zea~.)]i,jqj(x) , (21)

where the sum on j runs from 1 to 3. One reason for choosing this

form of U(E) is that it explicitly approaches the identity as s ap-

proaches zero.

To identify the generators To with matrix elements (T.),,, we use a

specific Lagrangian,

Let us place primes on the fields in Eq. 22 and substitute Eq. 21 into

it. Then SP written in terms of the new q(x) is exactly the same as Eq.

22 if

[eXp(iE”T~)],, [exp(iet’T~)],~ = ~,k , (23)

where ti,k are the matrix elements of the 3-by-3 identity matrix. (In

the notation of Eq. 5a, Eq. 23 is U(e) U~(e) = Z.) Equation 23 can be

expanded in &a, and the linear term then requires that Ta be an

antisymmetric matrix. Moreover, exp (isaTa) must be a real matrix so

that q(x) remains real after the transformation. This implies that all

elements of the Ta are imaginary. These constraints are solved by the

three imaginary antisymmetric 3-by-3 matrices with elements

(~a)[j = ‘2Ea,j , (24)

where &,23= +1 and &dbCis antisymmetric under the interchange of

any two indices (for example, .S321= —1). (It is a coincidence in this

example that the number of fields is equal to the number of inde-

pendent symmetry generators. Also, the parameters. with one index

should not be confused with the tensor &abCwith three indices.)
The conditions on .!I(&)imply that it is an orthogonal matrix; 3-

by-3 orthogonal matrices can also describe rotations in three spatial

dimensions. Thus, the three components ofq, transform in the same

way under isospin rotation as a spatial vector x transforms under a

rotation. Since the rotational symmetry is SU(2), so is the isospin

symmetry. (Thus “isospin” is like spin.) The Ta matrices satisfy the

SU(2) commutation relations



Although the explicit matrices of Eq. 24 satisfy this relation, the T.
can be generalized to be quantum-mechanical operators. In the

example of Eqs. 21 and 22, the isospin multiplet has three fields.
Drawing on angular momentum theory, we can learn other

possibilities for isospin multiples. Spin-l multiples (or representa-

tions) have 2.J+ 1 components, where Jean be any nonnegative

integer or half integer. Thus, multiples with isospin of % have two

tields(for example, neutron andproton) andisospin-V2 multiples

have four fields (for example, the A++, A+, AO,and A- baryons of mass

-1232 GeV/c2).
The basic structure of all continuous symmetries of the standard

model is completely analogous to the example just developed. In fact,

part of the weak symmetry is called weak isospin, since it also has the

same mathematical structure as strong isospin and angular momen-

tum. Since there are many different applications to particle theory of

given symmetries, it is often useful to know about symmetries and

their multiples. This mathematical endeavor is called group theory,

and the results of group theory are often helpful in recognizing

patterns in experimental data.
Continuous symmetries are defined by the algebraic properties of

their generators. Choup transformations can always be written in the

form of Eq. 21. Thus, if Q. (a = 1, . . . . N) are the generators of a

symmetry, then they satisfy commutation relations analogous to Eq.

25:

[Qa>(b]‘= 6/xQc , (26)

where the constants fab~ are called the structure constants of the Lie

algebra. The structure constants are determined by the multiplication
rules for the symmetry operations, U(S1)U($2) = U(83), where S3

depends on &land C2.Equation 26 is a basic relation in defining a Lie

algebra, and Eq. 21 is an example of a Lie group operation. The Qa,

which generate the symmetry, are determined by the “group” struc-

ture. The focus on the generators often simplifies the study of Lie

groups. The generators Q. are quantum-mechanical operators. The

(T=),, of Eqs. 24 and 25 are matrix elements of Q“ for some symmetry

multiplet of the symmetry.

The general problem of finding all the ways of constructing equa-

tions like Eq. 25 and Eq. 26 is the central problem of Lie-group

theory. First, one must find all sets offah~ This is the problem of

finding all the Lie algebras and was solved many years ago. The

second problem is, given the Lie algebra, to find all the matrices that

represent the generators. This is the problem of finding all the

representations (or multiples) of a Lie algebra and is also solved in

general, at least when the range of values ofeachs. is finite. Lie group

theory thus offers an orderly approach to the classification of a huge

number of theories.

Once a symmetry of the Lagrangian is identified, then sets of n
fields are assigned to n-dimensional representations of the symmetry

group, and the currents and charges are analyzed just as in Note 2.

For instance, in our example with three real scalar fields and the

Lagrangian of Eq. 22, the currents are

and, if mz >0, the global symmetry charge is

(28)

where the quantum-mechanical charges Qa satisfy the commutation

relations

[Q. >Qi)]= &bcQc. (29)

(The derivation of Eq. 29 from Eq. 28 requires the canonical com-

mutation relations of the quantum qi(x) fields.)

The three-parameter group SU(2) has just been presented in some

detail. Another group of great importance to the standard model is

SU(3), which is the group of 3-by-3 unitary matrices with unit

determinant. The inverse of a unitary matrix U is Ut, so UtU = I.
There are eight parameters and eight generators that satisfy Eq. 26

with the structure constants of SU(3). The low-dimensional represen-

tations of SU(3) have 1, 3, 6, 8, 10, . . . fields, and the different
representations are referred to as 1, 3, ~, 6, 6, 8, 10, ~, and so on.
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