Lecture Notes

from simple field theories to the standard model

by Richard C. Slansky

he standard model of clectroweak and strong interactions

consists of two relativistic quantum field theories. one to

describe the strong interactions and onc to describe the

clectromagnetic and weak interactions. This model. which
incorporates all the known phenomenology of these fundamental
intcractions. describes spinless. spin-'2, and spin-1 fields interacting
with onc another in a manner determined by its Lagrangian, The
theory is relativistically invariant. so the mathematical form of the
Lagrangian i1s unchanged by Lorentz transformations.

Although rather complicated in dctail. the standard model La-
grangian i1s based on just two basic ideas beyond those necessary for a
quantum ficld theory. Onc i1s the concept of local symmetry, which is
encountered inits simplest form in clectrodynamics. Local symmetry

determines the form of the interaction between particles. or fields.
that carry the charge associated with the symmetry (not necessarily
the electric charge). The interaction is mediated by a spin-1 paruicle.
the vector boson. or gauge particle. The second concept is spon-
tancous svmmetry breaking. where the vacuum (the state with no
particles) has a nonzero charge distribution. In the standard model
the nonzero weak-interaction charge distribution of the vacuum is
the source of most masses of the particles in the theory. These two
basic ideas. local symmetry and spontancous symmectry breaking, are
exhibited by simple ficld theories. We begin these lecture notes with a
Lagrangian for scalar ficlds and then. through the extensions and
gencralizations indicated by the arrows in the diagram below. build
up the formalism needed to construct the standard model.
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Fields, Lagrangians,
and Equations
of Motion

We begin this introduction to field theory with one of the simplest
theories, a complex scalar field theory with independent fields ¢(x)
and ¢f(x). (¢¥(x) is the complex conjugate of o(x) if p(x) is a classical
field, and, if ¢(x) is generalized to a column vector or to a quantum
field, o(x) is the Hermitian conjugate of ©(x).) Since ¢(x) is a
complex function in classical field theory, it assigns a complex
number to each four-dimensional point x = (ct, x) of time and space.
The symbol x denotes all four components. In quantum field theory
©(x) is an operator that acts on a state vector in quantum-mechanical
Hilbert space by adding or removing elementary particles localized
around tlie space-time point x.

In this note we present the case in which ¢(x) and ¢'(x) correspond
respectively to a spinless charged particle and its antiparticle of equal
mass but opposite charge. The charge in this field theory is like
electric charge, except it is not yet coupled to the electromagnetic
field. (The word “charge” has a broader definition than just electric
charge.) In Note 3 we show how this complex scalar field theory can
describe a quite different particle spectrum: instead of a particle and
its antiparticle of equal mass, it can describe a particle of zero mass
and one of nonzero mass, each of which is its own antiparticle. Then
the scalar theory exhibits the phenomenon called spontaneous sym-
metry breaking, which is important for the standard model.

A complex scalar theory can be defined by the Lagrangian density,

L(9,0,0,0%,0,0T) = 3*0'8,0 — m*o’e — Mol)?, (1a)

where d,¢ = d¢/dx*. (Upper and lower indices are related by the
metric tensor, a technical point not central to this discussion.) The
Lagrangian itself is

1
L(t:,t) zzjl dtf dPxL. (1b)
2

The first term in Eq. la is the kinetic energy of the fields ¢(x) and
¢'(x), and the last two terms are the negative of the potential energy.
Terms quadratic in the fields, such as the —m2%pte term in Eq. 1a.
are called mass terms. If m?> 0, then ¢(x) describes a spinless
particle and ¢'(x) its antiparticle of identical mass. If m? < 0, the
theory has spontaneous symmetry breaking.

The equations of motion are derived from Eq. 1 by a variational
method. Thus, let us change the fields and their derivatives by a small
amount 6p(x) and 33, ¢(x) = 4,8¢(x). Then,
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where the variation is defined with the restrictions 8¢(x,t;) = d¢(x,t,)
=30T(x,t;) =30 (x,t2) = 0, and 8¢(x) and 5¢'(x) are independent. The
last two terms are integrated by parts, and the surface term is dropped
since the integrand vanishes on the boundary. This procedure yields
the Euler-Lagrange equations for ¢f(x),
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and for ¢(x). (The Euler-Lagrange equation for o(x) is like Eq. 3
except that ¢ replaces ¢. There are two equations because S¢(x) and
3¢'(x) are independent.) Substituting the Lagrangian density, Eq. la,
into the Euler-Lagrange equations, we obtain the equations of mo-
tion,

£

0 (3)

=0,

*9,0 + mio + 2MoTe)e =0, (4)
plus another equation of exactly the same form with ¢(x) and
¢'(x) exchanged.

This method for finding the equations of motion can be easily
generalized to more fields and to fields with spin. For example, a field
theory that is incorporated into the standard model is elec-
trodynamics. Its list of fields includes particles that carry spin. The
electromagnetic vector potential 4,(x) describes a “vector” particle
with a spin of 1 (in units of the quantum of action £ = 1.0546 X 10727
erg second), and its four spin components are enumerated by the
space-time vector index . ( = 0, 1, 2, 3, where O is the index for the
time component and 1, 2, and 3 are the indices for the three space
components). In electrodynamics only two of the four components of
Au(x) are independent. The electron has a spin of Y%, as does its
antiparticle, the positron. Electrons and positrons of both spin pro-
Jjections, *', are described by a field w(x), which is a column vector
with four entries. Many calculations in electrodynamics are com-
plicated by the spins of the fields.

There is a much more difficult generalization of the Lagrangian
formalism: if there are constraints among the fields, the procedure
yielding the Euler-Lagrange equations must be modified, since the
field variations are not all independent. This technical problem
complicates the formulation of electrodynamics and the standard
model, especially when computing quantum corrections. Qur ex-
amination of the theory is not so detailed as to require a solution of
the constraint problem.




Continuous
'Symmetries

It is often possible to find sets of fields in the Lagrangian that can
be rearranged or transformed in ways described below without
changing the Lagrangian. The transformations that leave the La-
grangian unchanged (or invariant) are called symmetries. First, we
will look at the form of such transformations, and then we will
discuss implications of a symmetrical Lagrangian. In some cases
symmetries imply the existence of conserved currents (such as the
electromagnetic current) and conserved charges (such as the electric
charge), which remain constant during elementary-particle collisions.
The conservation of energy, momentum, angular momentum, and
electric charge are all derived from the existence of symmetries.

Let us consider a continuous linear transformation on three real
spinless fields ¢;(x) (where i = 1, 2, 3) with @;(x) = ¢](x). These three
fields might correspond to the three pion states. As a matter of
notation, ¢(x) is a column vector, where the top entry is @;(x), the
second entry is @,(x), and the bottom entry is @3(x). We write the
linear transformation of the three fields in terms of a 3-by-3 matrix
Ulg), where

@'(x") = Uelp(x), (5a)
or in component notation
OHx") = Ui{e)oix) . (5b)

The repeated index is summed from 1 to 3, and generalizations to
different numbers or kinds of fields are obvious. The parameter g is
continuous, and as g approaches zero, U(g) becomes the unit matrix.
The dependence of X’ on x and ¢ is discussed below. The continuous
transformation U(g) is called linear since @;(x) occurs linearly on the
right-hand side of Eq. 5. (Nonlinear transformations also have an
important role in particle physics, but this discussion of the standard
model will primarily involve linear transformations except for the
vector-boson fields, which have a slightly different transformation
law, described in Note 5.) For N independent transformations, there
will be a set of parameters g, where the index a takes on values from
1toN.

For these continuous transformations we can expand ¢’(x’) in a
Taylor series about g, = 0; by keeping only the leading term in the
expansion, Eq. 5 can be rewritten in infinitesimal form as

3o(x) = ¢'(x) — o(x) = ieT,0(x) , (6a)

where T, is the first term in the Taylor expansion,

o)

dg, (6b)

i£°T, = ¢° [ ] — 8x*9, ,
e=0

with 8x = x’ — x. The T, are the “generators” of the symmetry
transformations of ¢(x). (We note that d¢(x) in Eq. 6a is a small
symmetry transformation, not to be confused with the field varia-
tions 8¢ in Eq. 2.)

The space-time point X’ is, in general, a function of x. In the case
where x” = x, Eq. 5 is called an internal transformation. Although our
primary focus will be on internal transformations, space-time sym-
metries have many applications. For example, all theories we de-
scribe here have Poincaré symmetry, which means that these theories
are invariant under transformations in which x’ = Ax+ b, where A is
a 4-by-4 matrix representing a Lorentz transformation that acts on a
four-component column vector x consisting of time and the three
space components, and b is the four-component column vector of the
parameters of a space-time translation. A spinless field transforms
under Poincaré transformations as ¢’(x’) = ¢ (x) or 8¢ = —b"3,¢(x).
Upon solving Eq. 6b, we find the infinitesimal translation is repre-
sented by id,. The components of fields with spin are rearranged by
Poincaré transformations according to a matrix that depends on both
the ¢’s and the spin of the field.

We now restrict attention to internal transformations where the
space-time point is unchanged; that is, dx* = 0. If g, is an in-
finitesimal, arbitrary function of x, g,(x), then Eqgs. 5 and 6a are called
local transformations. If the g, are restricted to being constants in
space-time, then the transformation is called global.

Before beginning a lengthy development of the symmetries of
various Lagrangians, we give examples in which each of these kinds
of linear transformations are, indeed, symmetries of physical the-
ories. An example of a global, internal symmetry is strong isospin, as
discussed briefly in “Particle Physics and the Standard Model.”
(Actually, strong isospin is not an exact symmetry of Nature, but it is
still a good example.) All theories we discuss here have global Lorentz
invariance, which is a space-time symmetry. Electrodynamics has a
local phase symmetry that is an internal symmetry. For a charged
spinless field the infinitesimal form of a local phase transformation is
So(x) = ig(x)p(x) and d¢T(x) = —ie(x)pT(x), where ¢(x) is a complex
field. Larger sets of local internal symmetry transformations are
fundamental in the standard model of the weak and strong interac-
tions. Finally, Einstein’s gravity makes essential use of local space-
time Poincaré transformations. This complicated case is not dis-
cussed here. It is quite remarkable how many types of transforma-
tions like Egs. 5 and 6 are basic in the formulation of physical
theories.

Let us return to the column vector of three real fields ¢(x) and
suppose we have a Lagrangian that is unchanged by Egs. 5 and 6,
where we now restrict our attention to internal transformations. (One
such Lagrangian is Eq. la, where ¢(x) is now a column vector and
¢f(x) is its transpose.) Not only the Lagrangian, but the Lagrangian
density, too, is unchanged by an internal symmetry transformation.
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Let us consider the infinitesimal transformation (Eq. 6a) and calcu-
late 8.2 in two different ways. First of all, 6. = 0 if 8¢ is a symmetry
identified from the Lagrangian. Moreover, according to the rules of
partial differentiation,

8L = S_;p% o¢; + L 3,80; .

7
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Then, using the Euler-Lagrange equations (Eq. 3) for the first term
and collecting terms, Eq. 7 can be written in an interesting way:

¥

The next step is to substitute Eq. 6a into Eq. 8. Thus, let us
define the current J3(x) as

8)

aon_ . 0L
JP(X) = lm T,j(pj . (9)

Then Eq. 8 plus the requirement that d¢ is a symmetry imply the
continuity equation,

Mi(x)=0. (10)
We can gain intuition about Eq. 10 from electrodynamics, since the
electromagnetic current satisfies a continuity equation. It says that
charge is neither created nor destroyed locally: the change in the
charge density, Jo(x), in a small region of space is just equal to the
current J(x) flowing out of the region. Equation 10 generalizes this
result of electrodynamics to other kinds of charges, and so Ji(x) is
called a current. In particle physics with its many continuous sym-
metries, we must be careful to identify which current we are talking
about.

Although the analysis just performed is classical, the results are
usually correct in the quantum theory derived from a classical
Lagrangian. In some cases, however, quantum corrections contribute
a nonzero term to the right-hand side of Eq. 10; these terms are called
anomalies. For global symmetries these anomalies can improve the
predictions from Lagrangians that have too much symmetry when
compared with data because the anomaly wrecks the symmetry (it
was never there in the quantum theory, even though the classical
Lagrangian had the symmetry). However, for local symmetries
anomalies are disastrous. A quantum field theory is locally sym-
metric only if its currents satisfy the continuity equation, Eq. 10.
Otherwise local symmetry transformations simply change the theory.
(Some care is needed to avoid this kind of anomaly in the standard
model.) We now show that Eq. 10 can imply the existence of a
conserved quantity called the global charge and defined by

031 = [ dx J§(x), (11)

provided the integral over all space in Eq. 11 is well defined; that is,
|

J§(x) must fall off rapidly enough as {x| approaches infinity that the
integral is finite.

If Q%) is indeed a conserved quantity, then its value does not
change in time, which means that its first time derivative is zero. We
can compute the time derivative of Q%) with the aid of Eq. 10:

d_, aJ8(x) a4y = [ya =
5040 =[dx T =[x V- Ji = [§dS =0, (12)

The next to the last step is Gauss’s theorem, which changes the
volume integral of the divergence of a vector field into a surface
integral. If J%(x) falls off more rapidly than 1/[x{* as [x| becomes very
large, then the surface integral must be zero. It is not a always true
that J%x) falls off so rapidly, but when it does, Q%) = Q% is a
constant in time. One of the most important experimental tests of a
Lagrangian is whether the conserved quantities it predicts are, in-
deed, conserved in elementary-particle interactions.

The Lagrangian for the complex scalar field defined by Eq. | hasan
internal global symmetry, so let us practice the above steps and
identify the conserved current and charge. It is easily verified that the
global phase transformation

¢’(x) = e"o(x) (13)
leaves the Lagrangian density invariant. For example, the first term
of Eq. | by itself is unchanged: 4,¢T3*¢ becomes 8 (¢ ot)a(e®p)
= ap(pTa“(p, where the'last equality follows only if & is constant in
space-time. (The case of local phase transformations is treated in
Note 5.) The next step is to write the infinitesimal form of Eq. 13 and
substitute it into Eq. 9. The conserved current is

Jux) = i[(3,0N0 — (0.0)0"], (14)
where the sum in Eq. 9 over the fields ¢(x) and ¢'(x) is written out
explicitly.

If m?> 01in Eq. 1, then all the charge can be localized in space and
time and made to vanish as the distance from the charge goes to
infinity. The steps in Eq. 12 are then rigorous, and a conserved charge
exists. The calculation was done here for classical fields, but the same
results hold for quantum fields: the conservation law implied by Eq.
12 yields a conserved global charge equal to the number of ¢ particles
minus the number of ¢ antiparticles. This number must remain
constant in any interaction. (We will see in Note 3 that if m? < 0, the
charge distribution is spread out over all space-time, so the global
charge is no longer conserved even though the continuity equation
remains valid.)

Identifying the transformations of the fields that leave the La-
grangian invariant not only satisfies our sense of symmetry but also
leads to important predictions of the theory without solving the
equations of motion. In Note 4 we will return to the example of three
real scalar fields to introduce larger global symmetries, such as SU(2),
that interrelate different fields.




Spontaneous
Breaking of a
Global Symmetry

1t1s possible for the vacuum or ground state of a physical system to
have less symmetry than the Lagrangian. This possibility is called
spontancous symmetry breaking. and it plays an important role in
the standard model. The simplest cxample 1s the complex scalar field
theory of Eq. la with m” < ().

In order to identify the classical ficlds with particles in the quan-
tum theory, the classical ficld must approach zero as the number of
particles in the corresponding quantum-mechanical state approaches
zero. Thus the quantum-mechanical vacuum (the state with no
particles) corresponds to the classical solution @(.xv) = 0. This might
scem  automatic. but it is npot. Symmetry arguments do not
necessarily imply that @(x) = 0 is the lowest cnergy state of the
system. However, if we rewrite @(.v) as a function of new fields that do
vanish for the lowest energy state. then the new ficlds may be directly
identificd with particles. Although this prescription 1s simple. its
justification and analysis of its limitations require extensive use of
the details of quantum ficld theory,

The energy of the complex scalar theory is the sum of kinetic and
potcntial energies of the o(v) and ¢'(.x) fields. so the energy density is

H = ioli,0 + nfp'e + Me'e) . (15)

with A > 0. Note that (!"(p*(f”(p is nonncgative and is zero if @ is a
constant. For ¢ = 0. . = 0. However. if s < 0. then there are
nonzero values of @(x) for which # < (). Thus. there i1s a nonzero
ficld configuration with lowest energy. A graph of . as a function of
lo| s shown in Fig. 1. In this example .# is at its lowest valuc when
both the kinetic and potential energies (1= m°@'e + A(¢'@)°) are at
their lowest values. Thus. the vacuum solution for ¢(v) is found by
solving the equation #1740 = 0. or

- (16)
2%

e 1 .
0PN =~ o= = 5oy [T > 0.
Next we find new lields that vanish when Eq. 16 is satisfied. For
example. we can set

1
7;[0(.\') + Qo] exp[im(x)/py] .

o) = (17)

where the real ficlds p(.v) and n(.v) are zero when the system is in the
lowest encrgy state. Thus p(x) and n(v) may be associated with
particles. Note. however. that ¢ is not completely specified: it may
lic atany pointon the circle in ficld space defined by Eq. 16. as shown
in Fig. 2.

Suppose @ 1s real and given by
@0 = (—n/A)"= . (18)

Then the Lagrangian is still invariant under the phase transforma-
tions in Eq. 13, but the choice of the vacuum field solution is changed

58
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Fig. 1. The Hamiltonian # defined by Eq. 15 has minima at
nonzero values of the field o.
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Fig. 2. The blue curve is the location of the minimum of V in
the field space ¢.

by the phase transformation. Thus. the vacuum solution 1s not
invariant under the phase transformations. so the phasc symmetry is
spontancously brokcn. The symmetry of the Lagrangian is nor a
symmetry of the vacuum. (For n° > 0 in Eq. . the vacuum and the
Lagrangian both have the phase symmetry,)
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Particle Physics and the Standard Model

LA ? p2a*now
— pdm o _ u
%o ® 2 \ ¢
p p p
/7 ~ Ve \\
’ AN Vs N
/ \ Vi \
,/ N ’/ \\
/ ~ /’ LN
’ AN V AN
" " n m

Fig. 3. A graphic representation of the last four terms of Eq.
20, the interaction terms. Solid lines denote the p field and
dotted lines the n field. The interaction of three p(x) fields at
a single point is shown as three solid lines emanating from a
single point. In perturbation theory this so-called vertex
represents the lowest order quantum-mechanical amplitude
Jfor one particle to turn into two. All possible configurations
of these vertices represent the quantum-mechanical
amplitudes defined by the theory.

We now rewrite the Lagrangian in terms of the particle ficlds p(v)
and n(.v) by substituting Eq. 17 into Eq. 1. The Lagrangian becomes

1

1 N
L= 2 #*pdyp + 5 (1 + p/og)-d'mi,x

- . A
-T(p+w<.)'—z(p+w..)‘. (19)

To estimatc the masses associated with the particle fields p(.x) and
n(.v). we substitute Eq. 18 for the constant ¢ and expand 2 in powers
of the fields n(.x) and p(.x). obtaining

4

] ] n ‘s s A
= d*pip + 5 'nd,m + ‘;—, + mpT — (—m)pt — Zp"

«,

(20)

(

1 1
+ —pa*mi,n+ — plitna,m .
(p;p u 207 P Ay
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This Lagrangian has the following features.
"> The fields p(.v) and n(x) have standard kinetic energy terms.

*+ Since m* < 0. the term m°p” can be interpreted as the mass term for
the p(x) field. The p(v) field thus describes a particle with mass-
squared equal to |m?]. nor — |nr).

©» The n(x) ficld has no mass term. (This is obvious from Fig. 2.
which shows that £(p.n) has no curvature (that is. 4-2’/dn- = 0) in
the n(x) direction.) Thus. ni(.v) corresponds to a massless particle.
This result is unchanged when all the quantum effects are in-
cluded.

The phase symmetry is hidden in & when it is written in terms ot
p(x) and n(.v). Nevertheless, 7 has phase symmetry. as 1s proved
by working backward from Eq. 2010 Eq. 16 to recover Eq. 1a.

& In theories without gravity. the constant term 1" x m'/A can be
ignored. since a constant overall energy level is not measurable.
The situation is much more complicated for gravitational theories.
where terms of this type contribute to the vacuum energy-momen-
tum tensor and. by Einstein’s equations. modify the geometry of
space-time.

> The p ficld interacts with the n ficld only through derivatives of .
The interaction terms in Eq. 20 may be pictured as in Fig. 3.

Although this modcl might appear to be an idle curiosity. it is an
cxample of a very genceral result known as Goldstone's theorem. This
thcorem states that in any ficld theory there is a zero-mass spinless
particle for cach independent global continuous symmetry of the
Lagrangian that is spontancously broken. The zero-mass particle is
called a Goldstone boson. (This general result does not apply to local
symmctrics. as we shall see.)

Therc has been one very important physical application of spon-
taneously broken global symmetries in particle physics. namely.
theories of pion dynamics. The pion has a surprisingly small mass
compared to a nucleon, so it might be understood as a zero-mass
particle resulting from spontancous symmetry breaking of a global
symmectry. Since the pion mass i1s not exactly zero. there must also be
some small but cxplicit terms in the Lagrangian that violate the
global symmetry. The feature of pion dynamics that justities this
procedure 1s that the interactions of pions with nucleons and other
pions arc similar to the interactions (see Fig. 3) of the a(v) ficld with
the p(.v) ficld and with itself in the Lagrangian of Eq. 20. Since the
pion has three (clectric) charge states. 1t must be associated with a
larger global symmetry than the phase symmetryv, onc where three
independent symmetrics arce spontancously broken. The usual choice
of symmetry 1s global SU(2) X SU(2) spontancously broken to the
SU(2) of the strong-interaction isospin symmetry (see Note 4 for a
discussion of SU(2)). This description accounts reasonably well for
low-cnergy pion physics.

Perhaps we should note that only spinless ficlds can acquire a
vacuum valuc. Fields carrying spin are not invariant under Lorentz
transformations, so if they acquire a vacuum value. Lorentz in-
variance will be spontancously broken. in disagreement with experi-
ment. Spinless particles trigger the spontancous symmetry breaking
in the standard model.
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Lagrangians with
Larger Global
Symmetries

In a theory with a single complex scalar field the phase transforma-
tion in Eq. 13 defines the “largest” possible internal symmetry since
the only possible symmetries must relate ¢(x) to itself. Here we will
discuss global symmetries that interrelate different fields and group
them together into “symmetry multiplets.” Strong isospin, an ap-
proximate symmetry of the observed strongly interacting particles, is
an example. It groups the neutron and the proton into an isospin
doublet, reflecting the fact that the neutron and proton have nearly
the same mass and share many similarities in the way that they
interact with other particles. Similar comments hold for the three
pion states (t", ©°, and =), which form an isospin triplet.

We will derive the structure of strong isospin symmetry by examin-
ing the invariance of a specific Lagrangian for the three real scalar
fields @i(x) already described in Note 2. (Although these fields could
describe the pions, the Lagrangian will be chosen for simplicity, not
for its capability to describe pion interactions.)

We are about to discover a symmetry by deriving it from a
Lagrangian; however, in particle physics the symmetries are often
discovered from phenomenology. Moreover, since there can be many
Lagrangians with the same symmetry, the predictions following from
the symmetry are viewed as more general than the predictions of a
specific Lagrangian with the symmetry. Consequently, it becomes
important to abstract from specific Lagrangians the general features
of a symmetry; see the comments later in this note.

A general linear transformation law for the three real fields can be
written

07 (x) = [exp(ieT,)]p/x) , @n

where the sum on j runs from 1 to 3. One reason for choosing this
form of U(g) is that it explicitly approaches the identity as € ap-
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proaches zero.
To identify the generators T, with matrix elements (7,);;, we use a
specific Lagrangian,

1 1
L= 590 ~ 5 m2;p; — A (9i9:) . 22)

Let us place primes on the fields in Eq. 22 and substitute Eq. 21 into
it. Then . written in terms of the new ¢(x) is exactly the same as Eq.
22if

[exp(ie“T,)]; [exp(ie’ Tp)]i = S, (23)

where 8, are the matrix elements of the 3-by-3 identity matrix. (In
the notation of Eq. 5a, Eq. 23 is U(e)U'(e) = 1) Equation 23 can be
expanded in g, and the linear term then requires that 7, be an
antisymmetric matrix. Moreover, exp (i¢*T,) must be a real matrix so
that ¢(x) remains real after the transformation. This implies that all
elements of the T, are imaginary. These constraints are solved by the
three imaginary antisymmetric 3-by-3 matrices with elements

(Ta)ij = —iaaij P (24)

where €23 = +1 and g4, is antisymmetric under the interchange of
any two indices (for example, €3 = —1). (It is a coincidence in this
example that the number of fields is equal to the number of inde-
pendent symmetry generators. Also, the parameter g, with one index
should not be confused with the tensor g, with three indices.)

The conditions on U(g) imply that it is an orthogonal matrix; 3-
by-3 orthogonal matrices can also describe rotations in three spatial
dimensions. Thus, the three components of ¢, transform in the same
way under isospin rotation as a spatial vector x transforms under a
rotation. Since the rotational symmetry is SU(2), so is the isospin
symmetry. (Thus “isospin” is like spin.) The T, matrices satisfy the
SU(2) commutation relations



E S
= - g
o e

[Tg,Tb] = TaTb - TbTa = z'z-:abcTc . (25)

Although the explicit matrices of Eq. 24 satisfy this relation, the 7,
can be generalized to be quantum-mechanical operators. In the
example of Egs. 21 and 22, the isospin multiplet has three fields.
Drawing on angular momentum theory, we can learn other
possibilities for isospin multiplets. Spin-J multiplets (or representa-
tions) have 2J + 1 components, where J can be any nonnegative
integer or half integer. Thus, multiplets with isospin of ¥z have two
fields (for example, neutron and proton) and isospin-3/2 multiplets
have four fields (for example, the AT+, A*, A%, and A~ baryons of mass
~1232 GeVyeh. :

The basic structure of all continuous symmetries of the standard
model is completely analogous to the example just developed. In fact,
part of the weak symmetry is called weak isospin, since it also has the
same mathematical structure as strong isospin and angular momen-
tum. Since there are many different applications to particle theory of
given symmetries, it is often useful to know about symmetries and
their multiplets. This mathematical endeavor is called group theory,
and the results of group theory are often helpful in recognizing
patterns in experimental data.

Continuous symmetries are defined by the algebraic properties of
their generators. Group transformations can always be written in the
form of Eq. 21. Thus, if @, (@ = 1, ..., N) are the generators of a
symmetry, then they satisfy commutation relations analogous to Eq.
25:

[Qa:Qb] = funcQe » (26)

where the constants fy;. are called the structure constants of the Lie
algebra. The structure constants are determined by the multiplication
rules for the symmetry operations, U(g;)U(g;) = Ules), where g3
depends on g; and ¢,. Equation 26 is a basic relation in defining a Lie
algebra, and Eq. 21 is an example of a Lie group operation. The {J,,
which generate the symmetry, are determined by the “group” struc-
ture. The focus on the generators often simplifies the study of Lie
groups. The generators @, are quantum-mechanical operators. The
(Tp);0f Eqgs. 24 and 25 are matrix elements of O, for some symmetry

multiplet of the symmetry.

The general problem of finding all the ways of constructing equa-
tions like Eq. 25 and Eq. 26 is the central problem of Lie-group
theory. First, one must find all sets of f;,. This is the problem of
finding all the Lie algebras and was solved many years ago. The
second problem is, given the Lie algebra, to find all the matrices that
represent the generators. This is the problem of finding all the
representations (or multiplets) of a Lie algebra and is also solved in
general, at least when the range of values of each g, is finite. Lie group
theory thus offers an orderly approach to the classification of a huge
number of theories.

Once a symmetry of the Lagrangian is identified, then sets of n
fields are assigned to n-dimensional representations of the symmetry
group, and the currents and charges are analyzed just as in Note 2.
For instance, in our example with three real scalar fields and the
Lagrangian of Eq. 22, the currents are

4x) =&Y (3,0)9; (27)
and, if 7% > 0, the global symmetry charge is
. 30;
0°= [ d’x sava—' o (28)
t

where the quantum-mechanical charges Q, satisfy the commutation
relations

[Qa 5Qb] = isachc . (29)

(The derivation of Eq. 29 from Eq. 28 requires the canonical com-
mutation relations of the quantum @x) fields.)

The three-parameter group SU(2) has just been presented in some
detail. Another group of great importance to the standard model is
SU(3), which is the group of 3-by-3 unitary matrices with unit
determinant. The inverse of a unitary matrix U is UT, so UTU = 1.
There are eight parameters and eight generators that satisfy Eq. 26
with the structure constants of SU(3). The low-dimensional represen-
tations of SU(3) have 1, 3, 6, 8, 10, ... fields, and the different
representations are referred toas 1, 3, 3, 6, 6, 8, 10, 10, and so on.
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