
A radically new method for solving
boundary-layer problems illustrates
the cross-disciplinary nature of basic
research. The method, which is

by Carl M. Bender applicable to singular perturbation
problems in many fields, was developed
in the context of particle physics.



P roblems involving a rapid change in the value of a behavior and cannot be handled adequately by conventional
physical variable over a limited region of space or time
are common in physics. They are referred to as Our new, very general approach to singular perturbation

boundary-layer problems. The most familiar examples occur in problems enables us to solve nonlinear and high-order
the motion of fluids. In these cases, a boundary layer refers to boundary-layer problems without resorting to large-scale com-
the very narrow region of fluid moving along a solid surface or puter codes to study the systems mimetically. The central idea
boundary such as the inside of a pipe or a river bed; the fluid consists of replacing the differential equation for the problem
velocity in the boundary layer varies rapidly from zero at the by a discrete equation defined on a lattice. After solving the
boundary to the free-stream velocity away from the boundary. discrete problem using regular perturbation techniques, we

invoke special techniques to recover the continuum answers in
decreases. This kind of dependence on viscosity means that the the limit as the lattice spacing vanishes.
differential equation describing the fluid exhibits singular



Perturbation Theory

Perturbation theory is a vast collection of mathematical
methods used to obtain approximate solutions to problems that
have no closed-form analytical solutions. The methods work
by reducing a hard problem to an infinite sequence of relatively
easy problems that can be solved analytically. Often, solving
the first few of these provides an accurate approximation to the
solution of the original hard problem.

A simple example illustrates the idea of perturbation
theory. Consider the quintic polynomial

X 5 + x – 1 = o . (1)

By drawing a graph of this equation and showing that its slope
is always positive, we see that Eq. (1) has just one positive
root. We cannot determine its numerical value analytically
because there is no algebraic formula for the roots of a quintic
polynomial. However, a perturbative approach reduces the
problem to a sequence of almost trivial problems.

specify to be small.

(2)

With E small, we assume that the roots x(E) have a Taylor

(3)

Using this expansion we represent the terms in Eq. (2) as
expansions:

and

Substituting these expansions into Eq. (2), collecting the
coefficients of like powers of E, and setting them equal to zero
gives a sequence of equations that are easily solved for the
coefficients of Eq. (3).
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organizes the hard problem in Eq. (1) into a sequence of much
easier problems, which in this case involve finding the coeffi-
cients a, b, c, d, . . . .

If we set & = 1, we recover the original Eq. (1) from Eq. (2)
and obtain a rapidly convergent series representation for its
perturbative solution.

(4)

The exact value for x(1) found by solving Eq. (1) numerically
on a computer is 0.754878 . . . . Thus, our perturbation solution
is impressively accurate. We could have found perturbation
series for the other four (complex) roots by starting with any of
the other four solutions to as – 1 = O.

Singular Perturbation Problems

The problem just considered is a regular perturbation
problem; that is, its solutions vary smoothly as the per-
turbation parameter E approaches zero. The problems of
interest here are singular perturbation problems; their solu-

all solutions either might cease to exist or might become
infinite or degenerate. To illustrate, we can make Eq. (1) into a
singular perturbation problem by introducing E in a different
way, for example,

This problem is singular because E multiplies the highest power

polynomial suddenly changes from 5 to 1. Moreover, a
fifth-degree polynomial has five roots and a first-degree

fact that the character of this problem changes abruptly as

The series expansions for singular perturbation problems are
more complicated than the Taylor series in Eq. (3). Often they
are not in Taylor form (a series in integer powers of E), and
usually they are divergent series. These problems sound so
formidable that one might be tempted to avoid them complete-
ly. However. avoiding them is often not possible or even
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PLANE

desirable. In many physical problems, a natural small parame-

singular. For example, the time-independent Schrodinger equa-
tion,

contains the natural small parameter h2/(2m). In the classical

equation becomes a singular perturbation problem because its
character changes abruptly from a differential equation to an
algebraic equation.

Even when physics doesn’t dictate that a perturbation
problem be singular, we may want to introduce a perturbation

resulting perturbation series may be divergent, it is usually

one that diverges but also has the remarkable property that the
first few terms provide an accurate approximation to the sum

techniques that have come into wider use over the last 20 years
(Pade approximants and the Bore] summation), we may obtain
a more accurate numerical result from 3 or 4 terms of the
divergent series than from 10 or 20 terms of a convergent

Boundary-Layer Theory

Boundary-layer problems, a special class of singular per-
turbation problems, provide the simplest context for introduc-

Fig. 2. A plot of the solution to the boundary value problem
ey" + y' = O, y(0) = O, y(l) = 1. This is a singular
perturbation problem because the curve in the boundary-layer
region becomes steeper as E approaches zero and becomes
discontinuous when E reaches zero. The boundary layer region

ing our new perturbative techniques. Nearly all boundary-
layer problems are differential equation problems in which the
highest derivative term is multiplied by a small parameter. A
simple mathematical example will explain the appearance of a
boundary layer.

Consider the boundary-value problem

(5)

The exact solution to this problem is

decreases the curve becomes steeper in the region from x = O

or rapid variation, is called a boundary layer. In fact, y(x)
becomes discontinuous as E decreases to zero. Equation (5) is
a singular perturbation problem because the order of the

Since a first-order differential equation cannot satisfy two
independent boundary conditions. the solution ceases to exist
when E = O and a discontinuity appears in y(x).
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Conventional Solutions
(7)

A review of the well-known conventional methods for
obtaining the first approximation (the first term in the per-
turbation series) to the solution of a very general boundary-
layer problem provides a contrast to our radically new
approach.

We consider a boundary-value problem of the form

(6)

generalization of Eq. (5). A and B are arbitrary numbers, and
a(x) and b(x) are completely arbitrary continuous functions of
x. From boundary-layer theory, we know that if a(x) is
nonzero, the term a(x) [dy(x)/dx] acts as a “friction” force,

(positive damping), the boundary-layer occurs immediately at
x = O. If a(x) < 0, the boundary layer occurs at x = 1. In
general, the thickness of a boundary layer is determined by a
scaling transformation on the differential equation. For Eq. (6)

special case of Eq. (6)] is simply solvable, in general Eq. (6)
has no closed-form analytic solution. As with the quintic
polynomial in Eq. (l), we must use perturbation methods to
obtain an approximate solution.

To solve the boundary-value problem in Eq. (6) approx-

which allow us to approximate the solutions inside and outside
the boundary-layer region and to match these solutions. First,
we consider the boundary-layer region where the solution y(x)
varies rapidly and is very steep. To be precise, scaling
arguments. referred to above tell us that a(x) [dy(x)/dx] is much
larger than b(x)y(x) in the boundary-layer region (order l/&
compared with order 1). (See Fig. 2.) Moreover, since the

approximate the function a(x) by a(0). Hence, inside the
boundary-layer region, we may replace Eq. (6) by the much
simpler equation

Equation (7) is easy to solve because it is a constant-coefficient
equation. The solution that passes through A at x = O is

(8)

where C is an arbitrary constant.
Second, we consider the region outside the boundary layer,

compared with a(x) dy(x)/dx + b(x)y(x), and we may replace
Eq. (6) by the first-order equation

dy(x)
a ( x )  —

dx
(9)

The solution that passes through B at x = 1 is

(10)

To determine C in Eq. (8) we use the sophisticated
perturbative method called asymptotic matching. Roughly
speaking, we demand that Eqs. (8) and (10) agree in the region
just to the right of the boundary layer, say at x = ~&. This
gives

A simple and elegant expression combines the results in
Eqs. (8) and (10) to give a good uniform approximation to y(x)

(11)

The expression in Eq. (11) differs from the exact solution to

This conventional approach to the solution of boundary-
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Fig. 3. A schematic comparison between the exact solution of Eq. (11). The approximate solution differs from the exact
the general linear boundary-layer problem in Eq. (6) and the
leading-order uniform approximation to the exact solution in

layer problems is widely known and well used, However, even
the approximate equations that must be solved inside or
outside the boundary layer cannot be solved analytically in
some cases. Differential equations that are nonlinear or higher
than second order present such difficulties; ordinarily they are
solved numerically on a computer. With our new methods,
these problems can be solved without recourse to large
computer codes.

And Now For Something Completely Different

Our approach to boundary-layer problems is quite different;
we will actually solve a singular boundary-layer problem as a
regular perturbation problem. The approach has two parts.
First, we replace the differential equation by a difference
equation on a lattice. The replacement allows us to express the

as the lattice spacing a is held fixed and finite. Second, we take
the lattice spacing a to zero to recover the answer to the
original problem in the continuum. However, this limit is very
peculiar because, as the lattice spacing goes to zero, the
perturbation parameter E goes to infinity. The perturbation

term by term. We use clever summation techniques to
determine a finite answer—an answer that approximates the
behavior in the boundary layer to surprisingly good accuracy.

We present the new perturbative methods in an application
to the nonlinear two-dimensional wave equation for the
function u(x,t).
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The equation has a static solution, called a kink, whose
analytical form is

x
(12)

We know that Eq. (13) is a singular perturbation problem

[as are the highest derivatives in Eqs. (5) and (6)]. Also, the
kink solution Eq. (12) exhibits typical boundary-layer struc-
ture; u(x) varies slowly except in the boundary-layer region

To find u(x) we begin by changing the differential equation
to a difference equation. That is, we consider space to be made
up of a lattice of distinct points with the spacing a between
them held fixed. The points x are denoted by na (n = O, 1,2, ...)
and u(x) becomes u(na) = U n. The derivatives of u on the
lattice become finite differences; in particular,

The difference equation for Eq. (13) is thus

(14)

In the first part of our approach, we hold the lattice spacing

the problem is

We therefore expand un for each value of n as a power series in

(15)

just as we did in Eq. (3) for the regular perturbation problem in
Eq. (2).

We impose the initial conditions by taking

O if n = O ,
a n =

Note that these conditions solve the unperturbed problem

perturbation problems. Substituting Eq. (15) into Eq. (14) and

routinely gives the perturbation coefficients. The un at the first
few points on the lattice near x = O are

(16)

lined up the contributions according to the order of the
perturbation expansion in which the terms appear. (If k is the
order of the expansion, the matrix un is
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we cannot determine the value of u(x) in the boundary layer by
taking the continuum limit of Eq. (15) directly. However, the
derivatives of u(x) at the origin are defined in this limit and can
be determined from the usual definitions,

and so on. In many cases, the derivatives themselves are of
physical interest, and further, we can reconstruct the function
in the boundary layer from its Taylor series.

where

How well can we determine the first derivative at the origin
u’(0) from Eq. (14)? From the exact solution given by Eq. (12)

Fig. 5. The development of the boundary-layer structure as the we know that
order of the perturbation expansion increases. Results for un.
are plotted in zeroth-, first-, and second- order perturbation 1

u’(o) = — = 0.7071 l/E . (17)
,

solution plotted in Fig. 4.
Using the expansions in Eq. (16), we have the following result
for the first derivative at the origin.

The boundary structure develops as we go to higher orders

determine one point in the boundary layer in the first order,
two points in the second order, three points in the third order,
and so on. (See Fig. 5.) goes to infinity and

It is a peculiarity of our method that the thickness of the
boundary layer is na in nth-order perturbation theory, and the
boundary layer vanishes in the limit of zero-lattice spacing

(18)
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in Eq. (17). But does the limit of the series in Eq. (18) give
our

perturbation series has been derived by assuming that a is

to the continuum problem in Eq. (13) by taking a + O and

Apparently we have a disaster—all terms in Eq. (18) diverge,
and what is more, each new term approaches infinity faster
than the preceding term because it has two additional powers
of a in its denominator.

Everything has been routine until now; why do such
unpleasant difficulties arise? The answer is that we have been
treating what is fundamentally a singular perturbation problem
as a regular perturbation problem by seeking perturbation
series in the form of Taylor series [Eq. (5)], and the
mathematics is trying to make us pay for our naivety. We will
return to Eq. (18) after we have resolved this difficulty.

Get a Finite Answer

An elementary example will explain how the series in Eq.

request seems unreasonable because this function does not

Nevertheless, we have an idea. We introduce a lattice spacing
a and consider the function (x + a)1/2, which does have a
Taylor series about x = O.

(19)

just as in Eq. (18), but the sum of the series is not necessarily
infinite. Indeed, if we sum the series first, we obtain (x + a)1/2;

Thus we would like to sum the series in Eq. (18) before we

terms in the series in Eq. (19), we know only a finite number,
say N + 1, of terms in Eq. (18). If we know only N + 1 terms,
how can we trick the series in Eq. (18) into revealing its
approximate finite sum?

We have developed a general procedure for summing a

where a is an arbitrary nonnegative exponent. Here we have
generalized the notion of a Taylor series slightly to include the

a = 1/2. Now we can calculate Q(m) knowing only N + 1

We proceed to manipulate the series in Eq. (20) until we

raise both sides of Eq. (20) to the power l/a.

Using the usual rules for exponentiating a Taylor series, we
in the following form.

Finally, we raise this equation to the integer power N,

For all these Taylor series manipulations, we assume & is
small.

Since we know only N + 1 terms in the series in Eq. (20), we
must work consistently and truncate the series in Eq. (21) at
n = N. NOW we have a structure that is well-defined in the limit
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we call QN.

(22)

We refer to QN as the Nth approximant to Q(m); in many

is still quite small. Through a sequence of simple series
manipulations we have converted the series in Eq. (20), which
is meaningless as
extrapolants QN.

An Example

The convergent properties of the extrapolants QN are so
surprising that we must demonstrate them with a specific
example. The transcendental equation

1
i n  x  +  — = 0

l – x
(23)

has one root between O and 1:

x = 0.2592463566483 . . . .

Let us see if we can obtain this root perturbatively. We begin
by introducing a perturbation parameter E in a most unusual
way.

1
i n  x  +  —

l + & ( )
(24)

We have chosen to introduce E this way for two reasons. First,

Second, the unperturbed problem [Eq. (24) with E = O] is

the unperturbed problem we proceed to find the rest of the
perturbation series for E # O by the iterative methods discussed

LOS ALAMOS SCIENCE

earlier for regular perturbation problems. The series for the
root x(E) to Eq. (24) is

series to a form in which a = 1, we multiply Eq. (25) by e, take
the natural logarithm, and multiply by –1.

The extrapolants for Eq. (26) defined by Eq. (22) yield a very
rapidly convergent sequence for the roots of the transcendental
equation in Eq. (23).

x l = 0.271713639,

x2 = 0.255145710,

x3 = 0.260300667,

x4 = 0.258935592,

x5 = 0.259336423,

x6 = 0.259219343,

x, = 0.259254556,

x8 = 0.259243826,

x9 = 0.259247147,

x10 = 0.259246107,

x11
= 0.259246436,

x12 = 0.259246331 ,

x 13 = 0.259246365, and

x 14 = 0.259246353,

which is now correct to one part in 108.
Note that the extrapolants QN, which are all positive, are

derived from a perturbation expansion that has both positive
and negative terms. The remarkable fact that the first N
coefficients in the series raised to the Nth power are all positive
ensures that the extrapolants QN are always real.
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a spin-off from
PARTICLE
PHYSICS
RESEARCH
o ur new techniques for singular perturbation prob-

lems were developed to solve mathematical prob-
lems that arise in a field-theoretic treatment of

strongly interacting particles. Strong forces mean that the
parameter describing the interactions between particles is
very large compared to other parameters in the problem.
This problem is very different from the weak-coupling
problems usually studied (such as those arising in quan-
tized electromagnetic interactions), in which the interac-
tion force is small (weak) and thus can be treated as a
perturbation on a system of freely moving, noninteracting
particles. The answers to weak-coupling problems are
expressed as power series in the strength of the small
interaction force.

In the strong-coupling case, we cannot treat the interac-
tion term as a perturbation since it dominates the
dynamics. Instead, we treat the kinetic energy term that
determines the motion of free particles as the perturbation.
The unperturbed system now consists of particles that
interact through strong forces but are motionless or frozen
in space time.

The strong-coupling or kinetic energy expansion is
singular because the kinetic energy can become arbitrarily
large. As a result, the terms in the perturbation expansion
in inverse powers of the coupling strength are not well
defined. To proceed we use an artifice: we model
space-time as a lattice of discrete points rather than as a
continuum. This trick, commonly used in particle physics,
prevents the momentum or kinetic energy from becoming

arbitrarily
but rather

large. Particle motion is no longer continuous
consists of hopping from site to site. Although

the dynamics on the lattice is unfamiliar, the
strong-coupling expansion of physical quantities becomes
well defined and very easy to compute, so easy that the
computations are purely algebraic and we can program
computers to do the manipulations to a very high order in
the perturbation expansion. However, the introduction of
a space-time lattice has a major drawback; it introduces
into the problem an artificial length, namely, the lattice
spacing a between lattice sites. To obtain physically
meaningful results, we must return to the continuum by
taking the lattice spacing a to zero. Performing this
singular and difficult limit was a central problem we solved
in our research.

We now realize that the introduction of a lattice and the

mathematical tool that can be applied to many singular
perturbation problems outside the realm of quantum field
theory. In general, it has the advantage of converting
singular perturbation problems that require a great deal of
mathematical subtlety and ingenuity into regular per-
turbation problems whose iterative solutions are straight-
forward and routine. We have used these methods to solve
a variety of singular perturbation problems such as
boundary-layer problems, and we have even used them to
elucidate the statistical mechanics of randomly driven
nonlinear oscillators ■
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Why Equation (22) Works

We can develop some intuition for why Eq. (22) defines a
convergent series of approximants by doing a saddle-point
evaluation of a complex integral. For those not interested in
this argument, skipping to the next subheading will not break
the continuity of our presentation.

If f(z) is an analytic function in a region of the complex-z
plane containing the origin, the nth term in the Taylor series
for

is given by a contour integral,

where the contour C encircles the origin. Hence, after making
some reasonable analyticity assumptions, we may use this

(27)

to see if the sequence of approximants converges. To do so, we
rewrite the integrand as

For large N, we apply the saddle-point method. A saddle point
&O is defined by the condition

(28)

We shift the contour C in Eq. (27) until it passes through the

for the sake of simplicity we ignore any contributions that
might come from passing the contour through a singularity in

the complex-s plane. The saddle-point method tells us that the
most important contribution to the integral in Eq. (27) is found

ignore any terms that depend on N algebraically because, as
we will see, we are going to take the Nth root of the result and
let N tend to infinity; in this limit all algebraic terms approach
1.) Evaluating the integral at the saddle point gives

Using the definition of the extrapolants QN in Eq. (21), we
have

This result may seem very disappointing at first because we
were hoping that

However, we assumed at the start that Q(m) was finite. This is

and thus satisfies the saddle-point condition Eq. (28) at

a saddle point. Now we understand why the formula Eq. (22)
can produce a series of approximants that actually approach
Q(a)).

This argument also explains why Eq. (22) sometimes fails; it
can fail if there is another saddle point in the complex-c plane
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Here is the surprising part: although there are many
problems for which the sequence of approximants QN doesn’t
converge to Q(m), in all 25 or so problems that we have
investigated, both in quantum-field theory and in boundary-
layer theory, the QN sequence still gives a remarkably accurate
approximation to the exact answer. Sometimes the approxi-
mants QN come very close to the exact answer and then veer
away, just like the partial sums of an asymptotic series. We do
not really understand yet why our method works so well.

Back To The Kink . . .

Now that we have described a general method for ex-
trapolating series like the one in Eq. (18) to the continuum, we
will return to the kink problem and see how well our method

Eq. (22) with a = 1/2 to obtain the following sequence of
approximants.

Q, = 1.0,
Q, = 0.84090,
Q, = 0.78193,
Q, = 0.75724,
Q 5 = 0.74076,
Q, = 0.73121,
Q, = 0.72393,
Q, = 0.71905,
Q 9 = 0.71515, and
Q IO = 0.71231.

The extrapolants are already very close to the exact answer
0.70711. The higher extrapolants continue to decrease
monotonically until a surprising thing happens; they under-
shoot the exact answer and continue decreasing until they
reach a minimum in 24th order.

Q 24 = 0.70198,

The relative error between this value and the exact answer is
less than 1%. The extrapolants gradually rise monotonically
until they recross the exact answer in 41st order; we believe
that the extrapolants will continue to rise from here on.

Unlike the example in Eq. (23), the sequence of approxi-
mants is not convergent, probably because of the effect of a
saddle point. Nevertheless, the sequence is asymptotic in
nature; like Stirling’s series for the gamma function and other
asymptotic series, early terms in the series comprise a good
approximation to the answer until some optimal order is
reached. Afterwards, the direct approximants from these series
diverge.*

In the same way that we determined u’(0), we can determine
all the derivatives U(”)(0) for Eq. (18) by extrapolating series
expansions of the form

reasonable global reconstruction of u(x). However, we need to
know at least 10 terms in the Taylor series to perform this
reconstruction.

The method we have described to determine u(x) relies on
obtaining local information for the differential or classical field
equation at the origin. In his paper, “Singular Per-
turbation-Strong Coupling Field Theory,” Carlos R. Handy, a
Postdoctoral Fellow at Los Alamos, developed an alternative
approach, which allows for global reconstruction of the field
solution. The method combines two mathematical tools. The
first is the lattice expansion for the given field equation; an
example is Eq. (15), from which the power moments are
determined as an expansion in inverse powers of the lattice
spacing. Handy uses Pade approximant techniques to obtain
approximate continuum limit power moments. The second
relates to the traditional, mathematical “moments problem.”
After obtaining a sufficient number of the approximate
continuum moments, he reconstructs the corresponding ap-
proximate global field solution. This procedure gave excellent
results for both the +4-classical field theory kink and the
Sine-Gordon equation kink solutions. It is equivalent to a
momentum space formulation of the problem in which the
long-range, large-scale behavior of the fields is determined by
the small-momentum infrared domain.

*The perturbation series derived from conventional boundary-layer methods
are also asymptotic divergent series.

88 LOS ALAMOS SCIENCE



a novel approach to BOUNDARY LAYER PROBLEMS

Other Boundary-Layer Problems

Boundary layers or transient phenomena arise in many
diverse physical settings. Here we apply the new solution
techniques to three problems.

1. Blasius Equation

The Blasius equation describes the boundary-layer structure
of fluid flow across a flat plate.

A quantity of physical interest is y“(0), which determines the
stress on the plate apart from dimensional parameters.

To solve for y“(0) perturbatively, we rewrite the Blasius
equation on a lattice.

the solution a sequence of extrapolants for y“(0). The exact

first few extrapolants obtained by our new techniques are

As N increases, QN becomes very flat.

The relative error between the exact answer and Q38 is about
5%. At present, we do not know whether the sequence QN

will not discuss them here.

2. Damped Linear Oscillator

An initially quiescent spring-mass system subject to an
impulse 10 at t = O satisfies the equation

where 13 is the damping coefficient, m is the mass, and k is the
spring constant. For small m, the solution y(t) exhibits a
boundary layer of thickness m/~ situated at t = O. The exact
solution satisfies y'(O+) = 1O/m.

The lattice version of the differential equation is

perturbation series for the damping term at t = O, y’(0), is very
simple.

Using Eq. (22), the formula for the Nth approximant QN, we
obtain for all N

Thus, our perturbative approach gives the exact answer to all
orders.

3. Green’s Function for the Diffusion Equation

Our lattice techniques work for partial as well as for
ordinary differential equations. To illustrate, we consider a
heat diffusion equation with a point source in the space and
time variables.

u(x,t) describes the temperature distribution in a one-
dimensional system like a wire or rod.
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The exact solution is the Green’s function,

(29)

u(x,t) has a boundary layer of thickness (vt)1/2 at x = O. We
wish to calculate the temperature at x = O and time t. The
exact result from Eq. (29) is

To apply our solution methods, we introduce a discrete
lattice in the spatial variable to obtain the differential-
difference equation

temperature at x = O, is

This series can be summed exactly to give

where 10 is an associated Bessel function, Using the asymptotic

However, we are more interested in finding out what
happens when we extrapolate the perturbation series
term-by-term to the limit using Eq. (22). We obtain a sequence
of extrapolants, which appear to converge rather slowly after

Q 1 = 0.5,
Q 2 = 0.435,
Q 3 = 0.408,
Q 4= 0.393, and
Q 5 = 0.384.

The sequence continues to approach the exact answer but
becomes very flat as N increases.

Q 10 = 0.362,
Q 15 = 0.354,
Q 20 = 0.349,
Q 25 = 0.346,
Q 30 = 0.344,
Q 35 = 0.343, and
Q 40 = 0.342.

The last approximant differs from the exact answer by about
18%. This example gives the poorest results we have found so
far; in most problems we have studied, we can predict the
answer to within a few percent.

Conclusions

Our new way of doing perturbation theory, in which the

eventually is extrapolated to infinity, appears to be a powerful
tool in boundary-layer theory and in many other areas.
Although the method involves taking unusual limits, the
computations are purely algebraic and therefore relatively
simple. There is much work to be done in determining the
method’s full range of applicability. We have returned to its
application in field theory and hope that investigators in other
areas will find ways to exploit the methods in new physical
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